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Abstract

We synthesize robust nonlinear static output feedback controllers for systems of quasi-linear parabolic partial di!erential equations
with time-dependent spatial domains and uncertain variables. The controllers are successfully applied to a typical di!usion}reaction
process with moving boundary and uncertainty. ( 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Quasi-linear parabolic partial di!erential equation
(PDE) systems with time-dependent spatial domains
arise very frequently in the modeling of di!usion}reac-
tion processes with moving boundaries (e.g., crystal
growth, metal casting, gas}solid reaction systems and
coatings). In addition to being nonlinear and time-
varying, such systems are usually characterized by the
presence of uncertain variables owing to unknown or
partially known process parameters and disturbances.
Uncertain variables, if they are not appropriately ac-
counted for in the controller design, can signi"cantly
deteriorate the nominal closed-loop performance, and
even lead to closed-loop instability.

In the past, most of the research on control of lin-
ear/quasi-linear parabolic PDEs with uncertainty has
focused on systems with "xed spatial domains. Initially,
H= control algorithms were developed for linear para-
bolic PDE systems in the frequency domain (e.g.,
Palazoglu & Owens, 1987; Curtain & Glover, 1986;
Gauthier & Xu, 1989). The development of concrete
relations between frequency-domain and state-space
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control theoretic concepts (e.g., controllability and ob-
servability) in Jacobson and Nett (1988) allowed the
derivation of the state-space counterparts of the fre-
quency domain H= results (see, for example, the book by
Keulen (1993)). More recently, Lyapunov-based robust
controller design methods were proposed (Ydstie
& Alonso, 1997; Christo"des, 1998; Christo"des
& Baker, 1999) for quasi-linear parabolic PDEs with
uncertainty. Other results on control of PDE systems
with uncertainty include disturbance decoupling for lin-
ear parabolic PDEs (Curtain, 1986), Lyapunov-based
(Christo"des & Daoutidis, 1998) and sliding-mode con-
trol (Hanczyc & Palazoglu, 1995) of hyperbolic PDE
systems, Lyapunov-based (Kang & Ito, 1992) and H=

(e.g., Burns & Ou, 1994; King & Qu, 1995) control of
Navier}Stokes equations, as well as adaptive control
(e.g., Byrnes, 1987; Wen & Balas, 1989; Demetriou,
1994).

Even though the subject of feedback control of para-
bolic PDE systems with "xed spatial domains has
received great attention, few results are available on
control and estimation of parabolic PDE systems with
time-dependent spatial domains. Such systems exhibit
properties which are not encountered in parabolic PDEs
with "xed spatial domains including variation of control-
lability and observability properties with time and space,
and they are characterized by the presence of time-depen-
dent terms that describe convective transport owing to
variation of the length of the domain with time. These
characteristics, if not appropriately accounted for in the
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synthesis of the controller, may lead to poor performance
and closed-loop instability (see, for example, Armaou
& Christo"des, 1999a,b). In the area of control of para-
bolic PDEs with time-dependent spatial domains, impor-
tant contributions include Wang's work on the synthesis
of linear optimal controllers (see, for example, Wang,
1990) and their application to temperature and thermal
gradient regulation in crystal growth processes (Wang,
1995), as well as the synthesis of nonlinear distributed
state estimators using stochastic methods in Ray and
Seinfeld (1975). More recently, we proposed in Armaou
and Christo"des (1999a,b) a method for the synthesis of
nonlinear dynamic output feedback controllers for
a broad class of quasi-linear parabolic PDEs with time-
dependent spatial domains that enforce stability and
output tracking in the closed-loop in"nite-dimensional
system. The controllers are synthesized on the basis of
low-order approximations of the PDE system obtained
through combination of Galerkin's method with approx-
imate inertial manifolds. Despite this progress, at this
stage, there is no general method for robust nonlinear
control of highly uncertain parabolic PDE systems with
time-dependent spatial domains.

