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ABSTRACT: Sensor fault detection and isolation (SFDI) approaches, based on support vector regression (SVR) plant sensor
models and self-organizing-map (SOM) analysis, were investigated for application to reverse osmosis (RO) desalination plant
operation. SFDI-SVR and SFDI-SOM were assessed using operational data from a small spiral-wound RO pilot plant and
synthetic faulty data generated as perturbations relative to normal plant operational data. SFDI-SVR was achieved without false
negative (FN) detections for sensor deviations of ≳|10%| and FN detections of, at the most, ≲|5%|, and for sensor deviations of
≳|4%| at sensor fault detection (FD) thresholds of up to ∼|4%|. False positive (FP) detections were almost invariant, with respect
to sensor FD, being ≲|5%| for sensor deviations of ≳|5%|. Corrections of faulty sensor readings were within SVR model accuracy
(AARE < 1%) for SFDI-SVR and ≲|5%| for SFDI-SOM. Although SFDI-SOM has lower detection accuracy, it requires a single
overall plant model (or SOM), while providing pictorial representation of plant operation and depiction of faulty operational
trajectories.

1. INTRODUCTION

Water desalination by reverse osmosis (RO) membrane
technology has been increasingly deployed for potable water
production from seawater and water reuse applications
including municipal wastewater and agricultural drainage
water. Most RO plants are generally designed to operate at
relatively steady-state conditions with traditional control
strategies to attain the target permeate productivity and quality.
Given the complexity of RO plants, plant process models,
which consider specific plant characteristics and equipment, are
needed to describe plant operation in order to optimize water
production and design robust process control strategies.1−4

Plant process models require reliable sensor measurements as
deviations of sensor readings (e.g., due to sensor failure or
drift) can result in drift of plant operational variables beyond
acceptable limits.5 In this regard, fault tolerant control (FTC)6

strategies need to be provided with effective fault detection and
isolation (FDI) methods to identify faults in critical plant
sensors or actuators that could degrade control system
performance. FDI methods can be designed to detect system
faults, and to identify their root cause by isolating system
components whose operation lies outside the nominal range.7

Indeed, model-based FDI systems have been successfully
applied in different fields, and they have been integrated with
systems of vehicle control, power, manufacturing, as well as in
robotics and process control systems.6,8−13

In recent years, model-based FDI methods have been applied
in RO water desalination.9,14−16 For example, actuator FDI
integrated with a fault-tolerant-control (FTC) strategy was
reported for a single-membrane-unit RO desalination process
without pre-treatment or post-treatment. The approach15 relied

on model-based feedback control laws making use of the
fundamental RO transport equations and was successfully
applied to operation with varying levels of feed salinity
fluctuations. A supervisory switching law was derived to
guarantee closed-loop stability by determining the activation
time of fall-back control configurations in the presence of faults
in the primary control configuration. The above approach was
able to detect and isolate actuator faults in the system’s
adjustable retentate and pump bypass valves, as well as to
recover the desired system operational regime by switching to
the appropriate control strategy (i.e., using redundant actuators
different than the actuators used in the primary control
configuration). The above approach was feasible due, in part, to
the deployment of redundant controls that provided alter-
natives to compensate for faulty elements.17,18

Sensor fault detection and isolation (SFDI), also known as
gross error detection or sensor validation,5 is a specific case of
the general fault diagnosis and handling problem. Once a faulty
sensor is detected and isolated, data reconciliation or
rectification is necessary in order to estimate the sensor true
reading values for the faulty data trace. The above approach was
demonstrated for RO desalination plants for detection of
sensor along with other faults in the plant14,16 as the basis for
model-based fault tolerant RO plant control.14 Faults (e.g., in
system hydraulics, pumps, sensors, and actuators) were induced
in a computerized model of the RO plant (treatment capacity
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of 500 L/h of feed with a conductivity value of 800 μS/cm,
producing 250 L/h of permeate with a conductivity of 7 μS/
cm). FTC was demonstrated14 for two different scenarios: the
first involved reduction of the retentate valve speed, and the
second involved the application of a constant negative offset to
the permeate flow rate sensor. It should be noted that, in the
latter case, the permeate flow rate sensor was considered faulty
when balance closure errors exceeded a specific tolerance. Such
an approach can be beneficial when there is a priori knowledge
(i.e., isolation) of the faulty sensor. However, in actual plant
operation, detection and isolation are crucial, since one needs
to identify (via appropriate procedures) and confirm which
sensors are providing normal or abnormal (including missing)
readings.
Statistical techniques such as principal component analysis

