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The focus of this work is on economic model predictive control (EMPC) that utilizes well-conditioned polynomial non-
linear state-space (PNLSS) models for processes with nonlinear dynamics. Specifically, the article initially addresses
the development of a nonlinear system identification technique for a broad class of nonlinear processes which leads to
the construction of PNLSS dynamic models which are well-conditioned over a broad region of process operation in the
sense that they can be correctly integrated in real-time using explicit numerical integration methods via time steps that
are significantly larger than the ones required by nonlinear state-space models identified via existing techniques. Work-
ing within the framework of PNLSS models, additional constraints are imposed in the identification procedure to ensure
well-conditioning of the identified nonlinear dynamic models. This development is key because it enables the design of
Lyapunov-based EMPC (LEMPC) systems for nonlinear processes using the well-conditioned nonlinear models that can
be readily implemented in real-time as the computational burden required to compute the control actions within the pro-
cess sampling period is reduced. A stability analysis for this LEMPC design is provided that guarantees closed-loop sta-
bility of a process under certain conditions when an LEMPC based on a nonlinear empirical model is used. Finally, a
classical chemical reactor example demonstrates both the system identification and LEMPC design techniques, and the
significant advantages in terms of computation time reduction in LEMPC calculations when using the nonlinear empiri-
cal model. VC 2015 American Institute of Chemical Engineers AIChE J, 61: 3353–3373, 2015
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Introduction

The increasingly competitive and continuously changing
world economy has made it necessary to exploit the economic
potential of chemical and petrochemical processes which has
led engineers to economically optimize process operation to
provide long-term economic growth while meeting safety and
environmental constraints. One approach for increasing the
profitability of industrial processes is to incorporate directly
process economic considerations into the feedback control
policy. A fairly recent control methodology designed for this
purpose is economic model predictive control (EMPC). Spe-
cifically, EMPC employs an optimization problem incorporat-
ing dynamic economic considerations in its cost function and
constraints to operate the process in a time-varying manner to
optimize process economics.1–3 A number of works have
shown the potential of this economic optimization-based feed-

back control strategy to improve profitability of chemical

processes. For example, certain nominal formulations of

EMPC have been proven to perform at least as well in infinite-

time as operating at the optimal steady-state,1 and finite-time

optimality has also been examined and demonstrated for

EMPC without terminal constraints or terminal cost in Ref. 4.

Furthermore, both finite-time and infinite-time performance

have been characterized in Ref. 5 for a two-layer EMPC for-

mulated with performance constraints. In addition to EMPC

performance, a variety of other topics have been addressed for

EMPC, such as stability6–8 and computation time reduc-

tion9–11 (see also the review paper12 and the references therein

for additional works on EMPC).
The primary assumption in using any type of model predic-

tive control (MPC) is the availability of a process model that

is utilized to predict future values of the process states. Con-

structing a process model is done either through first principles

or via system identification. First-principles models attempt to

capture the essential physicochemical mechanisms and phe-

nomena and are derived from an understanding of the
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mathematics and science that can be used to describe a given
process. It can thus be very difficult to derive a first-principles
model if a process is complex or poorly understood. A signifi-
cant amount of research has been performed throughout the
last three decades to develop system identification methods
that exploit input/output process data to arrive at linear or non-
linear empirical models.13–20 Process control engineers rou-
tinely use system identification techniques to obtain input/
output empirical models or state-space empirical models.

More specifically, a variety of input/output system identifi-

cation methods (e.g., (nonlinear) autoregressive moving aver-

age with exogenous input ((N)ARMAX) methods, or methods
that identify polynomial and neural-network models16,17,21)

have been developed. Input/output models, such as Hammer-

stein models,19 Wiener models,22,23 Hammerstein-Wiener

models,24 polynomial ARX models,20,25 and neural Wiener

models26–28 have been used in tracking MPC applications
(where the control objective is to regulate a process at a poten-

tially optimal steady-state).
Another type of empirical modeling that is also widely used

is empirical state-space modeling. System identification techni-

ques have been developed to identify linear and nonlinear
state-space models. Several linear state-space system identifi-

cation methods based on input/output data, such as

optimization-based methods and subspace model identification,

have been developed that can be used for multiple-input/multi-

ple-output (MIMO) systems because of their ability to model
interactions among process states.13–15,29–34 Subspace model

identification has been investigated for use in MPC35 and can

be carried out through a variety of techniques such as the

canonical variate algorithm (CVA),14 the multivariable output
error state-space algorithm (MOESP),13,31,32,36 and numerical

algorithms for subspace state-space system identification

(N4SID).15 Grey box nonlinear state-space system identifica-

tion methods include maximum likelihood parameter estima-
tion methods37 and optimization-based methods.38

In both input/output and state-space empirical modeling, a
wide variety of polynomial functions have been used to iden-

tify nonlinear models. Polynomial functions used in input/out-

put system identification include Chebyshev polynomials,39

Volterra polynomials,17,40 polynomial ARX models,20

Laguerre polynomials,41 and polynomial neural networks.17

Traditional empirical modeling approaches focus on a certain

class of nonlinear systems like Wiener-Hammerstein or neural

networks but nonlinear state-space models cover a much larger
class of systems. The need for a general nonlinear system

identification technique that can represent many classes of

nonlinear systems led to the development of state-space non-

linear system identification techniques based on input/output

data. The polynomial nonlinear state-space (PNLSS) approach
is a system identification method for MIMO systems that leads

to a model of a multivariable nonlinear system based purely

on input/output data.18,42–46 PNLSS is a promising all-purpose

nonlinear system identification method that can be used for
many different types of systems, including those that are

described by bilinear models, Wiener-Hammerstein models,

and models with nonlinearities appearing in the states or

inputs, or appearing in both.18,42,45,46

In the PNLSS approach, a linear state-space model is first

obtained and it is then extended to a nonlinear model for the
system using polynomial nonlinear terms with coefficients

identified through an optimization problem.18,42–46 The linear

part can be obtained using the best linear fit or least-squares,

or using subspace system identification.18,42,45,46 The linear
model is determined first so that the nonlinear model subse-
quently identified will achieve a performance at least as good
as that of the linear model in a small neighborhood of the

measured process states used in the identification process.18

PNLSS has shown superior results over linear models in vari-
ous applications including control and modeling applica-
tions43,45 and identifying the dynamics of electrical circuits.47

The use of PNLSS in nonlinear model predictive control

(NMPC) for an automotive clutch system has also been pre-
sented.44 A crucial advantage of PNLSS is that it is very
straightforward to apply for multivariable systems and has a
very significant computation time benefit for low-order poly-

nomials (e.g., polynomial models with orders two or
three).18,46 A potential disadvantage of PNLSS is that it may
lead to ill-conditioned models which may need a very small
time step to be solved correctly with explicit numerical inte-
gration methods.

Motivated by the above, this work initially develops a non-

linear system identification technique for a broad class of non-
linear processes which leads to the construction of PNLSS
dynamic models which are well-conditioned over a broad
region of process operation. This technique takes advantage of
the framework of PNLSS models and utilizes additional con-

straints on the stiffness ratio of the Jacobian of the nonlinear
identified models at various points in the region of process
operation to ensure that the resulting models can be solved
without using an unnecessarily small time step of integration

when explicit temporal-integration methods are used. Subse-
quently, the design of Lyapunov-based economic model pre-
dictive control (LEMPC) systems for nonlinear processes
using the well-conditioned nonlinear models is addressed and
sufficient conditions are derived for closed-loop stability.

Throughout the article, a classical chemical process example
is used to illustrate the application and point out the advan-
tages of the proposed system identification and LEMPC design
techniques.

Preliminaries

Notation

The operator j � j is used to denote the vector Euclidean
norm, the operator j � jp is used to denote the vector p-norm,
and the operator jj � jj is used to denote any matrix norm. The
transpose of a vector x is represented by the symbol xT. The
symbol Xq denotes a level set of a continuously differentiable,

positive definite scalar-valued function V(x) (Xq :¼
fx 2 Rn : VðxÞ � qg).

Class of systems

In this work, the class of systems to be considered are non-

linear, continuous-time systems with affine inputs, with
dynamics described according to the system of differential
equations

_xðtÞ ¼ fpðxðtÞ;wðtÞÞ1 ~GðxðtÞ;wðtÞÞuðtÞ (1)

where the state vector is x 2 Rn, the input vector is u 2 Rm, the
disturbance vector is w 2 Rl; fpðxðtÞ;wðtÞÞ : Rn3Rl ! Rn is a
vector function, and ~GðxðtÞ;wðtÞÞ : Rn3Rl ! Rn3Rm is a
matrix of functions of x and w. It is assumed that the compo-

nent functions of fp and ~G are analytic on Rn3Rl such that
they are infinitely differentiable and locally expressed with a
convergent power series.
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We also assume that since all control actuators u have phys-

ical limits, the control actions are bounded within a convex set

U :¼ fu 2 Rm : umin
i � ui � umax

i ; i ¼ 1; . . . ; mg. In addi-

tion, all disturbances to the system are assumed to have a

known bound of h > 0 (for all t, jwðtÞj � h). The origin is

assumed to be an equilibrium point of Eq. 1 (fpð0; 0Þ ¼ 0

when u 5 0).
Only nonlinear systems for which an explicit controller

exists that can make the origin of Eq. 1 locally exponentially

stable in the absence of disturbances (wðtÞ � 0), while meeting

the constraints on the control actions, will be considered.

When such an explicit controller hðxÞ 2 U exists, converse

Lyapunov theorems state that a positive definite, continuously

differentiable, scalar-valued function V(x) and positive con-

stants c1, c2, c3, and c4 exist that result in the following

inequalities48,49

c1jxj2 � VðxÞ � c2jxj2 (2a)

@VðxÞ
@x
ðfpðx; 0Þ1 ~Gðx; 0ÞhðxÞÞ � 2c3jxj2 (2b)

@VðxÞ
@x

����
���� � c4jxj (2c)

for any x within the open connected set D � Rn that includes

the origin. Methods for developing h(x) are available for vari-

ous classes of systems (see, for example, Ref. 50–53). The sta-

bility region Xq for the closed-loop system of Eq. 1 under the

controller h(x) is defined as a level set of V (a set within which

VðxÞ � q) within D where _V is negative.

