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Economic model predictive control (EMPC) is a feedback control technique that attempts to tightly integrate economic
optimization and feedback control since it is a predictive control scheme that is formulated with an objective function
representing the process economics. As its name implies, EMPC requires the availability of a dynamic model to compute
its control actions and such a model may be obtained either through application of first principles or through system
identification techniques. In industrial practice, it may be difficult in general to obtain an accurate first-principles model
of the process. Motivated by this, in the present work, Lyapunov-based EMPC (LEMPC) is designed with a linear
empirical model that allows for closed-loop stability guarantees in the context of nonlinear chemical processes. Specifi-
cally, when the linear model provides a sufficient degree of accuracy in the region where time varying economically
optimal operation is considered, conditions for closed-loop stability under the LEMPC scheme based on the empirical
model are derived. The LEMPC scheme is applied to a chemical process example to demonstrate its closed-loop stabil-
ity and performance properties as well as significant computational advantages. VC 2014 American Institute of Chemical

Engineers AIChE J, 61: 816–830, 2015

Keywords: economic model predictive control, system identification, process control, process optimization, process eco-
nomics, chemical processes

Introduction

The economic success of the chemical and petrochemical
industry relies on optimal process operation which has led to
the emergence of an overall process control goal of translating
process/system economic considerations into feedback control
objectives.1 One key development toward achieving this goal
is economic model predictive control (EMPC). EMPC is a
feedback control technique that attempts to tightly integrate
economic optimization and feedback control since it is a pre-
dictive control scheme that is formulated with an objective
function representing the process/system economics2–4 (see,
also, Ref. 5 for an overview of recent results on EMPC).
While initial efforts on EMPC have focused on closed-loop
stability considerations, recent developments have addressed
economic performance including: formulating a Lyapunov-
based EMPC with guaranteed closed-loop economic perform-
ance improvement over conventional (tracking) model predic-
tive control (MPC) over finite-time and infinite-time operating
intervals,6 investigating the transient performance and closed-
loop stability of EMPC formulated without terminal con-
straints,7 and studying the closed-loop performance of EMPC

formulated with a self-tuning terminal cost and generalized
terminal constraint.8

The key underlying assumption to design and apply an
EMPC is that a process/system dynamic model is available
to predict the future process state evolution. Constructing
models of dynamical systems is done either through first
principles and/or from process input/output data.9 First-
principle models are developed from conservation equations
and attempt to account for the essential mechanisms behind
the observed physicochemical phenomena. However, arriving
at a first-principles model requires sufficient process knowl-
edge which may be a challenging task for complex industrial
processes. On the other hand, system identification serves as
an alternative to first-principles models when first-principles
models are unavailable and/or too complex to use on-line in
MPC. Over the past 30 years, numerous methods have been
developed to construct linear or nonlinear empirical models
from input/output data (see, for example, Refs. 10–14 and
the references contained therein for an overview of these
methods). One potential grouping of the various methods of
system identification is to group the methods on the basis of
the type of empirical model derived which may be either an
input-output model or a state-space model. However, note
that when the output vector is the entire state vector (i.e.,
full-state feedback), input-output modeling methods may be
used to construct a state-space model. The most common
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type of empirical model is a linear model. When a process
system exhibits significant nonlinearities as is the case in
most chemical processes, the use of multiple linear models
has been employed to improve the accuracy of prediction
over a larger operating region.15–17

Within the context of input-output models, (nonlinear)
autoregressive moving average with exogenous input models
((N)ARMAX), Volterra models, and neural-network models
are some of the types of input-output models commonly
used (see, for instance, Refs. 13,14 and the references therein
for more details on input-output modeling). Numerous works
on integrating input-output models within the context of
tracking MPC, which is formulated with a cost function that
is positive definite with respect to a set-point or steady-state,
have been investigated. For instance, the use of Hammer-
stein, Wiener, and Hammerstein-Wiener models within
MPC18–20 has been considered, the use of multiple-models
within MPC constructed from autoregressive with exogenous
input (ARX) models has been investigated for batch proc-
esses (e.g., Ref. 21), and multiple-model adaptive predictive
control has been formulated for mean arterial pressure and
cardiac output regulation (e.g., Ref. 22).

On the other hand, empirical state-space modeling methods
are another type of empirical modeling technique. Within this
context, linear subspace system identification is a very widely
known and used empirical modeling method that is based on
input/output data.23–29 In particular, subspace model identifica-
tion (SMI) methods are noniterative methods that take into
account multivariable interactions and result in models that
are numerically stable for multiple-input multiple-output
(MIMO) systems.25,29,30 Some of the various SMI algorithms
in the literature include the multivariable output error state-
space algorithm (MOESP),23,24,26,31 the Canonical Variate
Algorithm (CVA),32 and numerical algorithms for subspace
state-space system identification (N4SID).25 Identifying the
deterministic part of a MIMO state-space model using SMI
methods has proven to be successful in the context of indus-
trial settings.24,31,33–35 Combining subspace methods with
MPC has also been considered (see, for instance, Ref. 28 and
the references contained therein).

To date, no work on formulating an EMPC scheme using
an empirical model with guaranteed closed-loop stability prop-
erties has been completed. In this work, an integrated view of
system modeling, feedback control, and process/system eco-
nomics is undertaken. Specifically, an LEMPC formulated
with an empirical model is considered. The type of empirical
model is restricted to state-space models given the fact that
the economic cost function typically depends on at least some
(if not all) of the state variables. While the linear model may
be derived from any system identification technique, it must
be sufficiently close (in a sense to be made precise below) to
the linearization of the nonlinear process model at the steady-
state around which time-varying operation is considered.
Under this assumption, sufficient conditions for closed-loop
stability (boundedness of the closed-loop state in a compact
state-space set) under the LEMPC with the empirical linear
model applied to the nonlinear chemical process are derived.
The LEMPC with empirical model method is applied to a
chemical process example and extensive closed-loop simula-
tions are performed that demonstrate the closed-loop stability
and performance properties. Furthermore, a significant reduc-
tion in the on-line computation time with LEMPC formulated
with an empirical model is realized over LEMPC formulated
with a nonlinear first-principles model.

Preliminaries

Notation

The Euclidean norm of a vector is denoted by the operator
j � j and the norm of a matrix is denoted as jj � jj. A continu-
ous function a : ½0; aÞ ! ½0;1Þ is said to belong to class K
if it is strictly increasing and is zero when evaluated at
zero. The symbol Xq is used to denote the set Xq : 5

fx 2 Rn : VðxÞ � qg where V is a continuously differentiable
positive definite scalar function and q> 0, and the symbol
S(D) denotes the family of piecewise constant functions with
period D. The transpose of the vector x is denoted xT.

Class of systems

The class of nonlinear process systems considered can be
written in the following continuous-time state-space form

_xðtÞ5f ðxðtÞ; uðtÞ;wðtÞÞ (1)

where x � Rn is the state vector of the system, u � Rm is the
control (manipulated) input vector, and w � Rl is the disturb-
ance vector. The vector function f(�,�,�) is assumed to be a
locally Lipschitz vector function. The control actions are
bounded by the physical constraints on the control actuators
and thus, are restricted to belong to a nonempty convex set
U : 5fu 2 Rm : umin

i � ui � umax
i ; i51; . . . ; mg. The norm

of the disturbance vector is bounded (i.e. jwðtÞj � h for all t
where h> 0 bounds the norm). The equilibrium of the system
of Eq. 1 is considered to be the origin, i.e., f(0, 0, 0) 5 0. The
state of the system of Eq. 1 is assumed to be synchronously
sampled and available at sampling time instances tk :5 kD,
k 5 0, 1, . . .where D> 0 is the sampling period.