(PCA), based on the analysis of process history, are commonly
used for fault detection and monitoring. For example,
monitoring and fault detection was carried out applying a
PCA-based scheme and an unfolded PCA (U-PCA) using an
RO desalination plant simulation (∼1.7 m3/h capacity with
sand and cartridge filters for RO feed pretreatment) that
operated with cyclical cleaning phases.16 The approach was
tested by simulating plant operation using an object-oriented
and dynamic simulation tool (EcosimPro19). Three different U-
PCA models were developed (for the two filters and for the RO
membranes). A PCA model was first established using nominal
data, where the square prediction error (Q) was used for all
plant variables (including pressures, flow rates, and concen-
trations) to monitor and detect faulty data. Three types of faults
(generated as 0%−60% deviation from the nominal sensor
readings) were considered in the plant that included offset in
the sand filter pressure sensor, as well as various types of
membrane blockages and integrity losses. Faults detection was
established on the basis of Q values exceeding a specific
threshold, and whereby the Trimmed Score Regression method
(TSR)20 was used for correction of faulty data. The number of
false positives observed with the U-PCA method, relative to
classical PCA, was reduced from 11.6%, 12.9%, and 10.5% to
10.2%, 11.3%, and 4.0% for the sand filter, cartridge filter, and
membrane models, respectively. Faults were detected (i.e.,
100% detection) without delay (i.e., instantaneous detection),
since only abrupt faults were considered. It is important to note
that abrupt faults are only a subset of the faults that can occur
in the operation of RO plants. For example, instrument
behavior may deviate gradually from its nominal operation (for
example, during fouling, scaling, and sensor drifting). In such
cases, additional strategies that take into account historical plant
operational data are essential to confirm fault identification.
However, detection of the above would clearly involve a time
delay, because of the nature of such faults.
The majority of previous studies have focused on FDI of

equipment and actuators in RO plant operation. However, FDI
of RO plant sensors is equally important in order to ensure
optimal and safe plant operation. FDI of plant sensors requires
accurate plant and sensor models, which are typically
unavailable or impractical to develop for RO plants/processes
that involve complex processes (i.e., involving coupled fluid
flow, mass transfer, and energy transport) whose nature (and
coupling) often cannot be predicted a priori (e.g., due to
fouling and mineral scaling, and gradual deterioration of plant
components including sensors). The above challenge can be
overcome, for the purpose of FDI, using data-driven plant
process models developed using machine learning (ML)

techniques that have been shown to provide highly accurate
description of RO plant operation.21−24 The advantage of ML
models of plant operation is that they can be used for plant
process data validation and reconciliation and, thus, data
correction and imputation to compensate for abnormal or
missing (respectively) sensor readings.21,25,26

In the present work, two approaches for RO plant sensor
fault detection and isolation (FDI), as well as sensor data
imputation (SenDI) were assessed based on the application of
self-organizing maps (SOM) and support-vector regression
(SVR). The application of SVR and SOM machine learning
methods to sensor FDI (termed here as SFDI) are
fundamentally different in their approach, the latter being a
classification-based method that provides a visual portray of
overall plant and sensor behavior, while the former is based on
providing a quantitative data-driven model for relating output
to input variables. The use of SOM for FDI has been proposed
for various applications including, for example, vehicle cooling
systems,27 aircraft engines,28 induction motors and electrical
machines,29,30 power transformers31,32 and anesthesia sys-
tems.33 Although SOM have been used to analyze the operation
of RO systems,21,34 SOM analysis has not been previously
proposed as the basis for FDI in RO plants. Accordingly, in the
present work, FDI and SenDI approaches are developed, using
the SOM and SVR machine-learning methods, and demon-
strated based on operational data from a small laboratory spiral-
wound RO pilot plant.

2. EXPERIMENTAL PROCEDURE
2.1. Feed Solution and Materials. Aqueous salt feed

solutions were prepared using analytical-grade sodium chloride
(Fisher Scientific, ACS grade, Pittsburgh, PA) in deionized
(DI) water. The spiral-wound RO membranes utilized in pilot
RO system (Dow Filmtec XLE-2540, The Dow Chemical
Company, Midland, MI) had elements with an outer diameter
of 2.5 in. (0.0635 m) and length of 40 in. (1.02 m), with a per
element surface area of 2.6 m2. A single membrane element had
a manufacturer-reported permeate flow rate of 3.2 m3/day, and
salt rejection of 99%, determined at a pressure of 6.9 bar for a
500 mg/L NaCl feed solution.