System Identification

In this work, we use the PNLSS approach to obtain a model

that is nonlinear in the states and affine in the inputs, with the

following form

dx

dt
¼ Ax1PzðxÞ|fflfflfflfflfflffl{zfflfflfflfflfflffl}

¼:f ðxÞ

1Bu (3)

where x 2 Rn and u 2 Rm are the state vector and the input

vector respectively, A is a constant square matrix of dimension

n, and B 2 Rn3m is a constant matrix. The notation PzðxÞ
denotes a nonlinear vector function that includes polynomial

terms of order two and higher, with the subscript z used to

indicate that the polynomial is a zth-order polynomial. PzðxÞ is

defined by the following equations

PzðxÞ ¼ EnðxÞ (4a)

nðxÞ ¼ ½x2
1 x1x2 ::: xz

n�
T

(4b)

where the vector nðxÞ contains nonlinear monomials in x of

order two and higher up to a chosen order z, and the constant

matrix E contains the coefficients multiplying the nonlinear

monomials in nðxÞ. The order z of the polynomial is chosen

before data are fit to the model of Eq. 3. As an example, when

n 5 2 and z 5 3, nðxÞ has the following form

nðxÞ ¼ ½x2
1 x1x2 x2

2 x3
1 x2

1x2 x1x2
2 x3

2�
T

(5)

PNLSS system identification methodology

The PNLSS identification problem is to find the terms A, B,

and E in Eqs. 3–4 when the only available information is pro-

cess input/output data.18,42–46 For the case when all states are

available as measured outputs (full state feedback), an optimi-

zation problem can be used to find these terms that involves

the following two steps:
1. A linear state-space model is obtained using a fre-

quency domain subspace identification algorithm.
2. The linear model is used as an initial guess for a non-

linear optimization problem to identify a nonlinear model

that captures the nonlinear behavior of the system.
To simplify the presentation in this work, we will consider

that full state feedback is available and thus the measurements

of the states can be used directly in order to obtain the PNLSS

model. To implement the PNLSS method, one obtains Z 1 1

state measurements of the system (xmðvÞ; v ¼ 0; :::; Z, where

xmðvÞ is the vector of measured states in deviation variable

form at time ~tv5v~D and ~D is the time between measurements)

with a known sequence of inputs. Then, using the same initial

state xmð0Þ and the same sequence of inputs, Z modeled states

(denoted as x(v), v ¼ 1; :::; Z, where x(v) is the vector of mod-

eled states in deviation variable form at time ~tv5v~D) are

obtained via numerical integration of the model to be identi-

fied (Eq. 3). The goal is then to minimize the difference

between the measured and modeled states that correspond to

the same times in the simulation by adjusting the model

parameters A, B, and E in Eq. 3.
We denote the vector of measured states (in deviation form)

that will be used in the PNLSS objective function in a vector

form (the problem could be reformulated with the states in a

matrix form if desired) as

xm ¼ ½xT
mð1Þ xT

mð2Þ ::: xT
mðZÞ�

T
(6)

and the modeled states as

xp ¼ ½xTð1Þ xTð2Þ ::: xTðZÞ�T (7)

where xmð0Þ ¼ xð0Þ is the initial state (xmð0Þ ¼ xð0Þ ¼ 0 if we

start from the steady-state). Using this notation, the PNLSS

model is identified via a nonlinear optimization problem for-

mulated as

min
g

Uðxm2xpÞ (8a)

s:t: _x ¼ Ax1PzðxÞ1Bu (8b)

where g signifies the optimization variables A, B, and E and U
is a positive definite cost function to be minimized. Examples

of commonly used functions include the vector 1-norm, vector

2-norm (also called least-squares), weighted least-squares, and

a linear combination and/or a product of such functions (the

induced matrix 1-norm, induced matrix 2-norm, or combina-

tions/products of these norms are possible cost functions if

this is reformulated for the matrix case).
If it is desired to identify a nonlinear model that minimizes

the vector p-norm, the optimization problem is reduced to the

following nonlinear optimization problem

min
g

jðxm2xpÞjp (9a)

s:t: _x ¼ Ax1PzðxÞ1Bu (9b)

After obtaining the model, this model is validated over a

wide range of input/state data. However, the usefulness of the

model depends on the purpose it serves. From a NMPC point

of view, empirical models need to be well-conditioned so that

they can be accurately solved with explicit integration

schemes without employing very small time steps to predict
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the behavior of the nonlinear system in real-time. Numerical sta-
bility of an empirical model is not a central issue when perform-
ing linear system identification since the analytic solution of a
linear system can be obtained. On the other hand, there is no
general method for obtaining the analytic solution of highly
coupled nonlinear ordinary differential equations and the numer-
ical integration accuracy is sensitive to the numerical stability of
the identified nonlinear model. The system identification proce-
dure does not guarantee that a well-conditioned model will be
obtained, so the identified model may be ill-conditioned requir-
ing a very small numerical integration step size to be used.

REMARK 1. The existence of a numerical solution within
the accuracy of the numerical integration method used is of
concern when using explicit numerical integration methods
(e.g., Explicit Euler or Runge-Kutta) as opposed to implicit
numerical methods, especially for ill-conditioned nonlinear
differential equations. This is because implicit methods are
numerically stable for any integration step size, such that
only the accuracy of the solution obtained depends on the
step size, whereas explicit numerical methods are numeri-
cally stable only if the integration step size is sufficiently
small, and the threshold at which a step size is sufficiently
small is not generally possible to predict for a given system.
Despite the relative time step advantage of using implicit
methods for numerical integration over explicit ones, implicit
methods are very complex to include in system identification
and when modeling the outputs and states. Also, implicit
methods are computationally expensive and from a predic-
tive control point of view, it is preferred to use explicit meth-
ods with a suitable integration step size because they are
easier to implement. This preference for explicit methods is
demonstrated in much of the theoretical and practical work
in MPC through the frequent use of discrete-time models for
MPC design and implementation where the state in the next
sampling time is determined by states and inputs of the past
sampling times, a characteristic of the discrete-time models
obtained from the temporal discretization of differential
equation models with explicit numerical integration schemes.

REMARK 2. It was noted that the modeled states x(v), v
¼ 1; :::; Z come from the numerical integration of Eq. 3. The
numerical integration can be performed several different
ways in system identification. One method is to perform
numerical integration of the model of Eq. 3 as is typically
done when integrating a differential equation with a given
initial condition, and integrating the model between ~t0 and
~tZ using only the initial state xmð0Þ and the known input
sequence. This complete integration between the initial and
final times makes the optimization substantially more bur-
densome and involved. Another numerical integration
method used in practical implementation of system identifica-
tion methods that is less computationally intensive involves
using all of the measured states in the numerical integration
used in modeling the states.30 In this method, each measure-
ment is used as an initial condition for numerical integration
of Eq. 3 to obtain only the following modeled state (i.e., to
obtain the value of x(v), v ¼ 1; :::; Z, numerical integration
over only one time interval ~D is performed with the initial
condition for each x(v) as xmðv21Þ; v ¼ 1; :::; ZÞ. As the
number of measured states increases, the number of numeri-
cal integration steps between xmðv21Þ and x(v) decreases.
When the same number of measurements are used as the
number of modeled states such that only one integration step

is needed for each x(v), the optimization problem is much
easier to solve as will be demonstrated in the example.

Motivating example: PNLSS application to a chemical
process example

To illustrate the importance of considering model well-
conditioning when deriving an empirical model for a process,
a chemical process example is presented in this section.

Specifically, a second-order irreversible reaction that forms
the product B from the reactant A occurs in a non-isothermal,
well-mixed continuously stirred tank reactor (CSTR). The
CSTR is fed by an inlet stream containing A with molar con-
centration CA0 in an inert solvent at a feed volumetric flow
rate F and feed temperature T0. The reaction is exothermic,
and the CSTR is operated non-isothermally with heat sup-
plied/removed at heat rate Q. The liquid in the CSTR is
assumed to have constant heat capacity Cp and constant liquid
density qL, and to be maintained at a constant volume V. The
dynamic model equations for the CSTR are developed from
standard mass and energy balances and have the form

dCA

dt
¼ F

V
ðCA02CAÞ2k0e2E=RTC2

A (10a)

dT

dt
¼ F

V
ðT02TÞ2 DHk0

qLCp
e2E=RTC2

A1
Q

qLCpV
(10b)

where CA is the concentration of the reactant A inside the reac-
tor and T is the reactor temperature. The reaction kinetics are
modeled using the Arrhenius equation, with pre-exponential
factor k0, activation energy E, and enthalpy of reaction DH (see
Table 1 for the values of the reactor parameters). The CSTR is
operated at the steady-state ½CAs Ts� ¼ ½1:2 kmol=m3

438:0 K�, which is open-loop asymptotically stable and corre-
sponds to a steady-state inlet concentration of CA0s ¼ 4:0
kmol=m3 and a heat rate of Qs ¼ 0:0 kJ=h.

The dynamic model of Eq. 10 is of the following form
(using the notation of Eq. 1)

_xðtÞ ¼ fpðxðtÞ; 0Þ1 ~GðxðtÞ; 0ÞuðtÞ (11)

where the vectors of states and inputs in Eq. 11 are defined in
deviation form as

x ¼ ½x1 x2�T ¼ ½CA2CAs T2Ts�T (12)

u ¼ ½u1 u2�T ¼ ½CA02CA0s Q2Qs�T (13)

The inlet concentration CA0 and the rate Q at which heat is
supplied to or removed from the CSTR can be manipulated to
affect the reactor state variables. These manipulated inputs are
subject to the constraints

0:5 � CA0 � 7:5 kmol=m3 (14a)

25:03105 � Q � 5:03105 kJ=h (14b)

To show the influence of step size on the integration of an
empirical model resulting from system identification of a pro-
cess with the dynamics of Eq. 10, the PNLSS approach of Eq.

Table 1. CSTR Parameters

F 5 5.0 m3

h
k0 ¼ 8:463106 m3

kmol h

T0 ¼ 300 K DH ¼ 21:153104 kJ
kmol

V 5 1.0 m3 E ¼ 5:03104 kJ
kmol

Cp ¼ 0:231 kJ
kg K

qL ¼ 1000 kg
m3

R 5 8.314 kJ
kmol K
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9 with p 5 2 was applied to this chemical process. To generate
the input/state data necessary to implement the PNLSS
method, several steps in the inputs to the CSTR were simu-
lated, and the input/state data was obtained from the integra-
tion of the dynamic model of Eq. 10 subject to the input
changes. It was determined that the accuracy of the numerical
integration of the CSTR model of Eq. 10 was sufficient with
the Explicit Euler method using an integration step size of
hc ¼ 1024 h, so this numerical integration procedure and step
size were used for the first-principles process model of Eq. 10
throughout this article. From the input/state data, a PNLSS
model of the form of Eq. 3, where the vectors of states x and
inputs u are as defined in Eqs. 12 and 13, was obtained. All
PNLSS optimization problems in this article were solved using
the open-source nonlinear interior point optimization solver
Ipopt.54 The states were modeled using both numerical inte-
gration methods discussed in Remark 2 (the states were mod-
eled using only the initial state with the sequence of inputs,
and also by using all of the measured states and the input
sequence) and the resulting empirical models were almost
identical. However, solving the system identification optimiza-
tion problem of Eq. 9 using the second method (using all
measured states) was much less computationally intensive
than using the first method (using only the initial measured
state), so the second method will be used for all PNLSS opti-
mization problems for this chemical process example through-
out the rest of the article. The term PzðxÞ in Eq. 3 was chosen
to be a second-order polynomial so z 5 2 and n 5 2. The iden-
tified nonlinear continuous-time model of the CSTR is

dx1

dt
¼232:64x120:479x2231:2x2

121:0016x1x2

20:0075x2
215:53u120:000008u2

(15a)

dx2

dt
¼1398x1117:79x2230x2

1124:94x1x2

10:381x2
221076u110:00476u2

(15b)

This model is very sensitive to the numerical integration
step. When the inputs are modeled as sinusoids and the pro-
cess model is integrated with an integration step of hc ¼ 1024

h with the Explicit Euler method and the resulting trajectories
are compared to those of the first-principles CSTR process

model of Eq. 10 using the same input and same step size, there

are significant differences in the values of the states x1 and x2

between the two models, as shown in Figure 1. However,

when those same first-principles CSTR trajectories are com-

pared with the trajectories resulting from using an integration

step of hc ¼ 1026 h in the model of Eq. 15 with the same sinu-

soidal input, the first-principles and PNLSS trajectories are

very close, as shown in Figure 2.

Figure 2 shows good agreement between the state trajecto-
ries using the first-principles CSTR model of Eq. 10 and the
empirical nonlinear model of Eq. 15 when using the smaller
step size. In order to quantify the difference between the two
behaviors, the average squared error in the concentration and
temperature over eight hours of operation, when a step size hc

¼ 1026 h is used to integrate the empirical model, is calcu-
lated as follows

Figure 1. State trajectories of the first-principles CSTR model of Eq. 10 (black trajectory) and the identified PNLSS
model of Eq. 15, hc ¼ 1024 h (gray trajectory) when the heat rate and concentration inputs are varied
sinusoidally with amplitudes 55; 000 kJ=h and 0:25 kmol=m3, respectively, and both with frequency
8:72 rad=h.

Figure 2. State trajectories of the first-principles CSTR model of Eq. 10 (black trajectory) and the identified PNLSS
model of Eq. 15, hc ¼ 1026 h (gray trajectory) when the heat rate and concentration inputs are varied
sinusoidally with amplitudes 55; 000 kJ=h and 0:25 kmol=m3, respectively, and both with frequency
8:72 rad=h.
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1

8

ð8

0

ðx1pðtÞ2x1mðtÞÞ2 dt ¼ 1:682131024 (16)

1

8

ð8

0

ðx2pðtÞ2x2mðtÞÞ2 dt ¼ 1:3059 (17)

where x1p and x1m are the modeled and measured concentra-
tions respectively, and x2p and x2m are the modeled and meas-
ured temperatures respectively.

