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ABSTRACT: In this work, we present a data-driven method-
ology to overcome actuator faults in empirical model-based
feedback control. More specifically, we introduce the use of a
moving horizon error detector that quantifies prediction errors
and triggers updating of the model used in the controller
online when significant prediction errors occur due to the loss
of one of the actuators. Model reidentification is conducted
online using the most recent input/output data collected after
the fault occurrence. The error-triggered online model
identification approach can be applied to overcome various
types of actuator faults, including the case where the value at which the actuator is stuck is known and the case where the value at
which the actuator is stuck is unknown. The proposed methodology is applied in an economics-based feedback controller,
termed economic model predictive control (EMPC), that uses a model obtained either from first-principles or from plant data to
optimize plant economics online. Two different chemical process examples are considered in order to demonstrate the
application of the proposed strategy. In the first example, application of the proposed scheme for the case where the value at
which the actuator is stuck is known is demonstrated through a benchmark catalytic chemical reactor example where the actuator
faults occur in the heat input causing shifts and variations in plant operating conditions. The second example demonstrates the
case where the value at which the actuator is stuck is unknown. The proposed scheme was able to compensate for the variations
in the plant caused by the actuator loss by obtaining more accurate models that are suitable for the new conditions and updating
them in the EMPC architecture. Improved economic performance was obtained as the updated models were able to capture the
process dynamics under the new conditions and provide better state predictions.

■ INTRODUCTION

Recent technological developments in the chemical and
petrochemical industries have led to the creation of complex
process networks to increase operational efficiency and meet the
increasing energy demand. One approach for maximizing the
efficiency of process operation is by integrating process control
and process economic optimization. Economic model predictive
control (EMPC) is a recent model-based feedback control
strategy that integrates process control with dynamic economic
optimization of the plant. EMPC promotes optimal time-varying
operation of the plant and can incorporate constraints that
ensure closed-loop stability (e.g., refs 1−4).
The first step in developing model-based feedback controllers

is to establish a dynamic model representing the process
dynamics, which can be done either from first-principles or
through system identification.5 While first-principles models
describe the underlying physicochemical phenomena and
develop detailed mathematical expressions for the observed
process mechanisms, obtaining such models is a challenging task
for complex and poorly understood processes. Instead, model
identification provides suitable alternative models to be used for
model-based feedback control when first-principles models are
too complex or unavailable. Over the past four decades, various
model identification methods have been developed to identify

linear and nonlinear models from process data alone (e.g., refs
5−7).
Subspace model identification (SMI) refers to a class of system

identification methods that are capable of identifying multiple-
input multiple-output (MIMO) models based purely on input/
output data.7−11 SMI methods are noniterative and account for
multivariable interactions.7,12 Well-recognized SMI methods
include numerical algorithms for subspace state-space system
identification (N4SID),12 the Canonical Variate Algorithm
(CVA),13 and the multivariable output error state-space
(MOESP) algorithm.8,10 SMI methods have been widely used
for industrial applications due to their reliability and numerical
stability.6,8,9,14 SMI methods have been used to provide models
for various model-based feedback control systems such as model
predictive control (MPC) and EMPC.11,15

A major problem that arises frequently in the chemical
industry is actuator faults, in which authority over one or more
actuators is lost. Detecting actuator faults and developing
advanced fault-tolerant controllers for chemical process systems
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has been previously considered (e.g., in refs 16 and 17).
However, the existing works have assumed the availability of a
first-principles model to develop fault-tolerant control method-
ologies. To date, to the best of our knowledge, no work on
formulating fault-tolerant control strategies using empirical
models has been considered. In the present work, we introduce
a data-driven approach to overcome actuator faults in Lyapunov-
based economic model predictive control (LEMPC) based on
linear empirical models, which can be extended to other model-
based feedback control designs. When actuator faults cause the
prediction errors between the predicted states from the linear
empirical model and the measured states to increase, model
reidentification is triggered online by a moving horizon error
detector if an error metric exceeds a prespecified threshold. The
proposed methodology is applied to two different chemical
process examples to demonstrate the ability of the detector to
indicate significant prediction errors when actuator faults occur
and update the model online in order to obtain more accurate
predictions. The first example considers the application of the
proposed scheme for the case where the value at which the
actuator is stuck is known in a benchmark catalytic chemical
reactor example where the actuator faults occur in the heat input
causing shifts and variations in plant operating conditions. The
second example demonstrates the application of the proposed
scheme for the case where the value at which the actuator is stuck
is unknown. Improved state predictions and economic perform-
ance were obtained by the proposed scheme as the updated
models were able to capture the process dynamics and
compensate for the variations in the plant caused by the actuator
loss.

■ PRELIMINARIES

Notation. The operator |·| is used to denote the Euclidean
norm of a vector. The transpose of a vector x is denoted by the
symbol xT. The symbol Ωρ represents a level set of a positive
definite continuously differentiable scalar-valued function V(x)
(Ωρ ≔ {x ∈ Rn: V(x) ≤ ρ}). A continuous function α: [0,a) →
[0,∞) is said to belong to class if it is strictly increasing and is
zero only when evaluated at zero. The symbol diag(a) denotes a
square diagonal matrix where the diagonal elements are the
components of the vector a. The sampling period is denoted as
Δ > 0.
Class of Systems. This work considers a broad class of

process systems described by first-order nonlinear ordinary
differential equations of the following form:

̇ =x t f x t u t w t( ) ( ( ), ( ), ( )) (1)

where x ∈ Rn, u ∈ Rm, and w ∈ Rl are the state vector of the
system, the manipulated input vector, and the disturbance vector,
respectively. The disturbance vector is assumed to be bounded
(i.e., |w(t)| ≤ θ for all t). Physical limitations on actuation energy
restrict the manipulated inputs to belong to the convex set U ≔
{u∈Rm: ui

min≤ ui≤ ui
max, i= 1, ...,m}. The function f is assumed to

be locally Lipschitz, and the origin is taken to be an equilibrium of
the nominal unforced system of eq 1 (i.e., f(0,0,0) = 0). We
assume that state measurements x(tk) are available at each
sampling time tk = kΔ, k = 0, 1, ....
This work is restricted to the class of stabilizable nonlinear

systems. Specifically, we assume the existence of a locally
Lipschitz feedback control law h(x) ∈ U that can render the
origin of the nominal (w(t) ≡ 0) closed-loop system of eq 1
locally asymptotically stable in the sense that there exists a

continuously differentiable Lyapunov function V: Rn→ R+ where
the following inequalities hold:18,19

α α| | ≤ ≤ | |x V x x( ) ( ) ( )1 2 (2a)

α∂
∂

≤ − | |V x
x

f x h x x
( )

( , ( ), 0) ( )3 (2b)

α∂
∂

≤ | |V x
x

x
( )

( )4
(2c)

for all x in an open neighborhood D that includes the origin in its
interior and αj(·), j = 1, 2, 3, 4, are class functions. For various
classes of nonlinear systems, several stabilizing control laws have
been developed that take input constraints into considera-
tion.20−22 The stability region of the closed-loop system is
defined to be a level set Ωρ ⊂ D where V̇ < 0. The origin of the
closed-loop system is rendered practically stable when the
control law h(x) is applied in a sample-and-hold fashion for a
sufficiently small sampling period.23

In this work, we apply an online model identification scheme
to obtain empirical models that capture the evolution of the
system of eq 1. The empirical models obtained are linear time-
invariant (LTI) state-space models of the form

̇ = +x t A x t B u t( ) ( ) ( )i i (3)

where the constant matrices Ai ∈ Rn×n and Bi ∈ Rn×m correspond
to the ith model identification performed (i = 1, ..., M̃). We
assume the existence of a set of stabilizing control laws hL1(x),
hL2(x), ..., hLM̃(x) designed based on the empirical models that
can make the origin of the closed-loop system of eq 1
asymptotically stable and generate a continuously differentiable
Lyapunov function V̂: Rn → R+ where the following inequalities
hold:19

α α̂ | | ≤ ̂ ≤ ̂ | |x V x x( ) ( ) ( )1 2 (4a)

α∂ ̂
∂

≤ − ̂ | | = ̃V x
x

f x h x x i M
( )

( , ( ), 0) ( ), 1, ...,Li 3i (4b)

α∂ ̂
∂

≤ ̂ | |V x
x

x
( )

( )4
(4c)

for all x in an open neighborhood DLi that includes the origin in
its interior. The functions α̂j(·), j = 1, 2, 4, and α̂3i, i = 1, ..., M̃, are

class functions, and the stability region of the system of eq 1
under the controller hLi(x) is defined as the level setΩρ̂i ⊂DLi, i =
1, ..., M̃.

