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Managing production schedules and tracking time-varying demand of certain products while optimizing process eco-
nomics are subjects of central importance in industrial applications. We investigate the use of economic model predic-
tive control (EMPC) in tracking a production schedule. Specifically, given that only a small subset of the total process
state vector is typically required to track certain scheduled values, we design a novel EMPC scheme, through proper
construction of the objective function and constraints, that forces specific process states to meet the production schedule
and varies the rest of the process states in a way that optimizes process economic performance. Conditions under which
feasibility and closed-loop stability of a nonlinear process under such an EMPC for schedule management can be guar-
anteed are developed. The proposed EMPC scheme is demonstrated through a chemical process example in which the
product concentration is requested to follow a certain production schedule. VC 2016 American Institute of Chemical

Engineers AIChE J, 63: 1892–1906, 2017
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Introduction

Dynamic product demand changes have made it necessary

to increase the operational management efficiency and plant

economic performance in the chemical and petrochemical

industry. This has led process systems engineers in both aca-

demia and industry to develop technologies that aim to eco-

nomically optimize process operation and allow for real-time

energy management. Integrating feedback control strategies

with plant economic optimization serves as one approach for

achieving optimal process operation. Economic model predic-

tive control (EMPC) is a fairly recent control strategy that

integrates dynamic economic plant optimization and a feed-

back control policy by utilizing an economics-based cost func-

tion and the process dynamic model to predict the plant

evolution. EMPC has gained attention due to its ability to

yield optimal time-varying operation while accounting for

operational constraints and ensuring closed-loop stability (e.g.,

Refs. 1–4).
Production management subject to demand changes plays a

crucial role in industry.5–8 Shifts in demand and supply of

certain products occur constantly and finding reliable methods

to achieve the desired production has become necessary.9,10 It
has become common in the chemical industry to produce mul-
tiple products from the same plant in both batch and continu-

ous processes6,8,11 such as the production of multiple grades of
polyethylene.12 Various studies have considered the integra-
tion of planning and scheduling in supply chain optimization

to achieve economically optimal operational management in
response to the desired demand.5,8–10 Some methods proposed
in this context have been inspired by process control design

methodologies, such as modeling the dynamic production in
supply chains and using classical process control strategies to

manage and control the supply chain.13 In addition, several
frameworks that use advanced control and optimization strate-
gies have been proposed for scheduling to optimize the

decision-making process while accounting for practical con-
straints and limitations.8,9 Furthermore, a rolling horizon
approach solved using multiparametric programming with

uncertainties in both the disturbances and initial states was
investigated for reactive scheduling.14 Scheduling of industrial

electricity use, with a case study for the energy-intensive
chlor-alkali process, was also investigated in Ref. 15 by con-
sidering contracts between industrial consumers and electricity

producers with price penalties in use over the contract in the
scheduling problem.
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After solving the planning and scheduling problem, process
control strategies are used to drive the plant to follow the
desired production schedule. Scheduling and control are two

crucial elements that serve the same overall goal of maximiz-
ing plant economics while meeting the customer demand.
Linking the control problem with the scheduling problem by
accounting for the control layer in the scheduling layer to

improve economics has been considered.16 Solving the control
and scheduling problems simultaneously while accounting for
the nonlinear dynamics of processes to find optimal steady-

states and optimal product and state transitions has been con-
sidered.17,18 Integrating process design with control and sched-
uling has also been investigated.19 Considering process
dynamics in the scheduling layer through developing

scheduling-oriented low-order dynamic models by selecting
scheduling relevant variables and using historical data to iden-
tify empirical models that capture the dynamic response to

production targets has been proposed in Ref. 20. Extensive
research efforts have been dedicated recently to developing
reliable methods that could track desired production set-points
that correspond to different operating conditions.6,21,22 The

development of a computationally efficient Lyapunov-based
scheduling procedure for control of nonlinear systems where
each controller is equipped with a Lyapunov function corre-

sponding to a different region of operation has been studied in
Ref. 23. Demand management through production scheduling
and closed-loop process control while accounting for the cost
of transition between different production levels has also been

proposed in Ref. 22. This concept can be used for demand
response of industrial electricity customers.24 In addition, sev-
eral studies have considered the use of model predictive con-
trol (MPC) in tracking the desired production schedule while

accounting for input/output constraints.5,6,21 The use of a low-
dimensional time scale-bridging model (SBM) in a
scheduling-oriented MPC to link control with scheduling and

capture the closed-loop dynamics over the longer time scales
of the scheduling problem has been considered in Ref. 5. In
addition, the use of EMPC for the economic-oriented control
and energy management of buildings heating, ventilation, and

air conditioning (HVAC) systems has been considered by
transforming the scheduling and control problem into a hierar-
chy of coordinated controllers to deal with the multiple time

scale dynamic behavior of buildings, and the complexity that
arises from having integer decision variables.25 Integrating
scheduling and control for continuous processes under dynam-
ic product demand changes was proposed where a model pre-

dictive controller was used to track the schedule set-points.6

Another application of combining scheduling with control is
for a post-combustion CO2 capture process.26

Typically, only a subset of the components of the total pro-

cess state vector is required to follow a production schedule.
Therefore, there is a potential in many processes to meet the
desired schedule while achieving economically optimal pro-
cess operation. In this work, we propose an approach that

achieves maximizing plant economics while meeting the
desired production schedule using EMPC. The EMPC frame-
work tracks production schedules for the desired states while

maximizing economics with respect to the rest of the states
within manifolds in the process state-space that maintain the
requested schedule. Practical considerations that should be
introduced at the operating or scheduling level when the

EMPC for schedule management is used are discussed. Suffi-
cient conditions for feasibility and closed-loop stability of a

nonlinear process under the proposed LEMPC formulation are

derived for the case that the times at which the changes in the

production level required by the schedule are known a priori
and the case that they are not. The LEMPC with production

schedule management method is applied to a chemical process

example and closed-loop simulations demonstrate closed-loop

stability of the process while following the desired production

schedule and maximizing economics.

Preliminaries

Notation

The symbol xT is used to denote the transpose of the vector x.

The two-norm of a vector is denoted by the operator j � j. A

continuous function a : ½0; aÞ ! ½0;1Þ is called a class K
function if it is strictly increasing and að0Þ50. The symbol Xq

is used to denote a level set of a sufficiently smooth scalar

function V(x) (Xq : 5fx 2 Rn : VðxÞ � qg). The symbol D > 0

denotes the sampling period.

Class of systems

The class of nonlinear systems considered in this work is

described by nonlinear ordinary differential equations of the

following form:

dx

dt
5f ðx; u;wÞ (1)

where x 2 Rn and u 2 Rm are the system state and manipulated

input vectors, respectively. The vector w 2 Rl denotes the dis-

turbance vector. Actuator constraints on the control energy

available are considered by restricting the control actions to

belong to the convex set U : 5fu 2 Rm : umin
i � ui � umax

i ;
i51; . . . ;mg. The disturbance vector is assumed to be bounded

(i.e., w 2 W : 5fw 2 Rl : jwðtÞj � h 8 tg). The origin is tak-

en to be an equilibrium of the unforced system of Eq. 1 (i.e.,

f ð0; 0; 0Þ50). At each sampling time tk5kD; k50; 1; . . ., meas-

urements of the state vector xðtkÞ are assumed to be available.
The class of nonlinear systems studied is restricted to

stabilizable nonlinear systems for which there exists a con-

troller hðxÞ 2 U that can render the origin of the nominal

(wðtÞ � 0) closed-loop system of Eq. 1 asymptotically stable

in the sense that there exists a sufficiently smooth Lyapunov

function V : Rn ! R1 that satisfies the following inequalities27,28:

a1ðjxjÞ � VðxÞ � a2ðjxjÞ; (2a)

@VðxÞ
@x

f ðx; hðxÞ; 0Þ � 2a3ðjxjÞ; (2b)���� @VðxÞ
@x

���� � a4ðjxjÞ (2c)

for all x in an open neighborhood D � Rn that includes the ori-

gin and ajð�Þ; j51; 2; 3; 4, are class K functions. The stabil-

ity region of the closed-loop system is taken to be the level set

Xq � D where _V < 0. The origin of the system of Eq. 1 is ren-

dered practically stable29 when the controller h(x) is applied in

a sample-and-hold fashion for a sufficiently small sampling

period. The function f is assumed to be locally Lipschitz on

Xq3U3W.
In this work, it is assumed that the values of the first ns

states of the state vector x (i.e., xi; i51; . . . ; ns) are required

to be maintained at certain values xidesired
; i51; . . . ; ns, which

change at specific points in time corresponding to a production

schedule. For every set of values xidesired
; i51; . . . ; ns, within
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the schedule, we assume that a steady-state of the nominal sys-

tem of Eq. 1 exists at which the states xi; i51; . . . ; ns, have

the required values. The origin of the system of Eq. 1 can be

translated to have its equilibrium at each of these steady-states

corresponding to the schedule. We assume that for each

steady-state, there exists a stabilizing controller that can make

that steady-state asymptotically stable, with a corresponding

Lyapunov function. With a slight abuse of notation, we will

denote in this article the deviation of the state from the cur-

rently desired steady-state by x and will use the notation (e.g.,

f, V, h, D, Xq, and aj, j51; 2; 3; 4) developed in the above

discussion for the case that the equilibrium was at the origin of

the original system to denote analogous regions or functions

for each deviation variable x. With this convention, it is

assumed that the Lyapunov function and stabilizing controller

for each steady-state satisfy Eq. 2.
Because f is Lipschitz continuous, V is sufficiently smooth,

and x; u, and w are bounded within compact sets, there exist

M> 0, Lx > 0; Lw > 0; L
0
x > 0 and L

0
w > 0 such that:

jf ðx; u;wÞj � M (3)

jf ðx1; u;wÞ2f ðx2; u; 0Þj � Lxjx12x2j1Lwjwj (4)���� @Vðx1Þ
@x

f ðx1; u;wÞ2
@Vðx2Þ
@x

f ðx2; u; 0Þ
����

� L
0
xjx12x2j1L

0
wjwj

(5)

for all x; x1; x2 2 Xq; u 2 U, and jwj � h.

