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This work focuses on the design and implementation of a nonlinear model-based control system on an
experimental reverse-osmosis (RO) membrane water desalination system to address large set-point changes
and variations in feedwater salinity. A dynamic nonlinear lumped-parameter model is derived using first-
principles, and its parameters are computed from experimental data to minimize the error between model
predictions and experimental RO system response. This model then is used as the basis for the design of a
nonlinear control system, using geometric control techniques. The nonlinear control system is implemented
on the experimental RO system, and its set-point tracking and disturbance rejection capabilities are successfully
evaluated.

1. Introduction

Reverse-osmosis (RO) membrane desalination has emerged
as one of the leading methods for water desalination, because
of the low cost and energy efficiency of the process.1 The lack
of fresh water sources has necessitated further development of
these desalination plants, especially in areas with dry climates.
Even with advances in RO membrane technology, maintaining
the desired process conditions is essential to successfully
operating a RO desalination system. Seasonal, monthly, or even
daily changes in feedwater quality can drastically alter the
conditions in the RO membrane modules, leading to decreased
water production, suboptimal system performance, or even
permanent membrane damage.

To account for the variability of feedwater quality, a robust
process control strategy is necessary. In a modern RO plant,
automation and reliability are elements crucial to providing
personnel safety, achieving product water quality, meeting
environmental constraints, and satisfying economic demands.
Industrial RO desalination processes primarily use traditional
proportional and proportional-integral (PI) control to monitor
production flow and adjust feed pumps accordingly.2 While such
control strategies are able to maintain a consistent product water
(permeate) flow rate, they may fail to provide an optimal closed-
loop response, with respect to set-point transitions, because of
the presence of nonlinear process behavior.3,4 In some cases,
permeate production can decrease, because of scaling or fouling
on the membrane surface. When this occurs, traditional control
algorithms force the feed pumps to increase the feed flow rate,
leading to an increased rate of scaling, irreversible membrane
damage, and eventual plant shutdown. Traditional process
control schemes are also unable to monitor plant energy usage
and make adjustments toward energy-optimal operation.

Model-based control is a promising alternative to traditional
RO plant control strategies. Several model-based methods, such
as model-predictive control (MPC) and Lyapunov-based control,
have been evaluated via computer simulations for use in RO
desalination.5-7,13 Experimental system identification and MPC
applications can also be found in the literature.8,9 Model-based
control methods have also been used in conjunction with fault
detection and isolation schemes to improve robustness of control
methods in the presence of sensor and actuator failures.6 Other

automatic control methods utilize model-based control based
on a linear model;10 using step tests to create a model that is a
linear approximation around the desired operating point. Several
other traditional control methods have also been studied in the
context of RO system integration with renewable energy
sources.11,12

Motivated by the previously mentioned considerations, the
goal of this work is to evaluate the effectiveness of a feedback
linearizing nonlinear model-based controller through application
to an experimental RO desalination system. A RO desalination
system model is first derived based on mass and energy
balances.14 The parameters of the model are then computed
based on experimental data gathered from the experimental RO
desalination system, to minimize the error between model and
experimental system responses. This dynamic nonlinear model
is then used to derive a nonlinear feedback linearizing controller
to conduct set-point transitions of the retentate flow rate by
adjusting an actuated retentate valve. Efficient operation of the
retentate valve (and, in turn, of the retentate stream flow rate/
velocity) is integral to a RO system, because it (along with the
feed pump speed) controls the clean water production rate and
percentage of feedwater, which must be disposed of as waste.
The nonlinear model-based controller is then implemented on
the experimental system where it is shown to possess excellent
set-point tracking and disturbance rejection capabilities. The
nonlinear controller is also shown to outperform a PI control
system.

2. RO System Model

In this section, a fundamental model of a representative RO
desalination system is developed including all of the basic
elements present in UCLA’s experimental RO desalination
system. In this system, shown in Figure 1, water enters the feed
pump, which is equipped with a variable frequency drive (VFD),
and is pressurized to the feed pressure (Psys). The pressurized
stream enters the membrane module, where it is separated into
a low-salinity product (or permeate) stream with velocity Vp,
and a high-salinity brine (or retentate) stream with velocity Vr.
In the model, the individual spiral-wound membranes in series
are assumed to be one large spiral-wound membrane in one
large vessel, where any effects of individual membrane vessel
interconnections are neglected. The pressures downstream of
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the actuated valve and at the permeate outlet are assumed to be
equal to atmospheric pressure.