2.2. RO System. Data for model development were
generated using the UCLA spiral-wound Mini-Mobile-Modular
(M3) pilot RO desalination system shown schematically in
Figure 1.3,35,36 The M3 system was designed for permeate water

production capacity up to 1.2 m3/h (7560 gallons/day) for
brackish water (5000 mg/L TDS) operating at 75% recovery
and up to 0.64 m3/h (4058 gallons/day) for seawater
desalination (at recovery of 40%), using up to 18 spiral-
wound elements in various configurations. In the present study,
a configuration of 6 elements (one per pressure vessel) in series
was utilized with the system operating in a total recycle mode

Figure 1. Configuration of the spiral-wound RO pilot plant.
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with permeate and concentrate streams returned to the feed
tank. Briefly, the M3 RO plant consisted of a 450-L feed tank
with two low-pressure feed pumps (Model JM3460-SRM, Sea
Recovery, Carson, CA) pumping the RO feed through a series
of cartridge microfilters (5, 0.45, and 0.2 μm; 08P GIANT,
pleated 177 polypropylene filter cartridges, Keystone Filter,
Hatfield, PA). The RO plant was operated such that filtered
feed was fed to the RO membranes via two-high pressure
pumps (Danfoss Model CM 3559, 3HP, 3450 rpm, Baldor
Reliance Motor, Sea Recovery Corp. Carson, CA) operating in
parallel and controlled by variable-frequency drives (VFDs)
(Model FM50, TECO Fluxmaster, Round Rock, TX). The
retentate flow rate and pressure in the RO unit were set by a
model-based controller35 that adjusted both an electrically
actuated needle valve (valve V-1) (model VA8 V-7-0-10, ETI
Systems, Carlsbad, CA) on the retentate stream of the M3 RO
system and the pump VFD. In order to maintain the RO feed
temperature, a heat exchanger (Model BP 410-030 refrigerant
heat exchanger, ITT Industries) was installed on the retentate
side of the RO system. Permeate and retentate streams were
monitored via in-line conductivity sensors, conductivity/
resistivity sensor electronics (Signet 2839 to 2842 and Signet
2850, George Fischer Signet, Inc. El Monte, CA) and pH
sensor (DryLoc pH electrodes 2775, George Fischer Signet,
Inc., El Monte, CA). The M3 plant was equipped with a
centralized data acquisition system that received all sensor
outputs (0−5 V, 0−10 V, 4−20 mA) and converted the signals
to process variable values.
2.3. Experimental Procedure. RO desalting experiments

covered the range of operating conditions that were feasible by
the operability limit of the system for the specific feed salinities.
The experiments covered feed pressure and feed flow rate
ranges of 7.9−24.8 bar (or 115−360 psi), and 0.26−0.68 m3/h
(or 1−3 gpm), respectively. The RO plant control system was
programmed to autonomously step through a range of feed
flow rates and transmembrane pressures, whereby each
experiment was carried out until the attainment of steady
state. Feed flow rate and pressure were varied by the system
controller which provided the necessary adjustments of the
high-pressure pumps VFD and actuated valve settings (Figure
1). The data were logged into both the system embedded
computer and a remote network database. Data could be logged
at a frequency range as high as 1 kHz, although, for the present
study, a frequency of a 1 Hz was deemed sufficient.

3. MODEL DEVELOPMENT

3.1. Data Preprocessing. A total number of 81 different
operational states, over the entire operational domain of the
M3 RO plant (see section 2.2), were generated by inducing
pressure and flow rate step changes of up to 15% and 25%,
respectively, with operational parameters recorded at a
frequency of 1 Hz. The recorded raw data included natural
plant fluctuations (i.e., due to operation of pumps and valves)
as well as noise from normal operation of sensors, actuators,
and system pumps. Data were recorded from a total of eight
different sensors (Table 1) and the average standard deviation
(ASTD) for each measured sensor variable was determined
from:

∑= ×
=N y

ASTD
1 STD

100
i

N
i

i1 ,ave (1)

where STD is the standard deviation for the given variable
within a steady state (for the set of operating conditions) trace
i, yi,ave the average variable value for the given trace, and N the
number of the experimental steady-state traces.
Data-driven models (i.e., SVR and SOM, see sections 3.2 and

