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a b s t r a c t

Model-predictive control algorithms are applied to a high capacity reverse osmosis (RO) membrane desa-
lination process simulation that utilizes feed flow reversal in order to prevent and/or reverse scale crystal
formation on the membrane surface. A dynamic non-linear model which incorporates feed concentration
and membrane properties is used for simulation and demonstration of optimally controlled feed flow
reversal. Before flow reversal can take place on a high capacity RO plant, the flow into the membrane unit
must be carefully reduced to eliminate the risk of membrane module damage and unnecessary energy
consumption. A cost function is formulated for the transition between the normal high flow steady-state
operating point to a low flow steady-state operating point where it is safe to reverse the flow direction.
Open-loop and closed-loop simulations demonstrate non-linear model-predictive control strategies that
induce transition from the high-flow to low-flow steady-states in an optimal way while subjected to
plant-model mismatch on the feed concentration, actuator magnitude and rate constraints, and sampled
measurements.

� 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Reverse osmosis (RO) membrane desalination has emerged as
one of the leading methods for water desalination due to the low
cost and energy efficiency of the process [17]. Lack of fresh water
sources has necessitated further development of these desalination
plants, especially in areas with dry climates. In many reverse
osmosis processes, particularly with brackish water feeds or pro-
cesses running at a high level of recovery, dissolved ions can pre-
cipitate out of solution and crystallize on the membrane surface
in a process called scaling. Scale formation on the membrane sur-
face will lead to decreased permeate productivity [7], as well as
permanent membrane damage if scaling is allowed to progress
past its initial stages.

Several methods are currently used to prevent scale formation;
addition of anti-scalant chemicals to the feed or flushing the mem-
brane units with low-TDS (total dissolved solids) permeate water.
These current methods of scale mitigation have several disadvan-
tages. Anti-scalants are only useful to a degree, and if added in ex-
cess, may actually promote scaling or fouling [18]. The cost of the
anti-scalant compounds is also an important consideration [3]. In
the case of the permeate flush, this process will require the reverse
osmosis operation to stop for a substantial amount of time to allow
for the flushing cycle, eliminating any permeate production (even

using up some of the previously produced permeate water). To
deal with these issues, a novel technique called feed flow reversal
has been developed, which can prevent scale formation without
the addition of expensive chemicals or extensive periods of system
down-time [16]. This technique uses a system of solenoid valves
around the membrane modules configured specifically so that
the direction of the feed flow through the membrane units can
be reversed (see Fig. 1). This reversal of the feed flow also reverses
the axial salt concentration profile [6] at the surface of the mem-
brane, effectively ‘‘resetting the induction clock”, where induction
refers to the amount of time before scale crystals begin to form on
the membrane surface [16]. The reversal, if activated after crystals
have already been formed, also allows the dissolution of a substan-
tial portion of scale deposited on the membrane surface.

It is imperative to operate the flow reversal process for the cor-
rect length of time; switching back to normal flow too quickly may
leave scale crystals on the membrane (and in the case where scale
crystals have not formed yet, the induction clock will not ‘‘reset”),
while operating the flow reversal for too long may cause scale to
form on the outlet end of the membrane surface. Several tech-
niques can be employed to determine if scale has formed; mea-
surements of the permeate flow can be monitored to determine
if flux decline has occurred, or a novel method such as the EX-situ
Scale Observation Detector (EXSOD) system can be used [19]. With
the latter method, scale crystals can be detected before flux decline
occurs via automated image analysis software (currently under
development by the authors); this algorithm is also able to trigger
the switch between normal flow and flow reversal mode.
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When operating a system that utilizes feed flow reversal, it is
important to carry out the mode switching (from forward flow to
reverse flow) in a manner which will not cause water hammer.
The phenomenon of water hammer takes place when fluid moving
at a moderate to high velocity (velocity > 1.5 m/s for the example
in this work) suddenly encounters a blockage in the pipe (for in-
stance, when a solenoid valve is instantly closed). The fluid’s inertia
causes it to slam into the blockage, causing a pressure wave and of-
ten wear/damage to the process equipment [8]. The Joukowski for-
mula [15] can be used to estimate the magnitude of the pressure
wave caused by water hammer for a given system configuration,
and it is seen that this problem can be especially prominent in
large systems with a high feed flow rate.