We restrict the class of nonlinear systems of Eq. 1 consid-
ered to a class of stabilizable nonlinear systems. Specifically,
we assume the existence of a Lyapunov-based controller h(x)
� U that renders the origin of the closed-loop nominal sys-
tem (w(t) � 0) of Eq. 1 asymptotically stable for all x in an
open neighborhood of the origin. This assumption implies
the existence of a continuously differentiable Lyapunov
function, V : Rn ! R1, for the closed-loop system of Eq. 1
under u(t) 5 h(x(t)) that satisfies36,37

a1ðjxjÞ � VðxÞ � a2ðjxjÞ; (2a)

@VðxÞ
@x

f ðx; hðxÞ; 0Þ � 2a3ðjxjÞ; (2b)

@VðxÞ
@x

����
���� � a4ðjxjÞ (2c)

for all x 2 D � Rnx where D is an open neighborhood of the
origin and ai(�), i 5 1, 2, 3, 4 are functions of class K. For
various classes of nonlinear systems, stabilizing control laws
that explicitly account for input constraints have been devel-
oped (see, for example, Refs. 38–41 for results in this direc-
tion). The stability region (i.e., the set of points in state-
space where convergence to the origin under the Lyapunov-
based controller is guaranteed) may be estimated as the level
set of the Lyapunov function where the time-derivative of
the Lyapunov function is negative for all points contained in
the level set, and is denoted as Xq � D. Moreover, the origin
of the sampled-data system resulting from the system of Eq.
1 under the Lyapunov-based controller when implemented in
a sample-and-hold fashion is practically stable (i.e., the
closed-loop state will converge to a small compact, forward
invariant set containing the origin in its interior) when a
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sufficiently small sampling period is used and the bound on
the disturbance vector is sufficiently small.42

In this work, empirical models will be constructed to pre-
dict the evolution of the state of the system of Eq. 1 using
data-based modeling techniques. Specifically, the type of
empirical models constructed for the system of Eq. 1 are lin-
ear time-invariant state-space models which have the follow-
ing form

_xðtÞ5AxðtÞ1BuðtÞ (3)

where x � Rn is the state vector, u � Rm is the input vector,
and A and B are constant matrices of appropriate dimensions.
When the nominal nonlinear model of Eq. 1 is unavailable,
the Lyapunov-based controller needs to be designed on the
basis of the empirical model of Eq. 3. We assume that the
pair (A, B) is stabilizable in the sense that there exists a state
feedback controller hL(x) � U that renders the origin of the
closed-loop system of Eq. 3 exponentially stable for all ini-
tial conditions x � DL where DL is some open neighborhood
of the origin. Furthermore, the controller hL(x) � U is
assumed to be locally Lipschitz on Rn in the sense that there
exists a K> 0 such that jhLðxÞj can be bounded by Kjxj for
all x in a compact set containing the origin in its interior.
When the controller hL(x) is applied to the nominal nonlinear
system of Eq. 1, there are two factors that affect closed-loop
stability: the closeness of the model of Eq. 3 to the lineariza-
tion of the nominal model of Eq. 1 at the origin and the
effect of the nonlinearities of the system of Eq. 1. Locally,
we can show that the controller hL(x) possesses a robustness
margin to overcome these two effects and render the origin
of the nominal closed-loop nonlinear system asymptotically
stable. This is stated in the following proposition.

Proposition 1. If the origin of closed-loop system of Eq. 3
under the controller hL(x) is exponentially stable and there
exist q̂ > 0 and d> 0 such that

jj �A2Ajj1jj �B2BjjK � d (4)

where the matrices �A and �B denote the linearization of
f(x, u, 0) at the origin

�A : 5
@f

@x
ð0; 0; 0Þ; �B : 5

@f

@u
ð0; 0; 0Þ (5)

then the origin of the nominal closed-loop system of Eq. 1
(w(t) � 0) is exponentially stable for all x 2 Xq̂ � DL.

Proof. To prove the result of Proposition 1, we will show
that there exists a Lyapunov function for the closed-loop
system of Eq. 1 under the controller hL(x) when q̂ > 0 and
d> 0 are sufficiently small. Owing to the fact that the origin
of closed-loop system of Eq. 3 under the controller hL(x) is
exponentially stable, there exists a continuously differentia-
ble Lyapunov function V̂ : Rn ! R1 such that37

c1jxj2 � V̂ðxÞ � c2jxj2; (6a)

@V̂ðxÞ
@x

Ax1BhLðxÞð Þ � 2c3jxj2; (6b)

j @V̂ðxÞ
@x
j � c4jxj (6c)

for all x � DL where ci, i 5 1, 2, 3, 4 are positive constants.
Define

gðxÞ : 5f ðx; hLðxÞ; 0Þ2 �Ax2 �BhLðxÞ (7)

which contains terms of second-order and higher in x. Con-
sider the following closed-loop system

_x5Ax1BhLðxÞ1f ðx; hLðxÞ; 0Þ2Ax2BhLðxÞ (8)

and the time-derivative of V̂ along the trajectory of the
closed-loop system of Eq. 8

_̂V 5
@V̂ðxÞ
@x

Ax1BhLðxÞð Þ1 @V̂ðxÞ
@x

f ðx; hLðxÞ; 0Þ2Ax2BhLðxÞð Þ

�
ð6bÞ

2c3jxj21
@V̂ðxÞ
@x

����
����j �A2Að Þx1 �B2Bð ÞhLðxÞ1gðxÞj

�
ð6cÞ

2c3jxj21c4jxj j �A2Að Þx1 �B2Bð ÞhLðxÞj1jgðxÞjð Þ

(9)

for all x � DL. Since the controller hL(x) is locally Lipschitz,
there exists a K> 0 such that

_̂V � 2c3jxj21c4jxj k �A2Akjxj1k �B2BkjhLðxÞjð Þ1jgðxÞjð Þ

� 2c3jxj21c4jxj k �A2Ak1k �B2BkKð Þjxj1jgðxÞjð Þ
(10)

for all x 2 Br̂ 5fx 2 Rn : jxj � r̂g where r̂ is any r̂ > 0 such
that Br̂ � DL. If the condition of Eq. 4 is satisfied, there
exits a d> 0 such that

_̂V � 2c3jxj21c4djxj21c4jxjjgðxÞj (11)

for all x 2 Br̂ . Since g(x) contains terms of second-order and
higher in x and vanishes at the origin, there exists a c> 0
such that

jgðxÞj < cjxj2 (12)

for all x 2 Br̂ . Thus

_̂V � 2c3jxj21c4djxj21c4cjxj3 (13)

for all x 2 Br̂ . For any Br � Br̂ , the time-derivative of V̂ can
be bounded by the following

_̂V � 2c3jxj21c4ðd1crÞjxj2 (14)

for all x � Br where r < r̂ . If d> 0 and r> 0 are chosen to
satisfy c3/c4> (d 1 cr), then there exists a ĉ3 > 0 such that

_̂V5
@V̂ðxÞ
@x

f ðx; hLðxÞ; 0Þð Þ � 2ĉ3jxj2 (15)

for all jxj < r. Let q̂ > 0 be such that q̂ � min
fV̂ðxÞ : jxj < rg which completes the proof. �

We will make use of the following properties in the
“Stability Analysis” subsection. Owing to the locally Lip-
schitz property assumed for the vector function f(�, �, �) as
well as the fact that the Lyapunov function V (�) is a contin-
uously differentiable function, the following inequalities hold

jf ðx1; u;wÞ2f ðx2; u; 0Þj � Lxjx12x2j1Lwjwj; (16)

@Vðx1Þ
@x

f ðx1; u;wÞ2
@Vðx2Þ
@x

f ðx2; u; 0Þ
����

���� � L
0

xjx12x2j1L
0

wjwj

(17)

for all x1, x2 2 Xq̂ ; u 2 U and jwj � h where Lx, Lw, L
0
x, and

L
0
w are positive constants. Additionally, there exists M> 0

that bounds the vector field
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jf ðx; u;wÞj � M (18)

for all x 2 Xq̂ ; u 2 U and jwj � h because f(�, �, �) is a
locally Lipschitz vector function of its arguments and Xq

and U are compact sets. For the linear model of Eq. 3, there
exist ML> 0 and LL> 0 such that

jAx11Buj � ML (19)

@Vðx1Þ
@x

Ax11Buð Þ2 @Vðx2Þ
@x

Ax21Buð Þ
����

���� � LLjx12x2j (20)

for all x1, x2 2 Xq̂ and u � U.