The model is based on a mass balance taken around the entire
system and an energy balance taken around the actuated retentate
valve (see ref 15 for more details on model development). In
the model derivation, it is assumed that the water is an
incompressible fluid, all components are operated on the same
plane (so potential energy terms due to gravity can be neglected),
and the density of the water is constant. It is also assumed that
the effective concentration in the membrane module is a
weighted average of the feed concentration and the brine stream
concentration (see eq 6 below). The model derivation results
in a nonlinear ordinary differential equation (ODE) for the
retentate stream velocity and an algebraic relation for the system
pressure. This model is an adaptation of a model developed in
our previous work used to describe a similar RO desalination
system.15 In the previous work, the system utilized a feed pump
with a constant feed flow rate but used a separate bypass stream
with an actuated valve to control the velocity of the water
feeding to the membrane units. An equation for the osmotic
pressure based on effective concentration and temperature in
the membrane unit was also developed in ref 16 and is used as
an estimate in the model. Specifically, an energy balance is first
taken around the retentate valve, which leads to the following
differential equation:

where Vr is the retentate stream velocity, Psys the system pressure,
Ap the cross-sectional area of the pipe, F the fluid density, V
the system volume, and evr the retentate valve resistance. To
compute an expression for the system pressure, in terms of the
other process variables, an overall steady-state mass balance is
taken to yield

where Vf is the feed stream velocity and Vp is the permeate stream
velocity. To get an expression for the system pressure, the
following classical expression is used for the computation of
the permeate stream velocity:

where Am is the membrane area, Km is the membrane overall
mass transfer coefficient, and ∆π is the difference in osmotic
pressure between the feed side of the membrane and the
permeate side. Substituting eq 3 into eq 2, the following
expression for the system pressure (Psys) is obtained:

where the osmotic pressure (∆π) and effective average con-
centration at the membrane surface (Ceff) on the feed side can
be computed from the following relations:

where Cf is the amount of total dissolved solids (TDS) in the
feed, a is an effective concentration weighting coefficient, δ is
a constant relating effective concentration to osmotic pressure,
T is the water temperature (in degrees Celsius), and R is the
fractional salt rejection of the membrane. Substituting eq 4 into
the energy balance equation of eq 1 yields the following
nonlinear ODE for the dynamics of the retentate stream velocity:

Using the aforementioned dynamic equation, various control
techniques can be applied using the valve resistance value (evr)
as the manipulated input. As the valve resistance goes to zero,
the valve behaves as an open pipe; as the valve resistance
approaches infinity, the valve behaves as a total obstruction and
the flow velocity goes to zero.17

To model the valve dynamics accurately, and to relate the
experimental results to the concept of valve resistance value
(eVr), the concept of valve CV is used. The definition of CV for
a valve in a water system is

where Qr is the volumetric flow rate (Qr ) ApVr) through the
retentate valve. To obtain an expression for Cv, as a function
of the retentate valve resistance (evr), we consider the steady-
state form of the energy balance of eq 1, solve the resulting
equation for Psys and substitute the resulting expression for Psys

into eq 8 to yield

Depending on the type of valve and its flow characteristics, it
is assumed that the Cv values (and, in turn, the evr values) can
be related to the valve position (percentage open) through the
following empirical logarithmic relation, based on commercially
available valve data:7

Figure 1. Reverse-osmosis (RO) system used for model development.
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Consolidating the constants and utilizing the properties of the
natural logarithm, this expression can be simplified as

where µ and φ are constants that are dependent on the valve
properties. The values of µ and φ for this model are taken from
a paper based on the same experimental system at UCLA.7 For
the model presented in this paper, the curve relating valve
position (Op) to resistance value (evr) is shown in Figure 2. This
figure shows that, as the valve position goes to zero (fully
closed), the valve resistance values begin to grow at an
increasing rate; in addition, as the valve approaches the fully
open position, the resistance values change slowly. The data
from the experimental system are also plotted on the figure,
and it can be observed that the data does not fit the same
logarithmic relation as the ideal valve curve. With respect to
the accuracy of the sensors measurements of Figure 2, the error
bars corresponding to these measurements have been computed
and are on the order of the markers used to denote the data
points; thus, they have not been included in Figure 2. Because
of the shape of the experimental data curve, the data are fit in
three segments with curve fits following a form similar to that
of the theoretical curve. The first curve fit is applied to valve
resistance values of evr ≈ 205-212 and takes the form

For evr ≈ 212-6200, Op is computed by

whereas, for evr > 6200, Op is computed by

This treatment of the valve characteristics allows for conver-
sion of the experimental values of Op to evr values in the model-
based nonlinear control algorithm, and allows for evr values
generated by the control algorithm to be translated to Op values
to be sent to the actuated valve on the experimental system.
Capturing the nonlinearity present in the valve is extremely
crucial when applying the control algorithms to the experimental
system.

