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a b s t r a c t

This work focuses on the design and implementation of an optimization-based control system on an
experimental reverse osmosis (RO) membrane water desalination process in order to facilitate system
operation at energy optimal conditions. A nonlinear model for the RO process is derived using first prin-
ciples and the model parameters are computed from experimental data. This model is combined with
appropriate equations for reverse osmosis system energy analysis to form the basis for the design of a
nonlinear optimization-based control system. The proposed control system is implemented on UCLA’s
experimental RO desalination system and its energy optimization capabilities are evaluated.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

In recent years, the interest in the use of reverse osmosis mem-
brane desalination has increased due to the energy efficiency and
versatility of this process relative to other water desalination tech-
nologies [1]. Water shortages in various areas of the world have
necessitated further development of the reverse osmosis desalina-
tion process in order to provide clean drinking water to the people
in these regions. When operating a reverse osmosis desalination
process, it is imperative that the system conditions are monitored
and maintained at appropriate set-points in order to produce the
required amount of clean, potable water while preventing sys-
tem damage. Furthermore, with the rising cost of energy, it is
also desired to find operating methods to reduce the energy con-
sumption of reverse osmosis desalination processes in the presence
of feed water variability. This task requires the development and
implementation of effective feedback control strategies.

Traditionally, classical (i.e., proportional–integral (PI) or
proportional–integral–derivative (PID)) control algorithms have
been used to regulate process flow rates and adjust the system
pressure in order to achieve a desired rate of clean water production
[2]. In addition to classical control schemes, nonlinear model-based
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geometric control strategies have been developed to minimize the
effects of varying feed water quality and also to account and correct
for various faults that may present themselves during the operation
of a reverse osmosis desalination process [3,4]. Control methods
using model-predictive control (MPC) and Lyapunov-based con-
trol have also been evaluated using computer simulations [4–8].
With respect to results in the broad area of optimization-based
control, the reader may refer to the following papers for results
on real-time optimization (e.g., [9]), self-optimizing control (e.g.,
[10]), and extremum-seeking control (e.g., [11]). Reverse osmo-
sis system analysis using linear models and data-based models
using step-tests to create approximate linear models have also been
demonstrated [12]. Other control methods have also been evalu-
ated in the context of RO system integration with renewable energy
sources [13,14]. While the aforementioned control strategies are
able to maintain a constant permeate production rate and deal with
feed water variability, they do not directly optimize energy usage
by the reverse osmosis process.

Recently, extensive effort has been devoted to the issue of
reverse osmosis system energy consumption. In a typical seawater
RO system, the cost of energy can approach 45% of the total per-
meate production cost due to the fact that the system operation
can require very high feed pressures (around 1000 psi) in order
to achieve a desired permeate production rate [15–17]. Several
efforts have been made in order to decrease the energy required
by a reverse osmosis desalination system; these include work
in increasing membrane permeability leading to lower required
transmembrane pressure [18,19], optimization of RO module and
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Fig. 1. Simplified reverse osmosis (RO) membrane desalination system used in model development.

system configuration [20,21], and also the use of energy recovery
devices. In the area of energy optimization, it has been recently
shown that the specific energy consumption, or SEC (energy cost
per volume of permeate water produced), is useful as a metric
to quantify reverse osmosis desalination system energy usage.
Within the SEC framework, the issues of unit cost optimization
with respect to water recovery, energy recovery, system efficiency,
feed/permeate flow rate, membrane module topology [21–23], and
optimization of the transmembrane pressure subject to feed salin-
ity fluctuations have been studied [24]. However, no experimental
verification of the theoretically computed energy optimal operating
points was done in our previous work [21–24].

In this work, feedback control is integrated with an SEC-based
energy optimization algorithm in order to maintain RO system
operation at energy-optimal conditions. First, a reverse osmosis
desalination system model is derived from mass and energy bal-
ances. Next, the system model is used in conjunction with the
system energy usage analysis equations developed in [21,24] to
design an energy optimization-based controller. This controller
uses multiple system variables and a user defined permeate pro-
duction rate to calculate the optimal operating set-points that
minimize the specific energy consumption of the reverse osmosis
desalination system and satisfy the process and control system con-
straints. The optimization-based control system is implemented
in a multi-tiered fashion on UCLA’s experimental RO system and
the data from the experiments are shown to correspond closely to
the theoretically predicted energy consumption curves. This work
is clearly distinct from [3] where the emphasis was on nonlinear
dynamic modeling of the experimental RO system and on nonlinear
multivariable control.

