
Citation: Alnajdi, A.; Abdullah, F.;

Suryavanashi, A.; Christofides, P. D.

Machine Learning-Based Model

Predictive Control of Two-Time-Scale

Systems. Mathematics 2023, 11, 3827.

https://doi.org/10.3390/math

11183827

Academic Editors: Teng Huang,

Qiong Wang and Yan Pang

Received: 11 August 2023

Revised: 1 September 2023

Accepted: 4 September 2023

Published: 6 September 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Machine Learning-Based Model Predictive Control of
Two-Time-Scale Systems
Aisha Alnajdi 1, Fahim Abdullah 2 , Atharva Suryavanshi 2 and Panagiotis D. Christofides 1,2,*

1 Department of Electrical and Computer Engineering, University of California, Los Angeles, CA 90095, USA;
aishaaln2@gmail.com

2 Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA 90095, USA;
fa2@g.ucla.edu (F.A.); atharvasurya99@g.ucla.edu (A.S.)

* Correspondence: pdc@seas.ucla.edu; Tel.: +1-(310)-794-1015

Abstract: In this study, we present a general form of nonlinear two-time-scale systems, where singular
perturbation analysis is used to separate the dynamics of the slow and fast subsystems. Machine
learning techniques are utilized to approximate the dynamics of both subsystems. Specifically, a
recurrent neural network (RNN) and a feedforward neural network (FNN) are used to predict the
slow and fast state vectors, respectively. Moreover, we investigate the generalization error bounds
for these machine learning models approximating the dynamics of two-time-scale systems. Next,
under the assumption that the fast states are asymptotically stable, our focus shifts toward designing
a Lyapunov-based model predictive control (LMPC) scheme that exclusively employs the RNN to
predict the dynamics of the slow states. Additionally, we derive sufficient conditions to guarantee
the closed-loop stability of the system under the sample-and-hold implementation of the controller.
A nonlinear chemical process example is used to demonstrate the theory. In particular, two RNN
models are constructed: one to model the full two-time-scale system and the other to predict solely
the slow state vector. Both models are integrated within the LMPC scheme, and we compare their
closed-loop performance while assessing the computational time required to execute the LMPC
optimization problem.

Keywords: two-time-scale systems; machine learning; recurrent neural networks; long short-term
memory recurrent neural networks; feedforward neural network; process control; model predictive
control; nonlinear systems; singular perturbations

MSC: 93B45; 93C10; 93C70

1. Introduction

Various applications in the field of chemical engineering involve systems that exhibit
different time scales. Instances of such systems include biochemical processes, catalytic
reactors, and distillation columns. Furthermore, other scientific sectors, such as power
electronics, communication networks, and biological systems, also feature systems with dy-
namics evolving in disparate time scales. Specifically, in the context of chemical engineering,
researchers have utilized the method of singular perturbation to decouple two-time-scale
systems into reduced-order subsystems, each associated with a distinct time scale (e.g., [1]).
This approach simplifies the analysis of the ordinary differential equations governing
the system, allowing for the design of a suitable well-conditioned control law that stabi-
lizes the system. In the context of control system design, model predictive control (MPC)
is widely recognized as one of the leading and most convenient approaches employed
in stabilizing different types of nonlinear systems. MPC is essentially an optimization
problem formulated with a well-defined objective function aimed at enhancing the per-
formance of the system while meeting constraints associated with the system’s physical
structure and closed-loop stability. The fact that MPC accounts for multiple inputs, outputs,

Mathematics 2023, 11, 3827. https://doi.org/10.3390/math11183827 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11183827
https://doi.org/10.3390/math11183827
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-5094-788X
https://doi.org/10.3390/math11183827
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11183827?type=check_update&version=1

Mathematics 2023, 11, 3827 2 of 31

and constraints within its framework is what makes it a suitable choice for designing
control systems to stabilize chemical processes. However, in singularly perturbed systems,
the presence of distinct time scales can lead to challenges when employing MPC without
accounting for the state evolution in the different time scales. Neglecting this aspect can
result in degradation of the closed-loop performance, long time consumption, or, in more
critical situations, instability and stiffness in the control system due to issues with the
controller’s effectiveness and the presence of ill-conditioning [2].

However, if the time-scale multiplicity is accounted for, MPC has proven to be an
efficient control strategy when it comes to situations involving time-scale separation. For in-
stance, in [3], the design of a composite control system was presented, which included
two MPC designs: one for the slow subsystem and one for the fast subsystem. Using
stability analysis and the theory of singular perturbations, the authors investigated and
guaranteed the closed-loop stability for the full, nonlinear two-time-scale system under
Lyapunov-based tracking MPC. To additionally consider process economics, a similar
strategy was proposed in [4], which focused on the design of a composite controller in-
volving two MPC problems. Specifically, for the stability of the fast subsystem (and full
two-time-scale system as a result), a Lyapunov-based tracking MPC was used for the fast
states based on the error between the fast states and the slow manifold using a quadratic
cost function, while a Lyapunov-based economic MPC was used for the slow subsystem to
optimize the economic considerations and achieve any other desirable closed-loop stability
properties using a non-quadratic, economic cost function. The authors of [3,4] focused on
first-principles-based controllers, and in [5], a two-time-scale system was separated into
slow and fast subsystems using a singular perturbation strategy and then modeled using
only data from the system via the method of sparse identification for nonlinear dynamics.
Subsequently, an MPC was designed based on the reduced-order slow subsystem modeled
using sparse identification, and closed-loop stability guarantees were derived. Furthermore,
numerical simulations were used to demonstrate the reduced computational cost of the
reduced-order sparse-identified model.

Due to the vast advancements in the chemical industry and the multitude of com-
plex reactions occurring in real-life chemical process applications, engineers encounter
challenges when constructing first-principles models for these chemical processes. As a
result, in recent years, machine learning (ML) models have been utilized to approximate
the dynamics of chemical processes. These models are highly beneficial when designed
carefully, as they offer a reliable and efficient alternative to classical first-principles models
and can then be incorporated into MPC frameworks. Many works have been conducted
in this field. For instance, the authors of [6] offered essential insights and a fundamen-
tal theory regarding the integration of machine learning techniques into MPC schemes.
Their work focused on designing a recurrent neural network (RNN) model to approximate
the nominal nonlinear system and integrated the model within an MPC framework to
stabilize the system. In [7], polynomial nonlinear autoregressive with exogenous inputs
(NARX) models were used to build nonlinear MPC, with the relevant polynomial terms
to retain selected via sparse regression. The proposed MPC was applied to a multi-input
multi-output chemical reactor, and an algebraic modeling language was used to reduce
computational time.

Another research direction termed “approximate MPC” involves the replacement of
the MPC optimization problem with a closed-form expression that approximates the MPC
control actions without having to solve an optimization problem. This is meant to address
the computational challenges inherent in classical MPC at the expense of lower accuracy and
generalizability. In [8], an approximate MPC was designed for heating, ventilation, and air-
conditioning (HVAC) systems due to the stringent computational resources available for
building control systems. Specifically, the MPC optimization problem was imitated using
a recurrent neural network with a structure of a nonlinear autoregressive network with
exogenous inputs trained with data from 30 days of operation in a closed loop under
MPC. While both MPC and approximate MPC greatly reduced the cooling consumption of

Mathematics 2023, 11, 3827 3 of 31

the HVAC system when tested, approximate MPC solved for the control actions over 100
times faster throughout the testing period, with only a 12% degradation in performance
compared to MPC. An alternate research direction to reduce the computational burden of
MPC is the design of “explicit MPC”, in which the optimal control actions are computed
offline using multiparametric programming methods, allowing the online component of
MPC to only have to search a table of linear gains and compute a single function evaluation.
A summary of studies investigating explicit MPC is provided in [9]. Machine learning
has also been investigated in the context of explicit MPC. In [10], for example, an explicit
control law was learned for discrete-time linear time-invariant systems using machine
learning. Specifically, the key challenge addressed was that of high dimensionality, which
has been attempted to be solved in the existing literature by identifying suboptimal polytope
partitions of the state space and designing control laws based on such regions. Ref. [10]
focused on tackling high dimensionality in a similar manner but by using reinforcement
learning and additionally investigated constraint satisfaction and feasibility guarantees for
explicit MPC. Specifically, by using deep neural networks with rectified linear units as the
activation function and a modified policy gradient algorithm based on prior knowledge,
the objectives were met and demonstrated via three numerical examples of varying levels of
dimensionality and complexity. A potential limitation of the approximate and explicit MPC
approaches is that they are practically applicable to only smaller-scale systems, even though
they are applicable to systems with very fast sampling times [9]. However, for general
nonlinear systems and nonlinear MPC, due to the highly nonconvex optimization problem,
methods such as the use of suboptimal polytopes [10] may not be readily extended to the
nonlinear case.

While ML techniques have shown great success when incorporating them into MPC
schemes, the practical application of machine learning-based MPC schemes to real-life
processes poses significant challenges. The fact that the ML model is developed using a
finite number of data samples makes it challenging to assess the accuracy of the model
when considering generalized scenarios. Therefore, researchers have developed methods
to quantify the error of the process model used in MPC and study its effects on closed-loop
performance and stability. For example, ref. [11] proposed the use of Bayesian neural
networks (BNN) to quantify the plant-model mismatch and subsequently create adaptive
scenarios in real time for scenario-based MPC using the BNN. Based on the simulation
results from a cold atmospheric plasma system, the proposed approach outperformed
scenario-based MPC without adaptive scenarios and adaptive scenario-based MPC with
Gaussian process regression. On more theoretical fronts, researchers have also studied the
concept of generalization error bounds, which are crucial to study to ensure the construction
of reliable models that are capable of performing accurate predictions on unseen or new
data. Specifically, a low generalization error bound guarantees the effectiveness and
high performance of the ML model and, consequently, the MPC scheme utilizing the
designed ML model. To address this, ref. [12] derived a generalization error bound for a
fully connected RNN (FCRNN) model, discussed the main factors that affect the bound,
and integrated the FCRNN model into an MPC scheme to stabilize a nonlinear process.
Moreover, the authors of [13] focused on deriving a generalization error bound for a
feedforward neural network (FNN) that was used to construct a control Lyapunov-barrier
function. The authors of [14] studied the generalization error bound for both a partially
connected RNN (PCRNN) and an LSTM-RNN and subsequently carried out a comparison
study between the generalization performance of an FCRNN and a PCRNN. Additionally,
all the aforementioned works incorporated the designed machine learning models into
Lyapunov-based MPC schemes to demonstrate the ability of the LMPCs to stabilize a
chemical process. To the best of our knowledge, the application of generalization error
bounds to neural networks modeling two-time-scale systems has not yet been investigated.

In light of the above considerations, in this article, we use the theory of statistical ma-
chine learning to construct the generalization error bounds for neural networks modeling
two-time-scale systems. Moreover, the computational time for a neural network-based

Mathematics 2023, 11, 3827 4 of 31

MPC is known to be an important practical consideration. However, the computational
time for an RNN-based MPC with and without decomposition into lower-order subsystems
has not yet been studied. Therefore, we introduce two LMPC frameworks, one designed
based on an RNN model that predicts the slow state vector and the other designed based
on an RNN model that models the full two-time-scale system, and compare the two LMPC
schemes in terms of the closed-loop stability and computational time. The rest of this article
is structured as follows. Section 2 introduces the essential preliminaries, as well as the
general class of two-time-scale systems considered in this work. Section 3 discusses the gen-
eralization error bounds of neural networks modeling two-time-scale systems. In Section 4,
we present a machine learning-based Lyapunov-based MPC using an RNN that predicts
the slow state vector, followed by a closed-loop stability analysis and the corresponding
results. In Section 5, a chemical process example is used to demonstrate the effectiveness of
the designed controller. Section 6 summarizes the key findings obtained in this study.

2. Preliminaries
2.1. Notations

The Euclidean norm of a vector is denoted by | · |. The transpose of the vector x is given
by xT . Given a matrix B, its Frobenius norm is denoted as ‖B‖F. Moreover, the infinity norm
of the 1-norms of the columns of B is denoted as ‖B‖1,∞ = maxj ∑i |Bi,j|. The expression

LFV(x) denotes the standard Lie derivative LFV(x) := ∂V(x)
x f (x). Set subtraction is

denoted by ‘\’, i.e., A\B := {x ∈ Rn|x ∈ A, x /∈ B}. A function f (x) is of class C1 if it
is continuously differentiable in its domain. A continuous function α : [0, a) → [0, ∞)
belongs to class K if it is strictly increasing and is zero only when evaluated at zero.
A function f : Rn → Rm is said to be L-Lipschitz continuous if there exists L ≥ 0, such that
| f (a)− f (b)| ≤ L|a− b| for all a, b ∈ Rn. A continuous function β : [0, a)× [0, ∞)→ [0, ∞)
belongs to class KL if, for each constant value of t, the function β(·, t) is of class K, and for
each constant value of s, the function β(s, ·) is decreasing and approaches zero as s→ ∞.
The probability that the event A will occur is denoted as P(A). Additionally, the expected
value of a random variable X is denoted as E[X].

