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Abstract

This article presents computationally e1cient methods for the solution of dynamic constraint optimization problems arising in the
context of spatially distributed processes governed by highly dissipative nonlinear partial di3erential equations (PDEs). The methods are
based on spatial discretization using the method of weighted residuals with spatially global basis functions (i.e., functions that cover the
entire domain of de*nition of the process and satisfy the boundary conditions). More speci*cally, we perform spatial discretization of
the optimization problems using the method of weighted residuals with analytical or empirical (obtained via Karhunen–Lo8eve expansion)
eigenfunctions as basis functions, and combination of the method of weighted residuals with approximate inertial manifolds. The proposed
methods account for the fact that the dominant dynamics of highly dissipative PDE systems are low dimensional in nature and lead to
approximate optimization problems that are of signi*cantly lower order compared to the ones obtained from spatial discretization using
*nite-di3erence and *nite-element techniques, and thus, they can be solved with signi*cantly smaller computational demand. The resulting
dynamic nonlinear programs include equality constraints that constitute a low-order system of coupled ordinary di3erential equations
and algebraic equations, which can then be solved with combination of standard temporal discretization and nonlinear programming
techniques. We employ backward *nite di3erences (implicit Euler) to perform temporal discretization and solve the nonlinear programs
resulting from temporal and spatial discretization using reduced gradient techniques (MINOS). We use two representative examples of
dissipative PDEs, a di3usion-reaction process with constant and spatially varying coe1cients, and the Kuramoto–Sivashinsky equation, a
model that describes incipient instabilities in a variety of physical and chemical systems, to demonstrate the implementation and evaluate
the e3ectiveness of the proposed optimization algorithms.
? 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Many important processes in chemical engineering in-
volve coupling of complex chemical reactions with sig-
ni*cant mass and energy transport mechanisms. Exam-
ples include plasma-enhanced chemical vapor deposition
and etching, as well as, metal organic vapor phase epi-
taxy (MOVPE), which are used in semiconductor man-
ufacturing. Models for transport-reaction processes can
be derived from dynamic conservation equations and are
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described by highly dissipative (typically parabolic) partial
di3erential equation (PDE) systems. The design of such
processes is usually addressed assuming steady-state oper-
ating conditions. However, there are instances where more
e1cient process operation can be accomplished through
time-varying operation. Examples include the horizontal
MOVPE process where the reactants’ concentration at the
inEow to the reactor is varied with time to grow the desired
heterostructures on the wafer. In the case of the MOVPE,
the optimal process design problem may be formulated as
a dynamic nonlinear program whose objective is to *nd
the optimal concentration time pro*les of the reactants at
the inEow that maximize the deposition rate on the wafer
subject to equality constraints that include mass, energy
and momentum conservation equations, and inequality
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constraints for the microstructure and spatial uniformity of
the deposited structure.
The standard approach for the solution of dynamic

nonlinear programs (NLPs) with PDE constraints in-
volves the discretization of the spatial and temporal do-
main using *nite-element or *nite-di3erence techniques
and subsequently the solution of the resulting large-scale
nonlinear program using optimization techniques for
sparse NLPs, such as reduced gradient and reduced suc-
cessive quadratic programming methods (see, for ex-
ample, Vasantharajan, Viswanathan, & Biegler, 1990;
Manousiouthakis & Sourlas, 1992; Floudas & Panos, 1992;
Biegler, Nocedal, & Schmid, 1995). This approach has
been successfully used to solve several optimization prob-
lems arising in the context of various distributed parameter
system applications (see, for example, Borggaard & Burns,
1997; Turgeon, Pelletier, & Borggaard, 2000). One poten-
tial drawback of this approach is that the nonlinear program
resulting from the temporal and spatial discretization may
be of very high-order (in order to compute the optimal solu-
tion with the desired accuracy), and thus, it may not be very
e1cient computationally. The main reason for this is that
a brute force discretization with *nite di3erences/elements
does not account for the inherent characteristics of the PDE
equality constraints.
Highly dissipative PDE systems, arising in the context

of transport-reaction processes and of several Euid dynamic
systems, are characterized by dominant dynamics which
are low-dimensional in nature and can be captured by
low-dimensional ordinary di3erential equation models. One
approach to solve optimization problems with dissipative
PDE equality constraints, while accounting for the inherent
characteristics of the PDEs in the discretization process,
is to use Galerkin’s method with the eigenfunctions of the
linear spatial di3erential operator as basis functions for the
discretization. This approach is motivated from the fact that
the main feature of highly dissipative PDEs is that the dom-
inant structure of their solutions is usually characterized
by a *nite (typically small) number of degrees of freedom
(Temam, 1988) (for example, in the case of parabolic PDE
systems with linear spatial di3erential operators, this follows
from the fact that the eigenspectrum of the spatial di3er-
ential operator can be partitioned into a *nite-dimensional
slow one and an in*nite-dimensional stable fast comple-
ment, Christo*des, 2001). Even though, this approach may
signi*cantly reduce the dimension of the optimization prob-
lem which results from the spatial discretization for few
speci*c types of di3erential operators for which the eigen-
function expansions converge quickly (note that for general
Sturm–Liouville operators such eigenfunction expansions
converge very slowly), it may not be very e1cient for prob-
lems that involve nonlinear spatial di3erential operators
(e.g., nonlinear dependence of the di3usion coe1cient and
thermal conductivity on temperature) and spatially varying
coe1cients. The reason is that the eigenvalue problems of
nonlinear spatial di3erential operators cannot be, in general,

solved analytically, and thus it is di1cult to a priori (without
having any information about the solution of the system)
choose an optimal (in the sense that will lead to an accurate
and low-order approximation) basis to expand the solution
of the PDE system. An approximate way to address this
problem (Ray, 1981) is to linearize the nonlinear spatial dif-
ferential operator around a steady state and address the op-
timization problem on the basis of the resulting quasi-linear
system. However, this approach is only valid in a small
neighborhood of the steady state where the linearization
takes place.
To overcome this limitation, we recently employed

(Bendersky & Christo*des, 1999, 2000) an alternative
approach to the solution of steady-state optimization pro-
grams arising in the context of transport-reaction processes
(described by parabolic PDEs) which is based on spatial
discretization using the method of weighted residuals with
empirical eigenfunctions as basis functions. The empirical
eigenfunctions are constructed by applying Karhunen–
Lo8eve (K–L) expansion (Lumley, 1981; Sirovich, 1987a, b)
(also known as proper orthogonal decomposition, method
of empirical eigenfunctions and principal component anal-
ysis) to process solution data. This approach to spatial
discretization takes into consideration the presence of
dominant spatial patterns in the solution of the parabolic
PDEs and leads to reduced-order NLPs that can be solved
signi*cantly faster compared to NLPs resulting from spa-
tial discretization using the *nite-di3erence method (see
Bendersky & Christo*des, 2000, for detailed comparisons).
Order reduction of PDE systems, based on data-based
construction of the basis functions, has been extensively
used in recent years in the context of feedback control of
parabolic PDE systems (Shvartsman & Kevrekidis, 1998;
Mahadevan & Hoo, 2000; Baker & Christo*des, 2000). In
King and Sachs (2000), an approach, based on semi-de*nite
programming, is used to construct reduced-order approxi-
mations of controllers for parabolic PDEs. The reader may
also refer to (Marquardt, 2002) for an excellent review of
results in the broad area of order reduction of large-scale
dynamic systems.
In this work, we present computationally e1cient methods

for the solution of dynamic constraint optimization problems
arising in the context of spatially distributed processes gov-
erned by highly dissipative nonlinear PDEs. Themethods are
based on spatial discretization using the method of weighted
residuals with spatially global basis functions (i.e., functions
that cover the entire domain of de*nition of the process
and satisfy the boundary conditions). More speci*cally, we
perform spatial discretization of the optimization problems
using the method of weighted residuals with analytical or
empirical (obtained via Karhunen–Lo8eve expansion) eigen-
functions as basis functions, and combination of the method
of weighted residuals with approximate inertial manifolds.
In the case of performing order reduction through spatial
discretization using empirical eigenfunctions as basis func-
tions, we initially form an ensemble of “snapshots” of the
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solutions of the PDE system for di3erent initial condi-
tions and input pro*les. We then apply Karhunen–Lo8eve
expansion to this ensemble to derive the set of empiri-
cal eigenfunctions, which are subsequently used for or-
der reduction. In the case of performing order reduction
through combination of the method of weighted residuals
with approximate inertial manifolds, we take advantage of
the fact that the dynamics of the higher-order modes in
highly dissipative PDEs decay very fast to obtain low-order
approximate nonlinear programs. Both spatial discretiza-
tion approaches account for the fact that the dominant
dynamics of highly dissipative PDE systems are low di-
mensional in nature and lead to approximate dynamic
nonlinear programs whose equality constraints constitute
a low-order system of coupled ordinary di3erential equa-
tions and algebraic equations (DAEs) which can then be
solved with combination of standard temporal discretization
and nonlinear programming techniques. We use backward
*nite-di3erences to perform temporal discretization (im-
plicit Euler) and solve the *nite-dimensional nonlinear
programs resulting from temporal and spatial discretization
using MINOS.
Two representative examples of dissipative PDEs, a

di3usion-reaction process with nonlinearities and spa-
tially varying coe1cients, and the Kuramoto–Sivashinsky
equation, a model that describes incipient instabilities in
a variety of physical and chemical systems, are used to
demonstrate the implementation and evaluate the e3ec-
tiveness of the proposed optimization algorithms. The
proposed methods are used to determine the inputs needed
to optimize meaningful performance indices that in-
volve penalty on the PDE process response and inputs,
in the presence of constraints in the magnitude of the
inputs.