Proposed approach for PNLSS system identification

Motivated by the effect of integration step size on the accu-
racy of the empirical model from the previous example, addi-
tional constraints on the PNLSS optimization are proposed.
Adding extra constraints that assure well-conditioning of the
nonlinear model is essential for effective control. The modi-
fied PNLSS optimization problem with the numerical stability
constraints has the general form

min
g2C

Uðxm2xpÞ (18a)

s:t: FðgÞ ¼ 0 (18b)

RðgÞ � 0 (18c)

The optimization variable g represents the parameters A, B,
and E of the polynomial nonlinear model of Eqs. 3 and 4. We
allow that the values of these parameters belong to the bounded
convex set C. FðgÞ and RðgÞ represent equality and inequality
constraints that can be used to ensure well-conditioning of the
nonlinear identified model. A major cause of ill-conditioning of
a system of differential equations is system stiffness, meaning
that the dynamics of some states are much faster than the
dynamics of others with which they are coupled. As a result,
though other numerical stability constraints could be conceived,
we will explicitly derive numerical constraints based on stiff-

ness for use in the PNLSS optimization problem.
The stiffness of a system can often be evaluated based on

derivative information for the model in the region of opera-
tion. For example, the Jacobian of f(x) in Eq. 3 evaluated at s
points in the region of operation reveals information about the
stiffness of the nonlinear model and its sensitivity to explicit
forward numerical integration step sizes. The Jacobian of f(x)
evaluated at state-space point j is defined as the matrix of par-
tial derivatives of the component functions fi with respect to
the independent variables xi, i ¼ 1; :::; n

Jj ¼

@f1
@x1

jj
@f1
@x2

jj
@f1
@x3

jj :::
@f1
@xn
jj

@f2
@x1

jj
@f2
@x2

jj
@f2
@x3

jj :::
@f2
@xn
jj

: : : : :

: : : : :

: : : : :

@fn
@x1

jj
@fn
@x2

jj
@fn
@x3

jj :::
@fn
@xn
jj

2
6666666666666664

3
7777777777777775

where

j ¼ 1; :::; s

(19)

where j denotes the jth state-space point.
The stiffness of the nonlinear model is often evaluated from

its Jacobian using a measure such as the maximum singular
value, maximum eigenvalue, condition number, or ratio of the
absolute value of the eigenvalue with the greatest magnitude
to the eigenvalue with the smallest magnitude (stiffness ratio)

of the Jacobian. Therefore, the system identification problem
can be improved to account for numerical stability of the
model by adding constraints on the Jacobian of f(x) in Eq. 3
evaluated at several points in the region of operation. As an
example, for a system of n states, a constraint can be added on
the maximum value of the stiffness ratio of the Jacobian of
f(x) evaluated at s points of interest in the region of operation,
where the stiffness ratios are denoted as:

Sj ¼
kmaxj

kminj

; j ¼ 1; :::; s (20)

with

kmaxj
¼ maxfjk1jj; jk2jj; ::::; jknjjg; j ¼ 1; :::; s (21a)

kminj
¼ minfjk1jj; jk2jj; ::::; jknjjg; j ¼ 1; :::; s (21b)

where the notation kij signifies the ith (i ¼ 1; :::; n) eigenvalue
of the Jacobian matrix Jj, and kmaxj

and kminj
signify the maxi-

mum and minimum values of the magnitudes of the eigenval-
ues of Jj.

The numerical stability constraint to be incorporated in the
PNLSS optimization problem of Eq. 18 is a bound on the max-
imum value of the stiffness ratio at all s points at which the
Jacobian is evaluated, written as

RðgÞ ¼ maxfS1; S2; ::::; Ssg � M̂ (22)

where M̂ is a number chosen to constrain the solutions to Eq.
18 to be models that are well-conditioned with respect to for-
ward numerical integration in the region of interest.

The eigenvalues of the Jacobian matrices have to be eval-
uated numerically for an n 3 n Jacobian. To illustrate this
point, we consider a two-input/two-output system with full
state feedback. We define J1, J2, ... , Js as the Jacobians of the
identified polynomial nonlinear model, evaluated at several
points j ¼ 1; :::; s in the state-space region of interest. J1 is the
Jacobian evaluated at the steady-state and Jj is the Jacobian
evaluated at the state-space point j where

Jj ¼
aj bj

cj dj

" #
(23)

Thus, for a system with two inputs and two states, we can
incorporate numerical stability constraints in the PNLSS opti-
mization problem as follows

min
g2C

jxm2xpj2 (24a)

s:t: _x ¼ Ax1PzðxÞ1Bu (24b)

kmaxj

kminj

� M̂; j ¼ 1; :::; s (24c)

kmaxj
¼ maxfjk1jj; jk2jjg; j ¼ 1; :::; s (24d)

kminj
¼ minfjk1jj; jk2jjg; j ¼ 1; :::; s (24e)

k1j ¼
ðaj1djÞ

2
1
ðaj1djÞ2

4
2ðajdj2bjcjÞ

 !1=2

; j ¼ 1; :::; s

(24f)

k2j ¼
ðaj1djÞ

2
2
ðaj1djÞ2

4
2ðajdj2bjcjÞ

 !1=2

; j ¼ 1; :::; s

(24g)
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In this optimization problem, the cost function Uðxm2xpÞ is
taken to be the Euclidean norm of the difference between the
vectors xm and xp.

For a 2 3 2 matrix, it is easy to obtain an explicit expression
for the eigenvalues (e.g., Eqs. 24f and 24g). However, for an n
3 n matrix, the calculation of eigenvalues is not as straightfor-
ward. The characteristic polynomial could be used as an equal-
ity constraint and solved by adding additional constraints that
find the roots of the characteristic polynomial numerically
through a method such as Newton’s Method. For certain spe-

cial classes of matrices, formulas are available that allow for
the explicit solution of the eigenvalues, and these could be
added as constraints if the Jacobians at the evaluated points
have these special forms. For example, the eigenvalues of a 3
3 3 matrix or of a triangular matrix of any dimension can be

written explicitly. For the general case when explicit expres-
sions for the eigenvalues may not be available, the PNLSS
optimization problem for a system with n states becomes

min
g2C

jxm2xpj2 (25a)

s:t: _x ¼ Ax1PzðxÞ1Bu (25b)

kmaxj

kminj

� M̂; j ¼ 1; :::; s (25c)

FðgÞ ¼ 0 (25d)

RðgÞ � 0 (25e)

where FðgÞ and RðgÞ represent all constraints necessary to

obtain the eigenvalues of the Jacobians Jj, j ¼ 1; :::; s, and to
assure numerical stability if additional constraints are desired
beyond those of Eq. 25c.

REMARK 3. Several comments should be made regarding
the numerical stability of a model resulting from the use of
the PNLSS system identification procedure incorporating
numerical stability constraints. First, the integration step
size required to accurately integrate the empirical model, if
it is identified using the PNLSS optimization problem with
numerical stability constraints, scales with the constant M̂
that is chosen to constrain the ratio of the maximum to mini-
mum magnitudes of the eigenvalues; however, simulations
are required to determine the integration step size needed
for a given value of M̂ so that M̂ can then be appropriately
scaled (there is no direct correlation between M̂ and the
integration step size that is known a priori or that holds for
all empirical models). In addition, it may not be possible to
identify a model for a given system that uses a step size as
large as one would desire if the physical system for which
the identification is performed behaves like a stiff system.
Feasibility of the optimization problem of Eq. 25 is thus not
ensured for all formulations of the numerical stability con-
straints or for all values of M̂. Finally, though it is guaran-
teed that any empirical model developed using the PNLSS
optimization procedure incorporating numerical stability
constraints will be numerically stable to the degree specified
by the numerical stability constraints, there is no guarantee
that the model will accurately represent the original process.
Thus, even with the proposed PNLSS optimization approach,
model validation is still required, and potentially alternative
stability constraints may need to be used. Regardless of the
stability constraints used, however, the addition of the con-
straints to the PNLSS optimization problem does not substi-
tute for model validation.

REMARK 4. An important motivation for considering the
use of numerical stability constraints is that industrial data
is often noisy, which can lead to ill-conditioning of the data
to be used in the minimization problem, which in turn may
lead to a stiff identified model, even if the actual process
dynamics are not stiff. The use of numerical stability con-
straints aids in identifying a non-stiff model from data that
would, in the unconstrained case, be more likely to be iden-
tified to a stiff model due to measurement noise and process
disturbances.

Application of proposed method to the chemical process

example

We now revisit the CSTR example described by Eq. 10 and

apply the PNLSS model identification procedure once more,

this time using the PNLSS approach accounting for numerical

stability (Eq. 24). The previously identified ill-conditioned

model of Eq. 15 is used as an initial guess for the following

nonlinear optimization problem

min
g2C

jxm2xpj2 (26a)

s:t: _x ¼ Ax1PzðxÞ1Bu (26b)

kmaxj

kminj

� 1000 j ¼ 1; :::; s (26c)

kmaxj
¼ maxfjk1jj; jk2jjg; j ¼ 1; :::; s (26d)

kminj
¼ minfjk1jj; jk2jjg; j ¼ 1; :::; s (26e)

k1j ¼
ðaj1djÞ

2
1
ðaj1djÞ2

4
2ðajdj2bjcjÞ

 !1=2

j ¼ 1; :::; s

(26f)

k2j ¼
ðaj1djÞ

2
2
ðaj1djÞ2

4
2ðajdj2bjcjÞ

 !1=2

j ¼ 1; :::; s

(26g)

where the modeled states in the vector xp were determined by

numerically integrating the model of Eq. 26b using Explicit

Euler with a time step of hc ¼ 1024 h. For this example, the

ratios of the absolute value of the eigenvalue with the greatest

magnitude to the eigenvalue with the smallest magnitude of

the Jacobian were evaluated at ten different points (i.e.,

s 5 10) in the region of interest and were constrained to be

less than 1000 to obtain a well-conditioned model with respect

to the integration step of hc ¼ 1024 h. The nonlinear model of

the CSTR (in continuous-time) that is identified by the optimi-

zation problem of Eq. 26 is:

dx1

dt
¼234:00x120:495x225:22x2

120:902x1x2

20:0078x2
224:6u120:000008u2

(27a)

dx2

dt
¼1436x1118x21432x2

1143:6x1x2

10:376x2
2211u110:00567u2

(27b)

We now compare the numerical stability of the model of Eq.

27 with that of the model of Eq. 15. We recall the results of Fig-

ures 1 and 2, which showed that a step size of 1024 h was inad-

equate for sufficient model accuracy so that decreasing the step

size was necessary to obtain a more accurate integration. For

the model of Eq. 27, however, a step size of 1024 h is
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sufficient. This is shown in Figure 3, a plot of the state trajecto-
ries when the Explicit Euler method is used to numerically
integrate the model of Eq. 27 with step size hc ¼ 1024 h and
a sinusoidal input to the system. Figure 3 shows that the
empirical model of Eq. 27 resulting from the PNLSS identifi-
cation approach with numerical stability constraints is able to
predict the nonlinear dynamics of the CSTR system of Eq. 10
accurately with a larger step size than was needed when
using the model of Eq. 15. Examining the error in concentra-
tion and temperature defined according to Eqs. 16 and 17 for
the model of Eq. 27 further illustrates this point. The average
error in concentration for the model of Eq. 27 over eight
hours of operation with an integration step size of 1024 h is
2:0276 3 1024, and the average error in the temperature is
0.2342. The concentration error with this larger step size for
Eq. 27 is on the same order of magnitude as the concentration
error using Eq. 15 with a step size of 1026 h, and the temper-
ature error is almost an order of magnitude smaller.