2.2. Class of Systems

The following family of ordinary differential equations describes the general class of
two-time-scale continuous-time nonlinear systems with k states considered in this work:

ẋ = f1(x, z, u, ε) (1a)

εż = f2(x, z, ε) (1b)

where x ∈ Rn is the slow state vector, z ∈ Rp is the fast state vector, and n + p = k.
u ∈ Rq1 is the bounded manipulated input vector. The input vector u is constrained by
u ∈ U := {|ui| ≤ u1max,i , i = 1, ..., q1}. We assume the vector functions f1(x, z, u, ε) and
f2(x, z, ε) to be sufficiently smooth vector functions in Rn and Rp, respectively. Moreover,
we assume that the closed-loop stability region of the nonlinear system in Equation (1)
is defined by the region ΩρF

, where ΩρF
:= {x ∈ D|V(x, z) ≤ ρF}, where ρF > 0 and

D is an open neighborhood around the origin. The speed ratio of the slow to the fast
dynamics of the system is represented by the small positive parameter ε. In Equation (1b),
we observe that the speed ratio ε pre-multiplies the derivative of the fast state vector
z, which enables us to utilize a well-known strategy called “reduced-order modeling”
via singular perturbations. In this approach, we will be able to decompose the system
in Equation (1) into two different reduced-order subsystems. We follow the strategy
thoroughly illustrated in [2].

The following equations are obtained by setting ε = 0 in Equation (1):

˙̄x = f1(x̄, z̄, ū, 0) (2a)

0 = f2(x̄, z̄, 0) (2b)

Mathematics 2023, 11, 3827 5 of 31

where x̄ and z̄ are the slow state vector and the fast state vector associated with the system
in Equation (1) under the case where ε = 0, respectively. Additionally, the following
assumption is considered to be fundamental in the theory of singular perturbations.

Assumption 1. Equation (2b) has an isolated solution, which is determined by

z̄ = f̄2(x̄) (3)

where z̄ is a quasi-steady state for the fast state z, and the function f̄2 : Rn → Rp is continuously
differentiable.

We substitute Equation (3) into Equation (2a) to obtain the reduced-order slow subsystem,

˙̄x = f1(x̄, f̄2(x̄), ū, 0) (4)

Furthermore, to obtain the dynamics of the reduced-order fast subsystem, we introduce a
fast timescale τ = t/ε and a new coordinate ¯̄z = z− z̄ to re-write Equation (1b) with respect
to the newly introduced variables ¯̄z and τ. Then, the fast subsystem can be expressed as
the derivative of ¯̄z with respect to τ while setting ε = 0,

d ¯̄z
dτ

= f2(x̄, ¯̄z + f̄2(x̄), 0) (5)

Starting at t0, the initial conditions of the state vectors x and z are given by the vectors
x0 and z0, respectively. Based on Equations (1)–(5), and by utilizing the basic theoretical
concepts of two-time-scale systems in [2], the following equation will hold for all t ∈ [tp, T],
where tp > t0

z(t) = z̄(t) +O(ε). (6)

where z̄(t) reflects the slow transient of z, and O(ε) is an error of order epsilon. A variable,
z(t), isO(ε), where ε is a positive constant if there exists a positive constant k̄ (independent
of ε), such that |z(t)| ≤ k̄ε. Furthermore, if we were to consider the time interval where
t ∈ [t0, T], Equation (6) would be slightly modified, such that the approximation of the
state z is given by the following:

z(t) = z̄(t) + ¯̄z(t) +O(ε), (7)

where z̄(t) and ¯̄z(t) are the slow and fast transients of z, respectively. Additionally, the ap-
proximation of state x by x̄ is given by the following equation for all t ∈ [t0, T]

x(t) = x̄(t) +O(ε). (8)

The fast subsystem in Equation (5) needs to satisfy certain stability properties for the
above closeness of the solution estimates to hold true, which are described by the following
assumption.

Assumption 2. The equilibrium ¯̄z(τ) = 0 in Equation (5) demonstrates uniform asymptotic
stability in x0 and t0. In addition, z0 − z̄(t0) resides within its domain of attraction. As a result,
for all τ ≥ 0, ¯̄z(τ) exists.

If Assumption 2 holds true, then

lim
τ→∞

¯̄z(τ) = 0, (9)

This implies that, at some time tp > t0, z will approach close to its quasi-steady state z̄.
The local stability of the equilibrium of the fast subsystem holds if the following verifiable
condition holds.

Mathematics 2023, 11, 3827 6 of 31

Assumption 3. All the eigenvalues of ∂ f2
∂z , computed for ε = 0, along x̄(t), z̄(t), exhibit real parts

less than a constant negative value, i.e.,

< λ

{
∂ f2

∂z

}
≤ −c < 0. (10)

Utilizing the aforementioned assumptions, we establish the well-known “Tikhonov’s
theorem” in the following theorem.

Theorem 1 (c.f. Theorem 3.1 in [2]). Consider that Assumptions 2 and 3 hold true. Then, for all
t ∈ [t0, T], Equations (7) and (8) are valid. In addition, there exists a specific time instant tp ≥ t0,
such that Equation (6) is valid for all t ∈ [tp, T].

Several sources such as [15] are useful for analyzing slightly varied formulations of
Theorem 1 and reviewing its proof. At this point, we have investigated several essential
concepts of two-time-scale systems. We will assume that the error between x and x̄ is not
greater than O(ε). This assumption allows us to simplify the analysis by approximating x̄
as x. Similarly, the same principle applies to z and z̄, with our focus on capturing the slow
transient of the fast state dynamics z, that is, z̄. Therefore, based on this assumption, we
express the reduced-order slow subsystem in Equation (4) as the following throughout this
manuscript,

ẋ = F(x, u) := f (x) + g(x)u, x(t0) = x0, (11)

where f (·) and g(·) are sufficiently smooth vector functions of dimensions n× 1 and n× q1,
respectively. Without loss of generality, we assume that the initial time t0 = 0 and that
f (0) = 0; hence, the steady state of the nonlinear system in Equation (11) is the origin.
Finally, we will assume that the fast subsystem is globally asymptotically stable, which is
necessary for establishing the stability of the closed-loop system under model predictive
control using machine learning models in Section 4.

Assumption 4. The origin of the closed-loop fast subsystem described by Equation (5) exhibits
global asymptotic stability uniformly in x. This implies that there exists a function β ¯̄z of class KL,
such that for any ¯̄z(0) ∈ Rp,

| ¯̄z(t)| ≤ β ¯̄z

(
| ¯̄z(0)|, t

ε

)
∀t ≥ 0 (12)

2.3. Stabilizability Assumption via Control Lyapunov Function

Regarding the dynamics of the slow subsystem described in Equation (11), we assume
that there exists a locally Lipschitz feedback controller, Φ(x) ∈ U, which renders the origin
of the slow subsystem in Equation (11) asymptotically stable, i.e., there exists a C1 Lyapunov
function V(x) that is continuously differentiable and meets the following set of inequalities:

a1(|x|) ≤ V(x) ≤ a2(|x|), (13a)

∂V(x)
∂x

F(x, Φ(x)) ≤ −a3(|x|), (13b)

∣∣∣∣∂V(x)
∂x

∣∣∣∣ ≤ a4(|x|) (13c)

where a1, a2, a3, and a4 are class K functions for all x ∈ Rn ⊂ D. Additionally, given that
the system F(x, u) has a Lipschitz property and the input u is constrained by the set U, then

Mathematics 2023, 11, 3827 7 of 31

there exist positive constants M, Lx, and L
′
x, such that the subsequent inequalities hold for

all x, x′ ∈ D, and u ∈ U:

|F(x, u)| ≤ M (14a)

|F(x, u)− F(x′, u)| ≤ Lx|x− x′| (14b)∣∣∣∣∂V(x)
∂x

F(x, u)− ∂V(x′)
∂x

F(x′, u)
∣∣∣∣ ≤ L

′
x|x− x′| (14c)

Moreover, the region Ωρ := {x ∈ D|V(x) ≤ ρ}, ρ > 0, is defined as the stability region for
the slow subsystem in Equation (11).

Now we discuss the incorporation of machine learning models, particularly neural
networks, in process systems engineering. The first step in developing any type of neural
network model is generating a comprehensive data set that effectively captures the input–
output relation. This data set is used to train the network and enables it to learn patterns
present in the data and make accurate predictions. To generate a data set that captures
the dynamics of the nonlinear system in Equation (1) within the region Ωρ, we follow
the data generation technique described in [6]. The first step is to carry out various open-
loop simulations of the nonlinear system in Equation (1), covering a wide range of initial
conditions (i.e., x0 ∈ Ωρ and z0 ∈ Ωρ) and valid input signals under sample-and-hold
implementation (i.e., the input is applied to the system as piecewise constant functions,
u = u(tk) ∈ U, ∀t ∈ [tk, tk+1), where tk+1 := tk + ∆, ∆ is the sampling period). To integrate
the nonlinear system in Equation (1), the well-established forward Euler approach is used
with a sufficiently small integration time step hc � ∆. As a result, an extensive data set
containing the dynamics of the system is generated, which is then utilized to train a neural
network employing the Keras library.

2.4. Recurrent Neural Networks

Consider designing a recurrent neural network (RNN) model that predicts only the
slow state vector x in Equation (1), or in other words, to approximate the dynamics of the
slow subsystem in Equation (11). The network is trained using m data points (xi,t, yi,t) of
T-time length, where i = 1, ..., m and t = 1, ..., T. xi,t ∈ Rdx and yi,t ∈ Rdy are the RNN
input and output, respectively. Additionally, dx and dy are the dimensions of the RNN
input and output, respectively. It is worth mentioning that the notations used for the RNN
inputs and outputs are represented in bold to establish a clear distinction between the
RNN notations and the notations used to describe the nonlinear two-time-scale system in
Equation (1). The RNN input xi,t comprises the current slow state measurement, along with
the manipulated inputs applied through the time steps t = 1, ..., T, where the manipulated
inputs are generated randomly within the set U. The RNN output yi,t comprises the slow
state predicted through the time steps t = 1, ..., T. As a result, the RNN model is designed
to make predictions of the slow states over one sampling period with T = ∆

hc
time steps.

The data set utilized to develop the RNN model is constructed by generating m independent
data sequences obtained from an underlying distribution over Rdx×T ×Rdy×T .

With the aim of simplification, we introduce a single-hidden-layer RNN model, given
that hi ∈ Rdh are the hidden states and can be evaluated as follows:

hi,t = σh(Uhi,t−1 + Wxi,t) (15)

where the element-wise nonlinear activation function is denoted by σh. U ∈ Rdh×dh is the
weight matrix associated with the hidden states, whereas W ∈ Rdh×dx is the weight matrix
associated with the input vector. Furthermore, the following equation evaluates the output
layer yi,t of the RNN model:

yi,t = σy(Vhi,t) (16)

where the element-wise activation function of the output layer is denoted by σy, and
V ∈ Rdy×dh is the weight matrix associated with the output layer. In this particular appli-

Mathematics 2023, 11, 3827 8 of 31

cation, the input of the RNN model will be the current slow state measurement, x ∈ Rn,
as well as the manipulated input u ∈ Rq1 for the next sampling period. The output of the
RNN model will be the predicted slow states x for at least one sampling period ahead.
The basic structure of the RNN is represented in Figure 1.

Figure 1. Recurrent neural network structure.

Let y̆ be the predicted value and y be the actual value. We can then define the loss func-
tion L(y, y̆) that computes the squared difference between the actual and predicted values.
More precisely, we will consider the L2 (i.e., mean squared error) loss function. Without loss
of generality, we establish the following standard assumptions that are required for the
study of the generalization error bounds and are reviewed for completeness:

Assumption 5. The inputs of the RNN are bounded (i.e., ‖xi,t‖ ≤ BX for all i = 1, ..., m and
t = 1, ..., T).

Assumption 6. The Frobenius norms of the weight matrices are bounded (i.e., ‖V‖F ≤ BV ,F,
‖W‖F ≤ BW,F, ‖U‖F ≤ BU,F).

Assumption 7. σh is a positive homogeneous and 1-Lipschitz continuous nonlinear activation
function (i.e., σh(αz) = ασh(z) holds ∀α ≥ 0 and z ∈ R).

Assumption 8. The data sets used for training, testing, and validation are drawn from the same
distribution.

Remark 1. Although the RNN model is developed to approximate the dynamics of the slow
subsystem described by Equation (11), we emphasize the fact that the data used to train this RNN
model are constructed using the nonlinear two-time-scale system in Equation (1). The reason is that
in most practical scenarios, engineers are limited to working with data obtained from the original
nonlinear two-time-scale system in Equation (1). Additionally, it is possible to design an RNN
model that predicts the full two-time-scale dynamics of Equation (1) using full-state measurements.