Lyapunov-based EMPC

A specific type of EMPC will be considered in this work.
Specifically, we consider LEMPC3 which utilizes the
Lyapunov-based controller h(x) in the design of two con-
straints. The two constraints allow for provable guarantees
on closed-loop stability (the closed-loop state is always
bounded in Xq). Each constraint defines an operating mode
of the LEMPC. The formulation of LEMPC is given by the
following optimization problem

min
u2SðDÞ

ðtk1N

tk

Leð~xðsÞ; uðsÞÞ ds (21a)

s:t: _~xðtÞ5f ð~xðtÞ; uðtÞ; 0Þ (21b)

~xðtkÞ5xðtkÞ (21c)

uðtÞ 2 U; 8 t 2 ½tk; tk1NÞ (21d)

Vð~xðtÞÞ � qe; 8 t 2 ½tk; tk1NÞ if xðtkÞ 2 Xqe
(21e)

@VðxðtkÞÞ
@x

f ðxðtkÞ; uðtkÞ; 0Þ

� @VðxðtkÞÞ
@x

f ðxðtkÞ; hðxðtkÞÞ; 0Þ if xðtkÞ 62 Xqe

(21f)

where the input trajectory over the prediction horizon ND is
the decision variable in the optimization problem. The nota-
tion ~xðtÞ denotes the predicted behavior of the state trajec-
tory under the input trajectory computed by the LEMPC.
The region Xqe

is a subset of the stability region Xq where
time-varying operation is allowed (qe defines a level set of
the Lyapunov function and is chosen to make Xq invariant;
see Ref. 3 for details regarding this point).

The objective function of the optimization problem of
Eq. 21a is formulated with a stage cost derived from the
economics of the system of Eq. 1 (e.g., the operating cost,
energy cost, and the negative of the operating profit). The
initial value problem embedded in the optimization problem
(Eqs. 21b–21c) is used to predict the evolution of the sys-
tem over the prediction horizon where the initial condition
is obtained through a state measurement at the current time
step. The input constraint of Eq. 21d bounds the computed
input trajectory to be within the admissible input set.
Depending on where the current state is in state-space,
mode 1, which is defined by the constraint of Eq. 21e, or
mode 2, which is defined by the constraint of Eq. 21f, are
active. Under mode 1 operation of the LEMPC, the com-
puted input trajectory is allowed to force a potentially tran-
sient (time-varying) state trajectory while maintaining the
predicted state in a subset of the stability region. The
region Xqe

� Xq is chosen on the basis of closed-loop sta-
bility in the presence of uncertainty, i.e., wðtÞ6�0 (as noted
above, it is chosen to make Xq forward invariant). Under

mode 2 operation of the LEMPC, the constraint of Eq. 21f
forces the control action for the first sampling period in the
prediction horizon to decrease the Lyapunov function by at
least as much as the decrease forced by the control action
computed by the Lyapunov-based controller. This contrac-
tive constraint will guarantee that any state starting in Xqn
Xqe

will be eventually forced back to Xqe
. For more details

and discussion of LEMPC along with a complete closed-
loop stability analysis, the interested reader may refer to
Ref. 3.

EMPC Using Empirical Models

In this section, we summarize the formulation and imple-
mentation of an LEMPC formulated with an empirical model
as well as derive sufficient conditions such that the closed-
loop nonlinear system under the LEMPC formulated with an
empirical model will be stable in a sense to be made precise
below.

Formulation with empirical models and implementation

The formulation of the LEMPC with the empirical model
is similar to the LEMPC of Eq. 21 except it is formulated
with the empirical model of Eq. 3, the stabilizing controller
hL(x), and the Lyapunov function V̂ðxÞ. The formulation of
the LEMPC using an empirical model is given by

min
u2SðDÞ

ðtk1N

tk

Leðx̂ðsÞ; uðsÞÞ ds (22a)

s:t: _̂xðtÞ5Ax̂ðtÞ1BuðtÞ (22b)

x̂ðtkÞ5xðtkÞ (22c)

uðtÞ 2 U; 8 t 2 ½tk; tk1NÞ (22d)

V̂ðx̂ðtÞÞ � q̂e; 8 t 2 ½tk; tk1NÞ if xðtkÞ 2 Xq̂e
(22e)

@V̂ðxðtkÞÞ
@x

AxðtkÞ1BuðtkÞð Þ

� @V̂ðxðtkÞÞ
@x

AxðtkÞ1BhLðxðtkÞÞð Þ if xðtkÞ 62 Xq̂e

(22f)

where the notation x̂ðtÞ is used to distinguish that the
LEMPC predicts the evolution of the system of Eq. 1 with
the empirical model of Eq. 3 and Xq̂e

� Xq̂ is the subset
where the LEMPC may dictate a time-varying operating pol-
icy (the other constraints are similar to those used in Eq.
21). The optimal solution of the optimization problem of Eq.
22 is denoted as u�ðtjtkÞ defined for t � [tk, tk1N).

The LEMPC of Eq. 22 is implemented in a receding hori-
zon fashion. At a sampling instance, the LEMPC is solved
for an input trajectory u�ðtjtkÞ for t � [tk, tk1N), but only
applies the control action for the first sampling period of the
prediction horizon to the system. The control action to be
applied over the first sampling period is denoted as u�ðtkjtkÞ.
The implementation strategy of the LEMPC is summarized
in the following algorithm:

1. Receive a state measurement xðtkÞ. Go to Step 2.
2. If xðtkÞ 2 Xq̂e

, go to Step 2.1. Else, go to Step 2.2.

1.1. The mode 1 constraint of Eq. 22e is active and the
mode 2 constraint of Eq. 22f is inactive. Go to Step 3.

1.2. The mode 2 constraint of Eq. 22f is active and the
mode 1 constraint of Eq. 22e is inactive. Go to
Step 3.
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3. The optimization problem of Eq. 22 solves for its
optimal input trajectory defined for t � [tk, tk1N). Go to
Step 4.

4. The first control action of the input trajectory u�ðtkjtkÞ
is applied to the system of Eq. 1. Go to Step 5.

5. k :5 k 1 1 and go to Step 1.

Stability analysis

In this subsection, the stability properties of the LEMPC
formulated with the empirical model are analyzed. The fol-
lowing proposition bounds the difference between the actual
state trajectory of the system of Eq. 1 in the presence of
uncertainty (wðtÞ6�0) and the predicted state trajectory from
the model of Eq. 3 over a time period from t 5 0 to t 5 T.

Proposition 2. Consider the solutions, denoted as x(t) and
x̂ðtÞ, respectively, of the following dynamic equations

_xðtÞ5f ðxðtÞ; uðtÞ;wðtÞÞ; xð0Þ5x0; (23)

_̂xðtÞ5Ax̂ðtÞ1BuðtÞ; x̂ð0Þ5x0; (24)

where u(t) � U and jwðtÞj � h for all t � [0, T] and initial
condition xð0Þ5x̂ð0Þ5x0 2 Xq̂ . If xðtÞ; x̂ðtÞ 2 Xq̂ for all t �
[0, T], then the difference between x(T) and x̂ðTÞ is bounded
by the function fw(�)

jxðTÞ2x̂ðTÞj � fwðTÞ : 5
Lwh1Merr

Lx
eLxT21
� �

(25)

where Merr bounds the difference between right-hand sides
of Eqs. 23–24 (with w(t) � 0)

jf ðx̂; u; 0Þ2ðAx̂1BuÞj � Merr (26)

for all x̂ 2 Xq̂ and u � U.
Proof. Let e(t) be the difference between the state trajec-

tory of Eq. 23 and the state trajectory of Eq. 24 (i.e.
eðtÞ : 5xðtÞ2x̂ðtÞ) with dynamics _eðtÞ5 _xðtÞ2 _̂xðtÞ and initial
condition e(0) 5 0). The error dynamics can be bounded by

j _eðtÞj5jf ðxðtÞ; uðtÞ;wðtÞÞ2 Ax̂ðtÞ1BuðtÞð Þj

� jf ðxðtÞ; uðtÞ;wðtÞÞ2f ðx̂ðtÞ; uðtÞ; 0Þj

1jf ðx̂ðtÞ; uðtÞ; 0Þ2ðAx̂ðtÞ1BuðtÞÞj :