2. RO system model

In order to utilize optimization-based control algorithms, a
reverse osmosis system model must be derived. A simple RO pro-
cess is used as the basis for the model derivation, as seen in Fig. 1;
this process captures the main characteristics of UCLA’s experimen-
tal RO system. In this process, the feed water enters at atmospheric
pressure and is pressurized by a high-pressure pump. The pressur-
ized feed stream is fed to the reverse osmosis membrane module
and is split into a clean water (permeate) stream, and a concen-
trated brine (retentate) stream. After the retentate stream exits the
reverse osmosis module, it passes through an actuated retentate
valve that can be used to adjust the retentate stream flow rate and
the system pressure.

For the model RO process in Fig. 1, mass and energy balances
are used to derive model equations for the retentate stream veloc-
ity and the system pressure. In the derivation, it is assumed that the
water is incompressible, all components are operated on the same
plane (i.e., potential energy terms due to gravity are neglected),
and the density of the water is assumed to be constant. Owing
to the fast dynamics of the process, the steady state representa-
tion of the model equations are used in the optimization algorithm
in this work. Specifically, using a kinetic energy balance around

the actuated retentate valve, the following steady state equation is
obtained:

0 = A2
p

AmKmV
(vf − vr) + Ap

�V
�� − 1

2
Apevrv2

r

V
(1)

where vr is the retentate stream velocity, Ap is the pipe cross-
sectional area, Am is the active membrane surface area, Km is the
overall mass transfer coefficient, V is the system volume, vf is the
feed stream velocity, � is the fluid density, �� is the osmotic pres-
sure difference across the surfaces of the membrane, and evr is the
retentate valve resistance. It is assumed that the equation for the
relationship between osmotic pressure and concentration can be
represented as:

�� = fosCfeed
ln(1/(1 − Y))

Y
(2)

where fos is an empirically obtained constant (fos = 78.7) [21], Cfeed
is the total dissolved solids concentration of the feed solution, and
Y is the overall system recovery:

Y = Qp

Qf
= Qp

Qp + Qr
= vp

vp + vr
(3)

where Qp is the permeate stream flow rate, vp is the permeate
stream velocity (this can also be represented by the mass balance,
vp = vf − vr), Qr is the retentate stream flow rate, and Qf is the feed
stream flow rate. The osmotic pressure difference (Eq. (2)) is also
utilized in the algebraic equation for system pressure, Psys, which
is derived from an overall system mass balance:

Psys = �Ap

AmKm
(vf − vr) + �� (4)

From Eq. (4), the permeate stream velocity (vp) can be determined
by:

vp = AmKm

�Ap
(Psys − ��) (5)

Additional information regarding the model derivation can be
found in [3]. The unknown system parameters (Km, V) were calcu-
lated from experimental step-test data and the resulting parameter
values can be found in Table 1. The other model parameters are
known properties of the experimental system (�, Ap, Am) and are
also listed in Table 1. For the optimization calculations conducted in
this work, velocity was given in terms of meters per second, pres-
sures given in Pascal, and flow rates were utilized in the units of
cubic meters per second.

Table 1
Process model parameters based on experimental system data.

� = 1007 kg/m3

V = 0.6 m3

Ap = 0.000127 m2

Am = 15.6 m2

Km = 9.7 × 10−9 s/m
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As mentioned above, the metric used to determine the energy
usage of the reverse osmosis desalination system is the specific
energy consumption, or SEC. The SEC is defined as [21]:

SEC = �P

Y
= Psys

Y
= PsysQf

Qp
(6)

where �P is the pressure generated by the high-pressure pump
(equal to Psys in this work because it is assumed that the raw feed
pressure is equal to atmospheric pressure) and Y is the water recov-
ery as defined in Eq. (3). The SEC can also be normalized with respect
to the osmotic pressure of the feed (�0) as follows:

SECnorm = SEC

�0
(7)

In this model formulation for the evaluation of system energy
usage, it is assumed that the salt rejection of the membranes is
equal to unity. In addition to the RO system model, it is also
important to model the correlation between valve resistance and
the valve setting as controlled in the experimental system. This
correlation is instrumental in allowing the feedback controller to
implement control actions on the experimental system; accom-
plished by translating the valve resistance into a valve position,
which can then be applied to the actuated retentate valve. The cor-
relation used in this work is similar to the correlation computed
in [3]; the valve position (Op) is related to the valve resistance by
five logarithmic relations, each used in a different range of valve
resistance values (or equivalently, a different range of valve posi-
tions). This increases the accuracy of the correlation in the work
presented in [3] where only three logarithmic relations are used to
fit the experimental valve data. The general form of the logarithmic
relation can be represented by:

evr = ˛ ln Op + ˇ (8)

where the values for ˛ and ˇ for each valve position range can be
found in Table 2.