2.1. Computation of Nonlinear Model Parameters
Based on Experimental Data. Most of the parameters of the
model of eqs 7-14, such as the membrane area (Am), water
density (F), cross-sectional area of the pipe (Ap), and system
volume (V) have constant values that can be obtained from the
experimental system. Another key model parameter, the overall
mass-transfer coefficient (Km) was computed to match the model
response to experimental step-test data. Specifically, Km was
computed using steady-state data from the experimental system
by minimizing the difference between the model steady state
and the experimental system steady state for various step tests.
The computed values of Km were then averaged to determine
the best value for use in the model used for controller design.
The values of the model parameters can be found in Table 1.

3. Control Algorithms

Two separate control loops are present in the control problem
formulation. The first loop regulates the system pressure by
adjusting the variable frequency drive speed (SVFD) directly
(effectively changing the feed flow rate). This control loop will
be termed “loop I”. In each set of experiments presented below,
a proportional-integral (PI) feedback controller is used to keep
the system pressure (Psys) at the set-point value (Psys

sp ) of 150
psi. This control algorithm takes the form

where SVFD is the control action applied to the VFD speeds, Kf

the proportional gain, and τf the integral time constant.

The second control loop (termed “loop II”) uses a nonlinear
model-based controller (for the purposes of comparison, P and
PI controllers are also used in loop II). The nonlinear controller
utilizes the error between the retentate velocity and its corre-
sponding set point, but it also takes into account many additional
system variables.18-20 Specifically, the nonlinear model-based
controller manipulates the actuated retentate valve position using
measurements of the feed flow velocity (Vf), feed salinity (Cf),
and retentate flow velocity (Vr). The nonlinear controller is
designed following a feedback linearization approach. To derive
the controller formula, the following linear, first-order response
in the closed-loop system between Vr and Vr

sp is requested:

Note that a first-order response is requested, because the
relative degree between Vr and evr is one.20 Using this approach,
the following formula is obtained for the nonlinear controller:

Figure 2. Correlation between valve resistance (evr) and the valve percentage
open (Op) value. Solid line (s) represents commercial theoretical data,
crosses (×) represent experimentally measured data, and dashed lines
(- - -) represent curve fittings to experimental data, using eqs 12-14.

Op ) µ ln evr + � (11)

Op ) -84.428 ln(evr) + 459.21 (12)

Op ) -2.0473 ln(evr) + 18.141 (13)

Op ) -0.0778 ln(evr) + 0.9476 (14)

Table 1. Process Model Parameters Based on Experimental System
Data

parameter value

F 1007 kg/m3

V 0.6 m3

Ap 0.000127 m2

Am 15.6 m2

Km 6.4 × 10-9 s/m
Cf 4842 mg/L
a 0.5
T 22 °C
R 0.97
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To achieve offset-less response, integral action is added to
the controller in eq 17 and the resulting controller takes the
form

As a baseline, the performance of the nonlinear controller is
compared to a traditional form of control (P or PI, depending
on the form of the nonlinear controller). Loop II, using P or PI
control, uses the retentate (or concentrate) stream flow velocity
to manipulate the actuated valve, to regulate the retentate stream
velocity/flow rate. Under P or PI control, the control system
for loop II takes the form(s):

or

where Qr is the retentate stream volumetric flow rate and Qr
sp is

the retentate stream flow rate setpoint.
In each set of experiments, the performance of the nonlinear

controller implemented on the experimental system is compared
to the performance of the nonlinear controller implemented on
the process model and to the performance of a P or PI controller
implemented on the experimental system. These loops are
diagrammed in Figures 3 and 4. The control algorithms were
programmed into the data acquisition and control software to
operate in real time with a sampling time of 0.1 s. In addition,
the actuated retentate valve is powered by an electric motor
with a maximum operating speed, which must be taken into
account when attempting to simulate the nonlinear controller
action. From testing on the experimental system, it was found
that the actuated valve could travel its entire range within ∼45
s; this provides an important constraint on the speed of valve
opening/closing in the simulations of the form:

To derive the constraint of eq 21, it is assumed that the valve
speed is independent of valve position (the valve always turns
at maximum speed). This is a physical constraint that is
intrinsically taken into account in the experimental results and
is programmed into the nonlinear model-based controller
simulation as well (to facilitate comparison). In addition, when
using the experimental system, the valve position is not allowed
to fall under 1%, and any values sent to the valve above 100%
are translated to the maximum value of 100% open. The lower

constraint (>1%) is enforced so that the system pressure will
not increase too rapidly. A constraint is also placed on the VFD
to avoid pressure spikes (a maximum VFD speed of 4.5/10 is
used). In the experiments presented in this work, the actuators
do not reach these constraints.

4. Experimental System Description

The experimental reverse-osmosis (RO) water desalination
system constructed at UCLA’s Water Technology Research
(WaTeR) Center was used to conduct the control experiments.
This experimental system is comprised of a feed tank, two low-
pressure feed pumps in parallel (which provide enough pressure
to pass the feedwater through a series of cartridge filters while
also providing sufficient pressure for operation of the high-
pressure pumps), two high-pressure pumps in parallel (each
capable of delivering ∼4.3 gpm (gallons per minute) at 1000
psi), and a bank of 18 pressure vessels that contained Filmtec
spiral-wound RO membranes. The high-pressure pumps are
outfitted with variable frequency (or variable speed) drives that
enable the control system to adjust the feed flow rate, using a
0-10 V output signal. The bank of 18 membranes are arranged
into three sets of six membranes in series; in addition, for the
control experiments presented below, only one bank of six
membrane units was used. The experimental system uses
solenoid valves controlled by the data acquisition and control
hardware to enable switching between multiple arrangements
of the membrane modules (two banks of six in parallel to one
bank of six in series, or any number of the modules in series),
while also allowing for control of the flow direction through
the membrane banks. After the membrane banks, an actuated
valve is present to control the cross-flow velocity (Vr) in the
membrane units, while also influencing system pressure. This
valve is used as an actuator for the control system utilizing the
control algorithms presented in section 3. The resulting permeate
and retentate streams are currently fed back into the tank in an
overall recycle mode; however, for field operation, the system
can be operated in a one-pass fashion.

The experimental system also has an extensive sensor and
data acquisition network; flow rates and stream conductivities
are available in real time for the feed stream, retentate stream,
and permeate stream. The pressures ahead of each high-pressure
pump, as well as the pressures before and after the membrane
units (feed pressure and retentate pressure), are also measured.
The system also includes sensors for measuring feed pH,
permeate pH, in-tank turbidity, and feed turbidity after filtration
(in real time). A centralized data acquisition system takes all
of the sensor outputs (0-5 V, 0-10 V, 4-20 mA) and converts
them to process variable values on the local (and web-accessible)
user interface, where the control system is implemented. The
data are logged into a local computer as well as onto a network
database, where the data can be accessed via the Internet, while
the control portion of the web-based user interface is only
available to persons with proper authorization. The data acquisi-
tion and control system uses National Instruments software and
hardware to collect the data at a sampling rate of 10 Hz and
perform the necessary control calculations needed for the
computation of the control action to be implemented by the
control actuators. A photograph of the system can be seen in
Figure 5.

5. Experimental Closed-Loop Results

In the control experiments presented in this paper, the
experimental system was turned on and the PI loop that
controlled the VFDs (loop I) was activated to bring the system
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pressure to a setpoint of Psys ) 150 psi. The retentate flow rate
was set to 1.5 gpm. After the system had been operating at this
steady state for a sufficient period of time, loop II was activated
to manipulate the retentate valve. All data taken from the
experimental system were averaged (after the experiments),
using a 19-point moving average to remove most of the
measurement noise. The following sets of experiments compare
the performance of the nonlinear controller with the performance

of the P and PI controllers. The closed-loop response observed
for the nonlinear controller applied to the dynamic process model
is used as a baseline for comparison of controller performance,
as well as to determine an approximate range of controller
tunings for the experimental system.

In the first set of experiments, the retentate flow rate setpoint
(interchangeable with the retentate velocity setpoint, Qr

sp ) Vr
spAp)

was changed from 1.5 gpm to 3 gpm, while loop I is maintained

Figure 3. Reverse-osmosis (RO) system under two proportional-integral (PI) control systems: square symbols indicate PI controllers and circular symbols
indicate measurement sensors (pressure (P), flow (F)).