The average computation time for each hour of simulation
of the model of Eq. 27 with the 1024 h integration step is
0.986 CPU seconds which is more than 21 times faster than
using Eq. 15 with the step size of hc ¼ 1026 h for which each
hour of simulation required 21.58 CPU seconds. This shows
that with a much larger integration time step, the model of Eq.
27 was able to accurately predict the nonlinear CSTR
behavior.

A step input and impulse input were used to further validate
the model of Eq. 27. The responses for the polynomial model
of Eq. 27 and the first-principles model of Eq. 10 to a step
change in u2 and an impulse input of u1 are very close, as is
shown in Figures 4 and 5.

EMPC Using Well-Conditioned Nonlinear Models

The formulation of LEMPC incorporating the PNLSS

model and the stability of a nonlinear process in closed-loop

with this LEMPC will now be developed in steps through a

series of propositions and a theorem. The first step will be to

develop the stability of the nonlinear process of Eq. 1 when a

Lyapunov-based controller derived from the empirical PNLSS

model of Eq. 3 is applied to it, which is now addressed.

Lyapunov-based control using empirical models

The empirical nonlinear model of Eq. 3 is assumed to be

stabilizable such that a state feedback controller hNLðxÞ exists

that can make the origin of the empirical nonlinear system of

Eq. 3 under hNLðxÞ locally exponentially stable. We will fur-

ther assume that hNL is locally Lipschitz on Rn such that one

can find a constant K> 0 to bound the value of hNL

(jhNLðxÞj < Kjxj for all x 2 Rn). When the input for the system

of Eq. 1 under nominal operation is the controller hNLðxÞ that

is designed based on the empirical model of Eq. 3, closed-loop

stability depends on whether the zth order Taylor series expan-

sion of the nominal model is sufficiently close to the polyno-

mial empirical model expanded to the same order z. It also

depends on the effect of the higher order terms (nonlinear

terms of order z 1 1 and higher) on the trajectories of the sys-

tem of Eq. 1. In the following, we introduce the Taylor series

of the right-hand side of Eq. 1 in a compact form. To simplify

the notation throughout this section, the right-hand side of Eq.

1 is denoted as follows

Figure 3. State trajectories of the first-principles CSTR model of Eq. 10 (black trajectory) and the identified PNLSS
model of Eq. 27, hc ¼ 1024 h (gray trajectory) when the heat rate and concentration inputs are varied
sinusoidally with amplitudes 55,000 kJ/h and 0:25 kmol=m3, respectively, and both with frequency
8:72 rad=h.

Figure 4. Step responses of the first-principles CSTR model of Eq. 10 (black trajectory) and of the identified PNLSS
model of Eq. 27 (gray trajectory) when, after 1 h of operation at the process steady-state, the heat rate
(u2) is suddenly increased by 20,000 kJ/h.
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~f ðxðtÞ;wðtÞ; uðtÞÞ :¼ fpðxðtÞ;wðtÞÞ1 ~GðxðtÞ;wðtÞÞuðtÞ (28)

To obtain the Taylor series of the entire vector function
~f : Rn3Rl3Rm ! Rn, the Taylor series expansion of each
function ~f i; i ¼ 1; :::; n is taken individually. The Taylor series
expansion of the function ~f i of the nominal model (w(t) 5 0)
of Eq. 28 around an equilibrium point x 5 0 with u 5 0 is

~f iðx; 0; uÞ ¼ �aix1
1

2!

Xn

i¼1

Xn

q¼1

@2~fi
@xi@xq

ð0; 0; 0Þxixq

1:::1�biu1
1

2!

Xm

C¼1

Xm

v¼1

@2~fi
@uC@uv

ð0; 0; 0ÞuCuv1:::

(29)

where

�ai ¼
�
@~fi

@x1

ð0; 0; 0Þ @~fi

@x2

ð0; 0; 0Þ @~fi

@x3

ð0; 0; 0Þ :::

@~fi
@xn
ð0; 0; 0Þ

� (30)

�bi ¼
�
@~fi
@u1

ð0; 0; 0Þ @~fi

@u2

ð0; 0; 0Þ @~fi
@u3

ð0; 0; 0Þ :::

@~fi
@um
ð0; 0; 0Þ

� (31)

Now, all terms in the Taylor series polynomial containing deriv-
atives of ~fi of order z 1 1 and higher with respect to x are disre-
garded and only the linear terms with respect to the input u are
kept because the model of Eq. 28 is affine in u. To simplify the
notation of the remaining polynomial terms, we define ~giðxÞ as

~giðxÞ ¼ ĝiKðxÞ (32a)

KðxÞ ¼ ½x2
1 x1x2 ::: xz

n�
T

(32b)

where the vector KðxÞ contains nonlinear monomials in x of
order two and higher up to a chosen order z. The coefficients
of these nonlinear terms in x are placed in the vector ĝi. As an
example, when n 5 2 and z 5 3, KðxÞ and ĝ1 have the follow-
ing form

ĝ1 ¼
�

1

2

@2 ~f1

@x2
1

@2 ~f1
@x1@x2

1

2

@2 ~f1
@x2

2

1

6

@3 ~f1
@x3

1

1

2

@3 ~f1
@x2

1@x2

1

2

@3 ~f1
@x1@x2

2

1

6

@3 ~f1
@x3

1

�
ð0;0;0Þ

(33)

KðxÞ ¼ ½x2
1 x1x2 x2

2 x3
1 x2

1x2 x1x2
2 x3

2�
T

(34)

Repeating the same procedure to calculate the Taylor series

for all ~f i; i ¼ 1; :::; n functions, and defining the matrices �A
and �B and the vector �GzðxÞ to have row vectors �ai; ~giðxÞ, and
�bi; i ¼ 1; :::; n, respectively, the Taylor series approximation
of the vector function ~f can be represented in the following

compact notation

~f ðx; 0; uÞ � �Ax1 �GzðxÞ1 �Bu (35)

where �A and �B represent the coefficients of the linear terms

in x and u respectively and �GzðxÞ is a nonlinear vector func-
tion that includes terms of order two and higher. The sub-

script z is used to indicate that �GzðxÞ is a zth order

polynomial vector function. We will now develop a proposi-
tion that shows that the state feedback controller hNLðxÞ is

locally robust to the plant-model mismatch and the effect of
nonlinearities (of order z 1 1 and higher) when the process

model is close to the Taylor series expansion of the actual
nonlinear model. To facilitate this development, we define

the matrix of coefficients of the nonlinear terms in �GzðxÞ as
Ĝz (the row vectors of Ĝz are ĝi; i ¼ 1; :::; n). The following

proposition provides conditions for exponential stability of

the actual nonlinear system under a controller hNL designed
based on a polynomial approximation of the actual process

model.
Proposition 1. Under the assumption that the origin of

the closed-loop system of Eq. 3 under the controller hNLðxÞ
is locally exponentially stable and there exist W> 0 and d
> 0 such that

jjð �A2AÞ1ðĜz2EÞjjW1jj �B2BjjK � d (36)

then there exists q̂ > 0 such that the origin of the nominal
closed-loop system of Eq. 1 under hNLðxÞ is exponentially
stable for all x 2 Xq̂ .

Proof. To prove exponential stability of the origin of Eq.

1 for sufficiently small q̂ and d, it is sufficient to show that
a Lyapunov function exists for that system in closed-loop

with the controller hNLðxÞ. To prove the existence of such a
function, we first note that the exponential stability of the

origin of Eq. 3 under the controller hNLðxÞ guarantees
that there is a continuously differentiable Lyapunov function

V̂ : Rn ! R1 that satisfies the following inequalities49

c1jxj2 � V̂ðxÞ � c2jxj2 (37a)

Figure 5. Impulse responses of the first-principles CSTR model of Eq. 10 (black trajectory) and of the identified
PNLSS model of Eq. 27 (gray trajectory). The impulse was applied to the systems after 1 h of operation
at the process steady-state, and the impulse was numerically simulated as a rectangular pulse input in
u1 of magnitude 1 kmol=m3 that was applied for 72 s.
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@V̂ðxÞ
@x

Ax1PzðxÞ1BhNLðxÞð Þ � 2c3jxj2 (37b)���� @V̂ðxÞ
@x

���� � c4jxj (37c)

for all x 2 DNL where c1, c2, c3, and c4 are positive con-
stants. These are not necessarily the same positive constants
as in Eq. 2, but the same constants have been used here to
simplify the subsequent notation.
We next define

qðxÞ :¼ ~f ðx; hNLðxÞ; 0Þ2 �Ax2 �GzðxÞ2 �BhNLðxÞ (38)

and consider

_x ¼ Ax1PzðxÞ1BhNLðxÞ1~f ðx; hNLðxÞ; 0Þ2Ax2PzðxÞ2BhNLðxÞ
(39)

Using Eqs. 37b and 37c, the time-derivative of V̂ along the
state of the system of Eq. 39 is bounded by

_̂V � 2c3jxj21c4jxjðj �A2Að Þx1ð �GzðxÞ2PzðxÞÞ
1 �B2Bð ÞhNLðxÞj1jqðxÞjÞ

(40)

for all x 2 DNL. Using boundedness of vector fields and the
fact that the hNLðxÞ controller is locally Lipschitz, there exist
constants W> 0 and K> 0 such that

_̂V � 2c3jxj21c4jxjððjjð �A2AÞ
1ðĜz2EÞjjW1jj �B2BjjKÞjxj1jqðxÞjÞ

(41)

for all x 2 Br0 ¼ fx 2 Rn : jxj � r0g where r0 is any r0 > 0
such that Br0 � DNL. If the condition of Eq. 36 is satisfied,
there exits a d > 0 such that

_̂V � 2c3jxj21c4djxj21c4jxjjqðxÞj (42)

for all x 2 Br0, and since q(x) vanishes near the origin and
contains terms of order z 1 1 and higher in x, there exists a
c > 0 such that

jqðxÞj < cjxjz11
(43)

for all x 2 Br0. Thus

_̂V � 2c3jxj21c4djxj21c4cjxjz12
(44)

for all x 2 Br0. For any Br � Br0, the time-derivative of V̂
can be bounded by

_̂V � 2c3jxj21c4ðd1crzÞjxj2 (45)

for all x 2 Br where r < r0. If d > 0 and r> 0 are chosen to
satisfy c3=c4 > ðd1crzÞ, then there exists a ĉ3 > 0 such that

_̂V ¼ @V̂ðxÞ
@x

~f ðx; hNLðxÞ; 0Þ
� �

� 2ĉ3jxj2 (46)

for all jxj � r. Let Xq̂ with q̂ > 0 be the forward invariant
set such that q̂ � minfV̂ðxÞ : jxj ¼ rg and this ends the
proof. �

REMARK 5. Even though this conservative result holds
locally, when higher order terms are used to better capture
the nonlinear behavior in a practical setting, the region
Xq̂ could be expanded as will be demonstrated in the
example.