The correlations are shown along with the manufacturer’s sug-
gested valve curve in Fig. 2. It should be noted that the valve in
these experiments is limited to 70% of its full range due to the fact
that the 10-turn valve is actuated with a 7-turn motor.

Table 2
Logarithmic correlation parameters for conversion of valve position to valve
resistance.

Position range ˛ ˇ

0–0.7% −512,287 −167,284
0.7–1.4% −12,425 11,043
1.4–7% −2052 7434
7–49% −1436 6092
49–70% −265 1554
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Fig. 2. Correlation between valve resistance value (evr ) and valve percentage open
(Op): commercial data (solid line), experimentally measured data (×), and curve
fittings to experimental data (dashed lines) using Eq. (8) and Table 2.

3. Optimization-based control for specific energy
consumption minimization

After the parameters of the system model Eqs. (1)–(4) have
been computed from the experimental step-test data [3], the

Fig. 3. Control diagram detailing data flow between measurement sensors, controllers, actuators, RO system user interface and optimization algorithm.
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Fig. 4. Energy optimization decision process conducted at each sampling time.

energy-optimal controller is designed in order to facilitate system
operation at the point of minimum specific energy consumption
(for a given rate of water production). Following [3], the experi-
mental system uses data acquisition software to record sensor data
in real time. This RO system user interface program is linked with
an optimization code (implemented in MATLAB) that performs the
energy optimization, which then sends the controller/actuator set-
points back to the RO system user interface to be implemented on
the system. As seen in Fig. 3, the RO system user interface receives
measurements of feed conductivity, feed flow rate, feed pressure,
retentate flow rate, and retentate concentration from the process
measurement sensors. The optimization code receives the data
from the user interface software and carries out the constrained
optimization algorithm (see Eq. (15)). When the optimal values for
feed flow rate set-point and valve position are determined, these
values are passed back to the user interface software and imple-
mented on the system. Since a certain permeate production rate is

commonly an operating requirement for RO desalination systems,
the optimization algorithm is constrained to finding the optimal
control values that satisfy the user-defined permeate production
rate set-point. This value for permeate flow rate set-point is user-
specified on the system user interface and is also transmitted to the
optimization algorithm along with the sensor data.

The objective of the optimization algorithm is to determine the
values of feed flow rate (vf ) and retentate valve resistance (evr) such
that the SEC at the operating condition is minimized and appropri-
ate constraints are satisfied. Substituting Eq. (4) into Eq. (1) and
solving for Psys, the optimization problem can be represented as:

min
vf ,evr

SEC = min
vf ,evr

�P

Y
= min

vf ,evr

�evr(vf − vp)2vf

2vp
(9)

Furthermore, during the optimization, several constraints are
imposed; the first of which dictates that a constant permeate pro-
duction rate is ensured:

vp = vset
p (10)

where vset
p is the permeate velocity set-point (vp is proportional to

Qp through the pipe cross-sectional area, Ap). Even though main-
taining a specific permeate flow rate will significantly constrain
the system, it is necessary because most RO systems are built to
address a specific demand for water production. The next con-
straints ensure that the actuator set-points are positive (negative
values have no physical meaning in the experimental system, and
the output of negative values may damage the actuators). For the
feed flow rate constraint, it is assumed that the feed flow rate is
greater than or equal to the permeate flow rate for any reasonable
operating condition (no back-flow into the modules through the
retentate stream). These constraints dictate that the feed flow rate
and the valve resistance (and therefore, the valve position) must be
positive.

vf > 0 (11)

evr > 0 (12)

It is also necessary to constrain the SEC values to be positive in
order to achieve the correct optimization variables. This constraint
is represented as:

SEC ≥ 0 (13)