Figure 4. Reverse-osmosis (RO) system under proportional-integral (PI) control adjusting the variable frequency drive (VFD) speed and nonlinear control
adjusting retentate valve position: square symbols indicate PI control and nonlinear control (NL) and circular symbols indicate measurement sensors (conductivity
(C), pressure (P), flow (F)).

Figure 5. UCLA experimental RO membrane water desalination system. Legend: (1) feed tank, (2) low-pressure pumps and prefiltration, (3) high-pressure
positive displacement pumps, (4) variable frequency drives (VFDs), (5) pressure vessels containing spiral-wound membrane units (three sets of six membranes
in series), and (6) National Instruments data acquisition hardware and various sensors.
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at a pressure setpoint of 150 psi. In these experiments, the
closed-loop performance of the nonlinear controller (without
integral action) implemented on the experimental system is first
evaluated against the performance of the simulated nonlinear
controller (using the derived process model) and the performance
of an experimentally implemented P controller. The feed salt
concentration for the first set of experiments was ∼5400 ppm
of sodium chloride (NaCl). The tuning parameters for the
controllers can be found in Tables 2 and 3. Both loops were
tuned (in the simulation and the experimental system) to achieve
a slightly underdamped closed-loop output response (i.e., fastest
approach to the steady state with minimal oscillatory output
response).21,22

The results of the experiments were recorded using the data
acquisition and control interface and are plotted in Figures 6-9.
In Figure 6, it can be seen that the simulated model-based
nonlinear controller yields a closed-loop response that converges
the fastest to the steady state and achieves the smallest offset
of any of the controllers. This result is expected, because the
simulated controller is not subject to any type of plant-model
mismatch or any measurement noise. The P controller imple-
mented on the experimental system shows a significant offset
(∼20% from the setpoint) and also demonstrates sustained
oscillations after it levels off. These fairly large oscillations in
retentate flow rate (caused by oscillations in the valve position)

also lead to oscillations in the system pressure. These oscillations
in the system pressure result in oscillations in the pump speed
(from loop I) and can be detrimental to the operating life of the
pumps. The nonlinear model-based controller (when applied to
the experimental system) is shown to have a much smaller offset
than the P controller in the same set-point tracking experiment
(∼3%-4% from the setpoint). Brief oscillations are observed
as the controller slightly overshoots the setpoint, but these
oscillations decay and the system quickly stabilizes at the new
setpoint. The smoothness of the closed-loop response under
nonlinear control is due to the fact that it takes into account the
action of loop I in the computation of the control action, while
the P controller neglects the highly coupled nature of the two
control loops. As the valve opens to allow for more flow through
the retentate line (as dictated by the P controller), the system
pressure decreases, causing loop I to increase the feed flow rate
to maintain the system pressure at the setpoint. As a result of
this, the retentate flow rate increases, forcing the P controller
acting on the retentate valve to begin closing the valve. This

Table 2. Loop I PI Controller Tuning Parameters for the First Set
of Experiments

parameter value

Kf 0.01
τf 0.1
Kf

sim 0.01
τf

sim 0.1

Table 3. Loop II Controller Tuning Parameters for the First Set of
Experiments (Parameters for Both Proportional and Nonlinear
Controllers)

parameter value

Kr 1
γ 0.6
γsim 0.6

Figure 6. Profiles of retentate flow rate (Qr), with respect to time, for
retentate flow rate set-point transition from 1.5 gpm to 3 gpm under
(- - -) proportional control, (s) nonlinear model-based control, and
(- · - · -) nonlinear model-based control implemented via simulation on the
process model. The horizontal dotted line denotes the retentate flow rate
setpoint (Qr

sp ) 3 gpm).

Figure 7. Profiles of system pressure (Psys), with respect to time, for retentate
flow rate set-point transition from 1.5 gpm to 3 gpm under (- - -) proportional
control, (s) nonlinear model-based control, and (- · - · -) nonlinear model-
based control implemented via simulation on the process model. The
horizontal dotted line denotes the system pressure setpoint (Psys

sp ) 150 psi).

