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In industry, it may be difficult in many applications to obtain a first-principles model of the process, in which case a linear
empirical model constructed using process data may be used in the design of a feedback controller. However, linear empiri-
cal models may not capture the nonlinear dynamics over a wide region of state-space and may also perform poorly when sig-
nificant plant variations and disturbances occur. In the present work, an error-triggered on-line model identification
approach is introduced for closed-loop systems under model-based feedback control strategies. The linear models are re-
identified on-line when significant prediction errors occur. A moving horizon error detector is used to quantify the model
accuracy and to trigger the model re-identification on-line when necessary. The proposed approach is demonstrated through
two chemical process examples using a model-based feedback control strategy termed Lyapunov-based economic model pre-
dictive control (LEMPC). The chemical process examples illustrate that the proposed error-triggered on-line model identifica-
tion strategy can be used to obtain more accurate state predictions to improve process economics while maintaining closed-
loop stability of the process under LEMPC. VC 2016 American Institute of Chemical Engineers AIChE J, 63: 949–966, 2017
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Introduction

The operational excellence and energy management of

chemical and petrochemical processes rely on finding industri-

al solutions for the global energy demand, which led engineers

to develop technologies that promote optimal process opera-

tion. To achieve improvements in process control, model-

based control strategies, such as Lyapunov-based control and

model predictive control (MPC), have been introduced. These

types of controllers can improve process operation and thus

may increase profit. A fairly recent model-based control strate-

gy termed economic model predictive control (EMPC), for

example, performs dynamic economic optimization incorpo-

rating predictions of future process states and state or output

feedback to establish optimal time-varying operation under

constraints.1–4 The potential of model-based control strategies

to improve process efficiency and to obtain desired closed-

loop response characteristics makes these strategies desirable

for use in industry.
A dynamic process model is required for any process for

which model-based control is proposed and such models can

be established through first-principles or empirical modeling.5

First-principles models mathematically describe observed

phenomena; the development of such models is difficult for pro-

cesses that are complex and/or poorly understood. Numerous

research efforts have been dedicated to the development of

highly reliable model identification methods that require only

input and output data to develop linear and nonlinear empirical

models that can be used when first-principles models are undevel-

oped or impractical for on-line process control computations.5–7

A well-known class of empirical models are those designed

using subspace model identification (SMI) methods, which are

state-space model identification techniques for multiple-input

multiple-output (MIMO) systems.7–11 SMI methods are non-

iterative robust methods that take into account multivariable

interactions and result in highly reliable models.7,12 Linear

subspace identification algorithms include the Canonical Vari-

ate Algorithm (CVA),13 the multivariable output error state-

space (MOESP) algorithm,10,11 and numerical algorithms for

subspace state-space system identification (N4SID).12 These

methods have been successful in industrial applications and

they result in numerically stable models.6,8,10,14 SMI methods

have also been considered for use in model predictive control

(MPC) and EMPC.9,15 Recursive subspace identification, in

which the identified model is updated in order to correct for

disturbances and nonlinearities, has also been an active area of

research.16 Most of this research has focused on the mathemat-

ical analysis of the methods used to update the identified mod-

els, including recursive least-squares, least mean squares, and

recursively updating the singular value decomposition.16–18
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However, such methods have not focused on determining an
approach for triggering the re-identification of a model when
necessary.

In this work, an error-triggered on-line model identification

approach is introduced for model-based control strategies. The

re-identification of the model is conducted on-line to reduce

plant-model mismatch that occurs very often in the chemical

industry due to various reasons such as significant disturban-

ces, catalyst deactivation in reactors, and upsets in feed

streams, to name a few. Also, the on-line model identification

method can be used to update an empirical model when signif-

icant plant-model mismatch is detected because the region of

operation shifts and the current model no longer captures the

nonlinear dynamics. A moving horizon error detector monitors

the prediction error between the states predicted by the empiri-

cal model and the measured states of the process. When the

error exceeds a pre-specified threshold, the detector triggers an

on-line model re-identification which is performed using the

most recently generated input/output data. The approach is

applied in the context of Lyapunov-based economic model

predictive control (LEMPC) for nonlinear process systems

through two chemical process examples. The first example

demonstrates the ability of the proposed approach to improve

the accuracy of the predicted states when significant plant-

model mismatch occurs due to variations in the plant (catalyst

deactivation). In the second example, the operating region is

expanded gradually to allow the process to operate in a larger

region for improved profit, and the proposed approach

improves the accuracy of states predicted by the LEMPC over

a larger region of state-space.

Preliminaries

Notation

The symbol xT is used to denote the transpose of the

vector x. The operator j � j designates the 2-norm of a vector.

A continuous function a : ½0; aÞ ! ½0;1Þ is said to belong to

class K if it is strictly increasing and equal to zero only when

evaluated at zero. The symbol Xq is used to denote a level set

of a sufficiently smooth scalar function V(x) (Xq : 5fx 2 Rn :
VðxÞ � qg). A square diagonal matrix is designated as diag(v)

where the diagonal elements equal the components of the vec-

tor v. The symbol D > 0 denotes the sampling period. The

notation SðDÞ signifies the set of piecewise-constant vector

functions with period D.

Class of systems

The class of nonlinear systems considered in this work is of

the following form

dxðtÞ
dt

5f ðxðtÞ; uðtÞ;wðtÞÞ (1)

where x 2 Rn; u 2 Rm, and w 2 Rl are the system state vector,

the manipulated input vector, and the disturbance vector

respectively. Physical limitations on the available control

energy set by actuator constraints are considered by restricting

the control actions to the convex set U : 5fu 2 Rm : umin
i �

ui � umax
i ; i51; . . . ;mg. We consider a bounded disturbance

vector in this work (i.e., w 2 W : 5fw : jwðtÞj � h 8 tg).
Measurements of the entire state vector xðtkÞ are assumed to

be available at each sampling time tk5kD; k50; 1; . . ..
We restrict our discussion to the class of stabilizable nonlin-

ear systems for which there exists a controller hðxÞ 2 U that

can render the origin of the nominal (wðtÞ � 0) closed-loop

system of Eq. 1 asymptotically stable in the sense that there

exists a sufficiently smooth Lyapunov function V : Rn ! R1

that satisfies the following inequalities19,20

a1ðjxjÞ � VðxÞ � a2ðjxjÞ (2a)

@VðxÞ
@x

f ðx; hðxÞ; 0Þ � 2a3ðjxjÞ (2b)���� @VðxÞ
@x

���� � a4ðjxjÞ (2c)

for all x in an open neighborhood D � Rn that includes the ori-

gin and ajð�Þ; j51; 2; 3; 4, are class K functions. Various

stabilizing controllers that take into account input constraints

have been developed for several classes of nonlinear sys-

tems.21–23 The stability region of the closed-loop system is

taken to be a level set Xq � D where the time derivative of the

Lyapunov function is strictly negative (ðdV=dtÞ < 0). In addi-

tion, the origin of the system of Eq. 1 is rendered practically

stable24 when the controller h(x) is applied in a sample-and-

hold fashion for a sufficiently small sampling period. The

function f is assumed to be locally Lipschitz on Xq3U3W
and the origin is taken to be an equilibrium of the unforced

system of Eq. 1 (i.e., f ð0; 0; 0Þ5 0).
The proposed on-line model identification approach devel-

ops linear empirical models to predict the evolution of the

state of the system of Eq. 1. Although the method discussed in

this work extends to a wide range of linear empirical models

such as input/output models, we will demonstrate the scheme

where the empirical models obtained on-line are state-space

linear time-invariant (LTI) models of the form

dxðtÞ
dt

5AixðtÞ1BiuðtÞ (3)

where Ai and Bi are constant matrices of appropriate dimen-

sions corresponding to the i – th model identification per-

formed (i51; . . . ; ~M).
We assume that a set of stabilizing controllers hL1ðxÞ; hL2ðxÞ;

. . . ; hL ~M ðxÞ designed based on the empirical models exists

such that each controller renders the origin of the closed-loop

system of Eq. 1 asymptotically stable and yields a sufficiently

smooth Lyapunov function V̂ : Rn ! R1 with the following

properties19

â1ðjxjÞ � V̂ðxÞ � â2ðjxjÞ (4a)

@V̂ðxÞ
@x

f ðx; hLiðxÞ; 0Þ � 2â3i
ðjxjÞ; i51; . . . ; ~M (4b)���� @V̂ðxÞ

@x

���� � â4ðjxjÞ (4c)

for all x 2 DLi � Rn where DLi is an open neighborhood that

includes the origin and the functions âjð�Þ; j51; 2; 4, and

â3i
; i51; . . . ; ~M, are class K functions. The system of Eq. 1

under the controller hLiðxÞ has the stability region Xq̂ i
� DLi;

i51; . . . ; ~M.

