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This work proposes a control configuration and a nonlinear multivariable model-based 
feedback controller for the reduction of thermal gradients inside the crystal in the 
Czochralski crystal growth process after the crystal radius has reached its final value. 
Initially, a mathematical model which describes the evolution of the temperature inside 
the crystal in the radial and axial directions and accounts for radiative heat exchange 
between the crystal and its surroundings and motion of the crystal boundary is derived 
from first principles. This model is numerically solved using Galerkin’s method and the 
behavior of the crystal temperature is studied to obtain valuable insights which lead to 
the precise formulation of the control problem, the design of a new control configura- 
tion for the reduction of thermal gradients inside the crystal and the derivation of a 
simplified 1-D in a space dynamic model. Then, a model reduction procedure for par- 
tial differential equation systems with time-dependent spatial domains (Armaou and 
Christofides, 1999) based on a combination of Galerkin’s method with approximate 
inertial manifoldcs is used to construct a fourth-order model that describes the dominant 
thermal dynamics of the Czochralski process. This low-order model is employed for the 
synthesis of a fourth-order nonlinear multivariable controller that can be readily imple- 
mented in practice. The proposed control scheme is successfully implemented on a 
Czochralski process used to produce a 0.7 m long silicon crystal with a radius of 0.05 m 
and is shown to significantly reduce the axial and radial thermal gradients inside the 
crystal. The robustness of the proposed controller with respect to model uncertainty is 
demonstrated through simulations. 

Introduction 
Czochralski crystal growth (CZ) is a well-established indus- 

trial process used for the production of single crystals like 
silicon (Si) and gallium arsenide (GaAs). Such crystals are 
widely used for the construction of wafers employed in the 
production of microelectronic chips. The central idea of the 
CZ process is to grow a crystal from a melt by pulling a seed 
crystal very slowly within a well-regulated thermal environ- 
ment in a furnace. For the subsequent processing steps, it is 
important to form a cylindrical crystal with desired radius and 
length of dimensions which includes very low concentrations 
of impurities and dislocations, as well as a uniform dopant 
distribution. 

Correspondencc concerning this article should be addressed to P. D. Christofides. 

The current practice in achieving a constant crystal radius 
is to use a proportional-integral-derivative (PID) controller 
that manipulates the pulling rate of the crystal from the melt 
to adjust the crystal radius, while the regulation of the crystal 
temperature is addressed by adjusting the heat transferred to 
the melt and crystal by manipulation (typically via PID) of 
the heater power. The tuning of such PID controllers based 
on fundamental lumped parameter models that describe the 
dominant dynamic characteristics of the CZ process has been 
addressed in a series of articles (Gevelber, 1994a,b; Gevelber 
and Stephanopoulos, 1987; Gevelber et al., 1987, 1988). Even 
though these works provide valuable insights for the nature 
or the crystal radius and thermal dynamics, and identify natu- 
ral control objectives and variables, as well as structural limi- 
tations on the best achievable closed-loop performance, they 
do not account for the presence of spatial variations of the 
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temperature inside the crystal which constitute the main cause 
for dislocations and defects (Szab6, 1985; Gevelber, 1994a). 
Furthermore, PID controllers do not account for the fact that 
CZ processes exhibit nonlinear and time-varying behavior and 
involve coupling of variables evolving in widely different 
time-scales. In an effort to overcome the limitations of con- 
ventional controllers, the problems of controlling the radius 
of the crystal and reducing the thermal strain in the interface 
between crystal and melt were recently addressed within a 
model predictive control framework (Irizarry-Rivera and Sei- 
der, 1997a,b). However, in these articles the key practical is- 
sued of deriving accurate low-order approximations of the 
distributed process model that can be used in real-time con- 
trol implementation was not addressed. 

The main challenge in the design of model-based feedback 
controllers for CZ processes is the fact that the dynamic 
models of such processes are typically in the form of nonlin- 
ear parabolic partial differential equations (PDEs) with 
time-dependent spatial domains. These are distributed pa- 
rameter (infinite-dimensional) systems, and therefore, they 
cannot be directly used for the design of practically imple- 
mentable (low-dimensional) controllers. Thc main feature of 
parabolic PDEs is that the eigenspectrum of the spatial dif- 
ferential operator can be partitioned into a finite-dimen- 
sional slow one and an infinite-dimensional stable fast com- 
plement. Therefore, the standard approach to synthesize 
feedback controllers for parabolic PDEs (Balas, 1979; Chen 
and Chang, 1992) involves initially the application of stan- 
dard Galerkin’s method to the PDE system to derive ODE 
systems that accurately describe its dominant dynamics. These 
ODE systems are subsequently used as the basis for the syn- 
thesis of finite-dimensional controllers. A potential drawback 
of this approach is that the number of modes that should be 
retained to derive an ODE system which yields the desired 
degree of approximation may be very large, thereby leading 
to complex controller synthesis and high dimensionality of the 
resulting controllers. 

To overcome these controller synthesis and implementa- 
tion problems, recent research efforts have focused on the 
synthesis of low-order controllers for parabolic PDE systems 
by taking advantage of the concept of inertial manifold (IM) 
(Temam, 1988). If it exists, an IM is a positively invariant, 
exponentially attracting, finite-dimensional Lipschitz mani- 
fold. When the trajectories of the PDE system are on the IM, 
then this system is exactly described by a low-order ODE sys- 
tem (called inertial form), which can be used for the synthesis 
of low-order controllers. However, the use of the inertial form 
for controller synthesis is limited due to the fact that the 
computation of the closed-form expression of the IM is im- 
possible for most practical applications. This limitation moti- 
vated the development of efficient procedures for the con- 
struction of accurate approximations of the function that de- 
scribes the inertial manifold (called approximate inertial 
manifolds (AIMS)) (see, for example, Foias et al., 1989; 
Christofides and Daoutidis, 1997; Shvartsman and Kevrekidis, 
1998). These developments led to the synthesis of low-order 
nonlinear output feedback controllers that enforce closed- 
loop stability and output tracking in quasi-linear parabolic 
PDE systems (Christofides and Daoutidis, 1997); the reader 
may also refer to the recent book (Christofides, 2001) for more 
references and results in this area. 

80 January 2001 

In the area of feedback control of parabolic PDE systems 
with time-dependent spatial domains, previous research has 
focused on the design of linear distributed optimal con- 
trollers (Wang, 1967, 19901, as well as the synthesis of nonlin- 
ear distributed state estimators using stochastic methods (Ray 
and Seinfeld, 1975). In a previous work (Armaou and 
Christofides, 19991, we proposed a general method for the 
synthesis of nolinear time-varying output feedback con- 
trollers that enforce stability and output tracking in the 
closed-loop infinite-dimensional system. The controllers were 
synthesized on the basis of low-order approximations of the 
PDE system obtained through combination of Galerkin’s 
method and approximate inertial manifold concepts which 
were developed for time-varying infinite-dimensional sys- 
tems. 

This work proposes a control configuration and a nonlin- 
ear multivariable model-based feedback controller for the re- 
duction of thermal gradients inside the crystal in the 
Czochralski crystal growth process after the crystal radius has 
reached its final value. Even though the process model is a 
distributed system, the proposed controller is of low-order, 
and, therefore, it can be readily implemented in real time. 

This article is structured as follows. A fundamental mathe- 
matical model which describes the evolution of the tempera- 
ture inside the crystal in the radial and axial directions and 
accounts for radiative heat exchange between the crystal and 
its surroundings and motion of the crystal boundary is ini- 
tially presented. This model is numerically solved using 
Galerkin’s method and the behavior of the crystal tempera- 
ture is studied to obtain valuable insights which lead to the 
precise formulation of the control problem and the deriva- 
tion of a simplified one-dimensional in space PDE model with 
moving domain which is used for controller synthesis. Then, 
a general nonlinear model reduction and control method for 
PDE systems with moving domains developed in (Armaou and 
Christofides, 1999) is briefly presented. This method is used 
to construct a fourth-order model that describcs the domi- 
nant thermal dynamics of the Czochralski process and syn- 
thesize a fourth-order nonlinear controller that can be read- 
ily implemented in practice. The proposed control scheme is 
successfully implemented on a Czochralski process used to 
produce a 0.7 m long silicon crystal with a radius of 0.05 m 
and is shown to significantly reduce the axial and radial ther- 
mal gradients inside the crystal compared to the open-loop 
operation and to the case of using a single control actuator. 
The robustness of the proposed controller with respect to 
parametric model uncertainty, melt and chamber tempera- 
ture disturbances, and unmodeled actuator and sensor dy- 
namics is demonstrated through simulations. 

