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Wave suppression by nonlinear "nite-dimensional control
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Abstract

Korteweg}de Vries}Burgers (KdVB) and Kuramoto}Sivashinsky (KS) equations are two nonlinear partial di!erential equations
(PDEs) which can adequately describe motion of waves in a variety of #uid #ow processes. We synthesize nonlinear low-dimensional
output feedback controllers for the KdVB and KS equations that enhance convergence rate and achieve stabilization to spatially
uniform steady states, respectively. The approach used for controller synthesis employs nonlinear Galerkin's method to derive
low-dimensional approximations of the PDEs, which are subsequently used for controller synthesis via geometric control methods.
The controllers use measurements obtained by point sensors and are implemented through point control actuators. The performance
of the proposed controllers is successfully tested through simulations. ( 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The development of general and practical control algo-
rithms for nonlinear partial di!erential equations (PDEs)
that describe #uid #ow processes (e.g., Navier}Stokes
equations, KdVB, KS) is a fundamental problem whose
practical signi"cance ranges from feedback control of
turbulence for drag reduction, to suppression of #uid
mechanical instabilities in coating processes and sup-
pression of waves exhibited by falling liquid "lms. For
example, drag reduction through active feedback control
may have a very signi"cant impact on the design and
operation of underwater vehicles, airplanes and automo-
biles, since according to some estimates keeping the #ow
over the surface of a vehicle laminar could yield up to
30% reduction in fuel consumption. Active control of
#uid #ow can be achieved by injection of polymers
(Lumley, 1973), mass transport through porous walls
(e.g., blowing/suction) (Carlson & Lumley, 1996; D'An-
drea, Behnken & Murray, 1999) and application of
electro-magnetic forcing (Singh & Bandyopadhyay,
1997).
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The development of an e$cient control system for
a #uid #ow should be based on the underlying PDE
model that describes the #ow in order to exploit its
ability to accurately predict the spatiotemporal behavior
of the #ow "eld. The main obstacle for the synthesis of
practically implementable output feedback controllers
for #uid #ow processes is the in"nite-dimensional nature
of the underlying PDE models, which does not allow
their direct use for the design of low-order (and therefore,
easy-to-implement) controllers. This fact, together with
the need to develop e$cient numerical methods for non-
linear PDEs, has motivated signi"cant research on the
understanding of the dynamic behavior of various #uid
#ows. This research has led to the discovery that turbu-
lent #ows involve coherent structures (e.g., Bakewell
& Lumley, 1967; Lumley, 1981; Cantwell, 1981; Sirovich,
1987) which implies that the dominant dynamic behavior
of such #ows can in principle be approximated by low-
dimensional systems. These results have motivated the
development of model reduction methods for the deriva-
tion of low-dimensional systems that accurately describe
the dominant dynamics of PDEs which model #uid #ows
including nonlinear Galerkin's method (e.g., Titi, 1990;
Deane, Kevrekidis, Karniadakis & Orszag, 1991; Bangia,
Batcho, Kevrekidis & Karniadakis, 1997) and reduced
basis methods (e.g., Ito & Ravindran, 1997).

In the area of control of #uid #ow processes, prev-
ious research has mainly focused on: (a) control of
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Navier}Stokes equations via proportional-integral (Beri-
ngen, 1984; Choi, TeHmam, Moin & Kim, 1993), linear
optimal (Desai & Ito, 1994; Joshi, Speyer & Kim, 1995;
Hou & Yan, 1997), H

=
optimal (Burns & Ou, 1994;

Burns & King, 1994; King & Qu, 1995), Lyapunov-based
(Kang & Ito, 1992) and nonlinear (Christo"des & Ar-
maou, 1998) control, (b) linear distributed (Russell
& Zhang, 1995) and point (Russell & Zhang, 1996) con-
trol of the Korteweg}de Vries equation and nonlinear
boundary control of the KdVB equation (Liu & KrsticH ,
1999a) and (c) linear distributed control (Christo"des,
1998) and nonlinear boundary control (Liu & KrsticH ,
1999b) of the KS equation. At this stage, not much work
has been done on the utilization of the aforementioned
nonlinear model reduction techniques for the design of
nonlinear low-order feedback controllers for PDEs that
describe #uid #ows.

In this work, we focus on nonlinear "nite-dimensional
control of the KdVB and KS equations which can ad-
equately describe motion of waves in a variety of #uid
#ow processes (see, for example, Russell and Zhang
(1996) and Chang (1986) for appropriate discussions). We
initially propose a nonlinear controller design method
for quasi-linear evolutionary PDEs. The method em-
ploys nonlinear Galerkin's method to derive low-
dimensional ODE models, which are subsequently used
for the synthesis of low-order nonlinear output feedback
controllers that enforce local exponential stability in the
closed-loop system. We then use this method to synthe-
size nonlinear low-order controllers for the KdVB and
KS equations that enhance convergence rate and achieve
stabilization to spatially uniform steady states, respec-
tively. The controllers use measurements obtained by
point sensors and are implemented via point control
actuators. The performance of the proposed controllers is
successfully tested through simulations.