Lyapunov-based economic model predictive control

The model-based controller that will be used in the chemi-

cal process examples presented in this work is Lyapunov-

based economic model predictive control (LEMPC).3 LEMPC

uses a receding horizon control strategy that minimizes a cost

function while incorporating stability constraints based on the
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explicit stabilizing controller h(x) in its design. The formula-

tion of LEMPC is

min
u2SðDÞ

ðtk1N

tk

Leð~xðsÞ; uðsÞÞ ds (5a)

s:t: _~xðtÞ5f ð~xðtÞ; uðtÞ; 0Þ (5b)

~xðtkÞ5xðtkÞ (5c)

uðtÞ 2 U; 8 t 2 ½tk; tk1NÞ (5d)

Vð~xðtÞÞ � qe; 8 t 2 ½tk; tk1NÞ

if xðtkÞ 2 Xqe

(5e)

@VðxðtkÞÞ
@x

f ðxðtkÞ; uðtkÞ; 0Þ

� @VðxðtkÞÞ
@x

f ðxðtkÞ; hðxðtkÞÞ; 0Þ

if xðtkÞ 62 Xqe

(5f)

where the optimization variable is the control input trajectory

over the prediction horizon ND. LEMPC uses the process

dynamic model (Eq. 5b) to predict the state trajectory ~xðtÞ
over time starting from the initial condition in Eq. 5c which is

obtained from the state measurement at time tk. The LEMPC

design takes into account constraints on the manipulated

inputs in Eq. 5d. The stage cost Le (Eq. 5a) is formulated to

represent the process economics.
Based on the state measurement of Eq. 5c, either the Mode

1 (Eq. 5e) or the Mode 2 (Eq. 5f) stability constraint is active.

In Mode 1, time-varying operation is promoted to maximize

profit while maintaining the state in a region Xqe
� Xq chosen

to make Xq invariant in the presence of disturbances. If the

measured process state is outside of Xqe
, Mode 2 is activated

to compute control actions that decrease the Lyapunov func-

tion value and force the state back into Xqe
. The solution of

the LEMPC optimization problem is denoted as u�ðtjtkÞ;
t 2 ½tk; tk1NÞ, but only u�ðtkjtkÞ is implemented at each sam-

pling time.

Lyapunov-based economic model predictive

control with empirical models

The plant model of Eq. 5b may be unavailable, in which

case it can be replaced by an empirical model. In this work,

we will replace the nonlinear plant model of Eq. 5b with the

i – th linear empirical model, i51; . . . ; ~M (which is the mod-

el last identified by the error-triggered on-line model identifi-

cation procedure prior to the sampling time tk). The empirical

model is also used to design hLiðxÞ and V̂ðxÞ for the

Lyapunov-based constraints in Eq. 5. The level set Xq̂ei
� Xq̂ i

that prompts the switch between Mode 1 and Mode 2 is chosen

such that the controller maintains operation of the process of

Eq. 1 within Xq̂ i
in the presence of bounded disturbances. The

formulation of LEMPC using the i – th linear empirical model

is15

min
u2SðDÞ

ðtk1N

tk

Leðx̂ðsÞ; uðsÞÞ ds (6a)

s:t: _̂xðtÞ5Aix̂ðtÞ1BiuðtÞ (6b)

x̂ðtkÞ5xðtkÞ (6c)

uðtÞ 2 U; 8 t 2 ½tk; tk1NÞ (6d)

V̂ðx̂ðtÞÞ � q̂ei; 8 t 2 ½tk; tk1NÞ

if xðtkÞ 2 Xq̂ei
;

(6e)

@V̂ðxðtkÞÞ
@x

AixðtkÞ1BiuðtkÞð Þ

� @V̂ðxðtkÞÞ
@x

AixðtkÞ1BihLiðxðtkÞÞð Þ

if xðtkÞ 62 Xq̂ei

(6f)

where the notation follows that in Eq. 5 except that x̂ðtÞ is the
predicted state of the system using the linear empirical model
(Eq. 6b), starting from a measurement of the actual process
state (Eq. 6c) to predict the evolution of the system of Eq. 1.

Remark 1. In the formulation of Eq. 6, V̂ is not updated
when the model of Eq. 6b is updated. Although it may be
replaced with V̂ i, this is not required if the stability region
of an updated model can be found to be a level set of the
same Lyapunov function as was used for the prior model.

Remark 2. A key feature of the LEMPCs in Eqs. 5 and 6
is that they may not drive the process to a steady-state, but
rather operate it in a time-varying fashion within a stability
region, when the cost function does not have its minimum at
a steady-state. When such dynamic operation is achieved,
the time-varying nature of the input trajectories generated
using LEMPC can result in persistent excitation of the pro-
cess states, which makes the inputs ideal for on-line model
identification. The chemical process examples in this work
demonstrate the time-varying nature of inputs that may be
calculated by an LEMPC.

Error-Triggered On-Line Model Identification

This section discusses the proposed error-triggered on-line
model identification method.

Error-triggering mechanism for on-line model
identification

In this section, we describe an error-triggering mechanism
that can trigger on-line updates of the model utilized in the
design and implementation of a model-based controller. A
major advantage of this mechanism is that it can prevent con-
stant updating of the process model, which may be computa-
tionally expensive and result in frequent changes to the control
law that are undesirable. It also prevents the use of an inaccu-
rate model when there is significant plant-model mismatch.

In the proposed method, a moving horizon error detector
quantifies the accuracy of an empirical model by calculating
the following moving horizon error metric ed at times tk

edðtkÞ5
XM

r50

Xn

j51

jxp;jðtk2rÞ2xjðtk2rÞj
jxjðtk2rÞj

(7)

where M is the number of sampling periods before tk that con-
tribute to the quantification of the prediction error,
xjðtk2rÞ; r50; . . . ; M, are the past measurements of the pro-
cess states at sampling periods between tk2M and tk, and
xp;jðtk2rÞ; r50; . . . ; M, are the predictions of the past states
of the system from a linear empirical model. A threshold value
ed;T is set for the error metric, and when the moving horizon
error detector determines that this threshold has been
exceeded, it triggers model re-identification. There are several
parameters that need to be defined to carry out this error-
triggered approach: the number of input and output data points
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Nd that must be kept for model identification when it is trig-
gered, the length M of the moving horizon used in the calcula-

tion of ed, and the threshold ed;T of the error above which
model re-identification is triggered. To determine these param-
eters initially, the following strategy is proposed:

Step 1. When no initial linear model is available (e.g.,

through the linearization of a first-principles model), the pro-
cess is initially excited off-line in open-loop using long
sequences of standard input types (e.g., impulse or step

inputs) to excite the important dynamics. The corresponding
output data is collected. System identification is carried out
on the (open-loop) input/output data using standard techni-

ques (e.g., determination of a large order model followed by
model order reduction7) to determine an i 5 1 empirical
model that captures the dominant process dynamics. The

number of input/output data points Nd that need to be stored
for a possible future system identification can be set to the

number of input/output data points required to identify the
i 5 1 empirical model.7,12

Step 2. The value of M to be used in the calculation of ed

must be long enough such that disturbances common during

normal operation do not significantly affect ed (which could
lead to unnecessary error-triggering) but are smoothed out.
However, M also should not be longer than necessary

because this would require unnecessary data storage and
processing. One method for determining M is by calculating
the value of edðtkÞ, tk> tM, at every sampling period for a

set of input/output data collected during normal process
operation (in closed-loop under the model-based controller)
in the region of operation for which the i 5 1 empirical mod-

el was developed and validated. This calculation is then
repeated for various values of M. The minimum and maxi-

mum values of ed for a given value of M may be significant-
ly different if M is small, since then any disturbance or
measurement noise within the moving horizon contributes

significantly to the value of ed. As M is increased, however,
the effect of disturbances and measurement noise will
become less significant. At some point, it would be expected

that the minimum and maximum values of ed will not
change much when M is further increased; in this case, the
smallest value of M for which the minimum and maximum

values of ed seem to have reached their approximate final
value could be chosen to be used in Eq. 7. From this, it is
seen that the statistical properties of w(t) will affect the val-

ue of M for a given process.
Step 3. The value of ed;T is determined off-line, based on

the chosen value of M, such that measurement noise, small

constant disturbances, and time-varying disturbances that
cause reasonably accurate predictions with the current model
do not trigger model re-identification. One method for

achieving this is by analyzing the statistical properties of ed

for a set of closed-loop input/output data corresponding to
normal process operation in the region within which the line-

ar empirical model was developed and validated. For exam-
ple, the maximum value of ed for such data could be
determined with the selected value of M, and then the

threshold could be chosen to be a reasonable percentage
greater than the maximum value of ed observed for this nor-
mal operating data (which should include the disturbances

and measurement noise that regularly affect the system).
Other statistical measures (e.g., choosing the value of ed;T to
be several standard deviations above its mean value from the

normal operating data) could also be used, and the

appropriate measure to use will depend on the system ana-
lyzed. It is noted that even if there were no disturbances or

measurement noise, ed would be expected to have a value
because the linear empirical model identified is unlikely to

fully capture the nonlinear dynamics of a given process.
The lack of a formula for obtaining Nd, M, and ed;T does not

pose practical limitations because, as will be discussed further
in later sections, the on-line, data-based methodology

employed allows for constant monitoring of the process per-
formance under a controller based on the current linear empiri-

cal model such that “poor” choices of the parameters can be
detected and the parameters adjusted.

Remark 3. For consistency with Step 1 as presented

above, in the remainder of the manuscript we will assume
that no first-principles process model is available and we

will call the linear models developed before the initiation of
error-triggered on-line model identification the initial linear
empirical models. However, it is not required that these

models be empirical. The initial linear model obtained in
Step 1 of the above procedure may be obtained using a line-

arization of a nonlinear first-principles model if such a mod-
el is available. In this case, the utility of on-line updating of

the linear model using the error-triggered model identifica-
tion method is that it prevents the need for using a nonlinear
model and may aid in capturing the process dynamics better

than a first-principles model as the process dynamics change
in time.