Economic model predictive control

EMPC is a MPC strategy for which the objective function is

based on economics and does not have its minimum at the eco-

nomically optimal steady-state of the process (examples of

processes for which this may hold true are those which are

operated most optimally under a periodic operating policy30–33

or those for which other time-varying operating policies that

do not necessarily have any pattern or periodicity are econom-

ically optimal). To address feasibility and closed-loop stability

of a process under such a controller, a variety of constraints

have been investigated, but a general formulation of EMPC is

as follows34:

min
u2SðDÞ

Z tk1N

tk

2Leð~xðsÞ; uðsÞÞ ds1Vf ð~xðtk1NÞÞ (6a)

s:t: _~xðtÞ5f ð~xðtÞ; uðtÞ; 0Þ (6b)

~xðtkÞ5xðtkÞ (6c)

uðtÞ 2 U; 8 t 2 ½tk; tk1NÞ (6d)

gð~xðtÞ; uðtÞÞ � 0; 8 t 2 ½tk; tk1N � (6e)

where the stage cost Leð~xðsÞ; uðsÞÞ (Eq. 6a) represents the pro-

cess profit, and Vf ð~xðtk1NÞÞ is a terminal penalty evaluated at

the predicted state ~x at the end of the prediction horizon of

length N (where the prediction ~xðtÞ is the solution of the nomi-

nal process model of Eq. 6b at time t given the initial condition

of Eq. 6c obtained from a state measurement at time tk). The

constraint of Eq. 6d ensures that the process inputs, which are

the decision variables u (uð�Þ 2 SðDÞ signifies that the decision

variables are piecewise constant vectors with period D) of the

EMPC meet the input constraints. The function g(x, u) repre-

sents any additional constraints that may be included within

the EMPC. Three constraints that are often used within EMPC

for stability purposes and can be represented by g are a

terminal equality constraint,35 a terminal region constraint,1

and Lyapunov-based constraints3 (for the terminal equality

constraint and Lyapunov-based constraints, Vf is not usually

included34). Other types of constraints or considerations for

EMPC are addressed in Refs. 2 and 34.

Lyapunov-based EMPC

Although this work will address scheduling management in

the context of EMPC in general, the formulation of EMPC

with Lyapunov-based stability constraints (termed Lyapunov-

based EMPC (LEMPC)3) will receive special focus because it

is straightforward for this method to prove feasibility and

closed-loop stability of a process under this EMPC formula-

tion in the presence of disturbances with an a priori characteri-

zation of the set of initial conditions for which recursive

feasibility is guaranteed. The formulation of LEMPC, incorpo-

rating Lyapunov-based stability constraints based on the

explicit controller h(x), is as follows:

min
u2SðDÞ

Z tk1N

tk

2Leð~xðsÞ; uðsÞÞ ds (7a)

s:t: _~xðtÞ5f ð~xðtÞ; uðtÞ; 0Þ (7b)

~xðtkÞ5xðtkÞ (7c)

uðtÞ 2 U; 8 t 2 ½tk; tk1NÞ (7d)

Vð~xðtÞÞ � qe; 8 t 2 ½tk; tk1NÞ

if xðtkÞ 2 Xqe

(7e)

@VðxðtkÞÞ
@x

f ðxðtkÞ; uðtkÞ; 0Þ

� @VðxðtkÞÞ
@x

f ðxðtkÞ; hðxðtkÞÞ; 0Þ

if xðtkÞ 62 Xqe
(7f)

where the notation follows that in Eq. 6. When a state mea-

surement is received, either the Mode 1 (Eq. 7e) or the Mode 2

(Eq. 7f) constraint is activated based on the state location in

the state-space. Mode 1 promotes time-varying operation to

maximize profit while maintaining the state within the region

Xqe
� Xq. Mode 2 is activated when the closed-loop state

escapes the Xqe
region to force the state back into Xqe

by com-

puting control actions that decrease the Lyapunov function

value. Xqe
is chosen to make Xq forward invariant in the pres-

ence of disturbances. For additional discussion of LEMPC and

a more rigorous closed-loop stability analysis, the reader can

refer to Ref. 3. The control actions calculated from the

LEMPC design are applied in sample-and-hold in a receding

horizon fashion.

Remark 1. The characterization of V and Xqe
is crucial to

the development of the LEMPC of Eq. 7. There is not a gen-

eral method for determining which Lyapunov function candi-

date (positive definite function with Vð0Þ50) will be a

Lyapunov function for a given nonlinear system (i.e., cause

Eq. 2 to be satisfied for the nonlinear system), but quadratic

Lyapunov functions have generally been successful.36 Also,

some works have developed methods for obtaining Lyapu-

nov functions for certain systems.37 The determination of

Xqe
can be made through closed-loop simulations of the non-

linear process under the Lyapunov-based controller with sim-

ulated disturbances (based on knowing the bound h on the

magnitude of the disturbance). Methods for obtaining a
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Lyapunov-based control law for use in evaluating Xqe

through this methodology are addressed in references such
as Refs. 29, 36 and 38–40.

Schedule Management Using EMPC

In this section, we discuss the formulation of the proposed
EMPC for schedule management, along with practical and the-
oretical considerations. We will refer to the states that are
required to follow a certain schedule as the scheduled states,
and to those that do not have this requirement as the free
states.

Formulation of EMPC for schedule management

In this section, we present several ideas for formulating an
EMPC for schedule management, all of which are designed to
meet the constraint of the scheduling problem (i.e., the first ns

states xi; i51; . . . ; ns, of the state vector are required to be
maintained at desired values xidesired

; i51; . . . ; ns), while simul-
taneously varying the remaining n2ns free states in a manner
that optimizes the process economics and ensures satisfaction
of all process constraints. Using the EMPC framework, meet-
ing the schedule is thus considered to be a constraint on some
states, rather than the goal of process operation. As noted in
the section “Class of systems,” we assume that the origin of
the system of Eq. 1 is translated to be at a steady-state where
the schedule is met so that xidesired

50; i51; . . . ; ns.
To illustrate the manner in which the free states may vary to

maximize process economics while the scheduled states satis-
fy the requested schedule, Figure 1 presents an example with
three states (x1; x2; x3), in which the state x1 must follow a cer-
tain schedule. The original steady-state is at the origin, and
x1desired

50. The process is initially operated in a manner that
keeps x1 small while allowing x2 and x3 to vary to maximize
the process economics. At t1, the state is at the dot on the x3

axis, and the scheduled value for x1 changes from x150 to a
new value of x1 that corresponds to the x1 value of the plane to
the right of the origin in Figure 1. As illustrated in this figure,
the state is driven to this plane to meet the required schedule,
and then moves around within the plane to optimize the pro-
cess economics while continuing to meet the schedule.

Perhaps the most intuitive EMPC formulation for schedule
management is one that uses a hard constraint for the sched-
uled states to enforce that they must meet the schedule at all
times (except for a time during the transient between two
steady-states), with either a terminal equality constraint or ter-
minal region constraint (as g(x, u) in Eq. 6) around the steady-
state corresponding to the scheduled values for stability pur-
poses. This allows the free states to maximize process eco-
nomics as long as they reach the steady-state values at the end
of the prediction horizon. Although this method of enforcing
the schedule as a hard constraint is intuitively appealing
because it ensures that the schedule can be met for a system
without disturbances when the problem is feasible, it may
result in feasibility issues at a plant where plant-model mis-
match, measurement noise, and process disturbances are
unavoidable. To avoid this, the schedule constraints discussed
above could be implemented as soft constraints. In such a
case, however, the set of initial conditions from which feasi-
bility and closed-loop stability of a process under the EMPC
could be proven would not be as straightforward to obtain as
when the soft constraints are utilized in the context of LEMPC
(Eq. 7), so the details of an LEMPC formulation for schedule
management will be the subject of the rest of this section.