Czochralski Crystal Growth: Modeling of Crystal 
Thermal Behavior 

We focus on a Czochralski crystal growth process shown in 
Figure 1 used to produce a 0.7 m long silicon crystal with a 
radius of 0.05 m. The process is comprised of a cylindrical 
chamber which includes a rotating pedestal that can move in 
the axial direction. A crucible containing silicon (S i )  crystals 
is placed on the pedestal and heaters (placed on the sides of 
the chamber and under the pedestal) are used to increase the 
temperature of the Si crystals inside the crucible (through 
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Figure 1. Czochralski crystal growth. 

radiation) above the melting point of Si. A Si seed crystal 
comes in contact with the melt and the temperature of the 
melt is adjusted until the meniscus is supported by the end of 
the seed. Once the meniscus has been stabilized, the seed 
crystal is pulled away from the melt and new crystal is formed 
(Hurle, 1994). The interface between the crystal and the melt 
is maintained at a constant position during the operation of 
the process by moving the position of the pedestal higher with 
time. As the length of the crystal becomes larger, part of it 
leaves the chamber and starts cooling, at which point the 
thermal gradicnts inside the crystal become large and may 
cause thermal strain inside the crystal (Szab6, 1985). If the 
cooling conditions are not properly regulated, large thermal 
strain may cause microdefects (such as, dislocations) inside 
the crystal, and may even lead to fracture. As a result, the 
cooling process should be carefully regulated. Finally, the 
process is terminated when the crystal-melt interface reaches 
the crucible bottom. 

The development of detailed mathematical models for the 
Czochralski crystal growth process is an area that has re- 
ceived significant attention (see, for example, Hurle, 19941, 
and at this point, comprehensive models are available (Derby 
and Brown, 1986a,b, 1987; Atherton et al., 1987; Derby et al., 
1987; Zhou et al., 1994; Van den Bogaert and Dupret, 
1997a,b). Since the objective of our work is to develop a con- 
trol configuration and a model-based feedback controller 
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which will smoothly regulate the cooling process of the crys- 
tal as it leaves the chamber, our modeling effort focuses on 
the development of a mathematical model that describes the 
spatiotemporal evolution of the crystal temperature, after the 
crystal radius has obtained its final value, and accounts for 
radiative heat exchange between the crystal, heater shield, 
crucible, melt surface and the environment. Moreover, our 
control objective allows making the following simplifying as- 
sumptions in the model development; (a) the crystal radius 
and the meniscus height are assumed to be constant; this is 
typically achieved by using a controller that manipulates the 
pulling rate and the chamber temperature to maintain these 
variables constant and allows neglecting the detailed dynam- 
ics of the crystal/melt interface in our analysis (see also re- 
mark 9) and discussion in the appendix); (b) the temperature 
distribution inside the crystal is assumed to be axisymmetric 
owing to the constant rotation of the crucible; (c) radiation is 
assumed to be the dominant heat-transfer mechanism; this 
assumption is justified from the fact that the temperatures of 
the chamber, melt and crystal surfaces are very high 
(1,000-1,700 K ) ;  (d) secondary radiation is not taken into 
account since it has a smaller effect on the crystal tempera- 
ture profile compared to the primary radiation and the tem- 
peratures of the surrounding surfaces are kept constant at 
the desired set points using control; (e) the melt and chamber 
temperature and the pulling rate are assumed to be constant 
and the melt/crystal interface is assumed to be flat; this al- 
lows us to neglect the melt dynamics; (f) the solidification 
front remains in a specified region of the heater as the melt 
level drops; this is achieved in practice by raising the crucible 
through movement of the pedestal (Derby and Brown, 1986a); 
(8) the concentration of dopant, oxygen and carbon are not 
explicitly included in the model; this is done to simplify the 
controller synthesis task and special consideration is taken in 
the tuning of the controller (see subsection on nonlinear con- 
troller synthesis-closed-loop simulations) to ensure that large 
and abrupt heater temperature (manipulated input) changes, 
which could cause large variations in the concentration fields, 
do not occur. 

Under these assumptions, an application of an energy bal- 
ance to a differential element of the crystal yields the follow- 
ing two-dimensional (2-D) parabolic PDE 

dT, dT, k 
d t  p dz pc, 

- + u - = -  

subject to the following boundary conditions 

T,(r,O,t) = Tmp, 0 I r I R 

51 =o, O'ZIl(t) 
d r  o 
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Table 1. Physical Properties of Si 

Melting point Tmp 1,683 K 
Crystal specific heat cp 1,000 J * kg- ' K- 

Crystal thermal conductivity k 22 J (s-m.K)-' 
Crystal density p 2,420 kg.m-3 

Crsytal emissivity ex,c, 0.7 
Melt emissivity E,- 0.7 

In the above equations, T, is the temperature of the crystal, t 
is the time, r is the radial direction, z is the axial direction, 
up is the pulling sped, Tch is the chamber temperature, Tamb 
is the ambient temperature, TmP is the melting point temper- 
ature of silicon, T, is the temperature of the melt, P is the 
Stefan-Boltzmann constant, ewe,, ewm, eWCh, ewdmh denote the 
emissivities of the crystal, melt, chamber and ambient respec- 
tively, F,, -, is the view factor from the surface of a differen- 
tial element of the crystal, cr, to surface j ,  and l ( t )  is the 
total height of the crystal at time t .  The model of Eqs. 1-5 
constitutes a parabolic PDE system with moving boundary 
owing to the variation of the length Z(t) of the crystal in the 
axial direction Z(t) = /,'u,(s)ds, where u,(t> is the pulling rate. 

In Eq. 1, the terms dT,/dt and up (dT,/dz) describe the 
rate of change of crystal temperature and the convection ef- 
fect due to the motion of the crystal, respectively, while the 

Table 2. Process Parameters 

Chamber height h,, 0.18 m 
Chamber radius R< h 0.1s m 

Chamber wall temp. Tc h 1,500 K 
Chamber emissivity eKCh 0.3 

Pulling velocity 1 .66~10- '  m s - '  
Melt temp. Tn, 1,705 K 

Initial length of crystal 1, 0.0s m 
0.70 m 

Radius of crystal R 0.05 m 
Final length of crystal lf 

Ambient emissivity c,',~ 0.3 
Ambient temp. Tamb 600 K 

Ref. temp. for ith heater Tv,  1,000 K 

terms k / p c ,  { ( l / r )  ( d / d r )  [ r( d Tc/d r )I + ( d * T,/dz )} account 
for heat conduction inside the crystal. On the other hand, the 
boundary condition of Eq. 2 states that the crystal tempera- 
ture in the crystal/melt interface is equal to the Si melting 
point temperature and the boundary condition of Eq. 3 is 
based on the assumption of axisymmetric crystal. Further- 
more, the boundary condition of Eq. 4 accounts for radiative 
heat exchange between the differential surface at the side of 
the crystal and melt (term E , ~ , E , ~  f,,+ m ( R ,  z )  [T: - 
T;(R, z , t )]) ,  chamber (term E , ~ , E , ~ ~ F ~ , .  -, J R ,  2) [TP, - 
TP(R, 2, t)l> and ambient (term E ~ , , ~ ~ ~ , ~ F ~ ~  amb(R, z)tT&b 
- TP(R, z ,  t)]) ,  and the boundary condition of Eq. 5 accounts 
for radiative heat exchange between the differential surface at 
the top of the crystal and melt (term E,~,E,_F~~- ,  ,[r,l(t)] {T i  
- TP[r, Kt), tll, chamber (term E,<,E,~,~F~,.+ J r ,  l(t>l {T; - 
TP[r, l(t>, tll and ambient (term E, , ,E ,~ ,~F~~  + dmb[r ,  l(t>l {T.mb 
- TP[r, I(t>, t ] ) ) .  The computation of the various view factors 
through decomposition of the corresponding complex geome- 
tries into simple geometries for which view factors can be 
computed analytically is discussed in the appendix. 
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Figure 2. Temperature of crystal as a function of radial and axial coordinates for Tamb = 600 K. 
(a) I = 1 X lo4 s; (b) f = 2 X  lo4 s; (c) 1 = 3 X  lo4 s; (d) I = 4 X  lo4 s. Each contour represents a 100 K temperature difference 
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Finally, the values of the physical properties of Si are given 
in Table 1, and the values of the parameters of the process 
are given in Table 2. We note that: (a) the Si crystal proper- 
ties are assumed to be independent of the temperature and 
concentrations of dopant, carbon and oxygen, and (b) even 
though our study does not focus on a specific experimental or 
industrial Czochralski crystallizer, the values of the process 
parameters in Table 2 are within the range of values nor- 
mally employed in industrial crystallizers (compare with the 
values given in Derby and Brown (1987)). 

Remark 1: Regarding the development of the above model, 
we must note that the focus of our control effort is on the 
reduction of the magnitude of the thermal gradients inside 
the body of the crystal and thus we focus on the development 
of a model that describes the spatiotemporal evolution of the 
crystal temperature, once the crystal radius has obtained its 
final value, and accounts for the interactions (radiative heat 
transfer) between the crystal and its surroundings. There is 
an extensive literature on the development of integrated 
(global) models for the Czochralski process that include the 
crystal-melt interface shape and melt temperature dynamics 
(see, for example, Derby and Brown, 1986a,b, 1987; Zhou et 
al., 1994 for details). We finally note that the technique for 

order reduction and controller design that is presented in the 
next section can also be applied to these integrated crystal 
growth models to design controllers for crystal temperature 
regulation, but such an application is outside the scope of 
this work. 