Lyapunov-based EMPC formulation with
well-conditioned empirical models

The formulation of EMPC to be used in this work is

LEMPC,2,55 a receding horizon EMPC strategy that incorpo-

rates stability constraints based on an explicit stabilizing con-

troller for a model of the nominal process. LEMPC uses a

model of the process dynamics to predict the evolution of the

process states with time. The LEMPC developed here will be

implemented with sampling period D and prediction horizon N,

and the stability constraints will be based on the stability region

and Lyapunov function V̂ðxÞ for the system of Eq. 3 under the

stabilizing controller hNLðxÞ. In addition, the process model to

be incorporated in LEMPC will be the nonlinear PNLSS empir-

ical model. The LEMPC formulation is similar to that derived

in Ref. 55 using an empirical model. The LEMPC optimization

problem incorporating the PNLSS empirical model is

min
u2SðDÞ

ðtk1N

tk

Leð~xðsÞ; uðsÞÞ ds (47a)

s:t: _~xðtÞ ¼ A~x1Pzð~xÞ1Bu (47b)

~xðtkÞ ¼ xðtkÞ (47c)

uðtÞ 2 U; 8 t 2 ½tk; tk1NÞ (47d)

V̂ð~xðtÞÞ � q̂e; 8 t 2 ½tk; tk1NÞ; if xðtkÞ 2 Xq̂e
(47e)

@V̂ðxðtkÞÞ
@x

AxðtkÞ1PzðxðtkÞÞ1BuðtkÞð Þ

� @V̂ðxðtkÞÞ
@x

AxðtkÞ1PzðxðtkÞÞ1BhNLðxðtkÞÞð Þ;
if xðtkÞ 62 Xq̂e

(47f)

where the optimization variable is the process input vector u for

every sampling period of length D in the prediction horizon

(denoted by u 2 SðDÞ where SðDÞ represents the family of

piecewise constant functions with period D). To solve for this

optimization variable, the LEMPC minimizes a cost function

representing the process economics (Eq. 47a, where Leðx; uÞ is

the stage cost) and ensures that the calculated values of u are

maintained within the specified limits on the available control

action (Eq. 47d). The LEMPC receives a measurement of the

process states at time tk (the time at the beginning of a sampling

period) and incorporates this through Eq. 47c as the initial con-

dition in the PNLSS process model of Eq. 47b. The prediction

of the process state from Eq. 47b is denoted as ~x. The PNLSS

process model is used to predict future states of the process sys-

tem to ensure that they are constrained by the mode 1 and mode

2 Lyapunov-based constraints of Eqs. 47e and 47f, respectively.
The mode 1 constraint is used to promote dynamic off-

steady-state operation of the process to achieve the greatest

profit possible, and is active when the states are maintained

within a subset of the stability region Xq̂ that is referred to as

Xq̂e
for which states starting within this subset are guaranteed

to be maintained in the stability region Xq̂ for all time. Process

disturbances or plant-model mismatch may cause the actual

process trajectories to enter the region Xq̂ n Xq̂e
, in which case

the mode 2 LEMPC constraint becomes active to drive the

process states back into Xq̂e
within a finite number of sampling

periods.

Stability analysis

In this section, we examine stability of the closed-loop pro-

cess of Eq. 1 under LEMPC incorporating the empirical model
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derived from PNLSS with numerical stability constraints. We
begin by noting several bounds on the process models of Eqs.
1 and 3 and of the derivatives of Lyapunov functions along the
closed-loop trajectories of these systems. Because it is
assumed that ~f ð�; �; �Þ in Eq. 1 is locally Lipschitz and that the
Lyapunov function V̂ is continuously differentiable, the fol-
lowing inequalities hold for all x1, x2 2 Xq̂ ; u 2 U and
jwj � h

j~f ðx1; u;wÞ2~f ðx2; u; 0Þj � Lxjx12x2j1Lwjwj (48)���� @V̂ðx1Þ
@x

~f ðx1; u;wÞ2
@V̂ðx2Þ
@x

~f ðx2; u; 0Þ
���� � L0xjx12x2j1L0wjwj

(49)

where Lx, Lw, L0x, and L0w are positive constants. The Lipschitz
property of ~f , combined with the bounds on u and w, estab-
lishes the existence of a constant M> 0 such that

j~f ðx; u;wÞj � M (50)

for all x 2 Xq̂ ; u 2 U and jwj � h since Xq̂ and U are compact
sets.

The polynomial model of Eq. 3 and the time-derivative of
the Lyapunov function along its state are similarly bounded by
MNL> 0 and LNL> 0

jAx11Pzðx1Þ1Buj � MNL (51)���� @V̂ðx1Þ
@x

Ax11Pzðx1Þ1Buð Þ2 @V̂ðx2Þ
@x

Ax21Pzðx2Þ1Buð Þ
����

� LNLjx12x2j
(52)

for all x1, x2 2 Xq̂ and u 2 U.
This next proposition defines a bound on the difference

between the state of the actual process of Eq. 1 in the presence
of disturbances w(t) and the state predicted from the empiri-
cally derived PNLSS model of Eq. 3 over a time interval of
length T.

Proposition 2. The solutions of the following dynamic
equations are denoted as x(t) and x̂ðtÞ

_xðtÞ ¼ ~f ðxðtÞ; uðtÞ;wðtÞÞ; xð0Þ ¼ x0 (53)

_̂xðtÞ ¼ Ax̂ðtÞ1Pzðx̂ðtÞÞ1BuðtÞ; x̂ð0Þ ¼ x0 (54)

where uðtÞ 2 U and jwðtÞj � h for all t 2 ½0;T� with initial
condition xð0Þ ¼ x̂ð0Þ ¼ x0 2 Xq̂ . If xðtÞ; x̂ðtÞ 2 Xq̂ for all
t 2 ½0; T�, then the difference between x(T) and x̂ðTÞ is
bounded by the function fwð�Þ

jxðTÞ2x̂ðTÞj � fwðTÞ :¼ Lwh1Merr

Lx
eLxT21
� �

(55)

where Merr bounds the difference between right-hand sides
of Eq. 53 with wðtÞ � 0 and Eq. 54

j~f ðx̂; u; 0Þ2ðAx̂1Pzðx̂Þ1BuÞj � Merr (56)

for all x̂ 2 Xq̂ and u 2 U.

Proof. We will first define e(t) to be the difference
xðtÞ2x̂ðtÞ, such that its time-derivative is _eðtÞ ¼ _xðtÞ2 _̂xðtÞ.
Per Eqs. 53 and 54, the initial condition for this differential
equation is eð0Þ ¼ 0. Substituting the definitions of _xðtÞ and
_̂xðtÞ from Eqs. 53 and 54 in the definition of _eðtÞ produces
the following inequality

j _eðtÞj ¼ j~f ðxðtÞ; uðtÞ;wðtÞÞ2 Ax̂ðtÞ1Pzðx̂ðtÞÞ1BuðtÞð Þj
� j~f ðxðtÞ; uðtÞ;wðtÞÞ2~f ðx̂ðtÞ; uðtÞ; 0Þj

1j~f ðx̂ðtÞ; uðtÞ; 0Þ2ðAx̂ðtÞ1Pzðx̂ðtÞÞ1BuðtÞÞj (57)

for all x; x̂ contained in Xq̂ . From the bounds in Eqs. 50
and 51 above and the fact that x and u are in compact sets, a
constant Merr> 0 exists such that

j~f ðx̂; u; 0Þ2ðAx̂1Pzðx̂Þ1BuÞj � Merr (58)

for all x̂ 2 Xq̂ and all u 2 U. Using this bound in Eq. 57
along with the bound from Eq. 48 and jwðtÞj � h, the fol-
lowing is derived for all t 2 ½0; T�

j _eðtÞj � LxjxðtÞ2x̂ðtÞj1LwjwðtÞj1Merr

� LxjeðtÞj1Lwh1Merr (59)

Integration is then performed on the differential equation in
Eq. 59 between t 5 0 and t 5 TðT

0

j _eðtÞj
LxjeðtÞj1Lwh1Merr

dt � T (60)

which gives the following equation for jeðTÞj, with x(T),
x̂ðTÞ 2 Xq̂

jeðTÞj ¼ jxðTÞ2x̂ðTÞj � Lwh1Merr

Lx
eLxT21
� �

(61)

This completes the proof of Proposition 2.
The following proposition is proved in Ref. 56 and states

that the difference between the values of a Lyapunov function
evaluated at any two different points in Xq̂ is bounded. �

Proposition 3. (c.f. Ref. 56) Consider the continuously dif-
ferentiable Lyapunov function V̂ðxÞ that satisfies the inequal-
ities of Eq. 37. There exists a quadratic function fVð�Þ such
that

V̂ðx1Þ � V̂ðx2Þ1fVðjx12x2jÞ (62)

for all x1, x2 2 Xq̂ where

fVðsÞ :¼ c4

ffiffiffî
q
pffiffiffiffiffi
c1
p s1bs2 (63)

and b is a positive constant.
The above propositions will now be used to show that

firstly, there exists a feedback control law hNL that meets the
requirements of Eq. 37 that can stabilize the closed-loop sys-
tem of Eq. 1, and secondly, that this has implications for the
stability properties of an LEMPC based on the stability
region derived from the use of this feedback control law. To
develop the type of stability that the feedback control law
can provide, we first note that when hNL meeting Eq. 37 is
applied continuously to the system of Eq. 3, it exponentially
stabilizes the origin of the closed-loop system. However, for
the LEMPC control problem at hand, the control laws will
be implemented in sample-and-hold, using synchronous sam-
pling at times tk ¼ kD; k ¼ 0; 1; :::. When using a sufficiently
small sampling period D > 0, the control law hNL imple-
mented in sample-and-hold can practically stabilize the ori-
gin of Eq. 3, meaning that it can drive the state trajectories
to a small neighborhood of the origin Xq̂min

and maintain
them there.56 It has previously been stated that the
Lyapunov-based constraints in LEMPC are able to ensure
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that the closed-loop state trajectories using mode 1 operation
are maintained in the stability region Xq̂ and that the origin
is practically stable in mode 2; this, however, implies that
feasible solutions to the LEMPC exist, which is only the
case for mode 1 operation when q̂e 	 q̂min. The following
proposition states that when q̂e is restricted in this manner,
the state trajectories x̂ðtÞ for the closed-loop system of Eq.
54 under the control law hNL in sample-and-hold are always
bounded in Xq̂e

, which is necessary for feasibility of mode 1
operation of LEMPC, and are ultimately bounded in Xq̂min

.

Proposition 4. Consider the sampled-data system resulting
from the system of Eq. 54 under the controller hNLðx̂Þ that
satisfies the inequalities of Eq. 37 implemented in a sample-
and-hold fashion. Let D > 0; �̂s > 0, and q̂e 	 q̂min 	 q̂s

> 0 satisfy

2
c3

c2

q̂s1LNLMNLD � 2�̂s=D (64)

and

q̂min :¼ max V̂ðx̂ðt1DÞÞ : V̂ðx̂ðtÞÞ � q̂sg
	

(65)

If x̂ð0Þ 2 Xq̂e
, then x̂ðtÞ 2 Xq̂e

for all t 	 0 and

V̂ðx̂ðtk11ÞÞ2V̂ðx̂ðtkÞÞ � 2�̂s (66)

for x̂ðtkÞ 2 Xq̂e
n Xq̂s

and x̂ðtÞ is ultimately bounded in Xq̂min
.

Proof. The proposition considers the state trajectories of
the system of Eq. 54, starting from x̂ð0Þ 2 Xq̂e

, when the
control law hNLðx̂Þ is implemented in sample-and-hold. This
sample-and-hold implementation will be denoted as
hNLðx̂ðtkÞÞ, with t 2 ½tk; tk11Þ; k ¼ 0; 1; . . . with t0 ¼ 0, to
represent the value of hNL held for a time period of length D
based on a measurement of the state x̂ at time tk. Using this
notation and the inequality of Eq. 37b that holds at each
sampling time, the following holds

@V̂ðx̂ðtkÞÞ
@x̂

Ax̂ðtkÞ1Pzðx̂ðtkÞÞ1BhNLðx̂ðtkÞÞð Þ � 2c3jx̂ðtkÞj2

(67)

The inequality of Eq. 67 can be used with the inequality of
Eq. 52 to bound the time-derivative of the Lypaunov func-
tion for all s 2 ½tk; tk11Þ as follows (the notation for the input
is abbreviated as ûðtkÞ :¼ hNLðx̂ðtkÞÞ)

@V̂ðx̂ðsÞÞ
@x̂

Ax̂ðsÞ1Pzðx̂ðsÞÞ1BûðtkÞð Þ

¼ @V̂ðx̂ðsÞÞ
@x̂

Ax̂ðsÞ1Pzðx̂ðsÞÞ1BûðtkÞð Þ

2
@V̂ðx̂ðtkÞÞ

@x̂
Ax̂ðtkÞ1Pzðx̂ðtkÞÞ1BûðtkÞð Þ

1
@V̂ðx̂ðtkÞÞ

@x̂
Ax̂ðtkÞ1Pzðx̂ðtkÞÞ1BûðtkÞð Þ

� LNLjx̂ðsÞ2x̂ðtkÞj2c3jx̂ðtkÞj2 (68)