The formulation of an LEMPC that achieves the scheduling
objective using a soft constraint on the schedule (i.e., the
LEMPC seeks to drive the ns states xi; i51; . . . ; ns, quickly to
the values required by the production schedule and to maintain
the states close to xidesired

; i51; . . . ; ns, thereafter) is as follows:

min
u2SðDÞ

Z tk1N

tk

2Leð~xðsÞ; uðsÞÞ1
Xns

i51

aWið~xiðsÞÞ2 ds (8a)

s:t: _~xðtÞ5f ð~xðtÞ; uðtÞ; 0Þ (8b)

~xðtkÞ5xðtkÞ (8c)

uðtÞ 2 U; 8 t 2 ½tk; tk1NÞ (8d)

Vð~xðtÞÞ � qe; 8 t 2 ½tk; tk1NÞ

if xðtkÞ 2 Xqe

(8e)

@VðxðtkÞÞ
@x

f ðxðtkÞ; uðtkÞ; 0Þ

� @VðxðtkÞÞ
@x

f ðxðtkÞ; hðxðtkÞÞ; 0Þ

if xðtkÞ 62 Xqe
or jxiðtkÞj � ci; i51; . . . ; ns;

or tk � t0

(8f)

where the notation follows that in Eq. 7. The LEMPC cost
function consists of two components: the first component
Leð~xðsÞ; uðsÞÞ represents the process profit, and the second
component penalizes deviations of the states xi; i51; . . . ; ns,
from the desired values xidesired

50; i51; . . . ; ns. The weighting
coefficients aWi; i51; . . . ; ns, can be chosen to obtain a
desired trade-off between optimizing the process economics
and the rate of approach of the scheduled states to the sched-
uled values. The time t0 in the constraint of Eq. 8f will be dis-
cussed in later sections.

The states of a process operated under the LEMPC of Eq.
8 that are required to meet a schedule must be maintained suf-
ficiently close to the desired values to meet the schedule, and

Figure 1. Illustration of a possible state trajectory for
the closed-loop process under the EMPC for
schedule management.

The process is initiated from the dot on the x3 axis and

subsequently travels along the dotted line to the plane

on the right of the figure in which x1 is fixed, driving x1

to the value required by the schedule. The state subse-

quently moves within the plane of fixed x1 (solid line in

the figure) to maximize the process economics with the

remaining states while continuing to meet the schedule.
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also must never leave the stability region Xq to ensure closed-
loop stability. The Mode 1 and Mode 2 constraints in Eqs. 8e
and 8f ensure that both of these requirements are met. As in

Eq. 7, the Mode 2 constraint is activated when the measure-
ment of the closed-loop state at tk is outside of Xqe

, which
ensures that the state never leaves Xq. In addition, because the

first ns states meet their production schedule at the origin, and
repeated application of the Mode 2 constraint drives the
closed-loop state to a small neighborhood Xqmin

of the origin,3

the Mode 2 constraint is also activated whenever the measured
value of any state that is required to meet a schedule deviates
from this schedule by more than an allowable amount ci,

i51; . . . ; ns. This ensures that any deviation from the schedule
causes the state to be driven back toward the origin, where all
required states are within ci, i51; . . . ; ns, and the schedule is

thus sufficiently followed (this is guaranteed only if each ci is
greater than or equal to the maximum magnitude of the corre-
sponding state xi in Xqmin

because then the contractive con-
straint can drive the closed-loop state into a region Xqmin

where the scheduled states are no more than ci from their
scheduled values). When tk � t0, the Mode 2 constraint is
applied regardless of the location of the state measurement

xðtkÞ within Xq. This corresponds to successive application of
the Mode 2 constraint, which will drive the closed-loop state
into Xqmin

and maintain it there thereafter. Whenever the Mode

2 constraint is active but xðtkÞ 2 Xqe
, the Mode 1 constraint is

simultaneously active (which particularly impacts the trajecto-
ries for the last N21 sampling periods of the prediction hori-

zon which are unaffected by the contractive constraint that is
applied in only the first sampling period of the prediction
horizon).

When the state measurements at tk of the first ns states are

within ci; i51; . . . ; ns, of their scheduled values, the full pro-
cess state is within Xqe

, and tk < t0, the Mode 1 constraint is
active, and the Mode 2 constraint is not applied. This allows

control actions to be computed that vary the unscheduled
states throughout Xqe

to achieve economic optimality while
meeting the schedule. If the weights aWi, i51; . . . ; ns, are

appropriately chosen, the LEMPC will choose control actions
that prevent the values of xi; i51; . . . ; ns, from becoming
large, which means that the economic optimization will pri-
marily adjust the n2ns states that do not need to follow a

schedule to attain economic optimality while continuing to
keep the xi; i51; . . . ; ns, close to their scheduled values.

Remark 2. We note that production schedules often set tar-

get values for process outputs/quality variables. In most chem-
ical process systems, the process outputs/quality variables are
a subset of the components of the system state vector. In this

work, we assume that full state feedback is available because
the economics-based objective function of EMPC typically
depends on some (if not all) of the process states. In this case,

the measurements of the states that are required to meet the
schedule are readily available as process outputs (an alterna-
tive method for implementing EMPC when full state feedback

is not available, i.e., only some state measurements are avail-
able, is to use a state estimation technique such as robust mov-
ing horizon estimation to obtain estimates of the unmeasured

states which could include scheduled states; however, this
requires an output feedback EMPC design,41 which is not
rigorously developed in this article). Throughout the article,
we have assumed that the outputs/quality variables that are

required to meet the schedule are process states, and as a

result, no output function was required in Eq. 1. However, the
methodology presented in this article can be extended to the
case that the production schedule requires that some linear or

nonlinear combination of the state variables track specific val-
ues. In that case, a steady-state corresponding to values of the
states at which the schedule is met for the combination outputs
can still be defined, and the controller formulation presented in

Eq. 8 can be redesigned to enforce that the combination out-
puts meet the schedule (by utilizing the weights in the objec-
tive function on the deviations of the combination outputs

from their required values instead of imposing these weights
on the individual state variables).

Remark 3. The claim that an EMPC for schedule man-
agement that does not have Lyapunov-based stability con-

straints like the LEMPC for schedule management in general
would be more difficult to analyze for closed-loop stability
and feasibility properties than the LEMPC of Eq. 8 deserves

some further discussion. The closed-loop stability and feasi-
bility properties of EMPC’s of the form of Eq. 6 with con-
straints such as terminal equality35 and region constraints1

have been characterized in the literature for nominal

(wðtÞ � 0) operation. However, the region from which initial
feasibility (which is a prerequisite for the closed-loop stabili-
ty results) is guaranteed is difficult to characterize a priori.
For example, in the terminal equality constraint formulation,
the set of conditions which guarantee initial feasibility is the
set from which the EMPC is able to find a solution that
causes all state constraints to be met throughout the predic-

tion horizon. Since EMPC is typically formulated with a
nonlinear process model, the regions accessed by the closed-
loop states under any sample-and-hold input policy can gen-

erally only be determined through closed-loop simulations.
Therefore, the control actions that will cause the state pre-
dictions from the process model to satisfy the state con-
straints throughout the prediction horizon cannot in general

be determined a priori (i.e., closed-loop simulations under
the EMPC are required to determine them). Furthermore,
because the feasibility results can only be guaranteed when
wðtÞ � 0, recursive feasibility is not guaranteed in the pres-

ence of plant-model mismatch/disturbances, so determining
the set of points from which recursive feasibility holds in the
presence of disturbances also cannot be easily characterized

for these formulations. LEMPC,3 however, is designed so
that an explicit Lyapunov-based controller implemented in
sample-and-hold is always a feasible solution to the optimi-
zation problem even in the presence of disturbances/plant-

model mismatch as long as the magnitude of the disturban-
ces/plant-model mismatch and the length of the sampling
period are sufficiently small. This is guaranteed through the

design of the stability region utilizing the Lyapunov-based
controller implemented continuously and the robustness
properties of the Lyapunov-based controller when imple-
mented in sample-and-hold that allow the Lyapunov-based

controller implemented in sample-and-hold to maintain the
closed-loop state within the stability region for sufficiently
small sampling periods and sufficiently small disturbances.29

Furthermore, because the Lyapunov-based controller is a fea-
sible solution from any initial condition within the stability
region and LEMPC maintains the closed-loop state within
the stability region at all times, the LEMPC is guaranteed to

be recursively feasible even in the presence of disturbances.
In addition, the set of initial conditions from which initial

1896 DOI 10.1002/aic Published on behalf of the AIChE June 2017 Vol. 63, No. 6 AIChE Journal



and recursive feasibility are guaranteed are those initial con-
ditions within the stability region (i.e., they can be explicitly
characterized a priori). Because all state-space points within
the stability region thus guarantee closed-loop stability and

also feasibility even in the presence of disturbances, LEMPC
has the unique properties desired for the EMPC for schedule
management problem. Specifically, it allows the region from
which closed-loop stability and feasibility can be guaranteed
for a given steady-state corresponding to a desired produc-

tion level in the schedule to be characterized (it can be char-
acterized as all state-space points within the stability region
of that steady-state), both when continued operation around
this steady-state is desired and when the steady-state is new-
ly requested due to a change in the production level required
by the schedule.