2. Formulation of the optimization problem

We focus on spatially distributed processes modeled by
highly dissipative PDE systems with the following state–
space description:

@x
@t
=A(x) + f(t; x; d) (1)

subject to the mixed-type boundary conditions:

q
(
x;
dx
d�

; : : : ;
dno−1x
d�no−1

)
= 0 on � (2)

and the initial condition

x(z; 0) = x0(z): (3)

In the above PDE system, x(z; t)∈Rn denotes the vector
of state variables, t ∈ [0; tf] is the time (tf is the terminal
time), z = [z1; z2; z3]∈� ⊂ R3 is the vector of spatial co-
ordinates, � is the domain of de*nition of the process and

� its boundary. A(x) is a dissipative, possibly nonlinear,
spatial di3erential operator which includes higher-order
spatial derivatives, f(t; x; d) is a nonlinear, possibly time
varying, vector function which is assumed to be su1ciently
smooth with respect to its arguments, d(t)∈Rp is the vector
of design variables which are assumed to be piecewise con-
tinuous functions of time, q(x; dx=d�; : : : ; dno−1x=d�no−1)
is a nonlinear vector function which is assumed to be suf-
*ciently smooth (no is the order of the PDE of Eq. (1)),
dx=d�|� denotes the derivative in the direction perpendicu-
lar to the boundary and x0(z) is a smooth vector function of
z. Since we are dealing with dissipative PDE systems that
model spatially distributed processes, we assume that for
a given set of initial and boundary conditions and for each
piecewise continuous vector function, d(t)∈Rp, the sys-
tem of Eq. (1) has a unique solution. The mathematically
delicate questions of existence and uniqueness of solutions
for Eq. (1) are beyond the scope of this work. Throughout
the paper, we will make use of the inner product and norm
in L2[�] (where L2[�] is the space of square integrable
functions which are de*ned in �), which are de*ned,
respectively, as

(�1; �2) =
∫
�

�1(z)�2(z) dz; ‖�1‖2 = (�1; �1)1=2; (4)

where �1; �2 are two elements of L2[�].
Systems of the form of Eq. (1) can model the vast major-

ity of dynamic spatially distributed processes including both
transport-reaction processes and several classes of dissipa-
tive Euid dynamic systems (see application examples in Sec-
tions 3 and 5 below). The nonlinear structure of the spatial
di3erential operator, A(x), allows accounting for explicit
dependence of di3usivities and thermal conductivities on
temperature and concentration in certain transport-reaction
processes, while the nonlinear term f(t; x; d) allows mod-
eling complex reaction mechanisms. Furthermore, the as-
sumption that the design variables enter the system through
the term f(t; x; d) is usually satis*ed; for example, when
d(t) models inputs used to inEuence the dynamic behavior
of the PDE system (see the examples in Sections 3 and 5
below).
A general optimization problem for the system of Eqs.

(1)–(3) can be formulated as follows:

min
∫ tf

0

∫
�
G(x(z; t); d(t)) dz dt

s:t: −@x
@t
+A(x) + f(t; x; d) = 0;

x(z; 0) = x0(z);

q
(
x;
dx
d�

; : : : ;
dno−1x
d�no−1

)
= 0 on �;

g(x; d)6 0; ∀z ∈�; t ∈ [0; tf];

(5)
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where
∫ tf
0

∫
� G(x; d) dz dt is the objective function and

g(x; d) is the vector of inequality constraints which may
include bounds on the state and design variables. Both
G(x; d) and g(x; d) are assumed to be su1ciently smooth
functions of their arguments. Since the focus of this work is
on the development of computationally e1cient algorithms
for solving dynamic nonlinear programs of the form of
Eq. (5) through advanced spatial discretization techniques,
we will make no assumption of convexity of the problem
functions and of the feasible region, and therefore, we
will focus throughout the manuscript on the computation
of a local optimum. Global optimization techniques (e.g.,
(Floudas & Panos, 1992; Manousiouthakis & Sourlas,
1992)) can be applied on the *nite-dimensional programs
that result from the spatio-temporal discretization of the
nonlinear program of Eq. (5) but such a study is be-
yond the scope of the present work. We note that the
proposed approaches for computing a locally optimal so-
lution of the program of Eq. (5) can be also applied to
nonlinear programs, that include coupled nonlinear dissi-
pative PDEs and nonlinear algebraic equality constraints,
as well as explicit dependence of the functions G;f; g
on the temporal and spatial coordinates, t; z. Finally, we
note that the assumptions that we impose on the functions
involved in the cost and the constraints are not su1-
cient to ensure the existence of a smooth d(t); the study
of this question is outside of the scope of the present
manuscript.
Owing to the presence of the nonlinear PDE equality

constraint of Eq. (1), the optimization problem of Eq. (5)
cannot be solved directly. As a result, spatial and tempo-
ral discretization schemes should be employed to reduce
the PDE system of Eq. (1) into a set of algebraic equa-
tions. The standard approach to address this problem is to
utilize *nite di3erences or *nite elements to perform the
spatial discretization, then discretize the temporal domain
using collocation or *nite di3erence techniques, and *nally
solve the resulting *nite-dimensional nonlinear program
using optimization techniques for sparse NLPs. The main
disadvantage of this approach is that the number of non-
linear algebraic constraints resulting from these discretiza-
tions, which yields an acceptable approximation, may be
very large, thereby leading to a computationally expensive
optimization problem.
Motivated by this, we develop computationally e1cient

methods for the solution of the optimization problem of
Eq. (5). We will begin with the development of an op-
timization method for solving the nonlinear program of
Eq. (5) using an o3-the-shelf set of global basis functions.
We will continue with the data-based construction and
use of empirical eigenfunctions as basis functions, and the
combination of global basis functions with the concept of
approximate inertial manifolds. We will use several exam-
ples of dissipative PDEs to demonstrate the implementation
and evaluate the e3ectiveness of the proposed optimization
algorithms.

3. Solution of optimization problem through spatial
discretization with global basis functions

3.1. Computation of approximate nonlinear programs

In this subsection, we derive low-order approximations
of the in*nite-dimensional nonlinear program of Eq. (5) by
using the method of weighted residuals. The central idea of
the method of weighted residuals (see, Finlayson, 1980 for a
comprehensive review of this method) is to approximate the
exact solution of x(z; t) by an in*nite series of orthogonal
basis functions (that form a complete set) de*ned on � with
time-varying coe1cients, substitute the series expansion into
Eq. (1) to form the residual, and then force the residual
to be orthogonal to a complete set of weighting functions
(i.e., the inner product of the residual with a complete set of
weighting functions in L2[�] is set equal to zero) to compute
a set of equations whose unknowns are the coe1cients of
the series expansion of the solution.
We present an application of this method to the optimiza-

tion program of Eq. (5) for the case of n = 1 (to simplify
the notation). We initially expand the solution x(z; t) in an
in*nite series in terms of a complete set of basis functions
�k(z) as follows:

x(z; t) =
∞∑
k=1

ak(t)�k(z); (6)

where ak(t) are time-varying coe1cients. Substituting the
expansion of Eq. (6) into Eq. (5), multiplying the PDE
and the inequality constraints with the weighting functions,
 �(z), and integrating over the entire spatial domain (i.e.,
taking inner product in L2[�] with the weighting functions),
the following in*nite-dimensional dynamic nonlinear pro-
gram is obtained

min
∫ tf

0

∫
�

G

( ∞∑
k=1

ak(t)�k(z); d

)
dz dt

s:t: −
∞∑
k=1

ȧk

(∫
�

 �(z)�k(z) dz
)

+
∫
�

 �(z)A

( ∞∑
k=1

ak(t)�k(z)

)
dz

+
∫
�

 �(z)f

(
t;

∞∑
k=1

ak(t)�k(z); d

)
dz = 0;

V = 1; : : : ;∞;∫
�

 �(z)g

( ∞∑
k=1

ak(t)�k(z); d

)
dz6 0;

V = 1; : : : ;∞:

(7)

Truncating the series expansion of x(z; t) up to order
N and keeping the *rst N equations (i.e. � = 1; : : : ; N ),
the in*nite-dimensional program of Eq. (7) reduces to
the following one with ODE equality constraints, where
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the optimization parameters are the design variables d(t)
and the time varying coe1cients akN (t):

min
∫ tf

0

∫
�
G

(
N∑

k=1

akN (t)�k(z); d

)
dz dt

s:t: −
N∑

k=1

ȧkN

(∫
�
 �(z)�k(z) dz

)

+
∫
�

 �(z)A

(
N∑

k=1

akN (t)�k(z)

)
dz

+
∫
�

 �(z)f

(
t;

N∑
k=1

akN (t)�k(z); d

)
dz = 0;

V = 1; : : : ; N;∫
�

 �(z)g

(
N∑

k=1

akN�k(z); d

)
dz6 0;

V = 1; : : : ; N:

(8)

where akN (t) is the approximation of ak(t) obtained by
an N th-order truncation. From Eq. (8), it is clear that the
form of the algebraic equality and inequality depends on
the choice of the weighting functions, as well as on N . The
weighting functions determine the type of weighted residual
method being used (see Remark 1).
Owing to the smoothness of the functions G(x; d);A(x);

f(t; x; d); g(x; d) and the completeness of the set of basis
functions, �k(z), the nonlinear program of Eq. (8) is a
well-de*ned approximation of the in*nite-dimensional pro-
gram Eq. (5); this is important for computing an accurate
solution of the nonlinear program of Eq. (8) based on a
low-dimensional nonlinear program (see algorithm in the
next section) and is veri*ed through numerical simulations
in the three application studies considered in this work. The
detailed mathematical study of the issue of convergence of
the solution of the approximate nonlinear program of Eq. (8)
to the one of the in*nite-dimensional program of Eq. (5) as
N → ∞ requires constraining the type of nonlinearities con-
sidered and is outside of the scope of this work; the reader
may refer, for example, to Temam (1988), Miletta (1994)
and Christo*des (2001) for various results on approxima-
tion of in*nite-dimensional systems with *nite-dimensional
systems.