3.4, respectively) of the state-of-the-plant (i.e., steady state
operation) were developed using steady-state data traces of 30
s, for the different steady-state operational states, at a sampling
frequency of 1 Hz. The steady-state period was established as
that for which the measured process variables did not vary with
time by more than 3%, with respect to the time-averaged values.
The above short (30 s) traces at a sampling frequency of 1 Hz
were sufficient for model development; longer operational data
traces and higher sampling frequencies did not provide
significant model improvements but did increase the computa-
tional burden.
The SVR models were developed with sensor data (Table 1)

that were normalized (for each sensor) in the range of [0, 1],
using min-max normalization:

=
−

−
y
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where yi
(n) is the normalized value of the experimental data yi,

and min(y) and max(y) are the minimum and maximum
variable values in the dataset, respectively. Subsequently, for the
purpose of SVR model building, the data were divided into two
sets: one for model training and the other for model testing.
The training dataset was selected to cover the entire plant
operational domain (i.e., applicability domain37), by assuring
that the maximum and minimum values of all variables were
included in the training set. Data for model testing were
selected randomly from the remaining data (i.e., not including
the training set) but within the applicability domain to avoid
extrapolation during predictions. In all cases, complete steady-
state sequences were selected for the training and test sets.
Data for SOM generation were normalized to unit variance,

in order to facilitate clustering of the different variables at the
same scale (i.e., same mean and variance), such that

μ
σ

=
−

y
y

i
i(n)

(3)

where yi
(n) is the normalized value of the experimental variable

(yi), and μ and σ are the mean and standard deviation of the

Table 1. Range of Steady-State Plant Operating Parameters
Covered in the Study

sensor
number variable range

steady-state
STDa

1 feed flow rate 0.26−0.68 m3/h 1.21%
2 feed conductivity 9842−10 766 μS 0.49%
3 feed pressure 7.90−24.82 bar 0.38%
4 permeate flow rate 0.06−0.28 m3/h 0.94%
5 permeate

conductivity
629−1823 μS 0.55%

6 retentate flow rate 0.11−0.56 m3/h 1.28%
7 retentate

conductivity
11 539−20 411 μS 0.33%

8 retentate pressure 3.59−10.75 bar 0.98%
aThe steady-state STD represents the average percent standard
deviation of the readings for a given sensor, at steady-state operation,
relative to its average steady-state value, based on all the steady-state
traces.
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variable values in the dataset, respectively. It is noted that, in
contrast to SVR models which are based on supervised learning,
SOM is a neural network method based on unsupervised
learning,38 which utilizes the entire dataset.
In order to test the ability of both the SVR and SOM

approaches to identify abnormal sensor behavior, anomalous
sensor readings were generated by introducing perturbations
relative to the real plant data (i.e., deviations). Synthetic faulty
sensor behavior was generated by multiplying a trace of real
plant sensor data by a perturbation vector of the same length as
the sensor data trace, while the remaining sensor readings were
kept at their real values (i.e., only one sensor was perturbed at a
time). The generation of perturbed traces was repeated for each
of the eight sensors, such that eight sets of faulty data (i.e., one
for each of the eight sensors) were generated with each
containing only one faulty sensor data. Sensor reading (SR)
deviations that ranged from −50% to +50%, relative to the real
sensor readings, in 10% intervals, were then generated. SR
deviations below ±4% were not assessed, since the observed
variability of sensor reading during steady-state operation was
up to approximately ±3%. Two different types of abnormal
traces were generated: (a) a constant sensor drift (i.e., all values
of the perturbation vector were the same for a specific
deviation), and (b) an initial progressive sensor drift that
stabilizes at a specific SR deviation. For the second type of
abnormal sensor behavior, the first third of the sensor readings
in the perturbation vector were set to either increase or
decrease linearly until a preset percentage SR deviation (from
the expected plant reading under normal plant operation) was
attained, after which each successive sensor reading was taken
to deviate by the same multiplier. It is important to recognize
that, within the framework of fault detection and isolation,
when a given sensor reading is outside its nominal range of
operation (i.e., above or below the range of operability as
specified by the manufacturer), this sensor would be
immediately identified as being faulty. However, sensor
readings that are within the nominal range could still be
abnormal and thus one must perform detailed fault detection
and isolation as per the SVR and SOM approaches described in
sections 3.2 and 3.3, respectively.
3.2. Support Vector Regression (SVR) Models. Steady-

