
Desalination 316 (2013) 154–161

Contents lists available at SciVerse ScienceDirect

Desalination

j ourna l homepage: www.e lsev ie r .com/ locate /desa l
Data-driven models of steady state and transient operations of spiral-wound RO plant

Xavier Pascual a, Han Gu b, Alex R. Bartman b, Aihua Zhu b, Anditya Rahardianto b, Jaume Giralt a,
Robert Rallo c, Panagiotis D. Christofides b, Yoram Cohen b,⁎
a SCITA, Departament d'Enginyeria Química, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007 Tarragona, Catalunya, Spain
b Department of Chemical and Biomolecular Engineering, Water Technology Research Center, University of California, 5531 Boelter Hall, Los Angeles, CA 90095-1592, USA
c BioCENIT, Departament d'Enginyeria Informàtica i Matemàtiques, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007 Tarragona, Catalunya, Spain

H I G H L I G H T S
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The development of data-driven ROplant performancemodelswas demonstrated using the support vector regres-
sion model building approach. Models of both steady state and unsteady state plant operation were developed
based on awide range of operational data obtained froma fully automated small spiral-woundROpilot. Single out-
put variable steady state plant models for flow rates and conductivities of the permeate and retentate streams
were of high accuracy, with average absolute relative errors (AARE) of 0.70%–2.46%. Performance of a composite
support vector regression (SVR) based model (for both streams) for flow rates and conductivities was of compa-
rable accuracy to the single output variable models (AARE of 0.71%–2.54%). The temporal change in conductivity,
as a result of transient system operation (induced by perturbation of either system pressure or flow rate), was de-
scribed by SVRmodel, which utilizes a time forecasting approach, with performance level of less than 1% AARE for
forecasting periods of 2 s to 3.5 min. The high level of performance obtained with the present modeling approach
suggests that short-term performance forecasting models that are based on plant data, could be useful for
advanced RO plant control algorithms, fault tolerant control and process optimization.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

Water desalination by reverse osmosis (RO) membrane technolo-
gy has been increasingly deployed for potable water production from
seawater and water reuse applications including municipal wastewa-
ter and agricultural drainage (AD) water. Most RO plants are designed
to operate at relatively steady state conditions with traditional con-
trol strategies to attain the target permeate productivity and quality.
Given the complexity of RO plants, plant process models, which con-
sider specific plant characteristics and equipment, are needed to de-
scribe both steady state and dynamic plant operations in order to
optimize water production and design robust process control strate-
gies [1–4].

The development of first principle deterministic models of RO plant
behavior requires fundamental knowledge of the complex physical
phenomena that govern plant operational dynamics including, but not
+1 310 206 4107.

rights reserved.
limited to, behavior of sensors and actuators, concentration polarization
[5], membrane fouling [6] and mineral scaling [7]. For example, mem-
brane fouling can lead to permeate flux decline when operating under
constant transmembrane pressure or increased net driving pressure
under constant flux operation [7]. Deterministic plant models that are
a priori predictive of fouling and mineral scaling would clearly be of
practical value; however, given the challenge of accounting for the com-
plex interplay among various fouling [8] and scaling mechanisms [9],
such models are lacking for industrial size plants [8]. Admittedly, com-
mercial RO systemdesign software (e.g.,Winflows [10], CAROL [11] and
ROSA [12]), which are built on the basis of deterministic and semi-
empirical models, can be used to simulate steady state operation of
RO plants. Mechanistic computational (CFD) models of RO desalination
have also been advanced over the last few decades [13] focusing on
either simple membrane channel geometries or modeling of single
membrane modules. Efforts to incorporate the impact of fouling on
the operation of spiral-wound membranes in theoretical and CFD
models have also been recently proposed [13–15] and hold promise
for adoption in full-scale plant models. The use of both computational

http://dx.doi.org/10.1016/j.desal.2013.02.006
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CFD models and software design packages for accurate simulation of
real-time plant performance is limited since such models typically do
not account for complex plant hydraulics, evolution of fouling and
mineral scaling throughout the plant, and plant equipment perfor-
mance over time (e.g., pumps, valves, sensors, etc.).

Data-driven algorithms (i.e., models based on plant data) represent
another class ofmodels capable of providing an effectivewayof describ-
ing plant behaviormaking use of historical plant data without having to
rely on predetermined process parameters that are needed by deter-
ministic models [16]. Data-driven models are well suited for accurately
describing complex and non-linear systems. Suchmodels can be trained
to recognize and learn the characteristics of the plant that affect overall
process performance. One advantage of data-driven models is that they
can self-adapt (through incremental learning) to changes in operating
conditions [17]. Data-driven models (e.g., based on process operational
data) can be integrated within control systems [18] by facilitating the
development of virtual sensors capable of inferring the properties of
manufactured products [19], that provide the basis to improve plant
control strategies [20], in addition to data-driven models of membrane
based separation processes [21].