(27)

For a given Xq̂ , there exists a Merr> 0 such that

jf ðx̂; u; 0Þ2ðAx̂1BuÞj � Merr (28)

for all x̂ 2 Xq̂ and u � U owing to the Lipschitz property
assumed for the vector function f(�, �, �) and the fact that x
and u are bounded in compact sets. From Eqs. 27 and 28
and the locally Lipschitz property for f(�, �, �) (Eq. 16), we
have the following bound

j _eðtÞj � LxjxðtÞ2x̂ðtÞj1LwjwðtÞj1Merr

� LxjeðtÞj1Lwh1Merr

(29)

for all t � [0, T] where the last inequality follows from the
fact that jwðtÞj � h. Integrating the bound of Eq. 29 from
t 5 0 to t 5 T givesðT

0

j _eðtÞj
LxjeðtÞj1Lwh1Merr

dt � T (30)

and solving for jeðTÞj

jeðTÞj5jxðTÞ2x̂ðTÞj � Lwh1Merr

Lx
eLxT21
� �

(31)

with x(T), x̂ðTÞ 2 Xq̂ .
The next proposition bounds the difference of Lyapunov
function values between any two points in Xq̂ . The proof
may be found in Ref. 42. �

Proposition 3. (c.f. Ref. 42)
Consider the continuous differentiable Lyapunov function
V̂ð�Þ that satisfies the inequalities of Eq. 2. There exists a
quadratic function fV (�) such that

V̂ðx1Þ � V̂ðx2Þ1fVðjx12x2jÞ (32)

for all x1, x2 2 Xq̂ where

fVðsÞ : 5
c4

ffiffiffî
q
pffiffiffiffiffi
c1
p s1bs2 (33)

and b is a positive constant.
The state feedback controller hL(x) renders the origin of

Eq. 3 asymptotically stable under continuous implementa-
tion. In general, the controller hL(x) implemented in a
sample-and-hold fashion may only render the origin of the
closed-loop system of Eq. 3 practically stable, that is the
closed-loop state of Eq. 3 under the controller hL(x) imple-
mented in a sample-and-hold is ultimately bounded in a
small invariant set containing the origin in its interior. To
guarantee a feasible solution to the optimization problem of
Eq. 22 under mode 1 operation, the set Xq̂e

must be larger
than the set in which the closed-loop state is ultimately
bounded under the controller hL(x) implemented in a sample-
and-hold fashion for a given sampling period D> 0. The fol-
lowing proposition states sufficient conditions for the mini-
mum size of q̂e for a given D needed to guarantee a feasible
solution of Eq. 22e under mode 1 operation. To this end, let
x̂ðtÞ denote the solution of the sampled-data system resulting
from the system of Eq. 3 with the initial condition x̂ð0Þ
2 Xq̂ and with the input trajectory obtained from the control-
ler hL(x) implemented in a sample-and-hold fashion

uðtÞ5hLðx̂ðtkÞÞ (34)

for t � [tk, tk11), k 5 0, 1, . . .with t0 5 0.
Proposition 4. Consider the sampled-data system resulting

from the system of Eq. 3 under the controller hL(x) that sat-
isfies the inequalities of Eq. 6 implemented in a sample-and-
hold fashion. Let D > 0; �̂s > 0, and q̂e � q̂min � q̂s > 0
satisfy

2
c3

c2

q̂s1LLMLD � 2�̂s=D (35)

and

q̂min : 5max V̂ðx̂ðt1DÞÞ : V̂ðx̂ðtÞÞ � q̂s

� �
: (36)

If x̂ð0Þ 2 Xq̂e
, then x̂ðtÞ 2 Xq̂e

for all t� 0 and

V̂ðx̂ðtk11ÞÞ2V̂ðx̂ðtkÞÞ � 2�̂s (37)

for x̂ðtkÞ 2 Xq̂e
nXq̂s

and x̂ðtÞ is ultimately bounded in Xq̂min
.

Proof. Consider the sampled-data system resulting from
the system of Eq. 3 under the controller hL(x) applied in a
sample-and-hold fashion. At each sampling period tk, the
input trajectory obtained from the controller hL(x) applied in
a sample-and-hold fashion has the following property
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@V̂ðx̂ðtkÞÞ
@x

Ax̂ðtkÞ1BhLðx̂ðtkÞÞð Þ � 2c3jx̂ðtkÞj2 (38)

from Eq. 6b. For simplicity of notation, let
ûðtkÞ : 5hLðx̂ðtkÞÞ. Consider the time-derivative of the Lya-
punov function for the empirical model for s � [tk, tk11)

@V̂ðx̂ðsÞÞ
@x

Ax̂ðsÞ1BûðtkÞð Þ5 @V̂ðx̂ðsÞÞ
@x

Ax̂ðsÞ1BûðtkÞð Þ

2
@V̂ðx̂ðtkÞÞ

@x
Ax̂ðtkÞ1BûðtkÞð Þ

1
@V̂ðx̂ðtkÞÞ

@x
Ax̂ðtkÞ1BûðtkÞð Þ

� LLjx̂ðsÞ2x̂ðtkÞj2c3jx̂ðtkÞj2

(39)

where the last inequality follows from Eqs. 38 and 20.
Owing to continuity of solutions in a compact set and the
bound of Eq. 19, the following bound holds

jx̂ðsÞ2x̂ðtkÞj � MLD (40)

for s � [tk, tk11]. From Eq. 39 and Eq. 40, the time deriva-
tive of the Lyapunov function is bounded by

@V̂ðx̂ðsÞÞ
@x

Ax̂ðsÞ1BûðtkÞð Þ � 2c3jx̂ðtkÞj21LLMLD (41)

for s � [tk, tk11).
If D> 0 is sufficiently small such that there exist
q̂s > 0; q̂min > 0, and �̂s > 0 with q̂e � q̂min defined accord-
ing to Eqs. 35 and 36, the state x̂ðtÞ remains bounded in Xq̂e

for t� 0 when x̂ð0Þ 2 Xq̂e
. To show this, we need to

consider two cases: x̂ðtkÞ 2 Xq̂e
nXq̂s

and x̂ðtkÞ 2 Xq̂s
. When

x̂ðtkÞ 2 Xq̂e
nXq̂s

and x̂ðsÞ 2 Xq̂e
for s � [tk, tk11), the fol-

lowing bound on the time derivative of the Lyapunov func-
tion can be written from the inequalities of Eqs. 41 and 6a

@V̂ðx̂ðsÞÞÞ
@x

Ax̂ðsÞ1BûðtkÞð Þ � 2
c3

c2

q̂s1LLMLD (42)

for s � [tk, tk11). If the condition of Eq. 35 holds, there
exists a �̂s > 0 such that

@V̂ðx̂ðsÞÞÞ
@x

Ax̂ðsÞ1BûðtkÞð Þ � 2�̂s=D (43)

for s � [tk, tk11). Integrating the bound for s � [tk, tk11],
we have

V̂ðx̂ðtk11ÞÞ � V̂ðx̂ðtkÞÞ2�̂s;

V̂ðx̂ðsÞÞ � V̂ðx̂ðtkÞÞ; 8 s 2 ½tk; tk11	
(44)

for all x̂ðtkÞ 2 Xq̂e
nXq̂s

which shows the result of Eq. 37 and
xðtÞ 2 Xq̂e

for all t � [tk, tk11].
For any x̂ðtkÞ 2 Xq̂e

nXq̂s
, we showed that the Lyapunov

function under the controller hL(x) applied in a sample-and-
hold fashion will decrease at the next sampling period.
When x̂ðtkÞ 2 Xq̂s

and there exists a q̂min � q̂e defined
according to Eq. 36, the state is ultimately bounded in Xq̂min

under the Lyapunov-based controller applied in a sample-
and-hold fashion owing to the definition of q̂min . Thus, Xq̂e

is forward invariant for the sampled-data system resulting
from the system of Eq. 3 under the Lyapunov-based control-
ler implemented in a sample-and-hold fashion (i.e., there
exists a sample-and-hold trajectory with sampling period D
that maintains x̂ðtÞ in Xq̂e

). �

REMARK 1. It is possible to show stronger notions of sta-
bility for the closed-loop system of Eq. 3 under the control-
ler hL(x) applied in a sampled-and-hold fashion. For
example, when the controller hL(x) is applied in a sample-
and-hold fashion with a sufficiently small sampling period to
the system of Eq. 3, the origin will be exponentially stable
(see, for example, Ref. 43 for results in this direction). How-
ever, these stronger notions of stability are not needed in the
context of the closed-loop stability results for the system of
Eq. 1 under the LEMPC of Eq. 22.
The purpose of Xq̂e

is to make Xq̂ invariant for the closed-
loop system of Eq. 1 under the LEMPC of Eq. 22. The con-
dition on q̂e along with other sufficient conditions such that
the closed-loop state trajectory of Eq. 1 under the LEMPC
of Eq. 22 is always maintained in Xq̂ are given in the fol-
lowing theorem.