state models (see sections 3.3) were developed with the
support vector regression (SVR) algorithm,37,39 using model
training and test datasets (see section 3.1). Briefly, given a
vector x of the RO process variables (e.g., feed pressure, feed
flow rate, feed conductivity, retentate pressure, retentate flow
rate, retentate conductivity, and permeate flow rate), the goal of
SVR is to find a function f(x) that has, at most, a deviation ε,
with respect to the actual values of the target RO process
variable y (e.g., permeate conductivity) and, at the same time, is
as flat as possible (see Figure 2). SVR can be formulated as a
convex optimization problem where a set of coefficients w for
the regression model are computed in such a way that the
flatness and accuracy of f(x) are maximized. Since it is not
always possible to keep the error within the margin ε for all the
available data points, a pair of slack variables ξ and ξ* must be
introduced within the SVR formulation to cope with otherwise
infeasible optimization constraints (Figure 2). In most cases,
the optimization problem can be solved more readily by
projecting x (i.e., the vector of the input RO process variables)
onto a higher-dimensional space, where linear regression
models can be developed for the target RO process variable
of interest. The functions used to perform the above linear to

nonlinear mapping are known as kernel functions. Finally, the
nonlinear models that relate input and target variables are
obtained by mapping the data back to the original (i.e.,
nonlinear) space of the RO process variables. Only a subset of
the training data points, representing the overall data behavior
(i.e., support vectors), were used in the SVR formulation to
generate the regression model (see Figure 2).
In the current work, the radial basis function (RBF) was

selected as the kernel function, since it is suitable for systems of
highly nonlinear behavior.37 The key parameter characterizing
this kernel is the width of the Gaussian (σg); it determines the
area of influence of the support vectors over the data space and,
here, its optimal value was determined via a grid search. The
SVR-based models were developed in MATLAB using the LS-
SVMlab1.7 package.40,41 This SVR implementation utilizes a
regularization parameter γ, which controls the tradeoff between
the flatness (or smoothness) of the models and their accuracy,
where the optimal parameter value was also determined via a
grid search. The optimal values of γ and σg, obtained via grid
optimization, for each of the models are summarized in Table 2.

3.3. Spiral-Wound RO Plant Sensor Fault Detection
and Isolation (SFDI) Scheme Based on Support Vector
Regression (SVR) Models. 3.3.1. State-of-the-Plant SVR
Models. The SFDI-SVR approach for detection of abnormal
sensor behavior (Figure 3) was based on assessing the deviation
(i.e., quantified as residuals) between actual sensor readings and
those expected for normal plant response, as predicted from the
SVR plant models. The use of SVR RO plant model was
chosen, given their previously demosntrated accurate perform-
ance for describing spiral-wound RO plant operation.21 In the
SFDI-SVR approach, an individual state-of-the-plant (STP)
SVR model was first developed for seven of the plant process
sensors, excluding the feed conductivity (condfeed) (see Table
1). Although the total number of sensors in the plant was eight,
the feed conductivity was considered as a variable independent
of all other process variables, which was not subject to process
fluctuations. However, feed conductivity sensor readings were
included as inputs to develop the SVR models for the
remaining seven sensors. Accordingly, SVR models were
developed for each of the seven sensors (excluding the feed
conductivity sensor):

* = = + ≠y f y j m j s( ) 1, ..., 1;js (4)

where ys* is the predicted reading for sensor s, j designates the
specific plant sensor, and m represents the seven sensors (i.e.,

Figure 2. Support vector regression (SVR) structural parameters.
Regression function ( f) supported on the most representative vectors
of information (support vectors), w the normal vector to the
hyperplane generated, the kernel function (Φ), the vector of biases
(b), slack variables (ξ), and radius of the insensitive tube (ε).
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total number of sensors excluding the feed conductivity
sensor). For example, the SVR model for the permeate
conductivity sensor (sensor 5 in Table 1) was based on input
data from the remaining sensors listed in Table 1 (i.e., 1−4 and
6−8, where j ≠ s). For SVR model development, the steady-
state data traces (for the range of operating conditions listed in
Table 1) were divided into a training set (62% of the dataset, 50
traces) and a test set (38% of the overall dataset, 31 traces).
Performance of the different SVR sensor models (with the

optimal γ and σg values listed in Table 2) was quantified using
the linear r2 correlation coefficient (i.e., between the predicted,
yI*, and experimental, yi, variable values), and the average
absolute (AAE) and percent average absolute relative (AARE)
errors given as

∑= | * − |
=n

y yAAE
1

s
i

n

i s i s
1

, ,
(5)