Over the past two decades, there has been a growing interest in
developing data-driven models, based on machine learning methods,
to describe membrane performances (e.g., transmembrane flux and
rejection) and fouling in membrane separation processes that include
microfiltration (MF), ultrafiltration (UF), nanofiltration (NF) and re-
verse osmosis (RO). Artificial neural networks (ANN) based models
for NF membrane salt rejection [22] were reported with average abso-
lute deviation not greater than 5%. ANN based models of fouling of hol-
low fiber membranes were reported for a bench-scale system [8]
enabling a single composite model for transmembrane pressure cover-
ing the various stages of fouling, while piecewise fitting was required
when using deterministic fouling models (cake formation, surface
blocking and pore blocking models). ANN based models [23] were
also developed for resistance of UF membranes with a reported perfor-
mance of average absolute error of 10%.

Data-driven models of membrane desalination (NF and RO) have
been proposed to describe various aspects of steady state process per-
formance with respect to salt rejection [16,22,24,25], permeate flux
[24,26], as well as modeling of membrane fouling [8,27,28]. For exam-
ple, back-propagation ANN models were used [25] to model the rejec-
tion of NaCl and MgCl2 salts (based on laboratory scale steady state NF
plant data for salt feed concentration of 5000–25,000 mg/L) demon-
strating average absolute deviation of 5%. In the above work, models
of different ANN architectures and training algorithms were assessed
for two different sets of input variables (feed pressure or permeate
flux and feed salt concentration) with salt rejection as the output vari-
able. More recently, an interesting approach to modeling steady state
RO plant performance was proposed in which the use of the product
of salt rejection and permeate flux was introduced as an index of
plant performance [24]. Using data for spiral-wound RO desalting of
aqueous sodium chloride solutions, an ANN model was developed
(input parameters included salt concentration, feed temperature, feed
flow rate and feed pressure) for the plant performance index which
demonstrated higher performance for salt concentrations of 6000 mg/
L and 30,000 mg/L.

The majority of efforts on the development of data-driven RO pro-
cessmodels have focused on the use of ANN algorithms given their abil-
ity to describe complex non-linear behavior [34]. However, suchmodels
require optimal ANN architecture while avoiding over-fitting and con-
vergence to local minima [29]. Support vector machine (SVM) algo-
rithm is an alternative method for developing data-driven models
since it is based on the Structural Risk Minimization principle and
thus avoids the convergence to localminima,while avoiding over fitting
through control of the number of support vectors [30]. The use of SVM is
especially useful for developing non-linear controllers as has been
demonstrated in recent studies involving membrane based and other
industrial processes [31–33]. For example, SVM based non-linear pre-
dictive functional control design was applied to a coking furnace, im-
proving the regulatory capacity for both reference input tracking and
load disturbance rejection compared with traditional PFC and PID con-
trol strategies [31]. A Least squares (LS)-SVM model was shown to be
effective for developing a non-linear temperature controller for a pro-
ton exchange membrane fuel cell plant [32,34]. SVM, in addition to ra-
dial basis function (RBF)-based ANN, was also reported effective in
developing a data-driven model [33] of fouling of a membrane bioreac-
tor (quantified via flux decline) making use of eight input parameters
(e.g., membrane aperture, aeration gas quantity, initial membrane
flux, operating pressure, water temperature, pumping time, sludge con-
centration and sludge granule). SVM as well as back-propagation ANN
algorithms were also applied to developing forecasting models of
brackish water RO plant performance [35], with respect to permeate
flow rate and salt passage, where variability of up to 25% and 10% was
experienced with respect to the normalized permeate flux and salt re-
jection, respectively. It was shown, that time-series ANN based models
enabled forecasting of salt passage and permeate flow rate up to 24 h
with similar prediction errors for the SVM and ANN models (average
absolute relative errors of 1.2% and 6.6%, respectively). The above
models while suitable for long-term plant response (order of hours
and above), do not capture short-time scale dynamic responses (order
of seconds to minutes) of the system (e.g., due to sudden changes in
input pressure or feed flow rate) which would be necessary, for
example, for real-time plant control and fault detection.