Because the solutions of Eq. 54 are continuous in the com-
pact set Xq̂e

, a discretization of the time-derivative of x̂
defined according to Eq. 54 for a sufficiently small time D,
combined with the inequality in Eq. 51, yields the following
bound for s 2 ½tk; tk11�

jx̂ðsÞ2x̂ðtkÞj � MNLD (69)

Substituting Eq. 69 into Eq. 68 gives for s 2 ½tk; tk11Þ

@V̂ðx̂ðsÞÞ
@x̂

Ax̂ðsÞ1Pzðx̂ðsÞÞ1BûðtkÞð Þ
� 2c3jx̂ðtkÞj21LNLMNLD (70)

We now use these results to show that x̂ðtÞ 2 Xq̂e
for all t

	 0 when x̂ð0Þ 2 Xq̂e
; q̂s > 0; q̂min > 0; �̂s > 0, and q̂e

	 q̂min satisfy Eqs. 64 and 65 with a sufficiently small

D > 0. We first examine the case when x̂ðtkÞ 2 Xq̂e
n Xq̂s

(and x̂ðsÞ 2 Xq̂e
for s 2 ½tk; tk11Þ). In this case, Eq. 70 and

Eq. 37a are combined to give

@V̂ðx̂ðsÞÞ
@x̂

Ax̂ðsÞ1Pzðx̂ðsÞÞ1BûðtkÞð Þ � 2
c3

c2

q̂s1LNLMNLD

(71)

for s 2 ½tk; tk11Þ. Since we assume that Eq. 64 is met

@V̂ðx̂ðsÞÞ
@x̂

Ax̂ðsÞ1Pzðx̂ðsÞÞ1BûðtkÞð Þ � 2�̂s=D (72)

for s 2 ½tk; tk11Þ. Using continuity of the solutions of Eq. 54

in a compact set and integrating Eq. 72 for s 2 ½tk; tk11�
proves that the bound of Eq. 66 holds and further shows that

the Lyapunov function is decreasing for s 2 ½tk; tk11�, which

proves that x̂ðtÞ is maintained in Xq̂e
during this time period

as guaranteed by the proposition

V̂ðx̂ðtk11ÞÞ � V̂ðx̂ðtkÞÞ2�̂s;

V̂ðx̂ðsÞÞ � V̂ðx̂ðtkÞÞ; 8 s 2 ½tk; tk11�
(73)

We now prove ultimate boundedness of the state trajectories

in Xq̂min
by considering x̂ðtkÞ 2 Xq̂s

. Because the proof for x̂ðtkÞ
2 Xq̂e

n Xq̂s
shows that the Lyapunov function continues to

decrease with time in that set, the trajectories eventually enter

Xq̂s
. From the definition of Xq̂min

in Eq. 65, once the state tra-

jectories enter Xq̂min
, they are ultimately bounded in this set.

This completes the proof of Proposition 4 and shows that for

appropriately chosen parameters q̂s; �̂s; q̂e, and D, an explicit

stabilizing controller exists for the system of Eq. 54 that, when

implemented in sample-and-hold, can render the set Xq̂e
forward

invariant for any initial state in Xq̂e
. �

Propositions 2–4 are now combined to give a theorem that

shows that the LEMPC applied to the system of Eq. 1 using

the empirical PNLSS model of Eq. 3 requests control actions

that maintain boundedness of the closed-loop state within Xq̂

under appropriate conditions.

Theorem 1. Consider the closed-loop system of Eq. 1

under the LEMPC of Eq. 47 based on the controller hNLðxÞ
that satisfies the inequalities of Eq. 37. Let
�w > 0; D > 0; N 	 1, and q̂ > q̂e > 0 satisfy

2
ĉ3

c2

q̂e1L0xMD1L0wh � 2�w=D (74)

q̂e � q̂2fVðfwðDÞÞ (75)

If xð0Þ 2 Xq̂ and the conditions of Proposition 1 and Prop-

osition 4 are satisfied, then the state trajectory x(t) of the
closed-loop system is always bounded in Xq̂ for t 	 0.

Proof. In Part 1 of this proof, we show that the LEMPC

optimization problem is recursively feasible if x(t) does not

leave Xq̂ , and in Part 2, we prove boundedness of the states

of the closed-loop system in Xq̂ . �

Part 1. For all xðtkÞ 2 Xq̂e
when all conditions in Proposi-

tion 4 are met, the optimization problem is feasible since the
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sample-and-hold control actions hNLðxðtkÞÞ; hNL ðxðtk11ÞÞ, ... ,

hNLðxðtk1N21ÞÞ, which are based on the measured state xðtkÞ
(Eq. 47c) at time tk and the predicted states (Eq. 47b) at tk11, ... ,

tk1N21, maintain the process state within Xq̂e
and meet the input

constraints and Lyapunov-based constraints of Eqs. 47d–47e.

For all xðtkÞ 2 Xq̂ n Xq̂e
, the controller hNLðxðtkÞÞ is feasible by

design since it is stabilizing in sample-and-hold with a suffi-

ciently small sampling period and meets the constraints of

Eqs. 47d and 47f. This shows that for all xð0Þ 2 Xq̂ , the LEMPC

optimization problem of Eq. 47 will be recursively feasible if

xðtÞ 2 Xq̂ for all times.

Part 2. If xðtkÞ 2 Xq̂ n Xq̂e
, the LEMPC requires that the

mode 2 constraint of Eq. 47f be satisfied, which leads to the

following requirement for any solution requested by the

LEMPC at time tk

@V̂ðxðtkÞÞ
@x

AxðtkÞ1PzðxðtkÞÞ1BuðtkÞð Þ

� @V̂ðxðtkÞÞ
@x

AxðtkÞ1PzðxðtkÞÞ1BhNLðxðtkÞÞð Þ � 2c3jxðtkÞj2

(76)

Since Theorem 1 requires that Proposition 1 be met, Eq.

46 holds and

@V̂ðxðtkÞÞ
@x

~f ðxðtkÞ; hNLðxðtkÞÞ; 0Þ � 2ĉ3jxðtkÞj2 (77)

To account for the effect of disturbances, Eq. 77 can be

used to bound the time-derivative of the Lyapunov function

of the closed-loop system using the Lyapunov-based control-

ler based on the empirical model for all s 2 ½tk; tk11Þ

_̂V ðxðsÞÞ ¼ @V̂ðxðsÞÞ
@x

~f ðxðsÞ; hNLðxðtkÞÞ;wðsÞÞ

2
@V̂ðxðtkÞÞ

@x
~f ðxðtkÞ; hNLðxðtkÞÞ; 0Þ

1
@V̂ðxðtkÞÞ

@x
~f ðxðtkÞ; hNLðxðtkÞÞ; 0Þ

�
ð49Þ;ð77Þ

L0xjxðsÞ2xðtkÞj1L0wjwðsÞj2ĉ3jxðtkÞj2

� 2
ĉ3

c2

q̂e1L0xjxðsÞ2xðtkÞj1L0wjwðsÞj (78)

where the final inequality results from Eq. 37a and the defini-

tion of the value of V̂ðxÞ when xðtkÞ 2 Xq̂ n Xq̂e
. Using Eq. 50

and a derivation similar to that used to arrive at Eq. 69, we have

jxðsÞ2xðtkÞj � MD (79)

for all s 2 ½tk; tk11�. Substituting this inequality and the

bound h on w into Eq. 78, and utilizing Eqs. 76 and 77, we

have that the Lyapunov function of the closed-loop system

under LEMPC mode 2 satisfies

@V̂ðxðsÞÞ
@x

~f ðxðsÞ; uðtkÞ;wðsÞÞ � 2
ĉ3

c2

q̂e1L0xMD1L0wh (80)

for all s 2 ½tk; tk11Þ. Substituting Eq. 74 into Eq. 80, integrat-

ing Eq. 80 over s 2 ½tk; tk11� and using continuity of the

solution of Eq. 1 in a compact set, we have

V̂ðxðtk11ÞÞ � V̂ðxðtkÞÞ2�w;

V̂ðxðsÞÞ � V̂ðxðtkÞÞ; 8 s 2 ½tk; tk11�
(81)

This result shows that for all xðtkÞ 2 Xq̂ n Xq̂e
, the Lyapu-

nov function of the closed-loop system under LEMPC mode
2 decreases throughout a sampling period, which means that
the state will be driven back into Xq̂e

in finite time.
When xðtkÞ 2 Xq̂e

, the predicted trajectory ~xðtk11Þ 2 Xq̂e
by

Eq. 47e. By Propositions 2 and 3, the actual state xðtk11Þ is
within a bound of the predicted state and the following holds

V̂ðxðtk11ÞÞ � V̂ð~xðtk11ÞÞ1fVðjxðtk11Þ2~xðtk11ÞjÞ
� q̂e1fVðfwðDÞÞ (82)

When Eq. 75 holds, Eq. 82 implies xðtk11Þ 2 Xq̂ . This
completes the proof of Theorem 1 by showing that for any
xð0Þ 2 Xq̂ , the closed-loop state trajectories of the actual
process are maintained in Xq̂ provided that the assumptions
of Theorem 1 are met.

REMARK 6. The stability discussion above shows that distur-
bances, which include plant-model mismatch, are required to
be sufficiently small if closed-loop stability is to be maintained
under LEMPC. It may in general be difficult to identify an
empirical model for use in LEMPC for which the plant-model
mismatch is low over a large enough operating range that the
stability region for use in LEMPC is not restrictively small,
since a small stability region would likely not perform much
differently than steady-state operation. One method for improv-
ing the range over which an empirical model is applicable
(and thus possibly increasing the size of Xq̂ ) is to use higher-
order polynomials in the PNLSS identification. This concept is
demonstrated in the chemical process example of this work.

REMARK 7. For the reasons noted in Remark 3 of Ref. 55,
a longer prediction horizon may not be able to improve the
closed-loop performance of an EMPC formulated with an
empirical model, especially if there are significant differen-
ces between the actual process behavior and that predicted
by the model.

REMARK 8. For systems that can be approximated over the
region of interest with low-order polynomials (e.g., second
or third order), a significant benefit in terms of computation
time may be observed when using the low-order empirical
model as compared with using the full nonlinear first-
principles process model. An example is given for which this
is the case in the “Application of LEMPC Based on the
Well-Conditioned PNLSS Model to the Chemical Process”
section of this article. If computation time is a significant
consideration for an actual process control system, an
empirical model may be considered even if a first-principles
model can be derived for a given process.

REMARK 9. One major factor in the stability of the
LEMPC of Eq. 47 is that it is a feedback control strategy,
incorporating a measurement of the actual process state at
every sampling period so that it is able to tolerate some
level of process disturbances and plant-model mismatch.

REMARK 10. The feasibility and speed of convergence of
the LEMPC optimization problem depend on the choice of
the Lyapunov function and the stability region used in the
optimization problem; however, the effect of the Lyapunov
function and the stability region cannot in general be char-
acterized a priori but such a characterization can be
obtained through numerical simulations using different Lya-
punov functions to determine how the choice of the parame-
ters of the P matrix (when a quadratic Lyapunov function
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VðxÞ ¼ xTPx is used) and of the size of the level set influ-
ence the aforementioned LEMPC characteristics.

Application of LEMPC Based on the Well-
Conditioned PNLSS Model to the Chemical
Process

In the following sections, we return to the CSTR example
described above and compare the closed-loop state and input tra-
jectories for the CSTR under the LEMPC utilizing the first-

principles model of Eq. 10 and the LEMPC utilizing the empiri-
cal model of Eq. 27 developed using PNLSS with numerical sta-

bility constraints. In addition, comparisons will be made between
the results of using the nonlinear empirical model of Eq. 27 in
LEMPC with the results of using the linear empirical models

described in Ref. 55 with LEMPC. The process model used here
is the same as that in Ref. 55 to facilitate direct comparison.