Additionally, it is required that the system pressure is greater than
the osmotic pressure at the exit of the RO module. If this condition is
not satisfied, part of the membrane surface area near the exit region
of the module is not utilized to produce permeate water; due to the
low applied pressure, the flow across the membrane in this region
will actually be reversed (permeate water flowing back into the
feed stream). Operation in this region where the transmembrane
pressure at the exit region is below the osmotic pressure differ-
ence is undesirable, and the process is constrained to operate at or
above this limit. This constraint is also called the “thermodynamic
restriction” as presented in [21], and has the form:

Psys ≥ �0

1 − Y
(14)

In summary, the constrained optimization problem that yields
energy-optimal values for the feed flow rate and retentate valve
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Fig. 5. Schematic of RO portion of UCLA’s experimental RO membrane desalination system.

resistance can be formulated as follows:

min
vf ,evr

SEC = min
vf ,evr

�evr(vf − vp)2vf

2vp

vp = vset
p

vf > 0

evr > 0

SEC ≥ 0

Psys ≥ �0

1 − Y

0 = Psys

�
− 1

2
evr(vf − vp)2

(15)

On the experimental system, the optimization algorithm conducts
multiple steps at every sampling time in order to obtain the control
values (vf and evr) that minimize the SEC for the given perme-
ate flow rate. A detailed flowchart of this process can be found
in Fig. 4. First, a UDP (User Datagram Protocol) port is opened to
allow for data transmission between the programs. The RO system
user interface sends sensor measurements of the feed conductivity,
feed flow rate, valve position (converted to valve resistance value
as described in Eq. (8)), and permeate flow rate set-point to the
optimization algorithm approximately every 10 s. This timestep is
dependent on the time taken to conduct the optimization; after the
first step, each iteration takes between 1 and 5 s (for the optimiza-
tion conducted in this work). This timestep can be easily tailored
to a different RO system where optimization may take longer due
to larger disturbances in the feed or faster changes in system set-
points; it may also be allowable to conduct the optimization with
lower frequency (depending on the requirements of the system).
This repeated real-time optimization is particularly useful in sys-
tems where the feed concentration is highly variable or in situations
where the target permeate production rate may change over time.
After the optimization algorithm receives the raw sensor data and
current actuator set-points, the valve position is converted to a
valve resistance value (using Eq. (8)) for use along with the cur-
rent feed flow rate as initial guesses in the sequential quadratic
programming (SQP) optimization algorithm (after the first itera-
tion, the previous optimal values are used in order to provide faster
convergence). The system model (Eqs. (1)–(4)) is then used to cal-
culate the retentate flow rate, vr , permeate flow rate, vp, system
recovery, Y, system pressure, Psys, and finally the SEC. The calcu-
lated variables are checked against the constraints (Eqs. (10)–(14));
if the constraints are not satisfied, the SQP algorithm determines
new control values and repeats the process. If the constraints are

satisfied, the optimization algorithm determines if the SEC is min-
imized; if not, the SQP algorithm determines new control values
and repeats the process. If the constraints are satisfied and the SEC
is minimized, the resulting valve resistance is converted to a valve
position and the optimal control values are transmitted to the RO
system user interface via the UDP port.

Once the optimization algorithm calculates a feed flow rate set-
point and transmits it to the system user interface software, the PI
controller uses measurements of the feed flow rate to adjust the
variable frequency drive (VFD) in order to achieve the desired feed
flow rate set-point. The controller takes the form:

VFDset = Kf (Q sp
f

− Qf ) + Kf

�f

∫ t

0

(Q sp
f

− Qf )d� (16)

where VFDset is the variable frequency drive setting. In this work,
Kf = 0.05 and �f = 0.025. Finally, with the VFD PI controller operating,
the RO system user interface applies the actuated valve position
retrieved from the optimization code to the actuated retentate
valve on the experimental system.

Remark 1. Using the UDP data transmission is also advantageous
because the computer running the optimization algorithm could
be remotely located. This arrangement would allow for central-
ized energy optimization of multiple RO systems that are spatially
distributed, or could allow for a multi-objective optimization for-
mulation that takes into account the production and conditions of
multiple RO systems.