Remark 4. The value of xp;jðtk2rÞ may be calculated in

multiple ways. For example, one method is to calculate each
value of xp;jðtk2rÞ by numerically integrating the linear

empirical model of Eq. 3, starting from the measured state
xðtk2r21Þ at the previous sampling time, and using the input

applied for t 2 ½tk2r21; tk2rÞ in the integration. Another
method is to determine the value of each xp;jðtk2rÞ by inte-
grating the linear model, starting from the measurement of

the state xðtk2M21Þ and applying the sequence of control
actions implemented on the process throughout time. If

more than one model has been used between tk2M21 and tk,
the applicable model should be used for the integration cor-

responding to its period of use.
Remark 5. Practically, when the model-based controller is

updated due to the identification of a new model, it may be
necessary to include additional precautions in the control

system design. For example, a constraint or saturation could
be imposed when the controller is initially updated that pre-

vents the inputs calculated from the new controller from dif-
fering more than a certain amount from the control actions

calculated most recently by the prior controller. If this is
used, the closed-loop stability properties of the resulting con-

troller should be considered.
Remark 6. In model-based controllers such as standard

tracking model predictive control (MPC), the replacement of
a prior linear empirical model in the MPC with a newer

model obtained from the error-triggered on-line model iden-
tification strategy may be sufficient for keeping the control

law up-to-date. Some model-based control laws may require
further computation to determine the new control law after

an updated linear empirical model is developed (e.g., Son-
tag’s control law will need to be re-calculated based on the
new model23) Other control laws may have additional

aspects that require them to be further adjusted as the linear
empirical models are updated. For example, LEMPC may

require that the process model be updated and also that other
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components of the control law in Eq. 6 be updated

(e.g., hLi).

Implementation strategy for error-triggered on-line
model identification

Once the values of Nd, M and ed;T are set according to the

methodology of the prior section, the proposed error-triggered

on-line model identification strategy can be executed with the

following implementation strategy:
Step 1. An initial linear empirical model of the plant

(A1 and B1) is developed (this becomes the “current model”

for the process). This model is used to design the model-

based controller.
Step 2. The process is operated under the model-based

controller designed based on the current linear empirical

model, and input/output data (up to Nd values of each) are

collected and stored for possible future model identification.

The moving horizon error detector is initiated at tM to calcu-

late edðtkÞ.
Step 3. As the current linear model begins to fail to describe

the process dynamics (due to, e.g., variations in the plant or

changes in the region of operation), edðtkÞ will increase and

when edðtkÞ exceeds ed;T , the most recent set of Nd values of

input and output data (collected up to time tk) are used to

identify a new model on-line to become the current model for

use in updating the model-based controller formulation.
Step 4. Steps 2–3 are repeated as process operation

continues.

Applications of Error-Triggered On-Line Model
Identification

In this section, we present two applications of the error-

triggered on-line model identification methodology (Steps 1–4

of the prior section) to demonstrate the flexibility of the

approach and its utility in a variety of circumstances.

Application of error-triggered on-line model
identification to plant variations

The first application to be discussed is that in which the

plant model changes in time. This may occur, for example,

due to catalyst deactivation that affects the reaction rates in

the process, due to heat exchanger fouling that affects the rate

of heat transfer, or due to changes in the valve dynamics with

time as dynamic valve nonlinearities such as stiction worsen

in time due to valve degradation. For this application, it is pos-

sible that as the plant model changes in time, the values of Nd,

M, and ed;T originally determined may no longer be the appro-

priate values. For example, Nd may need to be increased to

obtain a more accurate model, and the combination of M and

ed;T may cause the linear empirical model to be updated more

or less frequently than necessary. This can be handled on-line

by varying the parameters in small increments until better per-

formance is obtained. For example, Nd may be lengthened

until the linear empirical models are shown to better capture

the nonlinear dynamics in the current region of state-space.

M and ed;T may be increased if the on-line model updates are

triggered too frequently even when the linear empirical mod-

els being identified do not result in poor closed-loop perfor-

mance, or they may be decreased if the model updates are not

triggered frequently enough and process and controller perfor-

mance degrades. Alternatively, experiments can be performed

to determine new values of these parameters.

Remark. If the values of Nd, M, and ed;T are picked appro-

priately such that the model-based controller used at any giv-

en time is based on a reasonably accurate empirical model,

this controller may often be stabilizing if the computation

time required by the moving horizon error detector and for

model updates is short compared to the process dynamics

(this prevents the process state from changing significantly

before errors are detected and the model is updated). To

develop a rigorous proof of closed-loop stability of a process

under the error-triggered on-line model identification proce-

dure as plant variations occur in time, however, a number of

mathematical assumptions would need to be made that are

specific to each model-based controller type. Proofs of closed-

loop stability of processes under various model-based control-

lers and feasibility of such controllers as applicable are

addressed in many works (e.g.,3,15,19,25,26 and the references

therein), and similar methods could be investigated for nonlin-

ear processes under model-based controllers designed based

on linear empirical models developed from the error-based

triggering approach. An example of an assumption that may

be considered in the proofs of feasibility and closed-loop sta-

bility of a process under the LEMPC of Eq. 6 is that the

closed-loop state is within both Xq̂ i21
and Xq̂ i

at the time that

the model used in the design of the LEMPC of Eq. 6 changes

from the ði21Þ2th to the i – th linear empirical model. The

primary purpose of the present paper is not for providing rig-

orous closed-loop stability proofs (although the more accurate

empirical models may aid closed-loop system stabilizability),

but is for providing more accurate models for model-based

control strategies so that more desirable control actions (e.g.,

more economically beneficial or more capable of meeting pro-

cess constraints) can be calculated.

Application of error-triggered on-line model

identification to plant variations: application

to a chemical process example

In this section, we demonstrate the proposed error-triggered

on-line model identification procedure for the control of a

benchmark chemical reactor for which plant model changes

occur, specifically catalyst deactivation. The catalytic oxida-

tion of ethylene (C2H4) in a non-isothermal continuous stirred

tank reactor (CSTR) is considered. The ethylene is oxidized

with air to produce the desired ethylene oxide (C2H4O) prod-

uct. Two combustion reactions that consume ethylene oxide

and ethylene occur concurrently in the reactor as presented in

the following chemical reactions

C2H41
1

2
O2�!R1

C2H4O (R1)

C2H413O2�!R2
2CO212H2O (R2)

C2H4O1
5

2
O2�!R3

2CO212H2O (R3)

The rates of the reactions R1, R2, and R3 are given by the fol-

lowing rate laws27

R15k1exp
2E1

RT

� �
P0:5

E (8a)

R25k2exp
2E2

RT

� �
P0:25

E (8b)
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R35k3 exp
2E3

RT

� �
P0:5

EO (8c)

where the pre-exponential factors are k1, k2, and k3 and the

activation energies are E1, E2, and E3. T is the temperature and

R is the gas constant. PE and PEO are the partial pressures of

ethylene (PE) and of ethylene oxide (PEO) and it is assumed

that the gas mixture in the reactor is an ideal gas, and thus, the

partial pressures can be written in terms of the molar concen-

trations. The dimensionless first-principles dynamic model

which is derived from mass and energy balances for this pro-

cess from28 is of the following form

dx1ðtÞ
dt

5u1ð12x1x4Þ (9a)

dx2ðtÞ
dt

5u1ðu22x2x4Þ2A1e
c1
x4ðx2x4Þ0:52A2e

c2
x4ðx2x4Þ0:25

(9b)

dx3ðtÞ
dt

52u1x3x41A1e
c1
x4ðx2x4Þ0:52A3e

c3
x4ðx3x4Þ0:5 (9c)

dx4ðtÞ
dt

5
u1

x1

ð12x4Þ1
B1

x1

e
c1
x4ðx2x4Þ0:51

B2

x1

e
c2
x4ðx2x4Þ0:25

1
B3

x1

e
c3
x4ðx3x4Þ0:52

B4

x1

ðx42u3Þ
(9d)

where the dimensionless variables x1, x2, x3, and x4 correspond

to the gas density in the reactor, ethylene concentration, ethyl-

ene oxide concentration, and reactor temperature, respectively.

The manipulated inputs u1, u2, and u3 are the dimensionless

feed volumetric flow rate, ethylene concentration of the reac-

tor feed, and coolant temperature, respectively. The manipu-

lated inputs are bounded by physical limitations on actuators

and hence, the inputs are constrained to belong to the following

convex sets: 0:0704 � u1 � 0:7042; 0:2465 � u2 � 2:4648;
0:6 � u3 � 1:1. The values of the parameters of this model are

presented in Table 1. The CSTR has an asymptotically stable

steady-state that occurs at xT
s 5½x1s x2s x3s x4s�5½0:998 0:424

0:032 1:002� when ½u1s u2s u3s�5½0:35 0:5 1:0�.
The CSTR is controlled by an LEMPC with the goal of

feeding the ethylene to the reactor in a manner that maximizes

the average yield of ethylene oxide. The average yield of eth-

ylene oxide, which quantifies the amount of ethylene oxide

produced compared to the amount of ethylene fed to the reac-

tor, over a time period from t0 to te, is given by

YðteÞ5

ðte

t0

u1ðsÞx3ðsÞx4ðsÞ dsðte

t0

u1ðsÞu2ðsÞ ds
(10)

where te is an integer multiple of the length tf of an operating

period. Because the amount of reactant material available is

fixed, the time-averaged molar flow rate of ethylene that can

be fed to the reactor in an operating period is limited by the

following constraint

1

tf

ðjtf

ðj21Þtf
u1ðsÞu2ðsÞ ds5u1su2s50:175 (11)

where j is the operating period number (j51; 2; . . .). This con-

straint ensures that in each operating period, the amount of

ethylene fed to the reactor is the same as that which would

have been fed under steady-state operation. Because the inte-

gral input constraint of Eq. 11 fixes the value of the

denominator in Eq. 10, the LEMPC seeks to maximize the fol-

lowing functionðte

t0

Leðx; uÞ5
ðte

t0

u1ðsÞx3ðsÞx4ðsÞds (12)

By maximizing this objective, the ethylene oxide yield is max-

imized subject to the integral material constraint that is

enforced due to restrictions on the available feedstock.
The first-principles nonlinear process model in Eq. 9 is

assumed to be unavailable from a controller design point of

view such that an empirical model must be obtained to formu-

late an LEMPC that meets the above objective and constraints.