As noted previously, it is assumed that the dynamics of the

CSTR are perfectly modeled by Eq. 10, and that the available
control actions are constrained by the actuators to the sets in Eq.
14. Simulations assuming full state feedback were used to per-

form system identification using PNLSS per the optimization
problem of Eq. 26 to develop the nonlinear empirical model of
Eq. 27, where u and x are written in terms of deviation variables

as defined in Eqs. 12 and 13. It is desired to produce the maxi-
mum amount of B possible in a given time period while main-

taining the states within a compact region of state-space
containing the steady-state ½CAs Ts� ¼ ½1:2 kmol=m3 438:0 K�.
Thus, the cost function �Le to be used in the LEMPC of Eq. 47 is

the negative of the time-average of the total amount of B pro-
duced per the Arrhenius rate law throughout a time period (it is

the negative since Eq. 47 is a minimization problem and our
goal is to maximize the production of B)

�Leðx; uÞ ¼ 2
1

ðtk1N2tkÞ

ðtk1N

tk

k0e2E=RTðsÞC2
AðsÞ ds (83)

In addition to the bounds on the control actions caused by
the actuators, we assume that the amount of reactant that is

available to be fed to the reactor is limited in a given time
period tp ¼ 1:0 h by the following constraint:

1

tp

ðtp

0

u1ðsÞ ds ¼ 0:0 kmol=m3 (84)

To maintain process stability when the empirical process
model of Eq. 27 is used, the Lyapunov stability region con-

straints for LEMPC must be defined. The stability region is
defined using a Lyapunov-based controller hðxÞ ¼
h1ðxÞ h2ðxÞ½ �T for the process that meets the requirements of

Eq. 37. The Lyapunov-based controller is developed here by
considering h1 and h2 separately. To ensure that the material

constraint of Eq. 84 is satisfied by the closed-loop process
under controller h(x), the value of h1 is set to 0:0 kmol=m3.
The value of h2 is determined using a Lyapunov-based control

law calculated based on the process model. It is assumed here,
as would be the case in practice, that the only process model

available from which to determine h2ðxÞ is the empirical
model of Eq. 27. To develop the control law, terms in the
empirical model of Eq. 3 are denoted as functions f : Rn ! Rn

and g : Rn ! Rn3Rm as follows

_x ¼ Ax1PzðxÞ|fflfflfflfflfflffl{zfflfflfflfflfflffl}
¼:f ðxÞ

1 B|{z}
¼:gðxÞ

u (85)

As there are two inputs for this chemical process example,
gðxÞ ¼ ½g1 g2� where g1; g2 2 Rn. The control law for h2 is

then determined from the Lyapunov-based control law in

Ref. 57

h2ðxÞ ¼
2

Lf V̂1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Lf V̂

2
1Lg2

V̂
4

q
Lg2

V̂
; if Lg2

V̂ 6¼ 0

0; if Lg2
V̂ ¼ 0

8>>><
>>>: (86)

where Lf V̂ and Lg2
V̂ denote the Lie derivatives of the Lyapu-

nov function V̂ðxÞ with respect to the vector fields f(x) and

g2ðxÞ. The Lyapunov function V̂ was chosen as V̂ðxÞ ¼ xTPx
with P being the following positive definite matrix

P ¼
1030 20

20 0:6

" #
(87)

Extensive simulations were performed using the controller

h(x) in closed-loop with the empirical model of Eq. 27 to

obtain an estimate of the stability region of the actual process.

Because an estimate of the process model was used to deter-

mine the stability region, a conservative subset of this stability

region was chosen for the LEMPC design. This subset was

chosen based on simulations that showed it was a region

within which the first-principles and empirical models show

good agreement of the state trajectories, but was large enough

that there was a significant benefit with LEMPC operation

compared with steady-state operation. The stability regions for

use in the Lyapunov-based constraints of Eqs. 47e–47f were

taken to be Xq̂ with q̂ ¼ 370 and Xq̂e
with q̂e ¼ 350.

Using the above constraints, two different LEMPCs will be

compared, each with the general form of Eq. 47 and formu-

lated for use in closed-loop with the process model of Eq. 10.

Both LEMPCs use the cost function of Eq. 83, the input con-

straints of Eq. 14 and Eq. 84, q̂e ¼ 350, an integration step

size of 1024 h with the Explicit Euler numerical integration

method, a sampling period D ¼ 0:01 h, and a prediction hori-

zon N 5 10. The first of the LEMPCs, which will henceforth

be designated as the second-order empirical LEMPC, uses the

PNLSS dynamic model of Eq. 27. The second of the LEMPCs,

which will henceforth be designated as the first-principles

LEMPC, uses the nonlinear dynamic model of Eq. 10.

Because it is assumed that the nominal model of Eq. 10 per-

fectly represents the process dynamics, the mode 2 constraint

of Eq. 47f was not used in this first-principles LEMPC since

there is no measurement noise or plant-model mismatch to

drive the state outside of Xq̂e
. For both LEMPCs, the material

constraint of Eq. 84 is applied in the manner outlined in Ref.

12. The first-principles and second-order empirical LEMPC

optimization problems were solved at each sampling time

using Ipopt. To account for practical implementation consider-

ations, the optimizations were terminated and the current esti-

mate of the optimization variable u was returned if they were

not complete at the end of a sampling period. The actuator

dynamics were considered to be sufficiently fast such that the

returned solutions were directly implemented on the process

of Eq. 10 with a zero-order hold of length D.

Empirical LEMPC compared with first-principles
LEMPC

The process of Eq. 10 was simulated in closed-loop with

both the second-order empirical and the first-principles

LEMPCs for one operating period of length tp ¼ 1 h. The

resulting state and input trajectories are shown in Figure 6.
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These trajectories exhibit behavior similar to that reported in
Ref. 55. The state trajectories are initiated from the steady-
state ½CAs Ts� ¼ ½1:2 kmol=m3 438:0 K�, and they subse-
quently level off at a new steady-state on the boundary of the
stability region with a temperature greater than that at the ini-
tial steady-state since the production rate of B increases with
increasing temperature. The concentration of A in the reactor
decreases at the end of the simulation as the inlet concentra-
tion of A is reduced to meet the material constraint of Eq. 84.
The decrease in CA allows the reactor temperature to increase
to enhance generation of B without leaving the stability region.
Figure 6 shows that the state and input trajectories using the
second-order empirical LEMPC closely track those of the
first-principles LEMPC until approximately 0:8 h, at which
time the first-principles and second-order empirical LEMPCs
request significantly different control actions because they
require that the material constraint be met in the short remain-
der of the operating interval though different process models
are being used in the LEMPCs to ensure that the predicted tra-
jectories meet this constraint. The differences in the requested
control actions cause the process states under the second-order
empirical LEMPC to leave Xq̂e

six times at the end of the
operating period, starting at approximately 0:85 h, while the
first-principles LEMPC never leaves Xq̂e

. This means that in
addition to the differences in the process state trajectories that
result from using different model equations to satisfy con-
straints, there are added differences that result because the
second-order empirical LEMPC switches to mode 2 operation
though the first-principles LEMPC remains operating in mode
1. Figure 7 illustrates the state-space behavior of the first-
principles and second-order empirical LEMPCs, including
their initial close agreement, their evolution along the edge of
the stability region between approximately t 5 0.1 and 0.8 h,
and their subsequent deviation from one another. Despite the
differences at the end of the interval, the overall closeness of
the state and input trajectories using both the second-order
empirical and first-principles LEMPCs shows that the second-
order empirical LEMPC using the model derived from PNLSS
with numerical stability constraints may be suitable for the
process in this example and has the potential to produce simi-
larly good results for other processes.

The main reason for considering the first-principles LEMPC
over the second-order empirical LEMPC, since both maintain

process stability within the stability region, would be related
to the economic benefit of using the first-principles LEMPC.
Since the first-principles LEMPC represents the ideal case in
which the full nonlinear process model is known so that the
profit of the actual process is being maximized, it would be
expected to have a higher profit than any variants of that
LEMPC. In order to quantify the closed-loop performance of
the first-principles LEMPC and compare it with that of the
second-order empirical LEMPC, the following average eco-
nomic cost index is used (which has units kmol=m3)

Je ¼
1

tf

ðtf

0

k0e2E=RTðtÞC2
AðtÞ dt (88)

where tf is the length of time for which the closed-loop process
is simulated. This average economic cost represents the time-
average rate of generation of B throughout process operation

Figure 6. Trajectories of the states and inputs for the Eq. 10 CSTR model throughout one operating period tp ¼ 1 h
when controlled by the first-principles LEMPC (black trajectories) and the second-order empirical
LEMPC (gray trajectories) starting from CAs;Ts.

Figure 7. State-space representation of closed-loop
state trajectories for one operating period tp

¼ 1 h for the Eq. 10 CSTR model under the
first-principles LEMPC (solid trajectory) and
the second-order empirical LEMPC (dashed-
dotted trajectory) starting from CAs;Ts.
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and thus reflects the profit of the process (i.e., higher Je implies
better process closed-loop performance). For the closed-loop
CSTR under the second-order empirical LEMPC, Je is
16.1227, while for the first-principles LEMPC it is 16.1626.
This shows that for an operating period of 1 h, an improve-
ment of less than 0.3% is achieved when using the first-
principles LEMPC instead of the second-order empirical
LEMPC.

One major benefit of using the second-order empirical state-
space model of Eq. 27 compared to the full process model of
Eq. 10 is the reduction in computation time required by the
LEMPC with the simpler empirical model. Figure 8 shows the
amount of time in CPU seconds to find a solution to the first-
principles and second-order empirical LEMPCs for each sam-
pling period. The optimization problems take longer to solve
at the end of the one hour simulation for both LEMPCs due to
the increased number of function evaluations required to
ensure that the material constraint is satisfied in the small
remaining time of operation while the other input and stability
region constraints remain satisfied (the computation time is
increased as there are less degrees of freedom when finding a
solution). As demonstrated in Figure 8, the first-principles
LEMPC optimization problem terminated early two times in
the operating period because it reached the end of the 0.01 h
(36 s) sampling period before finding a solution (and thus
returned a suboptimal solution). The second-order empirical
LEMPC, however, never came close to the 36 s computation
time constraint, and the optimal solutions were obtained in
less than 0.15 s in most of the sampling periods. The sum of
the computation times for all sampling periods in the operating
window (total computation time) was 206.317 s for the first-

principles LEMPC, but only 30.108 s for the second-order
empirical LEMPC. The first-principles LEMPC is much more
computationally expensive than the second-order empirical
LEMPC, with a total computation time that is 580% higher
than for the second-order empirical LEMPC.

To investigate the long-term performance and computation
time differences between the first-principles and second-order
empirical LEMPCs, a ten-hour simulation was conducted for the
CSTR of Eq. 10, and the results are shown in Figures 9–12. The
average economic cost per Eq. 88 was 15.91 for the second-
order empirical LEMPC and 15.96 for the first-principles
LEMPC; less than 0.4% performance improvement is observed
when using the first-principles LEMPC. Both the first-principles
and the second-order empirical LEMPCs significantly out-
perform steady-state operation; the average economic cost at the
end of the 10 h is 13.88 for steady-state operation at
½CAs Ts CA0s Qs�. Thus, operating the process of Eq. 10 under
the second-order empirical LEMPC is 14.6% more profitable
than operating it at steady-state.

The computation times for the first-principles and second-
order empirical LEMPCs were also compared for the ten-hour
simulation. The average total computation time for each 1 h
operating period of the ten-hour simulation is 197.682 s for
the first-principles LEMPC and 26.229 s for the second-order
empirical LEMPC. The first-principles LEMPC average com-
putation time is 650% higher than that of the second-order
empirical LEMPC.

The results using the second-order empirical LEMPC above
can be compared to the results presented for the linear empiri-
cal model in the chemical process example in Ref. 55. The lin-
ear empirical model of Eqs. 57 and 58 in Ref. 55 is henceforth

Figure 8. Chart showing, for each sampling period, the computation time used for the optimization problems of
the first-principles LEMPC (triangle markers) and the second-order empirical LEMPC (circle markers)
during one operating period.

Figure 9. Trajectory of the CSTR concentration over
10 h for the CSTR model of Eq. 10 under the
second-order empirical LEMPC.