Data-drivenmodels could be particularly useful for use in plant con-
trollers, identification of deviation of plant behavior from the expected
norm, for sensor fault detection and even for smoothing of fluctuations
in sensor data. However, such models must be able to accurately de-
scribe plant performance not only under steady state conditions, but
more importantly under unsteady state operation and over time scales
that capture short-time transients. Accordingly, the present work pre-
sents an approach for the development and integration of both steady
and unsteady state data-driven plant models of RO desalting based on
support vector regression (SVR). It is shown that SVR models can accu-
rately describe RO plant performance (e.g., permeate and retentate flow
rates and their respective salinities) based on basic operational plant
parameters (i.e., feed flow rate, feed pressure and feed conductivity).
Moreover, data-drivenmodels for transient plant operation can provide
accurate performance forecasting that is suitable for fault-tolerant con-
trol of RO plants.

2. Experimental procedure

2.1. Feed solution and materials

Aqueous salt feed solutionswere prepared using analytical grade so-
dium chloride (Fisher Scientific, ACS grade, Pittsburgh, Pennsylvania) in
deionized (DI) water. Solutions of two different salt concentrations
were utilized (7500 and 5000 mg/L)with the feed solutionsmaintained
at pH~7. Spiral-wound RO membranes that were utilized in pilot RO
system (Dow Filmtec XLE-2540, The Dow Chemical Company, Midland,
Michigan) were 2.5 inch (outer diameter) 40 inch long elements
(0.0635 m and 1.02 m, respectively) with an average surface area of
2.6 m2. A single membrane element had a manufacturer reported per-
meateflow rate of 3.2 m3/day, and a salt rejection of 99%, as determined
at a pressure of 6.9 bar for a 500 mg/LNaCl solution. Eachmembrane el-
ementwas contained in a separate pressure vessel with sixmembranes
connected in series.

2.2. Description of experimental equipment

Data for model development were generated using the UCLA spiral-
woundMini-Mobile-Modular (M3) pilot ROdesalination system shown
schematically in Fig. 1 [3,36,37]. The M3 system was designed for
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Fig. 1. Configuration of the Spiral-wound RO pilot plant.

Table 1
Relative standard deviation for the range of steady state plant operating parameters
covered in the studya.

Variable Minimum Maximum Av. STDV (%)

Feed flow rate (m3/h) 0.26 0.67 0.85
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permeate water production capacity up to 1.2 m3/h (7560 gallons/day)
for brackish water (5000 mg/L TDS) operating at 75% recovery and up
to 0.64 m3/h (4058 gallons/day) for seawater desalination (at recovery
of 40%) using up to 18 spiral-wound elements in various configurations.
In the present study, a configuration of six elements in series was uti-
lizedwith the system operating in a total recyclemodewith the perme-
ate and concentrate streams returned to the feed tank. Briefly, the M3
RO plant consisted of a 450 L feed tank with two low-pressure feed
pumps (Model JM3460-SRM, Sea Recovery, Carson, CA) pumping the
RO feed through a series of cartridge microfilters (5 μm, 0.45 μm and
0.2 μm; 08P GIANT, pleated 177 polypropylene filter cartridges, Key-
stone Filter, Hatfield, PA). The M3 was operated such that the filtered
feed was fed to the RO membranes via two-high pressure pumps
(Danfoss Model CM 3559, 3HP, 3450RPM, Baldor Reliance Motor, Sea
Recovery Corp. Carson, California) operating in parallel and controlled
by variable frequency drives (VFDs) (Model FM50, TECO Fluxmaster,
Round Rock, Texas). The retentate flow rate and pressure in the RO
unit were set by amodel-based controller [36] that adjusts both electri-
cally actuated needle valve (valve V-1) (model VA8V-7-0-10, ETI Sys-
tems, Carlsbad, California) on the retentate stream of the M3 RO
system and the pump VFD. In order to maintain the temperature of
the RO feed, a heat exchanger (Model BP 410-030 Refrigerant heat ex-
changer, ITT Industries) was installed on the retentate side of the RO
system. Permeate and retentate streams of the M3 were monitored
in-line via conductivity sensors, conductivity/resistivity sensor elec-
tronics (Signet 2839 to 2842 and Signet 2850, George Fischer Signet,
Inc. El Monte, California) and pH sensor (DryLoc pH electrodes 2775,
George Fischer Signet, Inc. El Monte, California). The conductivity me-
ters were calibrated over the expected concentration range for the
study. The M3 plant was equipped with a centralized data acquisition
system which receives all sensor outputs (0–5 V, 0–10 V, and 4–
20 mA) which are then converted to process variable values. The data
were logged into a local computer as well as onto a network database.
Data could be logged at a frequency range as high as 1 kHz, although
for the present study a frequency of a 1 Hz was employed.
Feed conductivity (μS) 9842 15,828 0.44
Feed pressure (bar) 8.13 24.62 0.43
Retentate flow rate (m3/h) 0.14 0.53 0.80
Retentate conductivity (μS) 11,539 24,907 0.29
Retentate pressure (bar) 3.59 11.29 0.99
Permeate flow rate (m3/h) 0.03 0.28 1.66
Permeate conductivity (μS) 628.58 4024 0.44