Remark 2. Assumption 5 takes into account the bounded nature of the RNN inputs. This aligns
with the observation that the states x and the inputs u are restricted within certain limits, where
x ∈ Ωρ and u ∈ U. Assumption 6 requires that the weight matrices of the RNN are bounded. This
requirement can be met while training the RNN since the search for the optimal RNN parameters
is limited to a finite class of neural network hypotheses. Assumption 8 indicates that the RNN
model constructed using data derived from industrial operations will be utilized in the exact same
process under the condition that the data distribution remains unchanged. It is important to point
out that in the context of assessing the generalization performance for machine learning models,
Assumption 8 is regarded as essential. Several well-known activation functions can be used to

Mathematics 2023, 11, 3827 9 of 31

construct the RNN model that satisfy Assumption 7; the rectified linear unit (ReLu) activation
function is one such example.

2.5. Feedforward Neural Networks

Using the RNN model described in Section 2.4, we are able to predict the slow state
vector x. However, it is important to devise a methodology to predict the values of the fast
states. In line with the framework proposed in [5], we consider the design of a feedforward
neural network (FNN) that predicts the fast states using the previously predicted slow
states from the RNN model. More precisely, the FNN input will be the slow states x, and its
output will be the fast states z. The FNN model is trained using m independent data points

from an underlying distribution over RdF
x ×RdF

y , where dF
x and dF

y are the dimensions of
the FNN input and output, respectively. In this particular application, given that the FNN
input is the slow state, x ∈ Rn, and its output is the fast state z ∈ Rp, we have dF

x = n and
dF

y = p. The general form of an FNN model can be formulated as follows:

yF = σd(Qdσd−1(Qd−1σd−2(...σ1(Q1xF)))) (17)

where d is the total number of FNN layers, yF ∈ RdF
y is the predicted output of the FNN,

and xF ∈ RdF
x is the FNN’s input. For each FNN layer l, where l = 1, . . . , d, the weight pa-

rameter matrix is denoted as Ql , and the activation function is represented as σl . The depth
of the network is represented by the number of layers d. However, the width of the network
is the maximal number of neurons in a hidden layer and is represented by hmax. Given
that hl denotes the number of neurons in the lth layer, the width of the network can be
expressed as hmax = maxl=1,...,d{hl}. The general FNN structure is shown in Figure 2.

Figure 2. Feedforward neural network structure.

If y̆F is the predicted value and yF is the actual value, we can define the loss function
L(yF, y̆F) that computes the squared difference between the actual and the predicted values.
More precisely, we will consider the L2 (i.e., mean squared error) loss function. Similar
to the discussion on RNNs, we establish the following assumptions for the developed
FNN model:

Assumption 9. The inputs of the FNN are bounded (i.e., ‖xF
i ‖ ≤ BX for all i = 1, ..., m).

Assumption 10. The norms of the weight matrices are bounded in the sense that the maximal 1-norm
of the rows of the weight matrices in the hidden layers and output is bounded (i.e., ‖Q‖1,∞ ≤ BQ).

Mathematics 2023, 11, 3827 10 of 31

Assumption 11. The activation function σl is 1-Lipschitz continuous and satisfies σl(0) = 0,
where l = 1, ..., d (e.g., tanh(·)).

Assumption 9 is an implication of the assumption that the RNN output (slow states) is
bounded. Assumptions 9–11 follow the same reasoning as Assumptions 5–7, as explained in
Remark 2. Building upon the previous assumptions, it should be noted that Assumption 8
remains applicable to the FNN model.

3. Generalization Error Bounds of Neural Networks Modeling Two-Time-Scale Systems

The primary goal of constructing any neural network model is to make accurate
predictions. Therefore, analyzing the generalization error bounds for various types of
neural networks modeling different types of nonlinear systems enables us to improve the
construction and design of these network models. Typically, the assessment of neural
networks is conducted using a finite set of training samples. Hence, it is essential to
investigate the generalization error bound for the neural network model, which allows us
to evaluate the performance of the model in accurately predicting outcomes for new, unseen
data. In other words, considering new data from the same distribution, the generalization
error bound quantifies the ability of a neural network model to make accurate predictions
for unseen data that the neural network has not encountered before.

In this work, we consider an RNN that predicts the dynamics of the slow states. Then,
an FNN is utilized to predict the fast states using the predicted slow states as the input for
the FNN. The generalization error bounds of the neural networks modeling two-time-scale
systems are investigated. Particularly, in this section, we discuss the generalization error
bounds of both the RNN (which predicts the slow states’ dynamics) and the FNN (which
predicts the fast states). The generalization error bound is derived by utilizing the basic
concepts of statistical machine learning theory. Hence, in the upcoming subsection, we
outline the fundamental concepts and definitions used to derive the generalization error
bounds. Additionally, it is worth mentioning that in the following subsection, the same
principles that apply to x,y, and y̆ also extend to xF,yF, and y̆F, respectively. In the same
vein, the principles that apply to dx and dy are also true for dF

x and dF
y , respectively. LetH

be the hypothesis class of RNN functions h(·) that map the dx-dimensional input x ∈ Rdx

to the dy-dimensional output y̆ ∈ Rdy . Similarly, let HF be the hypothesis class of FNN
functions hF(·) that map the dx-dimensional input xF ∈ Rdx to the dy-dimensional output
y̆F ∈ Rdy . We also note that in the following subsection, the principles that apply toH and
h(·) are also valid forHF and hF(·), respectively. It should be noted that the dimensions dx
and dy differ based on whether the network is an RNN or an FNN.

3.1. Generalization Error Bound Preliminaries

Definition 1. Consider a function, h, which makes predictions of the output y corresponding to
the input x, along with an underlying distribution D. The generalization error or the expected loss
is formulated as follows:

E[L(h(x), y)] =
∫

X×Y
L(h(x), y) ρ(x, y) dx dy. (18)

where ρ(x, y) represents the joint probability distribution for x and y, whereas X and Y represent
the vector space for all possible inputs and outputs, respectively, and L denotes the loss function.

We introduce the following definition of the empirical error as an approximation of
the expected loss due to the fact that the joint probability distribution ρ is unknown in
many scenarios.

Mathematics 2023, 11, 3827 11 of 31

Definition 2. Considering a data set consisting of m data samples S = (s1, ..., sm), with each
si = (xi, yi), the empirical error or risk can be expressed as

ÊS[L(h(x), y)] =
1
m

m

∑
i=1

L(h(xi), yi) (19)

We note that the m data samples are gathered from the same data distribution. In this
work, the loss function L(y, y̆) is chosen as the mean squared error (i.e., L2 loss function).
Furthermore, the generalization error bounds are derived using “Rademacher complexity”,
a widely recognized concept in the field of machine learning theory that is used to determine
the complexity and richness of a class of functions. The Rademacher complexity is defined
as follows:

Definition 3. Given a data set S = {s1, ..., sm} with m samples, and a hypothesis class F of
real-valued functions, the empirical Rademacher complexity of F can be defined as follows:

RS(F) = Eε

[
sup
f∈F

1
m

m

∑
i=1

εi f (si)

]
(20)

where ε = (ε1, ..., εm)T consists of the Rademacher random variables εi. These variables are
independent and identically distributed (i.i.d.), satisfying the condition that P(εi = −1) = P(εi =
1) = 0.5.

Given that Gt is the class of loss functions associated with the function classH and is
defined as follows

Gt = {gt : (x, y)→ L(h(x), y), h ∈ H}, (21)

where x and h(x) are the model’s input and output, respectively, whereas y denotes the
actual value of the output, the upper bound of the generalization error can be computed
using the Rademacher complexityRS(Gt), as shown in the following Lemma.

Lemma 1 (c.f. Theorem 3.3 in [16]). Given a data set S = (si), i = 1, ..., m, that consists of
m i.i.d. data samples, where si = (xi,t, yi,t)

T
t=1 for an RNN and si = (xi, yi) for an FNN, with

probability 1− δ, the following inequality holds for all gt ∈ Gt over the data samples S:

E[gt(x, y)] ≤ 1
m

m

∑
i=1

gt(xi, yi) + 2RS(Gt) + 3

√
log(2

δ)

2m
(22)

For a comprehensive proof of Lemma 1, interested readers can refer to [12,16]. By ob-
serving Equation (22), clearly, the upper bound of the generalization error relies on three
terms. The first term is the empirical loss (1

m ∑m
i=1 gt(xi, yi)). The second term is the

Rademacher complexity (2RS(Gt)), whereas the third term depends on the data set size
m, along with the confidence level δ. At this stage, the goal is to be able to effectively
quantify the generalization error bound using predefined and measurable values. This can
be achieved by imposing a further upper bound on the Rademacher complexity term. Hav-
ing established the background and basic concepts of the generalization error bound, our
next discussion focuses on examining the generalization error bounds for neural networks
modeling two-time-scale systems.

3.2. RNN Generalization Error Bound

In this subsection, we investigate the generalization error bound for the RNN model
that predicts the slow dynamics of the two-time-scale system defined in Equation (1).
We start by introducing the following Lemma, which upper-bounds the Rademacher
complexity in terms of the RNN parameters.

Mathematics 2023, 11, 3827 12 of 31

Lemma 2. Let Hk,t, k = 1, ..., dy represent the class of real-valued functions associated with the
kth component of the RNN output at the tth time step, with the activation functions and weight
matrices satisfying Assumptions 5–8. Given a data set S = (xi,t, yi,t)

T
t=1, i = 1, ..., m, consisting of

m i.i.d. data samples, the following inequality holds for the Rademacher complexity:

RS(Hk,t) ≤
M(
√

2 log(2)t + 1)BX√
m

(23)

where M = BV ,FBW,F
Bt

U,F−1

B−1
U,F

, and BX is the upper bound for the RNN inputs.

For a comprehensive and detailed proof of Lemma 2, interested readers may refer
to [12]. By applying the results derived and proven in [12], the following Lemma specifi-
cally addresses the generalization error bound for the RNN model that predicts the slow
dynamics of the two-time-scale system defined in Equation (1).

Lemma 3. Consider the general class of the two-time-scale continuous-time nonlinear systems
described in Equation (1) under the assumption that the slow and fast states in Equation (1) are
stable and the perturbation parameter ε is sufficiently small. An RNN satisfying Assumptions 5–8
is constructed to predict the slow states of the system at the tth time step. Given the Lr–Lipschitz
loss function that belongs to the family of loss functions Gt associated with the RNN function of
class Ht and a data set S = (xi,t, yi,t)

T
t=1, i = 1, ..., m, with m i.i.d. data samples, the following

inequality holds true with a probability of at least 1− δ over S for all t ∈ [t0, T]:

E[gRNN
t (x̆, x)] ≤ 1

m

m

∑
i=1

gt(x̆i, xi) + 3

√
log(2

δ)

2m
+O

(
Lrdy

MBX(1 +
√

2 log(2)t)√
m

)
(24)

where M = BV ,FBW,F
Bt

U,F−1

B−1
U,F

, and BX is the upper bound for the RNN inputs.

Equation (24) indicates that the generalization error bound of the RNN that predicts
the slow state vector x depends on a number of factors, such as the number of training
samples m, the time length t of the RNN’s inputs, the upper bound on the input vector
BX , and the complexity hypothesis class in terms of the weight matrices M, as well as the
empirical loss (1

m ∑m
i=1 gt(x̆i, xi)). We emphasize that the actual slow state is denoted as x,

and the slow state predicted by the RNN model is x̆. Additionally, based on Equation (8),
the generalization error bound in Equation (24) holds for all t ∈ [t0, T] under the assumption
that the slow and fast states are stable, and the perturbation parameter ε is sufficiently small.

Now we discuss the implementation of the RNN’s generalization error bound for
a specific loss function. A locally Lipschitz continuous loss function is used to optimize
the RNN’s weights and biases. To be more precise, we employ the MSE loss function of
the form,

L =
1
m

m

∑
i=1

(y̆i, yi)
2, (25)

where y̆ and y are the predicted and actual values, respectively. Since the loss function L is
locally Lipschitz continuous, it satisfies the following inequality,

|L(y, y̆2)− L(y, y̆1)| ≤ Lr|y̆2 − y̆1| (26)

where Lr is the local Lipschitz constant for the loss function L. Since the RNN model
predicts the slow states of Equation (1), the loss function is computed over the actual and

Mathematics 2023, 11, 3827 13 of 31

predicted slow states, x and x̆, respectively. Moreover, the expected loss of L is upper-
bounded by the following inequality, with a probability of at least 1− δ:

E[L(x̆, x)] ≤ 1
m

m

∑
i=1

L(x̆i, xi) + 3

√
log(2

δ)

2m
+O

(
Lrdy

MBX(1 +
√

2 log(2)t)√
m

)
(27)

Given that the MSE loss function L computes the error between the RNN’s output x
and the RNN’s predicted output x̆, the upper bound on |x̆− x| can be written as follows:

|x̆− x| ≤

√√√√ 1
m

m

∑
i=1

L(x̆i, xi) + 3

√
log(2

δ)

2m
+O

(
Lrdy

MBX(1 +
√

2 log(2)t)√
m

)
(28)

3.3. FNN Generalization Error Bound

In this subsection, we investigate the generalization error bound for the FNN model
that predicts the fast states of the two-time-scale system defined in Equation (1). We start
by introducing the following Lemma, which upper-bounds the Rademacher complexity in
terms of the FNN parameters.