Figure 8. Profiles of valve open percentage (Op), with respect to time, for
retentate flow rate set-point transition from 1.5 gpm to 3 gpm (- - -) under
proportional control and (s) nonlinear model-based control.
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interplay between the controllers causes the observed oscillations
and can result in an increased time to reach the desired setpoint.
Figure 7 shows that the simulated nonlinear controller demon-
strates the smallest deviation from the system pressure setpoint
(again, this result is expected, because the simulation is not
subject to plant-model mismatch or measurement noise).
Comparing the performance of the P controller and of the
nonlinear controller when they are applied to the experimental
system, it can be seen that the system response under the
nonlinear controller deviates slightly more than under the P
controller (∼5 psi in each direction), but the closed-loop pressure
under the P controller demonstrates sustained periodic oscillations.

When examining the valve movement in Figure 8, it can be
seen that each of the controllers has an equal initial slope,
because of the maximum valve rate of the opening/closing
constraint (eq 21). The nonlinear controller opens the valve to
a greater extent than the P controller, leading to a smaller offset
(larger retentate flow rate with higher valve position). The VFD
input profiles in Figure 9 show that, because of the larger valve
position value requested by the nonlinear controller, the VFD
must accelerate slightly to achieve the same system pressure.
When comparing the performance of the nonlinear controller
to the performance of the P controller for retentate set-point
changes (in Figure 6), it can be seen that, even though the
nonlinear controller causes slightly greater fluctuations in system
pressure, the offset from the setpoint is much smaller, and the
oscillations are minimized.

In the second set of experiments, the retentate flow rate
setpoint was changed from an initial value of 1.5 gpm to a new
value of 0.8 gpm, while the VFD control loop is again
maintained at a pressure setpoint of 150 psi. In this set of
experiments, the performance of the nonlinear controller with
integral term is evaluated against the performance of a PI
controller (both of these controllers are implemented experi-
mentally), and the performance of the nonlinear controller with
integral action applied to the dynamic process model via
simulations. The feed salt concentration for these experiments
was ∼8200 ppm of NaCl. The tuning parameters for the
controllers in this set of experiments can be found in Tables 4
and 5.

The results for the second set of experiments are plotted in
Figures 10-13. Results for an alternate PI controller tuning are
also presented in Figures 14-17. This alternate tuning was

presented to demonstrate the limited applicability of PI control
to this system under a range of integral time constants.

Figure 10 shows that all of the closed-loop results (simulated
and experimental) decrease at the same rate initially (due to
the valve opening/closing rate constraint). As expected, the
simulated nonlinear model-based controller with an integral term
immediately converges to the setpoint with no offset, because
it is not subject to any plant-model mismatch or measurement
noise. As it is evident in Table 4, the integral time constant for
the simulated controller is slightly different (τf ) 0.01, τf

sim )
0.0091). The simulations where the nonlinear controller was
applied to the process model were used to find an approximate
range of controller parameters, but these values were imple-
mented on the experimental system and changed slightly to
achieve better closed-loop performance in the presence of
plant-model mismatch. The speed of the closed-loop response
under the nonlinear controller applied to the experimental system
is slower, in terms of convergence to the setpoint, than that of
the simulated case and the retentate flow rate reaches the setpoint
within ∼145 s. The PI controller with τr ) 5 leads to an
extremely slow convergence to the setpoint (on the order of 10
min). In Figure 14, a PI controller with the same gain Kr but
with τr ) 0.7 is used to demonstrate the other extreme. This PI

Figure 9. Profiles of variable frequency drive speed (SVFD), with respect to
time, for retentate flow rate set-point transition from 1.5 gpm to 3 gpm
(- - -) under proportional control and (s) nonlinear model-based control.

Table 4. Loop I PI Controller Tuning Parameters for Second Set of
Experiments

parameter value

Kf 0.01
τf 0.1
Kf

sim 0.0091
τf

sim 0.1

Table 5. Loop II Controller Tuning Parameters for Second Set of
Experiments (Parameters for Both PI and Nonlinear Controllers)

parameter value

Kr 1
τr (see captions)
γ 0.6
τNL 10
γsim 0.6
τNL

sim 10

Figure 10. Profiles of retentate flow rate (Qr), with respect to time, for
retentate flow rate set-point transition from 1.5 gpm to 0.8 gpm under
(- - -) proportional-integral control with τr ) 5, (s) nonlinear model-based
control with integral action, and (- · - · -) nonlinear model-based control
with integral action implemented via simulation on the process model. The
horizontal dotted line denotes the retentate flow rate setpoint (Qr

sp ) 0.8
gpm).
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controller leads to a closed-loop response that converges to the
setpoint at a faster rate than the PI controller with τr ) 5;
however, as it can be seen, it results in significant oscillations
around the setpoint, because of the coupling between the two
control loops. These oscillations cause large fluctuations in the
feed flow rate (due to the VFD control loop) and could damage
the feed pumps and cause fatigue on system components.