2. Nonlinear controller design

2.1. Preliminaries

We consider quasi-linear in"nite-dimensional systems
with the following state-space description:

x5 "Ax#Bu#R(x), x(0)"x
0
,

y
m
"Sx, y

c
"Cx, (1)

where x3H is the state of the system (H is an appropri-
ate Hilbert space), u3Rl is the vector of manipulated
inputs, y

m
3Rq is the vector of measured outputs, y

c
3Rl is

the vector of controlled outputs and x
0
3H is the initial

condition. A :D(A)LHPH is a densely de"ned
unbounded operator with compact inverse, R : D(R)L
HPH is a nonlinear map which satis"es R(0)"0,
and B : RlPH, S :HPRq, C :HPRl are operators

describing the spatial distribution of the manipulated
inputs, measured outputs and controlled outputs, respec-
tively.

The eigenvalue problem for A is de"ned as

A/
j
"j

j
/

j
, j"1,2,R, (2)

where j
j

and /
j

denote the jth eigenvalue and eigen-
function, respectively. The eigenvalues of A satisfy
R(j

1
)*R(j

2
)*,2 (where R( ) ) denotes the real part of

a complex number), while the eigenfunctions M/
1
,/

2
,2N

form a complete orthonormal set in H.
The inner product and norm in the Hilbert space

H are de"ned as

(u
1
, u

2
)"PX

(u
1
(z),u

2
(z))Rn dz, DDu

1
DD
2
"(u

1
,u

1
)1@2,

(3)

where u
1
, u

2
are the two elements of H, X is the domain

of de"nition of the process, and the notation ( ) , ) )Rn

denotes the standard inner product in Rn.
Finally, we recall the Lie derivative notation which will

be used in our development: ¸
f
h denotes the Lie deriva-

tive of a scalar "eld h with respect to the vector "eld
f, ¸k

f
h denotes the kth order Lie derivative and ¸

g
¸k~1

f
h

denotes the mixed Lie derivative.

2.2. Nonlinear model reduction

We apply nonlinear Galerkin's method (Titi, 1990;
Deane et al., 1991; Bangia et al., 1997) to the system of
Eq. (1) to derive an approximate "nite-dimensional
system. Let H

s
,H

f
be modal subspaces, de"ned as

H
s
"spanM/

1
,/

2
,2, /

m
N and H

f
"spanM/

m`1
,

/
m`2

,2N where /
j
, j"1,2,R are eigenfunctions

of A. Clearly, H
s
=H

f
"H. De"ning the orthogonal

projection operators P
s
: HPH

s
and P

f
: HPH

f
such that x

s
"P

s
x, x

f
"P

f
x, the state x of the system of

Eq. (1) can be decomposed to

x"x
s
#x

f
"P

s
x#P

f
x. (4)

Applying P
s
and P

f
to the system of Eq. (1) and using the

above decomposition for x, the system of Eq. (1) can be
written in the following form:

dx
s

dt
"A

s
x
s
#B

s
u#R

s
(x

s
, x

f
), x

s
3H

s
,

Lx
f

Lt
"A

f
x
f
#B

f
u#R

f
(x

s
, x

f
), x

f
3H

f
,

y
m
"Sx

s
#Sx

f
, y

c
"Cx

s
#Cx

f
,

x
s
(0)"P

s
x(0)"P

s
x
0
, x

f
(0)"P

f
x(0)"P

f
x
0
, (5)

where A
s
"P

s
A, B

s
"P

s
B, R

s
"P

s
R, A

f
"P

f
A,

B
f
"P

f
B and R

f
"P

f
R and the notation Lx

f
/Lt is
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used to denote that the state x
f

belongs in an in"nite-
dimensional space. In the above system, A

s
is a diag-

onal matrix of dimension m]m of the form
A

s
"diagMj

j
N, R

s
(x

s
, x

f
) and R

f
(x

s
, x

f
) are Lipschitz

vector functions, and A
f

is a stable unbounded di!eren-
tial operator. The standard Galerkin's method is to ap-
proximate the solution x(t) of the system of Eq. (1) by
x6
s
3H

s
which is given by the following m-dimensional

system:

dx6
s

dt
"A

s
x6
s
#B

s
u#R

s
(x6

s
, 0),

y
m
"Sx6

s
, y

c
"Cx6

s
. (6)

A "nite-dimensional system of order m which yields
solutions which are closer to the one of the system of
Eq. (1) than the ones obtained by the system of Eq. (6) can
be obtained by using the concept of inertial manifold
(IM). If it exists, an inertial manifold M for the system of
Eq. (1) is a subset of H, which satis"es the following
properties (TeHmam, 1988): (i) M is a "nite-dimensional
Lipschitz manifold, (ii) M is a graph of a Lipschitz
function R(x

s
, u) mapping H

s
]Rl into H

f
and for every

solution x
s
(t), x

f
(t) of Eq. (5) with x

f
(0)"R(x

s
(0), u), then

x
f
(t)"R(x

s
(t), u) ∀t*0 (7)

and (iii) M attracts every trajectory exponentially. The
evolution of the state x

f
on M is given by Eq. (7), while

the evolution of the state x
s
is governed by the following

"nite-dimensional inertial form:

dx8
s

dt
"A

s
x8
s
#B

s
u#R

s
(x8

s
, R(x8

s
, u)),

y
m
"Sx

s
#SR(x8

s
, u),

y
c
"Cx

s
#CR(x8

s
, u). (8)

Assuming that u(t) is smooth, di!erentiating Eq. (7) and
utilizing Eq. (5), R(xJ

s
, u) can be computed as the solution

of the following partial di!erential equation:

LR

Lx
s

[A
s
x8
s
#B

s
u#R

s
(x8

s
, R(x8

s
, u))]#

LR

Lu
u5

"A
f
R(x8

s
, u)#B

f
u#R

f
(x8

s
,R(x8

s
, u)) (9)

which R(x8
s
, u) has to satisfy for all x8

s
3H

s
, u3Rl. Unfor-

tunately, even for PDEs for which an IM is known to
exist, the derivation of an explicit analytic form of R(x8

s
, u)

is an almost impossible task. The nonlinear Galerkin
method attempts to overcome the problems associated
with the construction of inertial manifolds by replacing
R(x8

s
, u) with an approximate relation R

!11
(x8

s
, u) (called

approximate inertial manifold (AIM)). In this case, the
solution x of the system of Eq. (1) is approximated by

x8
s
#R

!11
(x8

s
, u) which is given by the following m-

dimensional system:

dx8
s

dt
"A

s
x8
s
#B

s
u#R

s
(x8

s
, R

!11
(x8

s
, u)),

y
m
"Sx8

s
#SR

!11
(x8

s
, u),

y
c
"Cx8

s
#CR

!11
(x8

s
, u). (10)

A function R
!11

(x8
s
, u) which is frequently used in the

literature (see, for example, Jones & Titi, 1994) is

R
!11

(x8
s
, u)"(A

f
)~1[!B

f
u!R

f
(x8

s
, 0)]. (11)

The reader may also refer to Christo"des and Daoutidis
(1997), Foias and TeHmam (1988) and Shvartsman and
Kevrekidis, 1998) for alternative approaches for the con-
struction of AIMs. The AIM of Eq. (11) leads to the
following m-dimensional system:

dx8
s

dt
"A

s
x8
s
#B

s
u#R

s
(x8

s
, (A

f
)~1

][!B
f
u!R

f
(x8

s
, 0)]),

y
m
"Sx8

s
#S(A

f
)~1[!B

f
u!R

f
(x8

s
, 0)],

y
c
"Cx8

s
#C(A

f
)~1[!B

f
u!R

f
(x8

s
, 0)]. (12)

Remark 1. We note that the above model reduction
procedure which led to the approximate ODE system of
Eq. (12) can be also used, when empirical eigenfunctions
of the system of Eq. (1) computed through Kar-
hunen}Loève expansion (known also as proper ortho-
gonal decomposition) are used as basis functions in
H

s
and H

f
, instead of the eigenfunctions of A.

2.3. Nonlinear control

In this section, we use the system of Eq. (12) to syn-
thesize a nonlinear "nite-dimensional output feedback
controller that guarantees stability and enforces output
tracking in the closed-loop ODE system, and establish
that the same controller exponentially stabilizes the
closed-loop in"nite-dimensional system. The "nite-di-
mensional output feedback controller which achieves the
desired objectives for the system of Eq. (12) is constructed
through a standard combination of a state feedback
controller with a state observer.

Since the manipulated input in the system of Eq. (12)
appears in a nonlinear fashion, we initially apply the
following preliminary dynamic feedback law:

dm
dt

"u6 ,

u"m, (13)
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where u6 is an auxiliary input, to the system of Eq. (2) to
obtain

dm
dt

"u6 ,

dx8
s

dt
"A

s
x8
s
#B

s
m#R

s
(x8

s
, (A

f
)~1

][!B
f
m!R

f
(x8

s
, 0)]),

y
m
"Sx8

s
#S(A

f
)~1[!B

f
m!R

f
(x8

s
, 0)],

y
c
"Cx8

s
#C(A

f
)~1[!B

f
m!R

f
(x8

s
, 0)] (14)

which can be written in the following compact form:

dx(
s

dt
"f (x(

s
)#g(x(

s
)u6 ,

y
m
"h

m
(x(

s
), y

c
"h

c
(x(

s
), (15)

where x(
s
"[mTx8 T

s
]T and the speci"c form of f, g, h

m
, h

c
can be readily obtained by comparing Eqs. (14) and (15).
On the basis of the system of Eq. (15), one can utilize
geometric control methods (Isidori, 1989) to synthesize
a nonlinear state feedback control law of the general
form

u6 "p(x(
s
)#Q(x(

s
)v, (16)

where p(x(
s
) is a smooth vector function, Q(x(

s
) is a smooth

matrix, and v3Rl is the constant reference input vector.
Under the hypothesis that the system of Eq. (15) is locally
observable (i.e., its linearization around the zero solution
is observable), the practical implementation of the state
feedback law of Eq. (16) will be achieved by employing
the following nonlinear state observer:

dg
dt

"f (g)#g(g)u6 #¸(y
m
!h

m
(g)), (17)

where g denotes the observer state vector (the dimen-
sion of the vector g is equal to the dimension of x(

s
in the system of Eq. (15)), and ¸ is a matrix chosen so
that the eigenvalues of the matrix C

L
"(Lf/Lg)

(g/0)
!¸(Lh

m
/Lg)

(g/0)
lie in the open left-half of the complex

plane.
The dynamic control law of Eq. (13), the state feedback

law of Eq. (16) and the state observer of Eq. (17) can be
combined to yield the following nonlinear output feed-
back controller:

dg
dt

"f (g)#g(g)(p(g)#Q(g)v)#¸(y
m
!h

m
(g)),

dm
dt

"p(g)#Q(g)v,

u"m. (18)