4. Experimental system description

The experimental reverse osmosis water desalination system
constructed at UCLA’s Water Technology Research (WaTeR) Cen-
ter was used for conducting the experiments; please see Fig. 5. This
experimental system is comprised of a feed tank, two low-pressure
feed pumps in parallel which provide enough pressure to pass the
feed water through a series of cartridge filters while also provid-
ing sufficient pressure for operation of the high-pressure pumps,
two high-pressure pumps in parallel (each capable of delivering
approximately 4.3 gal/min at 1000 psi), and a bank of 18 pressure
vessels containing Filmtec spiral-wound RO membranes. The high-
pressure pumps are outfitted with variable frequency (or variable
speed) drives which enable the control system to adjust the feed
flow rate by using a 0–10 V output signal. The bank of 18 mem-
branes are arranged into 3 sets of 6 membranes in series; and
for the control experiments presented below, only one bank of 6
membrane units was used (in the model, it is assumed that the 6
membranes in series can be represented by one RO module). After
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the membrane banks, an actuated valve is used to control the cross-
flow velocity (vr) in the membrane units, while also influencing
system pressure. The actuated retentate valve and the VFDs are
used as actuators for the control system utilizing the control algo-
rithms presented in Section 3. The resulting permeate and retentate
streams are currently fed back to the tank in a full-recycle mode, but
for field operation the system can be operated in a one-pass fashion.

The experimental system also has an extensive sensor and data
acquisition network; flow rates and stream conductivities are avail-
able in real-time for the feed stream, retentate stream and permeate
stream. The pressures before each high pressure pump, as well
as the pressures before and after the membrane units (feed pres-
sure and retentate pressure) are also measured. A centralized data
acquisition system takes all of the sensor outputs (0–5 V, 0–10 V,
4–20 mA) and converts them to process variable values on the local
(and web-accessible) user interface where the control system is
implemented. The data is logged on a local computer as well as on
a network database where the data can be accessed via the inter-
net. The data acquisition and control system collects the data at a
sampling rate of 10 Hz and implements the actions dictated by the
control system on the RO system user interface. More details on the
experimental system can be found in [3].

5. Results and discussion

In the experiments conducted in this work, the system was
initially turned on and the PI controller for feed flow rate was acti-
vated. When the system is operated, the permeate and retentate
streams are recycled to the feed tank (full-recycle mode). When
the system is operated in the full-recycle mode, the feed concen-
tration will not increase over time, since both the permeate and the
retentate streams are returned to the feed tank. This concentration
increase would only happen if the permeate stream was collected in
a separate vessel and only the retentate stream was recycled. Feed
solutions with several NaCl concentrations were used (1600 ppm,
1850 ppm, and 3500 ppm) for the experiments presented in this
work at pressures ranging from 110 to 170 psi. These operating con-
ditions are typical for the feed salinities presented; however, other
brackish water systems (5000–35,000 ppm TDS) and also seawa-
ter desalination systems (typically 35,000+ ppm TDS) will operate
at higher pressures and usually lower recoveries. After the system
reached a steady state, the nonlinear optimization program was
activated to begin transmitting the optimal set-point values to the
RO system interface. After the set-point values were received by the
RO user interface, the set-points were implemented on the actuated
retentate valve and the PI controller on the feed pump. The sensor
data taken from the experimental system were averaged (before
transmission to the optimization code) using a 19 point moving
average to remove the majority of the sensor noise. To obtain the
other experimental sub-optimal data points (points at higher SEC
values), the system was manually adjusted to achieve a range of
feed pressures and feed flow rates while maintaining the desired
constant permeate flow rate. This process was conducted in order to
demonstrate the accuracy of the energy usage model at sub-optimal
operating conditions (operating points with higher SEC than the
optimal operating point, since the optimization only provides the
optimal set-point values for the actuator/controller).

When the system is operating at a fixed permeate flow rate,
there exists only one degree of freedom with respect to the oper-
ating point. If the feed flow rate is changed, the pressure must
take on a specific value to ensure that the permeate flow rate
remains constant. The converse is true; if the system pressure is
changed, the feed flow rate must take on a specific value in order to
maintain the desired permeate flow rate. Because of this, for each
normalized permeate flow rate, a single curve exists to describe
the specific energy consumption at various recovery values [21].
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Fig. 6. RO system normalized specific energy consumption with respect to fractional
water recovery at a fixed permeate flow rate of 1 gpm and a feed salt concentration
of 1600 ppm; the dashed line represents the theoretical operating curve assuming
100% salt rejection by the membranes, the dash-dotted line represents the theoreti-
cal operating curve accounting for membrane salt rejection, the diamonds represent
experimental system data, and the solid line represents the thermodynamic restric-
tion.