Remark 4. Although it is intuitively desirable to enforce a
constraint in Eq. 8 that once the predicted state reaches the
scheduled value, it must be maintained at that scheduled value,
this would create a hard constraint that cannot be guaranteed
to be feasible because the set where jxij � ci; i51; . . . ; ns, is

not an invariant set (although a level set where such conditions
are met is an invariant set but may be small).

Schedule changes under EMPC for schedule
management

Regardless of the formulation chosen for the EMPC for
schedule management (Eq. 6 incorporating a terminal equality

constraint or terminal region constraint with a hard constraint
for the scheduled states, or a soft constraint formulation on the
schedule in the form of Eq. 6 or Eq. 8), a key feature of the
EMPC is that it must be capable of handling changes in
xi;desired; i51; . . . ; ns, according to the schedule to meet

changes in demand or product or resource pricing. For all of
the EMPC formulations, this requires a change in the objective
function and/or constraints of the problem. Specifically, the
terminal region or equality constraints and schedule constraint
will be updated if a hard constraint formulation is used, penal-

ties on deviations from the schedule will be updated in the
objective function if a soft constraint is used, or the
Lyapunov-based constraints will be reformulated with respect
to the Lyapunov-based controller for the new steady-state if
the LEMPC of Eq. 8 is used. The time at which this change is
required may or may not be known by the controller a priori.
Thus, some consideration must be made for the EMPC for
schedule management to determine the manner in which the
switching of the control problem should occur to avoid feasi-
bility issues, both when the controller has prior knowledge of
the switching time and when it does not.

As mentioned previously, an EMPC formulation for sched-

ule management of the form of Eq. 6 but with either soft or
hard constraints on the schedule and terminal equality or
region constraints is difficult to evaluate for feasibility consid-
erations when operated for a process without a change in the
production level required by the schedule. This is a limitation

once again when the production level required by the schedule
changes because the set of points for which recursive feasibili-
ty is guaranteed in the presence of process disturbances is dif-
ficult to characterize. In addition, the set of initial conditions
from which the EMPC to be implemented after the production

level required by the schedule changes will be feasible is also
difficult to characterize, so the question of when it is possible
to change to the next production level required by the schedule

while maintaining feasibility of the control problem is difficult

to answer even for nominal operation. However, for the
LEMPC of Eq. 8, the conditions under which closed-loop fea-
sibility can be maintained when the time at which it is desired

to change xi;desired is known in advance by the controller and
when it is not can be explicitly derived.

When the LEMPC begins to drive the closed-loop state to a

steady-state at which new values of the scheduled states are
met, the LEMPC of Eq. 8 is updated so that it is written with
respect to the Lyapunov-based controller and process model

with the origin at the steady-state corresponding to the new
desired values of the scheduled states. For a feasible solution

to the LEMPC for schedule management to be guaranteed
when this updated LEMPC begins to be used, the closed-loop
state must be contained within the stability region of the new

steady-state when the LEMPC being utilized is updated. To
see this, suppose that the LEMPC of Eq. 8 is designed with

respect to a certain steady-state and is denoted as LEMPC1,
and has stability region Xq1

. At time t1, the LEMPC will be
updated so that it maintains the closed-loop state within the

stability region around a new steady-state for which the corre-
sponding LEMPC is denoted LEMPC2 and is the LEMPC of

Eq. 8 but with the parameters updated for the new steady-state
(e.g., the stability region is Xq2

). To ensure that xðt1Þ 2 Xq1

and Xq2
to guarantee that there is a feasible solution to

LEMPC2 at t1, the stability regions for LEMPC1 and LEMPC2

must intersect at xðt1Þ to ensure that closed-loop stability is

maintained at this state under both LEMPC1 and LEMPC2.
Figure 2 illustrates the overlapping of the level sets just

described for the case that three changes in the production lev-
el required by the schedule occur. The steady-states are

denoted as Xs1; Xs2, and Xs3, with corresponding stability
regions Xq1

; Xq2
, and Xq3

. In the figure, it is assumed that the

process is driven to each steady-state and then operated very
close to that steady-state for some period of time. This means

Figure 2. Illustration of intersection of level sets corre-
sponding to each steady-state where the
process schedule is met.
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that at t1, the state at t1 (which is the steady-state correspond-
ing to the prior desired value of the scheduled states) must
be within the stability region of the new steady-state (e.g.,
Xs2 2 Xq1

and Xq2
, and Xs3 2 Xq2

and Xq3
) to ensure feasibili-

ty and closed-loop stability of the process.
Ideally, the LEMPC would be updated to start driving the

process state toward the next steady-state in the schedule at
the switching time ts at which it is desired to start producing
xi;desired; i51; . . . ; ns, at the values corresponding to this new
steady-state (i.e., ideally, t15ts, where ts is defined as the time

at which it is desired that the LEMPC begins to drive the
closed-loop state toward a new steady-state at which a new
production level in the schedule is met, and t1 is the time at
which the LEMPC is actually reformulated to drive the
closed-loop state to the new steady-state). However, because

feasibility of the optimization problem at t1 is ensured only if
xðt1Þ 2 Xq1

and Xq2
, it is only possible for t15ts when the

LEMPC knows ts far enough in advance to be able to drive the
state into Xq1

\ Xq2
before ts. This is because LEMPC allows

time-varying operation, so without the LEMPC taking a spe-
cific action to drive the closed-loop state into Xq1

\ Xq2
by ts,

there is no guarantee it is within this region at ts. If, for exam-
ple, the LEMPC has no knowledge of ts until ts, the LEMPC
may need to drive the state into Xq1

\ Xq2
after ts, so that t1

may be greater than ts and thus there may be periods of time
during which it is desired to start operating the process at the

next xi;desired; i51; . . . ; ns, but this cannot yet occur while
maintaining controller feasibility. More will be said regarding
a method for choosing Xq2

to ensure that a region Xq1
\ Xq2

exists into which the LEMPC can be guaranteed to drive the
process state in finite time in the section “Feasibility and sta-

bility analysis.” The requirement of overlapping level sets can
be relaxed in practice, but feasibility and closed-loop stability
then can no longer be guaranteed.

Scheduling and operations considerations with EMPC
for schedule management

Several practical considerations for EMPC for schedule

management that must be accounted for either at the schedul-
ing level or at the operations level when developing the set of
steady-states, Lyapunov-based control laws, and level sets to
send to the controller are as follows:

• The EMPC for schedule management requires that a
region exists in which the EMPCs designed for both the cur-
rent and next steady-states are both feasible, and that the state
can be driven by the EMPC for schedule management into this
region.

Notwithstanding that it may be possible for a variety of
EMPC formulations to meet this criterion in practice even if it
is not easily provable theoretically, for provable feasibility of

the EMPC scheduling problem, the LEMPC formulation
should be used and the feasibility issue should be addressed at
the scheduling or operations level, depending on the difference
between the time scale on which the production level required
by the schedule changes and the time scale of the process

dynamics, and depending on the impact of the transient on the
profit of the process.

When the process dynamics are determined to be on a time
scale comparable to the time scale on which the production
level required by the schedule changes, or the manner in which

transitions between regions of state-space occur is determined
to significantly affect the process economics in a manner that
would alter the schedule chosen if it were taken into account,

it may be desirable to include considerations related to the pro-
cess dynamics and level set intersections in the scheduling
problem. The scheduling problem is often formulated as a

mixed-integer linear program, but could be modified to include
some representation of level set intersection (e.g., if the level
sets are determined a priori, then constraints could be devised
that permit the next steady-state in the schedule to only be one

for which the level sets intersect; this ensures that, for exam-
ple, a schedule developed for the steady-states in Figure 2
does not request the production of Xs1 followed immediately
by the production of Xs3 because Xq3

does not contain Xs1). It

may be that one or more of the level sets that are found for the
steady-states corresponding to demanded products do not
intersect any of the other level sets corresponding to demanded
products. In this case, it may be necessary to develop addition-
al state-space points which do not correspond to any market-

able product but which have level sets that allow for any gaps
in state-space where the level sets of the demanded products
do not intersect to be bridged. If this is required, such interme-
diate points can also be considered for inclusion in the sched-

uling problem, possibly with constraints that try to limit the
time spent approaching these intermediate points or the num-
ber of intermediate points approached in the schedule. For
example, if a schedule requires production only of Xs1 and Xs3

in Figure 2 without the production of Xs2, then it is not neces-
sary to use the LEMPC for schedule management with the
desired steady-state at Xs2 all the way until the state reaches
Xs2. Rather, the LEMPC with the desired steady-state at Xs2

can be applied for an amount of time that ensures that the
closed-loop state enters Xq3

, and then the LEMPC with the
desired steady-state at Xs3 can be applied. Because it may be
necessary, for example, to produce a product that is not in

immediate demand to transition between the production of two
more heavily demanded products, accurate forecasting of data
used to set the schedule (e.g., demand and pricing) sufficiently
long in advance are essential for determining an appropriate

schedule for this LEMPC strategy, so that frequent changes to
the schedule (i.e., making new schedules for the process/re-
scheduling production) can be avoided, particularly if the
changes require intermediate products to be produced. The

scheduling problem may also include a representation of the
process dynamics if it is on a time scale comparable to that on
which the production level required by the schedule changes,
to choose the best schedule accounting for the time spent with

off-specification production due to the process dynamics.
If the process dynamics are much faster than the time scale

on which scheduling changes occur, it may be decided to rele-
gate the issue of moving between level sets to an operational

issue after the schedule is determined. Thus, a standard sched-
uling problem can be solved without knowledge of the process
dynamics or intersecting level sets, but then before sending the
steady-states corresponding to the various desired production

levels to the controller, the set of steady-states can be evaluat-
ed to determine whether their level sets intersect or whether it
is necessary to add additional intermediate steady-states to the
operating procedure as noted in the prior paragraph to drive

the state through state-space without losing controller feasibili-
ty. If the time of switching from each production level to the
next is known, this can also be considered in the development
of the set of steady-states used in the operating procedure so

that the production stays as close to the target values that were
determined by the scheduling problem for the lengths of time
determined by this problem as possible.
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• EMPC for schedule management in general cannot
guarantee that scheduled states are at their values for all
time.