a The Av. STDV=
XN
i¼1

STDVi=Vi ;ave

 !
=N where STDV is the standard deviation for the

given variable within a steady state trace i, Vi,ave is the average variable value for the

given trace, and N is the number of the experimental steady state traces (or experi-

ments). Note: The salinity conversion factors for the permeate and retentate streams

were S=4.337·10−4·C1.0201 and S=3.833·10−4·C1.0391 respectively, where S is sa-

linity (mg/L total dissolved solids) and C is conductivity (μS).
2.3. Experimental procedure

RO desalting experiments covered the range of operating conditions
permitted by the operability limit of theM3 system for the specific feed
salinities. The M3 control system was programmed to autonomously
step through a range of feed flow rates and transmembrane pressures.
Feed flow rate and pressure were varied by changing the speed of the
high-pressure pumps and the actuated valve settings (Fig. 1). Feed
pressure was varied by changing the actuated valve position while
maintaining a constant feed flow rate (constant VFD), allowing the
plant to operate until the attainment of steady state. The above
experiments covered feed pressure and feed flow rate ranges of 6.9–
26 bar (or 100–375 psi), and 0.23–0.68 m3/h (or 1–3 gpm), respectively.

3. Model development

3.1. Data pre-processing

Operational M3 pilot data were acquired for both steady state oper-
ations, as well as for transient periods (except plant startup and shut-
down), for which there were pressure and flow rate step changes of
up to 15% and 25%, respectively. Operational parameters were recorded
at a frequency of 1 Hz for each steady and during transitions between
states. The recorded steady state data (Table 1) included natural plant
fluctuations (i.e., due to operation of pumps and valves) as well as
noise from normal operation of sensors, actuators and system pumps.
However, in developing the data-driven models data smoothing was
not employed given the small variance of the noise, and the objective
of developing a simulator for the actual plant operation.

Data-drivenmodels of the state-the-plant (i.e., steady state) for per-
meate and retentate flow rates and conductivities were first developed
from recorded data selected at 0.1 Hz sampling frequency in order to
accelerate model training. The steady state period was established as
that for which the measured process variables did not vary with time
by more than 3% with respect to the time-averaged values. In all cases
only the last fiveminute trace from the steady state periodwas utilized.
Models for transient operation describing the evolution of permeate
and retentate conductivities were developed based on data acquired
from experiments in which the operating conditions were perturbed
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from steady state. Steady state was generally reachedwithin a period of
about 10 min after the perturbation. Higher frequency captured data
(0.5 Hz) were utilized for modeling transient operation. Although
data were logged by the M3 at an even higher frequency, use of higher
frequency data would increase data redundancy and correspondingly
also increase the computational time for model training.

Data for model developments were normalized in the range of [0,1]
using min–max normalization:

y nð Þ
i ¼ yi−min yð Þ

max yð Þ−min yð Þ ð1Þ

where yi
(n) is the normalized value of the experimental data (yi) and

min(y) and max(y) are the minimum and maximum variable values
in the data set. Subsequently, the data were divided into two sets, one
for model training and the other for model testing. Data selected for
training were used to adjust the model while test data (i.e., data that
have not been used for model development) were used to evaluate
model performance. In order to obtain state-of-the-plant models with
good generalization capability, the training dataset was selected to
cover the entire plant operational domain (i.e., applicability domain;
[40]). Data for model testing were also selected within the applicability
domain to avoid extrapolation during predictions. In all cases, complete
steady state and transient sequences were selected for the training and
test sets. For the transientmodels, self-organizing-maps (SOM) analysis
[38] of the transient data was first performedwhereby operational data
of similar patterns were clustered in SOM cells. Training and test data
for the transient models were then selected from the different cells in
order to ensure that adequate data representation is achieved for the
whole operational domain.