The set of experiments presented in Figs. 6–10 demonstrates the
experimental system’s performance compared to the system per-
formance as predicted by the model for various feed solution salt
concentrations. Results for two of the feed solutions (1600 ppm and
1850 ppm) are demonstrated for two different permeate flow rate
set-points (1 gpm and 1.45 gpm). In the presentation of the results,
the SEC is normalized to SECnorm as discussed in Section 2.

From Figs. 6–10, it can be seen that the experimental sys-
tem operating points are very close to the theoretically predicted
operating points (in terms of specific energy consumption and
recovery), for the ideal case of 100% salt rejection by the mem-

0.5 0.55 0.6 0.65 0.7 0.75
2

4

6

8

10

12

14

16

18

Fractional water recovery

S
E

C
no

rm

Fig. 7. RO system normalized specific energy consumption with respect to frac-
tional water recovery at a fixed permeate flow rate of 1.45 gpm and a feed salt
concentration of 1600 ppm; the dashed line represents the theoretical operating
curve assuming 100% salt rejection by the membranes, the dash-dotted line repre-
sents the theoretical operating curve accounting for membrane salt rejection, the
diamonds represent experimental system data, and the solid line represents the
thermodynamic restriction.
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Fig. 8. RO system normalized specific energy consumption with respect to fractional
water recovery at a fixed permeate flow rate of 1 gpm and a feed salt concentration
of 1850 ppm; the dashed line represents the theoretical operating curve assuming
100% salt rejection by the membranes, the dash-dotted line represents the theoreti-
cal operating curve accounting for membrane salt rejection, the diamonds represent
experimental system data, and the solid line represents the thermodynamic restric-
tion.

branes. It can also be seen that no points are tested at higher
recoveries (above the energy optimal operating point dictated by
the controller) in order to demonstrate the existence of the min-
imum specific energy consumption. This is due to the fact that
the minimum of the theoretical SEC curve occurs at a point where
the physical limitations of the system components prevent exper-
imental system operation at higher recoveries than the optimal
one while maintaining the desired permeate flow rate set-point.
In Fig. 10, a larger deviation between experimental results and the-
oretical prediction at lower recovery values can be observed. This
is due to the fact that when examining the equation for SEC (Eq.
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Fig. 9. RO system normalized specific energy consumption with respect to frac-
tional water recovery at a fixed permeate flow rate of 1.45 gpm and a feed salt
concentration of 1850 ppm; the dashed line represents the theoretical operating
curve assuming 100% salt rejection by the membranes, the dash-dotted line repre-
sents the theoretical operating curve accounting for membrane salt rejection, the
diamonds represent experimental system data, and the solid line represents the
thermodynamic restriction.

0.35 0.4 0.45 0.5 0.55 0.6 0.65
3

4

5

6

7

8

9

10

Fractional water recovery

S
E

C
no

rm

Fig. 10. RO system normalized specific energy consumption with respect to frac-
tional water recovery at a fixed permeate flow rate of 1 gpm and a feed salt
concentration of 3500 ppm; the dashed line represents the theoretical operating
curve assuming 100% salt rejection by the membranes, the dash-dotted line repre-
sents the theoretical operating curve accounting for membrane salt rejection, the
diamonds represent experimental system data, and the solid line represents the
thermodynamic restriction.

(6)), it can be seen that at low recoveries, experimental errors (sen-
sor noise, etc.) on the recovery value have a larger effect on the
calculated SEC value since the recovery appears in the denominator.

Another issue with the theoretical and experimental minimum
points is that the resulting permeate salt concentration generally
increases with system recovery and can rise above the maximum
allowable permeate salt concentration. As mentioned previously in
this work, the water produced must maintain a salt concentration
below 500 ppm to be consistent with drinking water standards. In
Fig. 11, it can be seen that the permeate concentration remains
under or near the limit of 500 ppm for the feed solutions with
lower salt concentration; however, for the feed solution contain-
ing 3500 ppm of NaCl, the permeate salt concentration rises above
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Fig. 11. Permeate salt concentration with respect to fractional water recovery at a
fixed permeate flow rate of 1 gpm; experimental system data from a feed concentra-
tion of 3500 ppm (♦), a feed concentration of 1850 ppm (◦), and a feed concentration
of 1600 ppm (×). The dotted line represents the permeate salt concentration limit
of 500 ppm.
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500 ppm for the highest experimental recovery point. This issue
arises because the salt rejection (fraction of salt retained on the
feed side of the membrane channel) of the membranes is not con-
stant as assumed in the optimization problem in Eq. (15). It has
been found that the rejection of the experimental system generally
decreases at increasing recovery values (while the constant per-
meate flow is maintained). It is also found that the membrane salt
rejection is not constant at a given water recovery for different feed
solution conditions. The salt concentration in the permeate stream
increases with increasing recovery, which is observed in the data
in Fig. 11.