Theorem 1 below provides an explicit synthesis formula
of the output feedback controller and conditions that
guarantee closed-loop stability. In order to state the
result of the theorem, referring to the system of Eq. (15),
we de"ne the relative order of the output y

ci
with respect

to the vector of manipulated inputs u6 as the smallest
integer r

i
for which

[¸
g1
¸ri~1
f

h
ci
(x(

s
)2¸

gl
¸ri~1
f

h
ci
(x(

s
)]I[020] (19)

or r
i
"R if such an integer does not exist, and the

characteristic matrix

C(x(
s
)"C

¸
g1
¸r1~1
f

h
c1

(x(
s
) 2 ¸

gl
¸r1~1
f

h
c1

(x(
s
)

¸
g1
¸r2~1
f

h
c2

(x(
s
) 2 ¸

gl
¸r2~1
f

h
c2

(x(
s
)

F 2 F

¸
g1
¸rl~1
f

h
cl
(x(

s
) 2 ¸

gl
¸rl~1
f

h
cl
(x(

s
) D, (20)

where h
ci

is the ith element of the vector h
c
and g

i
is the

ith vector of the matrix g.

Theorem 1. Consider the system of Eq. (15) and assume
that: (1) it is locally observable and C

L
"(1/e)A where e is

a small positive parameter and A is a Hurwitz matrix, (2) its
characteristic matrix is nonsingular ∀x(

s
3DLRm`l, and

(3) its unforced (v,0) zero dynamics are locally exponenti-
ally stable. Consider also the system of Eq. (1) under the
nonlinear output feedback controller

dg
dt

"f (g)#¸(y
m
!h

m
(g))#g(g)M[b

1r1
2b

lrl
]C(g)N~1

]Gv!
l
+
i/1

ri
+
k/0

b
ik
¸k

f
h
ci
(g)H,

dm
dt

"M[b
1r1

2b
lrl

]C(g)N~1Gv!
l
+
i/1

ri
+
k/0

b
ik
¸k
f
h
ci
(g)H,

u"m, (21)

where the l-dimensional vectors of the parameters b
ik

are
chosen so that the roots of the equation det(B(s))"0 are in
the open left-half of the complex plane (B(s) is a l]l matrix,
whose (i, j)th element is of the form +ri

k/0
bi
jk

sk). Then, there
exist positive real numbers k, eH such that if DDx

0
DD
2
)k and

e3(0, eH], the zero solution of the closed-loop system
(Eqs. (1) and (21)) is exponentially stable.

Remark 2. The assumption that the zero dynamics of the
system of Eq. (15) are locally exponentially stable is
standard in geometric control (see Isidori, 1989 for de-
tails), while the assumption C

L
"(1/e)A, where e is

a small positive parameter and A is a Hurwitz matrix, is
needed to ensure that the presence of closed-loop system
states, which are not included in the model used for
controller synthesis, in the state observer does not lead to
closed-loop instability. Finally, the assumption that the
characteristic matrix C(x(

s
) is nonsingular is made to

simplify the presentation of the controller synthesis re-
sults and can be relaxed (see Isidori, 1989).
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Remark 3. The exponential stability property of the
closed-loop system guarantees a degree of robustness
with respect to su$ciently small disturbances and uncer-
tainty in the process parameters. The design of robust
controllers is beyond the scope of this paper.

Remark 4. It is important to note that even though the
presence of feedback control in the system of Eq. (1)
makes very di$cult (if not impossible) to answer the
mathematical question of existence of an inertial mani-
fold (i.e., exact solution of Eq. (9)), the use of the proposed
method for synthesizing nonlinear controllers with
guaranteed closed-loop stability for dissipative PDEs is
based on the concept of approximate inertial manifold
and does not require knowledge of the existence of an
inertial manifold for the PDE. Moreover, referring to the
expression for the approximate inertial manifold of Eq.
(11), we note that it constitutes a direct generalization to
the one presented in Foias, Sell and Titi (1989a) and
Foias, Jolly, Kevrekidis, Sell and Titi (1989b) for dissi-
pative PDEs without time-varying inputs, to systems
with time-varying inputs. This approximation for R is
clearly not unique; the reader may also refer to Jones and
Titi (1994) and Shvartsman and Kevrekidis (1998) for
other approximations of R for systems with time-varying
inputs.

Remark 5. The implementation of the controller of Eq.
(21) requires to explicitly compute the vector function
R
!11

(g, u). However, R
!11

(g, u) has an in"nite-dimensional
range and therefore cannot be implemented in practice.
Instead a "nite-dimensional approximation of R

!11
(g, u),

say R
!11t

(g, u), can be derived by keeping the "rst m8 ele-
ments of R

!11
(g, u) and neglecting the remaining in"nite

ones. Clearly, as m8 PR, R
!11t

(g, u) approaches
R
!11

(g, u). This implies that by picking m8 to be su$ciently
large, the controller of Eq. (21) with R

!11t
(g, u) instead of

R
!11

(g, u) enforces local exponential stability in the
closed-loop in"nite-dimensional system.