Lyapunov-Based EMPC. The formulation of EMPC to be
used in this work incorporates Lyapunov-based stability
constraints based on the explicit stabilizing controller h(x).
The resulting Lyapunov-based EMPC (LEMPC)3 maximizes an
economics-based cost function representing the plant economics
and is given by the following optimization problem:

∫ τ τ τ̃
∈ Δ

+
L x umin ( ( ), ( )) d

u S t

t

e
( ) k

k N

(5a)

̇ = ̃∼x t f x t u ts.t. ( ) ( ( ), ( ), 0) (5b)

̃ =x t x t( ) ( )k k (5c)

∈ ∀ ∈ +u t U t t t( ) , [ , )k k N (5d)
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ρ̃ ≤ ∀ ∈

∈ Ωρ

+V x t t t t

x t

( ( )) , [ , )

if ( )

e k k N

k e (5e)
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k
k k

k
k k

k e

(5f)

where the decision variables are the input trajectories over the
prediction horizon NΔ (i.e., u ∈ S(Δ) where S(Δ) signifies the
class of piecewise-constant functions with period Δ). Control
actions are implemented in a receding horizon fashion using
process state predictions x ̃(t) from the dynamic model of the
process (eq 5b) initiated from the state feedback measurement at
each sampling time (eq 5c). Input constraints are taken into
consideration in the LEMPC formulation in eq 5d.
The Mode 1 constraint (eq 5e) is activated when the state

measurement is maintained within a subset of the stability region
Ωρ that is referred to as Ωρe, and promotes time-varying process
operation to maximize economics. When the closed-loop state
exits Ωρe, the Mode 2 constraint (eq 5f) is activated to force the

state back into Ωρe by computing control actions that decrease

the Lyapunov function value. The stability region subset Ωρe is
chosen to make Ωρ forward invariant in the presence of process
disturbances.

■ EMPC USING ERROR-TRIGGERED ONLINE MODEL
IDENTIFICATION

The potential of EMPC for improving profits in the chemical
process industries has motivated research in practical aspects of
EMPC implementation, including the use of linear empirical
models in EMPC.15,24 However, all work on improving the
practicality of EMPC with empirical models has assumed that no
actuator faults occur, though the development of actuator faults
poses unique challenges for linear empirical models utilized to
obtain state predictions within EMPC. Because the models are
developed with all actuators online based on process data only,
there is no guarantee that, when the underlying process dynamics
change (i.e., an actuator output becomes fixed when it was
previously varying), the model developed based on data for the
case that all actuators were varying will remain valid with the
value of the faulty actuator fixed for all time, since this condition
was not included in the original process data used to identify the
model and the underlying process model is typically nonlinear
such that nonlinear and coupled interactions between states and
inputs exist. This can impact the accuracy of state predictions
utilized within the EMPC after the fault occurs, which can
negatively impact process profits as well as satisfaction of other
constraints (including stability or state constraints). Though
reidentification of the model when the fault is detected may
appear to be a solution to the potential problems caused by the
fault for the accuracy of the linear empirical models,
reidentification would require the availability of a sufficient
number of input/output data points corresponding to the new
(after fault) operating conditions. Since sufficient after-fault data
for model reidentification is not available until after the fault,
there will be some time period during which the empirical model
developed from data corresponding to the case that all actuators
are online must continue to be utilized within the EMPC.
Furthermore, depending on the severity of the fault and the

empirical model in use at the time of the fault, the original
empirical model may provide sufficiently accurate state
predictions such that it is not necessary to interrupt the
continuity of the control strategy by updating the model used
within the controller. Therefore, a method for determining when
the model should be updated as a result of the fault is necessary.
In this work, we propose the use of the moving horizon error
detector developed in ref 24 for this task; however, important
changes to the implementation strategy of the LEMPC with
error-triggered online model identification from ref 24 must be
made to address the issues specific to faults discussed above. In
this development, we assume that a fault has occurred in an
actuator that causes the actuator output to take some value,
where it is known which actuator has experienced a fault. The
proposed approach to develop fault-tolerant control for
empirical model-based LEMPC may be applied in the case
where the value of the faulty actuator’s output is known and in
the case where the value of the faulty actuator’s output is
unknown. We make no requirement on the number of faults that
can occur at one time, as long as the number of online actuators
allows sufficiently accurate linear empirical models to continue to
be identified (observability assumption). Therefore, this method
is flexible to handle multiple actuators experiencing faults
simultaneously (and can also be extended to include
recommissioning of actuators that experienced faults and have
been repaired) throughout time. The following section presents
the LEMPC formulation using linear empirical models. After
that, the formulation of the moving horizon error detector and
the implementation strategy for online model identification to
compensate for changes in the model due to actuator faults are
introduced.

LEMPC Formulation Using Empirical Models. In this
work, it is assumed that the plant model of eq 1 is unavailable and
the process model to be incorporated in the LEMPC design is the
ith empirical model (i = 1, ..., M̃). The empirical models and their
corresponding hLi(x) and V̂(x) are used in the development of
the stability constraints. The LEMPC design using the ith
empirical model is presented by the following optimization
problem:15

∫ τ τ τ̂
∈ Δ

+
L x umin ( ( ), ( )) d

u S t

t

e
( ) k

k N

(6a)

̂ ̇ = ̂ +x t A x t B u ts.t. ( ) ( ) ( )i i (6b)

̂ =x t x t( ) ( )k k (6c)

∈ ∀ ∈ +u t U t t t( ) , [ , )k k N (6d)
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ei k k N
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∂ ̂
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V x t
x

A x t B h x t

x t
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( ( ))
( ( ) ( ( )))

if ( )

k
i k i k

k
i k i Li k

k ei (6f)

where the notation follows that in eq 5, and x ̂(t) denotes the state
prediction using the linear empirical model (eq 6b), starting from
the state feedback measurement (eq 6c). The subsets of the
stability regions for the Mode 1 constraintsΩρ̂ei ⊂Ωρ̂i are chosen
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to make the stability regionΩρ̂i forward invariant in the presence

of bounded process disturbances. BothΩρ̂i andΩρ̂ei that makeΩρ̂i

forward invariant can be difficult to determine in practice.
Therefore, a conservative estimate of each can be chosen, or they
can be adjusted online based on analyzing the process data to
determine whether the LEMPC of eq 6 is able to maintain the
state within an expected region of state-space.
Moving Horizon Error Detector. In this section, we

describe the moving horizon error detector that quantifies
prediction errors and triggers online model identification when
necessary. Specifically, the moving horizon error detector tracks
an error metric throughout the duration of process operation that
is based on the difference between the predicted states using a
linear empirical model and the measured states from the process
(relative prediction error). When this error exceeds an engineer-
specified threshold ed,T (indicating significant plant/model
mismatch), online model reidentification is triggered and
performed using the most recent input/output data points, and
the updated model is used in the LEMPC of eq 6. The error
metric ed calculated by the moving horizon error detector at each
sampling time tk using the most recent past state predictions and
measurements in a moving horizon fashion is presented in the
following equation:

∑ ∑=
| − |

| |= =

− −

−
e t

x t x t

x t
( )

( ) ( )

( )d k
r

M

j

n
p j k r j k r

j k r0 1

,

(7)

where the horizonM is the number of sampling periods included
in assessing the prediction error. xj(tk−r) and xp,j(tk−r), r = 0, ...,M,
j = 1, ..., n, are the past process state measurements and the past
state predictions from an empirical model between the sampling
times tk−M and tk. Due to the fact that process states may vary in
their orders of magnitude, the difference between the predicted
states and the measured states is normalized by the magnitude of
the measured state |xj(tk−r)|. The purpose of summing over the
horizon M is to average out the effect of small time-varying
disturbances that may occur in practice and cause prediction
errors to increase. For the detailed guidelines and the step-by-
step procedure for determining the values of the horizon M and
the error metric threshold ed,T for a given process, the reader may
refer to ref 24.
Implementation Strategy. In this section, we present the

steps taken in the proposed online model identification scheme
to overcome actuator faults in empirical model-based LEMPC as
follows:
Step 1. Before an actuator fault occurs, an initial linear

empirical model (A1 and B1) accounting for all actuators is
obtained by exciting the system with a large number of inputs
that have varying magnitudes and collecting the corresponding
output data. This model is used to predict the process evolution
within the LEMPC and to design the stabilizing controller hL1
and the corresponding V̂ for the Lyapunov-based constraints of
the LEMPC. The region Ωρ̂ei is chosen such that, in this region,
plant−model mismatch is minimal.
Step 2. The process is operated under the LEMPC design

using an empirical model, and the moving horizon error detector
is used to detect prediction errors.
Step 3. When an actuator fault occurs, the LEMPC receives

information on which actuator is stuck. If the value at which the
actuator is stuck is known, the corresponding input value in the
LEMPC optimization problem is fixed to the fault value and the
decision variables for this input are removed from the LEMPC

optimization problem (i.e., the LEMPC no longer solves for the
input corresponding to the faulty actuator). If the value at which
the actuator is stuck is unknown, the LEMPC optimization
problem continues to compute optimal control actions for all
actuators (assuming that all actuators are active online) despite
the fact that a fault has occurred in one of them (i.e., the LEMPC
solves for all the inputs including the input corresponding to the
faulty actuator despite the fact that it will not be implemented
since this actuator is not under control).