Lemma 4 (c.f. Theorem 2 in [17]). Given a class of scalar-valued functions HF
k and a neural

network with depth d, where ‖Q1‖1,∞ ≤ BQ for all l = 1, ..., d and Assumptions 8–11 are satisfied,
the following inequality holds for the Rademacher complexity:

RS(HF
k) ≤

2BX(BQ)
d
√

d + 1 + log (dx)√
m

(29)

For a comprehensive and detailed proof of Lemma 4, interested readers may refer
to [17]. By applying the results derived and proven in [13], the following Lemma specifically
addresses the generalization error bound for the FNN model that predicts the fast states
using the slow states of the two-time-scale system defined in Equation (1).

Lemma 5. Consider the general class of two-time-scale continuous-time nonlinear systems de-
scribed in Equation (1) under the assumption that the slow and fast states are stable, and the
perturbation parameter ε is sufficiently small. An FNN satisfying Assumptions 8–11 is constructed
to predict the fast states using the slow states. Given the Lr–Lipschitz loss functions associated with
the vector-valued FNN hypothesis class HF and a data set S consisting of m i.i.d. data samples,
the following inequality holds true, with a probability of at least 1− δ over S for all t ∈ [tp, T],
where tp is defined in Theorem 1:

E[gFNN
t (z̆, z)] ≤ 1

m

m

∑
i=1

gt(z̆i, zi) + 3

√
log(2

δ)

2m
+O

(
Lrdy

BX(BQ)
d
√

d + 1 + log(dx)√
m

)
(30)

Equation (30) indicates that the generalization error bound of the FNN modeling
the fast subsystem depends on several factors, such as the number of training samples
m, the upper bound on the input vector BX, the complexity hypothesis class in terms of
the upper bound of the weight matrices BQ, and the number of layers d, as well as the
empirical loss (1

m ∑m
i=1 L(z̆i, zi)). We emphasize that the actual fast state is denoted as z, and

the fast state predicted by the FNN model is z̆. Therefore, the generalization error bound of
Equation (30) holds for all t ∈ [tp, T] under the assumption that the slow and fast states are
stable, and the perturbation parameter ε is sufficiently small.

Now we discuss the implementation of the FNN’s generalization error bound specifi-
cally on the MSE loss function. A locally Lipschitz continuous loss function such as the
MSE is used to optimize the FNN’s weights and biases. The MSE loss function satisfies the
inequality of Equation (26). Since the FNN model predicts the fast states of Equation (1),

Mathematics 2023, 11, 3827 14 of 31

the loss function is computed over the actual and predicted fast states, z and z̆, respectively.
Moreover, the expected loss of L is upper-bounded by the following inequality, with a
probability of at least 1− δ:

E[L(z̆, z)] ≤ 1
m

m

∑
i=1

L(z̆i, zi) + 3

√
log(2

δ)

2m
+O

(
Lrdy

BX(BQ)
d
√

d + 1 + log(dx)√
m

)
(31)

Given that the MSE loss function L computes the error between the RNN’s output z and
the RNN’s predicted output z̆, the upper bound on |z̆− z| can be written as follows:

|z̆− z| ≤

√√√√ 1
m

m

∑
i=1

L(z̆i, zi) + 3

√
log(2

δ)

2m
+O

(
Lrdy

BX(BQ)d
√

d + 1 + log(dx)√
m

)
(32)

4. Machine Learning-Based LMPC Using an RNN That Approximates the Slow Subsystem

Having investigated the generalization error bounds for neural networks modeling
two-time-scale systems, the rest of this manuscript focuses on the design and performance
of LMPC using RNN models with and without time-scale decomposition. Specifically,
the objective is to design an RNN to predict only the slow state vector x, following the
approach outlined in Section 2.4, and then incorporate the designed RNN model within
an LMPC scheme to show that it is sufficient to stabilize the full two-time-scale system
in Equation (1). In this section, we present a stability analysis for the proposed LMPC
framework. For simplicity, in this section, we present the RNN model that predicts the
slow state vector x as a continuous-time nonlinear system of the following form:

˙̂x = Fnn(x̂, u) := Ax̂ + ΘT ẑ (33)

where x̂ ∈ Rn is the RNN’s state vector and u ∈ Rq1 is the manipulated input vec-
tor. The weight matrices are denoted as A and Θ. The diagonal coefficient matrix A
has negative diagonal entries. Θ is defined as Θ = [θ1, ..., θn] ∈ R(q1+n)×n, with entries
θi = bi[wi1, ..., wi(q1+n)], i = 1, ..., n, given that wij represents the weight associated with the
connection between the ith neuron and the jth output, with i ranging from 1 to n and j rang-
ing from 1 to (q1 + n). The vector ẑ = [ẑ1, ..., ẑn, ẑn+1, ..., ẑn+q1] = [σ(x̂1)...σ(x̂n), u...uq1] ∈
Rn+q1 consists of both the network states x̂ and inputs u. Additionally, a nonlinear acti-
vation function σ(·) is applied to the network states x̂ when constructing the vector ẑ. It
is worth mentioning that the weight matrices and activation functions satisfy Assump-
tions 5–8. For simplicity, we assume a single-hidden-layer RNN model represented by
Equation (33), which does not explicitly include bias terms. Nevertheless, it should be
emphasized that the results obtained in this section are not limited to single-hidden-layer
RNN models, but can be generalized to include deep RNN models that consist of multiple
hidden layers.

4.1. Lyapunov-Based Control Using an RNN Model

Taking into account the RNN model designed to predict the values of the slow states,
we assume that there exists a stabilizing control law Φnn(x) ∈ U (e.g., a P-controller,
a Lyapunov-based controller) that can render the origin of the RNN model in Equation (33)
asymptotically stable in an open neighborhood around the origin denoted as D̂. Hence,
there exists a continuously differentiable Lyapunov function V̂ : Rn → R≥0 that satisfies
the following inequalities:

â1(|x|) ≤ V̂(x) ≤ â2(|x|) (34a)

∂V̂(x)
∂x

Fnn(x, Φnn(x)) ≤ −â3(|x|) (34b)

Mathematics 2023, 11, 3827 15 of 31

∣∣∣∣∂V̂(x)
∂x

∣∣∣∣ ≤ â4(|x|) (34c)

where âi are class K functions for all x ∈ Rn ⊂ D̂. The Lyapunov function V̂ can be
designed using a quadratic formulation, which satisfies the required criteria, or, alternately,
using learning-based approaches, as conducted using a linear parameter-varying (LPV)
framework in [18]. In the simulation example presented in our work below, a quadratic
Lyapunov function is used, and extensive open-loop and closed-loop simulations are
conducted to verify that the asymptotic stability assumption is met. The Lyapunov level set
that ensures the stability of the RNN model is defined as Ωρ̂ := {x ∈ D̂ | V̂(x) ≤ ρ̂}, where
ρ̂ > 0. This implies that the closed-loop stability region of the RNN model in Equation (33)
is denoted as Ωρ̂. Moreover, there exist positive constants Mnn and Lnn, such that the
following inequalities are satisfied for all x, x′ ∈ Ωρ̂, and u ∈ U:

|Fnn(x, u)| ≤ Mnn (35a)

∣∣∣∣∂V̂(x)
∂x

Fnn(x, u)− ∂V̂(x′)
∂x

Fnn(x′, u)
∣∣∣∣ ≤ Lnn|x− x′| (35b)

The feedback controller u = Φnn(x) ∈ U can stabilize the dynamics of the slow subsystem
in Equation (11) under a sufficiently small modeling error between the nominal slow
subsystem and the RNN model. This result is shown in the following proposition.

Proposition 1. Consider the RNN model in Equation (33) that satisfies the stabilizability condi-
tions of Equation (34) and is rendered asymptotically stable around the origin under the control
law u = Φnn(x) ∈ U for all x ∈ Ωρ̂. Then, the origin of the slow subsystem in Equation (11)
is asymptotically stable if there exists a positive real number νm, where νm < â3(|x|)/â4(|x|),
such that the modeling error between the slow subsystem in Equation (11) and the RNN model in
Equation (33) (i.e., ν = |F(x, u)− Fnn(x, u)|) is upper-bounded by νm for all x ∈ Ωρ̂.

Proof. We follow the strategy outlined in [5] to prove Proposition 1. The main objective is
to show that, under the control law u = Φnn(x) ∈ U, the slow subsystem in Equation (11) is
asymptotically stable around the origin for all x ∈ Ωρ̂ if Φnn(x) renders the RNN designed
to approximate the slow subsystem asymptotically stable with a bounded modeling error
between the nominal slow subsystem and the RNN model. In other words, we show that
˙̂V(x) ≤ 0 for the slow subsystem in Equation (11) under the controller u = Φnn(x) ∈ U

based on the RNN model. We utilize the inequalities in Equations (34b) and (34c) and
compute ˙̂V(x) as follows:

˙̂V =
∂V̂(x)

∂x
F(x, Φnn(x))

=
∂V̂
∂x

(Fnn(x, Φnn(x)) + F(x, Φnn(x))− Fnn(x, Φnn(x))

≤ −â3(|x|) + â4(|x|)(F(x, Φnn(x))− Fnn(x, Φnn(x)))

≤ −â3(|x|) + νm â4(|x|)

(36)

By assigning νm < â3(|x|)
â4(|x|)

, we obtain ˙̂V(x) ≤ −ã3(|x|) ≤ 0, where ã3(|x|) = −â3(|x|) +
νm â4(|x|) > 0 since â3 and â4 are known functions chosen in such a way as to ensure that
the above result holds. To show that if the general classK functions are chosen as â3 = a3|x|
and â4 = a4|x|, where a3 and a4 are constants, then νm = a3

a4
. Hence, we guarantee the

closed-loop stability of the slow subsystem in Equation (11) around the origin under the
control law Φnn(x) ∈ U for all x ∈ Ωρ̂.

Mathematics 2023, 11, 3827 16 of 31

The RNN model designed in Equation (33) is incorporated into an LMPC scheme,
where the control actions computed by the LMPC are implemented in a sample-and-
hold fashion. Moreover, this sample-and-hold implementation of the LMPC control law
u = Φnn(x) ∈ U establishes certain properties. These properties are studied in the
following two propositions. Specifically, the following proposition shows that the error
between the state of the slow subsystem in Equation (11) and the state predicted by the
RNN model in Equation (33) is bounded.

Proposition 2. Consider the RNN model in Equation (33) and the slow subsystem in Equation (11),
starting with the same initial condition x0 = x̂0 ∈ Ωρ̂. There exists a class K function fw(·) and a
positive constant κ, such that the following inequalities are satisfied for all x, x̂ ∈ Ωρ̂:

|x(t)− x̂(t)| ≤ fw(t) :=
νm

Lx

(
eLxt − 1

)
(37a)

V̂(x) ≤ V̂(x̂) + â4(â−1
1 (ρ̂))|x− x̂|+ κ|x− x̂|2 (37b)

Proof. Considering that e(t) = x(t)− x̂(t) represents the error vector between the state
of the slow subsystem in Equation (11) and the state of the RNN model in Equation (33),
the bound for the time derivative of e(t) is given as follows:

|ė(t)| = |F(x, u)− Fnn(x̂, u)|
≤ |F(x, u)− F(x̂, u)|+ |F(x̂, u)− Fnn(x̂, u)|

(38)

Using Equation (14b), for all x, x̂ ∈ Ωρ̂, the first term in Equation (38) can be bounded as
follows:

|F(x, u)− F(x̂, u)| ≤ Lx|x(t)− x̂(t)|
≤ Lx|x(t)− x̂(t)|

(39)

The term |F(x̂, u)− Fnn(x̂, u)| in Equation (39) denotes the modeling error, and it is upper-
bounded by νm for all x̂ ∈ Ωρ̂. Hence, the term ė(t) can be further bounded by utilizing the
bound of the modeling error and the bound of Equation (39), as follows:

|ė(t)| ≤ Lx|x(t)− x̂(t)|+ νm

≤ Lx|e(t)|+ νm
(40)

Taking into account the zero initial condition (i.e., e(0) = 0), we integrate the inequality in
Equation (40) and obtain the following upper bound for the error vector for all x, x̂ ∈ Ωρ̂:

|e(t)| = |x(t)− x̂(t)| ≤ νm

Lx

(
eLxt − 1

)
(41)

Equation (37b) can be derived using the Taylor series expansion of V̂(x) around x̂ for all
x, x̂ ∈ Ωρ̂ as follows:

V̂(x) ≤ V̂(x̂) +
∂V̂(x̂)

∂x
|x− x̂|+ κ|x− x̂|2 (42)

where κ is a positive real number. Furthermore, Equations (34a) and (34b) are used to
further upper-bound V̂(x) as follows:

V̂(x) ≤ V̂(x̂) + â4(â−1
1 (ρ̂))|x− x̂|+ κ|x− x̂|2 (43)

The following proposition demonstrates that the closed-loop state of the slow subsys-
tem described in Equation (11) is maintained within the stability region Ωρ̂ at all times.