Theorem 1. Consider the closed-loop system of Eq. 1
under the LEMPC of Eq. 22 based on the controller hL(x)
that satisfies the inequalities of Eq. 6. Let �w> 0, D> 0,
N� 1, and q̂ > q̂e > 0 satisfy

2
ĉ3

c2

q̂e1L
0

xMD1L
0

wh � 2�w=D ; (45)

q̂e � q̂2fVðfwðDÞÞ : (46)

If xð0Þ 2 Xq̂ and the conditions of Proposition 1 and Propo-
sition 4 are satisfied, then the state trajectory x(t) of the
closed-loop system is always bounded in Xq̂ for t� 0.

Proof. The proof is divided into two parts. In Part 1, fea-
sibility of the LEMPC optimization problem is proved when
the state is maintained in Xq̂ . Subsequently, the closed-loop
state under the LEMPC of Eq. 22 is shown to be always
bounded in Xq̂ in Part 2.

PART 1. If mode 1 operation of the LEMPC of Eq. 22 is
active (xðtkÞ 2 Xq̂e

) and the conditions of Proposition 4 are
satisfied (i.e., there exist positive constants q̂s; q̂min , and �̂s

that satisfy Eqs. 35–36), the LEMPC (under mode 1 opera-
tion) is feasible because the sample-and-hold trajectory
obtained from the controller hL(x) is a feasible solution to
the LEMPC optimization problem which follows from Prop-
osition 4. When the current state xðtkÞ 2 Xq̂nXq̂e

and the
LEMPC of Eq. 22 operates in mode 2 operation, the optimi-
zation problem is feasible because the input trajectory
u(t) 5 hL(x(tk)) for t � [tk, tk11) and any piecewise constant
trajectory u(t) � U for t � [tk11, tk1N) will satisfy the input
constraint of Eq. 22d and the mode 2 constraint of Eq. 22f.
Thus, the LEMPC is recursively feasible if the closed-loop
state is maintained in Xq̂ .

PART 2. Consider the closed-loop state trajectory under the
LEMPC of Eq. 22. If xðtkÞ 2 Xq̂nXq̂e

, the LEMPC operates
in mode 2 (the constraint of Eq. 22f is active) and the com-
puted input satisfies

@V̂ðxðtkÞÞ
@x

AxðtkÞ1BuðtkÞð Þ � @V̂ðxðtkÞÞ
@x

AxðtkÞ1BhLðxðtkÞÞð Þ

(47)

for all xðtkÞ 2 Xq̂nXq̂e
. From Proposition 1 (Eq. 15), for d

and q̂ sufficiently small, there exists a ĉ3 > 0 such that

@V̂ðxðtkÞÞ
@x

f ðxðtkÞ; hLðxðtkÞÞ; 0Þ � 2ĉ3jxðtkÞj2 (48)

The time derivative of the Lyapunov function (of the closed-
loop nonlinear system) over the sampling period is
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_̂V ðxðsÞÞ5 @V̂ðxðsÞÞ
@x

f ðxðsÞ; hLðxðtkÞÞ;wðsÞÞ

2
@V̂ðxðtkÞÞ

@x
f ðxðtkÞ; hLðxðtkÞÞ; 0Þ

1
@V̂ðxðtkÞÞ

@x
f ðxðtkÞ; hLðxðtkÞÞ; 0Þ

�
ð17Þ;ð48Þ

L
0

xjxðsÞ2xðtkÞj1L
0

wjwðsÞj2ĉ3jxðtkÞj2

� 2
ĉ3

c2

q̂e1L
0

xjxðsÞ2xðtkÞj1L
0

wjwðsÞj

(49)

for s � [tk, tk11) where the last inequality follows from the
fact that xðtkÞ 2 Xq̂nXq̂e

and the bound of Eq. 6a. From
Eq. 18 and the continuity of solutions, the difference
between x(s) and x(tk) is bounded

jxðsÞ2xðtkÞj � MD (50)

for all s � [tk, tk11). From Eqs. 49 and 50 and the fact that
the disturbance vector is bounded (jwðsÞj � h), we have

@V̂ðxðsÞÞ
@x

f ðxðsÞ; uðtkÞ; 0Þ � 2
ĉ3

c2

q̂e1L
0

xMD1L
0

wh (51)

for all s � [tk, tk11). If the condition of Eq. 45 is satisfied,
then the following can be derived

V̂ðxðtk11ÞÞ � V̂ðxðtkÞÞ2�w;

V̂ðxðsÞÞ � V̂ðxðtkÞÞ; 8 s 2 ½tk; tk11	
(52)

for all xðtkÞ 2 Xq̂nXq̂e
by employing the same steps used to

derive the equations of Eq. 44. Thus, when the LEMPC
operates in mode 2, the Lyapunov function value will
decrease at the next sampling period and converge to the set
Xq̂e

in a finite number of sampling periods.
If xðtkÞ 2 Xq̂e

, the LEMPC will operate in mode 1. The
predicted state at the next sampling period must be in Xq̂e

ðx̂ðtk11Þ 2 Xq̂e
Þ which is enforced by the constraint of

Eq. 22e. By Propositions 2 and 3, we have

V̂ðxðtk11ÞÞ � V̂ðx̂ðtk11ÞÞ1fVðjxðtk11Þ2x̂ðtk11ÞjÞ

� q̂e1fVðfwðDÞÞ
(53)

If the condition of Eq. 46 is satisfied, xðtk11Þ 2 Xq̂ . Thus,
under mode 1 and mode 2 operation of the LEMPC, the
closed-loop state is maintained in Xq̂ which completes the
proof. �

REMARK 2. Since the empirical model of Eq. 3 can only
accurately predict the behavior of the system of Eq. 1 within
a limited region in state space, it may be difficult to find an
empirical model that can adequately capture the dynamics of
the system of Eq. 1 for use in EMPC. The accuracy of the
model used in EMPC is critical because it affects both the
closed-loop performance and stability. A strategy to improve
the accuracy of the model of Eq. 3 is to use multiple empiri-
cal models for different regions of state space to better cap-
ture the nonlinear dynamics of Eq. 1 and as a result of the
increased accuracy, use a larger Xq̂ than what is possible
(from a closed-loop stability perspective) with a single
empirical model.

REMARK 3. The general heuristic is that the closed-loop
economic performance improves with increasing prediction
horizon when applying nonlinear EMPC (i.e., EMPC formu-

lated with a nonlinear model). However, when using EMPC
with an empirical model, the predicted behavior of the sys-
tem obtained from the empirical model over a long horizon
may be significantly different than the actual nonlinear
behavior. Thus, increasing the prediction horizon of EMPC
with an empirical model may not increase the performance.
In other words, the accuracy of the prediction by the empiri-
cal model may affect the closed-loop performance and it
may be better from a closed-loop performance standpoint to
restrict operation to a smaller region state-space where the
empirical model can provide a sufficient degree of accuracy.