For example, consider the system presented in Fig. 2. Initially
solenoid valves s2 and s3 are closed and s1 and s4 are open. Further-
more, the velocity entering the membrane unit, vfr, is 10 m/s. When
flow reversal is initiated, solenoid valves s2 and s3 are opened and
assuming similar flow resistance in each path, the flow splits
approximately evenly through the three possible paths. The flows
through s2, s3, and the membrane unit are approximately 3.3 m/s.
However, the flow going through s1 and s4 is approximately
6.7 m/s. With a maximum velocity threshold of 1.5 m/s, none of
these flow velocities are low enough to enable the closure of a sole-
noid valve without the possibility of causing component damage
through water hammer. From this example, it is clear that with
the configuration seen in Fig. 2, water hammer is of concern when
the velocity into the membrane units is approximately 1.5 times
the water hammer threshold.

Motivated by these considerations, the goal of this work is to
use model-predictive control (MPC) to determine the optimal
switching path from normal operating conditions to a condition
where the stream velocity entering the membranes is much lower;
preventing water hammer during solenoid valve closure while
avoiding pressure fluctuations and decreased process performance
during the transition. Alleviating these phenomena will prolong
equipment life-span and help to maximize the productivity of
the RO system. The formulation presented in this work is specific

to the system presented in Fig. 2, but it is important to note that
these MPC algorithms can be adapted to any flow reversal
equipped reverse osmosis system where the operator is able to
control the stream velocity entering the membrane units. Model-
predictive control has not been employed for use with the feed
flow reversal technique, but has been evaluated for the overall con-
trol of RO desalination processes [1]. It is noted that in a recent
work [11], Lyapunov-based non-linear control systems and mod-
el-based monitoring schemes were designed for fault-tolerant con-
trol of RO processes in the presence of actuator faults without
dealing with the issue of optimization of the feed flow reversal pro-
cess. Optimization with MPC requires the use of a RO desalination
system model, which has been derived based on mass and energy
balances [10]. A cost function that takes into account control ac-
tion, stream velocities, and system pressure is proposed, along
with several hard process constraints which represent physical
limitations of the system. The model, cost function, and constraints
are arranged into a non-linear optimization problem which is
solved through the use of a numerical optimization algorithm.
Closed-loop simulations with MPC are performed in this work to
demonstrate the mode switching dynamics. The MPC algorithm
is also applied to the system when a plant-model mismatch on
feed concentration is imposed. This plant-model mismatch will al-
low for evaluation of the disturbance rejection by the controller
when using feedback from the plant model.

2. RO system model

As seen in Fig. 2, feed water enters the system and is pressur-
ized by the high-pressure pump. The pressurized stream is split
into a bypass stream (with velocity vb) and the stream which en-
ters the spiral-wound membrane unit(s) (vfr). Two streams also
exit the membrane module, the retentate (or brine) stream, with
velocity vr, and the permeate stream. The downstream pressure
of all of the exit streams is assumed to be atmospheric pressure.

The model derivation is based on an overall mass balance and
local energy balances around the valves of the system [10]. In

Fig. 1. An expanded view the flow reversal configuration surrounding the spiral-wound unit.

Fig. 2. Overall reverse osmosis system diagram.
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the model derivation, it is assumed that the water is incompress-
ible, all components are operated on the same plane (potential en-
ergy terms due to gravity are neglected), and the density of the
water is assumed to be constant. It is also assumed that the effec-
tive concentration in the RO unit is a weighted average of the feed
and retentate concentrations (Eq. (4)).

The model derivation results in two non-linear ordinary differ-
ential equations (ODEs), along with an algebraic expression for sys-
tem pressure. An equation for the osmotic pressure based on the
temperature and effective concentration in the membrane unit
was developed in [9], and is used as an estimate for various solu-
tions. Specifically, the model has the following form:

dvb

dt
¼

A2
p

AmKmV
ðvf � vb � vrÞ þ

Ap

qV
Dp� 1

2
Apevbv2

b

V
ð1Þ

dvr

dt
¼

A2
p

AmKmV
ðvf � vb � vrÞ þ

Ap
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Dp� 1

2
Apevrv2

r

V
ð2Þ

Dp ¼ dCeffðT þ 273Þ ð3Þ

Ceff ¼ Cfeedðaþ ð1� aÞðð1� RÞ þ Rðvf � vbÞ
vr

ÞÞ ð4Þ

Psys ¼
qAp

AmKm
ðvf � vb � vrÞ þ Dp ð5Þ

where q is the fluid density, V is the system volume, vf is the feed
velocity, Ap is the pipe cross-sectional area, Am is the membrane
area, Km is the membrane overall mass transfer coefficient, Cf is
the amount of total dissolved solids (TDS) in the feed, a is an effec-
tive concentration weighting coefficient, d is a constant relating
effective concentration to osmotic pressure, vb is the bypass flow
velocity, vr is the retentate flow velocity, Psys is the system pressure,
R is the fractional salt rejection of the membrane, evb is the bypass
valve resistance, and evr is the retentate valve resistance. Using
these dynamic equations, various control techniques can be applied
using the valve resistance values as the manipulated inputs (evb,
evr). At very small valve resistance values, the valve behaves as an
open pipe; as the valve resistance becomes very large, the valve be-
haves as a total obstruction and the flow velocity goes to zero [2].

In order to accurately model the valve dynamics and obtain
practical constraints, the concept of valve Cv is used. The definition
of Cv for a valve in a water system is presented in Eq. (6), where Q is
the volumetric flow rate through the valve.

Cv ¼
Qffiffiffiffiffiffiffiffi
Psys

p ð6Þ

Using a simplified energy balance around one valve:

dv
dt
¼ PsysAp

qV
� 1

2
Apevv2

V
ð7Þ

Steady-state is assumed, and the simplified energy balance is rear-
ranged to yield:

Cv ¼
1

Ap

ffiffiffiffiffiffiffiffiffiffiffi
1
2 qev

q ð8Þ

Depending on the type of valve and its flow characteristics, it is as-
sumed that the Cv value (and in turn, the ev values from the model)
can be related to the valve position (percentage open) through the
following logarithmic relation based on commercially available
valve data:

Op ¼ l ln
1

Ap

ffiffiffiffiffiffiffiffiffiffiffi
1
2 qev

q
0
B@

1
CAþ / ð9Þ

where l and / are constants depending on the valve properties. For
the model presented in this paper, the curve relating valve position
(Op) to resistance value (ev) is shown in Fig. 3. It can be seen in Fig. 3
that as the valve position goes to zero (fully closed), the valve resis-
tance values begin to grow at an increasing rate; and as the valve
approaches the fully-open position, the resistance values change
slowly. This treatment of the valve characteristics allows for con-
straints based on valve actuator speed to be incorporated into the
RO system model and into the controller calculations.

3. Model-predictive control of flow reversal

When switching the system into flow reversal mode, it is de-
sired to bring the feed velocity into the membranes (vfr) below
the velocity threshold; where the flow will not cause significant
water hammer when the solenoid valves are closed. In order to de-
crease the membrane feed velocity (vfr), it will be necessary to
open the bypass valve. It is desired to keep the system pressure
constant while decreasing the velocity so that the membrane and
system components will not be damaged. This can be done by clos-
ing the retentate valve while the bypass valve is being opened, in
such a fashion that the system pressure fluctuates less than a
pre-defined tolerance. MPC is used to complete this transition in
an optimal way.

When reversing the flow, the solenoid valves (si), arranged as
seen in Fig. 1, are opened/closed in a specific sequence. First, valves
s2 and s3 are opened, then valves s1 and s4 are closed. After these
actions are completed, the retentate and bypass valves can be
manipulated to return the process to the desired steady-state.
The normal steady-state operating point is used as the initial con-
dition for the mode switching. To determine the final state after
mode switching, the procedure is as follows: Using the normal
steady-state operating point, the pressure set point is calculated
using Eq. (5). In this case, Psp

sys ¼ 457:51 psi. Second, setting the by-
pass velocity to vf � 1:5 m/s (equivalent to setting vfr ¼ 1:5 m/s)
and using the desired pressure set point, the low-flow steady-state
operating point value for vlss

r can be determined. With the steady-
state values of vlss

r , vlss
b , and the pressure set point Psp

sys, the model
equations can be solved for the valve resistance values elss

vb and
elss

vr corresponding to the low-flow operating point. Following this
procedure, the low-flow steady-state operating point is known,
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Fig. 3. Valve resistance values (ev) vs. valve position.
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but the optimal path taken to get there from the initial operating
steady-state is not.