Mathematics 2023, 11, 3827 17 of 31

Additionally, utilizing the Lyapunov-based controller u = Φnn(x) ∈ U through sample-
and-hold implementation ensures that the closed-loop state of the slow subsystem can be
ultimately bounded within a small region around the origin Ωρmin .

Proposition 3 (c.f Proposition 3 in [5]). Consider the slow subsystem in Equation (11) under
the controller Φnn(x̂) ∈ U that satisfies the conditions in Equation (34) and is implemented in
a sample-and-hold fashion (i.e., Φnn(x̂(tk)), ∀t ∈ [tk, tk+1), where tk+1 := tk + ∆) to stabilize
the RNN model in Equation (33). Then, there exist εw > 0, ∆ > 0 and ρ̂ > ρmin > ρnn > ρs
that satisfy

− â3(â−1
2 (ρs)) + Lnn Mnn∆ ≤ −εs (44a)

− ã3(â−1
2 (ρs)) + L

′
x MF∆ ≤ −εw (44b)

and

ρnn := max{V̂
(
x̂(t + ∆)

)
| x̂(t) ∈ Ωρs , u ∈ U} (45a)

ρmin ≥ ρnn +−â4(â−1
1 (ρ̂)) fw(∆) + κ

(
fw(∆)

)2 (45b)

such that, for any x(tk) ∈ Ωρ̂\Ωρs , there exists a class KL function βx and a class K function γ̄,
such that the following inequality is satisfied:

|x(t)| ≤ βx(|x(0)|, t) + γ̄(ρmin) (46)

and the state x(t) of the nominal slow subsystem in Equation (11) is bounded in Ωρ̂ for all times
and ultimately bounded in Ωρmin .

Proof. Assuming that x(tk) = x̂(tk), the first part of establishing this proof involves
showing that V̂(x̂) is decreasing under the control law u(t) = Φnn(x(tk)) ∈ U for t ∈
[tk, tk+1), where x(tk) and x̂(tk) are the state of the slow subsystem in Equation (11) and
the state of the RNN model in Equation (33), respectively. The time derivative of V̂(x̂) for
all t ∈ [tk, tk+1) is calculated as follows:

˙̂V(x̂(t)) =
∂V̂(x̂(t))

∂x̂
Fnn(x̂(t), Φnn(x̂(tk)))

=
∂V̂(x̂(tk))

∂x̂
Fnn
(
x̂(tk), Φnn(x̂(tk))

)
+

∂V̂(x̂(t))
∂x̂

Fnn
(

x̂(t), Φnn(x̂(tk))
)

− ∂V̂(x̂(tk))

∂x̂
Fnn
(

x̂(tk), Φnn(x̂(tk))
)

(47)

By utilizing the inequalities in Equations (34a) and (34b), we further bound ˙̂V(x̂(t)) as
follows:

˙̂V(x̂(t)) ≤− â3(â−1
2 (ρs)) +

∂V̂(x̂(t))
∂x̂

Fnn(x̂(t), Φnn(x̂(tk)))

− ∂V̂(x̂(tk))

∂x̂
Fnn(x̂(tk), Φnn(x̂(tk)))

(48)

By applying the Lipschitz inequalities in Equation (35), we proceed with bounding ˙̂V(x̂(t))
as follows:

˙̂V(x̂(t)) ≤− â3(â−1
2 (ρs)) + Lnn|x̂(t)− x̂(tk)|

≤ − â3(â−1
2 (ρs)) + Lnn Mnn∆

(49)

Mathematics 2023, 11, 3827 18 of 31

Therefore, if Equation (44a) is satisfied, the following inequality holds for all x̂(tk) ∈ Ωρ̂\Ωρs

and t ∈ [tk, tk+1):
˙̂V(x(t)) ≤ −εs (50)

Upon integrating the aforementioned differential equation over the time interval t ∈ [tk, tk+1),
it is derived that V̂(x̂(tk+1)) ≤ V̂(x̂(tk))− εs∆. Therefore, when Equation (44a) is satisfied,
this leads to the fact that ˙̂V(x(t)) is negative for any x̂(tk) ∈ Ωρ̂\Ωρs . As a result, utilizing
the control law u = Φnn(x̂) in a sample-and-hold fashion ensures that the closed-loop state
of the RNN model in Equation (33) is bounded within the region Ωρ̂ and moves toward
the origin. Nevertheless, it should be observed that Equation (50) may not hold true in
cases where x(tk) = x̂(tk) ∈ Ωρs , which indicates that the state x̂(tk) may leave the region
Ωρs within one sampling period. Hence, we introduce the region Ωρnn in Equation (45a) to
guarantee that the closed-loop state x̂(tk) of the RNN model will be bounded in the region
Ωρnn within one sampling period for all t ∈ [tk, tk+1), u ∈ U and x̂(tk) ∈ Ωρs . Consider the
case where x̂(tk+1) leaves the region Ωρs . Then, the controller u = Φnn(x(tk+1)) reactivates
to derive the states into the region Ωρs , and Equation (50) will be satisfied again at t = tk+1.
Up to this point, it can be concluded that the state of the RNN system in Equation (33) is
ultimately bounded in Ωρnn for all x0 ∈ Ωρ̂.

The second part of this proof is to demonstrate that the controller u = Φnn(x) ∈ U,
implemented in a sample-and-hold fashion, effectively bounds the states of the slow
subsystem in Equation (11) in Ωρ̂ and can ultimately derive the states to a small region
around the origin. This requires showing that V̂(x) for the slow subsystem in Equation (11)
is decreasing under the control law u(t) = Φnn(x(tk)) for t ∈ [tk, tk+1) and x(tk) = x̂(tk) ∈
Ωρ̂\Ωρs . The derivative of V̂(x(t)) with respect to time is computed as follows:

˙̂V(x(t)) =
∂V̂(x(t))

∂x
F(x(t), Φnn(x(tk)))

=
∂V̂(x(tk))

∂x
F(x(tk), Φnn(x(tk)))

+
∂V̂(x(t))

∂x
F(x(t), Φnn(x(tk)))

− ∂V̂(x(tk))

∂x
F(x(tk), Φnn(x(tk)))

(51)

Using the inequality in Equation (36), which holds for all x ∈ Ωρ̂\Ωρs , the first term in
Equation (51) can be further bounded as follows:

˙̂V(x(t)) ≤− ã3(â−1
2 (ρs)) +

∂V̂(x(t))
∂x

F(x(t), Φnn(x(tk)), ξ)

− ∂V̂(x(tk))

∂x
F(x(tk), Φnn(x(tk)), 0)

(52)

where ã3(·) was previously defined in the proof of Proposition 1. By using the Lipschitz
condition stated in Equation (14), we derive the following upper bound for ˙̂V(x(t)):

˙̂V(x(t)) ≤ã3(â−1
2 (ρs)) + L

′
x|x(t)− x(tk)|

≤ã3(â−1
2 (ρs)) + L

′
x MF∆

(53)

Therefore, if Equation (44b) holds true, the following inequality is satisfied for all x(tk) ∈
Ωρ̂\Ωρs and for all t ∈ [tk, tk+1):

˙̂V(x(t)) ≤ −εw (54)

Mathematics 2023, 11, 3827 19 of 31

By integrating the above differential equation over the time interval t ∈ [tk, tk+1) between
any two arbitrary points within the previous time interval, it can be shown that for all
x(tk) ∈ Ωρ̂\ΩρS , the following results are obtained:

V̂(x(tk+1)) ≤ V(x(tk))− εw∆ (55)

V̂(x(t)) ≤ V̂(x(tk)), ∀t ∈ [tk, tk+1) (56)

Based on Equation (54), it can be observed that ˙̂V(x(t)) is negative for all x(tk) ∈ Ωρ̂\ΩρS .
As a result, the state of the slow subsystem in Equation (11) remains continuously bounded
within the region Ωρ̂ and can be ultimately driven toward the origin in each sampling
period by implementing the control law u = Φnn(x). In addition, if x(tk) ∈ Ωρs , the state of
the RNN model in Equation (33) is bounded within the region Ωρnn for one sampling period.
This outcome has been demonstrated in the first part of the proof. Taking onto account
the bounded modeling error between the state of the RNN, as described in Equation (33),
and the state of the slow subsystem in Equation (11), a compact set Ωρmin ⊃ Ωρnn exists
and satisfies Equation (45b). The set Ωρmin is introduced to ensure that the state of the
slow subsystem in Equation (11) is bounded within the region Ωρmin during one sampling
period, provided that the state of the RNN represented by Equation (33) is bounded within
the region Ωρnn . In the case where the state x(t) enters the set Ωρmin\ΩρS , it has been shown
that Equation (56) is satisfied. Therefore, under the control law u = Φnn(x), the state x(t)
will be driven toward the origin in the next sampling period, ultimately bounding the state
of the slow subsystem within a small region around the origin Ωρmin . Hence, considering
the continuity property of the Lyapunov function V̂, it follows that there exists a class KL
function βx and a class K function γ̄, such that if x0 ∈ Ωρ̂, then x(t) ∈ Ωρ̂ for all t ≤ t0:

|x(t)| ≤ βx(|x(0)|, t) + γ̄(ρmin) (57)

4.2. Machine Learning-Based LMPC Formulation

In this subsection, we introduce the machine learning-based LMPC formulation that
utilizes the RNN model designed in Equation (33) to predict future states over a certain
future horizon. Furthermore, the LMPC is essentially an optimization problem consisting
of an objective function and a number of constraints. This optimization problem is solved
repeatedly to compute the optimal input trajectory. The following shows the formulation
of the machine learning-based LMPC optimization problem:

J = min
u∈S(∆)

∫ tk+N

tk

LMPC(x̃(t), u(t))dt (58a)

s.t. ˙̃x(t) = Fnn(x̃(t), u(t)) (58b)

u(t) ∈ U, ∀ t ∈ [tk, tk+N) (58c)

x̃(tk) = x(tk) (58d)
˙̂V(x(tk), u) ≤ ˙̂V(x(tk), Φnn(x(tk)), if x(tk) ∈ Ωρ̂\Ωρnn (58e)

V̂(x̃(t)) ≤ ρnn, ∀ t ∈ [tk, tk+N), if x(tk) ∈ Ωρnn (58f)

where the predicted slow state trajectory is denoted as x̃. The set of piecewise constant
functions with period ∆ is denoted as S(∆), and the number of sampling periods in the
prediction horizon is denoted by N. The optimal control action u∗(t) is calculated by
repeatedly solving the machine learning-based LMPC optimization problem over the entire
prediction horizon t ∈ [tk, tk+N). Then, the optimal control action u∗(tk) computed at
the first sampling period is transmitted by the controller to be applied to the process.
Subsequently, the resulting real-time state, x(tk), is fed back to the machine learning-based

Mathematics 2023, 11, 3827 20 of 31

LMPC optimization problem to compute the optimal input trajectory for the next sampling
time. The optimization problem aims to minimize the time integral of LMPC(x̃(t), u(t))
over the prediction horizon, which is represented in the cost function in Equation (58a).
As for the constraints of the optimization problem, the first constraint demonstrated in
Equation (58b) is essentially the RNN model utilized to approximate the states of the
slow subsystem’s dynamics. Equation (58c) represents the input constraints that may be
applied to the process over the entire prediction horizon. The initial condition needed to
solve Equation (58b) is essentially the slow state measurement at t = tk, which is specified
in the constraint in Equation (58d). In the case where x(tk) ∈ Ωρ̂\Ωρnn , the constraint
Equation (58e) ensures that the closed-loop state converges toward the origin. Furthermore,
if the state x(tk) enters the region Ωρnn , it is necessary to guarantee that the states predicted
by the RNN model remain bounded within the region Ωρnn throughout the entire prediction
horizon. This is accomplished by employing Equation (58f).

4.3. Closed-Loop Stability

Assuming that certain conditions are met, the following theorem establishes the closed-
loop stability of a singularly perturbed system described by Equation (1) when the machine
learning-based LMPC of Equation (58) is implemented.