Control-Relevant Analysis of the Czochralski 
Crystal Growth 

The objective of this section is to study the thermal gradi- 
ents inside the crystal in the Czochralski crystal growth pro- 
cess to obtain insights which will be used to formulate a 
meaningful control problem and derive an appropriate model 
for controller synthesis. The mathematical model of the 
Czochralski crystal growth process of Figure 1 consisting of 
the 2-D parabolic PDE of Eq. 1 and the boundary conditions 
of Eqs. 2-5 was solved using Galerkin’s method. Specifically, 
30 global eigenfunctions (that is, trigonometric functions that 
cover the entire domain) in the axial direction and 30 global 
(Bessel) eigenfunctions in the radial direction were used as 
basis functions in Galerkin’s method to discretize the process 
model in space and reduce it into a large set (900 equations) 
of ODEs. The time-integration of the large set of ODEs was 
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Figure 3. (a) Temperature of crystal at r = 0.0 m; (b) maximum temperature difference inside the crystal in the radial 
direction; (c) maximum thermal gradient inside the crystal in the radial direction; (d) maximum thermal 
gradient inside the crystal in the axial direction, as a function of time and axial coordinate for Tam,, = 600 K. 
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performed utilizing explicit Euler. It was verified that further 
increase in the number of eigenfunctions in both r and z 
directions, as well as reduction in the step of time-integra- 
tion, results in negligible change in the accuracy of the com- 
puted solution. In all the simulation runs, the crystal is ini- 
tially assumed to be at '(0) = 0.05 m and Tc(r, z,O) = 1,670 K. 

Figures 2 and 3a show the contour plots of the crystal tem- 
perature as a function of the axial and radial directions at 
four different time instants during the operation of the pro- 
cess and the temporal evolution of the crystal temperature in 
the axial direction at the center of the crystal, respectively, 
when the temperature of the ambient (void space in the fur- 
nace surrounding the crystal) is set at Tdmb = 600 K. We ob- 
serve that the temperature drop inside the crystal in the axial 
direction is much larger (almost 700 K) than the temperature 
drop inside the crystal in the radial direction (less than 20 K 
see also Figure 3b). This can also be seen in Figures 3c and 
3d that show the maximum thermal gradient in the radial and 
axial direction, respectively, as a function of the axial param- 
eter and time. We observe that the maximum thermal gradi- 
ent in the axial direction is 5 times larger than the maximum 
thermal gradient in the radial direction, for all times. 

To further investigate this observation, we will show in Fig- 
ures 5 and 7 the temporal evolution of the crystal tempera- 
ture when the temperature of the ambient is set at Tdmb= 
1,000 K and Tam,, = 1,400 K, respectively. Again, it is clear 
that the variation of the crystal temperature in the radial di- 
rection is negligible compared to the variation in the axial 
one. This can also be seen in Figures 4 and 6 presenting con- 
tour plots of the crystal temperature, when the ambient tem- 
perature is Tam,, = 1,000 K and Tamb = 1,400 K, respectively. 
This conclusion is very important because it allows neglecting 
the radial dependence of the crystal temperature in the pro- 
cess model which will be used as the basis for the synthesis of 

a nonlinear feedback controller, thereby yielding the follow- 
ing 1-D parabolic PDE with moving boundary 

subject to the boundary conditions 

( 7 )  

An additional conclusion which follows from the study of Fig- 
ures 3, 5 and 7 is that the ambient temperature Tam,, has a 
very significant effect on the axial profile of the crystal tem- 
perature. This suggests that Tam,, is a meaningful choice for a 
manipulated variable in order to enforce a desired tempera- 
ture drop inside the crystal. Therefore, we formulate the con- 
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Figure 4. Temperature of crystal as a function of radial and axial coordinates for Tamb = 1,000 K. 
(a) t = 1 X lo4 s; (b) t = 2 X  lo4 s; (c )  t = 3 X  lo4 s (d) f = 4 X  lo4 S. Each contour represents a 100 K temperature difference. 
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Figure 5. (a) Temperature of crystal at r = 0.0 m; (b) maximum temperature difference inside the crystal in the radial 
direction; (c) maximum thermal gradient inside the crystal in the radial direction; (d) maximum thermal 
gradient inside the crystal in the axial direction, as a function of time and axial coordinate for Tamb = 1,000 
K. 
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Figure 6. Temperature of crystal as a function of radial and axial coordinates for Tamb = 1,400 K. 
(a) t = 1 X l o4  s; (b) f = 2 X  lo4  s; (c) f = 3 X  lo4 s; (d) t = 4 X  lo4 s. Each contour represents a 50 K temperature difference 
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Figure 7. (a) Temperature of crystal at r = 0.0 m; (b) maximum temperature difference inside the crystal in the radial 
direction; (c) maximum thermal gradient inside the crystal in the radial direction; (d) maximum thermal 
gradient inside the crystal in the axial direction, as a function of time and axial coordinate for Tamb = 1,400 
K. 

trol problem as the one of controlling the temperature gradi- 
ent of the crystal in the axial direction by manipulating the 
temperature of extra heaters placed above the chamber at 
equispaced intervals. The use of extra heaters to control the 
crystal temperature is also motivated by the realization that 
the regulation of thermal gradients in the axial direction re- 
quires the use of a manipulated variable which is distributed 
along the length of the crystal. We will show later on that the 
use of extra heaters to control axial thermal gradients will 
also lead to significant reduction of the radial thermal gradi- 
ents inside the crystal (which cannot be directly controlled) 
owing to the well-regulated thermal environment in which the 
crystal grows in such a case. 

Our attention now turns to the development of the control 
configuration that will be used to regulate the thermal gradi- 
ents inside the crystal; this entails the computation of the 
number of separate components of the heaters needed to 
achieve the desired regulation of the thermal gradients. To 
this end, we initially assumed that the temperature of the 
heaters is spatially uniform and used a single proportional 
integral controller to manipulate this temperature of the form 
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The objective of the controller was to keep the surface tem- 
perature of the crystal at position z = 0.48 m at a constant 
value of 1,250 K, and enforce a smooth temperature inside 
the crystal, below the critical value of 20 K/cm (Gevelber, 
1994a). The parameters of the controller are given in Table 
3. 

Figure 8a will show the temporal evolution of the tempera- 
ture at the center of the crystal in the axial direction in the 
closed-loop system. Clearly, the controller drives the temper- 
ature of the crystal to its new set point, and the temperature 
gradients in the radial direction remain small for almost all 
times (see Figure 8c and compare with 3c). However, the 
controller fails to establish a smooth temperature drop inside 
the crystal in the axial direction, enforcing a large tempera- 
ture drop close to the crystal-melt interface and achieving an 
almost uniform crystal temperature far away from the inter- 
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Table 3. PI Control Parameters 

0.18 0.71 0.48 3 1.0 1.250 

face; this can be seen in Figure 9 which shows the contour 
plots of the crystal temperature as a function of the axial and 
radial directions at four different time instants during the op- 
eration of the process. Figure 10 shows the corresponding 
profile for the manipulated input, which changes smoothly 
with time to achieve the control objective (the initial sharp 
change of the manipulated input is actually a smooth change 
which occurs over a time period of 250 s and is due to the 
fact that the time axis covers the entire process cycle). Note 
that the controller is activated [that is, u( t )  # 13 when the 
crystal enters in the zone in which the control actuator oper- 
ates. Regarding Figure 8, it is worth noting that the radial 
temperature nonuniformity remains small (less than 10 K) for 
the whole process time, which further validates the conclu- 
sion that we have drawn on the basis of the open-loop behav- 
ior that radial thermal gradients are much smaller than axial 
thermal gradients (see also last paragraph in the subsection 

on nonlinear controller synthesis-closed-loop simulations for 
more discussion on this issue). 

Based on the simulation results for the case of using a sin- 
gle control actuator and driven by our desire to achieve a 
smooth temperature drop inside the crystal, we formulate the 
control problem as the one of controlling the temperature 
gradient of the crystal in the axial direction by manipulating 
the temperature of three extra heaters placed at three equi- 
spaced intervals, as shown in Figure 11. To account for the 
heaters used for crystal temperature control in the 2-D pro- 
cess model, we substitute the boundary conditions of Eqs. 4 
and 5 with the following boundary conditions 
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Figure 8. (a) Temperature of crystal at r = 0.0 m; (b) maximum temperature difference inside the crystal in the radial 
direction; (c) maximum thermal gradient inside the crystal in the radial direction; (d) maximum thermal 
gradient inside the crystal in the axial direction, as a function of time and axial coordinate-one PI con- 
troller. 
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Figure 9. Temperature of crystal as a function of radial and axial coordinates-one PI controller. 
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O i r i R  (11) 

where n is the number of heaters used for control, T( t )  is 
the temperature of the i-th heater, and F,,,; is the view 
factor of a differential crystal surface element to the heater 
surface. 

Moreover, with the addition of the heaters, the I-D model 
which will be used for controller design takes the form 

Ogg2 t 
Figure 10. Manipulated input profile-PI controller. 
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subject to the following boundary conditions 

Referring to Eqs. 12-13, note the lack of the terms corre- 
sponding to heat transfer between the crystal and the ambi- 
ent (compare with Eqs. 6-8); these terms have been substi- 
tuted by the terms that account for heat transfer between the 
crystal and the extra heaters that are used as control actua- 
tors. 

The performance of the proposed control configuration 
that employs three heaters to regulate the thermal gradients 
inside the crystal compared to the open-loop system and the 
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I 

Crystal 

Melt 

Figure 1 1. Control configuration for crystal temperature 
control in the Czochralski crystal growth. 

closed-loop system in the case of using one heater will be 
evaluated later. 