While it is desired to complete this flow direction switching
with minimal impact on the system pressure, and in the shortest
time possible, it is also necessary to factor in several system
parameters such as pressure variation allowed, the bypass stream
velocity as compared to the water hammer threshold, and the
amount of control energy expended. To account for these issues,
an optimization cost function is first proposed:

Cðx; x0;uÞ ¼
XncþN

i¼nc

a
PsysðiÞ

Psp
sys

� 1

 !2

þ b
vfrðiÞ
vwh

� 1
� �2

2
4

þc
evbðiÞ

elss
vb

� 1

 !2

þ evrðiÞ
elss

vr
� 1

� �2
0
@

1
A
3
5 ð10Þ

where nc is the current time-step, nc + N is the current time-step
plus the prediction horizon, and vwh is the water hammer threshold
velocity. The prediction horizon, N, is defined such that the optimi-
zation is performed from the current time-step to N time-steps in
the future (i.e., from t = tcurrent to t = tcurrent + Ntstep).

The values of the cost function of Eq. (10) depend on the initial
state of the system (x0) and the state of the system between t(nc)
and t(nc + N) (the state, x, is comprised of vb and vr). The cost func-
tion also depends heavily on the control actions used (u), and
weights given to the individual terms by the weighting coefficients
a, b, and c. As the optimization procedure is carried out, the opti-
mization algorithm allows for a set of non-linear constraints to
be employed. In this formulation, the following two hard actuator
constraints are enforced:

Opi P 0 ð11Þ

jdOpi

dt
j 6 Rmax

valve ð12Þ

The first constraint forces the valve position values to be positive,
since negative values of this variable would be physically meaning-
less. The second constraint sets a maximum rate of opening/closing
for the valves, Rmax

valve. Additional constraints can be added; con-
straints on maximum system pressure or other system variables
may be desirable for certain types of RO operations.

In order to optimize the constrained transition from normal
flow to low-flow and incorporate feedback into the calculation of
the control action, a non-linear model-predictive control (MPC)
formulation is implemented [4,5,13,14]. In this method, a time
frame for the transition is chosen, t = 0 to t = tf, along with an opti-
mization time-step tstep and a prediction horizon N. Using these
optimization parameters and the constraints along with the RO
system model and the cost function weighting parameters a, b,
and c, the MPC control scheme can determine an optimal pair of
control inputs, evb and evr, for each time-step.

The MPC optimization involves the following procedure:

1. The initial state vector and initial control value guesses are
passed to a non-linear optimization algorithm based on sequen-
tial quadratic programming.

2. The optimization algorithm numerically integrates the model
equations from t = tcurrent to t = tcurrent + Ntstep using the initial
state vector and control value guesses.

3. The resulting state vector is used to calculate the value of the
cost function.

4. A new set of control inputs are determined, and steps 2–4 are
repeated until a minimum cost value is found (i.e., minevb ;evr

Cðx; x0;uÞ) subject to the constraints of Eqs. (11) and (12).
5. Optimal control inputs for each tstep are made available to the

controller and actuators.

6. Only the first of the optimal control inputs, u(tcurrent), is applied;
the system of Eqs. (1) and (2) is numerically integrated for one
time-step (from t = tcurrent to t = tcurrent + tstep) using the first
optimal control value to yield a new initial state for the next
optimization.

7. The remaining optimal control values for the prediction horizon
are used as an initial guess for the computation of the control
values in the next step.

8. All steps are repeated for each optimization time-step from t = 0
to t = tf � tstep.

As implicitly stated above, all control values are applied in a
sample-and-hold fashion; that is, a control value used in the inte-
gration on the interval [tstepn�1 tstepnÞ is held constant over the en-
tire interval, and then a new control value is determined by the
optimization for the interval [tstepn tstepnþ1Þ.

4. Simulation results

4.1. Overview

In order to test the feasibility of MPC for feed flow reversal in a
reverse osmosis desalination system, several simulation studies
were carried out. Initially, it was desired to examine the effect of
using the model-predictive controller to switch between steady-
states when the process conditions are identical to the nominal
plant model. Using a sampling time approximately one tenth of
the system step response time, the model-predictive control for-
mulation is applied to the system with various prediction horizons.
These simulations are subsequently compared to an ‘‘open-loop
manually controlled” transition where the control inputs are
manipulated to their final values at the maximum rate allowed
by the constraints, as well as the case where the transition is con-
trolled using proportional–integral (PI) control.