Remark 1. When the number of basis functions, �k(z),
required to obtain a good approximation (measured in a
desired norm) of the solution of the system of partial
di3erential equations (equality constraints), is small, the
weighting functions are usually chosen to be identical to
the basis functions, in which case the method of weighted
residuals reduces to Galerkin’s method.

Remark 2. Referring to the order reduction of the PDE sys-
tem, it is important to note that it accounts for both the dif-
fusion and convection phenomena (modeled by the nonlin-
ear spatial di3erential operator) and the reaction phenomena

(modeled by the nonlinear term f(t; x; d)). Therefore, the
resulting *nite-dimensional model not only approximates
the di3usion and convection phenomena but it also approx-
imates the reaction phenomena.

Remark 3. We note that an alternative approach to per-
form spatial discretization of the in*nite dimensional pro-
gram of Eq. (5) is to initially apply to this program *-
nite di3erences/*nite elements to derive a very high-order
*nite-dimensional nonlinear program, and then employ
reduced-basis methods (Rheinboldt, 1993; Rabier &
Rheinboldt, 1995) or dual variable methods (Hall,
Porsching, & Mesina, 1992; Chou & Porsching, 1998) to
e1ciently solve the resulting approximate program. Fur-
thermore, modi*ed *nite di3erence schemes (based, for
example, on Pade’ approximants) have been also used to
e1ciently solve third- and fourth-order boundary value
problems (Al-Said, Noor, & Rassias, 1998; Al-Said &
Noor, 1998).

3.2. Temporal discretization

In this section, we perform temporal discretization of
the dynamic nonlinear program of Eq. (8) using backward
*nite-di3erences (implicit Euler). To simplify the notation,
we rewrite the program of Eq. (8) in the following form:

min
∫ tf

0
G(aN ; d) dt

s:t: ȧN = f̃(aN ; d);

g̃(aN ; d)6 0;

(9)

where aN (t) = [a1N · · · akN ]T is the vector of the
time-varying coe1cients of the basis eigenfunctions and the
explicit form of f̃ and g̃ can be directly derived from Eq.
(8). To use backward *nite di3erences, we *rst discretize
the temporal domain into mt intervals and de*ne the tem-
poral discretization step as dt= tf=mt . The vector functions
aN (t) and d(t) are then expressed as a series of the form

aN (t) =
mt∑
i=0

aN; i+1[H (t − i dt)− H ((i + 1) dt − t)];

d(t) =
mt∑
i=0

di+1[H (t − i dt)− H ((i + 1) dt − t)]; (10)

where H (·) is the standard Heaviside function, and the time
derivative at each discretization point is approximated by
ȧN (ti) ≈ dt−1(aN; i − aN; i−1). Applying the above approx-
imations to the dynamic nonlinear program of Eq. (9), it
can be then reduced into an algebraic nonlinear program of
dimension (N + p) × mt , which has the following general
form:
min F(x)

s:t: h(x) = 0;

g(x)6 0;

(11)
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where the explicit form of the functions F(x); h(x); g(x) is
omitted for brevity.

Remark 4. Referring to the temporal discretization, we note
that even though we used backward *nite di3erences for the
temporal discretization of the dynamic nonlinear program
of Eq. (9) (in order to improve the numerical stability of
the temporal integration), forward *nite di3erences, as well
as other temporal discretization techniques like orthogonal
collocation, can be used in conjunction with the proposed
spatial discretization schemes in a straightforward manner.

3.3. Computation of optimal solution

The objective of this section is to provide a computa-
tionally e1cient procedure for the computation of an accu-
rate optimal solution of the in*nite-dimensional nonlinear
program of Eq. (1). The central idea is to use standard re-
duced gradients optimization algorithms such as MINOS to
solve various *nite dimensional approximate programs ob-
tained through application of the method of weighted resid-
uals and temporal discretization using *nite di3erences un-
til the optimal solution is computed with the desired ac-
curacy. The choice to employ reduced gradients optimiza-
tion algorithms such as MINOS is motivated by the fact
that the temporal discretization with *nite-di3erences leads
to sparse nonlinear programs for which MINOS is known
to be more e1cient compared to successive quadratic pro-
gramming. A brief description of the MINOS algorithm is
provided for completeness in Remark 5 below (see also
(Biegler, Grossman, & Westerberg, 1997; Bertsekas, 1995)
and the references therein for details and analysis of the al-
gorithm). The validity of the optimal solution computed by
MINOS is checked by establishing convergence to the op-
timum as N increases and dt decreases. We formulate the
procedure used for the computation of the optimal solution
of the in*nite-dimensional program Eq. (5) in the form of
the following algorithm:

• Step 1: Compute an initial guess for N , say N̂ , based
on the magnitude of the eigenvalues corresponding to the
eigenfunctions, and *x a dt for which a numerically stable
solution of the ODE system is guaranteed.

• Step 2: Use the spatial and temporal discretization pro-
cedures of Sections 3.1 and 3.2, respectively, to derive a
*nite-dimensional program of the form of Eq. (11).

• Step 3: Solve the resulting *nite-dimensional program
using MINOS to compute an optimal solution.

• Step 4: Derive and solve a new *nite-dimensional pro-
gram of the form of Eq. (11) by performing spatial dis-
cretization with N = N̂ + 1 (dt has to be appropriately
reduced).

• Step 5: Compare the two optimal solutions for N = N̂
and N = N̂ +1. If they are close (according to the desired
accuracy), then stop; a convergent optimal solution has
been found. If not, then go back to step 2 and perform

spatial discretization with N = N̂ +2 (again, dt has to be
appropriately reduced).

The structure of the above algorithm is motivated by the
fact that the discrepancy between the in*nite-dimensional
program and its *nite-dimensional approximation of Eq. (8)
decreases, as the number of basis functions, N , used in the
expansion of Eq. (6) increases (at least, up to the point where
round-o3 errors are not important). This is a consequence of
the hierarchy of the eigenfunctions. On the other hand, the
accuracy of the above algorithm improves as N increases
and dt decreases.

Remark 5. The computation of an optimal solution of the
nonlinear program of Eq. (11) with MINOS involves the
solution of a sequence of subproblems with linearized con-
straints by using variable elimination. Speci*cally, the pro-
gram of Eq. (11) is reformulated through the introduction
of slack variables to convert the inequalities to equalities to
obtain

min F(x)

s:t: r(x) = 0:
(12)

Linear approximations of the constraints are then considered
with an augmented Lagrangian for the objective function:

min VF(x) = F(x) + (!k)T[r(x)− r(xk)]

s:t: J (xk)x = b;
(13)

where !k is the vector of Lagrange multipliers, and J (xk)
is the Jacobian of r(x) evaluated at the point xk . The above
problem is solved with the reduced gradient method (see,
Biegler et al., 1997, for details).

Remark 6. We note that even though, for simplicity, we
chose to use MINOS for solving the *nite-dimensional non-
linear programs obtained from the spatial and temporal dis-
cretizations, other local (e.g., successive quadratic program-
ming, etc.) as well as global optimization algorithms (e.g.,
Manousiouthakis & Sourlas, 1992; Floudas & Panos, 1992)
can be used to solve the *nite-dimensional programs.

Remark 7. It is important to note that while in this
work we evaluate convergence of the optimization algo-
rithms by checking the convergence of the value function
as well as of the optimal input pro*les (see simulation
studies), one can use alternative approaches, based on
derivatives of the value function within the framework
of trust-region optimization, to establish convergence. In
this regard, the recent works (Arian, Fahl, & Sachs, 2000;
Kelley & Sachs, 1999) provide systematic approaches,
based on trust-region optimization concepts, for studying
global convergence of low-order approximate programs
of varying accuracy to high-order optimization prob-
lems. The reader may also refer to Dennis, El-Alem, and
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Maciel (1997), Alexandrov, Dennis, Lewis, and Torczon
(1998), Dennis, El-Alem, and Williamson (1999), and
Ulbrich, Ulbrich, and Heinkenschloss (1999) for additional
results on convergence of trust-region-based optimization
algorithms. In the context of using gradient-based conver-
gence criteria, it is important to note that it is possible that
higher-order approximations may be needed to obtain a
convergent solution compared to the order of ones required
to obtain convergence with the criteria that we employ in
this work.

Remark 8. The use of global basis functions for the solu-
tion of distributed optimization lends itself nicely to proce-
dures of sequential optimization, where the solution of an
N th-order approximation of the PDE constraints can be di-
rectly used as an initial guess for the (N +1)-order approx-
imation of the PDE constraints.

3.4. Application to a di5usion-reaction process

In this subsection, we apply the optimization algorithm
to a typical di3usion-reaction process with nonlinearities.
Speci*cally, we consider a catalytic rod where an elemen-
tary exothermic reaction of the form A → B takes place.
The temperature of the rod is adjusted by using one actua-
tor located along the length of the rod. Assuming excess of
species A, the spatiotemporal evolution of the dimension-
less rod temperature is described by the following parabolic
PDE:
@x
@t
=

@2x
@z2

+ $T
(
e−&=(1+x) − e−&)+ $U (b(z)u(t)− x)

(14)

subject to the boundary and initial conditions

x(0; t) = 0; x(); t) = 0; x(z; 0) = x0(z); (15)

where x denotes the dimensionless rod temperature, $T de-
notes the dimensionless heat of reaction, & denotes the di-
mensionless activation energy, $U denotes a dimensionless
heat transfer coe1cient, u(t) denotes the magnitude of the
actuation, and b(z) determines the way in which u(t) is dis-
tributed along the length of the spatial domain. The nominal
values of the process parameters are: $T =8:0, $U =2:0, and
& = 2:0. An accurate high-order discretization of the PDE
of Eq. (14) was constructed using Galerkin’s method with
the following set of basis functions, derived by solving the
eigenvalue–eigenfunction problem of the spatial di3erential
operator:

�j(z) =

√
2
)
sin(j)z); j = 1; : : : ;∞: (16)