To construct such an empirical model that captures the dynam-

ics within a region around the CSTR steady-state, a large num-

ber of input step changes of varying magnitudes were applied

to the CSTR from the steady-state and the corresponding out-

put data was collected. The ordinary multivariable output error

state-space (MOESP)10 algorithm was applied to this data to

obtain the initial (i 5 1) linear state-space empirical model for

the CSTR of Eq. 9. This model was validated using a wide

range of step, impulse, and sinusoidal input responses and is

expressed by the following matrices

A15

20:349 0:00051 0:00825 20:349

20:00488 20:374 0:0374 20:369

0:00109 0:0213 20:452 0:0653

20:0078 0:0259 0:0204 27:24

2
666666664

3
777777775

B15

20:00011 20:000149 20:0239

0:0757 0:349 20:0194

20:0315 0:000208 0:00426

20:0173 20:00264 6:529

2
666666664

3
777777775

(13)

Since it is assumed that the only model available for controller

design is the empirical model, the model of Eq. 13 is used to

design the Lyapunov-based controller used in LEMPC. The

controller can be represented as a vector with three compo-

nents: hT
L1ðxÞ5 hL1;1ðxÞ hL1;2ðxÞ hL1;3ðxÞ

� �
, where hL1ðxsÞ50.

The control laws hL1;1ðxÞ and hL1;2ðxÞ were set to the steady-

state values of u1 and u2 to meet the material constraint of Eq.

11. The control law hL1;3ðxÞ was designed using the standard

linear quadratic regulator (LQR) with a quadratic objective

defined using the A1 matrix and the third column of the B1

matrix (Eq. 13) and taking both the Q and R weighting matri-

ces to be the identity matrix. This results in the control law

u35hL1;3ðxÞ52Kðx2xsÞ1u3s, with K equal to [20.287

20.276 0.023 0.405]. A quadratic Lyapunov function of the

form V̂ðxÞ5ðx2xsÞTPðx2xsÞ was utilized to characterize

the stability region of the closed-loop system of Eq. 9 under

the stabilizing controller hL1 with the positive definite matrix

Table 1. Dimensionless Parameters of the Ethylene

Oxidation CSTR

A1592:8 B2510:39 c2527:12
A2512:66 B352170:57 c35211:07
A352412:71 B457:02
B157:32 c1528:13
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P defined as P 5 diag[20 30 40 10]. Extensive simulations of
the closed-loop system under the Lyapunov-based controller

hL1ðxÞ were conducted to define the level set Xq̂e1
with

q̂e1587:4. This is a region within which the nonlinear dynam-
ics of Eq. 9 are well-captured by the linear model of Eq. 13.

Although this chemical process example will be used to

illustrate the error-triggered on-line model identification pro-
cedure in the presence of plant variations, we will first demon-
strate that the initial linear empirical model performs well in

the time period before any catalyst deactivation (plant varia-
tion) occurs. To demonstrate this, two LEMPC schemes, one
of the form of Eq. 6 and the other of the form of Eq. 5, both

with the additional material constraint of Eq. 11, were
designed to compare closed-loop behavior. Both used the cost
function of Eq. 12, the upper and lower bounds on u1, u2, and

u3 described above, and the same Lyapunov-based controller
and stability region. The process model utilized in the first

LEMPC was the empirical model of Eq. 13, while the second
LEMPC utilized the first-principles model of Eq. 9. In all sim-
ulations for this example, the LEMPC designs had prediction

horizons of N 5 10, sampling periods of D50:1, and operating
periods of 100 sampling periods (tf 5 10). The interior-point
solver IPOPT29 was used to solve the LEMPC optimization

problems. The empirical LEMPC and the first-principles
LEMPC were both applied to the CSTR model of Eq. 9.
The reactor was initialized off steady-state at xT

I 5½x1I x2I x3I x4I�
5½0:997 1:264 0:209 1:004� and closed-loop simulations over
10 operating periods for each case were completed. The explicit
Euler numerical integration method was used in all simulations

for this example with an integration step size of h51024. The
closed-loop trajectories for the CSTR under both LEMPC
schemes are shown in Figures 1 and 2 which demonstrate very

similar behavior. The average yield of the first-principles
LEMPC over 10 operating periods was 8.98, compared to 8.93

for the empirical LEMPC. The agreement between the trajecto-
ries and yields of the process under the first-principles and
empirical LEMPCs demonstrates that the initial linear empirical

model is capable of adequately describing the process behavior
before plant variation occurs. It is noted that the periodic nature
of the trajectories is consistent with prior literature for this

example (e.g., Refs. 28 and 30) which demonstrated that time-
varying operation can be economically beneficial for the ethyl-
ene oxide production process, and also other literature on opti-

mal periodic operation (e.g., Refs. 31 and 32).
After the 10 operating periods, plant variations begin to occur

(a reduction in the reaction pre-exponential factor is assumed to
occur due to catalyst deactivation). Specifically, the pre-

exponential factor values for reactions R1, R2, and R3 are
decreased by 40% gradually throughout nine operating periods.

The pre-exponential factors are decreased by 10% of their origi-
nal values at the beginning of the eleventh and twelfth operating
periods, reaching the values 0:8k1; 0:8k2, and 0:8k3. The pre-

exponential factors then stay at those values for three operating
periods and are subsequently decreased by 5% of their original
values at the beginning of the fifteenth and sixteenth operating

periods to 0:7k1; 0:7k2, and 0:7k3. After that, the pre-
exponential factor values stay at 0:7k1; 0:7k2, and 0:7k3 for three
operating periods and then are decreased by 5% of their original

values at the beginning of the nineteenth and twentieth operating
periods, reaching the final values 0:6k1; 0:6k2, and 0:6k3.

To monitor the prediction error for the linear empirical
model when catalyst deactivation occurs, a moving horizon

error detector was initiated early in process operation (after M

prior input/output data points were available) to calculate the
value of ed at each sampling time to determine when it is nec-
essary to trigger re-identification of the empirical process
model. Simulations of the CSTR before catalyst deactivation
occurs suggest that significant plant-model mismatch under
the original linear empirical model is indicated when the value
of ed exceeds 2.5 (i.e., ed;T52:5) and thus, this value was cho-
sen as the threshold to trigger model re-identification. When
on-line model identification is triggered, input/output data
from the previous 200 sampling times (i.e., Nd 5 200) is used
to identify a new model. The moving horizon error detector
calculates the relative prediction error in the gas density in the
reactor, ethylene concentration, ethylene oxide concentration,
and the reactor temperature throughout the past 40 sampling
periods (i.e., M 5 40) and the current sampling time as follows

Figure 1. Input profiles of the closed-loop CSTR under the
LEMPC using the first-principles model (solid
black trajectories) and the LEMPC using the
empirical model in Eq. 13 (dotted gray trajecto-
ries) for 10 operating periods starting from
xT

I 5½x1I x2I x3I x4I�5½0:997 1:264 0:209 1:004�.

Figure 2. State profiles of the closed-loop CSTR under
the LEMPC using the first-principles model (sol-
id black trajectories) and the LEMPC using the
empirical model in Eq. 13 (dotted gray trajecto-
ries) for 10 operating periods starting from
xT

I 5½x1I x2I x3I x4I�5½0:997 1:264 0:209 1:004�.
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edðtkÞ5
X40

r50

jxp;1ðtk2rÞ2x1ðtk2rÞj
jx1ðtk2rÞj

1

jxp;2ðtk2rÞ2x2ðtk2rÞj
jx2ðtk2rÞj

1
jxp;3ðtk2rÞ2x3ðtk2rÞj

jx3ðtk2rÞj

1
jxp;4ðtk2rÞ2x4ðtk2rÞj

jx4ðtk2rÞj

(14)

The first approach from Remark 4 was used to calculate each
xp;i; i51; 2; 3; 4, in Eq. 14 above.