Remark 6. It is instructive to compare the approach
proposed in this work for "nite-dimensional nonlinear
controller design for dissipative in"nite-dimensional sys-
tems with the method developed in Chen and Chang
(1992), Chen, Wolf and Chang (1993) and Qin, Wolf and
Chang (1994) for the design of nonlinear controllers for
di!usion-reaction processes with unknown dynamics
using Karhunen-Loève-based Galerkin's method and
center manifold theory. The central di!erence is that the
proposed approach can be applied to all dissipative
PDEs (including hyperbolic-type PDEs like Ko-
rteweg}de Vries}Burgers equation and parabolic-type
PDEs like Kuramoto}Sivashinsky equation), while the
method in Chen and Chang (1992), Chen et al. (1993) and
Qin et al. (1994) is mainly suitable for dissipative PDEs
that include spatial di!erential operators whose eigen-
spectrum can be partitioned into a "nite-dimensional set

of eigenvalues which are close to the imaginary axis and
an in"nite-dimensional stable complement of eigenvalues
which are far in the left-half of the complex plane
(a typical feature of parabolic PDEs modeling di!usion-
reaction processes). We have been able to relax this
restriction by imposing additional requirements on the
observability and the design of the gain of the state
observer used to provide estimates of the states of the
"nite-dimensional model used for controller design. In
contrast, the approach in Chen and Chang (1992), Chen
et al. (1993) and Qin et al. (1994) motivated by the
objective to control di!usion-reaction processes with un-
known dynamics, employs a su$ciently large number of
measurements to reconstruct the eigenmodes/eigenfunc-
tions corresponding to the slow dynamics of the closed-
loop system using Karhunen-Loève expansion.

Proof of Theorem 1. Under the controller of Eq. (21), the
closed-loop system takes the form

dg
dt

"f (g)#¸(y
m
!h

m
(g))#g(g)M[b

1r1
2b

lrl
]C(g)N~1

]Gv!
l
+
i/1

ri
+
k/0

b
ik
¸k

f
h
ci
(g)H,

dm
dt

"M[b
1r1

2b
lrl

]C(g)N~1Gv!
l
+
i/1

ri
+
k/0

b
ik
¸k
f
h
ci
(g)H,

x5 "Ax#Bm#R(x). (22)

Using the decomposition of x of Eq. (4) and applying P
s

and P
f

to the x-subsystem of Eq. (22) we obtain

dg
dt

"f (g)#¸(y
m
!h

m
(g))#g(g)M[b

1r1
2b

lrl
]C(g)N~1

]Gv!
l
+
i/1

ri
+
k/0

b
ik
¸k

f
h
ci
(g)H,

dm
dt

"M[b
1r1

2b
lrl

]C(g)N~1Gv!
l
+
i/1

ri
+
k/0

b
ik
¸k
f
h
ci
(g)H,

dx
s

dt
"A

s
x
s
#B

s
m#R

s
(x

s
, x

f
),

Lx
f

Lt
"A

f
x
f
#B

f
m#R

f
(x

s
, x

f
). (23)

Performing a linearization of the above system around
the zero solution, de"ning the variable e

o
"g!x(

s
, intro-

ducing the fast time-scale q"t/e and setting e"0, the
fast dynamics of the above system are described by the
system

de
o

dq
"Ae

o
(24)
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Fig. 1. Open-loop spatiotemporal pro"le of ;(z, t) (KdVB).

which is clearly exponentially stable. On the other
hand, the system which describes the slow dynamics
(i.e. eP0) of the system of Eq. (23) takes the
form:

dm
dt

"M[b
1r1

2b
lrl

]C(x(
s
)N~1Gv!

l
+
i/1

ri
+
k/0

b
ik
¸k

f
h
ci
(x(

s
)H,

dx
s

dt
"A

s
x
s
#B

s
m#R

s
(x

s
, x

f
),

Lx
f

Lt
"A

f
x
f
#B

f
m#R

f
(x

s
, x

f
). (25)

From assumptions 2 and 3 and the fact that b
ik

are
chosen so that the roots of the equation det(B(s))"0 are
in the open left-half of the complex plane, we have that
the linearization of the above system around the zero
solution is also exponentially stable. Therefore, there
exists (Kokotovic, Khalil & O'Reilly, 1986) a real positive
number eH such that ∀e3(0, eH], the linearization of
Eq. (23) is exponentially stable. Using Theorem 5.1.1 in
Henry (1981), we then have that there exists a real posit-
ive number k such that if DDx

0
DD
2
)k, the zero solution of

the closed-loop system of Eq. (23) (and thus of Eq. (22)) is
exponentially stable.

3. Korteweg}de Vries}Burgers equation

We consider the one-dimensional Korteweg}de
Vries}Burgers equation with distributed control

L;
Lt

"!

L3;
Lz3

#a
1

L2;
Lz2

!;
L;
Lz

#b(z)u(t) (26)

subject to the periodic boundary conditions

Lj;
Lzj

(0, t)"
Lj;
Lzj

(p, t), j"0,2, 2 (27)

and the initial condition

;(z, 0)";
0
(z), (28)

where ;(z, t) is the state, z3[0,p] is the spatial coordi-
nate, a

1
is a positive real number and b(z) is the vector of

the actuator distribution functions.
Introducing the Hilbert space H of functions de"ned

on [0,p] that satisfy the boundary conditions of Eq. (27)
and de"ning the state function x on H as

x(t)";(z, t), z3[0,p] (29)

the system of Eqs. (26)}(28) can be written in the
form of Eq. (1), where the spatial di!erential operator

takes the form

Ax"!