Remark 2: We note that another approach for the simu- 
lation of the crystal temperature concerns the elimination of 
the thermal dynamics of the process on the basis that they 
are slower than the dynamics of the crystal radius, and solves 
for the temperature profile inside the growing crystal as a 
series of solutions of a steady-state thermal model for differ- 
ent lengths (see, for example, Derby and Brown (1987, 1988)). 
However, in the present study, we have decided to include 
the thermal dynamics in the model of the process which is 
used for the implementation of the controller, because the 
use of feedback control or the presence of disturbances (for 
example, variations in the pulling rate, melt temperature) may 
significantly modify the dynamic behavior of the process com- 
pared to the open-loop behavior. 

Nonlinear Model Reduction and Control of 
Processes with Moving Domains 
Preliminaries 

In this section, we present the theoretical results needed 
for the synthesis of a low-order nonlinear controller for the 
C Z  processes based on the 1-D model of Eqs. 12-13. To this 
end, we use the following general state-space description of 
the model of Eqs. 12-13. 

ax ax a2x  
d t  az az 
- = A - + B 7 + wb( Z ,  t )U + f (  Z ,  t , i )  

y ,  = Jd'l'Ci( 2 ,  t)kFdz, i = 1, . . . ,1 (14) 

subject to the boundary conditions 

dx 
d Z  

Cli(O,f)+ D1-(O,t)= R ,  

dx 
C 2 X ( l ( t ) , t ) + D 2 - ( l ( t ) , t )  a2 = R ,  (15) 

and the initial condition 

where X(z, t )][X1(z ,  t ) .  . . X,(z, t)IT denotes the vector of state 
variables, [O,l(t)] c R is the domain of definition of the pro- 
cess, z E [O,l(t)] is the spatial coordinate, t E [0, =) is the time, 
u = [u,u,.. . u1IT E R' denotes the vector of manipulated in- 
puts, ycz E R denotes the i-th controlled output, y, , ,%~ R de- 
notes the K-th measured output f ( t ,  X) is a nonlinear vector 
function, k ,  w, w are constant vectors, A ,  B,  C,, D,, C2,D2 
are constant matrices, R, ,  R,  are column vectors, and X&) 
is the initial condition. b(z,  t )  is a known smooth vector func- 
tion of ( 2 ,  t )  of the form b(z,  t )  = [bl(z ,  t)b2(z,  t ) .  . . b,(z, t)] ,  
where b,(z, t)  describes how the control action u,( t )  is dis- 
tributed in the interval [O, l ( t )]  (such as point/distributed ac- 
tuation), c,(z,  t )  is a known smooth function of ( z ,  t )  which is 
determined by the desired performance specifications in the 
interval [O, l ( t ) ]  (such as regulation of the crystal temperature 
at a specific point or of a weighted average) and s,(z,t) is a 
known smooth function of ( z , t )  which is determined by the 
location and type of the K-th measurement sensor (such as 
point/distributed sensing). Finally, we point out that: (a) the 
length of the domain l ( t )  is assumed to be a sufficiently 
smooth and bounded function of time which is also known 
(this assumption is certainly true for the crystal growth pro- 
cess where l ( t )  is directly determined by the crystal pulling 
rate; l ( t )  = 10' u,(s)ds), and (b) the actuator, performance 
specification and measurement sensor distribution functions 
are allowed to depend explicitly on time (that is, moving con- 
trol actuators and objectives, and measurement sensors). 

In order to simplify the presentation of the model reduc- 
tion and controller synthesis results, we formulate the system 
of Eqs. 14-16 in a Hilbert space X ( t )  consisting of n-dimen- 
sional vector functions defined on [O, Kt>] that satisfy the 
boundary conditions of Eq. 15, with inner product and norm 

where wlr w2 are two elements of X ( t )  and the notation 
( . ; )Rn  denotes the standard inner product in R". To this 
end, we define the state function x on X ( t >  as 

(q, w , )  = lo"" (w,(z) ,  w2(z));dz, II w1 I1 2 = ( w , ,  w l ) ' P  
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the time-varying operator 

a 2 i  i d i  
@ ( t ) x = A - + B 7 + - . 2 . -  

d z  d z  l ( t )  d z '  

d i  
x E D( a)  = x E X ( t ) :  C,X(O,t)+ D1-(O,t) { 8.2 

dX 
= R , , C , i [ l ( t ) , t ] +  D 2 - [ l ( t ) , t ] = R 2 )  d Z  (18) 

and the input, controlled output and measurement operators 
as 

q t ) u = w h ( t ) u , e ( t ) x =  (c(t),kx), S ( t ) x =  ( S ( t ) ,  o x )  

(19) 

where c ( t )  = [c,(t)c,(t). . . c,(t)] and s ( t )  = [s , ( t ) s2( t ) .  . . s,(t)1' 
and c,( t )  E X ( t ) ,  s,(t) E X ( t ) .  The system of Eqs. 14-16 can 
then be written as 

where f [ t ,  x ( t ) ]  = f [ t ,  X(z, t ) ]  and xo = X&). The system of 
Eq. 20 will be used in the next two subsections to present the 
model reduction and control algorithms that we apply to the 
crystal growth process. Our presentation will focus on the al- 
gorithms applied to the crystal growth process, and detailed 
proofs of approximation and controller synthesis results can 
be found in Armaou and Christofides (1999). 

Nonlinear model reduction 
In this section, we construct nonlinear low-dimensional 

ODE systems that accurately reproduce the dynamics and so- 
lutions of the infinite dimensional system of Eq. 22, which 
will be used for controller design. The construction of the 
ODE systems is achieved by using a nonlinear model reduc- 
tion procedure which is based on a combination of standard 
Galerkin's method with the concept of approximate inertial 
manifold and exploits the fact that the eigenspectrum of a(t) 
can be partitioned into a finite-dimensional part containing 
m slow eigenvalues and a stable infinite-dimensional comple- 
ment containing the remaining fast eigenvalues. 

We initially transform the system of Eq. 20 into a set of 
infinite ODEs. Let {dj(t>},  j = 1, . . .,a, be the set of eigen- 
functions of a(t); this is an orthogonal and countable set 
V t  E [ O , ~ ) ,  and forms a basis of X ( t ) .  Let also X,(t)= 
span{91(t>, . . . , &(t)I and X f ( t )  = span(& + Jt>, 
&+*(t), ..., ) be two modal subspaces of X ( t )  such that 
X,(t>@ X f ( t )  = 3%). Note that X,(t) includes the eigen- 
functions of @ ( t )  corresponding to the dominant (slow) 
eigenvalues, while Xf(t) includes the eigenfunctions of @(t )  
corresponding to the remaining fast eigenvalues. Defining the 
orthogonal (pointwise in time) projection operators P,: X ( t )  
+ X&t)  and Pf:  X ( t )  + X f ( t )  so that the state x of the sys- 
tem of Eq. 20 can be written as x = x, + xf = Pyx + P f x ,  and 
applying P, and Pf to the system of Eq. 20, we obtain 

where h,(t) is the largest eigenvalue of the matrix 4(t) and 
A,, , ( t)  is the largest eigenvalue of the operator (infinite 
range matrix) P f a ( t ) ,  and multiply the xfsubsystem of Eq. 
21 by E ,  to obtain: 

where q 6 ( t )  = cPf @(t)  and the operators @,(t), C$-,(t) gen- 
erate semigroups with growth rates which are of the same 
order of magnitude. The subsystem which describes the fast 
dynamics of the system of Eq. 22 can be obtained by writing 
the system of Eq. 22 in the fast time scale T = t/c and setting 
E = 0 and has the form 

We choose q ( t )  and X&t) so that the above system is expo- 
nentially stable (note that this is always possible for parabolic 
PDE systems; see Armaou and Christofides (1999) for de- 
tails). 

The reduction of the system of infinite ODEs of Eq. 22 
into a finite set of ODEs can be performed by using the con- 
cept of inertial manifold for systems with time-varying opera- 
tors introduced in Armaou and Christofides (1999) (see also 
Jones and Titi (1994) for other concepts of IMs for infinite- 
dimensional systems with time-varying terms). Specifically, if 
exists, an inertial manifold n t ( t )  for the system of Eq. 22 is 
a subset of X ( t ) ,  which satisfies the following properties: 

(i) nt( t )  is a finite-dimensional Lipschitz manifold, 
(ii) X ( t )  is a graph of a Lipschitz function C(t, x,, u, E )  

mapping [O, 00) x X&t> x R' x (0, E* 1 into X f ( t )  and for every 
solution x,(t), x,(t) of Eq. 22 with xf(0) = C(0, x,(O), u,  E ) ,  

then 

Xf ( t )  = C( I, X,(f), U , E ) ,  V t  2 0 (24) 