Figure 10. Trajectory of the CSTR temperature over
10 h for the CSTR model of Eq. 10 under
the second-order empirical LEMPC.
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referred to as the linear model. Because the second-order
empirical model of Eq. 27 is a better approximation of the
actual system than a linear model, the LEMPC using the
second-order empirical model calculates inputs that do not
cause the closed-loop state trajectories to leave the set Xq̂e

as
often as do the trajectories from using the linear model. A
comparison of Figure 4 of Ref. 55 for the linear model with
Figure 6 for the second-order empirical model demonstrates
this. From these figures, it is seen that the u1 and hence CA tra-
jectories for the linear model exhibit extensive chattering
caused by frequent switching of the LEMPC between mode 1
and 2 operation; this chattering is not exhibited in the trajecto-
ries resulting from the use of the second-order empirical
model, and as previously noted, the second-order empirical
model only switched between mode 1 and mode 2 operation
six times. Another result of using the second-order empirical
model as a better approximation of the actual process system
is that the stability region used with the second-order empiri-
cal model is significantly larger than with the linear empirical
model (for the linear model, q̂e is 55.0, while for the second-
order empirical model, it is 350). The more restricted stability
region results in a lesser value of Je after an hour of simulation
for the linear model than for the second-order empirical
model, since the state variables cannot extend as far to maxi-
mize the profit during the part of the trajectory when they
remain on the edge of the stability region (compare, for exam-
ple, the temperature of approximately 20 K in the time period
from 0.2 to 0.8 h in Figure 4 of Ref. 55 with the temperature
of approximately 35 K in Figure 6). Over one operating period
of 1 h, the average economic cost index of the second-order
empirical LEMPC is approximately 2.7% greater using the
second-order empirical model than the linear model, and for
the ten-hour simulation, it is approximately 4.1% greater using
the second-order empirical model than the linear model. The
computation time for the linear LEMPC is less than that for
the second-order empirical LEMPC, however. The total com-
putation time for one operating period is 36.9% greater for the
second-order empirical LEMPC than for the linear LEMPC,
and the average total computation time for a one-hour operat-
ing period from the ten-hour simulation is 11.1% greater for
the second-order empirical LEMPC than for the linear
LEMPC. Both the second-order empirical and linear LEMPCs
have profits close to those of the LEMPCs for the actual pro-
cess with the corresponding stability region (the profit from
the second-order empirical LEMPC is close to that of the first-
principles LEMPC, and the profit from the linear LEMPC is
close to that of the actual process with which it is compared in
Ref. 55), and both have computation times much lower than
those for the actual process with the corresponding stability
region. Thus, the decision to use the linear, second-order

empirical, or first-principles LEMPC for this process would

depend on the practical significance of a percentage change in

profit compared to a percentage change in computation time.

REMARK 11. The simulation results in this section demon-
strate that for the given chemical process example, the pro-
posed approach using the LEMPC incorporating a nonlinear
empirical model is robust to the mismatch between the non-
linear empirical model and the first-principles model
because the LEMPC with the empirical model maintains
process stability and good performance.

Improved accuracy with higher-order empirical models

In the comparison between the second-order empirical and

first-principles LEMPCs above, it was noted that the first-

principles LEMPC had a greater profit than the second-order

empirical LEMPC, since the first-principles LEMPC was

taken to represent the actual process and the second-order

empirical LEMPC was only an approximation. It would thus

be expected that as the accuracy of the model derived from the

PNLSS model identification procedure is increased (additional

nonlinear terms are kept in the function PzðxÞ of Eq. 3) that

the resulting model would more accurately represent the actual

process dynamics over a larger region and thus allow a greater

profit for the process, closer to that which could be achieved

with the LEMPC using the actual first-principles process

model of Eq. 10. This motivated the identification of an empir-

ical model using higher-order terms for use in LEMPC, which

will be described in this section.
To determine the effect of using an empirical model using

higher-order nonlinear terms on the performance and compu-

tation time of an LEMPC, the PNLSS model identification

procedure of Eq. 26 was used to find empirical process models

with both a third-order polynomial and a fourth-order polyno-

mial for PzðxÞ that satisfy the numerical stability constraints.

Extensive simulations were used to validate the third and

fourth-order models obtained. Because all coefficients of the

fourth-order terms from the verified fourth-order model were

very small (on the order of 10213), the third-order model was

considered to be sufficient to demonstrate the impact of the

higher-order terms on the LEMPC output, so that was the only

model for which closed-loop LEMPC simulations were con-

ducted. The validated third-order model is

dx1

dt
¼ 234x120:495x2148x2

111:95x1x2

1 18x2
2 292x3

12 0:000707x2
1x2

(89a)

20:000016x1x2
220:0005x3

224:6u120:000008u2

Figure 11. Trajectory of the feed concentration input to
the CSTR over 10 h for the CSTR model of
Eq. 10 under the second-order empirical
LEMPC.

Figure 12. Trajectory of the heat input to the CSTR
over 10 h for the CSTR model of Eq. 10
under the second-order empirical LEMPC.
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dx2

dt
¼ 1436x1118x221475x2

1251x1x2

20:00509x2
220:0005x3

120:0233x2
1x2

(89b)

20:000526x1x2
220:000024x3

2211u110:00567u2

To use this third-order model in the LEMPC of Eq. 47, it is
necessary to first specify the stability region for the Lyapunov-
based constraints of Eqs. 47e–47f. The Lyapunov function for
this third-order process model, in closed-loop with a
Lyapunov-based controller h(x) designed similarly to that used
for the second-order empirical LEMPC (hðxÞ ¼ ½0 h2ðxÞ�T
where h2ðxÞ is designed using Eq. 86 with the third-order

model), was again taken to have the form V̂ðxÞ ¼ xTPx, but

with P as

P ¼
1170 24

24 0:56

" #
(90)

After extensive closed-loop simulations, the stability region
for LEMPC including the third-order empirical model was

taken to be Xq̂ with q̂ ¼ 485 and Xq̂e
with q̂e ¼ 285.

As was done for the second-order empirical LEMPC, two
different LEMPCs will now be compared. Each has the gen-

eral form of Eq. 47 and is formulated for use in closed-loop
with the process of Eq. 10; however, the first LEMPC (which

will be referred to as the third-order empirical LEMPC) uses

the third-order PNLSS model of Eq. 89 while the second
LEMPC (which will be referred to as the first-principles

LEMPC) uses the dynamic model of Eq. 10. Both LEMPCs
define the stability region using q̂e ¼ 285; the first-principles

LEMPC does not require mode 2 operation, though the third-
order empirical LEMPC requires both mode 1 and mode 2

operation. As in the example presented above, these

LEMPCs use the cost function of Eq. 83, the input con-
straints of Eq. 14 and Eq. 84, an Explicit Euler integration

step size of hc ¼ 1024 h; D ¼ 0:01 h; tp ¼ 1 h, and N 5 10,
and also terminate the optimization problem after 0.01 h has

elapsed. The closed-loop state and input trajectories for one
hour of operation for these two LEMPCs are presented in

Figure 13, with the state-space representation of these trajec-

tories in Figure 14.

Figure 13. Trajectories of the states and inputs for the Eq. 10 CSTR model throughout one operating period tp ¼ 1 h
when controlled by the first-principles LEMPC (black trajectories) and the third-order empirical LEMPC
(gray trajectories) starting from CAs;Ts.

Figure 14. State-space representation of closed-loop
state trajectories for one operating period
tp ¼ 1 h for the Eq. 10 CSTR model under
the first-principles LEMPC (solid trajectory)
and the third-order empirical LEMPC
(dashed-dotted trajectory) starting from
CAs;Ts.

Figure 15. Trajectory of the CSTR concentration over
10 h for the CSTR model of Eq. 10 under
the third-order empirical LEMPC.
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The trajectories in Figure 13 show similar behavior to those

in Figure 6, with a notable difference being that the tempera-

ture is able to reach a higher value during the period of time

from approximately t 5 0.1 to 0.8 h in the third-order case of

Figure 13 due to the different stability region calculated for

the more accurate third-order model. In addition, the stability

region difference contributes to the fact that both the third-

order empirical and first-principles LEMPCs produce a drop in

reactor temperature at the end of the hour simulation where

the material constraints come in to play, whereas the tempera-

tures increase at the end of this period for the second-order

case.
A ten-hour simulation was also conducted for the third-

order empirical LEMPC, and the resulting state and input tra-

jectories are shown in Figures 15–18. The average value of the

economic cost index in one operating period throughout this

ten-hour simulation was 16.26, which is 17% greater than

steady-state operation (for which the average economic cost

index for one operating period is 13.88). This is a greater per-

formance enhancement over steady-state operation than was

attained with the second-order empirical LEMPC of the previ-

ous section.
To facilitate a comparison between the third-order empirical

and first-principles LEMPCs from this section with the

second-order empirical and first-principles LEMPCs from the

previous section, we will identify the first-principles LEMPC

from the previous section as the First-Principles 1 LEMPC

and the first-principles LEMPC from this section as the First-

Principles 2 LEMPC. The average economic cost index of Eq.

88 over one hour of operation and the total computation time

for one hour of operation are shown in Table 2 for the empiri-

cal and first-principles models of this section and of the previ-

ous section. It is notable that the average economic cost index

for the third-order empirical LEMPC and the First-Principles

2 LEMPC are higher than for the two LEMPCs of the previous

section due to the different stability region chosen for the

more accurate third-order empirical model. It is also notable

that the performance gap between the third-order empirical

LEMPC and the First-Principles 2 LEMPC is less than that

between the second-order empirical LEMPC and the First-

Principles 1 LEMPC since the third-order empirical model

more accurately captures the dynamics of the first-principles

model (the performance of the First-Principles 2 LEMPC is

only 0.09% higher than that of the third-order empirical

LEMPC, while the performance of the First-Principles 1

LEMPC was about 0.3% higher than that of the second-order

empirical LEMPC). It would be expected, however, that the

computation time would increase as the polynomial approxi-

mation of the process dynamics contains more terms to evalu-

ate; Table 2 shows that the total computation time for the

third-order empirical LEMPC for one operating period is

116% greater than that of the second-order empirical LEMPC.

Conclusions

In this work, a nonlinear system identification technique

was developed for general nonlinear systems with affine inputs

using a PNLSS model with additional constraints on the

numerical stability of the identified model so that the identifi-

cation process produces empirical models that can be numeri-

cally integrated with explicit methods without using a very

small integration step size. The motivation for this is that such

models have an advantage in MPC applications, in contrast to

the models identified with standard techniques that may

require a step size too small for real-time use. This work dem-

onstrates the benefits of the proposed system identification

method in MPC by developing the formulation of an LEMPC

scheme that uses an empirical model derived from the PNLSS

method accounting for model well-conditioning to predict the

process dynamics. A stability analysis of the closed-loop sys-

tem under this controller showed that it can stabilize the

closed-loop process dynamics by confining the states to a com-

pact region of state-space when certain conditions are met. A

chemical process example demonstrated that incorporating the

well-conditioned empirical model in place of a first-principles

model in LEMPC has significant computational advantages

Figure 16. Trajectory of the CSTR temperature over
10 h for the CSTR model of Eq. 10 under
the third-order empirical LEMPC.

Figure 17. Trajectory of the feed concentration input to
the CSTR over 10 h for the CSTR model of
Eq. 10 under the third-order empirical
LEMPC.

Figure 18. Trajectory of the heat input to the CSTR
over 10 h for the CSTR model of Eq. 10
under the third-order empirical LEMPC.

Table 2. Comparison of Average Economic Cost (Je) and

Total Computation Time for One Operating Period (1 h)

Using Various LEMPCs

Model Je Computation Time (s)

Second-order empirical 16.1227 30.108
Third-order empirical 16.7569 65.156
First-Principles 1 16.1626 206.317
First-Principles 2 16.7712 201.428
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such that the LEMPC with the empirical model can be used

for real-time control, with minimal reduction in profit com-

pared with using the first-principles model.
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