L3x
Lz3

#a
1

L2x
Lz2

,

x3D(A)"Gx3H([0,p]; R);
Ljx
Lzj

(0)"
Ljx

Lzj
(p),

j"0,2, 2H. (30)

The eigenvalue problem for A can be solved analytically
and its solution is of the form

j
j
"!4a

1
j2#I8j3, /

j
(z)"S

1

p
e(I2jz),

j"0,$1,2,$R, (31)

where j
j
denotes the jth eigenvalue, /

j
(z) denotes the jth

eigenfunction and I"J!1.
For the system of Eq. (26), the spatiotemporal evolu-

tion of the open-loop;(z, t) is shown in Fig. 1. For all the
simulations presented in this section, we use a

1
"0.05

and ;
0
(z)"2.5+5

j/~5
[cos(2j z)!sin(2j z)]!2.5, while

a 21st-order nonlinear ODE system obtained by apply-
ing Galerkin's method to the system of Eqs. (26)}(28) is
used in the simulation (use of higher-order approxima-
tions led to identical numerical results). Clearly, the time
required for the ;(z, t) to approach the stable zero solu-
tion is signi"cant (i.e., more than 12 time units). To
enhance the convergence rate to the steady state, we use
three control actuators and the methodology of Section
2 to design a nonlinear multivariable "nite-dimen-
sional output feedback controller. We assume that a
single measurement of ;(z, t) at z"p/2 (i.e., y

m
"

:p
0
d(z!p/2);(z, t) dz; see also Remark 5) is available. The

three controlled outputs are de"ned as

y
c1

(t)"P
p

0

2S
1

p
cos(2z);(z, t) dz,
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Fig. 2. Closed-loop spatiotemporal pro"le of ;(z, t) (KdVB).

Fig. 3. Manipulated input pro"les (KdVB).

Fig. 4. Closed-loop output pro"les (KdVB).

y
c2

(t)"P
p

0

2S
1

p
sin(2z);(z, t) dz,

y
c3

(t)"P
p

0
S

1

p
;(z, t) dz (32)

and the actuator distribution functions are taken to be

b
1
(z)"dAz!

p

2B,

b
2
(z)"dAz!

p

4B,

b
3
(z)"S

1

p
. (33)
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Fig. 5. Pro"les of DD;DD
2

for open-loop (dashed line) and closed-loop
(solid line) systems (KdVB).

The use of two point actuators and one distributed ac-
tuator ensures that :p

0
;(z, t) dz"0, for all times (e.g.,

mass conservation, see also, Russell & Zhang, 1996). For
the system of Eq. (26), Galerkin's method was used to
derive an approximate three-dimensional ODE model
which was employed for controller design. Improvement
of the accuracy of the three-dimensional model through
approximate inertial manifolds was found to be insigni-
"cant. The ODE model was used for the synthesis of
a nonlinear controller of the form of Eq. (21) which was
implemented with

b
10

"C
1.00

0.00

0.00D, b
20

"C
0.00

1.00

0.00D, b
30

"C
0.00

0.00

1.00D,
b
11

"C
0.25

0.00

0.00D, b
21

"C
0.00

0.25

0.00D, b
31

"C
0.00

0.00

0.25D,
%"C

2.00

0.00

2.00D.
Fig. 2 shows the evolution of ;(z, t), while Fig. 3

shows the manipulated input pro"les and Fig. 4 dis-
plays the closed-loop output pro"les. The nonlinear con-
troller clearly enhances the convergence rate to the
steady state; this can be also seen in Fig. 5 where the
open- and closed-loop system pro"les of DD;DD

2
are

presented.

4. Kuramoto}Sivashinsky equation

We consider the one-dimensional Kuramoto}
Sivashinsky equation with distributed control

L;
Lt

"!l
L4;
Lz4

!

L2;
Lz2

!;
L;
Lz

#b(z)u(t) (34)

subject to the periodic boundary conditions

Lj;
Lzj

(!p, t)"
Lj;
Lzj

(#p, t), j"0,2,3 (35)

and the initial condition

;(z, 0)";
0
(z), (36)

where ;(z, t) is the state of the system, z3[!p,p] is the
spatial coordinate and l is the so-called instability
parameter.

Introducing the Hilbert space H of square integrable
odd functions that satisfy the boundary conditions of
Eq. (35) and have spatial zero mean (i.e., ∀u3H,
:p
~p

u(z) dz"0) and de"ning the state function x3H as

x(t)";(z, t) ∀z3[!p,p], (37)

the system of Eqs. (34)}(36) can be written in the form of
Eq. (1), where the spatial di!erential operator takes the
form

Ax"!l
L4x

Lz4
!