3.2. Support vector regression (SVR) models

Since the relationships among process variables in the RO process
are highly non-linear, both the steady state and unsteady state plant
performance models (Sections 3.3 and 3.4) were developed using the
support vector regression (SVR) algorithm [39,40]. Briefly, given a vec-
tor x of RO process variables (e.g., feed pressure, feed flow rate, and feed
conductivity), the goal of SVR is to find a function f(x) that has atmost ε
deviation with respect to the actual values of a given target RO process
variable y (e.g., permeate conductivity) and at the same time is as flat as
possible (Fig. 2). SVR can be formulated as a convex optimization prob-
lemwhere a set of coefficientsw for the regressionmodel are computed
in such a way that the flatness and the accuracy of f(x) are maximized.
Since it is not always possible to keep the error within the margin ε for
all the available data points, a pair of slack variables ξ and ξ⁎must be in-
troduced within the SVR formulation to cope with otherwise infeasible
Fig. 2. Support vector regression structural parameters. Regression function f supported on th
the hyperplane generated, the kernel function ϕ, the vector of biases b, slack variables ξ an
constraints in the optimization (Fig. 2). In most cases, the optimization
problem can be solved more readily by projecting x (i.e., the vector of
the input RO process variables) onto a higher-dimensional space
where linear regressionmodels can be developed for the target RO pro-
cess variable of interest. The functions used to perform the above linear
to non-linear mapping are known as kernel functions. Finally, non-
linear models relating input and target variables can be obtained by
mapping the data back to its original (i.e., non-linear) space of RO pro-
cess variables. In the SVR formulation only a subset of the training data
points, representing the overall data behavior (i.e. support vectors), are
used to generate the regression model (Fig. 2).

In the current work, the kernel function used for model develop-
ment was the radial basis function (RBF) which is suitable for highly
non-linear behaviors [40]. The parameter characterizing this kernel is
the width of the Gaussian, σ, which determines the area of influence
of the support vectors over the data space and here its optimal value
was determined via grid search. The SVR basedmodels were developed
in MATLAB using the LS-SVMlab1.7 package [41,42]. This SVR imple-
mentation utilized a regularization parameter γ, which controls the
tradeoff between the flatness (or smoothness) of the models and their
accuracy, whose optimal value was also determined via a grid search.
Table 2 summarizes the optimal values of σ and γ obtained via grid op-
timization for each model.

The performance of the different models (Sections 3.3 and 3.4) was
quantified using the linear r2 correlation coefficient (between the predict-
ed, yi⁎, and experimental, yi, variables) and by the percent average abso-
lute (AAE) and average absolute relative (AARE) errors defined as:

AAE ¼ 1
n

Xn
i¼1

y�i −yi
�� �� ð2Þ

AARE ¼ 1
n

Xn
i¼1

y�i−yij j
yi

� 100 ð3Þ

where n is the total number of data points.

3.3. State-of-the-plant models

State-of-the-plant (STP)modelswere developed for steady state op-
eration using feed flow rate, feed conductivity and feed pressure as
input parameters. The data for the steady state segments (for the
range of operating conditions listed in Table 1) were divided into train-
ing (60% of data, 2394 samples) and test (40% of data, 1596 samples)
sets. Two differentmodeling approaches were implemented. First, indi-
vidual models (Eq. (4)) were constructed for each of the four target
output variables (permeate flow rate, permeate conductivity, retentate
e most representative vectors of information (support vectors),w the normal vector to
d radius of the insensitive tube ε.



Table 2
Performance of SVR based models for predicting steady state RO plant performance
based on individual single output parameter models and a composite model. a

Model Predicted variable γ σ AAE AARE (%) r2

Individual Permeate flow rate (m3/h) 4200 8.8 0.013 2.46 0.994
Individual Permeate conductivity (μS) 4200 8.8 21.72 1.24 0.999
Individual Retentate flow rate (m3/h) 4200 12 0.011 0.70 0.998
Individual Retentate conductivity (μS) 4200 8.8 110.16 0.75 0.998
Composite Permeate flow rate (m3/h) 1000 7 0.011 2.54 0.993

Permeate conductivity (μS) 22.74 1.32 0.999
Retentate flow rate (m3/h) 0.011 0.71 0.998
Retentate conductivity (μS) 117.01 0.80 0.997

a γ — regularization parameter; σ — width of the Gaussian; AAE and AARE are the
average absolute and average absolute relative errors, respectively, and r2 is the linear
correlation coefficient.
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flow rate and retentate conductivity), followed by a composite output
parameters (OP) model to simultaneously predict the four output vari-
ables with the same three input parameters (Eq. (5)),