Model re-identification was triggered four times by the mov-
ing horizon error detector throughout the gradual decrease in
the pre-exponential factors from k1; k2; k3 to 0:6k1; 0:6k2; 0:6k3,
resulting in the identification of four models as follows

A25

20:341 20:00281 0:00482 20:347

20:00481 20:403 20:223 20:235

20:00431 0:0265 20:314 0:0220

0:111 20:0137 0:424 27:31

2
666666664

3
777777775

B25

20:00073 20:000851 20:0243

0:0891 0:381 20:0426

20:0358 0:00983 0:0131

20:00043 20:00758 6:56

2
666666664

3
777777775

(15)

A35

20:369 0:00284 0:0665 20:350

20:174 20:367 0:590 20:383

20:125 0:0212 20:888 0:0774

20:443 0:0613 21:614 27:27

2
666666664

3
777777775

B35

20:00166 20:000408 20:0240

0:0378 0:318 20:00252

20:0205 0:00908 20:00474

20:0172 0:0126 6:517

2
666666664

3
777777775

(16)

A45

20:354 0:00238 0:00646 20:346

20:191 20:263 20:812 20:226

0:0737 0:0223 20:0639 0:0202

20:0539 20:0172 0:616 27:25

2
666666664

3
777777775

B45

20:00762 20:00367 20:0272

20:203 0:238 20:118

0:0599 0:00373 0:00372

20:00439 0:00381 6:516

2
666666664

3
777777775

(17)

A55

20:345 0:0045 0:0147 20:343

0:0416 20:271 20:830 20:0905

20:00380 20:0106 20:0335 20:0239

0:0515 0:00891 0:683 27:34

2
666666664

3
777777775

B55

0:00172 0:00154 20:0333

0:1025 0:388 20:377

20:0346 20:0194 0:124

20:00951 20:00052 6:548

2
666666664

3
777777775

(18)

All linear empirical models used in this example had their ori-

gin at xs. As the models were updated, hLi;3; i52; 3; 4; 5, was

updated to be a new linear quadratic regulator, but V̂ was not

changed in the LEMPC because it was sufficient for identify-

ing the stability region of the nonlinear process under hLi. The

same stability region was used for the nonlinear process under

all hLi because for the simulations performed, these controllers

were stabilizing within this region.
Figure 3 presents the decrease of the pre-exponential factor

values with time and indicates the four times at which the

model re-identification was triggered (in all figures throughout

the rest of this example, the zero on the time axis corresponds

to the time at which the pre-exponential factor values first

began to decrease). After the pre-exponential factor values

reached their final values at the beginning of the twentieth

operating period, the process was simulated for three addition-

al operating periods, and no further model identification was

triggered after the model update at the end of the twentieth

operating period. This indicates that the proposed approach

was effective at updating the empirical model of the process to

account for variations in the plant, with each empirical model

giving low plant-model mismatch during the duration of its

use. The figure also shows that the error-triggering is success-

ful at deciding the necessity of model updates, because even

though the pre-exponential factors did decrease at the begin-

ning of the eleventh, fifteenth, and nineteenth operating peri-

ods, no re-identification was required since the error did not

exceed the pre-specified threshold. In addition, Figure 4

presents the values of ed with respect to time and shows the

rise of the ed values that triggered the model re-identification.

Figure 3. Plot presenting the decrease in the pre-
exponential factor values and the times at
which the model re-identification procedure
was conducted over 12 operating periods
(the zero on the time axis corresponds to
the time at which the pre-exponential factor
values first began to decrease).
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At each time that edðtkÞ exceeded the value of 2.5 and the mod-

el was re-identified using the most recent input/output data, the

value of edðtkÞ rapidly decreased. The input and state trajecto-

ries of the reactor process under the LEMPC of Eq. 6 with the

empirical models of Eq. 13 and Eqs. 15–18 throughout the 12

operating periods after the pre-exponential factor values first

began to decrease are presented in Figures 5 and 6.
The on-line model identification not only decreases the plant-

model mismatch, but also has a significant impact on the process

economic performance. This is shown in Table 2, which presents

the average yield and the maximum value of edðtkÞ for the two

operating periods after the first on-line model re-identification

(when the pre-exponential factors have the values 0:8k1; 0:8k2,

and 0:8k3) and also for the two operating periods after the final

model identification (when the pre-exponential factors have the

values 0:6k1; 0:6k2, and 0:6k3). The data is presented for three

approaches: the “1 Empirical model” approach, in which the

model is not re-identified and the initial empirical model

(A1 and B1) is used throughout the entirety of process operation,

the “On-line model ID” approach, in which the proposed on-line

model re-identification methodology is applied, and the

“Nonlinear model” approach, in which the nonlinear model of

Eq. 9 is used in the LEMPC including the changes in the pre-

exponential factor. This table shows that the use of on-line model

identification significantly improves the process yield compared

to using one empirical model throughout process operation, both

when the pre-exponential factor changes slightly and, even more,

when it changes significantly. In addition, it shows that though

no study was performed to determine whether Nd, M, or ed;T

should be updated as the process model changed in time due to

the catalyst deactivation, the use of the on-line model updates

still provided meaningful economic benefit.

Application of error-triggered on-line model

identification to operating region changes

A second application of the error-triggered on-line model

identification strategy is for shifts in the region of process

operation such that the initial linear model does not capture

the nonlinear process dynamics as well as desirable after the

shift. This may occur, for example, if the model identified

around a desired steady-state does not capture the nonlinear

dynamics in the entire region of state-space around this

steady-state that is accessed by the process states in the pres-

ence of disturbances. It may also occur if the initial linear

model is identified for a certain steady-state but it is desirable

to switch the steady-state of process operation at a time t0. In

addition, it may occur if a control strategy that promotes time-

varying operation within a region of state-space for economic

reasons, such as LEMPC, is used and it is desirable to expand,

shrink, or otherwise adjust the operating region in time for

economic or safety reasons. In each case, the steps of the

implementation strategy discussed in the section

Figure 5. Input profiles of the closed-loop CSTR under
the LEMPC using the error-triggered on-line
model identification scheme starting from the
final state reached in Figure 2 (the zero on
the time axis corresponds to the time at
which the pre-exponential factor values first
began to decrease).

Figure 6. State profiles of the closed-loop CSTR under
the LEMPC using the error-triggered on-line
model identification scheme starting from the
final state reached in Figure 2 (the zero on
the time axis corresponds to the time at
which the pre-exponential factor values first
began to decrease).

Table 2. Relative Prediction Error and Average Yield

for the CSTR under LEMPC

After 1st on-line
model ID At final conditions

Approach Y Max edðtkÞ Y Max edðtkÞ
1 Empirical model 8.46 3.41 6.89 9.75
On-line model ID 8.71 1.65 7.91 1.86
Nonlinear model 8.80 - 8.02 -

Figure 4. Value of error metric ed using the detector of
Eq. 14 and the integrated LEMPC design with
error-triggered on-line model identification at
each sampling time (the zero on the time axis
corresponds to the time at which the pre-
exponential factor values first began to
decrease).
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“Implementation strategy for error-triggered on-line model
identification” are followed, but the procedure may be re-

initialized at Step 1 at certain points during process operation
or the operating region may be adjusted independently of the
linear empirical model during Step 2 (which will be discussed

further below).
We will first address the case (Case 1) that the initial linear

empirical model does not capture the nonlinear process
dynamics in the full region of state-space that is accessed by

the process when disturbances occur, and it is desired to track
a given steady-state. Consider the case that the process is
originally operated in a region of state-space around the initial

steady-state, and the initial linear empirical model captures
the nonlinear process dynamics well in this region. Then, a
disturbance moves the process state away from the steady-

state to a new region where the initial linear empirical model
does not capture the nonlinear process dynamics well. If the

process is operated under the error-triggered on-line model
identification procedure, the increase in prediction error
would be expected to eventually trigger model re-

identification. However, it may take some time for the trigger-
ing to occur, or if it is triggered quickly, the model identified
may not capture the nonlinear dynamics as well as desirable

if there is not yet sufficient input/output data in the new
region of operation (particularly if the disturbance moves the
state away from its original operating region quickly). To

overcome such issues, multiple linear empirical models may
be identified at a number of locations throughout the region of
state-space which the process states are expected to access

before initiating the error-triggered on-line model identifica-
tion process. Then, when the error-triggered on-line model
identification process is initiated, the initial empirical model

used in Step 1 of the implementation strategy can be taken to
be that which was developed using process data from the

state-space region closest to the initial state-space point. This
may lead to an initial linear empirical model that better cap-
tures the nonlinear dynamics at the initial state-space location

and may lead to better model-based controller design. The
monitoring and control system could also re-initialize the
implementation strategy at Step 1 when the process state

moves away significantly from the region where Step 1 was
last implemented, with the initial linear empirical model used
in Step 1 as that developed from data in state-space closest to

the current state-space point. As the controller then drives the
process state toward the desired steady-state, the error-
triggering procedure would allow more accurate models to be

determined.
A second case (Case 2) in which error-triggered on-line

model identification may be applied to changes in the region

of process operation is the case that it is desired to change the
operating steady-state. In this case, before initializing the
error-triggered on-line model identification strategy, it may be

desirable to obtain initial linear empirical models with respect
to both steady-states. The error-triggered on-line model identi-
fication implementation strategy would be started from Step 1

at t 5 0 with the linear empirical model around the first
steady-state and would be re-started from Step 1 at t0 with the
linear empirical model around the second steady-state.

The final case (Case 3) mentioned above for the application

of error-triggered on-line model identification to changes in
the operating region is the case that the region of operation is
adjusted on-line for the process under LEMPC. As shown in

Eq. 6, LEMPC searches for economically optimal control

actions that maintain the predicted state within the level set
Xq̂ei

, subject to the other constraints. It may be desirable to
expand, shrink, or change the size or orientation of the level

set on-line for a variety of reasons. It may be desirable to
expand the level set because the expansion of the level sets
can allow the LEMPC to search for economically optimal con-

trol actions throughout a larger region of state-space, and thus
the controller may find a more profitable manner of operating
the process than if it could only search in a smaller region.