Although this may at first seem to be a limitation of the
method, when the production level required by the schedule
is changed under any controller, there will be some length of

time in which the process state is transitioning to its new
value at a speed limited by the process dynamics. In addi-
tion, if it is required to drive the state into the intersection of

the level sets for the prior and new steady-states (e.g., ts is
not known a priori), there will be some time required after
the new production level required by the schedule is

requested not only to move to the new production level, but
also to move toward the region of intersection, and this time
cannot be known a priori without closed-loop simulations.

In general, the soft constraint formulation offers the flexibili-
ty to highly penalize the deviation of the states from the
scheduled values so that the EMPC will calculate control
actions that attempt to move the process state as quickly as

possible to the new steady-state, given the process dynamics.
In the presence of disturbances, there is no controller that
can keep the values of some or all states at precise values

for all times, but high penalties would again cause an EMPC
for schedule management to drive the predicted state (and
ideally the actual closed-loop state) toward a region where

the schedule is met quickly. For the LEMPC for schedule
management, because the feasible region is characterizable a
priori, closed-loop off-line simulations can be used to esti-

mate a worst-case rate of approach to the next scheduled
steady-state. If there are concerns regarding the time that the
process is not operating with the states at the schedule due

to disturbances, simulations can be performed to evaluate the
effect of the choice of ci on product quality in the presence
of the expected bounded disturbances.

• EMPC for schedule management requires a steady-state
to be chosen for the process among many where the values
of only the first ns states are specified.

The steady-state to operate around may be chosen as the

economically optimal steady-state at which the schedule is
met, subject to practical constraints (e.g., limitations on the
temperature for safety reasons).

• The LEMPC for schedule management has tuning param-
eters aWi and ci, i51; . . . ; ns, which must be determined before
the LEMPC can be utilized and which will affect both schedule
tracking and process economic optimization.

The choice of aWi affects how fast the closed-loop system

state approaches a desired production level. Larger values of
aWi drive the scheduled states more quickly to their scheduled
values (they more strongly emphasize meeting the schedule

compared to optimizing the process economics) than do
smaller values of aWi, which may cause the scheduled states to
approach their value more slowly because the economic mea-

sure in the objective function would have more of an effect on
the LEMPC solution (smaller values of aWi more strongly
emphasize process economics compared to meeting the sched-

ule). Depending on the product that corresponds to a given
operating point in the production schedule, the weights may be
different for one scheduled production level than for another

based on these trade-offs. In addition to accounting for process
economics and the schedule, the selected value of aWi should
prevent unfavorable operating strategies. For example, it may
not be favored in some cases to have a very large aWi if that

causes large changes in the inputs calculated by the LEMPC

between two sampling periods, which may be undesirable for
many applications due to the potential of such an operating
strategy to cause, for example, actuator wear.

The rate at which the scheduled states approach the sched-
ule for a given value of aWi, and the types of undesirable oper-
ating strategies that may be set up for various values of aWi,
will depend on factors such as the process dynamics and the

magnitude of the economics-based term in the objective func-
tion. For this reason, closed-loop simulations from a variety of
initial conditions and with different values of aWi can be help-
ful in assessing the appropriate values of aWi to achieve the

desired trade-offs. The contractive constraint of Eq. 8f ensures
that the LEMPC for schedule management will drive the
closed-loop state into a region where the magnitude of each
scheduled state is within ci of its scheduled value regardless of
the magnitude of aWi. However, the role of aWi is to provide a

means for improving the rate of approach of the scheduled
states to their scheduled values when desired. Larger values of
aWi (higher penalty on schedule deviations than on economic
sub-optimality) may also help prevent the LEMPC from calcu-

lating control actions that drive the xi, i51; . . . ; ns, off of the
scheduled values to improve the process economics.

With regard to the choice of ci, because it is impossible for
any controller (not only the LEMPC for schedule manage-

ment) to maintain the process states exactly at a desired value
for all times due to both process disturbances and the time
required to move between different production levels when
requested by the schedule, we assume that deviations of the

scheduled state variables from their targets are acceptable as
long as the overall product to be sold from the process (which
may be a time-averaged quantity if there are mixing or blend-
ing steps later in the process) has an acceptable quality (i.e., it

is marketable because its quality is within an acceptable range
of values around a target production level). To keep the pro-
cess states sufficiently close to their scheduled values (by acti-
vating Mode 2 when jxij � ci; i51; . . . ; ns) in an effort to

maintain the overall product quality within an acceptable
range, the tuning parameter ci in the LEMPC for schedule
management can be adjusted. However, the relationship
between ci and the overall product quality is not straightfor-

ward (unless the profit potential of EMPC is severely reduced
as will be described below). The reason for this is that the con-
tractive constraint is only guaranteed to drive the closed-loop
state from one Lyapunov level set into a Lyapunov level set

closer to the steady-state; it makes no guarantees regarding
whether a specific state xi, i51; . . . ; ns, will move closer to or
further from its steady-state value within a sampling time, but
only guarantees that in finite time the Lyapunov level set

shrinks and thus the value of xi will eventually move closer to
its steady-state value. This means that when the magnitude of
the deviation of a scheduled state variable from its steady-state
value is more than ci, which activates Mode 2 operation of the

LEMPC for schedule management, it is not known a priori
whether the value of xi will immediately evolve toward its
steady-state value or at first move further from this value. The
only means for ensuring that each xi, i51; . . . ; ns, remains

within a specific range of values (after it reaches the schedule;
the magnitude of ci is not used to drive the closed-loop state
toward the steady-state more quickly at a change in the pro-
duction level required by the schedule as aWi can) is to define

the range of values for each scheduled state, and then to set
each ci to the maximum magnitude that each xi can take while
maintaining the closed-loop state within a Lyapunov level set
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where the required range of values for every xi is satisfied
even in the presence of disturbances (this corresponds to the
case that ci is defined based on product quality constraints).

This Lyapunov level set may be small, reducing the region in
state-space within which the LEMPC for schedule manage-
ment can maximize the process economics utilizing the
unscheduled states. This is also an unnecessarily restrictive

method of achieving the desired product quality; for example,
short excursions of the instantaneous product concentration
above its minimum or maximum time-averaged value may still

result in an acceptable time-averaged concentration as long as
the instantaneous product concentration is below the limits on
its range at other times. Less restrictive process operation due
to such considerations may improve the process profit by

allowing greater flexibility in the operating strategy, while still
resulting in an overall acceptable product.

Based on this, it is in general not desirable to set ci based on

the product quality constraints, but instead to determine which
values of ci cause the product quality constraints to be met.
This determination can be made using process data and
closed-loop simulation results for different values of ci. This

information can indicate which combination of ci, i51; . . . ; ns,
values provides optimum process economics by allowing the
unscheduled states to move most freely around the steady-

state, while still resulting in an overall acceptable product
quality (i.e., this analysis evaluates the effect of ci on product
quality to determine a suitable value of this parameter). Pro-
cess disturbances should also be accounted for in this analysis.

If ci is very small relative to regular deviations of the sched-
uled states from their scheduled values due to process distur-
bances, the Mode 2 constraint may be triggered almost
constantly because of process disturbances, which would

enforce steady-state operation and not allow for the possible
economic benefits of LEMPC for schedule management. It
may be desirable to choose ci in a manner that prevents Mode

2 from activating regularly due to common disturbances if this
does not significantly affect the product quality.