Fi ¼ f Cf ;Qf ; Pf

� �
ð4Þ

Cp;Qp;Cr ;Qr

h i
¼ f Cf ;Qf ; Pf

� �
ð5Þ

where Fi is one of (permeate flow rate, permeate conductivity, retentate
flow rate, or retentate conductivity), C, Q and P are conductivity, flow
rate and pressure, respectively, and the subscripts f, p and r refer to
feed, permeate and retentate streams, respectively. For the individual
OP models the optimal value of γ was 4200 for all the target variables.
The optimal value of σ was 12 for the retentate flow rate model and
8.8 for the permeate flow rate, permeate conductivity and retentate
conductivitymodels. The optimal γ and σ parameters for the composite
OP model were 1000 and 7, respectively.

3.4. Unsteady state models

Data-driven unsteady state plant models for the conductivity of
the retentate and permeate streams were developed using a model-
ing structure that considers a time marching approach (Fig. 3). In
this approach, the data-driven transient model is constructed to en-
able a marching forecasting prediction of stream conductivities at a
prescribed period of time, Δt, forward of elapsed time τ from the
Time

C
on

du
ct

iv
ity

Cinitial
C(τ)

C( + t)

Cfinal

t0 tf

Δt

τ Δ

τ τ+Δt

τ

Fig. 3. Illustration of a transient conductivity tracewith input and output parameters used
in Eq. (6a) for predicting the evolution of conductivity between the initial and final steady
states (Cinitial and Cfinal) at times t0 and tf, respectively. The parameters τ and τ+Δt refer to
the elapsed time relative to to and forecasting period, respectively.
change in operating conditions at t0 (i.e., τ= t− to). Accordingly, the
transient model is expressed as

C τ þ Δtð Þ½ � ¼ f C τð Þ;Cinitial;Cfinal; τ;Δtð Þ ð6aÞ

in which steady state data for the modeled stream conductivities,
prior to and post the perturbation of the steady state operating condi-
tion, are input variables that are in turn predicted from the steady
state plant model (Section 3.3, Eq. (5))

Cinitial;Cfinal½ � ¼ f Cf ;Qf ; Pf

� �
ð6bÞ

in which Cinitial and Cfinal are the stream conductivities at time to and tf, at
the given initial steady state operation and the new steady state, respec-
tively. The optimal γ and σ parameters for building the SVR composite
OPmodel were 10,000 and 18, respectively. Finally, the transientmodels
were developed based on a dataset of 122 different unsteady state runs
(60were utilized formodel testing), covering the range of operating con-
ditions given in Table 1, in which either pressure and flow rates were
perturbed by up to 15% and 25%, respectively.

4. Results and discussion

4.1. State-of-the-plant model

State-of-the-plant (STP) model (Section 3.3) was first developed in
order to establish the base model for steady state operation of the RO
plant (Section 2.3). Performances of the individual and composite OP
models are provided in Table 2. Individual OP models predicted perme-
ate and retentate flow rates with average absolute errors (AAEs) of
0.013 m3/h (2.46% AARE) and 0.011 m3/h (0.70% AARE), respectively,
for permeate and retentate flow rate ranges of 0.023–0.295 m3/h (0.1–
1.3 gpm) and 0.136–0.522 m3/h (0.6–2.3 gpm), respectively. Similarly,
permeate and retentate conductivities were predicted with AAE levels
of 21.7 μS (1.24% AARE) and 110.2 μS (0.75% AARE) (Table 2), respec-
tively, for corresponding conductivity ranges of 630–4000 μS and
11,500–25,000 μS. The correlation coefficient (r2) for the linear correla-
tion (predicted versus measurements) was in all cases ≥0.994.

The composite OPmodel provided simultaneous prediction of all four
output parameters at a similar level of accuracy (Table 2; Fig. 4). Perme-
ate and retentate flow rates (Fig. 4a and b, respectively) were predicted
with average absolute errors of 0.011 m3/h (corresponding to 2.54% and
0.71% AARE for the above two streams). Conductivities of the permeate
and retentate stream (Fig. 4c and d respectively) were predicted with
AAE values of 22.7 μS (1.32% AARE) and 117.0 μS (0.80% AARE), respec-
tively (Table 2). The r2 linear correlation coefficient was ≥0.993 for the
composite OP model. For both the individual and composite OP models,
AARE values for the predictions were greater for the permeate flow rate
and conductivity relative to predictions of these parameters for the
retentate stream. This trend is not surprising given the higher absolute
values of the above parameters for the retentate stream.