Next, it was desired to simulate the switching between steady-
states in the presence of a plant-model mismatch on the feed TDS
value. The controller receives state feedback from the plant model
at the end of each time-step (i.e., measurements of vb and vr), but
an offset in system pressure and stream velocity is observed due to
the mismatched MPC controller. Simulations are conducted at sev-
eral prediction horizons, and an integral control input is applied
after the MPC reaches steady-state in order to bring the system
pressure back to the nominal pressure set point; see Table 1.

Finally, due to the relatively fast time scale of the system
dynamics, the use of a steady-state approximation of the dynamic
model equations (Eqs. (1) and (2)) was also investigated in the

Table 1
Process parameters and normal mode steady-state values (nss)

q = 1000 kg/m3

V = 0.04 m3

vf = 10 m/s
Ap = 1.27 cm2

Am = 30 m2

Km = 9.218 � 10�9 s/m
Cf = 10,000 mg/L
a = 0.5
T = 25 �C
R = 0.993
l = 24.270
/ = 153.554
d = 0.2641 Pa/(ppm*K)
vnss

b = 1.123 m/s
vnss

r = 4.511 m/s
Psp

sys = 457.51 psi
enss

vb = 5000
enss

vr = 310
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non-linear MPC formulation. Simulation results evaluating the
effectiveness of this approach are presented.

4.2. Optimal mode transition without plant-model mismatch

As described in the overview, the first simulations demonstrate
the switching to low-flow mode using model-predictive control
(MPC) in the case where the controller model and plant model
are identical. The controller uses measurements of the retentate
and bypass stream velocities (system states) and manipulates the
valve resistance values. In these simulations, the optimization
parameters were set as shown in Table 2. Additionally, the system
was simulated for 10 s (tf), and the prediction horizon, N, was var-
ied in each simulation. The results are presented in Figs. 4–6.

It can be seen that in the valve position and stream velocity
plots (Figs. 5 and 6), only a small difference is observed between
simulations with various prediction horizons. Even though the dif-
ference in control action is slight, a large effect is seen on the sys-
tem pressure, seen in Fig. 4. In the case of the smallest prediction
horizon (N = 1), the system pressure drops by approximately
55 psi before returning to the set point. It is seen that as the predic-
tion horizon increases, the maximum deviation from the system
pressure set point decreases, showing that the model-predictive

control horizon is instrumental in minimizing pressure
fluctuations.

The benefits of implementing MPC on the system pressure can
be seen even more clearly when the optimized cases are compared
to the ‘‘open-loop manually controlled” pressure in Fig. 7, where
the valves are adjusted to their final steady-state at the maximum
rate allowable by the constraints. In this case, a 100 + psi pressure
variation caused by the ‘‘open-loop manually controlled” operation
is observed; about two times larger than the one under MPC. Of
course, the acceptable pressure deviation during mode transition
depends on the specific RO process under consideration. However,
the proposed MPC approach to addressing this control problem is
flexible enough to allow for variation in the acceptable pressure
level. Furthermore, it is important to point out that one can

Table 2
Optimization parameters and low-flow mode steady-state values (lss)

t0 = 0 s
tstep = 0.1 s
a = 10,000
b = 100
c = 200
vwh = 1.5 m/s
vi

b = 1.123 m/s
vi

r = 4.511 m/s
Cc

feed = 10,000 ppm
Rmax = 10 %/s
vlss

b = 8.5 m/s

vlss
r = 0.267 m/s

Psp
sys = 457.51 psi

elss
vb = 87.322

elss
vr = 88,592

0 2 4 6 8 10
400

410

420

430

440

450

460

470

480

Fig. 4. Steady-state switching using MPC in the absence of plant-model mismatch:
system pressure vs. time for N = 1 (solid line), N = 3 (dashed line), and N = 5 (dotted
line), including pressure set point (horizontal line).
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Fig. 5. Steady-state switching using MPC in the absence of plant-model mismatch:
retentate and bypass stream velocities vs. time for N = 1 (solid line), N = 3 (dashed
line), and N = 5 (dotted line).
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Fig. 6. Steady-state switching using MPC in the absence of plant-model mismatch:
valve positions vs. time for N = 1 (solid line), N = 3 (dashed line), and N = 5 (dotted
line).
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formulate ‘‘hard” constraints on the pressure in the optimization
formulation of the MPC instead of penalizing the pressure devia-
tion in the cost function (which is a ‘‘soft” constraint formulation)
at the expense of restricting the feasibility region of the optimiza-
tion problem.