This paper focuses on a broad class of uncertain
quasi-linear parabolic PDE systems with time-dependent
spatial domains whose dynamics can be partitioned into
slow and fast ones. Such systems arise naturally in the
modeling of di!usion-reaction processes with moving
boundaries. The objective is to develop a general method
for the synthesis of robust time-varying static output
feedback controllers. Initially, Galerkin's method is used
to derive an approximate ODE model that describes the
slow dynamics of the parabolic PDE for all times. Then,
under the assumption that the number of available
measurements is equal to the number of slow modes for
all times, the approximate ODE model is used to synthe-
size robust static output feedback controllers through
combination of geometric techniques and Lyapunov's
direct method. We show that the proposed controllers
guarantee boundedness of the state and output tracking
with arbitrary degree of asymptotic attenuation of the
e!ect of the uncertain variables on the controlled output
of the closed-loop system, provided that the separation
between the slow and fast dynamical phenomena is su$-
ciently large. The proposed controllers are successfully
applied to a typical di!usion}reaction process with mov-
ing boundary and uncertainty, and are shown to outper-
form controllers that do not account for the presence of
uncertainty and the variation of the spatial domain with
time.

2. Preliminaries

We consider quasi-linear uncertain parabolic PDE
systems with uncertain variables of the form
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The smooth vector function b(z, t) is of the form
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variable h
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(t) on [0, l(t)], c

i
(z, t) is a known smooth func-

tion of (z, t) which is determined by the desired perfor-
mance speci"cations in the interval [0, l(t)] (e.g.,
regulation of the entire temperature pro"le of a crystal or
regulation of the temperature at a speci"c point), and
si (z, t) is a known smooth function of (z, t) which is
determined by the location and type of the ith measure-
ment sensor (e.g., point/distributed sensing). In the case
of point actuation (i.e., the control action enters the
system at a single point z

0
, with z

0
3[0, l(t)]), the function

b
i
(z, t) is taken to be nonzero in a "nite spatial interval of

the form [z
0
!e, z

0
#e], where e is a small positive real

number, and zero elsewhere in [0, l(t)]. A schematic of
a typical process with moving boundaries is shown in
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Fig. 1. Schematic of a prototype system with time-dependent spatial
domain, moving control actuators and moving measurement sensors.

Fig. 1, in the case of point control actuators and sensors.
Note that as the length of the process changes with time,
the position of the control actuators and sensors may
also change with time. The latter can be described math-
ematically by allowing the control actuator and sensor
&&shape'' functions b

i
(z, t) and s

k
(z, t), respectively, to

depend explicitly on time.
Throughout the paper, we will use the order of magni-

tude notation O(e) (i.e., d(e)"O(e) if there exist positive
real numbers k

1
and k

2
such that Dd(e)D4k

1
DeD,∀DeD(k

2
)

and DDhDD denotes the ess sup DhD, t50 for any measurable
function h : R

z0
PRq.

Our assumptions on the properties of l(t) are precisely
stated below:

Assumption 1. l(t) is a known smooth (i.e., lQ exists and is
bounded, ∀t3[0,R)) function of time which satisxes
l(t)3(0, l

.!9
], ∀t3[0,R), where l

.!9
denotes the maximum

length of the spatial domain.

We consider the Hilbert space H(t) of n-dimensional
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Finally, we precisely state our assumption that the
dynamics of the in"nite-dimensional system of Eq. (8) can
be partitioned into slow (which are "nite-dimensional)
and fast (which are in"nite-dimensional) ones. We note
that this assumption is satis"ed by most di!usion}reac-
tion processes with moving boundary (e.g., Armaou
& Christo"des, 1999a,b).
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Note that the partial derivative in the term Lx
f
/Lt is used

to denote that x
f

belongs to an in,nite dimensional Hilbert
space.

Remark 1. Referring to Assumption 1, we note that the
requirement that the length of the domain is a smooth
function of time is needed for the system of Eq. (8) to be
well posed in H(t), while the requirement that the length
of the domain is always "nite is necessary for the
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dominant dynamics of the parabolic PDE system to be
described by a "nite number of degrees of freedom (As-
sumption 2). We note that both requirements are usually
satis"ed in practice: a typical example is the Czochralski
crystal growth process where a seed crystal is pulled
smoothly from the melt within a well-regulated thermal
environment with the "nal crystal size being "nite.