Similar results are evident in Figure 11. The application of
the nonlinear controller to the experimental system causes the
most deviation from the pressure setpoint, because of the speed
at which it converges to the setpoint. It can be seen that the PI
controller causes almost no deviation from the setpoint (ap-
proximately the same as the simulated nonlinear controller),
because the convergence (change in valve position) is much
slower. As the valve closes, it causes the system pressure to
rise, forcing loop I to take action to keep the system pressure
at the setpoint. Slower valve actions allow more time for loop

I to act and keep the system pressure at the setpoint, such as
that in the case of the PI control with τr ) 5. When looking at
the case of the PI controller where τr ) 0.7 (Figure 15), it can
be seen that the initial pressure spike is much larger than in the
case where τr ) 5, but smaller than that under the nonlinear
controller.

It can be seen that a similar explanation applies in Figure
12, when looking at the valve positions for the various
controllers. Specifically, it is observed that the valve position
in the case of PI control (for both cases: τr ) 5 and τr ) 0.7 in
Figure 16) is much more erratic and results in oscillations. From
the results in the second set of experiments, it is again observed
that the nonlinear controller achieves quick set-point transition
with no offset (due to the addition of the integral term), while
minimizing oscillations to a higher degree than the PI controllers.
The SVFD profiles show a trend similar to that in the first set of
experiments (Figure 13); because of the fact that the valve
position value is smaller for the nonlinear controller, the VFD
speed slows down to maintain the set-point system pressure.

Figure 11. Profiles of system pressure (Psys), with respect to time, for
retentate flow rate set-point transition from 1.5 gpm to 0.8 gpm under
(- - -) proportional-integral control with τr ) 5, (s) nonlinear model-based
control with integral action, and (- · - · -) nonlinear model-based control
with integral action implemented via simulation on the process model. The
horizontal dotted line denotes the system pressure setpoint (Psys

sp ) 150 psi).

Figure 12. Profiles of valve open percentage (Op), with respect to time, for
retentate flow rate set-point transition from 1.5 gpm to 0.8 gpm under
(- - -) proportional-integral control with τr ) 5 and (s) nonlinear model-
based control with integral action.

Figure 13. Profiles of variable frequency drive speed (SVFD), with respect
to time, for retentate flow rate set-point transition from 1.5 gpm to 0.8 gpm
under (- - -) proportional-integral control with τr ) 5 and (s) nonlinear
model-based control with integral action.

Figure 14. Profile of retentate flow rate, with respect to time, for retentate
flowrateset-pointtransitionfrom1.5gpmto0.8gpmunderproportional-integral
control (τr ) 0.7). The horizontal dotted line denotes the retentate flow
rate setpoint (Qr

sp ) 0.8 gpm).
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As described in the Introduction, the variability of feedwater
quality is also an important issue when designing controllers
for RO systems. Although the time scales of feedwater quality
variation are usually quite large (hours, days, or even weeks),
the third set of experiments was designed to test the robustness
of the controller when presented with a large change in
feedwater quality on a smaller time scale (on the order of 10-30
s). The control parameters used in these experiments are shown
in Tables 6 and 7. As in the first two sets of experiments, the
retentate flow rate setpoint was 1.5 gpm, and the system pressure
setpoint was 150 psi. Two relatively large pulses of sodium
chloride (NaCl) were added to the system while it was operating
under nonlinear model-based control with integral action. The
feed concentration over the course of the experiment can be
seen in Figure 18. The first pulse of salt was added at ∼90 s,
bringing the feed conductivity from 5500 µS up to a final value
of near 7000 µS. The second pulse was added after the feed
salinity stabilized and brought the feed conductivity up to a final
value of ∼8000 µS (after mixing). The effects of these pulses

on valve position, retentate flow rate, and system pressure can
be seen in Figures 19-22.

Figure 19 shows that, through all of the feed salt concentration
changes, the nonlinear model-based controller keeps the retentate
flow rate within 2%-3% of the set-point value of 1.5 gpm.
Figure 20 also demonstrates that the control system is able to
keep the system pressure within similar bounds from the set-
point value of 150 psi. When examining the control action in
Figure 21, it can be seen that the valve closes slowly.
Specifically, as the feed concentration increases, the osmotic

Figure 15. Profile of system pressure (Psys), with respect to time, for retentate
flowrateset-pointtransitionfrom1.5gpmto0.8gpmunderproportional-integral
control (τr ) 0.7). The horizontal dotted line denotes the system pressure
setpoint (Psys

sp ) 150 psi).