∑=
* −

×
=n

y y

y
AARE

1
100s

i

n
i s i s

i s1

, ,

, (6)

where n is the total number of data points for the dataset
(training or test) and s is the sensor under consideration.
3.3.2. Fault Detection and Isolation with SFDI-SVR. It is

important to note that fault detection and isolation for the
conductivity sensor (condfeed) sensor was based on the
maximum deviation of sensor reading, from its expected value
for the specific feed solution, over the course of each
experiment. Therefore, feed conductivity sensor readings were
assessed as the first step in the process of fault detection and
isolation (see Figure 3). A fault in the condfeed sensor was
inferred when its value differed more than 3.5% from the
expected initially determined (preset). Once condfeed was
confirmed to be correct, the fault detection and isolation
strategy for the remaining sensors was carried out. Otherwise,
when the conductivity sensor (condfeed) was found to be faulty,
it was corrected, given knowledge of the preset feed
conductivity (see section 3.3.3) and the remaining sensors
were checked for additional faults. Sensor fault detection and
isolation (i.e., SFDI) strategy for the remaining seven sensors
followed the basic structure of the so-called observer-based
techniques.7 Accordingly, the expected readings from each of
the sensors are predicted by their respective SVR model and
compared to their actual (experimental) readings, as quantified
by the percent absolute relative difference (PARD):

=
| * − |

×
y y

y
PARD 100j

j j

j (7)

where yj* and yj are the predicted and experimental values of
the sensor under consideration j. Sensor behavior is considered

normal when PARDj is below a prescribed PARDj threshold
(Tj) and is otherwise considered abnormal. In the present
approach, the sensor thresholds represent the maximum
absolute sensor deviation, with respect to normal plant
operation, which is deemed as acceptable (or allowable).
Since the identity of the faulty sensor is not known a priori,
each of the m plant sensors (i.e., total number of sensors
excluding the feed conductivity sensor) are checked sequen-
tially assuming that each one (in turn) could be a faulty sensor.
Accordingly, in a sequential order, the expected reading, ys*, is
predicted for each given sensor (s) of the plant’s m − 1 sensors,
using the sensor’s SVR model. It is noted that the SVR model
for a given sensor s is developed based on the operational
(experimental) readings of the other m − 1 sensors plus the
feed conductivity sensor which are used as the SVR model
input for the given sensor. For each sensor s, the PARDs

j for
each of the remaining m − 1 sensors is then calculated; if the
PARDs

j of all these m − 1 sensors are below the threshold Tj,
then sensor s is flagged as a faulty candidate (FC) sensor. The
above isolation sequence is repeated for all the sensors.
However, it is stressed that SFDI becomes challenging when
sensor deviations are small. Specifically, when sensor deviations
are close to the PARD threshold, multiple faulty sensor
candidates could be erroneously flagged as being potentially
faulty. Also, if multiple sensors are corrected this could lead to
erroneously identifying the remainder of the sensors as normal
(i.e., accomplishing PARDs

j < Tj, and thus identifying only one
fault). In order to avoid the above dilemma, for each FC sensor,
the total percent absolute relative difference (TPARD) (eq 8) is
evaluated as the sum of the PARD of the remaining sensors
(i.e., the PARD for the FC sensor is not included in TPARD,
since its measured value is flagged as being potentially faulty). It
is noted that the FC sensor reading needs to be predicted in
order to use its value to predict the remaining m − 1 sensors by
using the SVR model (eq 4). Accordingly,

∑=
=
≠

TPARD PARD
j
j

m

jFC
1
FC (8)

where j designates the specific sensor (i.e., sensor number), m
designates the seven plant sensors being assessed (i.e., total
number of sensors excluding the conductivity sensor) and FC
designate the sensor being assessed. The FC sensor of the
minimum TPARD is identified as providing abnormal readings
(i.e., faulty), while the remaining sensors are considered to be
operating normally. The use of TPARD as the criterion for
identifying the faulty sensor provides a relative measure of
comparison of the deviation of predicted compared to
experimental sensor readings. Accordingly, the FC sensor
with the smaller TPARD is more likely to be faulty (or
providing abnormal readings).

Table 2. Performance of SVR-Based Models for Predicting Sensor Values of RO Plant Operating under Steady-State Conditions

predicted variable
regularization
parameter, γ

width of the
Gaussian, σg

average absolute error,
AAE

average absolute relative error,
AARE (%)