L2x
Lz2

, x3D(A)

"Gx3H([!p,p] ;R);
Ljx
Lzj

(!p)"
Ljx
Lzj

(p),

j"0,2,3H. (38)

A direct computation of the solution of the eigenvalue
problem for A yields j

j
"!lj4#j2, /

j
(z)"

J(1/p)sin(jz), j"1,2,R (note that /
j
(z)"J(1/2p)

and /
j
(z)"J(1/p)cos( jz), j"1,2,R are also eigen-

functions of A, but are not considered here since we
focus on odd functions with spatial zero mean). Clearly,
a real eigenvalue of the system of Eq. (34) crosses the
imaginary axis when

l"
1

j2
, j"1,2,R. (39)

Apparently, the smallest value of l for which the
;(z, t)"0 solution of the system of Eq. (34) is about to
become unstable is l"1 (the reader may refer to Chen
and Chang (1986) for a detailed stability analysis; see also
Chang, Demekhin, Kopelevich and Ye (1997) and Chang,
Demekhin and Kopelevich (1996)). For example, when
l"0.3, the operator of Eq. (38) possesses one unstable
eigenvalue. The spatiotemporal evolution of ;(z, t) for
l"0.3 is shown in Fig. 6, for the initial condition
;

0
(z)"5.0+5

j/1
[sin( jz)] (for the simulation of Eq. (34)
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Fig. 7. Closed-loop spatiotemporal pro"le of ;(z, t) for l"0.3 and
(1, 0) controller (KS).

Fig. 8. Closed-loop spatiotemporal pro"le of ;(z, t) for l"0.3 and
(1, 2) controller (KS).

Fig. 6. Open-loop spatiotemporal pro"le of ;(z, t) for l"0.3 (KS).

a 30th-order ODE system derived using Galerkin's
method is used; higher-order approximations led to iden-
tical numerical results). It is clear that for l"0.3, the
spatially uniform steady state ;(z, t)"0 is unstable.
Therefore, we use the proposed method to design a
nonlinear "nite-dimensional controller which uses one
measurement of ;(z, t) at z"p/2 to stabilize the system
at ;(z, t)"0, for l"0.3. To achieve this control objec-
tive, the controlled output is de"ned as

y
c
(t)"P

p

~p
S

1

p
sin(z);(z, t) dz (40)

and the actuator distribution function is taken to be
b
1
(z)"d(z!p/2) (i.e., point control actuation at

z"p/2). To show the improvement in closed-loop per-
formance achieved when nonlinear Galerkin's method is
used for model reduction, standard Galerkin's method
was initially used to derive a "rst-order model which was
employed for the synthesis of a nonlinear controller using
the formula of Eq. (21). This controller is denoted as (1, 0)
where 1 denotes the order of the controller and 0 denotes
the order of the approximate inertial manifold. The
controller parameters are b

10
"1.00, b

11
"0.20 and

¸"3.80. Fig. 7 shows the evolution of ;(z, t), while
Figs. 9 and 10 show the corresponding manipulated
input and controlled output pro"les (dashed lines), re-
spectively. Note that this controller requires more than
15 time units to stabilize the system at ;(z, t)"0. To
achieve stabilization with better convergence rate to the
steady state, the proposed combination of Galerkin's
method with approximate inertial manifolds (i.e., nonlin-
ear Galerkin's method) was used to derive a "rst-order
model with m8 "2 (dimension of AIM), which was sub-
sequently employed for the construction of a nonlinear
controller. This controller is denoted as (1, 2) and is
implemented with b

10
"1.00, b

11
"0.20 and ¸"3.80.

Fig. 8 shows the evolution of ;(z, t), while Figs. 9 and 10

show the corresponding manipulated input and output
pro"les (solid lines), respectively. Note that this control-
ler stabilizes the system at ;(z, t)"0 after 3 time units,
while achieving a smooth transient pro"le. The improve-
ment on the convergence rate to the steady state, which is
achieved by using nonlinear Galerkin's method to derive
the model used for controller design, is also shown in
Fig. 11, where the closed-loop pro"les of DD;DD

2
under the

(1, 0) and (1, 2) controllers are presented.
Finally, in order to illustrate the value of pro-

posed method when multiple eigenvalues are unstable,
we also consider the stabilization of the KS equation
with l"0.1; in this case, the open-loop system posses-
ses three positive (unstable) eigenvalues. The spatio-
temporal evolution of ;(z, t) for l"0.1 and
;

0
(z)"5.0+ 5

j/1
[sin( jz)] is shown in Fig. 12. The pro-

posed method is used to design a nonlinear multivariable
"nite-dimensional controller which uses three point
measurements of ;(z, t) at z"!p/2, z"!p/4,
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Fig. 9. Manipulated input pro"les for (1, 0) controller (dashed line) and
(1, 2) (solid line) controller (KS, l"0.3).

Fig. 10. Closed-loop output pro"les for (1, 0) controller (dashed line)
and (1, 2) (solid line) controller (KS, l"0.3).

Fig. 11. Closed-loop pro"les of DD;DD
2

for (1, 0) controller (dashed line)
and (1, 2) (solid line) controller (KS, l"0.3).

z"p/3 to stabilize the system at ;(z, t)"0. To achieve
this control objective, the three controlled outputs are
de"ned as

y
c1

(t)"P
p

~p
S

1

p
sin(z);(z, t) dz,

y
c1

(t)"P
p

~p
S

1

p
sin(2z);(z, t) dz,

y
c1

(t)"P
p

~p
S

1

p
sin(3z);(z, t) dz (41)

and three point actuators are used with the following
actuator distribution functions: b