It was also desired to compare the performance of the MPC to
proportional–integral (PI) control. Two PI loops were implemented,
one loop measuring the bypass stream velocity and using the by-
pass valve resistance to bring the bypass stream velocity to the
water hammer threshold, and another loop measuring the system
pressure while adjusting the retentate valve to maintain the sys-
tem pressure at the set point. These two loops can be represented
as follows:

ur
PI ¼ KrðPsys � Psp

sysÞ þ
1
sr

Z tc

0
ðPsys � Psp

sysÞdt ð13Þ

ub
PI ¼ Kbðvb � vlss

b Þ þ
1
sb

Z tc

0
ðvb � vlss

b Þdt ð14Þ

Numerous closed-loop simulations were carried out under
various PI controller tunings in order to determine the best achiev-
able closed-loop responses. The best achievable closed-loop re-
sponses under two different approaches are presented: in the
first approach, the PI parameters (Kr = �30, Kb = 1000, sr = �30,
sb = 1000) were chosen so that the transition is accomplished in
a comparable amount of time to the MPC controlled case. It is ob-
served that this case has a poor transient closed-loop performance,
due to the presence of large oscillations. It is also noted that the
integral term of the PI controller is switched off when the control
action is saturated (reaches maximum rate constraint or valve po-
sition reaches 100%) to mitigate the effect of integrator wind-up in
the closed-loop system. In the second tuning approach, the PI
parameters (Kr = �5, Kb = 800, sr = �20, sb = 500) were chosen in
order to conduct the fastest response that does not exhibit any
oscillations during the transition between the original and final
steady-states. In this case, the pressure drops significantly more
than any of the MPC cases, and takes a much longer time to
converge back to the steady-state. The results can be seen in Figs.
8, 9. The comparisons of MPC with PI demonstrate that under the
MPC formulation, the pressure will deviate from the set point less

than the PI controlled case regardless of the PI tuning parameters.
The MPC also provides a smoother transition which is accom-
plished in less time.

In Fig. 10, it can be observed that the values of the cost function
decrease with increasing prediction horizon. The costs of these
MPC controlled transitions fall between a lower and upper bound;
if the pressure weighting in the cost function is set to zero (that is,
the pressure is allowed to deviate with no penalty) and transition
speed becomes the only factor in switching steady-states, then the
valves will be opened and closed as fast as possible (equivalent to
the ‘‘open-loop manually controlled” case). This situation leads to a
lower bound on the achievable cost since all of the MPC controlled
cases are penalized by pressure fluctuations. In the opposite situa-
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Fig. 7. Steady-state switching using MPC in the absence of plant-model mismatch:
system pressure vs. time for ‘‘open-loop manually controlled” case (solid line), N = 1
(dashed line), and N = 5 (dotted line), including pressure set point (horizontal line.)
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Fig. 8. Steady-state switching using MPC and PI in the absence of plant-model
mismatch: pressure vs. time for first PI approach (dashed line), second PI approach
(solid line), N = 1 (dotted line), and N = 5 (dash-dotted line), including pressure set
point (horizontal line).
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Fig. 9. Steady-state switching using MPC and PI in the absence of plant-model
mismatch: valve positions vs. time for first PI approach (dashed line), second PI
approach (solid line), N = 1 (dotted line), and N = 5 (dash-dotted line).
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tion, the MPC controlled cases should perform better than the max-
imum speed transition (again, the ‘‘open-loop manually con-
trolled” case) where the pressure is weighted equivalently to the
MPC controlled cases. It can be seen in Fig. 10 that all of the MPC
controlled cases at various prediction horizons fall between these
two bounds. It is also noted that the magnitudes of the cost func-
tion values depend on the individual weighting on each term, but
the trend will be independent of term weighting.

4.3. Optimal mode transition with plant-model mismatch on feed
quality

In order to evaluate the effectiveness of the MPC in the presence
of a disturbance, a plant-model mismatch was imposed on the feed

TDS value. In these simulations, the MPC algorithm continues to
use the nominal feed TDS value of 10,000 ppm, while the plant
simulation is conducted using the true feed value of 9000 ppm.