It was found that a 30th-order Galerkin truncation of the
system of Eq. (14) using the above basis functions leads to
an accurate solution of the PDE (it was veri*ed that fur-
ther increase in the order of the Galerkin model as well
as reduction in the temporal discretization step provide no
substantial improvement on the accuracy of the simulation
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Fig. 1. Pro*le of the state of the PDE of Eq. (16) with u(t) = 0.

results). Fig. 1 shows the evolution of the state of the PDE
for u(t) = 0 starting from initial conditions which are very
close to the steady state x(z; t) = 0. We observe that the
system moves to another steady state which is characterized
by a maximum at z = 0:5. This implies that the steady state
x(z; t)=0 is an unstable one, and thus, the system moves to
a stable spatially non uniform steady state.
The operating objective of the process is to use the

actuator to drive the state of the process close to the
spatially-uniform steady state, x(z; t) = 0. To this end, we
formulate the optimization problem as the one of comput-
ing an optimal input trajectory u(t) for the control actuator
such that a meaningful cost that includes penalty on the
process response and the control action is minimized in the
presence of constraints in the magnitude of the actuation.
Mathematically, this optimization problem is formulated as
follows:

min J =
∫ tf

0

∫ 1

0
(wsx2 + wuu2) dz dt

s:t:
@x
@t
=

@2x
@z2

+ $T (e−&=(1+x) − e−&)

+ $U (b(z)u(t)− x);

x(0; t) = 0; x(); t) = 0; x(z; 0) = x0(z);

|u(t)|6M:

The nominal values of the process and optimization param-
eters were taken as: x0(z) = 0:5, M = 0:6, b(z) = H (z −
0:3))−H (z− 0:7)), where H denotes the standard Heavi-
side function, ws = 100 and wu = 20.
We computed an optimal solution to the above problem

by performing spatial discretization using Galerkin’s method
with the eigenfunctions of Eq. (16) as basis functions and
temporal discretization using implicit Euler to ensure nu-
merical stability of the temporal integration. The resulting
nonlinear program was solved with MINOS. Optimal solu-
tion pro*les for u(t) were computed for di3erent numbers
of basis functions (in all these cases the step of the tem-
poral discretization was appropriately adjusted to guarantee
numerical stability of the temporal integration) to obtain a
convergent solution pro*le. Fig. 2 shows the pro*les of u(t)
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Fig. 2. Pro*les of u(t) for N = 2; 4; 6 for nominal values of the process
parameters—convergence to an optimal u(t).

for di3erent number of global basis functions, N = 2; 4; 6,
which clearly converge to an optimal pro*le, for N=6; note
that the resulting u(t) satis*es the constraint, |u(t)|6 0:6,
for all times. Fig. 3 shows the pro*le of the state x(z; t)
for N = 6; it is clear that the optimal input pro*le helps
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Fig. 3. Pro*le of the state of the PDE of Eq. (16) for optimal u(t) (N = 6).

Table 1
Optimization results for di3usion-reaction process with constant parameters

Number of basis functions Process parameters Design variables Objective Time Fig.

1 Nominal 1 22.453986 418.7 2
2 Nominal 1 22.455112 557.2 2
3 Nominal 1 23.630877 705.0 2
4 Nominal 1 23.630829 919.9 2
6 Nominal 1 23.687086 1506.0 2
6 −12:5% $T 1 13.632773 1699.1 4
6 −20% x0 1 11.745360 1608.8 6
6 b(.) = H (. − 0:01)− H (. − 0:4) 1 89.554427 1152.8 8
6 Nominal 2 47.483544 2649.9 10
6 −12:5% $T 2 23.451269 3530.4 13

driving the state of the PDE system close to the spatially
uniform steady state at a *nite time, which is consistent with
the requested optimization objective. The speed of the tran-
sient response of the process towards the spatially uniform
steady state depends heavily on the relationship between the
weights, ws and wu used in the objective function, the sys-
tem state gets closer to x(z; t)=0, when less weight is placed
on the input u(t) (this is expected since the control action
is penalized less in such a case).
As a numerical note, we point out that, in addition to

computing a convergent optimal solution pro*le, the time
needed to solve the optimization problem was about 25 min
which is a very small fraction of the time needed to solve
this problem, with the same degree of accuracy, when spa-
tial discretization is performed using the centered +nite—
di5erence method; this is consistent with similar compar-
isons made for steady-state optimization problems with
PDE constraints (Bendersky & Christo*des, 2000). We also
note that the time needed to solve the optimization problem
increased considerably with the order of the approxima-
tion of the PDE as can be seen in the results presented in
Table 1.
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Fig. 4. Optimal solution pro*les for nominal parameters and for a 12.5%
variation in $T .

To test the robustness of the optimization approach and
evaluate the degree of convergence to the optimal u(t), we
solved several optimization problems obtained by varying
the process parameters, initial conditions and actuator dis-
tribution functions. Fig. 4 shows the convergent pro*le of
u(t) (N =6) for a −12:5% variation in $T and Fig. 5 shows
the corresponding pro*le of the state x(z; t). Fig. 6 shows
the convergent pro*le of u(t) (N = 6) and Fig. 7 shows
the corresponding pro*le of the state x(z; t) for a −20%
variation in the initial condition; the optimal input pro*les
lead to operation of the process close to the spatially uni-
form steady-state at a *nite time. In both cases the system is
driven to the spatially uniform steady state faster and with
less control action, since in the *rst case the e3ect of the
destabilizing nonlinearity is smaller and in the second case
the system starts closer to the spatially uniform steady state.
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Fig. 5. State pro*le for optimal u(t)—12.5% variation in $T .

Moreover, for the nominal set of process parameters and
for x0(z) = 0:5, we solved the nonlinear program using
the proposed approach for two di3erent choices of actuator
distribution functions and number of actuators. First, the
position of the actuator was shifted to the left of the center
of the catalytic rod, i.e., b(z)=H (z−0:01))−H (z−0:4)).
Fig. 8 shows the convergent pro*le of u(t) (N =6) and Fig.
9 shows the corresponding pro*le of the state x(z; t). As ex-
pected, in the new position the actuator is less e3ective on the
system than in the original one (note that the constraint on
the control action, M , remains the same), and as a result the
optimal control action stays longer on the bounds. We also
observe in Fig. 9 that the actuator fails to e1ciently drive
the system to the spatially uniform steady state, with the left
side of the system being close to zero and the right side away
from zero.
Finally, we considered the case of achieving the process

operating objective by using two actuators with b1 =H (z−
0:2))−H (z − 0:4)) and b2 =H (z − 0:6))−H (z − 0:8)).
The spatial interval in which each individual actuator acts is
the same, and the actuators are placed at symmetrical posi-
tions relative to the center of the spatial domain. In Fig. 10
we present the pro*les of u1(t) and u2(t) and compare them
to the nominal case. We observe that the action of the two
actuators is the same, an expected result due to the sym-
metry of the system around the center of the catalytic rod.
Fig. 11 presents the spatiotemporal pro*le of x(z; t) where
we observe the e3ect that the two actuators have on the
system. Note that the system is not driven to the spatially
uniform steady state as e3ectively as in the nominal case,
due to the fact that the actuators are not placed at the center
of the catalytic rod (where the e3ect of the actuator on the
system is maximal). For the case of two actuators, we also
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Fig. 6. Optimal solution pro*les for nominal parameters and for a −20%
variation of the initial condition (x0 = 0:4).

solved the nonlinear program for the value of $T=7 (reduced
e3ect of the destabilizing nonlinear terms on the system).
We see that for this case the use of two control actuators is
su1cient to drive the system close to the spatially uniform
steady-state, shown in Fig. 12; the optimal pro*les of u(t)
are shown in Fig. 13.

4. Spatial discretization using global empirical
eigenfunctions

4.1. Computation of empirical eigenfunctions via
Karhunen–Lo6eve expansion

In this section, we use of solution data of the system
of Eq. (1) to construct global basis functions using
Karhunen–Lo8eve (K–L) expansion. The motivation for
studying this approach is provided by the occurrence of
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Fig. 7. State pro*le for optimal u(t): −20% variation of the initial condition (x0 = 0:4).

dominant spatial patterns in the solution of several dissi-
pative PDEs, which should be accounted for in the shape
of the global basis functions. This approach will be useful
in the context of systems of dissipative PDEs that involve
nonlinear spatial di3erential operators and spatially-varying
coe1cients that lead to non-symmetric solution pro*les
(see the example in the next subsection). K–L is a pro-
cedure used to compute an optimal (in a sense that will
become clear below) set of empirical eigenfunctions from
an appropriately constructed set of solutions of the PDE
system of Eq. (1) obtained from high-order discretization.
In this work, the ensemble of solutions is constructed by
computing the solutions of the PDE system of Eq. (1) for
di3erent pro*les of d(t), and di3erent initial conditions.
Speci*cally, we construct a representative ensemble using
the following procedure (see also Graham & Kevrekidis,
1996; Bendersky & Christo*des, 2000 for more discussion
on ensemble construction):

• First, we create a set of di3erent initial conditions.
• We then discretize the interval in which each design vari-
able dm (m= 1; : : : ; p) is constrained to be into mdm (not
necessarily equispaced) subintervals. The discrete values
of dm are denoted by dm;j; j = 1; : : : ; mdm .

• We also discretize the time interval into ndm time subin-
tervals (also not necessarily equispaced).

• Subsequently, we compute a set of time pro*les for each
of the design variables dm(t) by assigning values for dm(t)
at di3erent time instants tj, say dm;j, and subsequently
computing dm(t) for the entire time interval of process
operation using linear interpolation.

• Finally, we compute a set of PDE solution data (ensem-
ble) for all possible combinations of initial conditions and
pro*les of d(t).