Theorem 2. Consider the singularly perturbed system in Equation (1) in a closed loop, with the
optimal control action u∗ calculated using the machine learning-based LMPC in Equation (58)
based on the controller Φnn(x) that meets the conditions of Equation (34). Additionally, assuming
that Propositions 1–3 and Assumptions 1 and 4 hold true, then there exist class KL functions βx
and βz, a pair of positive real numbers (δ, d), and ε∗ > 0, such that if max{|x(0), |z(0)|} ≤ δ and
ε ∈ (0, ε∗], then, for all t ≥ 0,

|x(t)| ≤ βx(|x(0)|, t) + γ̄(ρmin) + d (59)

|z(t)| ≤ βz

(
|z(0)|, t

ε

)
+ d (60)

Proof. We follow the proof analysis in [5]. Moreover, we consider that by substituting
the optimal control action u∗ into Equation (1), the closed-loop system can be represented
as follows:

ẋ = f1(x, z, u∗, ε) (61a)

εż = f2(x, z, ε) (61b)

We set ε = 0 and obtain the following,

ẋ = f1(x, z, u∗, 0) (62a)

0 = f2(x, z, 0) (62b)

where the assumption that the error between z and z̄ is not greater than O(ε) enables us to
simplify the analysis by approximating z̄ as z. By solving Equation (62b) for z, we obtain a
unique, isolated root z = f̄ (x). We substitute the root into Equation (62a) and obtain the
following for the reduced-order slow subsystem,

ẋ = f1(x, f̄2(x), u∗, 0) (63)

By observing the LMPC equation in Equation (58), in the case where x(tk) ∈ Ωρ̂\Ωρnn ,
Equation (58e) is activated, such that the Lyapunov function V̂ under the calculated control
law u is decreased. According to the finding in Proposition 3 and considering a sufficiently
small modeling error, the state of the slow subsystem in Equation (61a) will gradually
converge to the origin and enter the region Ωρnn within a finite number of sampling time

Mathematics 2023, 11, 3827 21 of 31

steps. Equation (58f) is activated once the state x(tk) enters the region Ωρnn , where it
ensures that the predicted state is bounded within Ωρnn throughout the prediction horizon.
Additionally, by ensuring that the modeling error and the sampling time are sufficiently
small, Proposition 3 establishes that the actual state in Equation (61a) can be maintained
within a slightly expanded set Ωρmin , encompassing Ωρnn . Hence, LMPC guarantees that
for any initial state x0 ∈ Ωρ̂, the state x(t) of the closed-loop slow subsystem described
by Equation (61a) is maintained bounded within the region Ωρ̂ at all times and fulfills the
bound of Equation (57) that was established in Proposition 3.

Additionally, by introducing a fast time scale τ = t/ε, a new coordinate ¯̄z = z− f̄2(x),
and considering ε = 0, the closed-loop fast subsystem is given by:

d ¯̄z
dτ

= f2(x, ¯̄z + f̄2(x), 0) (64)

According to Assumption 4, global asymptotic stability is achieved for the origin of the
closed-loop fast subsystem in Equation (64), satisfying Equation (12) for any ¯̄z(0) ∈ Rp.
As a result, the closed-loop system in Equation (61) meets all the assumptions required for
Theorem 1 in [19] to hold true. Hence, there exist classKL functions βx and βz, a pair of pos-
itive real numbers (δ, d), and ε∗ > 0, such that if max{|x(0), |z(0)|} ≤ δ and ε ∈ (0, ε∗], the
closed-loop states of the slow and fast systems are bounded by Equations (59) and (60).

Remark 3. It is possible to define the general class of two-time-scale systems with an additional
input associated with the fast subsystem as follows:

ẋ = f1(x, z, u, ε) (65a)

εż = f2(x, z, u2, ε) (65b)

where u2 ∈ Rq2 is the bounded manipulated input vector associated with the fast subsystem.
The input vector u2 is constrained by u2 ∈ U2 := {|ui| ≤ u2max,i , i = 1, ..., q2}. However, if there
exists a stabilizing control law u2 = hstable(x, z) that stabilizes the dynamics of the fast subsystem,
then the general class of two-time-scale systems defined by Equation (65) can be reduced to the
class of systems presented in Equation (1), which is the primary focus of this work. Furthermore,
there are relevant works that have addressed the stability analysis of classes of systems defined in
Equation (65), which share similar concepts but incorporate certain modifications. Interested readers
may refer to [3] to further explore this subject.

5. Example of Application to a Chemical Process

In this section, we apply the proposed reduced-order machine learning strategy to
a chemical process example. Specifically, we build two ML models—a reduced-order
ML model to approximate the slow subsystem, and another ML model to capture the
dynamics of the full two-time-scale system. Subsequently, each ML model is incorporated
into an LMPC scheme, and the performance of the controllers is compared in terms of the
closed-loop properties and computational efficiencies.

We consider a perfectly mixed, non-isothermal CSTR, in which an irreversible and
endothermic reaction that transforms chemical A to product B (A→ B) occurs. Figure 3
depicts the CSTR, where CA represents the concentration of chemical A, and Tr represents
the temperature of the reactor’s contents. CA0 denotes the inlet molar concentration of
chemical A, which is fed into the reactor at flow rate F and temperature TA0. Assuming
that the vessel maintains a constant holdup, Vr denotes the volume of liquid present in
the reactor. Due to the occurrence of an endothermic reaction within the reactor, a heating
jacket with volume Vj is used to provide the energy as required. Tj0 is the inlet temperature
of the heat-transfer fluid provided to the jacket with a flow rate Fj. The reactor’s contents
and the heat-transfer fluid maintain constant densities, denoted as ρm and ρj, respectively.
In addition, they both have constant heat capacities, denoted as cp,m and cp,j, respectively.
The enthalpy of the reaction is ∆Hr, the heat-transfer coefficient is U, and the heat-transfer

Mathematics 2023, 11, 3827 22 of 31

contact area between the reactor and the jacket is Ar. Given that k0 is the pre-exponential
constant, R is the ideal gas constant, and E is the activation energy of the reaction, the time-
varying rate constant of the reaction is denoted by k and is given by the following equation:

k = k0 exp
(
−E
RTr

)
(66)

Figure 3. The continuous-stirred tank reactor with jacket.

The first-principles equations of the CSTR are described by the following dynamic
material and energy balance equations:

Vr
dCA
dt

= Fr(CA0 − CA)− k0 exp
(
−E
RTr

)
CAVr (67a)

Vr
dTr

dt
= Fr(TA0 − Tr) +

−∆Hr

ρmCp,m
k0 exp

(
−E
RTr

)
CAVr +

UAr

ρmCp,m
(Tj − Tr) (67b)

Vj
dTj

dt
= Fj(Tj0 − Tj)−

UAr

ρjCp,j
(Tj − Tr) (67c)

where the values of the process parameters are listed in Table 1. Additionally, we consider

the constant ε =
Vj
Vr

to be the singular perturbation parameter. Hence, the system of
Equation (67) can be written in the standard singularly perturbed form of Equation (1),
which implies that the concentration of chemical A (CA) and the temperature of the reactor
(Tr) are the slow states, whereas the temperature of the heating jacket (Tj) can be considered
as the fast state. The input of the system in Equation (67) is the feed concentration of
chemical A (CA0). The control objective is to drive the system to its stable steady state
(CAs, Trs, Tjs) = (2.54 kmol m−3, 274.4 K, 303.3 K), corresponding to the steady-state input
value of CA0s = 3.75 kmol m−3, while the input is permitted to vary within the range
∆CA0 = [−3.5, 3.5] kmol m−3. To shift the steady state of the system in Equation (67) to the
origin, we express the states and the input in terms of deviation variables and rewrite the
system in Equation (67). Specifically, the deviation variables are defined as follows:

∆CA = CA − CAs (68a)

∆Tr = Tr − Trs (68b)

∆Tj = Tj − Tjs (68c)

∆CA0 = CA0 − CA0s (68d)

Therefore, to write the CSTR system of Equation (67) in the standard form of Equation (1),
we define xT = [∆CA ∆Tr], z = ∆Tj, and the input u = ∆CA0. The explicit Euler method

Mathematics 2023, 11, 3827 23 of 31

is utilized to simulate the CSTR system, i.e., Equation (67) is numerically integrated with
a sufficiently small time step hc = 10−4 h. The open-source software package IPOPT [20]
is employed to solve the ML-based LMPC optimization problem in Equation (58), with a
sampling time of ∆ = 0.03 h.

Table 1. Notations and parameter values of the CSTR.

Vr = 1.0 m3 E = 8.0× 103 kcal kg−1

Vj = 0.08 m3 U = 1000.0 kcal h−1m−2K−1

Ar = 6.0 m3 k0 = 3.36× 106 h−1

CA0s = 3.75 kmol m−3 ρm = 900.0 kg m−3

CAs = 2.54 kmol m−3 ρj = 800.0 kg m−3

R = 1.987 kcal kmol−1K−1 cp,m = 0.231 kcal kg−1K−1

Fr = 3.0 m3h−1 cp,j = 0.200 kcal kg−1K−1

Fj = 20.0 m3h−1 ∆Hr = 5.4× 104 kcal mol−1

Trs = 274.4 K Tj0 = 357.5 K
Tjs = 303.3 K TA0 = 310.0 K

5.1. Data Generation and Development of RNN Models

The first step in building the RNN models was to generate a comprehensive data
set that captured the dynamics of the system in Equation (67). To implement the ex-
plicit Euler algorithm, we first needed to initialize the process model using a set of initial
conditions (CA(0), Tr(0), Tj(0)), where CA(0) ∈ [0, 9] mol/m3, Tr(0) ∈ [280, 370] K and
Tj(0) ∈ [300, 390] K. We conducted open-loop simulations by integrating the CSTR system
defined by Equation (67) using a sufficiently small time step hc for 106 random initial condi-
tions within the specified ranges. We applied random input signals CA0 ∈ [0.5, 7.5] mol/m3

over a period of one sampling period ∆, which yielded a data set of 106 trajectories, each
with a length equal to ∆. The data set was then divided into three sets—training, val-
idation, and testing. The training of the models was performed using the open-source
library Keras [21]. The first RNN model was designed to predict the dynamics of the full
two-time-scale system in Equation (67) (i.e, it predicts the dynamics of the slow and fast
states). In other words, it utilizes the current state measurements x(tk) and z(tk), and the
manipulated input for the subsequent sampling period u(t) ∈ [tk, tk+1) to predict the slow
and fast state measurements of x(t) and z(t) ∀t ∈ [tk, tk+1]. For simplicity, we denote the
model that predicts the dynamics of the full two-time-scale system in Equation (67) as
RNNF, where the subscript “F” denotes “full” and not “fast”. This model was designed
using a single layer of 20 long short-term memory recurrent neural network (LSTM-RNN)
units, and the validation and testing errors achieved were 1.434× 10−6 and 1.432× 10−6,
respectively. In addition, the total number of learning parameters for training this model
was 2063. We note that the network was designed in a step-wise manner. Initially, we
started with a simple structure, consisting of a single-layer network with one LSTM-RNN
unit but the validation error was high. Gradually, we increased the network’s complexity
by adding more LSTM-RNN units. This progression was continued until we achieved
a satisfactory level of validation loss. In this particular case, the optimal outcome was
achieved using a single-layer network with 20 LSTM-RNN units. Further increasing the
number of LSTM-RNN units beyond 20 resulted in an increase in the validation loss. There-
fore, RNNF was constructed using 20 LSTM-RNN units. On the other hand, the second
RNN, denoted as RNNS, was designed to predict the dynamics of only the slow states
in Equation (67). Specifically, this RNN utilizes the current slow state measurement x(tk)
and the manipulated input for the subsequent sampling period u(t) ∈ [tk, tk+1) to predict
the slow state measurements of x(t) ∀t ∈ [tk, tk+1]. This model was designed using a
single layer of five LSTM-RNN units corresponding to a total of 192 learning parameters
following the same step-wise manner strategy used to design RNNF, with a validation
error of 2.67× 10−4 and a testing error of 2.68× 10−4. The results of both models are

Mathematics 2023, 11, 3827 24 of 31

summarized in Table 2. The low testing errors for both models indicate that the modeling
error, as defined in Proposition 1, is sufficiently small over a wide range of open-loop
trajectories. Due to having fewer learning parameters, the RNNS model is significantly
less complex compared to the RNNF model, possibly leading to a lower computational
cost and making it a more practical choice for control applications. Therefore, our aim is to
investigate whether the LMPC scheme utilizing RNNS can sufficiently meet the desired
control objective more efficiently compared to the LMPC scheme using RNNF, which is
demonstrated via closed-loop simulations of the CSTR in Equation (67) under both LMPC
designs. However, before proceeding, it is essential to define the Lyapunov and objective
functions used in both LMPC schemes. For the RNNF-based LMPC, since the controller
design was based on the dynamics of the full two-time-scale system in Equation (67),
the Lyapunov function is defined as:

VF(x, z) =
[

x− xs
z− zs

]T

PF

[
x− xs
z− zs

]
(69)

where the matrix PF is given by

PF =

91.6 2.9 4.3
2.9 0.8 0.2
4.3 0.2 0.7

The objective function for the RNNF-based LMPC is given by LF(x, z, u) =

∣∣x∣∣2Q1F
+
∣∣z∣∣2Q2F

+∣∣u∣∣2Q3F
, where Q1F =

[
20 0
0 0.05

]
, Q2F = 6, and Q3F = 0.1. On the other hand, the RNNS-

based LMPC was designed based on the dynamics of the slow subsystem of the CSTR,
specifically Equations (67a) and (67b) expressed in the standard form. Therefore, the Lya-
punov function of the slow subsystem used in the RNNS-based LMPC is given by:

V(x) = (x− xs)
T P(x− xs) (70)

where the matrix P is defined as

P =

[
84.9 1.2
1.2 0.4

]

The objective function is given by L(x, u) =
∣∣x∣∣2Q1

+
∣∣u∣∣2Q2

, where Q1 =

[
20 0
0 0.05

]
and

Q2 = 0.05.