Remark 2. In the formulation of the PDE system of Eqs.
(1)}(3) in H(t), the time-varying term lQ (t)[z/l(t)]Lx6 /Lz in
the expression of A(t) (Eq. (6)) accounts for convective
transport owing to the motion of the domain. This term
makesA(t) an explicit function of time. We also note that
in contrast to the case of parabolic PDE systems de"ned
on a "xed spatial domain (Christo"des, 1998), we allow
the actuator, performance speci"cation and measure-
ment sensor functions to depend explicitly on time (i.e.,
moving control actuators and objectives, and measure-
ment sensors).

Remark 3. We note that the representation of Eq. (9)
can be obtained by using basis functions, M/

j
(t)N,

j"1,2,R, of H(t) taken from standard basis functions
sets, or computed by solving an eigenvalue problem of
the form A(t)/

j
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Karhunen}Loève expansion on an appropriately chosen
ensemble of solutions of the system of Eq. (8) (see
Holmes, Lumley and Berkooz (1996) and Armaou and
Christo"des (1999b) for details on Karhunen}Loève ex-
pansion). The terms P
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Section 4).

3. Robust nonlinear output feedback control

We consider the synthesis of robust time-varying out-
put feedback control laws of the form
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We initially state our stability requirements on the fast
dynamics of Eq. (9). To this end, we write the system of
Eq. (9) in the fast time-scale q"t/e and set e"0, to

derive the following in"nite-dimensional fast subsystem:
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Assumption 3. The fast subsystem of Eq. (11) is exponenti-
ally stable, uniformly in t3[0,R).
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The above assumption is always satis"ed for systems
for which r
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"1, for all i"1,2, l; this requirement can

be easily achieved by selecting b
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Referring to the system of Eq. (13), we assume that the
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is nonsingular ∀t3[0,R), ∀ x
s
3H

s
(t). This assumption

is made to simplify the presentation of the controller
synthesis results and can be relaxed (see Isidori, 1989 for
details). The following assumption is a standard one in
geometric nonlinear control and states that the zero
dynamics of the "nite-dimensional slow subsystem is
exponentially stable.

Assumption 5. The dynamical system
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is locally exponentially stable.

To design a nonlinear controller that explicitly com-
pensates for the e!ect of uncertain variables, we need to
assume the existence of a nonlinear time-varying bound-
ing function which captures the size of the uncertain
terms in the f-subsystem of Eq. (13). Such a bounding
function may be computed from physical considerations,
preliminary simulations and experimental data.

Assumption 6. There exists a known function c
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The following assumption is needed in order to obtain
estimates of the states x

s
of the system of Eq. (12) from the

measurements y
mi

, i"1,2, p.

Assumption 7. p"m (i.e., the number of measurements is
equal to the number of slow modes), and the inverse of the
operator S(t) for all t3[0,R) exists so that x(

s
"S~1(t)y

m
,

where x(
s

is an estimate of x
s
.

Theorem 1 that follows provides an explicit formula
for the robust controller, conditions that ensure boun-
dedness of the state, and a precise characterization of the
ultimate uncertainty attenuation level. To simplify the
statement of the theorem, we set v6

i
"[v

i
v(1)
i

2 v(ri )
i

]T
and v8 "[v6 T

1
v6 T
2
2 v6 T

m
]T.

Theorem 1. Consider the parabolic PDE system of Eq. (8)
for which Assumptions 1}3 hold, and the xnite-dimensional
system of Eq. (12), for which Assumptions 4}7 hold, under
the robust output feedback controller:

u
0
"a

0
(x

s
, x

f
, v6 , t)

:"[C
0
(t,x(

s
)]~1G

l
+
i/1

ri
+
k/1

b
ik

b
iri

(v(k)
i
!¸k

F0
h
i0
(t,x(

s
))

#

l
+
i/1

ri
+
k/1

b
ik

b
iri

(v(k~1)
i

!¸k~1
F0

h
i0
(t,x(

s
))

! s[c
0
(t,x(

s
)]