It can be seen in Fig. 11 that this plant-model mismatch results
in a sizeable pressure offset from the original set point. This offset
is due to the fact that the controller is using the nominal feed TDS
value in its calculations instead of the actual plant value. An offset
can be observed in the velocity and control action plots as well
(Figs. 12, 13), but to a lesser degree. The amount of offset also
changes when the prediction horizon is varied, due to the in-
creased performance of the optimization algorithm when the pre-
diction horizon is increased. If it is necessary to bring the system
pressure back to the nominal set point, integral control can be ap-
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Fig. 10. Total optimization cost vs. prediction horizon with upper and lower bounds
based on maximum transition speed.
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Fig. 11. Steady-state switching using MPC in the presence of plant-model
mismatch on feed TDS: system pressure vs. time for N = 1 (solid line), N = 3 (dashed
line), and N = 5 (dotted line), including pressure set point (horizontal line).
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Fig. 12. Steady-state switching using MPC in the presence of plant-model
mismatch on feed TDS: stream velocities vs. time for N = 1 (solid line), N = 3
(dashed line), and N = 5 (dotted line).
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Fig. 13. Steady-state switching using MPC in the presence of plant-model
mismatch on feed TDS: valve positions vs. time for N = 1 (solid line), N = 3 (dashed
line), and N = 5 (dotted line).
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plied to the system after the MPC has finished acting. This integral
term can be implemented in the following two ways: First,

ur
total ¼ urf

MPC þ
1
sr

i

Z tc

10
ðPsys � Psp

sysÞdt ð15Þ

where urf
MPC represents the final value for the MPC retentate valve

control action after reaching the steady-state determined by the
optimization, tc is the current time, and ðPsys � Psp

sysÞ is the error be-
tween the actual system pressure and the nominal set point pres-
sure, and sr

i is the integral time constant (sr
i ¼ 10). Second,

ub
total ¼ ubf

MPC þ
1
sb

i

Z tc

10
ðvb � vlss

b Þdt ð16Þ

where ubf
MPC represents the final value for the MPC bypass valve con-

trol action after reaching the steady-state determined by the opti-
mization, ðvb � vlss

b Þ is the error between the actual bypass
velocity and the low-flow steady-state bypass velocity, and sb

i is
the integral time constant (sb

i ¼ 1
30).

In the results presented in Figs. 14–16, it is seen that the MPC
optimization reaches a steady-state around t = 8 s; after this stea-
dy-state is reached, the MPC is deactivated and the integral control
is initiated at t = 10 s. In both cases, the offsets are eliminated; the
offset on pressure is eliminated in the case of the integral term
using pressure measurements, and the offset on bypass velocity
is eliminated in the second case. It can also be observed that the
system pressure deviates even more than the original offset in
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Fig. 14. Mode transition using MPC and integral control in the presence of plant-
model mismatch on feed TDS: system pressure vs. time for integral term based on
system pressure (solid line) and integral term based on bypass velocity (dashed
line) with pressure set point (dotted line) for N = 1.
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Fig. 15. Mode transition using MPC and integral control in the presence of plant-
model mismatch on feed TDS: bypass and retentate stream velocities vs. time for
integral term based on system pressure (solid lines) and integral term based on
bypass velocity (dashed lines) for N = 1.
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Fig. 16. Mode transition using MPC and integral control in the presence of plant-
model mismatch on feed TDS: valve positions vs. time for integral term based on
system pressure (solid lines) and integral term based on bypass velocity (dashed
lines) for N = 1.

0 1 2 3 4 5 6 7 8 9 10
300

350

400

450

500

550

600

Fig. 17. Mode transition using MPC in the absence of plant-model mismatch:
system pressure vs. time for algebraic steady-state MPC formulation (dashed line),
‘‘open-loop manually controlled” case (solid line), and first PI approach (dotted
line).
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the case where the integral term is based on the bypass velocity.
Other methods may be used to correct for MPC offset due to
plant-model mismatch; the approach followed here is only one
example. For more detailed information on PI controller tuning,
see [12].

4.4. Use of steady-state process model in MPC

Finally, the issue of reduction of the time needed to compute
the control action by MPC is investigated. Specifically, motivated
by the fast time-scale of the RO system dynamics, an algebraic
steady-state approximation of the model equations is used in place
of the dynamic model in the MPC formulation. In this case, the MPC
algorithm with a prediction horizon N = 1 takes the form:

In Figs. 17–19, the closed-loop system results (under the MPC)
using the steady-state algebraic equations with a sampling time
of 1 s are presented and compared to the ‘‘open-loop manually
controlled” case (where the valves are opened to their final stea-
dy-state at the maximum rate allowed).