Remark 4. In this particular application, we used long short-term memory recurrent neural
network (LSTM-RNN) units to construct the models. LSTM-RNNs are a special type of RNN
known for their ability to overcome the common problem of vanishing/exploding gradients in RNNs,
resulting in generally better performance. For more information about LSTM-RNNs, interested
readers may refer to [22]. However, we can always utilize classical RNNs that are well-suited for this
particular application by choosing appropriate structures and carefully tuning the hyperparameters
to obtain the desired objective, as well as an acceptable level of performance.

Mathematics 2023, 11, 3827 25 of 31

Table 2. Specifications of the constructed recurrent neural network models.

RNN Model RNNF RNNS

Number of units used 20 5
Testing error 1.432× 10−6 2.68× 10−4

Validation error 1.434× 10−6 2.67× 10−4

Number of learning
parameters 2063 192

5.2. Simulation Results

In this subsection, we conduct closed-loop simulations of the CSTR system described
by Equation (67) under the two LMPC schemes, one with each RNN model. We first assess
the ability of both LMPCs to achieve the control objective adequately compared to LMPCs
that utilize the respective first-principles systems as their process models. Subsequently,
we compare the RNN-based LMPCs to each other in terms of closed-loop performance and
the computational time required for the simulations.

To establish the satisfactory performance of both RNN-based LMPCs, we compared
their closed-loop performance to first-principles-based LMPCs, with the latter serving
as the baseline for the best possible performance achievable under LMPC. Specifically,
the LMPC in Equation (58) was considered in two scenarios, with the process model of
Equation (58e) being different between each scenario:

• Scenario 1: The LMPC utilizing RNNF as the process model was compared to an
LMPC employing the first-principles model in Equation (67), denoted as FPF, as its
process model.

• Scenario 2: The LMPC utilizing RNNS as the process model was compared to an
LMPC employing the first-principles slow subsystem in Equations (67a) and (67b),
denoted as FPS, as its process model. In this case, for the first-principles-based LMPC,
we note that the full CSTR system in Equation (67) was integrated, but only the slow
states CA and Tr from Equations (67a) and (67b) were used in calculating the LMPC
cost function of Equation (58a) and the Lyapunov function V.

For both scenarios, we started the simulations from the initial condition ICmain =
(∆CA(0), ∆Tr(0), ∆Tj(0)) = (1, 30, 40). The LMPC prediction horizon was set to N = 3,
and the remaining controller parameters were described in Section 5.1. The state and
input trajectories under the LMPCs of scenarios 1 and 2 are shown in Figures 4 and 5,
respectively. To quantitatively compare the performance of the different LMPCs, the time

integral of the cost function of the LMPC,
∫ t f

t=0 L(x(τ), u(τ)) dτ, was calculated over the
entire simulation duration, t f = 3 h. For scenario 1, the cost function values were 3458
and 3485 for the FPF-based LMPC and the RNNF-based LMPC, respectively, whereas
for scenario 2, the values of the cost function were 176 and 179 for the FPS-based LMPC
and the RNNS-based LMPC, respectively. For both scenarios, we noticed that the value of
the cost function when utilizing the corresponding RNN model closely aligned with that
achieved when employing the respective first-principles model, demonstrating the reliable
predictive performance of the designed RNN models and their ability to drive the system
to the steady state when incorporated into an LMPC scheme.

Next, we demonstrated the computational efficiency of the RNNS-based LMPC due
to its lower complexity while still achieving the desired controller performance. For ICmain,
the computational time for the RNNF-based LMPC shown in Figure 4 was 5578 s , whereas,
for the RNNS-based LMPC shown in Figure 5, it was significantly lower at 2170 s, which
was 61% lower. This substantial difference in computational time can make RNNS a more
practical choice for real-time application of MPC, where computations must be completed
within a sampling period to be sent to the actuator. Hence, to rigorously investigate the
impact of integrating RNNF and RNNS into an LMPC framework in terms of stability
and computational demand, we conducted closed-loop simulations from several different
initial conditions in addition to ICmain.

Mathematics 2023, 11, 3827 26 of 31

The initial conditions chosen for further investigation are outlined in Table 3. Ten
different initial conditions (ICi where i = 1, ..., 10) within the operating region were selected,
along with ICmain. For each initial condition, we simulated the CSTR system described in
Equation (67) under the RNNF-based LMPC, as well as the RNNS-based LMPC. The state
and input profiles under each LMPC for four representative initial conditions are depicted
in Figures 6–9, which indicate that both LMPC schemes successfully drove the process in
Equation (67) to its steady state. The closed-loop behavior was similar for the remaining six
initial conditions in terms of convergence to the steady state. Additionally, Table 3 provides
the computational times required in terms of CPU time for the entire simulation duration of
t f = 3 h when applying either LMPC scheme for the 11 different initial conditions. For all
the tested initial conditions, the computational time required to execute the RNNS-based
LMPC was less than that required for the RNNF-based LMPC. Among all the initial condi-
tions in Table 3, the largest relative difference in computational time was observed for IC3,
with a percentage difference of 92% between the two LMPC schemes. Hence, the incorpo-
ration of RNNS in the LMPC framework has been demonstrated to be more practical and
computationally efficient compared to employing RNNF, without compromising stability
and closed-loop performance.

The computational time of an MPC optimization problem can be influenced by several
factors. As mentioned in [23], MPC computational times are generally affected by the
horizon length N, the number of constraints in the MPC optimization problem, and the
number of states and control actions of the system. The computational time is also directly
related to the complexity of the process model. Hence, given the lower computational times
across all 11 initial conditions tested, incorporating RNNS into an LMPC framework is a
more practical approach compared to the use of RNNF. In the study of [24], it was observed
that the CPU time of the IPOPT optimization problem increased as the complexity of the
problem increased. Additionally, several works have discussed computational complexity
evaluations of neural networks. For instance, the authors of [25] offered a comprehensive
and systematic analysis for quantifying and comparing the computational complexity of
neural network layers. The authors proposed and computed three computational metrics
per layer for different types of neural networks and presented the exact mathematical
expressions and derivations, providing a deep understanding of various networks’ com-
plexities. Upon analyzing the results derived in [25], it is evident that a neural network’s
complexity is proportional to its hyperparameters. For example, factors like the number
of neurons, the number of hidden units, the input time sequence size, the number of
output neurons, and other parameters associated with the structure, size, and design of the
network, all of which affect the complexity and performance of a network, as well as the
time required to solve the ML-based MPC optimization problem. As RNNS consisted of
only 5 LSTM-RNN units while RNNF consisted of 20 LSTM-RNN units, the complexity of
RNNF was much higher than that of RNNS, leading to a correspondingly complex MPC
optimization problem. Hence, over the entire simulation duration of t f = 3 h, the total
CPU time required to solve all 100 MPC optimization problems over the 100 sampling
periods was significantly less for the RNNS-based LMPC than the RNNF-based LMPC.

Remark 5. Although the state and input trajectories in Figure 6 have not completely settled,
the process is stabilized under both the RNNF-based LMPC and the RNNS-based LMPC. However,
the process requires simulation for a longer duration, exceeding 3 h, for the states and input to
ultimately converge to their steady-state values and remain close to the origin. The reason for
limiting the simulation time is to ensure fair and clear comparisons between the computational times
for both controllers from various initial conditions, as listed in Table 3.

Remark 6. In this particular application, RNNS was designed to utilize the current slow state
measurement and the manipulated input for the next sampling period. As a result, the output of
RNNS will be the predicted slow states x for only one sampling period ahead (1∆). Consequently,
in this application, since the prediction horizon was chosen to be an integer multiple of the sampling

Mathematics 2023, 11, 3827 27 of 31

time ∆ (i.e., N = 3 implies that tk+N = tk + 3∆ in Equation (58a)), based on the design of RNNS,
RNNS is required to be invoked at least three times to be able to make predictions for the entire
prediction horizon. Additionally, an alternative method involves designing an RNN model, denoted
as RNNnew, with the same goal of predicting the slow states. However, RNNnew utilizes not
only the current slow state measurements and the manipulated input for the next sampling period
but also the current fast state measurements to predict the slow states one sampling period ∆ ahead,
i.e., x(tk+1). To obtain predictions for the entire prediction horizon (N = 3), an FNN takes as its
input the output of RNNnew and predicts the fast state z at the next sampling period, i.e., the FNN
predicts z(tk+1) from x(tk+1), following the design described in Section 2.5. Subsequently, for the
next sampling period, the outputs of both RNNnew and the FNN are given as inputs to RNNnew,
enabling it to predict the slow states x(tk+2) for the next sampling period in the prediction horizon.

Table 3. Computational times for the RNNF-based LMPC and the RNNS-based LMPC over the
simulation duration of t f = 3 h starting from various initial conditions within the operating region.

Index
Initial Condition Computational Time (s)

(∆CA(0), ∆Tr(0), ∆Tj(0)) RNNF -Based LMPC RNNS-Based LMPC

ICmain (1, 30, 40) 5578 2170
IC1 (−1, 50, 40) 16,059 1807
IC2 (−1, −10, −3) 4801 2667
IC3 (−3, 30, 5) 31,884 2417
IC4 (−2, −10, 100) 17,896 1921
IC5 (1, 90, 10) 6078 1990
IC6 (1, 20, 60) 5795 2404
IC7 (3, −6, 20) 21,231 2411
IC8 (1, 50, 50) 5161 2225
IC9 (−2, 30, 60) 10,275 2194
IC10 (−1, 10, 80) 18,146 2106

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0
0.2
0.4
0.6
0.8
1.0

C A
−
C A

s(k
m
ol
/m

3)

FPF− based LMPC
RNNF− based LMPC

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0
6

12
18
24
30

T r
−
T r

s(K
)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0
8

16
24
32
40

T j
−
T j
s(K

)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time (hr)

−3
−2
−1
0
1

C A
0
−
C A

0s
(k
m
ol
/m

3)

Figure 4. States and input trajectories of the CSTR under the Lyapunov-based MPC scheme using
the first-principles model of the full process (FPF-based LMPC, blue line) and RNNF (RNNF-based
LMPC, red dashed line).

Mathematics 2023, 11, 3827 28 of 31

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0
0.2
0.4
0.6
0.8
1.0

C A
−
C A

s(k
m
ol
/m

3)

FPS− based LMPC
RNNS− based LMPC

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0
6

12
18
24
30

T r
−
T r

s(K
)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0
8

16
24
32
40

T j
−
T j
s(K

)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time (hr)

−3.2
−2.4
−1.6
−0.8
0.0

C A
0
−
C A

0s
(k
m
ol
/m

3)

Figure 5. States and input trajectories of the CSTR under the Lyapunov-based MPC scheme using the
first-principles model of the slow-subsystem (FPS-based LMPC, blue line) and RNNS (RNNS-based
LMPC, red dashed line).

0.0 0.5 1.0 1.5 2.0 2.5 3.0
−3.0
−2.4
−1.8
−1.2
−0.6
0.0

C A
−
C A

s(k
m
ol
/m

3)

RNNF− based LMPC

0.0 0.5 1.0 1.5 2.0 2.5 3.0
−3.0
−2.4
−1.8
−1.2
−0.6
0.0

C A
−
C A

s(k
m
ol
/m

3)

RNNS− based LMPC

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0

10
20
30
40

T r
−
T r

s(K
)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0

10
20
30
40

T r
−
T r

s(K
)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0
6

12
18
24
30

T j
−
T j
s(K

)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0
6

12
18
24
30

T j
−
T j
s(K

)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time (hr)

 (a)

0.0
0.8
1.6
2.4
3.2

C A
0
−
C A

0s
(k
m
ol
/m

3)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time (hr)

 (b)

0.0
0.8
1.6
2.4
3.2

C A
0
−
C A

0s
(k
m
ol
/m

3)

Figure 6. Considering the initial condition IC3 = (−3, 30, 5), (a) illustrates the time-varying profiles
of the states and the input under the RNNF-based LMPC (solid line), whereas (b) shows the time-
varying profiles of the states and the input under the RNNS-based LMPC (dashed line).