linear correlation
coefficient, r2

feed flow rate (m3/h) 10 000 20 1.1 × 10−4 2.3 × 10−2 1
feed pressure (bar) 200 20 9.4 × 10−2 0.65 0.994
retentate conductivity (μS) 1000 20 42.50 0.32 0.997
retentate flow rate (m3/h) 10 000 20 1.2 × 10−4 3.2 × 10−2 1
retentate pressure (bar) 8400 9 5.0 × 10−2 0.82 0.997
permeate conductivity (μS) 200 20 8.23 0.70 0.999
permeate flow rate (m3/h) 10 000 14 9.7 × 10−5 3.2 × 10−3 1
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3.3.3. Fault Confirmation with SFDI-SVR. In order to
confirm the presence of abnormal sensor readings, sensor faults
are checked over the entire diagnostic period (Figure 3). A
minimum number of abnormal measurements is needed before
flagging a sensor as a fault candidate. This is required in order
to avoid errant fault detection due to sensor measurement
spikes or fluctuations, which often occur in plant operation. In
the present RO plant test case, a minimum of one-third of the
total trace measurements was set as being required in order to
confirm a sensor as being flagged as faulty. Subsequently, the

“faulty” sensor readings were reconstructed based on
predictions from its sensor SVR model using as input the
readings from the other (m − 1) sensors plus the feed
conductivity sensor. When the feed conductivity sensor was
identified as a potentially faulty sensor, the sensor reading was
then replaced by the known present feed conductivity.
Although there is a generally low likelihood of the

simultaneous occurrence of multiple faulty sensors, the present
approach can be extended to such cases. However, fault
isolation would then require SVR sensor models based on, in

Figure 3. SVR model-based algorithm for detection and isolation of abnormal sensor operation. The parameters m, PARD, TPARD, and T refer to
the number of plant sensors (not including the feed conductivity sensor), the percent absolute relative difference, total percent absolute relative
difference between sensor reading and expected values, and the sensor threshold, respectively. PARDs

j contains the PARD of all sensors, except for
the FC sensor under consideration (i.e., j ≠ s) and the feed conductivity sensor (condfeed). Sensor s is identified as an FC sensor when each PARDs

j
of the remaining sensors is below its corresponding threshold Tj. If only one FC sensor is identified, then it is directly flagged as being faulty. Note: If
FC sensors are not encountered, this could suggest that more than one sensor may be faulty. If more than a single FC sensor is suspected, then the
FC sensor with predictions closer to the experimental values (minimum TPARD) is selected as faulty.
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addition to the feed conductivity sensor (condfeed), m − p
sensor readings for each modeled sensor, where p is the
number of potential faulty sensors to be identified. Such an
approach may be feasible provided that the number of faulty
sensors is significantly less than the total number of sensors.6

Notwithstanding, the present approach of dealing with
incidences of a single faulty sensor occurrence should be of
great practical applicability, particularly since it can also provide
a warning regarding the potential occurrence of multiple faulty
sensors.
3.4. Spiral-Wound RO Plant Sensor Fault Detection

and Isolation (SFDI) Scheme Based on Self-Organizing
Maps (SOM) Analysis. 3.4.1. SOM and RO Operational
Domain. The Self-Organizing Map (SOM) clustering algo-
rithm is used as an alternative approach for developing SFDI
schemes (depicted in Figure 5, which is presented later in this
work). The main advantage of SOM is that it can be used to
characterize RO plant operational states in a manner that does
not require an individual model for each plant sensor (see
section 3.3). SOM also enables projection and visualization of
multidimensional RO plant data into a two-dimensional (2D)
lattice (map) of SOM units arranged in a hexagonal geometry
(i.e., each SOM unit has six neighboring units).38,42 Each of the
input data vector dimensions (i.e., eight plant sensors of the
present plant) is represented by a component plane (Figure 4).

The aggregation of all the component planes constitutes the
complete SOM whose centroids contain information regarding
all the data vector components (i.e., dimensions). In this
approach, the identification of specific plant operation regimes
is based on similarity calculations (i.e., Euclidean distance)
between vectors formed by process variables (i.e., sensor
readings) and real vectors that are represented by the centroid

in each SOM unit. The SOM unit, which is most similar to a
given plant operational data vector is known as the “best
matching unit” (or bmu). In the current application, the vector
y = [Qf,Cf,Pf,Qp,Cp,Qr,Cr,Pr] represents each state of operation
of the RO plant. Similarly, the centroid of a given unit i is a real
vector CEi = [μ1, μ2, ..., μm]

T ∈ ℜm, where m is the dimension
of the input data (i.e., m represents the number of plant sensors
(8 for the present plant)). During SOM development, unit
centroids are iteratively adapted to preserve, over the SOM
projection, the topological relationships (i.e., ordering and
distances) of the original high-dimensional RO plant opera-
tional space. As a consequence, similar SOM units are located
close to each other resulting in clusters of similar operational
states. In the current study, the SOM was developed using the
MATLAB SOM Toolbox package.42

A SOM for the domain of normal plant operation is first
developed based on fault-free data (Figure 4). Accordingly, the
constructed SOM consists of SOM units encoding information
from the various plant variables over the complete range of
feasible operating conditions. Thus, the data vectors are
classified using the SOM developed from fault-free plant data.
The distance (i.e., similarity) of a given data vector relative to
the centroid of its bmu (in the SOM built using the fault-free
data) provides an indication of the consistency and reliability of
the sensor reading relative to fault-free operational data. In
other words, correct sensor readings are expected to be similar
to readings obtained from fault-free plant data for the same
operational state.