+l
i/1

+ri
k/1

(b
ik
/b

iri
)(¸k~1

F0
h
i0
(t,x(

s
)!v(k~1)

i
)

D+l
i/1

+ri
k/1

(b
ik
/b

iri
)(¸k~1

F0
h
i0
(t,x(

s
)!v(k~1)

i
)D#/H,

(17)

where x(
s
"S~1y

m
,b

ik
/b

iri
"[b1

ik
/b1

iri
2bl

ik
/bl

iri
]T are

column vectors of parameters chosen so that the roots of the
equation det(B(s))"0, where B(s) is an l]l matrix, whose
(i, j)th element is of the form +ri

k/1
(bi

jk
/bi

jri
)sk~1, lie in the

open left-half of the complex plane, and s,/ are adjustable
parameters with s'1 and /'0. Then, there exist positive
real numbers (d, /H) such that for each /4/H, there exists
eH(/), such that if /4/H, e4eH(/) and maxMDx

s
(0)D,

DDx
f
(0)DD

2
, DDhDD, DDhQ DD, DDv8 DDN4d,

(a) the state of the inxnite-dimensional closed-loop system
is bounded, and

(b) the outputs of the inxnite-dimensional closed-loop sys-
tem satisfy:

lim sup
t?=

Dy
ci
!v

i
D4d

0
, i"1,2, l (18)

where d
0
"O(/#e) is a positive real number.

Note that we use the notation Dx
s
D to denote the norm

of x
s

in the "nite-dimensional Hilbert space H
s
(t).
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Remark 4. The nonlinear controller of Eq. (17) was de-
rived through combination of geometric and Lyapunov
techniques (the details of the derivation of this controller
are omitted for brevity and the reader may refer to
Christo"des (1998) for details on the synthesis of a similar
controller for parabolic PDE systems with "xed spatial
domains). The controller tuning parameters include bi

jk
,

which can be chosen to in#uence the speed of the output
response, and /, s which can be chosen to achieve the
desired degree of attenuation (d

0
) of the e!ect of the

uncertain variables (unknown/partially known process
model parameters or exogenous disturbances), h

k
(t), on

the controlled output.

Remark 5. Regarding the practical implementation of
the result of Theorem 1, one has to initially construct an
approximate "nite-dimensional system which captures
the dominant dynamics of the PDE system (making
certain that Assumption 3 is satis"ed), then verify that
such a system satis"es Assumptions 4}6, and the number
and location of the measurement sensors satis"es As-
sumption 7, and "nally, use the formula of Eq. (17) to
synthesize the controller on the basis of the "nite-dimen-
sional system and tune the controller (i.e., pick the values
for the parameters bi

jk
, /, s) so that the desired degree of

uncertainty attenuation is achieved in the closed-loop
system.

Remark 6. We note that even though the controller of
Eq. (17) uses static feedback of the measured outputs y

mi
,

i"1,2, p, and thus, it feeds back both x
s

and x
f
, the

use of x
f

feedback cannot lead to destabilization of the
stable fast subsystem. This is due to the large separation
of the slow and fast modes of the spatial di!erential
operator (i.e., assumption that e is su$ciently small) and
the fact that the controller does not include terms of the
form O(1/e).

Proof of Theorem 1. Substituting the controller of
Eq. (17) into the parabolic PDE system of Eq. (8), we
obtain:

x5 "A(t)x#B(t)a
0
(t,x

s
,x

f
, v6 )#f(t, x)#W(t, x, h),

(19)
y
c
"C(t)x, y

m
"S(t)x.

One can easily verify that Assumption 2 holds for the above
system, and thus, it can be written in the following form:

dx
s

dt
"A

s
(t)x

s
#B

s
(t)a

0
(t,x

s
, x

f
, v6 )

#f
s
(t,x

s
,x

f
)#W

s
(t,x

s
, x

f
, h),

e
Lx

f
Lt

"A
fe(t)xf

#eB
f
(t)a

0
(t,x

s
, x

f
, v6 )

#ef
f
(t,x

s
, x

f
)#eW

f
(t,x

s
,x

f
, h). (20)