Application of K–L expansion to this ensemble of data
provides an orthogonal set of basis functions (known as
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Fig. 8. Optimal solution pro*les for nominal parameters and for a new
actuator distribution function b(.)=H (.− 0:01)−H (.− 0:4), .∈ [0; 1].

empirical eigenfunctions) for the representation of the en-
semble, as well as a measure of the relative contribution of
each basis function to the total energy (mean square Euctu-
ation) of the ensemble. A truncated series representation of
the ensemble data in terms of the dominant basis functions
has a smaller mean square error than a representation by
any other basis of the same dimension (Holmes, Lumley, &
Berkooz, 1996). This implies that the projection on the sub-
space spanned by the empirical eigenfunctions will on aver-
age contain the most energy possible compared to all other
linear decompositions, for any number of modes L. There-
fore, the K–L expansion yields the most e1cient way for
computing the basis functions (corresponding to the largest
empirical eigenvalues) capturing the dominant patterns of
the ensemble.
For simplicity of the presentation, we describe the K–L

expansion in the context of the system of Eq. (1) with n=1
and assume that there is available a su1ciently large set
of solutions of this system for di3erent values of d, { Vv0},
consisting of K sampled states, Vv0(z), (which are typically
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Fig. 9. State pro*le for optimal u(t)− b(.) = H (. − 0:01)− H (. − 0:4), .∈ [0; 1].

called “snapshots”). We assume that the snapshots are lin-
early independent; the reader may refer to Fukunaga (1990)
and Holmes et al. (1996) for a detailed presentation and
analysis of the K–L expansion. We de*ne the ensemble av-
erage of snapshots as 〈 Vv0〉 := (1=K)

∑K
0=1 Vv0(z) (we note

that nonuniform sampling of the snapshots and weighted en-
semble average can be also considered; see, for example,
Graham & Kevrekidis, 1996). Furthermore, the ensemble
average of snapshots 〈 Vv0〉 is subtracted out from the snap-
shots, i.e.

v0 = Vv0 − 〈 Vv0〉 (17)

so that only Euctuations are analyzed. The issue is how to
obtain the most typical or characteristic structure (in a sense
that will become clear below) �(z) among these snapshots
{v0}. Mathematically, this problem can be posed as the one
of obtaining a function �(z) that maximizes the following
objective function:

max:
〈(�; v0)2〉
(�; �)

s:t: (�; �) = 1; �∈L2([�]):

(18)

The constraint (�; �) = 1 is imposed to ensure that the
function, �(z), computed as a solution of the above max-
imization problem, is unique. The Lagrangian functional
corresponding to this constrained optimization problem
is

VL= 〈(�; v0)2〉 − !((�; �)− 1) (19)

and necessary conditions for extrema is that the functional
derivative vanishes for all variations �+2 ∈L2[�], where
2 is a real number:

d VL(�+ 2 )
d2

(2= 0) = 0; (�; �) = 1: (20)

Using the de*nitions of inner product and ensemble average,
(d VL(�+2 )=d2)(2=0) can be computed from the following
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Fig. 11. State pro*le for optimal u(t)—two control actuators.
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Fig. 12. State pro*le for optimal u(t)—two control actuators and $t = 7.

expression:

d VL(�+ 2 )
d2

(2= 0) =
∫
�

({∫
�
〈v0(z)v0( Vz)〉�(z) dz

}

− !�( Vz)

)
 ( Vz) d Vz: (21)

Since  ( Vz) is an arbitrary function, the necessary conditions
for optimality take the form∫

�
〈v0(z)v0( Vz)〉�(z) dz = !�( Vz); (�; �) = 1: (22)

Introducing the two-point correlation function

K(z; Vz) = 〈v0(z)v0( Vz)〉= 1
K

K∑
0=1

v0(z)v0( Vz) (23)
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Fig. 13. Optimal solution pro*les for $t =7 and for two control actuators
with b1(.) =H (.− 0:2)−H (.− 0:4), b2(.) =H (.− 0:6)−H (.− 0:8),
.∈ [0; 1].

and the linear operator

R :=
∫
�

K(z; Vz) d Vz (24)

the optimality condition of Eq. (22) reduces to the following
eigenvalue problem of the integral equation:

R�= !� ⇒
∫
�

K(z; Vz)�( Vz) d Vz = !�(z): (25)

The computation of the solution of the above integral eigen-
value problem is, in general, a very expensive computa-
tional task. To circumvent this problem, Sirovich introduced
in 1987 (Sirovich, 1987a, b) the method of snapshots. The
central idea of this technique is to assume that the requisite
eigenfunction, �(z), can be expressed as a linear combina-
tion of the snapshots, i.e.,

�(z) =
∑
k

ckvk(z): (26)

Substituting the above expression for �(z) on Eq. (25), we
obtain the following eigenvalue problem:∫

�

1
K

K∑
0=1

v0(z)v0( Vz)
K∑

k=1

ckvk( Vz) d Vz = !
K∑

k=1

ckvk(z): (27)

De*ning

B0k :=
1
K

∫
�

v0( Vz)vk( Vz) d Vz (28)

the eigenvalue problem of Eq. (27) can be equivalently writ-
ten as

Bc = !c: (29)

The solution of the above eigenvalue problem (which can be
obtained by utilizing standard methods from matrix theory)
yields the eigenvectors c= [c1 · · · cK ] which can be used in

Eq. (26) to construct the eigenfunction �(z). From the struc-
ture of the matrix B, it follows that is symmetric and posi-
tive semi-de*nite, and thus, its eigenvalues, !0, 0=1; : : : ; K ,
are real and non-negative. Furthermore, the resulting eigen-
functions form an orthogonal set, i.e.:∫

�
�i(z)�j(z) dz = 0; i �= j: (30)

The solution of the optimization program of Eq. (5) using a
set of empirical eigenfunctions as global basis functions in
the method of weighted residuals is similar to the approach
described in the previous section, and therefore, it will not
be repeated. Instead, a numerical example of a dynamic
optimization problem for a di3usion-reaction process with
spatially varying coe1cients will be presented in the next
subsection.

Remark 9. In the context of transport-reaction process opti-
mization few papers have appeared in the literature that uti-
lize the method of weighted residuals with empirical eigen-
functions obtained through K–L expansion as the means of
solving in*nite-dimensional nonlinear programs. A notable
exception is the recent paper (Park & Lee, 1998) where
an ill-posed inverse heat convection problem was e1ciently
discretized using Galerkin’s method with empirical eigen-
functions and solved through conjugate gradient method.

Remark 10. We note that the basis that we compute using
K–L decomposition is independent of the functional that we
try to minimize. Therefore, the same basis can be used to
perform computationally e1cient optimizations with respect
to di3erent functionals associated with the same underlying
set of partial di3erential equations.

Remark 11. We note that the value of mdm should be deter-
mined based on the e3ect of the design variable dm on the
solution of the system of Eq. (1) (if, for example, the e3ect
of the variable d1 is larger that the e3ect of the variable d2,
then md1 should be larger than md2 ).

Remark 12. As a practical implementation note, we point
out that even though it is expected that the use of more
basis functions in the series expansion of Eq. (6) would
improve the accuracy of the computed approximate model of
Eq. (8), the use of empirical eigenfunctions corresponding
to very small eigenvalues should be avoided because such
eigenfunctions are contaminated with signi*cant round-o3
errors.

4.2. Application to a di5usion-reaction process with
nonlinear spatial operator and a spatially varying
coe7cient

We consider the di3usion-reaction process of Section 3.4
and assume that the spatial di3erential operator is nonlinear
(e.g., nonlinear dependence of the thermal conductivity on
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Fig. 14. Pro*le of the state of the PDE of Eq. (32) with u(t) = 0.

temperature) and that the dimensionless reaction rate can
stand $T is spatially-varying. In this case, the process model
is given by the following nonlinear parabolic PDE:

@x
@t
=

@x
@z

(
k(x)

@x
@z

)
+ $T (z)(e−&=(1+x) − e−&)

+ $U (b(z)u(t)− x) (31)

subject to the Dirichlet boundary conditions

x(0; t) = 0; x(); t) = 0 (32)

and the initial condition

x(z; 0) = x0(z); (33)

where x is the state of the system, k(x) is an explicit non-
linear function of the state, &; $u are constant dimensionless
process parameters, $T (z) is a dimensionless process param-
eter that is an explicit function of the spatial coordinate z,
u(t) is the magnitude of the actuation and b(z) is the actuator
distribution function. The nominal values and expressions
of the process parameters that were used in our calculations
are: x0(z)= 0:5, k =0:5+ 0:7=(x+1), $T =12[cos(z)+ 1],
$u=2:0, &=2:0, and b(z)=H (z−0:1))−H (z−0:5)). For
these values, the operating steady-state x(z; t) = 0 is an un-
stable one, and the system converges to a stable nonuniform
steady state (as can be seen in Fig. 14 for an initial condi-
tion of x0(z) = 0:5). As a result, the optimization problem
is formulated as the one of computing an optimal input tra-
jectory u(t) for the control actuator such that a meaningful
cost that includes penalty on the process response and the
control action is minimized in the presence of constraints
in the magnitude of the actuator. Mathematically, this opti-
mization problem is formulated as follows:

min J =
∫ tf

0

∫ 1

0
(wsx2 + wuu2) dz dt

@x
@t
=

@x
@z

(
k(x)

@x
@z

)
+ $T (z)(e−&=(1+x) − e−&)