(iii) n t ( t )  attracts every trajectory exponentially. 
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On 3n(t), the evolution of the state x ,  is governed by the 
following finite-dimensional system 

where C( t ,  x,, u,  E )  is the solution of the following infinite- 
order partial differential equation 

ax ax a x .  
E -  + €-[ 4 ( t ) x ,  + aa,(t)u + f , ( t , x , ,C)]+ E-u at ax, du 

which C(t,x, ,u,  E )  has to satisfy for all t E[O,m),x, E X,(t), 
u E R', E E (0, .*I. The complexity of Eqs. 26 does not allow 
computing a closed form solution for C(t,x,, u, E )  in most 
practical applications including the crystal growth process. 
Therefore, the following approximation procedure, motivated 
by the two-time-scale property of the system of Eq. 22, is 
employed to compute approximations of C(t ,  x,, u,  E )  (ap- 
proximate inertial manifolds). In particular, the vectors 
C(t ,  xr ,  u,  E )  and u are assumed to be given in a power series 
in E 

where i ik,  xk are smooth vector functions. Ck can be com- 
puted by substituting the expressions of Eq. 27 into Eq. 26, 
and equating terms of the same power in E .  For example, 
when k = 0, the expansion of Eq. 27 yields C(t ,  x, ,  u ,  E )  = 

C&, x,, u )  = 0, and the corresponding approximation of the 
system of Eq. 25 is 

which is identical to the one obtained from a direct appli- 
cation of Galerkin's method to the system of Eq. 22. On 
the other hand, for k = 1, the expansion of Eq. 27 yields 

f,(t, x, ,O)]  (note that from assumption 4 we have that 
( q C ) - ' ( t )  exists and is bounded, Vt>0), and the corre- 
sponding approximation of the system of Eq. 25 is 

C ( t ,  x,, U ,  €1 = E C l ( t r  xY, G O )  = - E (  q , ) - ' ( t ) [  af(t>iii, + 
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Even though the system of Eq. 29 has the same dimension 
with the one of Eq. 28, it is a more accurate approximation of 
the infinite-dimensional system of Eq. 20; the reader may re- 
fer to Armaou and Christofides (1999) for a precise charac- 
terization of the accuracy of both systems. Therefore, the sys- 
tem of Eq. 29 will be used for the synthesis of an output 
feedback controller in the next subsection. 

Nonlinear output feedback control 
In this section, we synthesize nonlinear finite-dimensional 

output feedback controllers that guarantee local exponential 
stability and force the controlled output of the closed-loop 
PDE system to follow a prespecified response, provided that 
E is sufficiently small. The output feedback controllers are 
constructed on the basis of the system of Eq. 29 through a 
combination of state feedback controllers with state ob- 
servers. 

More specifically, we use the system of Eq. 29 to synthesize 
nonlinear state feedback controllers of the following general 
form 

where p&, x3), p l ( t ,  x,) are smooth vector functions, 
Qo(t ,x , ) ,  Q, ( t ,x , )  are smooth matrices, and u E R' is the con- 
stant reference input vector. The nonlinear controllers are 
constructed by following a sequential procedure. Specifically, 
the component Uo = p&, x,)+ Q&, x,)u is initially synthe- 
sized on the basis of the system of Eq. 28, and then the com- 
ponent U1 = pl ( t ,  x,)+ Q,(t, x,)u is synthesized on the basis 
of the system of Eq. 29, The synthesis of [p,(t,  x,), Q,(t, x,)], 
Y = 0, 1, so that a nonlinear controller of the form of Eq. 30 
guarantees local exponential stability and forces the output 
of the system of Eq. 29 to follow a desired linear response, is 
performed by utilizing geometric control methods for nonlin- 
ear ODES (the details of the controller synthesis can be found 
in Isidori (1989) and are omitted for brevity). 

Since measurements of X(z, t )  (and thus, x , ( t ) )  are usually 
not available in practice, we assume that there exists an L so 
that the nonlinear dynamical system 

where 17 denotes and m-dimensional state vector, is a local 
exponential observer for the system of Eq. 29 (that is, the 
discrepancy ( T ( t )  - x,(t)( tends exponentially to zero). 

Theorem 1 that follows provides the synthesis formula of 
the output feedback controller and conditions that guarantee 
closed-loop stability. To state our result, we need to use the 
Lie derivative notation and the concepts of relative order and 
characteristic matrix (which are defined in the appendix), for 
the system of Eq, 29. The proof of the theorem is given in 
Armaou and Christofides (1999). 

Consider the parabolic PDE system of Eq. 20 
and assume that the fast subsystem of Eq. 23 is exponentially 

Theorem 1: 
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stable. Consider also the O(E 2, approximation of the inertial form 
and assume that its characteristic matrix C,(t,x,, E )  is invertible 
V t  E [O, m), Vx, E X,(t), VE E (0, E * ] .  Suppose also that the 
following conditions hold 

(1) The roots of the equation: 

det(B(s)) = O  (32) 

where B(s) is an 1 X 1 matrix whose (i, j)-th element is of the 

form Pyksk, lie in the open left-half of the complex plane, 

where p,'k are adjustable controller parameters. 
(2)  The zero dynamics of the O(E') approximation of the in- 

ertial form are locally exponentially stable. 
Then, there exist positive real numbers fi,, /.I2, E* such that i f  

Ix,(O)I I f i l ,  II x f ( 0 )  II I fi' and E E (0, E * ] ,  and V(0 )  = x7(0),  
the dynamic output feedback controller 

r,  

k = O  

(a) Guarantees local exponential stability of the closed-loop 

(b) ensures that the outputs of the closed-loop system satisfy 
system, and 

for all t E [tb,  4 

where tb is the time required for the off-manifold fast transients 
to decay to zero exponentially, and y,,,(t) is the solution of 

(35) 

Remark 3: The implementation of the controller of Eq. 33 
requires to explicitly compute the vector function C,(t ,  77, U,). 
However, C,(t, r) ,  U,) has an infinite-dimensional range and 
therefore cannot be implemented in practice. Instead, a fi- 
nite-dimensional approximation of C , ( t ,  q, E0) ,  say 
C,,(t,q,U,), can be derived by keeping the first riZ elements 
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of &(t, r) ,  U,) and neglecting the remaining infinite ones. 
Clearly, as riZ -+ m, C,,(t, 17, Z,) approaches C,(t, 77, Go). This 
implies that by picking r% to be sufficiently large, the con- 
troller of Eq. 33 with C,,(t, 77, ti,) instead of C,(t, r),U,> guar- 
antees stability and enforces the requirement of Eq. 35 in the 
closed-loop infinite-dimensional system. 

Remark 4: Note that in the presence of small initializa- 
tion errors of the observer states (that is, q(0) # x,(O)), uncer- 
tainty in the model parameters and external disturbances, al- 
though a slight deterioration of the performance may occur, 
(that is, the requirement of Eq. 34 will not be exactly im- 
posed in the closed-loop system), the output feedback con- 
troller of theorem 1 will continue to enforce exponential sta- 
bility and asymptotic output tracking in the closed-loop sys- 
tem. Furthermore, the assumption that the characteristic ma- 
trix C,(t, x,, E )  is invertible V t  E [O,m), Vx, E X,(t) ,  VE € 

(0, E* ] is made in order to simplify the development and can 
be relaxed by using dynamic state feedback instead of static 
state feedback (see Isidori (1989) for details). Finally, it can 
be shown using singular perturbations that the nonlinear con- 
troller of Eq. 33 possesses a robustness property with respect 
to fast and asymptotically stable unmodeled dynamics (that 
is, actuator and sensor dynamics, fast process dynamics, and 
so on). A comprehensive study of the robustness of the non- 
linear controller of Eq. 33 in the presence of various sources 
of uncertainty for the crystal growth process is presented later. 

Remark 5: Finally, we note that the nonlinear model re- 
duction and control methods of this and the previous subsec- 
tion can be readily generalized to parabolic PDE systems in 
which the manipulated inputs enter in a nonlinear fashion 
and can be represented by the following infinite-dimensional 
form 

x =  @ ( t ) x +  & ( t ) g ( u ) +  f ( t , x ) ,  x(O)=x, 

Y ,  = C ( t ) x ,  y,, = S ( t ) x  (36) 

where g ( - )  is a nonlinear smooth function. This can be done 
by using g(u )  as a "virtual manipulated input," computing a 
virtual control action u,, for g(u>, and then solving through 
Newton'smethod the nonlinear equation g, = u ,  at each time 
instant to compute the value of u (the reader may refer to 
the next section for an application of this approach to the 
Czochralski crystal growth process where the manipulated in- 
put T, (K-th heater temperature) enters the PDE in the form r4 due to the nonlinear dependence of the radiation mecha- 
nism on temperature). 

Crystal Temperature Regulation in the Czochralski 
Growth 
Nonlinear model reduction 

In this section, our objective is to synthesize and imple- 
ment a low-order nonlinear output feedback controller on the 
crystal growth process that enforces a desired smooth tem- 
perature profile in the axial direction inside the crystal. We 
begin with the reduction of the 1-D parabolic PDE model of 
Eq. 12-13 into a small set of nonlinear ODEs utilizing the 
model reduction algorithm discussed earlier. This set of 
ODEs will be subsequently used for controller design. 
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The 1-D model of Eqs. 12-13 can be formulated in the 
general form of Eqs. 14-16 with 

variable x = (T, - T,,)/(T ) and nondimensionalizing the 
temperature for this parabolic PDE system, the spatial differ- 
ential operator @ can be defined as 

m? 