Step 4. If ed(tk) exceeds ed,T, input and output data collected
since the fault occurrence are used to identify a newmodel online
for use in the LEMPC formulation and the design of the
corresponding stabilizing controller hLi. The new Bi matrix
obtained will contain one less column since the number of
manipulated inputs is reduced by one.

Step 5. Process operation under the LEMPC and the moving
horizon error detector continues (i.e., return to Step 2 and
proceed to Steps 3 through 5 if another actuator fault occurs).

Remark 1. This work focuses on economic model predictive
control (EMPC), which may operate a process in a dynamic or
time-varying fashion because, as shown in eqs 5 and 6, it attempts
to minimize a general objective function, subject to constraints,
by choosing appropriate control actions throughout the
prediction horizon. This general objective function would
often not have its minimum at a process steady-state, and
therefore, the process is not necessarily operated at steady-state
because the EMPC may compute inputs with a periodic
trajectory or a time-varying trajectory that is not periodic. A
dynamic operating policy has been shown to be economically
beneficial compared to steady-state operation for a number of
processes (e.g., ethylene oxidation in a continuous stirred tank
reactor25 and parallel reactions in a continuous stirred tank
reactor26). In the case that EMPC computes a time-varying input
policy, the inputs may be persistently exciting and thus may allow
a sufficiently accurate model to be obtained from routine process
operating data. The expected input trajectories of an EMPC for a
given process (with various inputs online and faulty) should be
evaluated before the error-triggered online model identification
procedure for fault-tolerant control is implemented to ensure
that, under normal operating conditions and also as actuators
experience faults, the inputs expected during routine process
operation will be persistently exciting. In the case that they are,
the time-varying input trajectories that may be generated under
EMPC may make the input/output data convenient for use in
online model identification.

Remark 2. Conditions guaranteeing feasibility and closed-
loop stability of an LEMPC based on a linear empirical model
that is not updated in time have been developed in ref 15. These
conditions include requirements that the empirical model must
be sufficiently close to the linearization of the underlying
nonlinear model. In the proposed methodology, when an
actuator fault occurs, the underlying nonlinear model changes,
but the process model cannot be immediately updated because
no postfault process input/output data is available. Therefore, it
is not possible to assess if the previous linear empirical model is
close to the linearization of the underlying nonlinear model after
the fault has occurred, regardless of whether the value of the fault
is known and it is fixed in the empirical model or the value of the
fault is unknown and the empirical model is used assuming all
inputs are active online. Due to this practical difficulty, proving
guaranteed feasibility and closed-loop stability of the error-
triggered online model identification for LEMPC scheme has not
been pursued. As a result, selecting V̂,Ωρ̂i,Ωρ̂ei, and hLi to provide
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guaranteed closed-loop stability of the nonlinear process when
used in the LEMPC can be challenging. However, appropriate
parameters can be determined practically using closed-loop
simulations with the linear empirical model in the LEMPC when
a first-principles model is available for analyzing the accuracy of
the state predictions and the ability of the LEMPC with an
empirical model to maintain closed-loop stability of the
nonlinear process, and then some conservatism can be added
to the estimates of the parameters. Alternatively, conservative
estimates of Ωρ̂i and Ωρ̂ei can be utilized initially when a first-
principles model is not available, and updated online if desired to
reduce the conservatism after process operating data is available.
In general, because process data is monitored frequently, the
parameters can be tuned online if the closed-loop performance
does not meet an engineer’s expectations. Therefore, the lack of a
rigorous closed-loop stability and feasibility proof for this
LEMPC design does not pose practical limitations and it
would be expected to be effective in many practical applications.
Remark 3. The moving horizon error detector is also capable

of initiating empirical model updates when significant plant
variations, operating region changes, or disturbances that are not
caused by actuator faults occur,24 and it may also trigger model
reidentification multiple times after a fault if the reidentified
models were developed without sufficient postfault input/output
data to allow the model to adequately capture the postfault
process dynamics. When significant plant variations or
disturbances or poorly identified postfault models cause the
prediction error to exceed the predefined threshold for the error
metric ed(tk), the same steps mentioned above are taken
excluding Step 3 and the dimension of the updated Bi matrix
remains the same as the Bi from the previous linear empirical
model. Furthermore, any known and sudden disturbance that
does not correspond to loss of a new actuator but which may
change the underlying process dynamics (e.g., an actuator that
has already become stuck at one value becomes stuck at another
value due to a disturbance that affects the actuator position, or an
on−off aspect of the process such as a pump or valve that is not
manipulated by the control system has been changed) can also be
handled with the implementation strategy detailed in this section
(e.g., only data corresponding to the time after the known
disturbance may be used in the model reidentification due to the
change in the underlying process dynamics), except that the
number of columns in the Bi matrix would not change if the
disturbance did not affect the number of online actuators
compared to the previous model reidentification. In practice,
when an unknown disturbance or plant variation occurs and
causes the prediction error to exceed the predefined threshold for
the error metric ed(tk), the time at which this unknown
disturbance or plant variation started may also be unknown.
Therefore, the number of input/output data pointsNd utilized in
each model identification after the threshold for the error metric
ed(tk) has been exceeded remains the same as the number utilized
for obtaining the initial model (A1 and B1) since no extra
information is available. If the reidentified model was developed
without sufficient input/output data collected after the
occurrence of the disturbance or plant variation, the threshold
for the error metric ed(tk) may be exceeded multiple times until
enough input/output data collected after the occurrence of the
disturbance or plant variation are available and the resulting
identified model adequately captures the process dynamics. The
ability of the moving horizon error detector to handle the many
scenaria discussed in this remark, even simultaneously, makes it

an integrated approach to handling a variety of practical
considerations.

Remark 4. In ref 24, guidelines for determiningM, ed,T, and the
number of input/output data points to utilize in model
reidentification were presented assuming that the causes of
plant/model mismatch are gradual changes such as plant
variations, disturbances, or movement of the process state into
new regions not captured by the original linear empirical model
throughout time. However, actuator faults occur suddenly, which
may cause an identified empirical model to rapidly become
inadequate for representing the process dynamics. Therefore,
process data and controller performance should be monitored
after the fault to ensure that M, ed,T, and the number of process
data points chosen for model reidentification, determined using
the nonfaulty plant operating data and methods like those in ref
24, remain valid for assessing the prediction error and obtaining
sufficiently accurate models upon reidentification after the fault.
If they do not, as in ref 24, the values of M and ed,T can be
increased or decreased online and the effect of this on the
controller performance can be examined to arrive at updated
values ofM and ed,T when required. Furthermore, the lastM data
points including nonfaulty data may continue to be used in
evaluating the prediction error after the fault (due to the inability
to set an error threshold on fewer than M postfault data points
alone after the fault since there would be no basis for the
alternative error threshold, and the fact that very large prediction
errors in the postfault data will still trigger model reidentification
if necessary before M postfault data points are available even if
prefault data is also included in the calculation of ed). Similarly,
when sufficient input/output data points are available after the
fault for use for model reidentification, this number of data points
can be increased or decreased based on controller performance
to ensure that it is still satisfactory after the fault. If the number of
input/output data points Nd used for model reidentification
before the fault is greater than the number of postfault input/
output data points available after the fault when model
reidentification is first triggered by the moving horizon error
detector, then only the postfault data (i.e., less than the desired
Nd) should be used for the reidentification. This is because the
input/output model structure changes after the fault (i.e., there is
one less input), with the result that the data corresponding to
having one additional input from before the fault cannot be used
in identifying a model corresponding to having one less input
from after the fault. If a sufficiently accurate model is not
identified due to the lack of sufficient postfault data when the
moving horizon error detector is triggered, it would be expected
that the prediction error will eventually increase once again above
ed,T, triggering another model reidentification with additional
postfault data, so that eventually the linear empirical model used
after the fault will have been developed with sufficient postfault
input/output data to allow for sufficiently accurate state
predictions that no longer trigger model reidentification.