Mathematics 2023, 11, 3827 29 of 31

0.0 0.5 1.0 1.5 2.0 2.5 3.0
−2.0
−1.6
−1.2
−0.8
−0.4
0.0

C A
−
C A

s(k
m
ol
/m

3)

RNNF− based LMPC

0.0 0.5 1.0 1.5 2.0 2.5 3.0
−2.0
−1.6
−1.2
−0.8
−0.4
0.0

C A
−
C A

s(k
m
ol
/m

3)

RNNS− based LMPC

0.0 0.5 1.0 1.5 2.0 2.5 3.0
−8
−4
0
4
8

T r
−
T r

s(K
)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
−8
−4
0
4
8

T r
−
T r

s(K
)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0

20
40
60
80

100

T j
−
T j
s(K

)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0

20
40
60
80

100

T j
−
T j
s(K

)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time (hr)

 (a)

0.0
0.8
1.6
2.4
3.2

C A
0
−
C A

0s
(k
m
ol
/m

3)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time (hr)

 (b)

0.0
0.8
1.6
2.4
3.2

C A
0
−
C A

0s
(k
m
ol
/m

3)

Figure 7. Considering the initial condition IC4 = (−2,−10, 100), (a) illustrates the time-varying
profiles of the states and the input under the RNNF-based LMPC (solid line), whereas (b) shows the
time-varying profiles of the states and the input under the RNNS-based LMPC (dashed line).

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0
0.2
0.4
0.6
0.8
1.0

C A
−
C A

s(k
m
ol
/m

3)

RNNF− based LMPC

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0
0.2
0.4
0.6
0.8
1.0

C A
−
C A

s(k
m
ol
/m

3)

RNNS− based LMPC

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0

20
40
60
80

T r
−
T r

s(K
)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0

20
40
60
80

T r
−
T r

s(K
)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0
6

12
18
24
30

T j
−
T j
s(K

)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0
6

12
18
24
30

T j
−
T j
s(K

)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time (hr)

 (a)

−3.0
−1.5
0.0
1.5
3.0

C A
0
−
C A

0s
(k
m
ol
/m

3)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time (hr)

 (b)

−3.2
−2.4
−1.6
−0.8
0.0

C A
0
−
C A

0s
(k
m
ol
/m

3)

Figure 8. Considering the initial condition IC5 = (1, 90, 10), (a) illustrates the time-varying profiles
of the states and the input under the RNNF-based LMPC (solid line), whereas (b) shows the time-
varying profiles of the states and the input under the RNNS-based LMPC (dashed line).

Mathematics 2023, 11, 3827 30 of 31

0.0 0.5 1.0 1.5 2.0 2.5 3.0
−1.0
−0.8
−0.6
−0.4
−0.2
0.0

C A
−
C A

s(k
m
ol
/m

3)

RNNF− based LMPC

0.0 0.5 1.0 1.5 2.0 2.5 3.0
−1.0
−0.8
−0.6
−0.4
−0.2
0.0

C A
−
C A

s(k
m
ol
/m

3)

RNNS− based LMPC

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0
2.5
5.0
7.5

10.0
T r
−
T r

s(K
)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0
2.5
5.0
7.5

10.0

T r
−
T r

s(K
)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0

15
30
45
60
75

T j
−
T j
s(K

)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0

15
30
45
60
75

T j
−
T j
s(K

)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time (hr)

 (a)

0.0
0.8
1.6
2.4
3.2

C A
0
−
C A

0s
(k
m
ol
/m

3)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time (hr)

 (b)

0.0
0.8
1.6
2.4
3.2

C A
0
−
C A

0s
(k
m
ol
/m

3)

Figure 9. Considering the initial condition IC10 = (−1, 10, 80), (a) illustrates the time-varying
profiles of the states and the input under the RNNF-based LMPC (solid line), whereas (b) shows the
time-varying profiles of the states and the input under the RNNS-based LMPC (dashed line).

6. Conclusions

In this work, we introduced a general class of nonlinear two-time-scale systems, where
the two distinct time scales can be decoupled into slow subsystem and fast subsystem
dynamics using singular perturbation analysis. Machine learning was employed to ap-
proximate the dynamics of both subsystems. In particular, an RNN was used to predict
the slow state vector or, in other words, to approximate the dynamics of the slow sub-
system, whereas an FNN was used to approximate the dynamics of the fast subsystem.
To draw inferences about the performance of the neural network models on unseen data,
the generalization error bounds for both neural networks when modeling two-time-scale
systems were derived. Subsequently, the RNN modeling of the slow states (RNNS) was
incorporated into an LMPC framework and sufficient conditions to guarantee closed-loop
stability were derived under the sample-and-hold implementation of the LMPC. Finally,
a chemical process example was used to demonstrate the efficiency of the LMPC scheme
using an RNN to predict the slow states compared to first-principles-based LMPC schemes
and an LMPC scheme using an RNN to model the full two-time-scale system. Through
closed-loop simulations, while both RNN-based LMPCs were able to achieve the desired
control objective of driving the system to the steady state, due to the significantly lower
complexity of the RNN approximating only the slow subsystem, the LMPC based on RNNS
required significantly less computational time in all simulations compared to the LMPC
using the RNN modeling the full singularly perturbed system, which supported the use of
RNNS in real-time MPC applications.

Author Contributions: Conceptualization, A.A., F.A., A.S. and P.D.C.; methodology, A.A., F.A., A.S.
and P.D.C.; software, A.A., F.A. and A.S.; validation, A.A., F.A. and A.S.; formal analysis, A.A., F.A.
and A.S.; investigation, A.A., F.A. and A.S.; resources, P.D.C.; data curation, A.A., F.A. and A.S.;
writing—original draft preparation, A.A., F.A. and A.S.; writing—review and editing, A.A., F.A., A.S.
and P.D.C.; supervision, P.D.C.; project administration, P.D.C.; funding acquisition, P.D.C. All authors
have read and agreed to the published version of the manuscript.

Funding: Financial support from the National Science Foundation, CBET-CBET-2140506, and the
Department of Energy, through the Office of Energy Efficiency and Renewable Energy (EERE) under
the Advanced Manufacturing Office Award Number DEEE0007613, is gratefully acknowledged.
The first author acknowledges the support of Kuwait University via the KU scholarship program.

Mathematics 2023, 11, 3827 31 of 31

Data Availability Statement: Data is available upon request to the corresponding author.

Conflicts of Interest: The authors declare that they have no conflicts of interest regarding the
publication of this research article.

References
1. Christofides, P.D.; Daoutidis, P. Feedback control of two-time-scale nonlinear systems. Int. J. Control 1996, 63, 965–994.
2. Kokotović, P.; Khalil, H.K.; O’reilly, J. Singular Perturbation Methods in Control: Analysis and Design; SIAM: Philadelphia, PA,

USA, 1999.
3. Chen, X.; Heidarinejad, M.; Liu, J.; Christofides, P.D. Composite fast-slow MPC design for nonlinear singularly perturbed systems.

AIChE J. 2012, 58, 1802–1811. [CrossRef]
4. Ellis, M.; Heidarinejad, M.; Christofides, P.D. Economic model predictive control of nonlinear singularly perturbed systems.

J. Process Control 2013, 23, 743–754. [CrossRef]
5. Abdullah, F.; Wu, Z.; Christofides, P.D. Sparse-identification-based model predictive control of nonlinear two-time-scale processes.

Comput. Chem. Eng. 2021, 153, 107411. [CrossRef]
6. Wu, Z.; Tran, A.; Rincon, D.; Christofides, P.D. Machine Learning-Based Predictive Control of Nonlinear Processes. Part II:

Computational Implementation. AIChE J. 2019, 65, e16734. [CrossRef]
7. Nikolakopoulou, A.; Braatz, R.D. Polynomial NARX-based nonlinear model predictive control of modular chemical systems.

Comput. Chem. Eng. 2023, 177, 108272. [CrossRef]
8. Yang, S.; Wan, M.P.; Chen, W.; Ng, B.F.; Dubey, S. Experiment study of machine-learning-based approximate model predictive

control for energy-efficient building control. Appl. Energy 2021, 288, 116648. [CrossRef]
9. Alessio, A.; Bemporad, A. A survey on explicit model predictive control. In Nonlinear Model Predictive Control: Towards New

Challenging Applications; Springer: Berlin/Heidelberg, Germany, 2009; pp. 345–369.
10. Chen, S.; Saulnier, K.; Atanasov, N.; Lee, D.D.; Kumar, V.; Pappas, G.J.; Morari, M. Approximating explicit model predictive

control using constrained neural networks. In Proceedings of the 2018 Annual American Control Conference (ACC), Milwaukee,
WI, USA, 27–29 June 2018; pp. 1520–1527.

11. Bao, Y.; Chan, K.J.; Mesbah, A.; Velni, J.M. Learning-based adaptive-scenario-tree model predictive control with improved
probabilistic safety using robust Bayesian neural networks. Int. J. Robust Nonlinear Control 2023, 33, 3312–3333. [CrossRef]

12. Wu, Z.; Rincon, D.; Gu, Q.; Christofides, P.D. Statistical machine learning in model predictive control of nonlinear processes.
Mathematics 2021, 9, 1912. [CrossRef]

13. Chen, S.; Wu, Z.; Christofides, P.D. Statistical Machine-Learning-based Predictive Control Using Barrier Functions for Process
Operational Safety. Comput. Chem. Eng. 2022, 163, 107860. [CrossRef]

14. Alhajeri, M.S.; Alnajdi, A.; Abdullah, F.; Christofides, P.D. On generalization error of neural network models and its application
to predictive control of nonlinear processes. Chem. Eng. Res. Des. 2023, 189, 664–679. [CrossRef]

15. Hoppensteadt, F. Properties of solutions of ordinary differential equations with small parameters. Commun. Pure Appl. Math.
1971, 24, 807–840. [CrossRef]

16. Mohri, M.; Rostamizadeh, A.; Talwalkar, A. Foundations of Machine Learning; MIT Press: Cambridge, MA, USA, 2018.
17. Golowich, N.; Rakhlin, A.; Shamir, O. Size-independent sample complexity of neural networks. In Proceedings of the Conference

on Learning Theory, Stockholm, Sweden, 5–9 July 2018; pp. 297–299.
18. Bao, Y.; Abbas, H.S.; Velni, J.M. A learning- and scenario-based MPC design for nonlinear systems in LPV framework with safety

and stability guarantees. Int. J. Control 2023, in press. [CrossRef]
19. Christofides, P.D.; Teel, A.R. Singular perturbations and input-to-state stability. IEEE Trans. Autom. Control 1996, 41, 1645–1650.

[CrossRef]
20. Wächter, A.; Biegler, L.T. On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear

programming. Math. Program. 2006, 106, 25–57. [CrossRef]
21. Chollet, F. Keras. 2015. Available online: https://keras.io (accessed on 11 August 2023).
22. Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef] [PubMed]
23. Rawlings, J.B.; Mayne, D.Q.; Diehl, M. Model Predictive Control: Theory, Computation, and Design; Nob Hill Publishing: Madison,

WI, USA, 2017; Volume 2.
24. Pöri, L. Comparison of Two Interior Point Solvers in Model Predictive Control Optimization. Master’s Thesis, Aalto University,

Espoo, Finland, 2016.
25. Freire, P.J.; Srivallapanondh, S.; Napoli, A.; Prilepsky, J.E.; Turitsyn, S.K. Computational complexity evaluation of neural network

applications in signal processing. arXiv 2022, arXiv:2206.12191.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1002/aic.13798
http://dx.doi.org/10.1016/j.jprocont.2013.03.001
http://dx.doi.org/10.1016/j.compchemeng.2021.107411
http://dx.doi.org/10.1002/aic.16734
http://dx.doi.org/10.1016/j.compchemeng.2023.108272
http://dx.doi.org/10.1016/j.apenergy.2021.116648
http://dx.doi.org/10.1002/rnc.6560
http://dx.doi.org/10.3390/math9161912
http://dx.doi.org/10.1016/j.compchemeng.2022.107860
http://dx.doi.org/10.1016/j.cherd.2022.12.001
http://dx.doi.org/10.1002/cpa.3160240607
http://dx.doi.org/10.1080/00207179.2023.2212814
http://dx.doi.org/10.1109/9.544001
http://dx.doi.org/10.1007/s10107-004-0559-y
https://keras.io
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://www.ncbi.nlm.nih.gov/pubmed/9377276

	Introduction
	Preliminaries
	Notations
	Class of Systems
	Stabilizability Assumption via Control Lyapunov Function
	Recurrent Neural Networks
	Feedforward Neural Networks

	Generalization Error Bounds of Neural Networks Modeling Two-Time-Scale Systems
	Generalization Error Bound Preliminaries
	RNN Generalization Error Bound
	FNN Generalization Error Bound

	Machine Learning-Based LMPC Using an RNN That Approximates the Slow Subsystem
	Lyapunov-Based Control Using an RNN Model
	Machine Learning-Based LMPC Formulation
	Closed-Loop Stability

	Example of Application to a Chemical Process
	Data Generation and Development of RNN Models
	Simulation Results

	Conclusions
	References