I = ( X €  X([O,l(t)]; R); Z ( O , t ) = O ;  - [ l ( t ) , t ]=O d Z  
dx 

Note that @(t) includes the higher-order spatial derivative 
(conduction term) included in the PDE of Eq. 12, while ow- 
ing to the time-dependent nature of the pulling rate up (in 
general) it does not include the first-order spatial derivative 
(convective term). The eigenvalue problem of a can be solved 
analytically and yields 

Aj(t) = - - 
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Figure 12. Comparison of temperature profiles of open loop system at Tamb = 600 K. 
(a) 2-D model at r = 0.034 m; (b) reduced-order model (c) temperature difference between the 2-D model at r = 0.034 m and the 
reduced-order model. 
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Table 4. Control Parameters 

Controller K z,, [ml zf, [ml z,, [ml p, T, [Kl 
1 0.18 0.38 0.28 1.0 1,400 
2 0.38 0.58 0.48 1.0 1,250 
3 0.58 0.71 0.68 1.0 1,100 

where the eigenfunctions +,(t,z) form a countable, Vt  E 

[0,a), and orthogonal basis of x(t). 
We used the nonlinear model reduction method discussed 

earlier, that is, combination of Galerkin’s method with ap- 
proximate inertial manifolds, to derive a fourth-order ODE 
model which uses a 4-th order approximation for xf (that is, 
m = 4 and 6 = 4). The eigenfunctions $( t ,  z )  were used as 
basis functions in Galerkin’s method. Figure 12 shows the 
temporal evolution of the crystal temperature in the axial di- 
rection at r = 0.034 computed by the 2-D model (Figure 12a), 
the temporal evolution of the crystal temperature in the axial 
direction computed by the fourth-order model (Figure 12b), 
and the difference between the crystal temperatures pre- 
dicted by the 2-D model ( r  = 0.034) and the fourth-order 
model (Figure 12c), for Tamp = 600. It is clear that the predic- 
tive capabilities of the reduced-order model are very good for 
a wide range of operating conditions, and, thus, it makes sense 
to use this fourth-order model as a basis for the synthesis of a 
nonlinear output feedback controller. 

Nonlinear controller synthesis: closed-loop simulations 
The control objective is to enforce an almost linear axial 

temperature profile in the crystal by manipulating the tem- 
perature of the heaters and using point measurements of the 
surface temperature of the crystal. Specifically, we consider 
the control configuration shown in Figure 11. The heater was 
assumed to be divided into three equispaced regions and the 
temperature in each one of these regions is adjusted by the 
controller. The region where the i-th controller operates is 
determined by the variables zSL, z f l ,  which represent the min- 
imum and maximum distances of the controller region from 
the melt-crystal interface, respectively, (note that the distri- 
bution function of the i-th control actuator is b , ( z )  = H ( z  - 
z % ~ ) -  H ( z  - z f L )  where H( .) is the standard Heavyside func- 
tion). The controlled and measured outputs were taken to be 
identical and defined as 

where T,( R,  z ,  t )  is the surface temperature of the crystal. The 
point measurements of the temperature on the surface of the 
crystal can be readily obtained in practice with optical py- 
rometers. Finally, the fourth-order model obtained through 
Galerkin’s method with approximate inertial manifolds with 
the specifications for manipulated inputs, controlled and 
measured outputs was used for the synthesis of a nonlinear 
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Figure 13. Comparison of temperature profiles of open 
loop system at Tamb = 600 K between the 2-D 
model at r=0.05 m and the reduced-order 
model at the end of the process. 

output feedback controller by utilizing the formula of theo- 
rem 1. In order to incorporate integral action in this con- 
troller, the term u, - h O 1 ( q )  was substituted by the term ul - 
ycl. All the parameters used in the control problem are given 
in Table 4. 

Several simulations runs were performed to evaluate; (a) 
the ability of the nonlinear controller to enforce a linear tem- 
perature profile in the axial direction inside the crystal; (b) 
the robustness properties of the nonlinear controller with re- 
spect to parametric model uncertainty, disturbances and un- 
modeled actuator and sensor dynamics. In all the simulation 
runs, the crystal was initially ( t  = 0 s) assumed to be at 
T,(z,r,O) = 1,670 K and have a length of I(0) = 0.05 rn. The 
initial conditions of the fourth-order observer included in the 
nonlinear output controller were computed by using the ini- 
tial condition assumed for the crystal. Moreover, in all the 
simulation runs, the objective of the controller is to regulate 
the three controlled outputs at ycl = 1,400 K ,  yc2 = 1,250 K ,  
y,, = 1,100 K ;  this is motivated by our objective to enforce a 
linear temperature drop inside the crystal of 8 K/cm. As we 
will see in our results below, these set points allow enforcing 
a smooth linear temperature drop inside the crystal at all 
times during the growth. Furthermore, we note that in order 
to avoid disturbing the concentration profiles of the dopant 
and oxygen through unnecessarily large variations of the ma- 
nipulated inputs, a lower bound (constraint) is implemented 
on the control action which does not allow u r ( t )  to become 
smaller than 0.82 (note that u, ( t )  = T,/T,, where Tsp, = 1,000 
K for all i = 1, 2, 3 is a reference temperature for the i-th 
heater). Finally, the tuning parameters of the nonlinear con- 
troller are chosen so that the computed variations in the con- 
trol action with respect to time are small. 

Initially, the set point tracking capability of the nonlinear 
controller was evaluated under nominal conditions. Figures 
14 and 15a show the contour plots of the crystal temperature 
as a function of the axial and radial directions at four differ- 
ent time instants during the operation of the process and the 
temporal evolution of the crystal temperature in the axial di- 
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Figure 14. Temperature of crystal as a function of radial and axial coordinates under nonlinear control-nominal case. 
(a)  t = 1 x lo4 s; (h) t = 2x lo4 s; (c) t = 3x lo4 s and (d) t = 4 X  lo4  s. Each contour represents a 100 K temperature difference 
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Figure 15. (a) Temperature of crystal at r = 0.0 m; (b) maximum temperature difference inside the crystal in the 
radial direction; (c) maximum thermal gradient inside the crystal in the radial direction; (d) maximum 
thermal gradient inside the crystal in the axial direction, as a function of time and axial coordinate under 
nonlinear control-nominal case. 
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Figure 16. Manipulated input profiles-nominal case. 

rection at the center of the crystal, respectively, in the 
closed-loop system. Clearly, the nonlinear controller drives 
the controlled outputs to their new set points, while enforc- 
ing the desired temperature drop inside the crystal at all ra- 
dial positions (note that the radial temperature nonuniform- 
ity is less than 20 K which is clearly smaller to the one com- 
puted for the open-loop system; compare Figure 15b and Fig- 
ure 3b), without creating large radial temperature gradients 
at any time (the radial temperature gradients remain small 
for all times; see Figure 15c and compare with 3c). As can be 
seen from Figure 15d, the temperature gradient in the axial 
direction remains bounded throughout the length of the crys- 
tal, and is much smaller than in the open loop case (Figure 
3d). Figure 16 show the corresponding profiles for the three 
manipulated inputs, which change smoothly with time to 
achieve the control objective. Note also that each one of the 
three controllers is activated [that is, u,(t) f 11 when the crys- 
tal enters in the zone in which the corresponding control ac- 
tuator operates and the initial sharp profiles are actually the 
slow activation of the controllers over a period of 250 s. Fig- 
ure 17a shows the crystal temperature at r = 0.05 m, and Fig- 
ure 17b shows the maximum thermal gradient inside the crys- 
tal in the axial direction, at the end of the process cycle un- 

der the proposed nonlinear control system, the PI controller, 
and the case of constant ambient temperature; it is clear that 
the proposed control scheme reduces the thermal gradients 
in the axial direction compared to the other approaches. 

Next, the robustness properties of the nonlinear controller 
in the presence of parametric uncertainties, disturbances, and 
unmodeled actuator and sensor dynamics were investigated. 
Figures 18 and 19a show the crystal temperature contours as 
a function of the axial and radial directions at four different 
time instants during the operation of the process and the 
temporal evoluton of the closed-loop crystal temperature in 
the axial direction at the center of the crystal, respectively, in 
the presence of 10% error in the emissivity of the crystal em,,. 
The nonlinear controller exhibits very good robustness prop- 
erties, driving the output to its set point with small tempera- 
ture gradients in the radial (Figure 19c) and axial (Figure 
19d) directions (compare with the open-loop temperature 
gradient profiles Figures 19c and 19d) while requesting 
smooth control actions (Figure 20). Figure 23 shows the crys- 
tal temperature contours at four different time instants and 
Figure 24a shows the closed-loop crystal temperature in the 
axial direction at the center of the crystal in the presence of a 
10% disturbance in the melt temperature and 20% distur- 
bance in the temperature of the chamber, while Figure 25 
shows the manipulated input profiles. Again, the nonlinear 
controller enforces the desired linear drop in the crystal tem- 
perature in the axial direction, attenuating the effect of the 
disturbances (compare the closed-loop temperature profiles 
of Figure 24 with the open-loop temperature profiles of Fig- 
ure 21 and 22 (Tdmb = 1,000 K ) ,  under the same distur- 
bances), while keeping the temperature gradients in the ra- 
dial (Figure 19c) and axial (Figure 19d) directions small. 