Remark 5. Though the error-triggered model update strategy
for actuator fault compensation is discussed in the context of
LEMPC, it can be extended to other model-based control
designs, including tracking MPC (MPC with a quadratic
objective function), as well, as long as the process data available
for updating the models when these other control designs are
used contains enough information regarding the important
process dynamics for use in identifying sufficiently accurate
process models.

Remark 6. It was previously noted that multiple simultaneous
faults as well as actuator recommissioning can be handled
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utilizing this strategy. The simultaneous faults may include those
for which the value of the faulty actuator output is known, those
for which it is unknown, or even a combination. For multiple
simultaneous faults, Step 3 is applied to the various faulty
actuators, and in Step 4, the number of columns in the Bimatrix is
reduced by the number of faulty actuators. For actuator
recommissioning, model reidentification using the most recent
Nd input/output data points since the last actuator fault (or the
total number available since the last fault if the available number
is less than Nd) can be performed, allowing the Bi matrix to
include columns for all actuators that are now nonfaulty. This
model can then be utilized in the LEMPC, and the error-
triggering procedure will update the model if the state
predictions contain significant error due to the fact that the
input/output data on which the model was based did not include
the effects of the recommissioned actuators taking output values
different from the value at which they were stuck.
Remark 7.When the value at which a faulty actuator is stuck is

unknown, other methods of accounting for this faulty actuator in
the empirical model immediately after the fault could be utilized
instead of continuing to solve for all actuator outputs as
suggested in Step 3. The goal of Step 3 when the actuator output
is unknown is to allow the LEMPC to continue computing
control actions for the nonfaulty actuators while generating
input/output data that can be used to identify a model
corresponding to the process dynamics subject to the fault, and
this can be done with any reasonable assumption on the value of
the faulty actuator outputs in the LEMPC.
Remark 8. The approach presented can be extended to the

case that nonlinear empirical models are utilized in place of linear
empirical models. Specifically, the five steps of the implementa-
tion strategy of the error-triggered model update strategy would
still be undertaken, but with a nonlinear empirical model
identified and utilized to determine a Lyapunov function and
Lyapunov-based controller for use in the LEMPC design.
Because the objective function of an EMPC often depends on
some, if not all, of the process states, a state-space nonlinear
empirical model is most desirable for use in EMPC, which can be
identified using techniques such as those in refs 27 and 28.
However, the computation time required to solve a nonlinear
empirical model within a sampling period may be longer than
that required to solve a linear empirical model, particularly since
no analytic solution exists in general for a nonlinear system (and
thus numerical integration techniques are required to solve the
empirical model), whereas the availability of the analytic solution
of a linear empirical model may aid in reducing computation time
compared to numerically integrating the linear system. Due to
the potential computation time benefits of utilizing a linear
empirical model compared to utilizing a nonlinear empirical
model, this work has focused on model identification and
reidentification with linear models that can be updated via the
error-triggering procedure discussed in this work when the
process state moves into regions where the process nonlinearities
are no longer captured by the original linear empirical model.24

Remark 9. Though the approach could be considered in the
case that stochastic models are identified from process data
instead of deterministic models, we focus on identifying
deterministic models in this work due to the difficulty of
implementing EMPC with stochastic models (which often leads
to high computation times due to the need to solve the dynamic
process model under many realizations of the disturbance vector
to calculate quantities such as expectations of the objective
function or of quantities in the constraints). Standard techniques

for data smoothing/filtering should be employed during the
model identification procedure to obtain an accurate process
model.

Remark 10. Because EMPC utilizes a general objective
function, the objective functionmay depend on process states. As
a result, we utilize state-space empirical models in this work and
assume that measurements are available for, at a minimum, all
states that appear in the objective function (or the constraints).
The empirical model order thus is assumed to be no less than the
order of the corresponding first-principles model that includes all
process states that enter the EMPC cost and constraints. The
notation in the section Class of Systems assumes that the number
of states in the first-principles model for the system is equal to the
number of states in the empirical model, though this is an
assumption that could be relaxed when designing EMPC with
error-triggered online model identification, as long as the
requirements in this remark are met by the empirical model.

■ APPLICATION OF ERROR-TRIGGERED ONLINE
MODEL IDENTIFICATIONWHEN THE FAULT VALUE
IS KNOWN: CATALYTIC PROCESS EXAMPLE

This section demonstrates the application of the proposed error-
triggered online model identification procedure for fault-tolerant
LEMPC when the value at which the actuator is stuck is known.
We consider the control of catalytic oxidation of ethylene (C2H4)
in a continuous stirred tank reactor (CSTR). Ethylene is oxidized
with air to produce the desired ethylene oxide (C2H4O) product
as presented in the following chemical reactions:

+ →C H
1
2

O C H O
R

2 4 2 2 4
1

(R1)

+ → +C H 3O 2CO 2H O
R

2 4 2 2 2
2

(R2)

+ → +C H O
5
2

O 2CO 2H O
R

2 4 2 2 2
3

(R3)

The reaction rates R1, R2, and R3 are given by the following
Arrhenius relationships:29
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where k1, k2, and k3 are pre-exponential factors, E1, E2, and E3 are
activation energies for each reaction, Rg is the gas constant, and T
is the absolute temperature. The reaction rates are presented in
terms of partial pressures of ethylene (PE) and of ethylene oxide
(PEO). The gas mixture inside the reactor is assumed to be ideal,
and thus, the partial pressures in the reaction rates can be
converted to molar concentrations using the ideal gas law. The
dimensionless mass and energy balances for this process are
described by the following first-order ordinary differential
equations:25
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x t
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where x1, x2, x3, and x4 are the dimensionless gas density,
ethylene concentration, ethylene oxide concentration, and
temperature inside the reactor, respectively. The reactor
manipulated inputs are the dimensionless volumetric flow rate
of the inlet stream u1, the dimensionless concentration of
ethylene in the inlet stream u2, and the dimensionless coolant
temperature u3. The manipulated inputs are constrained to
belong to the following sets: 0.0704≤ u1≤ 0.7042, 0.2465≤ u2≤
2.4648, 0.6 ≤ u3 ≤ 1.1. Table 1 lists the values of the process

parameters. The reactor has an asymptotically stable steady-state
at [x1s x2s x3s x4s] = [0.998 0.424 0.032 1.002] corresponding to
the manipulated input values of [u1s u2s u3s] = [0.35 0.5 1.0].
The control objective is to maximize the average yield of

ethylene oxide by operating the reactor in a time-varying manner
around the open-loop stable steady-state. Over a time period
from t0 to te, this average yield is given by

∫

∫

τ τ τ τ

τ τ τ
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e
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te is an integer multiple of tf which is the length of an operating
period. In addition, we consider that there is a limitation on the
amount of ethylene that may be fed to the rector during the
length of an operating period tf. Therefore, the time-averaged
amount of ethylene that can be fed to the reactor should satisfy
the following material constraint:

∫ τ τ τ = =
−t

u u u u
1

( ) ( ) d 0.175
f j t

jt

s s
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1 2 1 2
f

f

(11)

where j is the operating period number (j = 1, 2, ...). Since the
material constraint of eq 11 fixes the average amount of ethylene
fed to the reactor over the operating period tf, the economic cost
that the LEMPC attempts to maximize such that the ethylene
oxide yield is maximized becomes

∫ ∫ τ τ τ τ=L x u u x x( , ) ( ) ( ) ( ) d
t

t

e
t

t

1 3 4
e e

0 0 (12)