The difference in performance of the composite and individual OP
models was on average less than 0.05% (Table 2). Overall, the AARE
for the steady state individual and composite OP models were for the
permeate flow rate (2.46% and 2.54%, respectively). The above perfor-
mance level suggests that there is little advantage to using the individ-
ual OP models relative to the composite OP model, particularly given
that the latter is more convenient. Compared with the present SVR
models, predictions obtained using the commercial ROSA software
[12] (suitable for the present membrane elements, Section 2.1) are of
lower accuracy, e.g., with AARE of 23% and 27% for the salinity of the
permeate and retentate streams, respectively. The retentate and perme-
ate flow rates were underpredicted and overpredicted, respectively, by
ROSA (AARE of 19% and 68%, respectively). The above behavior is not
surprising since ROSA predictions were based on the manufacturer
membrane permeability and without consideration of the efficiency of



Experimental permeate flow rate [L/s]

0.00 0.02 0.04 0.06 0.08

P
re

di
ct

ed
 p

er
m

ea
te

 fl
ow

 r
at

e 
[L

/s
]

0.00

0.02

0.04

0.06

0.08

c

Experimental permeate conductivity [μS]

0 1000 2000 3000 4000

P
re

di
ct

ed
 p

er
m

ea
te

 c
on

du
ct

iv
ity

 [m
S

]

0

1000

2000

3000

4000

a

Experimental retentate flow rate [L/s]

0.00 0.05 0.10 0.15 0.20

P
re

di
ct

ed
 r

et
en

ta
te

 fl
ow

 r
at

e 
[L

/s
]

0.00

0.05

0.10

0.15

0.20

d

Experimental retentate conductivity [μS]

12000 16000 20000 24000

P
re

di
ct

ed
 r

et
en

ta
te

 c
on

du
ct

iv
ity

 [μ
S

]

10000

12000

14000

16000

18000

20000

22000

24000

b

Fig. 4. Comparison of experimental and composite model predictions for: (a) permeate, and (b) retentate conductivities; and (c) permeate and (d) retentate flow rates.
Note: In order to maintain clarity of presentation only the predicted averages are plotted (along with a bar depicting the standard deviation) for each steady state data trace.

Table 3
Performance of the transient operation models for prediction of permeate and retentate
conductivities for different forecasting periods.

Permeate Retentate

Δt (s)(a) AAE (μS) AARE (%) r2 AAE (μS) AARE (%) r2

2 1.55 0.12 1 8.98 0.07 1
30 6.16 0.47 0.999 38.12 0.27 0.999
60 7.91 0.58 0.999 44.86 0.32 0.999
80 8.49 0.60 0.999 47.30 0.34 0.999
90 8.72 0.62 0.999 48.62 0.34 0.999
120 9.54 0.66 0.999 50.85 0.36 0.999
180 10.91 0.73 0.999 51.87 0.37 0.999
210 11.58 0.76 0.999 54.21 0.38 0.999

(a) Forecasting period Δt, (t=τ+Δt; Eq. (6a)).
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various plant components. In contrast, the SVR models were based on
the actual experimental performance data and thus such data-driven
models can serve as more reliable plant-specific operational models.

4.2. Transient operation models

Data-driven models of unsteady state (or transient) plant operation
can be useful in refining plant operational control strategies by enabling
prediction of plant dynamic response post perturbation from steady
state operation. In this regard, it is noted that plant hydraulic response
is generally fast. In the present RO plant flow rate transients were
typically of the order of a few seconds relative to much longer system
response (order of minutes) with respect to transients of retentate
and permeate conductivities. Accordingly, from the perspective of
plant control, state-of-the plant models may be sufficiently effective
for predicting the retentate and permeate flow rates upon pressure or
feedflow rate transitions. In contrast, the dynamics of the conductivities
of these streams (e.g., due to feed flow rate, feed salinity and pressure
perturbations) are influenced by salt dispersion through the system
and stabilization of salt flux through the membrane. For example, for
the present RO pilot, transient periods of up to 10 min were required
to reach steady state, with respect to salinity of the permeate and
retentate streams, as a result of feed pressure perturbations.