Rewriting the above system in the fast time-scale q"t/e
and setting e"0, we obtain the following in"nite-dimen-
sional fast subsystem from the system of Eq. (20):

Lx
f

Lq
"A

fe(t)xf
(21)

which is globally exponentially stable. Setting e"0 in
the system of Eq. (20), we have that x

f
"0 and thus, the

"nite-dimensional slow system takes the form

dx
s

dt
"F

0
(t,x

s
)#

l
+
i/1

Bi
0
(t)ai

0
(t,x

s
,0, v6 )#W

0
(t,x

s
,0, h),

y
ci
"C

i
(t)x

s
": h

i0
(t,x

s
). (22)

For the above system, there exists a /3(0,/H] such that
if maxMDx

s
(0)D, DDhDD, DDhQ DD, DDv8 DDN4d, then its state is bounded

and its outputs satisfy lim sup
t?=

Dy
ci
!v

i
D4O(/),

i"1,2, l (this can be shown using similar arguments
as in the proof of Theorem 1 in Christo"des (1998)).
Finally, since the in"nite-dimensional fast subsystem
of Eq. (11) is exponentially stable, we can use stan-
dard singular perturbation arguments to obtain that
there exists an eH(/), such that if e3(0, eH(/)],
maxMDx

s
(0)D, DDx

f
(0)DD

2
, DDhDD, DDhQ DD, DDv8 DDN4d, then the state of

the closed-loop parabolic PDE system of Eq. (19) is
bounded and that its outputs satisfy the relation of
Eq. (18). h

4. Control of a di4usion}reaction process with
moving boundary

We consider a di!usion}reaction process with moving
boundary which is described by the following parabolic
PDE:

Lx6
Lt

"

L2x6
Lz2

#b
T
e~c@(1`x6 )#b

U
(b(z, t)u(t)!x6 )!b

T,/
e~c

(23)

subject to the Dirichlet boundary conditions

x6 (0, t)"0, x6 (l(t), t)"0 (24)

and the initial condition:

x6 (z, 0)"0.5, (25)

where x6 is the state, c,b
u

are dimensionless process para-
meters, b

T
denotes a dimensionless heat of reaction

(which is assumed to be unknown and time-varying;
uncertain variable), b

T,/
denotes a nominal dimensionless

heat of reaction, b(z, t)"[b
1
(z, t) b

2
(z, t)] are the ac-

tuator distribution functions and u"[u
1

u
2
]T is the

manipulated input vector. The spatial domain is assumed
to change according to the relation

l(t)"p(1.4!0.4e(~0.02t2.7)) (26)
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Fig. 2. Open-loop pro"le of x6 in the presence of uncertainty.

Fig. 3. Closed-loop pro"le of x6 under nonlinear robust output feedback
control.

(it can be easily seen that the above function satis"es the
requirements of Assumption 1) and the following typical
values were given to the process parameters:

b
T,/

"60.0, b
U
"2.0, c"4.0. (27)

The following countable, ∀t3[0,R), orthogonal basis
of H(t) was used in our calculations:

/
j
(z, t)"S

2

l(t)
sinAjp

z

l(t)B, j"1,2,R. (28)

Note that the above set of basis functions satis"es the
conditions of Assumption 2.

A 20th-order Galerkin truncation of the system of
Eq. (23), with /

j
(z, t) of Eq. (28) as the basis functions,

was used in our simulations (it was veri"ed that further
increase of the order of the Galerkin model provided no
substantial improvement on the accuracy of the simula-
tion results). It was found that the operating steady state
x6 (z, t)"0 is an unstable one (the open-loop state starting
from initial conditions close to the steady state x6 (z, t)"0
moves to another stable steady state characterized by
a maximum at z"l(t)/2). Moreover, the linearization of
the system of Eq. (23) around the steady-state x6 (z, t)"0
possesses one positive eigenvalue ∀l(t)3[p, 1.4p] and
a second eigenvalue which becomes periodically positive
as the domain size l(t) and the value of b

T
change.