We assume that the reactor first-principles model in eq 9 is
unavailable for control design. Therefore, an empirical model is

used to design the LEMPC with the objective function and
constraints mentioned above. To construct an empirical model
that captures the process dynamics accurately in a region local to
the stable steady-state, a large sequence of step inputs with
varying magnitudes was applied to the reactor in order to excite
the important dynamics and capture them in the empirical
model. After collecting the input/output data points, the initial
(i = 1) state-space linear empirical model of the reactor was
obtained using the ordinary multivariable output error state-
space (MOESP)8 algorithm. Model validation was then
conducted using various step, impulse, and sinusoidal input
responses. The initial empirical model obtained is given by the
following constant matrices:
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(13)

The stabilizing control law used in the LEMPC is designed based
on the empirical model of eq 13 since we assumed that the
reactor first-principles model of eq 9 is unavailable. The
stabilizing control law is represented by the three-dimensional
vector hL1

T (x) = [hL1,1(x) hL1,2(x) hL1,3(x)]. In order to meet the
material constraint of eq 11 on the available feedstock, both
hL1,1(x) and hL1,2(x) were set to their steady-state values. The
linear quadratic regulator (LQR) was used in designing the third
control law hL1,3(x) using the A1 matrix and the third column of
the B1 matrix as the system matrices. Both LQR weighting
matrices Q and R were taken to be the identity matrix. The
resulting control law for the heat input is u3 = hL1,3(x) = −K(x −
xs) + u3s, with K equal to [−0.287 −0.276 0.023 0.405]. The
closed-loop stability region is characterized using the quadratic
Lyapunov function V̂(x) = (x − xs)

TP(x − xs) where the positive
definite matrix P is P = diag[20 30 40 10]. Through extensive
closed-loop simulations of the reactor system under the
stabilizing control law hL1(x), the level sets Ωρ̂1 and Ωρ̂e1 were
chosen to have ρ̂1 = 96.1 and ρ̂e1 = 87.4. In these regions, the
reactor first-principles nonlinear dynamics of eq 9 are well-
captured by the linear empirical model of eq 13.
To compare the closed-loop performance of the process even

in the presence of actuator faults when an LEMPC based on a
linear empirical model is used instead of an LEMPC based on the
first-principles model, two LEMPC schemes, one of the form of
eq 6 and the other of the form of eq 5, were designed for the
CSTR with the cost function of eq 12 and the material constraint
of eq 11 to compare closed-loop behavior. The first LEMPC
initially utilized the model of eq 13 to predict the values of the
process states throughout the prediction horizon, while the
second LEMPC utilized the first-principles model of eq 9
(though both used the same Lyapunov-based controller and
stability region). All LEMPC designs presented in this chemical
process example use a prediction horizon of N = 10, a sampling
period of Δ = 0.1, and an operating period of 100 sampling
periods (tf = 10). The open-source optimization solver IPOPT30

was used in solving the LEMPC optimization problems at each

Table 1. Dimensionless Parameters of the Ethylene Oxidation
CSTR

A1 = 92.8 B2 = 10.39 γ2 = −7.12
A2 = 12.66 B3 = 2170.57 γ3 = −11.07
A3 = 2412.71 B4 = 7.02
B1 = 7.32 γ1 = −8.13
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sampling time. The empirical LEMPC and the first-principles
LEMPC were both applied to the CSTR model of eq 9. Closed-
loop simulations of the reactor under each LEMPC design were
performed starting from the open-loop stable steady-state xI

T =
[x1I x2I x3I x4I] = [0.997 1.264 0.209 1.004]. Simulations were
performed using the Explicit Euler numerical integration method
with an integration step size of h = 10−4.
In order to demonstrate the effect of actuator faults on

controlling the process using empirical models and the need to
reidentify a new model online after a fault occurs, the reactor was
simulated for four operating periods under the empirical LEMPC
design. After three operating periods, an actuator fault is assumed
to occur causing the heat input to stay at the steady-state value
(i.e., u3 = 1). After that, the reactor was operated in closed-loop
using the empirical LEMPC design with u3 set to its steady-state
value in the empirical model defined by A1 and B1 (eq 13). For
comparison, the closed-loop state and input trajectories were
simulated for the first-principles LEMPC, including u3 set to its
steady-state value after three operating periods in the first-
principles model for the LEMPC. For the first three operating
periods (i.e., before the fault), the empirical and first-principles
LEMPC’s compute very similar input trajectories resulting in
similar closed-loop state trajectories under both controllers, as
shown in Figures 1 and 2. This indicates that, before the fault, the

LEMPCwith an empirical model is an effective control design for
the reactor process (it is noted that u1, u2, and u3 in Figure 1
correspond to the inputs calculated by the LEMPC’s, rather than
the input trajectories computed by the Lyapunov-based
controller hL1 that is used in the design of the LEMPC
constraints; therefore, the trajectories of u1, u2, and u3 in the
figure are those that the LEMPC’s determined would optimize
the objective function subject to the constraints). The reactor
input and state trajectories under both the empirical and first-
principles LEMPC’s when u3 = u3s after the first three operating
periods are also depicted in Figures 1 and 2, and they exhibit
significant differences, indicating significant plant−model
mismatch and resulting in less yield of the final desired product
under the empirical LEMPC. This demonstrates the need to
reidentify the model online.
Based on the above simulations, it is expected that the closed-

loop performance of the ethylene oxide production process
under LEMPC with an empirical model would benefit from the

use of the error-triggered online model identification procedure
after a process fault. Therefore, simulations of the ethylene oxide
process under the implementation strategy presented in this
work were performed. Specifically, a moving horizon error
detector was designed and initiated after M = 40 input/output
data points were available to calculate the value of ed at each
sampling time to determine when it is necessary to trigger
reidentification of the empirical process model. Simulations of
the reactor suggested that significant plant−model mismatch was
indicated when the value of ed exceeded 3, and thus, this value was
chosen as the threshold to trigger model reidentification. When
online model identification was triggered, input/output data
collected after the occurrence of the fault was used to identify a
new model. The moving horizon error detector calculates the
relative prediction error in the gas density in the reactor, ethylene
concentration, ethylene oxide concentration, and the reactor
temperature throughout the current and past 40 sampling
periods as follows:
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The initial empirical model utilized within the LEMPC coupled
with the moving horizon error detector/online model
reidentification strategy was again A1 and B1, and the reactor
was again initiated from xI. As in the above simulation, after three
operating periods (i.e., at the beginning of the 4th operating
period), an actuator fault occurs, causing the heat input to stay at
the steady-state value (i.e., u3 = 1) for three operating periods.
The LEMPC was apprised of the fault in the actuator
corresponding to u3, and the value of u3 in the linear empirical
model utilizing the A1 and B1 matrices was subsequently set to
the value u3s at which it was stuck. The first six operating periods
depicted in Figure 3 show the increase in ed after the fault
occurrence, leading it to eventually exceed its threshold and
trigger online model reidentification that resulted in a sharp drop

Figure 1.Closed-loop input trajectories for four operating periods of the
reactor of eq 9 initiated from xI under the LEMPC designed with the
first-principles model (solid black trajectories) and the LEMPC
designed with the empirical model in eq 13 (solid gray trajectories)
where an actuator fault occurs at the end of the 3rd operating period.

Figure 2.Closed-loop state trajectories for four operating periods of the
reactor of eq 9 initiated from xI under the LEMPC designed with the
first-principles model (solid black trajectories) and the LEMPC
designed with the empirical model in eq 13 (solid gray trajectories)
where an actuator fault occurs at the end of the 3rd operating period.
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in the prediction error. The following model was identified using
the postfault input/output data:
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Notably, in accordance with Step 4 of the implementation
strategy presented in this work, the B2 matrix has one less column
than the B1 matrix due to the loss of availability of u3 as a
manipulated input.
It was noted in Remark 3 that the error-triggered online model