Alternatively, it may be desirable to shrink the level set to pre-
vent the process from operating in as large a region of state-
space for safety reasons. It may also be desirable to adjust the

size or orientation of the level set on-line if the state of the
closed-loop system under EMPC moves toward a boundary of
the initial level set to increase profit. Then, the adjustment of

the size or orientation of the level set may allow the state to
move into areas beyond this boundary in which the profit can
be further increased for the closed-loop system.

The aforementioned level set adjustments can be imple-

mented in Step 2 of the error-triggered on-line model identifi-
cation procedure by changing the level set of the linear
empirical model used in the LEMPC of Eq. 6 at a desired rate
while the process is operated under the LEMPC with an

empirical model. These level set changes (accompanied by
changes to the Lyapunov function and Lyapunov-based con-
troller when necessary, e.g., when the level set orientation is

adjusted) occur at the determined rate independently of model
re-identifications, which occur only when ed exceeds ed;T . The
rate at which the level sets are changed should allow for

the collection of a sufficient amount of input/output data in the
new state-space regions accessed during the level set adjust-
ment for the calculation of edðtkÞ and for future possible model

re-identification. This rate can be set before initiation of the
error-triggered on-line model identification procedure, or can
be deduced on-line by trying different rates and seeing wheth-

er the process state begins to traverse the new regions of state-
space too quickly for collection of sufficient input/output data,
or too slowly for the desired economic or safety consider-

ations. The level set changes continue until the final desired
level set is reached. The final desired level set should be one
in which process closed-loop stability can be maintained (e.g.,
for the case of expanding level sets, it cannot be larger than

the region within which closed-loop stability of the system
of Eq. 1 is maintained under the LEMPC with an empirical
model) and which is feasible (i.e., a solution exists in this

region in which all process constraints can be met), but it also
should be a level set that allows profit to be appropriately max-
imized (e.g., for the case of expanding level sets, it should be

as large as possible since restrictions to the region of operation
may reduce process profit compared to that which could be
obtained if there were less restrictions). Figure 7 illustrates the

concepts presented specifically for the expansion of level sets.
Because for this changing level set case, the level set in
Eqs. 6e–f can change even when the i – th model is retained,

the level set in these equations will be denoted by Xq̂e;q
in the

remainder of the discussion of LEMPC with changing level
sets.

It is notable that the use of the error-triggered on-line model

identification procedure for model-based control design with
operating region changes provides significant practical advan-
tages compared to using multiple linear models identified a
priori. The a priori models may indeed be used for low-

dimensional systems (i.e., processes whose state-space is of
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dimension two or three) for which assessing all areas through-

out the region of operation in which new linear empirical mod-

els should be identified a priori is computationally attractive

(e.g., multiple linear empirical models in the context of

LEMPC has been investigated in33) However, as the dimen-

sion of the system increases, it is very time-consuming compu-

tationally to search the region of operation to determine all

possible areas in which a new linear empirical model should

be identified a priori. A benefit of the proposed error-triggered

approach is that it identifies models only in the regions of

state-space that are accessed by the process and there is no

need to obtain large amounts of input-output data in regions

that the states do not actually access. This is a significant prac-

tical advantage of the proposed method, particularly since

many models used in the chemical industry have tens or hun-

dreds of states for which it would not be possible to a priori

investigate the entire state-space to develop multiple linear

models. In addition, the multiple linear empirical models

approach implicitly assumes that the plant dynamics do not

change in time so that any models identified a priori remain

valid throughout time. The error-triggered on-line model iden-

tification approach, however, can handle changes in the plant

dynamics in time (even concurrently with operating region

changes). However, part of the theoretical challenge of prov-

ing closed-loop stability of a nonlinear process under the

error-triggered on-line model identification method is that it is

not known a priori when the moving horizon error detector

will trigger an on-line model identification or what new model

will be obtained in this case, though all models are known a

priori in the multiple linear empirical models case.
Remark 8. In Case 1, multiple initial empirical models

were developed before initiating the on-line model identifica-

tion strategy, but all with their origin at the desired steady-

state. However, it is possible that if the state moves far from

the desired steady-state, it may be difficult to identify an

empirical model with the origin at the desired steady-state

that will be sufficiently accurate for use in model-based con-

trol design. Thus, an alternative to developing multiple ini-

tial empirical models with origins at the desired steady-state

before initiating the on-line model identification strategy is

to develop multiple initial linear empirical models with their

origins at state-space points that are not the desired steady-

state. Then, when the state is driven far from the operating

steady-state, a path can be designed to drive the process state

through a number of these intermediate state-space points to

the origin. Whenever one of the selected points in the path
to the steady-state is approached sufficiently closely, the
error-triggered on-line model identification strategy can be

re-initiated at Step 1 using the initial linear empirical model
corresponding to the next desired steady-state in the path.
Error-triggering is used to improve the models as the process

state transitions between the selected steady-states on its
way to the desired operating steady-state. A similar method
could be used in Case 2 of this section to guide the state

between two steady-states if desired.
Remark 9. For the LEMPC with expanding level sets, or

with level sets that change orientation or size in time, it
may be possible to set Xq̂e;1

to the desired final level set of

operation and to use the error-triggered on-line model iden-
tification procedure to change the linear empirical model as
the process state moves throughout Xq̂e;1

instead of follow-

ing a level set adjustment procedure. However, the region
Xq̂e;1

may be large enough such that the linear empirical
model developed for the initial state-space point cannot cap-

ture the nonlinear dynamics of the process as well as
desired in the most economically optimal location of state-
space. If the LEMPC calculates control actions that cause
the state to quickly move toward the economically optimal

location and leave the state-space region where the initial
linear empirical model captures the nonlinear process
dynamics well, the moving horizon error detector may trig-

ger model re-identification, but there may be insufficient
input/output data stored in the new region of operation for
an appropriate linear empirical model to be identified when

the error-triggering occurs. This shows that one advantage
of the level set adjustment procedure described is that it can
allow the rate at which level sets are changed to be slow

enough for sufficient input/output data to be collected in the
new regions of operation that are accessed as the level sets
change. The effect of the rate at which the level sets are

adjusted is illustrated in the chemical process example of
the following section. In addition, when the level set orien-
tation or size is adjusted on-line (instead of only expanded),

the opportunity is available to move the state throughout
regions which cannot be captured within one level
set alone. If Xq̂e;1

is set to the final level set of operation,
several initial linear empirical models within Xq̂e;1

may be

developed and used to re-initiate Step 1 of the error-
triggered on-line model identification procedure, as dis-
cussed in Remark 8, to improve the model predictions

throughout Xq̂e;1
.

Remark 10. Feasibility and closed-loop stability of
model-based controllers under the error-triggered on-line
model identification strategy when changes in the region of

operation occur will depend on many factors including the
type of controller, the extent of the change in the operating
region, and the manner in which the change occurs (e.g.,

whether several pre-identified linear empirical models are
used to define a path to a steady-state as described above).
As noted in Remark 7, controller feasibility and closed-loop

stability of a process under a model-based controller based
on the linear empirical models with operating region changes
is outside the scope of this work, but the factors mentioned

in that remark (e.g., the values of Nd, M, and ed;T , computa-
tion time, and assumptions on the process and controller)
could be considered for such proofs. For the LEMPC with
expanding level sets, for example, the assumption that DL1

� DL2 � � � � � DL ~M and Xq̂1
� Xq̂2

� � � � � Xq̂ ~M
, where

Figure 7. Example of level set expansion from Xq̂e1
to

Xq̂e2
and to Xq̂e3

.

AIChE Journal March 2017 Vol. 63, No. 3 Published on behalf of the AIChE DOI 10.1002/aic 959



Xq̂ ~M
is the final desired level set, may be useful. Even when

it is difficult to find controllers that would meet the assump-

tions required by the proofs, there are many practical appli-

cations in which the approach proposed in this article would

be stabilizing when the empirical models of Eq. 3 can suffi-

ciently capture the nonlinear behavior of the system of Eq.

1. In addition, the values of Nd, M, and ed;T can be updated

on-line or through experiments as described in the section

“Application of error-triggered on-line model identification

to plant variations.”