The control objective is to stabilize the system at
the unstable steady-state x6 (z, t)"0 in the presence
of time-varying uncertainty in the dimensionless heat
of the reaction b

T
, (i.e., b

T
"b

T,/
#h(t) where h(t)"

0.35b
T,/

sin(0.524 t)) by employing a nonlinear out-
put feedback controller which uses two point measure-
ments of the state at z"0.25l(t) and z"0.625l(t) (i.e.,
moving sensors with s(z, t)"d(z!0.25l(t)) and s(z, t)"
d(z!0.625l(t)), respectively, where d( ) ) is the standard
Dirac function). We note that this selection for h(t) satis-
"es the requirements of Theorem 1 that h(t), hQ (t) should
be su$ciently small (see closed-loop simulations below),
while it leads to a very poor open-loop behavior for x6 (z, t)
(see Fig. 2). Since the maximum open-loop value of x6 (z, t)
occurs for z"l(t)/2 and the "rst two modes of the process
become unstable for some l(t)3[p, 1.4p], the controlled
outputs were de"ned as

y
c1

(t)"P
l(t)

0

/
1
(z, t)x6 (z, t) dz,

y
c2

(t)"P
l(t)

0

/
2
(z, t)x6 (z, t) dz. (29)

The actuator distribution functions were taken to be
b
1
(z, t)"1 (uniform in space, distributed control action)

and b
2
(z, t)"d(z!2

3
l(t)) (moving point control actu-

ation).
For the system of Eq. (23), we considered the "rst two

eigenvalues as the dominant ones (e"0.11) and used
Galerkin's method to derive a two dimensional ODE

that was used for the synthesis of a nonlinear robust
output feedback controller through an application of Eq.
(17). The controller was implemented with the following
values of the parameters h

.!9
"21 (where h

.!9
is an

upper bound of the disturbance h
.!9

5sup
t|*0,=)

MDh(t)DN),
s"1.2, /"0.005, and achieved an uncertainty attenu-
ation level d"0.05 (note that 0.05"O(e#/)"
O(0.11#0.005)).

Fig. 3 shows the evolution of the closed-loop rod
temperature pro"le under the nonlinear robust output
feedback controller, while Fig. 4 shows the correspond-
ing manipulated input pro"le. Clearly, the proposed con-
troller regulates the temperature pro"le at x6 (z, t)"0,
attenuating the e!ect of the uncertain variable (note that
the requirement lim sup

t?=
Dy

c
D40.05 is enforced in the

closed-loop system; Fig. 5). For the sake of comparison,
we also implemented on the process the same controller
as before without the term which compensates for the
e!ect of the uncertainty (i.e., s"0). Fig. 6 shows the
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Fig. 4. Manipulated input pro"les for nonlinear robust output feed-
back controller.

Fig. 5. Closed-loop output pro"le under nonlinear robust output feed-
back control.

Fig. 6. Closed-loop pro"le of x6 under nonlinear output feedback con-
trol (no uncertainty compensation).

evolution of the closed-loop rod temperature pro"le. It is
clear that this controller cannot regulate the temperature
pro"le at the desired steady state, leading to close-loop
instability.

We "nally note that we also tested through simula-
tions nonlinear robust static output feedback controllers
which were synthesized under the assumption of "xed
spatial domain (i.e., l(t)"p and l(t)"1.4p, for all times)
which led to an unstable closed-loop system; the detail
simulations are omitted for brevity.

5. Conclusions

In this work, we considered a broad class of quasi-
linear parabolic PDE systems with time-dependent spa-
tial domains and time-varying uncertain variables whose

dynamics can be partitioned into slow and fast ones. For
these systems, under the assumption that the number of
available measurements is equal to the number of slow
modes for all times, we synthesized robust static output
feedback controllers through combination of geometric
techniques and Lyapunov's direct method. The de-
veloped controllers guarantee boundedness of the state
and output tracking with arbitrary degree of asymptotic
attenuation of the e!ect of the uncertain parameters on
the controlled output of the closed-loop system, provided
that the separation between the slow and fast dynamical
phenomena is su$ciently large. The controllers were
successfully applied to a typical di!usion}reaction pro-
cess with moving boundary and time-varying uncertainty
and were shown to outperform controllers that do not
account for the presence of the uncertainty.
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