reidentification procedure can be used not only for handling
actuator faults but also for handling other disturbances and plant
variations, even sudden changes in the process dynamics that do
not affect the number of online actuators. Therefore, the error-
triggered online model reidentification procedure for use in
LEMPC provides a unified framework for dealing with many
different root causes of reduced accuracy of state predictions
from linear empirical models. To demonstrate how this unified
framework can be implemented, we followed the six operating
periods related to the process fault discussed above with six more
operating periods (for a total simulation length of 12 operating
periods) in which the actuator u3 remained stuck (i.e., unavailable
as a manipulated input by the LEMPC), but we assumed that it
was subjected to disturbances that caused it to take two other
known values throughout these six operating periods (e.g., a
valve utilized in setting u3 experienced a large degree of stiction
but slipped to two new values due to changes in the forces
applied to it twice throughout the six operating periods).
Specifically, the value of u3 changed to its maximum value of 1.1
at the beginning of the 7th operating period and remained stuck
at this value for three operating periods, and then it changed to
the value of 0.75 at the beginning of the 10th operating period
and remained stuck at this value for another three operating
periods. Throughout the six operating periods during which the
value of u3 experienced these disturbances, only one model
reidentification was triggered by the moving horizon error
detector, leading to a drop in the prediction error as shown in
Figure 3 when the following model was identified:
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This model reidentification was triggered when u3 = 0.75 (i.e., no
model reidentification was triggered when u3 = 1.1), showing that
the error-triggering was successful at deciding the necessity of
model updates, because even though u3 changed its value at the
beginning of the 7th operating period, no reidentification was
required since the error did not exceed the threshold of ed = 3.
Because this model reidentification was not related to loss of a
new actuator, B3 has the same dimension as B2.
The input and state trajectories for the entire 12 operating

periods of the reactor process of eq 9 under the LEMPC of eq 6
with the empirical models of eqs 13, 15, and 16 subject to the
actuator fault and disturbances in the value at which u3 was stuck
are presented in Figures 4 and 5. The values of ed throughout the

Figure 3. Value of error metric ed at each sampling time using the
detector of eq 14 for the LEMPC integrated with the error-triggered
online model identification.

Figure 4. Closed-loop input trajectories of the reactor of eq 9 under the
LEMPC using the error-triggered online model identification starting
from xI

T = [x1I x2I x3I x4I] = [0.997 1.264 0.209 1.004].

Figure 5. Closed-loop state trajectories of the reactor of eq 9 under the
LEMPC using the error-triggered online model identification starting
from xI

T = [x1I x2I x3I x4I] = [0.997 1.264 0.209 1.004].
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12 operating periods is presented in Figure 3, showing the rises of
the ed values that triggered the model reidentifications and the
rapid decreases of the values of ed(tk) after each online model
reidentification. These figures show the successful implementa-
tion of a unified framework using the moving horizon error
detector and error-triggered model updates within LEMPC for
handling both faults and other disturbances throughout time.
In addition to decreasing the plant−model mismatch due to

faults and disturbances, the online model identification improved
the process economic performance compared to not updating
the model as presented in Table 2. The table lists the average

yield and the maximum value of ed(tk) for the two operating
periods after the first online model reidentification (when u3 is
stuck at the value of 1) and after the second model identification
(when u3 is stuck at the value of 0.75). The results listed are for
three approaches: the “One Empirical Model” approach, in
which no model reidentification is conducted and the initial
empirical model (A1 and B1) is used throughout the 12 operating
periods despite the faults, the “Online Model ID” approach, in
which the proposed online model reidentification approach is
conducted, and the “Nonlinear Model” approach, in which the
first-principles model of eq 9 is used in the LEMPC including the
changes in u3. These results show the significant improvement in
process yield resulting from updating the empirical model online
compared to using the same initial empirical model throughout
process operation despite the faults.
Remark 11. In this example, the controller hL1 was not

redesigned after the actuator fault as noted in Step 4 of the online
model identification scheme because the closed-loop state never
left Ωρ̂e1 during the simulation. The example in the next section
exemplifies the change in the Lyapunov-based control law when
the fault occurs.

■ APPLICATION OF ERROR-TRIGGERED ONLINE
MODEL IDENTIFICATIONWHEN THE FAULT VALUE
IS UNKNOWN: CSTR EXAMPLE

In this section, we use a chemical process example to
demonstrate the application of the proposed error-triggered
online model identification for fault-tolerant LEMPC when the
value at which the actuator is stuck is unknown. The example is a
non-isothermal, well-mixed continuous stirred tank reactor
(CSTR) in which an irreversible second-order exothermic
reaction takes place converting the reactant A to the desired
product B. An inert solvent containing the reactant A with a
concentration CA0 is fed to the reactor at a feed volumetric flow
rate F and a temperature T0. The CSTR is heated/cooled by a
heating jacket that supplies/removes heat at a heat rate Q. The
liquid inside the CSTR is assumed to have constant heat capacity
Cp, volumeV, and density ρL. The CSTR dynamicmodel, derived
from mass and energy balances, that describes the reactant
concentration CA and temperature T evolution with time is
presented below:
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where the parameters k0, E, and ΔH denote the reaction pre-
exponential factor, the activation energy, and the enthalpy of the
reaction, respectively. The values of the process parameters are
listed in Table 3. The reactor inlet concentration CA0 and heat

supply/removal rate Q are the manipulated inputs, which are
constrained by the following maximum and minimum values:
0.5 ≤ CA0 ≤ 7.5 kmol/m3 and −5.0 × 105 ≤ Q ≤ 5.0 × 105 kJ/h.
The reactor is operated around the open-loop asymptotically
stable steady-state [CAs Ts] = [1.2 kmol/m3 438.0 K], which
corresponds to the input values [CA0s Qs] = [4.0 kmol/m3 0.0 kJ/
h]. We rewrite the CSTR state and input vectors in deviation
from this steady-state as xT = [CA − CAs T − Ts] and u

T = [CA0 −
CA0s Q−Qs], in order to translate the origin to be the equilibrium
of the unforced system. The process dynamic model of eq 17 and
all empirical models in this example are numerically integrated
using the explicit Euler method with an integration time step of
hc = 10−4 h.
The control objective is to maximize the time-averaged

production rate of the desired product B (the process profit).
Therefore, the production rate of B is used to design the cost
function of the LEMPC and is given by

∫ ∫τ τ τ=
−

τ

+

−+ +
L x u

t t
k C( , ) d

1
( )

e ( ) d
t

t

e
k N k t

t
E R T

A0
/ ( ) 2

k

k N

k

k N
g

(18)

We also consider that there is a limitation on the amount of
reactant material that may be fed to the reactor in a given period
of operation of length tp = 1 h. Therefore, the inlet concentration
input trajectory is restricted by the following material constraint:

∫ τ τ =
t

u
1

( ) d 0.0 kmol/m
p

t

0
1

3p

(19)

The purpose of this constraint is to limit the amount of reactant
material fed to the reactor over each operating period tp = 1 h to
be equal to the amount that would be fed for steady-state
operation.
The reactor first-principles model in eq 17 is assumed to be

unavailable, with the result that an empirical model for the system
must be identified to develop an LEMPC with the above
objective and constraints. Therefore, a series of step inputs were
generated and applied to the CSTR and the corresponding
outputs were collected in order to identify a linear time-invariant
state-space model that captures the process dynamics in a state-
space region around the steady-state. Using these input and
output data points, the ordinary multivariable output error state-
space (MOESP)8 algorithm was implemented to produce a
linear empirical model for the reactor of eq 17. This initial (i = 1)
model of the reactor is described by the following matrices:

Table 2. Relative Prediction Error and Average Yield for the
CSTR under LEMPC

after 1st online ID after 2nd online ID

approach Y max ed(tk) Y max ed(tk)

One Empirical Model 7.16 4.76 7.23 5.03
Online Model ID 8.31 1.98 8.21 1.82
Nonlinear Model 8.43 8.39

Table 3. Parameter Values of the CSTR

T0 = 300 K F = 5.0 m3/h
V = 1.0 m3 E = 5.0 × 104 kJ/kmol
k0 = 8.46 × 106 m3/(h kmol) ΔH = −1.15 × 104 kJ/kmol
Cp = 0.231 kJ/(kg K) R = 8.314 kJ/(kmol K)
ρL = 1000 kg/m3
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Model validation was conducted using step, impulse, and
sinusoidal inputs. This empirical model is used to design the
Lyapunov-based controller for the LEMPC design since it is
assumed that the reactor first-principles model of eq 17 is
unavailable. The Lyapunov-based controller consisted of both
inputs following the control law hL1

T (x) = [hL1,1(x) hL1,2(x)],
where the reactant inlet concentration hL1,1(x) was fixed at 0.0
kmol/m3 to meet the material constraint of eq 19. For the heat
rate supply/removal rate, the following control law was used:20
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where the vector function f:̃ Rn → Rn and the matrix function g:
Rn → Rn×m are defined as follows:

⏟
= +

⏟≕ ̃ ≕

x t
t

Ax B u
d ( )

d f x g x( ) ( ) (22)

and g2(x) is the second column of the Bmatrix. LfV̂̃ and Lg2V̂ are
the Lie derivatives of the Lyapunov function V̂(x) with respect to
f(̃x) and g2(x), respectively. A quadratic Lyapunov function of
the form V̂(x) = xT Px is used, where P is the following positive
definite matrix:

=
⎡
⎣⎢

⎤
⎦⎥P

1060 22
22 0.52 (23)

Through extensive closed-loop simulations of the reactor
system under the control law hL1(x), the level setsΩρ̂e1 andΩρ̂1 of
the Lyapunov function V̂ were chosen to have ρ̂e1 = 55 and ρ̂1 =
64.32. In this region, the nonlinear dynamics of eq 17 are well-
captured by the linear empirical model of eq 20.
In this example, the LEMPC design in eq 6 that also

incorporates the material constraint of eq 19 (enforced in each
operating period) is applied to the process in eq 17. We will
demonstrate the case where a fault occurs in u2. When such a fault
occurs, another stabilizing control law that is based on u1 needs to
be designed to implement Mode 2 of the LEMPC if the closed-
loop state exitsΩρ̂e1. The stabilizing control law is of the following
form:
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where g1(x) is the first column of the Bmatrix and V̂,Ωρ̂e1, andΩρ̂1

are the same as mentioned above. After the fault occurs, u1 is the
only manipulated input that is available both to maximize the
profit and also to keep the state inside the stability regionΩρ̂1, and
therefore, the manipulated input trajectories calculated by the
LEMPC with an empirical model may require u1 to utilize more
material than it is constrained to use by the material constraint of
eq 19 (i.e., the LEMPC optimization problem may become
infeasible in the second half of the operating periods after the
occurrence of the fault in u2). When the optimization problem
becomes infeasible, a different optimization problem is solved to
determine the value of u1 to apply to the process, with the form of
eq 6, without the material constraint of eq 19, and with the stage
cost Le(x,u) = u1

2(τ) instead of the stage cost in eq 18. Mode 2 is
continuously implemented so that this control design minimizes
the amount of feedstock material utilized while seeking to
stabilize the closed-loop system. For all of the simulations
presented below, the LEMPC is designed using a prediction
horizon ofN = 10 and a sampling period ofΔ = 0.01 h. The open-
source optimization solver IPOPT30 was used in solving the
LEMPC optimization problems at each sampling time.
The CSTR was initialized from the open-loop stable steady-

state and was controlled using the LEMPC designed with the
cost function of eq 18 and the material constraint of eq 19. The
LEMPC utilizes the model of eq 20 to predict the values of the
process states throughout the prediction horizon. A moving
horizon error detector that calculates ed at each sampling time to
determine when it is necessary to trigger reidentification of the
empirical process model was designed and initiated afterM = 50
input/output data points were available. Simulations of the
CSTR suggested that significant plant−model mismatch was
indicated when the value of ed exceeded 3, and thus, this value was
chosen as the threshold to trigger model reidentification. The
moving horizon error detector calculates the relative prediction
error in the concentration and temperature throughout the past
50 sampling periods and current sampling time as follows:
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Figure 6. Value of error metric ed at each sampling time using the detector of eq 25 for the LEMPC integrated with the error-triggered online model
identification with Q = 4.0 × 104 kJ/h after the fault.

Industrial & Engineering Chemistry Research Article

DOI: 10.1021/acs.iecr.7b00576
Ind. Eng. Chem. Res. 2017, 56, 5652−5667

5662

http://dx.doi.org/10.1021/acs.iecr.7b00576


The initial empirical model utilized within the LEMPC
coupled with the moving horizon error detector/online model
reidentification strategy was A1 and B1. After two operating
periods (i.e., at the beginning of the 3rd operating period), an
actuator fault occurs, causing the heat input to stay at the value of
Q = 4.0 × 104 kJ/h for the next two operating periods. As
mentioned above, this example assumes that the value at whichQ
became stuck is unknown, and therefore, the LEMPC continues
to solve for both u1 and u2 after the fault, but only u1 is
implemented since a fault has occurred in u2. Figure 6 shows the
increase in ed after the fault occurrence, leading it to eventually
exceed its threshold and trigger online model reidentification,
using input/output data collected after the occurrence of the
fault, which resulted in a sharp drop in the prediction error. The
following model was identified using the postfault input/output
data:
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(26)

Notably, in accordance with Step 4 of the implementation
strategy presented in this work, the B2 matrix has one less column

than the B1 matrix due to the loss of availability of u2 as a
manipulated input. When the empirical models were reidentified,
the controller of eq 21 was replaced with that of eq 24 based on
the new empirical model. The same value of V̂ was used for all
simulations. The input and state trajectories for the reactor
process under the LEMPC of eq 6 with the empirical models of
eqs 20 and 26 (with the changes in the LEMPCwhen infeasibility
occurs as noted above) subject to the actuator fault in u2 are
presented in Figures 7−10 (u1 and u2 in Figures 7 and 8
correspond to the inputs computed by the LEMPC, rather than
by the Lyapunov-based control design hL1, and thus the input
trajectories have the form shown in the figure because those were
the trajectories that the LEMPC determined would maximize the
objective function subject to the constraints). Figure 6 shows the
value of ed throughout time under the proposed approach, which
shows the growth of ed that triggered the model reidentification.
The new model (A2 and B2) that was obtained from input and
output data collected after the fault occurrence was able to
capture the process dynamics corresponding to the new
conditions and caused the values of ed(tk) to decrease rapidly
afterward. In addition, Figure 11 shows the evolution of the state-
space trajectories within the level setsΩρ̂1 andΩρ̂e1 during process
operation. This figure shows that the state was maintained within

Figure 7.Closed-loop input trajectory (u1 = CA0− CA0s) of the reactor of eq 17 under the LEMPC using the error-triggered online model identification
starting from [CAs Ts] = [1.2 kmol/m3 438.0 K] with Q = 4.0 × 104 kJ/h after the fault.

Figure 8. Closed-loop input trajectory (u2 = Q − Qs) of the reactor of eq 17 under the LEMPC using the error-triggered online model identification
starting from [CAs Ts] = [1.2 kmol/m3 438.0 K] with Q = 4.0 × 104 kJ/h after the fault.

Figure 9. Closed-loop state trajectory (x1 = CA − CAs) of the reactor of eq 17 under the LEMPC using the error-triggered online model identification
starting from [CAs Ts] = [1.2 kmol/m3 438.0 K] with Q = 4.0 × 104 kJ/h after the fault.

Figure 10. Closed-loop state trajectory (x2 = T − Ts) of the reactor of eq 17 under the LEMPC using the error-triggered online model identification
starting from [CAs Ts] = [1.2 kmol/m3 438.0 K] with Q = 4.0 × 104 kJ/h after the fault.
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the stability region Ωρ̂1 under the proposed scheme. Infeasibility
of the LEMPC with the material constraint occurred in the third
and fourth hours of operation, during which the material
constraint of eq 19 was violated by 0.08 kmol/m3 and 0.047

kmol/m3, respectively (i.e., ∫ τ τ =u ( ) d 0.08 kmol/m1
1 h 2h

3h
1

3

for the third hour and ∫ τ τ =u ( ) d 0.047 kmol/m1
1 h 3h

4h
1

3 for the

fourth hour), resulting in use of the modified LEMPC design
discussed above.
In addition to decreasing the plant−model mismatch due to

faults, the online model identification procedure improved the
process economic performance compared to not updating the
model as presented in Table 4. The results listed are for two

approaches: the “One Empirical Model” approach, in which no
model reidentification is conducted and the initial empirical
model (A1 and B1) is used throughout the operating periods,
despite the fault (i.e., the LEMPC calculates both u1 and u2
despite the fault), and the “OnlineModel ID” approach, in which
the proposed online model reidentification approach is
employed. These results show the significant improvement in
the profit resulting from updating the empirical model online
compared to using the same initial empirical model throughout
process operation despite the fault. Table 4 shows the time-
averaged profit (denoted by Je), the maximum value of ed, and the

amount of material used ( ∫ τ τu ( ) d1
1 h 3h

4h
1 ) for each approach

throughout the last hour of operation, where Je in this table is
given by

∫ τ τ= τ−J k C
1

1 h
e ( ) de

E R T
A

3h

4h

0
/ ( ) 2g

(27)