An implication of the above analysis is that to use the
LEMPC for schedule management, the desired product quality

must, at minimum, be met during consistent operation within
Xqmin

. If it is not, the LEMPC sampling period can be
decreased to decrease Xqmin

(although the upper bound on the

disturbances also affects the minimum size of Xqmin
, and that

cannot be adjusted).29

The above heuristics can be utilized to help choose values
of aWi and of ci either during the scheduling phase or the oper-

ations phase. If strict quality requirements are being set by the
schedule (or would be desirable but it is unclear whether they
can be achieved), it may be necessary to evaluate at the sched-

uling level whether the proposed quality requirements are rea-
sonable given the process dynamics and expected process
disturbances by utilizing closed-loop simulations with differ-
ent values of aWi and of ci to determine whether the schedule

can be met before it is sent to the operations level. If the quali-
ty requirements are believed to be reasonably achievable, then
aWi and ci can be evaluated for each production level in the
schedule at the operations level after the schedule has been set.

• The time length for which a given production rate
should be maintained is limited by the closed-loop process
dynamics under the LEMPC for schedule management.

The LEMPC for schedule management drives the closed-

loop state from one scheduled state to the next at a rate that
depends on the process dynamics, state and input constraints,

and the objective function (i.e., this rate is a closed-loop
property). The changes in the desired values of the scheduled
states corresponding to desired products cannot be more rap-
id than the rate at which the closed-loop state is driven
between the production levels. If rapid changes in the
desired values of the scheduled states are desirable, it may
be necessary to evaluate whether the closed-loop process
dynamics can be made fast enough to move between produc-
tion levels in the schedule at the desired rate. This can be
accomplished at the scheduling level by tuning aWi, incorpo-
rating closed-loop dynamics within the scheduling problem
to evaluate whether the expected rate of approach to the
next desired production level in the schedule under the
LEMPC is sufficient and cause the schedule to be set based
on the closed-loop process dynamics, or by assuming the
worst-case rate of approach to the next desired production
level in the schedule and using this as a hard constraint on
the time required for each production level in the schedule
to be maintained.

Feasibility and stability analysis

In this section, we prove feasibility and closed-loop stability
of a process under the proposed LEMPC for schedule manage-
ment. We first present two propositions required for the feasi-
bility and stability proofs, and then present a theorem on the
feasibility and stability results.

Proposition 1. (cf. Refs. 3 and 42). Consider the systems

_xaðtÞ5f ðxaðtÞ; uðtÞ;wðtÞÞ (9a)

_xbðtÞ5f ðxbðtÞ; uðtÞ; 0Þ (9b)

with initial states xaðt0Þ5xbðt0Þ 2 Xq. There exists a K func-
tion fWð�Þ such that

jxaðtÞ2xbðtÞj � fWðt2t0Þ (10)

for all xaðtÞ; xbðtÞ 2 Xq and all wðtÞ 2 W with

fWðsÞ5
Lwh
Lx
ðeLxs21Þ (11)

Proposition 2. (cf. Refs. 3 and 42). Consider the Lyapu-
nov function Vð�Þ of the nominal system of Eq. 1 under the
controller h(x). There exists a quadratic function fVð�Þ such
that

VðxÞ � Vðx̂Þ1fVðjx2x̂jÞ (12)

for all x; x̂ 2 Xq with

fVðsÞ5a4ða21
1 ðqÞÞs1Mvs2 (13)

where Mv is a positive constant.

Theorem 1. (cf. Ref. 3). Consider the system of Eq. 1 in
closed-loop under the LEMPC design of Eq. 8 based on a
controller h(x) that satisfies the conditions of Eq. 2. Let �w

> 0; D > 0; q > qe � qmin � qs > 0 satisfy

qe � q2fVðfWðDÞÞ (14)

and

2a3ða21
2 ðqsÞÞ1L

0

xMD1L
0

wh � 2�w=D (15)

If xðt0Þ 2 Xq and N � 1 where
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qmin 5max fVðxðt1DÞÞ : VðxðtÞÞ � qsg (16)

then the state x(t) of the closed-loop system is always bound-
ed in Xq and is ultimately bounded in Xqmin

.

Proof. In this proof, we examine feasibility and closed-
loop stability of the LEMPC of Eq. 8 for operation around
one steady-state corresponding to one set of desired values
of the scheduled states.

We first discuss the feasibility of the LEMPC of Eq. 8. This
LEMPC is guaranteed to be feasible at all times if the state is
maintained in Xq, as will be subsequently shown, because the
Lyapunov-based control law implemented in sample-and-hold
is a feasible solution (i.e., u5hðxðtkÞÞ; t 2 ½tk; tk11Þ and
u5hð~xðtjÞÞ; t 2 ½tj; tj11Þ; j5k11; . . . ; k1N21, is always a
feasible solution). The use of both the Mode 1 and Mode 2
constraints at once poses no feasibility issues, because the
Lyapunov-based controller implemented in sample-and-hold is
a feasible solution to both constraints. This feasibility, howev-
er, is only ensured when the initial value of the state at the
time t0 at which the LEMPC of Eq. 8 first begins to be used is
within Xq because the Lyapunov-based controller h(x) imple-
mented in sample-and-hold is only guaranteed to maintain
closed-loop stability of states within Xq.

Closed-loop stability is guaranteed at all times by the
LEMPC formulation of Eq. 8. Before t0, the state is always
guaranteed to be within Xq from the use of the Mode 1 and
Mode 2 constraints when the state leaves Xqe

using the same
proof as in Ref. 3. The requirement that the contractive con-
straint be enforced whenever jxiðtkÞj � ci ensures that the
Lyapunov function of the closed-loop state decreases when-
ever the state leaves this bound, which ensures that the state
can always be driven back into a region where this bound is
met in finite time. Furthermore, the contractive constraint
always forces the state to Xqmin

, so after t0, it is guaranteed
to be driven into this small region containing the origin. �

The fact that feasibility of the LEMPC design of Eq.
8 hinges on whether xðt0Þ 2 Xq shows that when there is a
plan to switch the production level to the next that is required
in the schedule and thus to adjust the V, Xqe

; Xq, h(x), f, and
origin used in Eq. 8, the state at the time t1 at which the
LEMPC is reformulated for the new production level in the
schedule must be within the stability region of the new steady-
state. In general, it is difficult to characterize the points that
may be accessed by the closed-loop state under LEMPC with-
in Xq without extensive closed-loop simulations from various
initial conditions. The only region within the stability region
of the first steady-state in which it is guaranteed that a process
can be forced to operate is Xqmin

, such that if the state is
always driven into this region first and the new stability region
overlaps this region, it can be guaranteed that a feasible solu-
tion to the new problem will exist. Another advantage of
including Xqmin

within the overlap of the level sets is that any
prior scheduled value of the state can be requested in the
future and can be reached, since each stability region includes
both Xqmin

of the set-point that it is designed with respect to,
and also that of at least one other production level in the
schedule. This motivates the following theorem, which charac-
terizes the conditions under which the LEMPC formulation of
Eq. 8 can be updated to drive the state to new values of the
scheduled states without losing controller feasibility at t1, both
when ts is known a priori and when it is not. In this theorem,
the time length th is defined as an upper bound on the worst-

case time to drive the closed-loop state from any initial condi-
tion in the stability region into Xqmin

using the LEMPC (Mode

2 operation). Although the actual worst-case time to drive the
closed-loop state from any initial condition in Xq into Xqmin

is
a closed-loop property (and thus cannot be evaluated based on

the open-loop process dynamics alone), we will define a
worst-case upper bound on this time to be th in the following
theorem using the results from Ref. 3. Specifically, in the

proof of Theorem 1 in Ref. 3, a worst-case upper bound 2�w=
D on _V under LEMPC is developed, where �w is a positive
constant (defined in Theorem 1 above) related to the process

dynamics, disturbance magnitude, sampling period, and
Lyapunov-based controller properties. This bound is not nec-
essarily tight, but it can allow the worst-case time th to be

defined. To determine the time required to decrease V from its
value for any initial condition in Xq to its value in Xqmin

, the
worst-case value _V52�w=D can be assumed. Then, this bound

can be integrated from V5q at t050 to V5qmin at t. The result
of solving for the time at which V5qmin assuming this worst-

case rate is th5
2Dðqmin 2qÞ

�w
. It is notable that from the proof of

Theorem 1 in Ref. 3, the time th will also be a worst-case
upper bound on the time required by a Lyapunov-based con-

troller implemented in sample-and-hold to drive the closed-
loop state into Xqmin

from any initial condition in Xq.

Theorem 2. Consider the process of Eq. 1 operated under
the LEMPC of Eq. 8 formulated with respect to a steady-
state having stability region Xq1

with Xqmin
� Xq1

where
Xqmin

is defined as in Eq. 16 for the steady-state with stabili-
ty region Xq1

. If also Xqmin
� Xq2

and ts is known a priori
such that t0 can be chosen as t05ts2th, then xðtsÞ 2 Xqmin

and the LEMPC of Eq. 8 formulated with respect to a
steady-state having stability region Xq2

is feasible at t15ts.
If ts is not known a priori, then if t05ts and t15ts1th and
Xqmin

� Xq1
and also Xqmin

� Xq2
; xðt1Þ 2 Xqmin

and the
LEMPC of Eq. 8 formulated with respect to a steady-state
having stability region Xq2

is feasible at t1.