Since the rejection may be a complex function of the feed flow
rate and of the transmembrane pressure, it is very difficult to
include this expression in the model as a constraint since its explicit
functional form is not available. The rejection is also dependent
on (but not limited to) membrane structure, membrane composi-
tion, temperature, and the type of ions present in solution. Through
these considerations, it can be seen that the rejection will be a
complex function of the feed flow rate and of the transmembrane
pressure that is unique to each reverse osmosis desalination sys-
tem. If the rejection can be explicitly described in terms of feed
flow rate and transmembrane pressure, then this expression can
be used to theoretically determine the permeate concentration at
any operating point. An explicit expression for rejection could also
be used in the controller formulation as a constraint; in this way,
the optimization code could determine the lowest SEC operating
point that satisfies the permeate salt concentration standard. In
the present work, the membrane rejections for the different water
recoveries corresponding to the operating points were determined
experimentally and used to re-compute the theoretical operating
curve at the user-specified permeate flow rate. The resulting oper-
ating curve, accounting for membrane salt rejection, is shown in
Figs. 6–10 as the dashed line, and is very close to the experimentally
computed operating points.

Remark 2. In the most likely situation (as in the current work),
the expression for salt rejection dependence on process parame-
ters is not known; therefore, the controller cannot use the rejection
(and subsequently, the permeate concentration) as an explicit
constraint in the model-based optimization. The simplifications
resulting from the lack of knowledge of the salt rejection expres-
sion result in the plant-model mismatch observed in the presented
data. This mismatch results in the values of the theoretical pre-
diction for the model with complete salt rejection to be, at times,
closer to the experimental data collected (although both of the the-
oretical projections are still equally close to the experimental data
within experimental error). Under these circumstances, additional
controller operations must be defined in order to “step back” the
system operating conditions from the water recovery that gives
the optimal SEC to a lower recovery value that provides permeate
quality meeting the drinking water standards. It is proposed that
the system can institute a procedure where, first, the variable fre-
quency drive speed is increased (this will increase permeate flow
rate, ensuring that the total permeate production stays at or above
the required value); then, the system will open the retentate valve
until the permeate flow rate drops back to the set-point value. In
this way, the recovery should be decreased, while the salt rejec-
tion should increase, leading to a lower concentration of salt in the
permeate stream. A feedback control loop measuring the permeate
salt concentration can be used to determine when the permeate
quality has reached the desired level; at this point, the “stepping
back” procedure can be stopped.

It is also noted that in this work, other important feed water
components, such as boron, were not monitored. As these compo-
nents must be reduced below prescribed limits, it would also be
possible (given on-line concentration measurements) to incorpo-

rate these limits into the controller formulation presented here as
constraints. The resulting controller would be able to use these new
measurements along with the existing measurements to ensure
that the permeate composition met required standards.

6. Conclusions

In this work, an optimization-based control strategy was devel-
oped and experimentally implemented on a reverse osmosis (RO)
membrane desalination system. First, a non-linear model of the
system was derived from first principles and was combined with
a model for RO system specific energy consumption to form
the basis for the design of an optimization-based control sys-
tem. The model parameters were computed using experimental
system step-test data. The control system uses real-time sensor
data and user-defined permeate flow requirements to compute
in real-time the energy-optimal set-points for the retentate valve
position and feed flow rate. Implementation of the control sys-
tem on UCLA’s experimental RO system demonstrated its ability
to achieve energy-optimal operation that is very close to the theo-
retically predicted energy consumption curves. Future work in this
area can include monitoring of other important feed and permeate
components (such as boron), investigating scheduled system oper-
ation to reduce energy costs based on variations of the electricity
price, and accommodating feed/product water storage issues.
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