REMARK 4. As a by-product of using an empirical model in
LEMPC, the computational efficiency of LEMPC is improved
in general compared to using a nonlinear model in LEMPC
since a linear model is used in the optimization problem
instead of a nonlinear model and the empirical model of Eq.
3 can be converted to an exact discrete-time model with
zeroth-order sample-and-hold inputs (i.e., no need to embed a
numerical ordinary differential equation solver to solve the
dynamic optimization problem of the LEMPC). Thus, one may
consider using an empirical model even when a nonlinear
model is available owing to the improved computational effi-
ciency. This point will be demonstrated in the “Application to
a Chemical Process Example” section.

REMARK 5. It is important to emphasize that at each sam-
pling time the LEMPC of Eq. 22 is re-initialized with a state
measurement. This incorporation of feedback allows for the
LEMPC of Eq. 22 to maintain robustness to disturbances.

Application to a Chemical Process Example

Consider a nonisothermal, well-mixed continuous stirred
tank reactor (CSTR) where an irreversible, second-order,
exothermic reaction occurs. The reaction converts the reac-
tant A to the product B and is of the form A ! B. The feed-
stock of the reactor contains A in an inert solvent and the
inlet concentration of A is CA0, inlet temperature is T0, and
feed volumetric flow rate is F. A jacket is used to heat/cool
the reactor at heat rate Q. The liquid density qL, heat
capacity Cp, and liquid hold-up V are assumed to be con-
stant. The dynamic model equations describing the evolution
of the CSTR, obtained by applying standard modeling
assumptions and mass and energy balances to the reactor,
are presented below

dCA

dt
5

F

V
ðCA02CAÞ2k0e2E=RTC2

A (54a)

dT

dt
5

F

V
ðT02TÞ2 DHk0

qLCp
e2E=RTC2

A1
Q

qLCpV
(54b)

where CA and T are the reactant A concentration in the reac-
tor and reactor temperature, respectively. The notation k0, E,
DH denotes the pre-exponential factor, activation energy of
the reaction, and the enthalpy of the reaction, respectively.
The values of the process parameters are given in Table 1.
In the simulations below, the explicit Euler method with an

Table 1. Parameter Values of the CSTR

T0 5 300 K F 5 5.0 m3/h
V 5 1.0 m3 E 5 5.0 3 104 kJ/kmol
k0 5 8.46 3 106 m3/h/kmol DH 5 –1.15 3 104 kJ/kmol
Cp 5 0.231 kJ/kg/K R 5 8.314 kJ/kmol/K
qL 5 1000 kg/m3

ð49Þ
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integration time step of hc 5 1024 h was used to integrate
the dynamic model of Eq. 54.

The inlet concentration CA0 and the heat supply/removal
rate Q are the two manipulated inputs of the CSTR. The
manipulated inputs are bounded as follows: 0.5�CA0� 7.5
kmol/m3 and 25.0 3 105�Q� 5.0 3 105 kJ/h. The control
objective is to maximize the time-averaged production rate
of the product B by operating the CSTR in a compact state-
space set around the operating steady-state of the CSTR. To
this end, the operating steady-state vector of the CSTR is
[CAs Ts] 5 [1.2 kmol/m3 438.0 K] and the corresponding
steady-state input vector is [CA0s Qs] 5 [4.0 kmol/m3 0.0 kJ/
h]. The steady-state is open-loop asymptotically stable. The
state and input vector of the CSTR are defined using devia-
tion variables: xT 5 [CA – CAs T – Ts] is the state vector and
uT 5 [CA0 – CA0s Q – Qs] is the manipulated input vector.
The production rate of B is given by the reaction rate
k0e2E=RTC2

A. In the theoretical developments, the LEMPC of
Eq. 21 is written to minimize the objective function. Thus,
to maximize the production rate of B in the example, the
economic cost function is the negative of the production rate
of B and is given by

Leðx; uÞ52
1

ðtk1N2tkÞ

ðtk1N

tk

k0e2E=RTðsÞC2
AðsÞ ds : (55)

In addition, we consider that there is a limitation on the
amount of reactant material that may be fed to the CSTR
during a given period of operation tp. Therefore, the control
input trajectory of u1 should satisfy the following material
constraint

1

tp

ðtp

0

u1ðsÞ ds50:0 kmol=m3 (56)

where tp 5 1.0 h is the operating period length to enforce the
material constraint.

Model identification and validation

We assume that for the CSTR, the nonlinear model of Eq.
54 is not available and a model needs to be identified and
validated. The model will be fit using standard input/output
data-based techniques (recall that state feedback is assumed,
so the output is the state) to identify a linear time invariant

state-space model. A series of step inputs were used to gen-
erate the input/output data. An iterative process was
employed to identify and validate the model. First, a step
input sequence was generated and applied to the CSTR.
From the input/output data, the ordinary MOESP24 algorithm
was used to regress a linear model of the CSTR of Eq. 54.
Step, impulse, and sinusoidal input responses were used to
validate the model. Additionally, an LEMPC scheme of the
form described below in the subsequent subsection was
designed using the empirical model. The LEMPC with the
identified model was applied to the CSTR of Eq. 54. Exten-
sive closed-loop simulations with the LEMPC were per-
formed to confirm closed-loop stability and acceptable
closed-loop performance under the resulting LEMPC. From
these validation experiments (input response tests and the
closed-loop simulations), a model was identified and
validated.

The identified matrices for the linear model of the CSTR
(in continuous-time) are

A5
234:5 20:473

1430 18:1

" #
; B5

5:24 28:0931026

211:6 4:5731023

" #
(57)

where the state-space coordinates correspond to the coordi-
nates used in the nonlinear model of Eq. 54. The step,
impulse, and sinusoidal input responses are shown in Figures
1–3. From Figures 1–3, the predicted response of the CSTR
using the identified linear model is close to the response of
the actual nonlinear system of Eq. 54.

Application of LEMPC based on an empirical model

Before an LEMPC may be designed, a Lyapunov-based
controller is designed, a Lyapunov function under the
Lyapunov-based controller is constructed, and the stability
region of the CSTR under the Lyapunov-based controller is
estimated. Since we assume that only the empirical model is
available, we work with the empirical model to design the
Lyapunov-based controller. The Lyapunov-based controller
consists of two elements for each input: hT

LðxÞ5 h1ðxÞ h2ðxÞ½ 	,
and the inlet concentration input is fixed to 0.0 kmol/m3 to
satisfy the material constraint of Eq. 56 (h1(x) 5 0). Defining
the vector and matrix functions f: Rn ! Rn and g: Rn ! Rn

3 Rm as follows

Figure 1. Response of the CSTR of Eq. 54 (black line) to a step input compared to the response predicted by the
identified linear model of Eq. 57 (gray line).

The step is in the heat rate input (u2) starting at 1 h with a magnitude of 5000 kJ/h.
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_x5 Ax|{z}
5: f ðxÞ

1 B|{z}
5:gðxÞ

u ; (58)

the following control law is used for the heat rate input in
the Lyapunov-based controller44

h2ðxÞ5
2

Lf V̂1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Lf V̂

2
1Lg2

V̂
4

q
Lg2

V̂
; if Lg2

V̂ 6¼ 0

0; if Lg2
V̂50

8>>><
>>>: (59)

where Lf V̂ is the Lie derivative of the Lyapunov function
V̂ðxÞ with respect to the vector field f(x) and the notation
g2(x) denotes the second column of B. A quadratic Lyapunov
function of the form: V̂ðxÞ5xTPx where P is the following
positive definite matrix

P5
1060 22

22 0:52

" #
(60)

was used. After extensive closed-loop simulations under the
Lyapunov-based controller and under the LEMPC designed
on the basis of the Lyapunov-based controller h(x) and with

the model of Eq. 57, the level sets Xq̂ and Xq̂e
, which will

be used in the LEMPC, were estimated to be q̂564:3 (i.e.,
Xq̂5fx 2 Rn : V̂ðxÞ � q̂g), and q̂e555:0, respectively. The
sampling period and prediction horizon of the LEMPC are
D 5 0.01 h and N 5 10, respectively.