Proof. The proof of this theorem relies on many concepts
from the proof of Theorem 1 above. Specifically, if ts is
known a priori and t05ts2th, then if the LEMPC were

applied, the process state would be within Xqmin
� Xq1

\ Xq2

by ts, regardless of the location of the initial state in Xq1

from the definition of th. The Mode 2 constraint of Eq. 8f,

when implemented repeatedly, ensures that the applied con-
trol action drives the closed-loop state into Xqmin

in a finite
time. Thus, if the Mode 2 constraint begins to be imple-

mented repeatedly at t0, the closed-loop state under the
LEMPC of Eq. 8 will enter Xqmin

by ts and then since

xðtsÞ 2 Xq2
, from Theorem 1, the LEMPC for the next

steady-state will be feasible at ts. Using similar logic, if ts is
not known a priori but the Mode 2 constraint is applied

repeatedly starting at t05ts, then by t15ts1th, the closed-
loop state has entered Xqmin

� Xq2
, and the LEMPC for the

next steady-state is then feasible by Theorem 1. �

Remark 5. If the worst-case time th is difficult to assess
using the bound in Ref. 3, an estimate of the time th can be
obtained with closed-loop simulations under the Lyapunov-

based controller using initial conditions throughout the sta-
bility (feasible) region of the LEMPC for schedule manage-
ment, but this may not provide the true worst-case time

since the LEMPC may take longer to drive the closed-loop
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state into Xqmin
than would the Lyapunov-based controller.

The bound th bounds the time required to drive the closed-

loop system from any initial condition in Xq into Xqmin
under

both the LEMPC and under h(x), but it does not state wheth-

er the time required to drive the closed-loop state from a

given initial condition in Xq into Xqmin
will be less under

LEMPC or under the Lyapunov-based controller. Because

the results of Theorem 2 are based on a worst-case scenario,

they are conservative. It is possible to require a less restric-

tive condition on the time at which the change in the

LEMPC formulation to drive the closed-loop state toward

the next production level required by the schedule occurs

(e.g., that any time after ts that process monitoring logic

detects that the closed-loop state has entered Xq1
\ Xq2

, the

steady-state corresponding to a production level in the sched-

ule is changed within the LEMPC). However, to make guar-

antees regarding the time at which the LEMPC can be

adjusted to reflect the new production level without losing

controller feasibility, more rigorous conditions like those in

Theorem 2 are required.

Application to a Chemical Process Example

In this section, we provide a chemical engineering example

to illustrate the application of the proposed EMPC with pro-

duction schedule management. Specifically, a non-isothermal

continuous stirred tank reactor (CSTR) where an irreversible

second-order exothermic reaction takes place is considered.

The reactor converts the reactant A to the product B (A! B).

An inert solvent containing the reactant A with a concentration

of CA0 is fed to the reactor at a feed temperature of T0. The

CSTR is covered with a heating jacket that supplies or

removes heat from the reactor at a heat rate Q. The reactor has

a constant volume of V, and the volumetric flow rate of the

entering and exiting streams is F. The liquid has a constant

density of qL and a heat capacity of Cp. The CSTR first-

principles dynamic model derived from mass and energy bal-

ances for this process is of the following form:

dCA

dt
5

F

V
ðCA02CAÞ2k0e2E=RTC2

A (17a)

dCB

dt
5k0e2E=RTC2

A2
F

V
CB (17b)

dT

dt
5

F

V
ðT02TÞ2 DHk0

qLCp
e2E=RTC2

A1
Q

qLCpV
(17c)

where CA and CB are the reactant and product concentrations.

The temperature in the reactor is T and the reaction pre-

exponential factor is k0. E and DH are the activation energy

and the enthalpy of the reaction, respectively (process parame-

ter values are listed in Table 1). The CSTR is operated around

an open-loop asymptotically stable steady-state that occurs at

½CAs CBs Ts�5½1:22 kmol=m3 2:78 kmol=m3 438:0 K�

which corresponds to an input vector of ½CA0s Qs�5½4:0
kmol=m3 0:0 kJ=h�.

The inlet concentration CA0 and the heat supply/removal

rate Q are the manipulated inputs which are upper and lower

bounded by physical limitations on actuators as follows: 0:5
� CA0 � 7:5 kmol=m3 and 25:03105 � Q � 5:03105 kJ=h.

The CSTR state and input vectors in deviation variable form

are defined as follows: xT5½CA2CAs CB2CBs T2Ts� and

uT5½CA02CA0s Q2Qs�. In the simulations below, the process

model of Eq. 17 was integrated numerically using the explicit

Euler method with an integration time step of hc51024 h. The

control objective of the LEMPC is to minimize the heat supply

and removal rate while meeting a desired production schedule

of the desired product B (we assume full state feedback in this

example such that a measurement of the concentration of the

product B is available at each sampling time, i.e., we assume

that the concentration of the product B is a measured output of

the process that is required to meet the schedule and is also a

state variable). Therefore, the economic measure used as the

LEMPC cost function is given by:

1

ðtk1N2tkÞ

Z tk1N

tk

½aQðsÞ21bðCBðsÞ2CBdesired
Þ2�ds (18)

where a and b are weighting constants. Owing to practical

considerations, we consider that a limited amount of reactant

material is available for a given operating period of tp51 h.

Therefore, the time-averaged concentration of reactant fed to

the reactor over the operating period should satisfy the follow-

ing material constraint:

1

tp

Z tp

0

u1ðsÞ ds50:0 kmol=m3: (19)

To ensure closed-loop stability of the process considered, a

Lyapunov-based controller is designed. In this example, only

one stability region and Lyapunov-based controller, designed

with respect to the open-loop asymptotically stable steady-

state described above, was used, even when the steady-state

corresponding to a production level in the schedule is changed

within the LEMPC. As will be demonstrated below, there

were no feasibility or closed-loop stability issues for the simu-

lations performed, illustrating that the regions of attraction for

the steady-states corresponding to the various production lev-

els were overlapping and that the closed-loop state was main-

tained within each region of attraction for the steady-state

corresponding to a given production level during the duration

of production at that level. An estimate of the region of attrac-

tion can be obtained utilizing the Lyapunov function estab-

lished under the Lyapunov-based controller. In this example,

Eq. 17b indicates that the concentration of the desired product

CB is affected by the concentration of the reactant CA and the

temperature T but not vice versa. Since the inputs of the sys-

tem affect the reactant concentration and temperature differen-

tial equations directly in Eq. 17a and Eq. 17c, the stability

analysis of the closed-loop system can be established on the

basis of the ðCA; TÞ subsystem. Therefore we define a reduced

state vector as x̂T5½CA2CAs T2Ts�. The Lyapunov-based

controller design can be represented as a vector with two com-

ponents: hTðx̂Þ5 h1ðx̂Þ h2ðx̂Þ½ �. The inlet concentration control

law h1ðx̂Þ was set to its steady-state value (h1ðx̂Þ5
0:0 kmol=m3) to meet the material constraint of Eq. 19. The

stabilizing Lyapunov-based control law for the rate of heat

input h2ðx̂Þ is the following43:

Table 1. Parameter Values of the CSTR

T05300 K F55:0 m3=h
V51:0 m3 E55:03104 kJ=kmol
k058:46 3 106 m3=h kmol DH521:15 3 104 kJ=kmol
Cp50:231 kJ=kg K R58:314 kJ=kmol K
qL51000 kg=m3

1902 DOI 10.1002/aic Published on behalf of the AIChE June 2017 Vol. 63, No. 6 AIChE Journal



h2ðx̂Þ5 2
L~f V1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L~f V21LgV4

q
LgV

; if LgV 6¼ 0

0; if LgV50

8>><
>>: (20)

L~f V and LgV denote the Lie derivatives of the Lyapunov func-
tion Vðx̂Þ with respect to ~f ðx̂Þ and gðx̂Þ, respectively, where
~f ðx̂Þ signifies the terms in Eqs. 17a and 17c (in deviation
form) not including the inputs, and gðx̂Þ signifies the terms
multiplying the inputs in those equations. A quadratic Lyapu-
nov function of the form Vðx̂Þ5x̂TPx̂ was used to characterize
the stability region of the closed-loop system with the follow-
ing positive definite P matrix:

P5
1060 22

22 0:52

" #
(21)

Extensive closed-loop simulations were conducted under the
Lyapunov-based controller hðx̂Þ. Specifically, to verify that
this Lyapunov-based controller was indeed asymptotically sta-
bilizing for the nonlinear system when implemented continu-
ously (which is required for defining the stability region by

Eq. 2), a region around the steady-state in state-space was dis-
cretized and then the value of the time-derivative of the Lya-
punov function along the trajectories of Eqs. 17a and 17c
under hðx̂Þ was evaluated at each of the state-space points
within the discretization. It was determined from these simula-
tions that a region around the origin could indeed be found
within which _V is negative using this Lyapunov-based control-
ler (i.e., the Lyapunov-based controller was shown to be
asymptotically stabilizing), and a level set of the Lyapunov
function within which _V < 0 (based on the discretization) was
selected as the stability region of the closed-loop system. The
regions needed in designing stability constraints in the
LEMPC were selected as Xq with q5368 and Xqe

with
qe5340. In the simulation below, the LEMPC design had a
sampling period of D50:1 h and a prediction horizon of
N 5 10.