Several data-driven models were developed to predict the transient
response of permeate and retentate conductivities at different forecast-
ing periods (i.e., Δt, Section 3.4, Eq. (6a)) in the range of 2 to 210 s
(Table 3). Longer forecasting periods (i.e., >210 s) were not considered
since model accuracy decreased significantly due to reduction of
available training data with increasing Δt (see Fig. 3). Illustrations of
model tracking of themeasured permeate conductivities, for a set of dif-
ferent transient trajectories (induced by 5–15% perturbation of the ap-
plied pressure), are provided in Fig. 5, for model forecasting period
(i.e., Δt) of 30 s. Forecasting at Δt=30 s (Fig. 5) was highly accurate,
for a range of different dynamics, with average AAE and AARE for the
above transients being 6.16 μS and 0.47%, respectively. The average
AAE corresponding to the retentate conductivity (Table 3) at the same
conditions was slightly higher with a value of 38.12 μS (0.27% AARE).
At the longer forecasting period of 120 s, permeate conductivity AAE
and AARE were 9.54 μS and 0.66% respectively. Errors in retentate con-
ductivity predictions were somewhat higher with AAE in the range of
50.85 μS (0.36% AARE).
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As expected, forecasting errors for conductivities increased (Table 3),
for both the permeate and retentate streams, as the amount data available
for model training decreased with increasing forecasting period (Fig. 3).
The above trend is depicted in Fig. 6 for both the permeate and retentate
conductivities. For the forecasting period range of Δt=2–210 s, errors in
predictions of the permeate and retentate streams were in the range of
AAE=1.55–11.58 μS (AARE 0.12–0.76%) and AAE=8.98–54.21 μS
(AARE 0.07–0.38%), respectively (Table 3). Forecasting at very short
times (e.g., Δt=2s) is likely to be of limited value for plant control
since differences in the transient data are very small over such short
time intervals. However, predictions at longer forecasting periods
(i.e., larger Δt) of up to 210 s (Fig. 6, Table 3) were excellent with an
AARE of 0.44% and 0.23% for the conductivity of the permeate and
retentate streams, respectively. The somewhat lower AARE for the
retentate conductivity predictions can be attributed to the greater accura-
cy of the state-of-the-plant models for predicting Cinitial and Cfinal (Fig. 3)
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retentate conductivities as a function of the forecasting period (Δt) averaged for each
forecasting period over the transient test traces for the range of operating conditions
given in Table 1.
for the retentate (0.8% AARE) relative to the permeate (1.32% AARE)
streams. However transient predictions for both streams were clearly of
reasonable comparable accuracy.

5. Conclusions

The development of data-driven RO plant performance models was
demonstrated using the support vector regression model building ap-
proach. Models of both steady state and unsteady state plant operation
were developed based on a wide range of operational data obtained
from a fully automated small spiral-wound RO pilot. Single output vari-
able steady state plant models for flow rates and conductivities of the
permeate and retentate streams were of high accuracy. Performance of
a composite SVR basedmodel (for both streams) for flow rates and con-
ductivities was of comparable accuracy to the single output variable
models. Predictions of stream conductivities for transient operation
were achieved, making use of both predictions from state-of-the-plant
model along with a performance time forecasting approach, with less
than 1% AARE for forecasting periods in the range of 2–210 s. This higher
level of accuracy suggests that short-term performance forecasting,
based on plant performance data, can be particularly useful for the devel-
opment of advanced RO plant control and for process optimization. For
example, plant controllers can utilize data-driven models to aid in
smoothing operational fluctuations, supplementing missing sensor data
(e.g., due to sensor faults or short-term interruption in communication
between sensors and data acquisition systems and/or controllers), and
for fault tolerant control. Admittedly, data-driven models are plant spe-
cific andmust be developed and applied for the desired applicability do-
main. In this regard, online model training can be implemented to
improve model performance and its applicability domain as new plant
data are acquired.

Nomenclature
AAE average absolute error
AARE average absolute relative error
b bias vector
Cf feed conductivity
Cfinal conductivity at the final steady state
Cinitial conductivity at the initial steady state
Cp permeate conductivity
Cr retentate conductivity
C(τ) conductivity at t0+τ
C(τ+Δt) predicted stream conductivity
f(x) function obtained by SVR
n number of experimental values
Pf feed pressure
Qf feed flow rate
Qp permeate flow rate
Qr retentate flow rate
r2 correlation coefficient
STDV standard deviation
t0 time at the change in the operating conditions
tf time at the new steady state
Vi average variable value for the given steady state
w normal vector to hyperplane
x vector of input RO parameters
yi experimental value for a given variable
yi⁎ predicted value for a given variable
yi

(n) normalized value for a given variable
Δt forecasting period
ε tolerance of the SVR models
γ regularization parameter
ξ, ξ⁎ upper and lower slack variables
σ width of the Gaussian
τ elapsed time relative to t0
Φ kernel function
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