To demonstrate the ability of the moving horizon error
detector to indicate significant prediction errors and determine
when it is necessary to update the model online, another
simulation of the CSTR of eq 17 is considered. The CSTR was
initialized from the same open-loop stable steady-state and was
controlled using the same LEMPC architecture mentioned above
with the same initial model (A1 and B1). The moving horizon
error detector was initiated afterM = 50 input/output data points
were available to calculate the values of ed. After two operating
periods, an actuator fault is assumed to occur causing the heat
input to remain at Q = 1.0 × 104 kJ/h for the next two operating
periods. The LEMPC continued to compute optimal control
actions for both u1 and u2. This caused values of ed to increase as
can be seen in Figure 12. However, no reidentification was
required since the error did not exceed the threshold of ed = 3,
showing that the error-triggering was successful at deciding the
necessity of model updates. The state-space trajectories of the
reactor process under the LEMPC subject to the actuator fault in
the value of u2 are presented in Figure 13. The figure shows that
the state was maintained within the stability region even after the
fault occurrence. In this simulation, the material constraint was

not violated after the fault occurrence (i.e., ∫1
1 h 2h

3h
u1(τ) dτ = 0.0

kmol/m3 for the third hour and ∫1
1 h 3h

4h
u1(τ) dτ = 0.0 kmol/m3

for the fourth hour).
To investigate the impact of sensor noise on the error-

triggered online model identification procedure for actuator fault
compensation, another simulation was performed in which the
LEMPC with an empirical model was initialized using A1 and B1,
and sensor noise was also added to the simulation. The sensor

Figure 11. State trajectories in state-space coordinates of the closed-
loop CSTR of eq 17 under the LEMPC with error-triggered online
model identification starting from [CAs Ts] = [1.2 kmol/m3 438.0 K]
with Q = 4.0 × 104 kJ/h after the fault.

Table 4. Relative Prediction Error, Average Profit, and
Amount of Material Used for the CSTR under LEMPC during
the 4th Hour of Operation

approach Je max ed(tk) ∫ τ τu ( ) d1
1 h 3h

4h
1

One Empirical Model 14.94 3.92 0.089
Online Model ID 15.49 3.01 0.047

Figure 12. Value of error metric ed at each sampling time using the detector of eq 25 for the LEMPC integrated with the error-triggered online model
identification with Q = 1.0 × 104 kJ/h after the fault.
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noise was stationary zero-mean Gaussian white noise with a
variance of 1 K for the temperature sensor noise and a variance of
0.0625 kmol/m3 for the concentration sensor noise with bounds
on the magnitude of the noise equal to |w1(t)|≤ 1 K and |w2(t)|≤
0.0625 kmol/m3. As in the simulations above, a fault in the value
of u2 occurred after two operating periods, causing the value of ed
to increase (as shown in Figure 14) until the error threshold was
exceeded, resulting in identification of the following empirical
model:
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Though no filter was applied to obtain this model from the noisy
measurements, the model of eq 28 was able to improve the value
of Je, reduce the maximum value of ed, and reduce the violation of
the material constraint in the fourth hour of operation compared
to using one empirical model (in the presence of sensor noise)
throughout the entire length of operation with the fault (as
demonstrated in Table 5).
Infeasibility of the LEMPC with the material constraint in the

presence of noise occurred in the third and fourth hours of
operation, during which the material constraint of eq 19 was
violated by 0.083 kmol/m3 and 0.051 kmol/m3, respectively (i.e.,

∫1
1 h 2h

3h
u1(τ) dτ = 0.083 kmol/m3 for the third hour and

∫1
1 h 3h

4h
u1(τ) dτ = 0.051 kmol/m3 for the fourth hour), resulting

in use of the modified LEMPC design discussed above. The
measured state and input trajectories for the simulation with
sensor noise are shown in Figures 15−19.

Remark 12. In the process examples considered in the
sections Application of Error-Triggered Online Model Identi-
fication When the Fault Value Is Known: Catalytic Process
Example and Application of Error-Triggered Online Model
Identification When the Fault Value Is Unknown: CSTR
Example, the LEMPC’s with the empirical models compute
time-varying input trajectories and not steady-state input
trajectories to optimize the process economics according to the
LEMPC optimization problems. The examples indicate that the
models constructed from closed-loop data are good in the sense
that when these models are used in the EMPC systems, the
moving horizon error detector triggers model reidentification
infrequently and the process economics improve when the
models are updated compared to not updating the empirical
models, which means that the LEMPC inputs sufficiently excite
the closed-loop process to produce process data suitable for
model construction.

■ CONCLUSION
In this work, we proposed an online model identification
methodology that updates the empirical models used in LEMPC
online to overcome actuator faults. Empirical models were
updated online based on significant prediction errors indicated
by a moving horizon error detector. The error-triggered online
model identification methodology can be applied to overcome
different actuator fault scenaria that occur in practice, including
the case where the value at which the actuator is stuck is known
and the case where the value at which the actuator is stuck is
unknown. Applications were demonstrated for both cases using
two chemical process examples under LEMPC. In the first
example, a benchmark chemical process was used to demonstrate
the application of the proposed scheme in the case where the
value at which the actuator is stuck is known. In the second
example, another chemical process was used to demonstrate the

Figure 13. State trajectories in state-space coordinates of the closed-
loop CSTR of eq 17 under the LEMPC with error-triggered online
model identification starting from [CAs Ts] = [1.2 kmol/m3 438.0 K]
with Q = 1.0 × 104 kJ/h after the fault.

Figure 14. Value of error metric ed at each sampling time using the detector of eq 25 for the LEMPC integrated with the error-triggered online model
identification with Q = 4.0 × 104 kJ/h after the fault (including sensor noise).

Table 5. Relative Prediction Error, Average Profit, and
Amount of Material Used for the CSTR under LEMPC during
the 4th Hour of Operation (Including Sensor Noise)

approach Je max ed(tk) ∫ τ τu ( ) d1
1 h 3h

4h
1

One Empirical Model 14.92 4.02 0.087
Online Model ID 15.21 3.07 0.051
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application of the proposed scheme in the case where the value at
which the actuator is stuck is unknown. The chemical process
examples presented the ability of the proposed scheme to detect
when it is necessary to update the empirical model online in
response to operational variations caused by actuator faults and/
or disturbances. Improved state predictions and economic
performance were obtained under the proposed scheme
compared to using one empirical model throughout operation
despite the actuator faults. The examples show the successful
implementation of a unified framework using the moving
horizon error detector and error-triggered model updates within
LEMPC for handling faults. Future research on this topic may
investigate the use of nonlinear or stochastic empirical models in
the error-triggered online model identification strategy instead of
deterministic linear empirical models. It may also further
examine the need to wait to change the model or error detector
parameters immediately after the fault until sufficient data is
available, and the requirement that the inputs be time-varying to
excite the dominant process dynamics when all actuators are
online and also as various actuators are taken off-line due to faults
to allow routine process operating data to be available to be
utilized to identify sufficiently accurate empirical models.

Figure 15.Closed-loop input trajectory (u1 =CA0−CA0s) of the reactor of eq 17 under the LEMPC using the error-triggered online model identification
starting from [CAs Ts] = [1.2 kmol/m3 438.0 K] with Q = 4.0 × 104 kJ/h after the fault (including sensor noise).

Figure 16. Closed-loop input trajectory (u2 = Q − Qs) of the reactor of eq 17 under the LEMPC using the error-triggered online model identification
starting from [CAs Ts] = [1.2 kmol/m3 438.0 K] with Q = 4.0 × 104 kJ/h after the fault (including sensor noise).

Figure 17. Closed-loop state trajectory (x1 = CA − CAs) of the reactor of eq 17 under the LEMPC using the error-triggered online model identification
starting from [CAs Ts] = [1.2 kmol/m3 438.0 K] with Q = 4.0 × 104 kJ/h after the fault (including sensor noise).

Figure 18. Closed-loop state trajectory (x2 = T − Ts) of the reactor of eq 17 under the LEMPC using the error-triggered online model identification
starting from [CAs Ts] = [1.2 kmol/m3 438.0 K] with Q = 4.0 × 104 kJ/h after the fault (including sensor noise).

Figure 19. State trajectories in state-space coordinates of the closed-
loop CSTR of eq 17 under the LEMPC with error-triggered online
model identification starting from [CAs Ts] = [1.2 kmol/m3 438.0 K]
with Q = 4.0 × 104 kJ/h after the fault (including sensor noise).
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