Application of error-triggered on-line model

identification to operating region changes: application to

a chemical process example

This section uses a chemical process example to illustrate

the application of error-triggered on-line model identifica-

tion to LEMPC with expanding level sets (although this

example only demonstrates Case 3 from the prior section,

all three cases are conceptually similar in the sense that the

process states vary throughout different regions of state-

space under a controller developed from the error-triggered

on-line model identification strategy, so this example dem-

onstrates the concept of operating region changes in gener-

al). The chemical process considered is the irreversible

second-order exothermic reaction of A to B in a well-mixed,

non-isothermal continuous stirred tank reactor (CSTR). The

reactor feed enters with a volumetric flow rate F and con-

sists of an inert solvent containing the reactant A with a con-

centration CA0 and a temperature T0. The CSTR is heated

and cooled at a heat rate Q through a jacket. The volume,

density, and heat capacity of the liquid in the CSTR are

assumed constant at V, qL, and Cp, respectively. The dynam-

ic equations describing the time evolution of the reactant

concentration CA and temperature T in the reactor have the

form presented below

dCA

dt
5

F

V
ðCA02CAÞ2k0e2E=RTC2

A (19a)

dT

dt
5

F

V
ðT02TÞ2 DHk0

qLCp
e2E=RTC2

A1
Q

qLCpV
(19b)

where k0 denotes the reaction pre-exponential factor, and

E and DH denote the activation energy and the enthalpy of the

reaction, respectively (see Table 3 for the process parameter

values). The CSTR is controlled by an LEMPC that adjusts

the values of the inlet concentration CA0 and the heat supply/

removal rate Q. These manipulated inputs are bounded above

and below as follows: 0:5 � CA0 � 7:5 kmol=m3 and

25:03105 � Q � 5:03105 kJ=h. The CSTR is operated

within a state-space region around the open-loop asymptotical-

ly stable steady-state ½CAs Ts�5½1:2 kmol=m3 438:0 K� which

corresponds to the steady-state input vector ½CA0s Qs�5
½4:0 kmol=m3 0:0 kJ=h�. The reactor states and inputs will be

written in deviation variable form with respect to this steady-

state as xT5½CA2CAs T2Ts� and uT5½CA02CA0s Q2Qs�. The

explicit Euler method was used to numerically integrate the

dynamic model of Eq. 19 and all empirical models used in this

example with an integration time step of hc51024 h.
The LEMPC objective is to maximize the production rate of

the desired product B (the process profit). Thus, the cost func-

tion L(x, u) in the LEMPC design is the average production

rate of B, which is given by

Lðx; uÞ5 1

ðtk1N2tkÞ

ðtk1N

tk

k0e2E=RTðsÞC2
AðsÞ ds (20)

We also consider that the amount of reactant material avail-
able in a given period of operation of length tp51 h is limited
by the following material constraint

1

tp

ðtp

0

u1ðsÞ ds50:0 kmol=m3 (21)

Because the feed flow rate is fixed, this constraint requires that
the amount of reactant fed to the reactor throughout one oper-
ating period be the same as the amount that would be fed for
steady-state operation.

We assume that the nonlinear process model in Eq. 19 is
unavailable and that to develop an LEMPC to meet the above
objective and constraints, we must identify an empirical mod-
el. To construct an empirical state-space model that accurately
predicts the process states within a region local to the initial
state (the steady-state) of the CSTR, a sequence of step inputs
was generated and applied to the CSTR and the resulting out-
put sequence was collected. The ordinary multivariable output
error state-space (MOESP)10 algorithm using input and output
data sequences was carried out to obtain a linear empirical
model for the CSTR of Eq. 19. This initial (i 5 1) model was
validated using various step, impulse, and sinusoidal input
responses and is described by the following matrices

A15
234:5 20:473

1430 18:1

" #
; B15

5:24 28:131026

211:6 0:457

" #

(22)

Because it is assumed that only the empirical model is avail-
able, the Lyapunov-based controller designed for use in
LEMPC is based on the empirical model of Eq. 22. The qua-
dratic Lyapunov function V̂ðxÞ5xTPx, where P is the follow-
ing positive definite matrix

P5
1060 22

22 0:52

" #
(23)

was used to design a Lyapunov-based controller hT
L1ðxÞ5

hL1;1ðxÞ hL1;2ðxÞ
� �

for use in the LEMPC. To meet the material
constraint of Eq. 21, the control law hL1;1ðxÞ for the inlet reac-
tant concentration was fixed to 0:0 kmol=m3. The control law
hL1;2ðxÞ for the rate of heat input was developed using the fol-
lowing control law from23

hL1;2ðxÞ5
2

L~f V̂1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L~f V̂

2
1Lg2

V̂
4

q
Lg2

V̂
; if Lg2

V̂ 6¼ 0

0; if Lg2
V̂50

8>>><
>>>: (24)

where ~f : Rn ! Rn and g : Rn ! Rn3Rm are defined based on
the empirical model of Eq. 3 as follows

Table 3. Parameter Values of the CSTR

T05300 K F55:0 m3=h
V51:0 m3 E55:03104 kJ=kmol
k058:463106 m3=h kmol DH521:153104 kJ=kmol
Cp50:231 kJ=kg K R58:314 kJ=kmol K
qL51000 kg=m3
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dxðtÞ
dt

5 Ax|{z}
5:~f ðxÞ

1 B|{z}
5:gðxÞ

u (25)

and g2ðxÞ is the second column of the B matrix. L~f V̂ and Lg2
V̂

denote the Lie derivatives of the Lyapunov function V̂ðxÞ with
respect to ~f ðxÞ and g2ðxÞ, respectively. We assume that the sta-
bility region Xq̂1

is not known a priori (this is the typical case
in practice if the nonlinear process model is not known,
because Xq1

is defined in the section “Lyapunov-based eco-
nomic model predictive control with empirical models” to be
a region within which the controller hL1 designed based on the
linear empirical models stabilizes the nonlinear system), so we
initiate process operation within a level set denoted Xq̂e;1

� Xq̂e1
within which the model prediction error is low. Exten-

sive simulations were performed for the closed-loop system
under the Lyapunov-based controller hL1ðxÞ to define the level
set Xq̂e;1

with q̂e;1555. This is a region within which the linear
model of Eq. 22 captures the nonlinear dynamics of Eq. 19
well. In all simulations below, we apply the LEMPC design in
Eq. 6 but with the added material constraint of Eq. 21 to the
process in Eq. 19 using a prediction horizon of N 5 10 and a
sampling period of D50:01 h (the objective function is
defined by Eq. 20, with the bounds on CA0 and Q and the Lya-
punov function noted above). The LEMPC optimization prob-
lem is solved at each sampling period using the interior-point
solver IPOPT.29

Although there is low prediction error in Xq̂e;1
when the

model of Eq. 22 is used, we would like to expand the level set
of operation to improve the process profit. To do this, we note
that if Xq̂e;1

is not equal to Xq̂e1
, we can use a larger level set

Xq̂e;2
� Xq̂e1

in the LEMPC based on an empirical model while
continuing to use the empirical model with i 5 1. We denote
the q – th level set used from the start of process operation as
Xq̂e;q

(the final desired level set is Xq̂e;f
). Each time that the

level set is expanded, we will calculate control actions based
on the LEMPC of Eq. 6, but with the level set used in Eqs. 6e–
f as Xq̂e;q

. The values of q̂e;q and the time intervals over which
they will be applied are pre-determined, but the empirical
model used with a given Xq̂e;q

is not known a priori, but is
determined during process operation using the moving horizon
error detector to trigger model re-identification.

To demonstrate the need for re-identification of the empiri-
cal model as the region of process operation is expanded, the

CSTR was operated in closed-loop under the LEMPC control-
ler designed with the linear model of Eq. 22 within the region
Xq̂e;1

with q̂e;1555 for 1 h of operation. Throughout this oper-
ating period, there was very low prediction error between the
linear empirical model and the nonlinear CSTR model because
this stability region had been chosen as one within which the
plant-model mismatch was low. We subsequently increased
the value of q̂e;1 used to define the Lyapunov-based constraints
by 1 every D for the first 20 sampling periods of the second
hour of operation (i.e., q̂e;1 was incrementally increased from
q̂e;1555 to q̂e;21575 in 0:2 h, where q̂e;2556 in the LEMPC
of Eq. 6 at tk51 h; q̂e;3557 in the LEMPC of Eq. 6 at
tk51:01 h, etc.) to optimize the process economics within a
larger region of state-space. After reaching the level set with
q̂e;21575, the system was maintained at that level set for the
rest of the second hour and throughout the third hour of opera-
tion as presented in Figure 8. As the states moved out of the
initial level set with q̂e;1555, the prediction error between
the predicted states from Eq. 22 and the measured states of the
CSTR increased and reached a value

jTpð3tpÞ2Tð3tpÞj
jTð3tpÞj

1
jCAp
ð3tpÞ2CAð3tpÞj
jCAð3tpÞj

50:3

at the end of the third hour. Because there are no disturbances
or measurement noise in this simulation, the prediction error
noted indicates that the total relative error in the two states is
about 30% at the end of the third operating period, which
shows that model re-identification should be used to better
capture the nonlinear system dynamics in that region of state-
space.