+ $U (b(z)u(t)− x)

x(0; t) = 0; x(); t) = 0; x(z; 0) = x0(z)

|u(t)|6M; (34)

where M = 0:6, ws = 100 and wu = 20. Initially, we com-
puted an optimal solution to the above problem by per-
forming spatial discretization using Galerkin’s method with
the sinusoidal functions of Eq. (16) as basis functions and
temporal discretization using Euler’s implicit method. The
resulting nonlinear program was solved with MINOS. Op-
timal solution pro*les for u(t) were computed for di3erent
numbers of basis functions (in all these cases the step of
the temporal discretization was appropriately adjusted to
guarantee numerical stability of the temporal integration)
to obtain a convergent solution pro*le. Fig. 15 (top plot)
shows the resulting pro*les of u(t) for N = 2; 3; 4 which
clearly converge to a single optimal pro*le, for N =4; note
that u(t) satis*es |u(t)|6 0:6. Fig. 15 (bottom plot) shows
the pro*le of the state x(z; t) for optimal u(t) for N =4; it is
clear that the optimal input pro*le leads to operation of the
process close to the spatially uniform steady state at a *nite
time. The time to converge to the optimal solution depends
strongly on the order of the discretization and is presented
in Table 2. Speci*cally, the time to solve the problem
for a fourth order discretization of the system is 1156:0 s,
which is again a fraction of the time needed to solve the
program of Eq. (34) using *nite-di3erences for spatial
discretization.
We now proceed with the solution of the nonlinear

program of Eq. (34) by performing spatial discretization
using Galerkin’s method with empirical eigenfunctions
as basis functions. In order to evaluate the e3ect of the
construction of the ensemble on the performance of the
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Fig. 15. (Top plot) Pro*les of u(t) in the case of using sinusoids as basis functions. (Bottom plot) Pro*le of the state of the PDE of Eq. (32) for optimal
u(t) (N = 4).

optimization methods, we constructed two di3erent ensem-
bles and used them to solve the optimization problem of
Eq. (34).
First, we derived and solved a high-order and conver-

gent discretization of the PDE of Eq. (31) for x0 = 0:5 and
x0 = 0:0, and for several di3erent and arbitrary variations
of the input u(t), using a distribution function of the form
b(.)=H (.−0:1)−H (.−0:5) (.=z=l, l=) is the length of
the domain). From this set of simulations, we computed a
total of eight spatiotemporal solution pro*les. Subsequently,
37 “snapshots” were taken from each solution data set and
were combined, to generate an ensemble of 296 solutions.
The Karhunen–Lo8eve expansion was then applied to the de-
veloped ensemble of solutions to compute seven empirical
eigenfunctions that describe the dominant spatial solution
patterns embedded in the ensemble (they account for more
than 99.99% of the energy included in the entire ensem-
ble). The *rst three of these empirical eigenfunctions are
presented in Fig. 16. Note that in contrast to the sinusoidal
functions, these eigenfunctions are not symmetric with re-
spect to the center of the spatial domain, owing to the spa-
tial non-uniformity of the term $T =12[cos(z) + 1], and its
coupling with the nonlinearity k(x) = 0:7=(x + 1) + 0:5.

Furthermore, we computed a second set of empir-
ical eigenfunctions by using three control actuators
with b1(z) = 1, b2 = H (z − 0:1)) − H (z − 0:5)) and
b3(z) = 2(z − 0:3)), and arbitrary time-varying inputs,
as well as two di3erent initial conditions x0 = 0:5 and
x0 = 0:0. An ensemble of 1554 solutions was constructed.
The Karhunen–Lo8eve expansion was then applied to the
developed ensemble of solutions to compute nine empirical
eigenfunctions that describe the dominant spatial solution
patterns embedded in the ensemble (they account for more
than 99.99% of the energy included in the entire ensem-
ble). The *rst three of these empirical eigenfunctions are
presented in Fig. 17. Note that they are not symmetric with
respect to the center of the system, z = 0:5), owing to the
spatial non-uniformity of $T = 12[cos(z) + 1] and the non-
linearity k = 0:7=(x + 1) + 0:5 and furthermore that they
capture the e3ect that the point control actuator has on the
state of the system.
We initially computed an optimal solution to the prob-

lem of Eq. (34) by performing spatial discretization using
Galerkin’s method with the *rst set of empirical eigenfunc-
tions as basis functions and temporal discretization using Eu-
ler’s implicit method. The resulting nonlinear program was
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Table 2
Optimization results for di3usion-reaction process with nonlinear spatial di3erential operator and spatially varying parameters

Number/type of basis functions Process parameters Design variables Objective Time (s) Fig.

1/Emp. Set 1 Nominal 1 11.0401 599.6 18a
2/Emp. Set 1 Nominal 1 11.1583 747.2 18a
3/Emp. Set 1 Nominal 1 11.7786 935.2 18a
1/Sinusoid Nominal 1 11.1431 639.8 15a
2/Sinusoid Nominal 1 11.3400 747.3 15a
3/Sinusoid Nominal 1 11.7805 935.8 15a
4/Sinusoid Nominal 1 11.8013 1156.0 15a
1/Emp. Set 2 Nominal 1 11.5275 603.5 19a
2/Emp. Set 2 Nominal 1 11.6023 747.6 19a
3/Emp. Set 2 Nominal 1 11.7203 935.2 19a
3/Emp. Set 1 −20% x0 1 7.0274 960.1 22a
4/Sinusoid −20% x0 1 7.0511 1191.7
3/Emp. Set 1 k(x) = 1:0 1 12.6741 960.1 21a
3/Sinusoid k(x) = 1:0 1 12.6211 955.8
4/Sinusoid k(x) = 1:0 1 12.6582 1186.2
3/Emp. Set 1 −12:5% $T 1 8.3823 1014.1 20a
3/Sinusoid −12:5% $T 1 8.3942 1249.4
3/Emp. Set 1 Nominal 1 14.7365 899.3 23a
3/Emp. Set 1 Nominal 2 27.2674 1874.3 24a
4/Sinusoid Nominal 2 26.6595 2288.1
5/Sinusoid Nominal 2 27.1428 2703.8
2/Emp. Set 2 Nominal 2 4.5373 2517.0 25a,b
3/Emp. Set 2 Nominal 2 4.6918 2654.6 25a,b
5/Emp. Set 2 Nominal 2 4.7215 2714.3 25a,b
3/Sinusoid Nominal 2 4.3459 2708.6 26a,b
4/Sinusoid Nominal 2 4.3816 3273.0 26a,b
5/Sinusoid Nominal 2 4.4615 3973.5 26a,b
6/Sinusoid Nominal 2 4.4695 4847.8 26a,b
9/Sinusoid Nominal 2 4.4829 9891.0
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Fig. 16. First three empirical eigenfunctions for single actuator with
b(.) = H (. − 0:1)− H (. − 0:5).

solved with MINOS. Optimal solution pro*les for u(t) were
computed for di3erent numbers of empirical eigenfunctions
to obtain a convergent solution pro*le. Fig. 18 (top plot)
shows the pro*les of u(t) for N =1; 2; 3 which clearly con-
verge to a single pro*le, for N=3; note that u(t) satis*es the
imposed constraints. Fig. 18 (bottom plot) shows the pro*le
of the state x(z; t) for N =3; it is clear that the optimal input
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Fig. 17. First three empirical eigenfunctions for ensemble constructed by
using three control actuators.

pro*le leads to operation of the process close to the spatially
uniform steady state at a *nite time. Furthermore, the time
needed to solve the optimization problem was 935:2 s which
is a small fraction of the time needed to solve this problem,
with the same degree of accuracy, when spatial discretiza-
tion is performed using *nite di3erences. We also solved
the problem of Eq. (34) by performing spatial discretization
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Fig. 18. (Top plot) Pro*les of u(t) in the case of using the *rst set of empirical eigenfunctions as basis functions. (Bottom plot) Pro*le of the state of
the PDE of Eq. (32) for optimal u(t) (N = 3).

using Galerkin’s method with the second set of empirical
eigenfunctions as basis functions. The results are shown in
Fig. 19. Clearly, the use of the second set of eigenfunctions
leads to an e1cient solution of the optimization problem;
an important advantage of the second set of eigenfunctions
(which accounts for the e3ect of the point actuator on the
system solution) will be discussed below (see Figs. 25 and
26).
We also used the *rst set of eigenfunctions to compute

the solution of the optimization problem of Eq. (34) when
di3erent process parameters and initial conditions are used.
Fig. 20 shows the convergent pro*le of u(t) (N = 3) for a
12.5% variation in $T and the corresponding pro*le of the
state x(z; t), Fig. 21 shows the convergent pro*le of u(t)
(N = 3) when k = 1:0, and Fig. 22 shows the convergent
pro*le of u(t) (N = 3) and the corresponding pro*le of the
state x(z; t) for a 20% variation in the initial condition; again
the optimal input pro*les lead to operation of the process
close to the spatially uniform steady state at a *nite time.
Moreover, for the nominal set of process parameters and

the initial condition, we solved the nonlinear program of Eq.

(34) for two di3erent choices of actuator distribution func-
tions. First, the position of the actuator was shifted to the
right of the center of the catalytic rod, i.e., b(z) = H (z −
0:3))−H (z−0:7)). Fig. 23 (top plot) shows the convergent
pro*le of u(t) (N =3) and Fig. 23 (bottom plot) shows the
corresponding pro*le of the state x(z; t). As expected (see
also discussion in the *rst example), in the new position the
actuator is less e3ective on the system, and as a result the
optimal control action is one that stays longer on the bounds.
We also observe in Fig. 23b that the actuator fails to com-
pletely drive the state of the system to the spatially uniform
steady state. Furthermore, we considered the case of using
two actuators with b1(z)=H (z− 0:01))−H (z− 0:2)) and
b2(z)=H (z−0:4))−H (z−0:6)). The two actuators inEu-
ence spatial intervals of the same size and are symmetrically
placed with respect to the maximum value of the state of the
system (see Fig. 14). Fig. 24 (top plot) presents the pro*les
of u1(t) and u2(t) and compares them to the nominal case.
We observe that the action of the two actuators is di3erent,
contrary to the case of constant process parameters; this is
expected since the system is lacking symmetry around the
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Fig. 19. (Top plot) Pro*les of u(t) in the case of using the second set of empirical eigenfunctions as basis functions. (Bottom plot) Pro*le of the state
of the PDE of Eq. (32) for optimal u(t) (N = 3).