In the stream velocity and control action plots (Figs. 18 and 19),
it is seen that the algebraic steady-state MPC formulation is very
similar to the ‘‘open-loop manually controlled” case, but the small
differences in control action have a large effect on the system pres-
sure. A large fluctuation in system pressure can be observed in Fig.
17, showing that even with a larger sampling time, a prediction
horizon of one, and only using steady-state algebraic equations
in the optimization algorithm, the MPC formulation still performs
much better than the ‘‘open-loop manually controlled” case. As ex-
pected, the steady-state MPC formulation does not perform as well
as the closed-loop system using the MPC with dynamic model
equations. In terms of computation time, it was found that the
steady-state algebraic MPC formulation and the MPC formulation
using the dynamic model computed the optimal control actions

in approximately the same amount of time (for any given predic-
tion horizon). The steady-state algebraic MPC formulation of Eq.
(17) is slightly faster in terms of computation time relative to the
MPC with the dynamic process model, but the benefits of increased
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Fig. 18. Mode transition using MPC in the absence of plant-model mismatch:
stream velocities vs. time for algebraic steady-state MPC formulation (dashed line),
‘‘open-loop manually controlled” case (solid line), and first PI approach (dotted
line).
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Fig. 19. Mode transition using MPC in the absence of plant-model mismatch: valve
positions vs. time for algebraic steady-state MPC formulation (dashed line), ‘‘open-
loop manually controlled” case (solid line), and first PI approach (dotted line).

min
evb ;evr

Xncþ1

i¼nc

a
PsysðiÞ

Psp
sys
� 1

 !2

þ b
vfrðiÞ
vwh

� 1
� �2

þ c
evbðiÞ
elss

vb

� 1

 !2

þ evrðiÞ
elss

vr
� 1

� �2
0
@

1
A

2
4

3
5

0 ¼
A2

p

AmKmV
ðvf � vb � vrÞ þ

Ap

qV
Dp� 1

2
Apevbv2

b

V

0 ¼
A2

p

AmKmV
ðvf � vb � vrÞ þ

Ap

qV
Dp� 1

2
Apevrv2

r

V

Opi P 0;
dOpi

dt

����
���� 6 Rmax

valve

Dp ¼ dCeffðT þ 273Þ;Ceff ¼ Cfeed aþ ð1� aÞ ð1� RÞ þ Rðvf � vbÞ
vr

� �� �

Psys ¼
qAp

AmKm
ðvf � vb � vrÞ þ Dp

ð17Þ

A.R. Bartman et al. / Journal of Process Control 19 (2009) 433–442 441



Author's personal copy

performance in the dynamic formulation far outweigh this discrep-
ancy in computation time. This result demonstrates that the
majority of computation time is used to perform the optimization,
and not to perform the integration of the dynamic system model in
the controller. Overall, it is more beneficial to use the dynamic
model in the closed-loop MPC algorithm with a dedicated proces-
sor to carry out the calculations.

5. Conclusions

In this work, a model-predictive control strategy for switching
between the normal flow operating steady-state and the feed flow
reversal steady state (where flow into the membrane units is low
enough to prevent water hammer when solenoid valves are closed)
was developed. First, a dynamic model of the process was devel-
oped as a function of the process parameters, feed concentration,
and the bypass/retentate valve resistance values. Using these valve
resistance values as control inputs, a non-linear optimization prob-
lem was formulated. Solving this optimization through a model-
predictive control framework, it was seen that a feedback-based
controller allowed the system to make the transition between stea-
dy-states with a much smaller variation in system pressure. The
MPC framework was also shown to have smaller pressure fluctua-
tions and shorter transition time than several well-tuned PI con-
trollers. Non-linear MPC was also shown to be beneficial in the
presence of plant-model mismatch. The feedback-based MPC algo-
rithm also improved the speed at which the stream velocities
reached the feed flow reversal steady-state, decreased the offset
between the actual final steady-state and the desired final stea-
dy-state, and damped oscillations in the control action. It was also
demonstrated that the benefits of using the dynamic MPC formula-
tion to provide increased system performance outweighed the
slightly decreased computation time of using the MPC with a stea-
dy-state process model.
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