Figures 26 and 27a show the closed-loop crystal tempera- 
ture as a function of the axial and radial directions at four 
different time instants during the operation of the process 
and the temporal evolution of the closed-loop crystal temper- 
ature in the axial direction at the center of the crystal, re- 
spectively, in the presence of the unmodeled actuator and 
sensor dynamics, and Figure 28 shows the manipulated input 
profiles. To account for the actuator dynamics, the process 
model of Eq. 1 was augmented with the dynamical system 
~ , i , ~  = - z , ,  + z2, ,  E,&,  = - z2! + u,, i =  1, 2, 3, where z l r ,  

0 
0 0 1  0 2  03 0 4  05  08 

z m  
Figure 17. (a) Temperature of crystal at f = 0.05 m; (b) maximum thermal gradient inside the crystal in the axial 

direction, at the end of the process-nominal case. 

96 January 2001 Vol. 47, No. 1 AIChE Journal 



I 06 

035 1 7  

0- 
0 001 OCe OM OM OM 0 001 OCe 003 OM 005 

0 4  05D 
03 

I l r n ) ~ ~  01 0 0 001 0.U OM OM 005 01 O * I  0 

0 001 0.U OM OM 005 

Figure 18. Temperature of crystal as a function of radial and axial coordinates under nonlinear control-parametric 
uncertainty. 
(a) I = 1 x lo4  s, (b) r = 2 x  l o4  s, (c) t = 3x lo4 s and (d) t = 4x lo4 s. Each contour represents a 100 K temperature difference. 

5.0 40 

4.0 

25 
dT@Wcm) 3.5 

3.0 
2.5 20 
2.0 15 

I0 1 5  

5 
1 .o 
0.5 
0.0 0 

4.5 dTJdziWW 35 3o 

0 0 

0 0 

Figure 19. (a) Temperature of crystal at r = 0.0 m; (b) maximum temperature difference inside the crystal in the 
radial direction; (c) maximum thermal gradient inside the crystal in the radial direction; (d) maximum 
thermal gradient inside the crystal in the axial direction, as a function of time and axial coordinate under 
nonlinear control-parametric uncertainty. 
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Figure 20. Manipulated input profiles-parametric uncer- 
tainty. 

z2,  E R are the actuator states, z l r  is the actuator output, 
and E, is a small parameter characterizing how fast are the 
actuator dynamics. To account for the sensor dynamics, the 
process model of Eq. 1 was augmented with the dynamical 
system ~~~i~~ = - z3, + = - z4, + y,,, i = 1, 2, 3, 
where z ~ ~ ,  zqI E I R  are the sensor states, z3( is the sensor 
output, and E ,  is a small parameter characterizing how fast 
are the sensor dynamics. We found that the maximum values 
of E, and E ,  for which the stability of the closed-loop system 
is guaranteed are eC = 0.02 and E ,  = 0.02, thereby implying 
that the nonlinear controller is robust with respect to stable 
and sufficiently fast unmodeled sensor and actuators dynam- 
ics. From the results of the simulation study, it is evident that 
the nonlinear controller which was synthesized on the basis 
of a fourth-order model constructed through a combination 

of Galerkin's method and approximate inertial manifolds, 
possesses excellent closed-loop performance and robustness 
properties. 

Finally, it is important to point out another advantage of 
the proposed control configuration. Even though there is no 
explicit way to reduce the thermal gradients in the radial di- 
rection inside the crystal through direct feedback control, re- 
duction of such gradients is accomplished indirectly during 
the regulation of the thermal gradients in the axial direction, 
due to the well regulated environment in which the crystal 
grows in such a case. This point is made clear by comparing 
Figures 3c, Sc, 7c and 22c with Figures 15c, 19c, 24c and 27c 
that present the evolution of the radial thermal gradients in- 
side the crystal in the open- and closed-loop systems, respec- 
tively, and show that a significant reduction of the thermal 
gradients in the radial direction is achieved in the case of 
using the proposed control scheme compared to the open- 
loop system. 

Remark 6: The decision to pick the three set point values 
so that an almost linear axial temperature drop is enforced 
inside the crystal was motivated by our objective to reduce 
the axial thermal gradient dT,/dz for all z E [O,l(t>] and all 
t E [O,m), thereby reducing the possibilities for crystal dislo- 
cation and defects due to temperature nonuniformity (refer 
to Gevelber (1994a) and Szab6 (1985) for more information). 
We note that the nonlinear controller can be used to enforce 
other desired smooth temperature drops inside the crystal by 
appropriate choice of the values of the three set points. 

Remark 7: It is important to point out that even though 
the fourth-order model obtained through Galerkin's method 
and approximate inertial manifolds was used to synthesize a 
nonlinear geometric controller which can be readily imple- 
mented in practice, this fourth-order model can also be used 
for the design of optimization-based controllers including 

0- 
0 001 O M  OW OM 005 0 001 OM 0.m OM 0.05 

Figure 21. Temperature of crystal as a function of radial and axial coordinates for Tam,, = 1,000 K-exogenous distur- 
bances. 
(a) t = 1 x 10' s: (b) t = 2 X  10' s; (c )  I = 3 X 10' $, (d) 1 = 4 X  l o4  5 .  Each contour represents a 100 K temperature difference. 
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Figure 22. (a) Temperature of crystal at r = 0.0 m; (b) maximum temperature difference inside the crystal in the 
radial direction; (c) maximum thermal gradient inside the crystal in the radial direction; (d) maximum 
thermal gradient inside the crystal in the axial directions as a function of time and axial coordinate for 
Tam,, = 1,000 K-exogenous disturbances. 

Figure 23. Temperature of crystal as a function of radial and axial coordinates under nonlinear control-exogenous 
disturbances. 
(a) I = I x lo' s; (b) f = 2x lo' s; (c) t = 3x 10' s; (d) f = 4x lo' s .  Each contour represents a 100 K temperature difference. 
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Figure 24. (a) Temperature or crystal at r = 0.0 m; (b) maximum temperature difference inside the crystal in the 
radial direction; (c) maximum thermal gradient inside the crystal in the radial direction; (d) maximum 
thermal gradient inside the crystal in the axial direction, as a function of time and axial coordinate under 
nonlinear control-exogenous disturbances. 

model predictive controllers because it is of very low-order, 
and, therefore, it leads to optimization programs which can 
be rapidly solved on-line. 

Remark 8: The variation of the crystal size with respect 
to time is a moving boundary characteristic that should be 

= 0.96 - 

09 - 

0.85 - 

Figure 25. Manipulated input profiles-exogeneous dis- 
turbances. 
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inluded in the context of controlling the thermal gradients. 
Of course, there are other moving boundary issues in the 
Czochralski process which should be included in the develop- 
ment of an integrated simulation of the process, however, 
these are not important in the context of controlling thermal 
gradients inside the crystal, when the crystal radius has 
reached a constant value. 

Remark 9 We note that even though our study on con- 
trol of the Czochralski process focused on the regulation of 
the temperature profile in the axial direction inside the crys- 
tal under the assumption that the crystal radius is constant, 
the proposed nonlinear controller can be directly coupled with 
another nonlinear controller which manipulates the pulling 
velocity and chamber temperature to regulate the crystal ra- 
dius. This is possible because the time-scale of operation of 
the pulling velocity-crystal radius control loop is much faster 
than the time-scale of operation of the heater temperature- 
crystal temperature control loop, while the manipulation of 
the chamber temperature q.T;.h keeps the pulling velocity within 
specified limits, which allows decoupling the synthesis of the 
two controllers (see also Irizarry-Rivera and Seider (1997a) 
for similar conclusions). The synthesis of a nonlinear con- 
troller on the basis of an ODE model that describes the rate 
of change of the crystal radius as a function of the pulling 
velocity is presented in the appendix. 
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Figure 26. Temperature of crystal as a function of radial and axial coordinates under nonlinear control-unmodeled 
actuator and sensor dynamics. 
( a )  I = 1 x lo4 s: (b) t = 2x l o4  s; (c) f = 3x  lo4  s, (d) f = 4x l o 4  s. Each contour represents a 100 K temperature difference. 

Figure 27. (a) Temperature of crystal at r = 0.0 m; (b) maximum temperature difference inside the crystal in the 
radial direction; (c) maximum thermal gradient inside the crystal in the radial direction; (d) maximum 
thermal gradient inside the crystal in the axial direction, as a function of time and axial coordinate under 
nonlinear control-unmodeled actuator and sensor dynamics. 
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Figure 28. Manipulated input profiles-unmodeled actua- 
tor and sensor dynamics. 
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Conclusions 

In this work, we presented a control configuration and a 
nonlinear multivariable model-based controller for the reduc- 
tion of thermal gradients inside the crystal in the Czochralski 
crystal growth process after the crystal radius has reached its 
final value. Initially, a detailed mathematical model which 
describes the evolution of the temperature inside the crystal 
in the radial and axial directions and accounts for radiative 
heat exchange between the crystal and its surroundings and 
motion of the crystal boundary was presented. This model 
was used to study the behavior of the crystal temperature, 
formulate the control problem, design a new control configu- 
ration for the reduction of thermal gradients inside the crys- 
tal, and derive a 1-D in space PDE model with moving do- 
main which was used for controller synthesis. The controller 
was synthesized by following a control method proposed in 
Armaou and Christofides (1999) for the synthesis of low-order 
(easy-to-implement) controllers for parabolic PDEs with 
time-dependent spatial domains. The proposed control 
scheme was successfully implemented on a Czochralski pro- 
cess used to produce a 0.7 m long silicon crystal with a radius 
of 0.05 m and was shown to significantly reduce the axial and 
radial thermal gradients inside the crystal compared to the 
open-loop operation and to the case of using a single control 
actuator. The robustness of the proposed controller with re- 
spect to parametric model uncertainty, melt, and chamber 
temperature disturbances and unmodeled actuator and sen- 
sor dynamics was demonstrated through simulations. 
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Appendix 
Kf?W factors 

In order to calculate the radiative heat transfer between 
the crystal, the surfaces of the chamber, and the surface of 
the melt we need to take into account the geometric relations 
between the corresponding surfaces. These relations are ex- 
pressed by utilizing the concept of view factor. In particular, 
the differential view factor dF, ~ is defined as the fraction 
of the energy which arrives at a differential black element 
dA2 over the energy that leaves a differential black surface 
element dA, (Siegel and Howell, 1981). From this definition, 
it follows that the view factor dF, depends exclusively on 
the size of dA, and its orientation with respect to dA,. The 
view factor definition can be extended to cover the full sur- 
faces A ,  and A ,  and is given from the equation 

where A ,  and A ,  are the areas of the surfaces, AT is the 
area of the surface 2 which is visible to surface 1, P,,  and P2 
are the angles between the unit normal vectors to the corre- 
sponding surfaces and the line connecting the two points, and 
s is the length of this line. Based on the above definitions the 
following properties hold 

(I) Reciprocity 

where A ,  is the surface area and Fi --t, is the view factor of j 
with respect to i. 