An LEMPC scheme of the form of Eq. 22 was designed
utilizing the model of Eq. 57 for the CSTR with the cost
function of Eq. 55 and the material constraint of Eq. 56. The
material constraint of Eq. 56 is enforced over each 1.0 h
operating period using the strategy described in Ref. 5. To
solve the LEMPC optimization problem at each sampling
period, the interior point solver Ipopt was employed.45 To
make the simulations more realistic, the solver was forced to
terminate solving and return a solution by the end of the
sampling period although instantaneous availability of
the control action at the current sampling time is assumed in
the closed-loop simulations. For the remainder, nonlinear
LEMPC will refer to an LEMPC scheme formulated with
the nonlinear dynamic model of Eq. 54, while linear LEMPC
will refer to an LEMPC scheme formulated with the linear
model of Eq. 57. In the following simulations, both nonlin-
ear LEMPC and linear LEMPC were considered as a base-
line comparison. While this comparison may be done

Figure 2. Response of the CSTR of Eq. 54 (black line) to an impulse input compared to the response predicted by
the identified linear model of Eq. 57 (gray line) which are nearly overlapping.

To numerically simulate the impulse, a rectangular pulse of magnitude 1500 kJ/h in the heat rate input was applied for 36 s.

Figure 3. Response of the CSTR of Eq. 54 (black line) to a sinusoidal input response compared to the response
predicted by the identified linear model of Eq. 57 (gray line).

The amplitude of the heat rate input sinusoid is 30,000 kJ/h with a frequency of 8.72 rad/h.
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through simulations, a nonlinear model may not be available
and thus, this type of comparison may not be able to be
completed in practice. For the nonlinear LEMPC simula-
tions, only mode 1 operation of the controller was consid-
ered since the nonlinear LEMPC is able to maintain
operation within Xq̂e

under nominal operation. To solve the
initial value problem embedded in the optimization problem,
the explicit Euler method was used for the nonlinear
LEMPC, and the discrete-time version of the model of Eq.
57 with a zero-order hold of the inputs with sampling period
D 5 0.01 h was used in the linear LEMPC.

Linear LEMPC compared with nonlinear LEMPC

Both the nonlinear and linear LEMPC were applied to the
CSTR of Eq. 54, and a closed-loop simulation over one
operating period (1 h) was completed for each case. The
CSTR was initialized at the steady-state: CA(0) 5 1.2 kmol/
m3 and T(0) 5 438.0 K. The closed-loop trajectories for the
CSTR under both LEMPC schemes are shown in Figure 4.
The trajectories of the two cases demonstrate a similar
behavior with three distinct phases. In the first phase, the
LEMPC forces the CSTR from the initial condition to a
greater temperature to increase the production rate of B. In
the second phase, the trajectories settle on an equilibrium
point located at the boundary of Xq̂e

from approximately
0.2–0.8 h. This steady state has a greater temperature than
the operating steady-state (CAs 5 1.2 kmol/m3 and
Ts 5 438.0 K). Finally, to achieve additional economic per-
formance benefit at the end of the operating period and to
satisfy the material constraint, the LEMPC forces the state
away from the steady state to a greater temperature. Perhaps,
the two most noticeable differences in the closed-loop trajec-
tories of Figure 4, are the oscillations or chattering observed
in the u1 trajectory computed by the linear LEMPC and the
differences in the trajectories at the end of the operating
period. The oscillations are caused by the linear LEMPC
switching between mode 1 and mode 2 operations of the
controller. Given the fact that the linear LEMPC uses an
inexact model, it cannot compute a control action that

exactly maintains the actual state at the boundary of Xq̂e
. A

state starting in Xq̂e
may leave Xq̂e

under the linear LEMPC.
However, it will still be contained in Xq̂ at the next sam-
pling period by design of Xq̂e

. Once the state is in Xq̂nXq̂e
,

the linear LEMPC switches to mode 2 operation to force the
state back into Xq̂e

. The linear LEMPC operates in mode 1
operation after the state converges back to Xq̂e

. On the other
hand, the nonlinear LEMPC is able to maintain the LEMPC
at the boundary of Xq̂e

since we are considering nominal
operation (i.e., the LEMPC uses an exact model of the
CSTR to compute its control action). Thus, the nonlinear
LEMPC is able to maintain operation in Xq̂e

, so the control-
ler always operates in mode 1 operation. To better observe
the differences between the closed-loop state trajectories, the
closed-loop trajectories for each of the two previous simula-
tions are shown in state space (Figure 5). From Figure 5,
noticeable differences between the evolution of the two cases
at the end of the operating period is observed. In the region
of operation at the end of the operating period, the linear
model is less accurate and hence, the linear LEMPC com-
putes a different input trajectory than the nonlinear LEMPC.

The fact that a similar trend was observed between the
closed-loop CSTR under the nonlinear LEMPC, which uses
the exact dynamic model, and the linear LEMPC, which
uses a linear model identified through input/output data, is a
positive result for EMPC using an empirical model. It indi-
cates that one may be able to use standard identification
techniques to identify an empirical model for use within the
context of EMPC when a nonlinear model is not available.
However, it is also important to investigate the advantages
and disadvantages and possible trade-offs of using nonlinear
LEMPC (when a nonlinear model is available) and using lin-
ear LEMPC. To quantify the closed-loop performance of
each case, we define the average economic cost index as

Je5
1

tf

ðtf

0

k0e2E=RTðtÞC2
AðtÞ dt (61)

where tf is the length of simulated closed-loop operation. For
simplicity of presentation, the units on the average economic

Figure 4. The state and input profiles of the closed-loop CSTR under the nonlinear LEMPC (black line) and under
the linear LEMPC (gray line) for the initial condition: CA(0) 5 1.2 kmol/m3 and T(0) 5 438 K.
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cost index, which are kmol/m3, are omitted. For the linear
LEMPC, the economic cost index is 15.70, while the eco-
nomic cost index of the closed-loop CSTR under the nonlin-
ear LEMPC is 15.77. For an 1 h operating period, applying
nonlinear LEMPC achieves less than a 0.5% improvement of
the economic cost index compared to the economic cost
under the linear LEMPC.

The computation time required to solve the LEMPC opti-
mization problem at each sampling period was also consid-
ered for the nonlinear and linear LEMPCs. Figure 6 shows
the computation time required to solve the nonlinear and lin-
ear LEMPC at each sampling period, respectively. The
higher computation time observed at the end of the operating
period in each of the cases is associated with the fact that
the constraints are active (the constraint to maintain opera-
tion in Xq̂e

and the average input constraint). From Figure 6,
the optimization solver terminated early four times for the
nonlinear LEMPC (recall that the solver was constrained to
return a solution after 36 s of computation time). For this
case, the total amount of computation time required to solve
the LEMPC optimization problem over all the sampling peri-
ods was 193 s. For the linear LEMPC, early termination of
the optimization solver was never experienced and for most
of the sampling periods, the solver converged in less than
0.1 s (Figure 6). The total computation time required to
solve the linear LEMPC at each sampling period in the sim-
ulation was 22 s; the total time required to solve the nonlin-
ear LEMPC at each sampling period is 777% greater than
the computation time required to solve the linear LEMPC.

To demonstrate the application of the linear LEMPC to
the CSTR of Eq. 54 over many operating periods, a closed-
loop simulation of 10 h was completed. The closed-loop tra-
jectories are shown in Figures 7–10. The closed-loop eco-
nomic performance as measured by the average economic
cost of Eq. 61 was 15.29. Maintaining the CSTR at the ini-
tial condition, which is the steady-state, has an average eco-
nomic cost of 13.88 (the linear LEMPC dictates an operating
policy that is 10% better than operating the CSTR at the
operating steady-state). As a comparison, a simulation of the
CSTR under the nonlinear LEMPC over 10 h was per-
formed. The closed-loop trajectories of the CSTR under the
nonlinear LEMPC were similar to those under the linear
LEMPC except that: the closed-loop u1 trajectory computed
by the nonlinear LEMPC did not have chattering like the
closed-loop u1 trajectory computed by the linear LEMPC
(Figure 8) for reasons stated above and the other differences
in the closed-loop trajectories noted above for the 1 h simu-
lations were also observed. The average economic cost of
the closed-loop CSTR under the nonlinear LEMPC was
15.40. The closed-loop performance under the nonlinear
LEMPC is 0.7% better than that achieved under linear
LEMPC. However, the average total computation time
required to solve the nonlinear LEMPC optimization prob-
lem over each operating period is 159 s, while the average
total computation time required to solve the linear LEMPC
optimization problem is 23.6 s (the nonlinear LEMPC aver-
age computation time is 560% more).