After establishing the need for re-identification of a linear
model as the allowable region of operation is expanded to
increase profit, we now present three approaches for expand-
ing the level sets from the level set with q̂e;1555 to a final
desired level set with q̂e;f 5155 while gathering process input/
output data and updating the model on-line. In the first
approach, the level set is expanded suddenly to Xq̂e;f

. In the
second approach, the level set is expanded incrementally to
Xq̂e;f

. In the third approach, the level set is incrementally
expanded to Xq̂e;f

, with the expansion paused at intermediate
level sets to allow sufficient input/output data to be collected
throughout time in new regions of operation. The model iden-
tification process is triggered in the third approach by a

Figure 8. State and input trajectories of the CSTR controlled using the LEMPC with the empirical model of Eq. 22
starting at ðCAs;TsÞ.
The level set was changed from q̂e;1555 to q̂e;21575 gradually in the second hour.
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moving horizon error detector. The collection of large

amounts of input/output data in each region of operation

allows the empirical models identified using the third approach

to better capture the nonlinear process dynamics than the

empirical models identified using the other approaches.
As mentioned above, the first approach investigated the sud-

den expansion of the level set Xq̂e;1
with q̂e;1555 to Xq̂e;f

with

q̂e;f 5q̂e;25155, after operating with q̂e;1555 for 1 h. To maxi-

mize the profit in the new level set, the LEMPC of Eq. 6 pre-

dicted control actions that drove the state to regions of state-

space where there was significant prediction error throughout

the second hour of operation. At the end of this second hour,

input/output data from the first 2 h of operation was used to

identify a new model and update the LEMPC with this new

empirical model for the third hour of operation. The model

obtained was

A25
246 20:610

2025 25:7

" #
; B25

2:585 26731026

65:36 0:639

" #
(26)

Although all LEMPC optimization problems for the first

approach were feasible and the closed-loop system was stable

as shown in Figure 9, the large prediction error throughout the

second operating period resulting from the sudden expansion

of the level set is undesirable. Therefore, the second approach

that gradually increments the level sets was investigated. In

this approach, after an hour of operation with q̂e;1555, the val-

ue of q̂e;1 was incrementally increased by 1 every sampling

period for an hour to q̂e;f 5q̂e;1015155, while collecting input/

output data. The prediction error during the second hour of

operation was much less using this second approach than using

the first approach. At the end of the second hour of operation,

the input/output data from the first 2 h of operation was

used to identify the following empirical model that was used

for the third hour of operation

A25
247 20:643

1868 24:6

" #
; B25

4:273 26331026

16:65 0:632

" #
(27)

Figure 10 shows the state and input trajectories of the CSTR

under the LEMPC of Eq. 6 using the second approach. The

state and input trajectories for the first and second approaches

are different, which shows that the empirical model used in

the LEMPC and the way in which the level sets are expanded

significantly affects the closed-loop process dynamics.
The third approach investigated is the gradual increase of

the level set from q̂e;1555 to q̂e;f 5q̂e;1015155 throughout

10 h of operation with error-triggered on-line model

Figure 9. State and input trajectories of the CSTR controlled using the LEMPC with the empirical models
in Eqs. 22 and 26.

The level set was changed from q̂e;1555 to q̂e;25155 suddenly at the beginning of the second hour of operation (Approach 1).

Figure 10. State and input trajectories of the CSTR controlled using the LEMPC with the empirical models in
Eqs. 22 and 27.

The level set was changed from q̂e;1555 to q̂e;1015155 incrementally throughout the second hour of operation (Approach 2).
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identification. First, the CSTR is operated at the level set with
q̂e;1555 for 1 h. Subsequently, the value of q̂e;1 is incremen-
tally increased by 1 every sampling period for 20 sampling
periods and then held at its new value for 1.8 h (i.e., q̂e;21575
from tk51:19 h to 3 h; q̂e;41595 from tk53:19 h to 5 h,
etc.). This increase and hold strategy is repeated until the final
level set with q̂e;1015155 is reached, and then the process is
operated at the final level set for 2.8 h. At the beginning of the
third operating period, a moving horizon error detector is initi-
ated to determine ed at each sampling period, and to trigger re-
identification of the process model when the value of ed

exceeds the threshold value of 3, which was chosen based on
simulations that suggested that it was a reasonable indicator of
significant plant-model mismatch. Each time that the on-line
model identification is triggered, the previous 2 h of input/out-
put data is used to identify a new model. The moving horizon
error detector calculates the relative prediction error in the
concentration and temperature throughout the past 50 sam-
pling periods and current sampling time as follows

edðtkÞ5
X50

r50

jTpðtk2rÞ2Tðtk2rÞj
jTðtk2rÞj

1

jCAp
ðtk2rÞ2CAðtk2rÞj
jCAðtk2rÞj

(28)

The predicted values of T and CA were calculated using the
first approach from Remark 4.

The moving horizon error detector triggered model re-
identification four times throughout the gradual increase of the

level set from q̂e;1555 to q̂e;1015155 in the third approach,

with the four identified models as follows

A25
241 20:559

1424 18:149

" #
; B25

4:92 2731026

228 0:003

" #
(29)

A35
243 20:584

1658 20:997

" #
; B35

3:64 24931026

29:1 0:525

" #
(30)

A45
241 20:476

1691 18:0

" #
; B45

3:53 25331026

56:8 0:594

" #
(31)

A55
229 20:403

820 9:63

" #
; B55

4:22 22931026

57:9 0:443

" #
(32)

When the empirical models were re-identified, the controller

of Eq. 24 was updated based on the new empirical model. The

same value of V̂ was used for all simulations.
Figure 11 shows the update scheme used in the third

approach and indicates the four times at which the error-

triggered model re-identification occurred. Once the model

was updated at the end of the tenth operating period, no further

model identification was triggered in the last two operating

periods, indicating that the third approach was able to success-

fully expand the level sets while updating the model so that

process operation could be moved to a new region of state-

space where the corresponding empirical model locally had

low plant-model mismatch. The figure also shows that the

error-triggering is effective at determining the necessity of

Figure 11. Plot showing the gradual expansion of the Lyapunov level set in Approach 3 and the times at which the
model identification procedure was conducted over 12 h of operation.

Figure 12. Value of ed at each sampling time using Eq. 28 and the LEMPC design with error-triggered on-line mod-
el identification (Approach 3).
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model updates, because the model identified at the end of the
second period of operation was able to be used for 4 h of oper-
ation and two sets of level set expansions since the prediction
error was low and thus no model identification was needed.
Figure 12 shows the value of ed throughout time under the
third approach, which shows the growth of ed when the model
re-identification was triggered and provides further evidence
that the prediction error was low at the end of the 12 h of oper-
ation. In addition, Figure 13 shows the evolution of the state-
space trajectories within the initial level set and into the
expanded level sets during process operation.

Figure 14 shows the state and input trajectories of the CSTR
using the LEMPC of Eq. 6 with the empirical models of Eq.
22 and Eqs. 29–32 for the third approach throughout the 12-h
simulation. Figure 15 shows that the state and input trajecto-
ries of the CSTR under the LEMPC designed based on the
first-principles model are similar to those under the LEMPC
using the final empirical model of Eq. 32, when both use q̂e;f

5155 throughout the entire simulation (i.e., no level set
expansion), and start from the same initial condition.

The three approaches presented above are compared in
Table 4, which shows the time-averaged profit (Je) and the

Figure 13. State-space representation of closed-loop state
trajectories of the CSTR under the LEMPC with
error-triggered on-line model identification for
12 h starting at (CAs, Ts) (Approach 3).

Figure 14. State and input trajectories of the CSTR controlled by the LEMPC with error-triggered on-line model
identification over 12 h operation (Approach 3).

Figure 15. State and input trajectories of the CSTR controlled by the LEMPC using the first-principles model (black
trajectories) and the LEMPC using the final identified model in Eq. 32 (gray trajectories) starting from
CA2CAs520:8;T2Ts528.
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maximum ed throughout 1 h of operation using the final identi-
fied model for each approach and the level set with q̂e;f 5155

(Je and ed are calculated for the third hour of operation for the
first two approaches, and for the twelfth hour of operation in
the third approach). In addition, the profit resulting from using

the nonlinear model of Eq. 19 is presented for comparison, ini-
tiated from the origin. Table 4 shows that the profit was great-

est using the third approach, and was very close to that of the
nonlinear system of Eq. 19 (the profit using the nonlinear mod-

el is only 0.7% greater than that using the third approach). In
addition, Table 4 shows that the maximum value of ed during
process operation was greatest under the first approach and

least under the third. The maximum value of ed in the third
approach is significantly lower than the threshold value of 3,

further showing that the proposed approach was able to reduce
the prediction error while maximizing profit.

Remark 11. In this example, the value of q̂e;f was chosen

because it allowed for a significant increase from q̂e;1 and
thus was effective for illustrative purposes in this example at
demonstrating the level set expansion procedure and the

effect of the rate of expansion on the models identified.
From the simulations, it can be seen that the nonlinear pro-

cess was stabilized by the LEMPC with an empirical model
within Xq̂e;f

based on the various empirical models; however,

choosing the value of q̂e;f in general requires great care to
prevent losing process closed-loop stability.

Remark 12. The time-varying nature of the trajectories

calculated by the LEMPC in this example for the various
level set expansion rates (Figures 8210 and 14215) is due
to economic considerations, as for the example in the section

“Application of error-triggered on-line model identification
to plant variations: application to a chemical process exam-

ple.” As shown in these figures, closed-loop stability was
maintained in all simulations, regardless of whether the

empirical model was updated, but the error-triggered updat-
ing of the empirical models improves the predictions from
the linear empirical model and can improve the process prof-

it as shown in Table 4.

Conclusion

In this work, a methodology for error-triggered on-line

model identification for nonlinear process systems was pro-
posed for use in model-based controller design based on linear

empirical models. The error-triggering was conducted by a
moving horizon error detector that quantifies the relative pre-
diction error within its horizon and triggers model re-

identification based on recent input/output data when the pre-
diction error exceeds a threshold. The error-triggered on-line

model identification procedure was shown to have many appli-
cations, including the improvement of state predictions for use

in model-based control when plant variations occur and when
the operating region changes. Both of these applications were

demonstrated using a chemical process example under LEMPC.

In the first example, it was shown that the error-triggering strat-

egy was successful in indicating the need to re-identify the

empirical model using the most recent input/output data as the

plant dynamics changed, which can also result in greater eco-

nomic profit. The second example demonstrated that the pro-

posed approach is able to maintain closed-loop stability while

expanding the region of operation to improve profit, and also

indicated that the rate at which the operating region is expanded

can have a significant effect on the process performance and the

accuracy of the identified empirical model.
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