point of maximum temperature of the catalytic rod. Fig. 24
(bottom plot) presents the spatiotemporal pro*le of x(z; t)
where we observe the e3ect that the two actuators have on
the system. Note that the system is not driven to the spa-
tially uniform steady state as e3ectively as in the nominal
case, due to the fact that the actuators are not placed at the
position of maximum e3ect on the state of the system.
Finally, for the nominal set of process parameters and

the initial condition, we solved the nonlinear program of
Eq. (34) in the case of using two control actuators with
b1(z) =H (z− 0:1))−H (z− 0:5)) (wu1 = 25) and b2(z) =
2(z− 0:3)) (point control actuation; wu2 = 15). In this case,
the bound on the available control action was taken to be
M = 0:4. The second set of empirical eigenfunctions were
used as basis functions since they were constructed by using
an ensemble which includes solutions obtained by applying
point control actuation to the PDE. Fig. 25a (top plots) show
the convergent pro*les of u1(t) and u2(t) for N = 2; 3 and
Fig. 25b (bottom plot) shows the corresponding pro*le of
the state x(z; t) for N = 3. For comparison purposes, the
same optimization problem was solved using sinusoid basis

functions. Fig. 26 presents the pro*les u1(t) and u2(t) for
N = 3; 4; 5; 6. We observe that the optimization algorithm
that uses sinusoid basis functions converges to the solution
computed using three empirical eigenfunctions very slowly.
This is due to the fact that the empirical eigenfunctions
capture e1ciently the e3ect the point actuator has on the
state of the system, while the sinusoidal basis functions do
not account for this e3ect. This result shows the usefulness of
using basis functions constructed from appropriate solution
data (in the sense that they capture the e3ect of the actuators)
versus an o3-the-shelf set of basis functions. From Table 2,
we see that the total time to solve the program of Eq. (34) in
this case, using empirical eigenfunctions, was much smaller
than the time needed to solve this program using a larger
number (N = 6; 9) of sinusoidal basis functions.

Remark 13. We note that the time needed to compute
the empirical eigenfunctions was not included in the cal-
culation of the time (Table 2) needed to solve the opti-
mization problem through empirical eigenfunction-based
Galerkin method. The reason is that the computed sets of
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Fig. 20. (Top plot) Pro*les of u(t) in the case of using the *rst set of empirical eigenfunctions as basis functions: −12:5% variation in $T . (Bottom
plot) Pro*le of the state of the PDE of Eq. (32) for optimal u(t) (N = 3).

empirical eigenfunctions can be used to solve more op-
timization problems than the ones reported here, thereby
signi*cantly reducing the fraction of the time needed to
compute the empirical eigenfunctions. The time needed to
compute the empirical eigenfunctions is the sum of the time
needed to construct the ensemble of snapshots and the time
needed to compute the empirical eigenfunctions through
application of K–L expansion to the ensemble. For the *rst
set of empirical eigenfunctions, this time was on the order
of 100 s and for the second set of empirical eigenfunctions
on the order of 1000 s.

5. Spatial discretization using approximate inertial
manifolds

5.1. Computation of approximate dynamic optimization
programs

In this section, we propose an approach to the solution
of the program of Eq. (5) which is based on combination

of the method of weighted residuals with the concept of
approximate inertial manifolds. Following the derivation
of a large-scale discretization of the PDE system using the
method of weighted residuals (consider the dynamic nonlin-
ear program of Eq. (8) with N large), the central idea is to
maintain the dynamics of the dominant modes and neglect
the dynamics of the modes corresponding to fast dynamics
(i.e., reduce the ODE system that describes the dynamics
of the higher-order (fast) eigenmodes to an algebraic one).
For certain highly dissipative PDE systems, a rigorous jus-
ti*cation of this approximation can be obtained within the
framework of inertial manifolds (see (Foias, Sell, & Temam,
1988b) for the detailed mathematical development of this
concept) and approximate inertial manifolds (see (Foias,
Manley, & Temam, 1988a; Foias, Jolly, Kevrekidis, Sell, &
Titi, 1989) for approaches to construction and com-
putation of approximate inertial manifolds, and also
(Christo*des & Daoutidis, 1997; Christo*des, 2001) for
the use of approximate inertial manifolds in feedback con-
trol of parabolic PDE systems). This approximation leads
to a dynamic nonlinear program whose equality constraints
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constitute a low-order system of coupled ordinary di3er-
ential equations and algebraic equations (DAEs) which
can then be solved with combination of standard temporal
discretization and nonlinear programming techniques. To
present this procedure, we consider the optimization pro-
gram of Eq. (9) and let as(t) be the vector of the modes
that are associated with the dominant dynamics of the PDE
system and af(t) be the modes that are associated with
dynamics that decay very fast but are important in terms
of capturing the long-time behavior of the PDE. Using this
decomposition, the dynamic nonlinear program of Eq. (9)
can be written as

min
∫ tf

0
G(as; af; d) dt

s:t: ȧs = f̃ s(as; af; d);

ȧf = f̃ f(as; af; d);

g̃(as; af; d)6 0:

(35)

Since the dynamics of the fast modes decay very fast, we
can formally set the time-derivative of af equal to zero
(i.e., pretend that the “fast” variables are in fact stationary

Haken, 1978) to obtain the following approximate program:

min
∫ tf

0
G(as; af; d) dt

s:t: ȧs = f̃ s(as; af; d);

0 = f̃ f(as; af; d);

g̃(as; af; d)6 0:

(36)

The combination of the method of weighted residuals and
approximate inertial manifolds for the spatial discretization
of dynamic NLPs with parabolic PDE constraints o3ers a
number of advantages over spatial discretization with stan-
dard (linear) Galerkin’s method. First, the constructed alge-
braic constraints are integrated to the ODE system leading
to a lower number of variables that need to be discretized
in the temporal domain. Second, the proposed method en-
ables us to use larger time-discretization steps while main-
taining stability of the discretization, since the resulting
di3erential-algebraic-equation system is not as sti3, due to
the fact that the dynamics of the slow modes are retained
and the dynamics of the fast modes are neglected. Since the
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algebraic equality constraints in the dynamic nonlinear pro-
gram of Eq. (36) can be numerically solved for af, the
computation of the optimal solution can be accomplished by
following the procedure presented in Sections 3.2 and 3.3
(details are omitted for brevity).

Remark 14. When there is a need to capture the evolution
of the fast transients, one can complement the dynamic non-
linear program of Eq. (36) with an approximation of the
dynamic nonlinear program of Eq. (35) that captures its be-
havior in the short-time interval, [0; 7f], needed for the dy-
namics of the fast modes to settle. This approximate non-
linear program can be used to compute d(t) in the interval,
[0; 7f], and has the following form:

min
∫ 7f

0
G(as(0); af(t); d) dt

s:t: ȧf = f̃ f(as(0); af(t); d);

g̃(as(0); af(t); d)6 0:

(37)

With the above formulation, one can solve the above pro-
gram to compute d(t) in the interval, [0; 7f], and then solve

the nonlinear program of Eq. (36) to compute d(t) in the
interval, [7f; tf]. This type of two-time-scale decomposition
may be useful when the initial conditions associated with
the fast modes are far from the equilibrium manifold and,
therefore, the approximation 0 = f̃ f(as; af; d) is not valid
for short times. This two-time-scale decomposition also al-
lows eliminating the sti3ness problems associated with the
temporal integration of the di3erential equations included
in the nonlinear program of Eq. (35) by having to integrate
sets of nonsti3 di3erential equations evolving in separate
time-scales. The accuracy of this two-time-scale decompo-
sition of the nonlinear program of Eq. (35) can be improved
by increasing the separation between the slow and fast
modes; for certain PDE systems, this can be always accom-
plished by increasing the number of modes included in the
slow set.

5.2. Application to Kuramoto–Sivashinsky equation

In this section, we present an application of the proposed
optimization method to the Kuramoto–Sivashinsky equation
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Fig. 23. (Top plot) Pro*les of u(t) in the case of using the *rst set of empirical eigenfunctions as basis functions—b(.) = H (. − 0:3) − H (. − 0:7).
(Bottom plot) Pro*le of the state of the PDE of Eq. (32) for optimal u(t) (N = 3).

with distributed actuation

@x
@t
=−�

@4x
@z4

− @2x
@z2

− x
@x
@z
+ b(z)u(t) (38)

subject to the periodic boundary conditions:

@jx
@zj
(−); t) =

@jx
@zj
(+); t); j = 0; : : : ; 3 (39)

and the initial condition

x(z; 0) = x0(z); (40)

where x(z; t) is the state of the system, z ∈ [ − ); )] is the
spatial coordinate, t is the time and 2) is the length of the
spatial domain, � is the instability parameter, x0(z) is the
initial condition, u(t) is the magnitude of the actuation, and
b(z) is the actuator distribution function. A direct compu-
tation of the solution of the above eigenvalue problem for
the spatial di3erential operator yields !0 = 0 with  0(z) =
1=
√
2), and !n = −�n4 + n2 (!n is an eigenvalue of mul-

tiplicity two) with eigenfunctions �n(z) = (1=
√
)) sin(nz)

and  n(z)=(1=
√
)) cos(nz) for n=1; : : : ;∞. We also de*ne

the eigenspectrum ofA, 8(A), as the set of all eigenvalues
of A, i.e. 8(A) = {!1; !2; : : : ; }. From the expression for
the eigenvalues, it follows that for a *xed value of �¿ 0
the number of unstable eigenvalues of A is *nite and the
distance between two consecutive eigenvalues increases as
n increases. This implies that for a *xed value of �¿ 0,
the dominant dynamics of the KSE can be described by a
*nite-dimensional system.
First, we set �= 0:12 and consider an initial condition of

the form x0(z)=
∑4

j=1 [sin(j z)]. For �=0:12, the spatially
uniform steady state, x(z; t) = 0 is unstable (see Fig. 27).
Therefore, we formulate the optimization problem as the
one of computing an optimal input trajectory u(t) for the
actuator such that a meaningful cost that includes penalty on
the process response and the control action is minimized, in
the presence of constraints in the magnitude of the actuation.
Mathematically, this optimization problem is formulated as
follows:

min J =
∫ tf

0

∫ )

−)
(wsx2 + wuu2) dz dt;
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Fig. 24. (Top plot) Pro*les of u(t) in the case of using the *rst set of empirical eigenfunctions as basis functions—two control actuators with
b1(.)=H (.−0:01)−H (.−0:2) and b2(.)=H (.−0:4)−H (.−0:6). (Bottom plot) Pro*le of the state of the PDE of Eq. (32) for optimal u(t) (N =3).