(11) The view factors of surfaces that form a complete en- 
closure satisfy 

n 

X F , , , = l ,  k = l ,  ..., n (A3) 
[ = I  

where n is the total number of surfaces that form the enclo- 
sure. 

In the process model of Eq. 1 the view factors F,, m( - , . ), 
F,, + ,h( a ,  * 1, F,, ~ amb( * ,  * >, F,, ,( * ,  - > were separately com- 
puted by decomposing the corresponding complex geometries 
into simple geometries for which analytical computation of 
the view factors is possible. Refer to Srivastra et al. (1986) for 
more results on the computation of view factors for the 
Czochralski crystal growth process. Specifically, the following 
simple geometries were utilized: 

Directly opposed parallel annuli (Figure A1 -a) (Leuen- 
berger and Person, 1956) 

r 

1 
F,,, = y 

- / ( l + y ) 2 - 4 $ ]  (A4) 

1 

2( R; - r:) 
[ J( R: + r-3’ + L2)’- (Zr3’R:), F2+4= 

- d ( R ;  + Ri  + L2)2-  (2R;Ri) ,  

Directly opposed parallel disks (Figure Al-b) (Leuen- 
berger and Person, 1956) 

r 

L 

I 
1 
L 

Figure A1 . View factors. 
(a) Annulus to annulus; (b) disk to disk. 
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Figure A2. View factors. 
(a) Annulus to cylinder, b) cylinder to disk. 

Annulus to cylinder (annulus is on the top of the cylinder) 
(Figure A2-a) (Leuenberger and Person, 1956) 

- J(r' + R2 + L Z ) 2 - ( 2 r 2 R 2 ) 2 )  (A7) 1 
F,, ,=-  2 ' [ I-- R2:L2+/M] (AS) 

Cylinder to disk (Figure A2-b) (Rea, 1975) 

F l + 2 = - { ~ ~ ~ - 1 (  1 
l 2  - R2 + r2 

27r 1 2  + R2 - 

_ -  r 1 cos - ( r ( l 2 - R 2 + r ' ) ) / (  r2+l??+L2)2 - 4 7 -  R2 

21 R(12 + R2 - r' )  

Based on the above view factors, it is possible to find the 
view factors between cylinders for the following two configu- 
rations: 

Cylinder to cylinder (configuration I; Figure A3-a)(Rea, 
1975) 

Cylinder to cylinder (configuration 11; Figure A3-b)(Rea, 
1975) 
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Figure A3. Cylinder to cylinder view factors. 
(a) Configuration I ,  (b) configuration 11. 

where F/ denotes the view factor of Eq. A9 with the length of 
the cylinder being 1. 

Concepts of Relative Order and Characteristic Matrix 
First, the Lie derivative of the scalar function hot([,  x,) with 

respect to the vector function fo(t, x,) is defined as 
Lfoho,(t ,  x,) = (dh,,/dx,)f,(t, x,) + dh, , /dt  for the case of 
time-varying ho,, f o ;  L$<FO,(t, x,) denotes the k-th order Lie 
derivative and LgoIL$,hOl(t, x,) denotes the mixed Lie 
derivative. Now, referring to the system of Eq. 28, we set 

ho,(t, x,) to obtain 
a,(t>x, + f,(t, x,, 0) = f&, XJ, @&) = go(t ,  x,), e,(t>x, = 

For the above system, the relative order of the output Y ~ , ~ ,  
with respect to the vector of manipulated inputs u is defined 
as the smallest integer rL for which 

or ri =M if such an integer does not exist. Furthermore, the 
matrix 

is the characteristic matrix of the system of Eq. A12. 
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Feedback Control of Crystal Radius 
The shape of the melt-crystal interface in the Czochralski 

crystal growth is a complex system that varies with time and 
can be described by a thermal equilibrium at the interface 
condition, called the Stefan condition (Crowley, 1983). Ana- 
lyzing this condition at the crystal-melt-air trijunction point 
and assuming an almost planar crystal-melt interface (Hurle 
et al., 1990), one can predict the difference of height between 
the trijunction point and the melt surface away form the 
melt-crystal interface, h(t, R) ,  by using the following equation 
(Hurle et al.. 1990) 

where k ,  is the crystal thermal conductivity, k ,  is the melt 
thermal conductivity, AmH is the latent heat of melting, T, 
and T,, are the crystal and melt temperature, respectively, 
and R is the crystal radius. 

Approximating the heat transfer at the crystal-melt inter- 
face from the melt side in Eq. A15 with a linear temperature 
drop (Hurle et al., 19901, we obtain the following equation 

where T i  is the temperature at the bulk of the melt. The 
heat transfer at the crystal-melt interface from the crystal side 
in Eq. A15 can be approximated by differentiating the solu- 
tion of the thermal model of the process Eq. 1 (or similarly 
the model used for controller design) in the axial direction at 
position ( z ,  r )  = (0, R). 

The dynamics of the crystal radius are governed by the fol- 
lowing ODE (Crowley, 1983) 

where r is the radius, 0, is the contact angle between the 
melt and the crystal at the trijunction point, 0; is the contact 
angle between the melt and the crystal at the trijunction point 
at steady state. 

For a holm geometry of the meniscus shape, which applies 
to our system, the Laplace - Young equation has been solved 
approximately by Buchner and Jones (1980) (see Hurle (1983) 
for a relevant analysis) and is of the form 

2 a, where p = --, a, is the surface tension of the melt, pm is 

the density of the melt, and g is the acceleration of free fall. 
Based on Eqs. A15-Al8, we can derive the following ODE 

system which describes the crystal radius dynamics as a func- 
tion of the heat-transfer mechanisms at the trijunction point 

Pm g 
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and the pulling rate 

[tan' ( or - 0:) + 11 1 + (  [ k c 5 ( R ) - k m  T," - Tmp 
dz 

d0, T,b-TmP 
tan ( 0, - 0:) 

h2 
X - + k m  

dh 

x ( up-- A i H [ k C z ( R ) - k ? T I  T," - h ','I} (A19) 

2h( 1+ f g )  
_ = -  
dh 

-= 

dR 2 j i R i M  

where 0, is given from Eq. A18 and dT,/dz ( R ) ,  d2T,/dRdz 
( R )  are given from the solution of the thermal model of Eq. 
1. 

Using geometric control methods (Isidori, 19891, we design 
a nonlinear controller which manipulates the pulling rate to 
stabilize the radius of the crystal at a specified value R,,, and 
is of the form 

1 T: - Tmp 
h 

dB1 d2TC 
x [tan2(el - e:)+ 11 - + k ,  tan( 0, - @)-(R)  

dR dR d z  

+ A,H2)] x [ ( k , $ ( R ) -  k ,  T: - Tmp 
YZ 
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? h ( l + i g )  

d8r h 2 i h  

where the terms dTc/dz(R), d2T,/dRdz(R) are given from 
the solution of the reduced-order thermal model used for the 
design of the controller Eq. 6, is given from the solution of 
Eq. A18 and y,, y2  are controller parameters. The above 
controller ensures that the crystal radius reaches a constant 
value in a very small time-interval compared to the time 
needed to grow the entire crystal, thereby allowing to assume 

a constant crystal radius in the problem of regulating the 
thermal gradients inside the body of the crystal. 

Finally, we note that the change of the melt level inside 
the crucible (which is much slower than the dynamics of the 
crystal radius) may result in a change of the position of the 
crystal-melt interface relative to the crucible, which in turn 
may lead to pulling rates which are outside prespecified lim- 
its in order to achieve a constant crystal radius. To deal with 
this problem, the chamber temperature Tch can be used as a 
second manipulated variable to keep the window of opera- 
tion of the pulling rate up within prespecified limits. The 
chamber temperature affects the crystal radius dynamics of 
Eq. A19 through the terms dTc/dz(R) and d2TC/dRdz(R) 
that describe the heat transfer between the crystal surface 
and its surroundings due to conduction and radiation at the 
trijunction point. 
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