Figure 16. Profile of valve open percentage (Op), with respect to time, for
retentate flow rate set-point transition from 1.5 gpm to 0.8 gpm under
proportional-integral control (τr ) 0.7).

Figure 17. Profile of variable frequency drive speed (SVFD), with respect to
time, for retentate flow rate set-point transition from 1.5 gpm to 0.8 gpm
under proportional-integral control (τr ) 0.7).

Table 6. Loop I PI Controller Tuning Parameters for Feed
Disturbance Experiments

parameter value

Kf 0.01
τf 0.1

Table 7. Loop II Controller Tuning Parameters for Feed
Disturbance Experiments

parameter value

γ 0.6
τNL 10

Figure 18. Profile of feed conductivity, with respect to time; disturbance
rejection experiment under nonlinear control with integral action.
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pressure resisting flow through the membrane also increases. If
the system pressure is kept constant, this forces a greater
percentage of the water to remain in the concentrate stream
(lower driving force through the membrane due to the osmotic
pressure increase). Because the retentate stream is controlled
at a setpoint of 1.5 gpm, the controller closes the actuated valve
to mitigate this effect. When examining the SVFD control action,
it can be seen that SVFD slowly decreases as the feed conductivity
increases. This trend is reasonable, because the water that is
entering the membrane units is facing more resistance, due to
increased osmotic pressure across the membranes. This increase
in osmotic pressure raises the system pressure for a fixed feed
flow rate; therefore, the VFDs must slow the feed flow rate to
maintain the set-point system pressure. Again, the nonlinear
controller is shown to perform very well in the presence of feed
salt concentration variability. Also note that the size of the
moving average window (1.9 s) is small enough to reduce most
of the measurement noise, but it is also small when compared
to the transient system response time. The disturbance rejection
experiment also shows that, when a large change in salinity
occurs in a short time, the system reaches steady state again on

the order of 100 s. In an industrial RO system, the feedwater
salinity will change much slower, on the order of minutes, hours,
or even days.

6. Conclusions

In this work, a nonlinear model-based control strategy was
developed and experimentally implemented on a reverse-osmosis
(RO) membrane water desalination system. First, a dynamic
fundamental model that describes the RO desalination system
was derived; the parameters of this model were then computed
using step test data from UCLA’s experimental reverse-osmosis
desalination system. Specifically, correlations were derived to
relate the actuator position to model parameters, and the
remaining model parameters were computed based on the
experimental data. A nonlinear model-based control algorithm
was then designed based on the constructed process model. This
nonlinear controller was implemented to manipulate the retentate
stream actuated valve, along with a proportional-integral
controller that was used to manipulate the variable frequency
drive speed, adjusting the feed flow rate. The performance of

Figure 19. Profile of retentate flow rate, with respect to time; disturbance
rejection experiment under nonlinear control with integral action (solid line).
The horizontal dotted line is the retentate flow rate setpoint (1.5 gpm).

Figure 20. Profile of system pressure (Psys), with respect to time; disturbance
rejection experiment under nonlinear control with integral action (solid line).
The horizontal dotted line is the pressure setpoint (Psys

sp ) 150 psi).

Figure 21. Profile of valve open percentage (Op), with respect to time;
disturbance rejection experiment under nonlinear control with integral action.

Figure 22. Profile of variable frequency drive speed (SVFD), with respect to
time; disturbance rejection experiment under nonlinear control with integral
action.
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the nonlinear controller was compared to the performance of
proportional and proportional-integral control algorithms, as
well as benchmarked against the simulated nonlinear model-
based controller during retentate flow rate set-point transitions.
It was demonstrated that the nonlinear controller is much better
suited to address the highly coupled system dynamics during
set-point transitions and was shown to outperform the traditional
control schemes. The model-based nonlinear controller also
performed well when the experimental RO system was subjected
to a series of large step changes in feed salt concentration. Our
future research plans in this direction will focus on (a) networked
control implementation, so that medium-scale RO desalination
processes can be operated in a remote fashion, and (b) networked
monitoring issues, to be able to facilitate detection and isolation
of control actuator/measurement sensor/control system faults.
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