Other approaches to identify the empirical model could be
used. To demonstrate this, several other methods were used
to obtain a linear model of Eq. 54 and similar one operating
period (1 h) simulations were performed. Specifically, a
model was obtained through the following methods: least
squares parameter fit using the input/output data obtained
through step tests, Jacobian linearization of the nonlinear
model of Eq. 54 around the steady-state, applying the
MOESP algorithm to input/output data generated from sinu-
soidal input response, and applying the MOESP algorithm to

Figure 6. The computation time in seconds required to
solve the nonlinear LEMPC (triangle markers)
and the linear LEMPC (circle markers) optimi-
zation problem at each sampling period.

Figure 5. The state trajectories of the CSTR under:
nonlinear LEMPC (solid line) and linear
LEMPC (dashed-dotted line).

Figure 7. Closed-loop state trajectory (x1 5 CA – CAs) of the CSTR under the linear LEMPC over 10 h.
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input/output data generated from impulse input response.
The closed-loop average economic performance of these
simulations are reported in Table 2. From Table 2, similar
closed-loop performance was achieved in each case and in
all cases, the closed-loop performance was better under
LEMPC than that achieved by steady-state operation. The
linear LEMPC using the model of Eq. 57 achieved the best
performance by design (extensive closed-loop simulations
under the LEMPC were employed to construct and validate
the model of Eq. 57). In all cases, closed-loop stability
(boundedness of the closed-loop state in Xq̂ ) was achieved.

Improved accuracy with empirical models

Given that the CSTR exhibits nonlinear dynamic behavior
(Eq. 54), the empirical model can only accurately predict the
behavior within a limited region of state-space. In the previ-
ous simulations, the linear LEMPC computed a different
input trajectory compared to the nonlinear LEMPC at the
end of each operating period owing to the fact that the linear
model did not accurately predict the evolution within this
region of operation (c.f., Figure 4). In this section, we con-
sider two methods that improve the accuracy of the empiri-
cal model used in the LEMPC: employing on-line system
identification and using multiple linear models to describe
the process within different regions of operation.

The first method that is investigated is on-line system iden-
tification. In on-line system identification, the first model used
in the linear LEMPC is the model of Eq. 57. The model is
used for only one operating period. At the end of the operat-
ing period, the closed-loop input/output data of the first oper-
ating period are used to compute a new model from the
MOESP algorithm. At the end of each subsequent operating
period, a new model is generated via the input/output data of
the previous operating period and is used in the LEMPC over
the next operating period. Over the course of a 10-h simula-
tion, the average economic cost with on-line system identifica-

tion was 15.41. Recall, for the 10-h simulation under linear
LEMPC without on-line system identification (Figures 7–10),
the average economic cost was 15.29 and a less than 0.7%
improvement in the closed-loop performance was realized
with the on-line system identification. For this particular
example, little benefit was achieved when using this on-line
system identification technique.

The second method that is investigated is formulating and
applying linear LEMPC with multiple linear models. In this
method, multiple linear models are regressed off-line for differ-
ent regions of operation. Given that employing multiple linear
models can more accurately predict the behavior of the nonlin-
ear CSTR, a larger estimate of the level sets used in the linear
LEMPC can be used. For this set of simulations, the level sets
used in the LEMPC design were q̂5368:0 and q̂e5340:0.
Operating the CSTR over a larger region in state space is desir-
able from a process economics standpoint given that the
(instantaneous) production rate scales with the exponential of
21/T (i.e., the production rate is larger at higher temperatures).
When multiple linear models were used within the linear
LEMPC, the model used in the LEMPC optimization problem
was selected on the basis of which region the initial condition
was in. After extensive simulations, three models were identi-
fied for three regions in state-space. The first model is

A5
234:5 20:473

1430 18:1

" #
; B5

5:24 28:0931026

211:6 4:5731023

" #
(62)

and is most accurate for deviation temperatures less than
35.0 K (i.e., x2� 35.0). The second model is

A5
248:6 20:657

1960 23:2

" #
; B5

6:22 21:1331025

189 8:9831023

" #
(63)

and is most accurate for deviation temperatures between
35.0 and 43.0 K. The third model is

Figure 8. Input trajectory (u1 5 CA0 – CA0s) under the linear LEMPC over 10 h.

Figure 9. Closed-loop state trajectory (x2 5 T – Ts) of the CSTR under the linear LEMPC over 10 h.

Figure 10. Input trajectory (u2 5 Q – Qs) under the linear LEMPC over 10 h.
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A5
1:38 0:0894

2476 210:7

" #
; B5

0:901 21:2431024

504 9:9831023

" #
(64)

and is most accurate for deviation temperatures greater than
43.0 K. The use of one, two, and three linear empirical mod-

els in the linear LEMPC was considered. Also, the nonlinear
LEMPC was also considered for comparison purposes. The
linear LEMPC based on one model uses the model of Eq.
62, the linear multiple-model LEMPC based on two models
uses the models of Eqs. 62 and 63, and the linear multiple-

Figure 11. The closed-loop trajectories of the CSTR under the linear LEMPC (linear model of Eq. 62).

Figure 12. The closed-loop trajectories of the CSTR under the linear multiple-model LEMPC with two linear
models.

Figure 13. The closed-loop trajectories of the CSTR under the linear multiple-model LEMPC with three linear mod-
els (gray line) and under the nonlinear LEMPC (black line).
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model LEMPC based on three models uses the models of
Eqs. 62–64.

One operating period simulations were completed with
each LEMPC. The closed-loop trajectories for the CSTR
under the linear LEMPC with one model, under the linear
multiple-model LEMPC with two models, and under the lin-
ear multiple-model LEMPC with three models and under the
nonlinear LEMPC are shown in Figures 11–13, respectively.
From these figures, the closed-loop evolution of the CSTR
under the linear LEMPC with one and two models is much
different than that under the linear multiple-model LEMPC
with three models and the nonlinear LEMPC because the
CSTR under LEMPC is initially driven to and maintained in
a region where the first and second models are not accurate.
The closed-loop behavior of the CSTR under the linear
multiple-model LEMPC with three models and the nonlinear
LEMPC is similar, with the most significant deviation being
observed toward the end of the operation period (Figure 14).
The closed-loop average economic costs for these simula-
tions are given in Table 3 and demonstrate that increasing
the number of linear models used in the LEMPC improves
the closed-loop performance and extends the region of time-
varying operation (c.f., in Figures 4 and 14). Over the 1-h
length of operation, the total computation time under the
nonlinear LEMPC is 205.2 s and under the linear LEMPC

with three empirical models is 20.4 s (the computation time
for the nonlinear LEMPC is 906% greater than the computa-
tion time for the linear LEMPC with three empirical
models).

Conclusions

In this work, an LEMPC method formulated with empiri-
cal models was considered for nonlinear process systems.
Under the assumption that there is a sufficiently small error
between the empirical linear model and the one of the linea-
rization of the nonlinear model at the steady-state around
which time-varying operation is considered, sufficient condi-
tions such that the LEMPC formulated with the empirical
linear model will guarantee closed-loop stability of the non-
linear system in the sense of boundedness of the closed-loop
state in a compact set were derived. A chemical process
example demonstrated the application of the proposed
method and extensive simulation results were given. From
these results, a similar closed-loop behavior between the
chemical process under the LEMPC with the nonlinear
model and under the LEMPC with an empirical model was
observed with comparable closed-loop economic perform-
ance. However, a significant decrease in the computation
time required to solve the LEMPC with a linear model com-
pared to LEMPC with a nonlinear model was observed. In
all of the simulations, the LEMPC with the linear model
maintained closed-loop stability and obtained better closed-
loop economic performance than that obtained at steady-
state.
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