It is assumed that the production schedule requires a change
in the concentration of the desired product CB every 2 h (i.e.,
CBdesired

53 kmol=m3 for the first 2 h of operation, 1:5
kmol=m3 for the next two, then 2:5; 2:7, and 2 kmol=m3 for
times between 4 and 6 h, 6 and 8 h, and 8 and 10 h, respective-
ly). The proposed LEMPC scheme was applied to the CSTR

Figure 3. Concentration of product B in time for the CSTR of Eq. 17 under the LEMPC of Eq. 8 (without the use of
c to activate Mode 2) with the material constraint of Eq. 19, following the production schedule with
changes in the required value of CB every 2 h.

Figure 4. Input trajectories for the CSTR of Eq. 17 under the LEMPC of Eq. 8 (without the use of c to activate
Mode 2) with the material constraint of Eq. 19, following the production schedule with changes in the
required value of CB every 2 h.
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of Eq. 17 to produce CB concentrations that meet the desired

schedule. The CSTR was initiated from the steady-state and
the LEMPC optimization problem at each sampling time was

solved using the interior-point solver IPOPT.44 The weighting
coefficients in the objective function were chosen to be a 5 1

and b510; 000 to balance the difference in magnitude between
Q and CB2CBdesired

. Because it was found that the objective

function drove the value of CB to the scheduled value without
the need to impose the Mode 2 constraint, the condition jCB2

CBdesired
j � c was not utilized in the LEMPC. The resulting con-

centration of the output (CB) is presented in Figure 3, which

demonstrates the ability of the proposed scheme to achieve the
desired production schedule while taking into account allow-

able trajectories from the process dynamics.
The closed-loop input trajectories for the CSTR under the

LEMPC throughout the 10 h of operation are presented in Fig-

ure 4. The trajectories show that the inputs were able to meet
the material constraint while driving the value of CB to CBdesired

.

They also show that the use of heating (Q) was effectively
minimized as required by Eq. 18, with u2 remaining at low

values for the majority of the time of operation. The trajecto-
ries of the reactant concentration and reactor temperature in

deviations from the steady-state values (CA2CAs; T2Ts) are
presented in Figure 5. This figure shows that T and CA evolved

in a time-varying fashion, even after CB reached CBdesired
, to

maintain CB at its required value while meeting the material

constraint and minimizing the objective function.
To present the ability of this scheme to maintain the process

within the stability region, the state-space trajectories of the

reactant concentration and reactor temperature in deviations
from the steady-state values (CA2CAs;T2Ts) are presented in

Figure 6. The Lyapunov function values throughout the 10 h
of operation are presented in Figure 7.

The simulations discussed above manipulated two inputs

while maintaining the time-averaged inlet concentration at its
steady-state value. The traditional approach for achieving the

desired production schedule, when the time-averaged inlet
concentration is constrained to equal the steady-state value, is

to fix the inlet concentration to its steady-state value CA0s and
manipulate the heat input to achieve the desired schedule. This

can lead to using more heat to achieve the same desired sched-
ule since the problem involves only one manipulated input.

Using the same optimization problem formulation as in the

simulations above (with the same objective function and start-
ing conditions) except with u1 set to CA0s, the total heat used
in producing the first schedule for the first 2 h was
1:13783106 kJ. However, when both inputs are manipulated
to achieve the desired schedule, as demonstrated in the simula-
tions above, the total heat used for producing the first schedule
for the first 2 h was 1:11763106 kJ which requested 2% less
heat usage. Even though the total amount of reactant fed to the
reactor throughout the 2 h of operation was the same in both
cases, allowing the inlet concentration to be manipulated in a
time-varying manner introduces extra flexibility that was uti-
lized by the EMPC to minimize the objective function even
further. Introducing more flexibility by allowing more inputs
to be manipulated in a time-varying manner and also optimiz-
ing economics with respect to a subset of the state vector can
in general enhance the economic performance. Although for
this example the increase in the number of manipulated inputs

Figure 5. State trajectories for the CSTR of Eq. 17 under the LEMPC of Eq. 8 (without the use of c to activate
Mode 2) with the material constraint of Eq. 19, following the production schedule with changes in the
required value of CB every 2 h.

Figure 6. The state-space profile for the closed-loop
CSTR of Eq. 17 under the LEMPC of Eq.
8 (without the use of c to activate Mode 2)
with the material constraint of Eq. 19 follow-
ing the production schedule for the 10 h
operating period starting at ½CAð0Þ;Tð0Þ�5
½1:2 kmol=m3;438 K�.
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resulted in only 2% economic benefit, using an EMPC for
schedule management with multiple manipulated inputs can
present higher economic performance in plants involving
many more states where the desired production schedule is
requested only over a subset of the entire state vector.

In the simulation presented above, we only imposed the Mode
2 constraint if the closed-loop state exited Xqe

because, as dem-
onstrated through the results in Figure 3, the high penalty on the
deviation of the value of CB from its steady-state value in the
objective function (Eq. 18) was effective at driving the concen-
tration of the product B to its scheduled value and maintaining it
there with every change in the production level required by the
schedule, without the need to utilize the Mode 2 constraint to
enforce this tracking capability. In addition, there were no distur-
bances in this simulation to move the closed-loop state away
from the schedule or out of Xqe

, so the Mode 2 constraint was
never activated. To demonstrate the application of the Mode 2
constraint, another simulation that involved significant plant dis-
turbances was considered. Specifically, we considered the case
where the production schedule required a change in the concen-
tration of the desired product CB from CBdesired

53 kmol=m3 to
2:78 kmol=m3 for the next 3 h. The CSTR was initiated from

½CAs CBs Ts�5½1 kmol=m3 3 kmol=m3 468:37 K� and no dis-

turbances were imposed in the first hour of operation. After that,

we implemented a constraint of the form of Eq. 8f requiring that

the closed-loop state stay at the scheduled value of

CB52:78 kmol=m3, and that if it deviates from this value by

more than 0:01 kmol=m3 (i.e., c50:01), that the Mode 2

constraint should be activated to drive the closed-loop state back

toward the schedule. A bounded disturbance vector wT5½w1 w2

w3� was added to the right-hand side of Eq. 17 (stationary

bounded Gaussian white noise with variances

r151 kmol=m3; r251 kmol=m3, and r3540 K with bounds

jw1j � 1; jw2j � 1, and jw3j � 40). Disturbances were added

for the first 40 sampling periods of the second and third hours of

operation which caused the concentration of CB to be driven out-

side of the desired product quality in which case Mode 2 was

activated to drive the concentration of CB back inside c50:01.

The LEMPC was effective at maintaining CB near the scheduled

value of the state at all times as presented in Figure 8.

Remark 6. The LEMPC for schedule management is partic-

ularly beneficial when the economics-based term in the cost

function does not have its minimum at a steady-state of the pro-

cess (i.e., time-varying operation is more profitable than steady-

state operation). In traditional tracking MPC’s that are designed

to drive the closed-loop state to a steady-state, a quadratic cost

function is used. In this chemical process example, the cost

function has a quadratic form, but the process is not operated at

steady-state (Figure 5 shows that the unscheduled states evolve

dynamically after CB reaches the schedule), but in general non-

quadratic stage costs can be utilized within EMPC, which dis-

tinguishes it from tracking MPC (see, e.g., Refs. 45 and 46 for

examples of the implementation of EMPC’s for the same chem-

ical process utilized in the example in the present manuscript

but for which the objective function is a non-quadratic function

to be maximized).

Conclusion

In this work, the concept of improving process profit while

meeting a schedule with EMPC for production schedule man-

agement was proposed for nonlinear systems in which some of

the states are constrained to follow a certain desired produc-

tion schedule. Several formulations of EMPC for schedule

Figure 7. The Lyapunov function value as a function of time
for the closed-loop CSTR of Eq. 17 under the
LEMPC of Eq. 8 (without the use of c to activate
Mode 2) with the material constraint of Eq. 19 start-
ing at ½CAð0Þ;Tð0Þ�5½1:2 kmol=m3; 438 K� fol-
lowing the production schedule with changes
in the required value of CB every 2 h.

Figure 8. Concentration of product B in time for the CSTR of Eq. 17 under the LEMPC of Eq. 8 with the material
constraint of Eq. 19, following the desired production schedule of CB52:78 kmol=m3 with c50:01 subject
to plant disturbances starting at t51 h.
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management, with practical considerations, were discussed
with a focus on LEMPC with a soft constraint for the schedule
because for this formulation, sufficient conditions to guarantee
closed-loop stability of a process and feasibility of the control-
ler could be derived. A chemical process example demonstrat-
ed that the proposed approach can handle significant changes
in the desired values of the scheduled states throughout time
to achieve the requested production schedule while maintain-
ing closed-loop stability.
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