1
(z)"d(z#p/3),

b
2
(z)"d(z!p/4) and b

3
(z)"d(z!p/2) (i.e., point con-

trol actuation is used at z"!p/3, z"p/4 and z"p/2,
respectively). Two di!erent controllers are employed for
the stabilization of the system to the spatially uniform
steady state ;(z, t)"0.0. Initially, a nonlinear output
feedback controller was designed on the basis of an ODE
model which was derived through standard Galerkin's
method. It was found that the lowest order nonlinear
controller that achieves stabilization of the zero solution
with a reasonable convergence rate is nine (a controller of
order eight achieves stabilization with a very slow con-
vergence rate, and controllers of order seven and lower
cannot stabilize the closed-loop system, for the chosen
initial conditions, controller parameters and l"0.1).
Based on this ninth-order model, a nonlinear controller
was synthesized using the formula of Eq. (2.1) and
is denoted as (9, 0). The controller parameters are as
follows:

b
10

"

1.0

0.0

0.0

0.0

F

0.0

, b
20

"

0.0

1.0

0.0

0.0

F

0.0

, b
30

"

0.0

0.0

1.0

0.0

F

0.0

,

b
11

"

0.5

0.0

0.0

0.0

F

0.0

, b
21

"

0.0

0.5

0.0

0.0

F

0.0

, b
31

"

0.0

0.0

0.5

0.0

F

0.0

,
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Fig. 12. Open-loop spatiotemporal pro"le of ;(z, t) for l"0.1 (KS).

Fig. 13. Closed-loop spatiotemporal pro"le of u(z, t) for l"0.1 and
(9, 0) controller (KS).

Fig. 14. Closed-loop spatiotemporal pro"le of u(z, t) for l"0.1 and
(4, 6) controller (KS).

%"

13.3 !21.8 4.89

18.8 !30.8 16.7

21.7 !50.3 19.3

0.00 0.00 0.00

F F F

0.00 0.00 0.00

.

Figs. 13, 15 and 16 show the evolution of ;(z, t), the
manipulated input pro"les (dashed lines) and the corre-
sponding controlled output pro"les (dashed lines).
Clearly, this ninth-order controller achieves stabilization
of the closed-loop system after 12 time units. Sub-
sequently, we employ the proposed approach to design
a stabilizing controller. Using a combination of Galer-
kin's method with approximate inertial manifolds (i.e.,
nonlinear Galerkin's method), we derived a fourth-order
model with m8 "6 (dimension of AIM), which was sub-
sequently employed for the construction of a nonlinear
controller (denoted as (4, 6)) (Fig. 15). This controller was
implemented with the following parameters:

b
10

"

1.0

0.0

0.0

0.0

, b
20

"

0.0

1.0

0.0

0.0

, b
30

"

0.0

0.0

1.0

0.0

,

b
11

"

0.5

0.0

0.0

0.0

, b
21

"

0.0

0.5

0.0

0.0

, b
31

"

0.0

0.0

0.5

0.0

,

%"

13.3 !21.8 4.89

18.8 !30.8 16.7

21.7 !50.3 19.3

0.00 0.00 0.00

.

Figs. 14, 15 and 16 show the evolution of ;(z, t), the
manipulated input and controlled output pro"les, respec-
tively. Clearly, this controller stabilizes the closed-loop
system at ;(z, t)"0 after 4 time units, while achieving
a smooth transient pro"le. Finally, Fig. 17 shows the
closed-loop pro"les of the `energya of the system DD;DD

2
under the (9, 0) and (4, 6) controllers. We can clearly see
that the nonlinear controller based on the model ob-
tained by nonlinear Galerkin's method outperforms the
nonlinear controller based on the model obtained by
standard Galerkin's method.

Remark 7. We note that in the case of point actuation
(sensing) which in#uences (measures) the system at z

0
, the

function d(z!z
0
) is assumed to have the "nite value 1/2e

in the interval [z
0
!e, z

0
#e] (where e is a small positive
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Fig. 15. Manipulated input pro"les for (9, 0) controller (dashed line)
and (4, 6) (solid line) controller (KS, l"0.1).

Fig. 16. Closed-loop output pro"les for (9, 0) controller (dashed line)
and (4, 6) (solid line) controller (KS, l"0.1).
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Fig. 17. Closed-loop pro"les of DD;DD
2

for (9, 0) controller (dashed line)
and (4, 6) (solid line) controller (KS, l"0.1).

real number) and be zero elsewhere in the domain of
de"nition of z.

Remark 8. We note that even though both the Ko-
rteweg}de Vries}Burgers equation and the
Kuramoto}Sivashinsky equation considered in the
above simulation studies are subjected to periodic
boundary conditions, the proposed approach for nonlin-
ear controller design can be also utilized when other sets
of boundary conditions are used, provided that the re-
sulting in"nite-dimensional system is dissipative and
contains a "nite number of unstable eigenvalues. In addi-
tion, the proposed approach can be used to control PDE
systems that include a "nite number of unstable eigen-
values and a continuum spectrum of stable eigenvalues
like di!usion-reaction processes de"ned in in"nitely large
domains (see, for example, Marquardt, 1990). Finally, it is
important to note that it is not possible to stabilize an
in"nite-dimensional system which includes in"nitely many
unstable eigenvalues (i.e., continuum of unstable eigen-
values) with a "nite-number of control actuators and
measurements sensors (i.e., the setup considered in this
work) no matter what kind of control algorithm is
employed.

5. Conclusions

In this paper, we synthesized nonlinear low-order out-
put feedback controllers for the KdVB and KS equations
that enhance convergence rate and achieve stabilization to
spatially uniform steady-states, respectively. The perfor-
mance of the controllers was successfully tested through
numerical simulations.
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