@x
@t
=−�

@4x
@z4

− @2x
@z2

− x
@x
@z
+ b(z)u(t);

@jx
@zj
(−); t) =

@jx
@zj
(+); t); j = 0; : : : ; 3;

x(z; 0) =
4∑

j=1

[sin(j z)]; |u(t)|6M; (41)

where M = 3:0, ws = 100 and wu = 20. We initially
computed an optimal solution to the above problem by
performing spatial discretization using Galerkin’s method
with the eigenfunctions of the spatial di3erential opera-
tor as basis functions and temporal discretization using
implicit Euler. For � = 0:12 and x0(z) =

∑4
j=1 [sin(j z)]

(type 1), two actuators with b1(z) = 2(z + 0:5)) and
b2(z) = 2(z − 0:5)) (point actuation applied at z = −0:5)
and z = 0:5)) were used. Optimal solution pro*les of
u(t) were computed for di3erent numbers of basis func-
tions (in all these cases the step of temporal discretiza-
tion was appropriately adjusted to guarantee numerical

stability of the temporal integration) to obtain a conver-
gent solution pro*le. Fig. 28 (top plots) shows optimal
solution pro*les of u(t), for N = 3; 5; 6. Clearly, these
pro*les converge to a single optimal pro*le, for N = 6;
note that u(t) satis*es |u(t)|6 3:0. Fig. 28 (bottom plot)
shows the pro*le of the state x(z; t) for N = 6; it is clear
that the optimal input pro*le leads to operation of the
process close to the spatially uniform steady state at a
*nite time. As in the case of the di3usion-reaction pro-
cess, the time needed to solve the optimization problem
(Table 3) is the fraction of the time needed to solve this
problem when spatial discretization is performed using *-
nite di3erences. We also used the proposed combination
of Galerkin’s method with approximate inertial manifolds
to solve the optimization problem of Eq. (41) for the
same initial condition. First, the standard combination of
Galerkin’s method with approximate inertial manifolds,
formulation of Eq. (36), was used. Fig. 29 (top plots)
shows optimal solution pro*les of u(t) for di3erent orders
of approximation. Clearly, these pro*les converge to the
single optimal pro*le of Eq. (28). Fig. 29 (bottom plot)
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Table 3
Optimization results for Kuramoto–Sivashinsky equation with � = 0:12

Number/type of basis functions Initial condition Design variables Objective Time (s) Fig.

3+0/Galerkin Type 1 2 39.3636 114.4 28
5+0/Galerkin Type 1 2 43.9868 1530.9 28
6+0/Galerkin Type 1 2 44.0242 710.9 28
3+5/Galerkin+AIM Type 1 2 38.6164 1844.5 29
4+4/Galerkin+AIM Type 1 2 44.0829 1401.9 29
4+6/Galerkin+AIM Type 1 2 44.0826 3809.4 29
5+3/Galerkin+AIM Type 1 2 44.0106 1930.5 29
3+5/Galerkin+eAIM Type 1 2 43.8599 1787.6 30
4+4/Galerkin+eAIM Type 1 2 44.1915 1492.4 30
4+6/Galerkin+eAIM Type 1 2 44.0826 3802.8 30
5+3/Galerkin+eAIM Type 1 2 44.0107 4305.8 30
3+0/Galerkin Type 2 2 31.5730 282.8 31
4+0/Galerkin Type 2 2 43.0735 428.3 31
5+0/Galerkin Type 2 2 47.3991 690.5 31
6+0/Galerkin Type 2 2 50.6064 1053.5 31
2+6/Galerkin+AIM Type 2 2 65.2695 1565.1 32
3+5/Galerkin+AIM Type 2 2 32.2441 2118.0 32
5+5/Galerkin+AIM Type 2 2 47.6562 4466.4 32
2+6/Galerkin+eAIM Type 2 2 51.3738 1444.1 33
3+5/Galerkin+eAIM Type 2 2 49.8594 2313.0 33
5+5/Galerkin+eAIM Type 2 2 50.2378 5213.3 33

shows the pro*le of the state x(z; t). Subsequently, the
proposed combination of Galerkin’s method with modi*ed
approximate inertial manifolds, formulation of Eq. (37),
was used. Figure 30 (top plots) shows optimal solution pro-
*les of u(t) for di3erent orders of approximation. Clearly,
these pro*les converge to the single optimal pro*le of
Eq. (28). Fig. 30 (bottom plot) shows the pro*le of the
state x(z; t).
Finally, we used the proposed optimization methods to

solve the program of Eq. (41) for a di3erent initial con-
dition, namely x0 = 0:5

∑3
i=1 sin(iz) + 1:5

∑6
i=4 sin(iz)

(type 2). We initially tried to compute an optimal solution
to the above problem by performing spatial discretization
using Galerkin’s method with the eigenfunctions of the
spatial di3erential operator (sinusoidal functions) as basis
functions and temporal discretization using implicit Euler.
Optimal solution pro*les of u(t) were computed for di3er-
ent numbers of basis functions (in all these cases the step
of temporal discretization was appropriately adjusted to
guarantee numerical stability of the temporal integration).
Fig. 31 shows solution pro*les of u(t), for N = 3; 4; 5; 6.
Clearly, these pro*les show that convergence to a single
optimal pro*le improves as more basis functions are used.
However, even for N = 6, convergence of the input u1(t)
to the optimal pro*le has not been obtained, and it is clear
that a higher-order discretization is needed to obtain a con-
vergent pro*le for u1(t). To be able to achieve convergence
with a low-order approximation, we subsequently used the
proposed combination of Galerkin’s method with approxi-
mate inertial manifolds to solve the optimization problem
for the same initial condition. Fig. 32 (top plots) shows so-
lution pro*les of u(t) for di3erent orders of approximation.

Clearly, these pro*les converge to a single optimal pro*le;
note the small di3erence (especially for small times) in
the optimal solution pro*les for u1(t) and u2(t) between
the (3; 5) and (5; 5) dynamic nonlinear programs. Fig. 32
(bottom plot) shows the pro*le of the state x(z; t) under
the u(t) obtained from the solution of the (5; 5) dynamic
nonlinear program. It is clear that the optimal input pro*le
leads to operation of the process close to the spatially uni-
form steady state at a *nite time. The time needed to solve
the optimization problem using this approach is the fraction
of the time needed to solve this problem when spatial dis-
cretization is performed using *nite di3erences or through a
high-order truncation obtained via linear Galerkin’s method
(Table 3). Finally, to further improve the accuracy of the
(3; 5) optimization program for small times, the proposed
combination of Galerkin’s method with modi*ed approxi-
mate inertial manifolds, formulation of Eqs. (36)–(37), was
used. Fig. 33 (top plots) shows optimal solution pro*les
of u(t) for di3erent orders of approximation. Clearly, the
convergence properties have been substantially improved
for small times and the (3; 5) and (5; 5) optimization pro-
grams give identical results. Fig. 33 (bottom plot) shows
the pro*le of the state x(z; t). The optimal input pro*le
again leads to operation of the process close to the spatially
uniform steady state at a *nite time. We observe that the
combination of Galerkin’s method and approximate inertial
manifolds, as well as the two-time-scale modi*cation of
Eq. (37) lead to improved results (in terms of the order
of the convergent approximation and the time needed to
obtain the optimal solution), compared to discretization
using linear Galerkin’s method. The reason is that the
chosen initial condition excites higher-order modes of
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Fig. 29. (Top plots) Pro*les of u(t) in the case of spatial discretization using Galerkin’s method with approximate inertial manifolds—x0 =
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(Bottom plot) Pro*le of the state of the KSE for optimal u(t).

the KSE that cannot be captured with a low-order ODE
approximation that does not account at all for the evolution
of these higher-order modes.

6. Concluding remarks

This article presented computationally-e1cient methods
for the solution of dynamic constraint optimization prob-
lems arising in the context of spatially distributed processes
governed by highly dissipative nonlinear partial di3erential
equations (PDEs). The methods are based on spatial dis-
cretization using the method of weighted residuals with an-
alytical or empirical (obtained via Karhunen–Lo8eve expan-
sion) eigenfunctions as basis functions, and combination of
the method of weighted residuals with approximate inertial
manifolds. The proposed methods account for the fact that
the dominant dynamics of highly dissipative PDE systems
are low dimensional in nature and lead to approximate opti-
mization problems that are of signi*cantly lower order com-
pared to the ones obtained from spatial discretization us-

ing *nite-di3erence and *nite-element techniques, and thus,
they can be solved with signi*cantly smaller computational
demand.We used two representative examples of dissipative
PDEs, a di3usion-reaction process with constant and spa-
tially varying coe1cients, and the Kuramoto–Sivashinsky
equation, a model that describes incipient instabilities in a
variety of physical and chemical systems, to demonstrate the
implementation and evaluate the e3ectiveness of the pro-
posed optimization algorithms. The robustness of the opti-
mization methods with respect to signi*cant variations in
model parameters, initial conditions and actuator distribu-
tion functions were successfully tested through extensive
numerical simulations.
Finally, we note that although the proposed optimization

algorithms worked well for the several test cases consid-
ered in this work, signi*cant work remains to be done in
applying these algorithms to more complex PDE models of
transport-reaction processes and Euid dynamic systems to
further evaluate their e3ectiveness and performance and to
eventually establish them as useful tools for dynamic opti-
mization of dissipative PDE systems.
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Fig. 30. (Top plots) Pro*les of u(t) in the case of spatial discretization using Galerkin’s method with modi*ed approximate inertial
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