3.4.2. Fault Detection with SOM. In order to detect a sensor
with faulty readings, an appropriate fault detection threshold
was defined. As a first step in the process, for each unit in the
SOM, it is necessary to identify the data vector furthest away
from the centroid (i.e., representing the average of all normal
operational data vectors of the SOM unit) in terms of the
Euclidean distance. The threshold was then defined as the
absolute differences between the data vector components (i.e.,
readings of each sensor) and those of the centroid vector
components, thereby yielding a vector containing a fault
detection SOM (FDS) threshold (Ts) for each of the sensors.
The FDS served to delimit the operational regime boundary
captured by that SOM unit. It can be assumed that data vectors
located beyond the FDS threshold have a significant deviation
relative to the normal operation regime captured by the unit.
Based on this criterion, the absolute difference (AD) vector
between the components of a RO plant data vector y and the
components of the centroid CEbmu(y) of its corresponding SOM
bmu is first calculated:

= | − |yAD CEs
y

s
y

s
bmu( )

(9)

where ys is the reading of sensor s and CEs
bmu(y) is the

corresponding component of the bmu centroid. The data
vector y is flagged as being faulty when any of its ADs

y > Ts
bmu(y),

where Ts
bmu(y) is the FDS threshold corresponding to sensor s

for the given SOM bmu. Similarly, the data vector y is
considered as not faulty when the ADs

y values for all eight plant
sensors are smaller than their respective FDS thresholds
(Ts

bmu(y)).
3.4.3. Fault Isolation with SOM. Similar to the SVR-SFDI

approach, in the SOM approach to fault isolation (i.e.,
identifying the faulty sensor once faulty data vector was
identified), the feed conductivity sensor requires special
attention, since feed salinity is typically fixed by the feed

Figure 4. Each of the component planes (generated from its
corresponding RO plant sensor data) are presented by a slice from
the SOM. For the sake of clarity, the feed flow rate and conductivity,
retentate pressure and retentate conductivity component planes are
shown. Note that the overlaying SOM units contain information
regarding a given plant operational state (e.g., SOM units along the
solid line ended with circles, through the component planes, are for a
similar plant operational domain).

Industrial & Engineering Chemistry Research Article

dx.doi.org/10.1021/ie403603x | Ind. Eng. Chem. Res. 2014, 53, 3257−32713263



source composition. Moreover, in the present work, feed
salinity (or conductivity) was fixed over the course of each
experiment. Therefore, in the present approach, readings of the
feed conductivity sensor were first checked to evaluate if those
were faulty. A new data vector of m components was created
excluding the feed conductivity sensor, and it was classified
inside the SOM to find its bmu and calculate its AD vector. A
fault in the feed conductivity sensor was identified when all the
AD component values were below their corresponding FDS
threshold (Ts

bmu(y)). Otherwise, the feed conductivity sensor
was considered fault-free. In the process of fault isolation, a new
set of m reduced data vectors (y(m − 1) where m is the number
of plant sensors (excluding the feed conductivity sensor), each
containing information from only m − 1 sensors (i.e., one
sensor at a time is discarded in each of the new reduced data
vectors along with the feed conductivity sensor), are generated
from the original data vector. Therefore, with eight sensors in
the present plant, seven new reduced data vectors are created,
each containing 6 components. The bmu values corresponding
to these new reduced data vectors are then identified, together
with their corresponding AD vectors (eq 9). The fault isolation

algorithm (Figure 5) then considers the following three
different fault scenarios:

(a) Only one of the seven reduced data vectors has all of its six
AD vector components below their corresponding FDS
thresholds. In this case, the faulty sensor can be isolated
and identified as the missing component in the above
reduced data vector. The remaining reduced data vectors
contain information from the faulty sensor and have at
least one of their AD components above the FDS
threshold;

(b) The case where none of the seven reduced data vectors have
all their AD components values below their FDS thresholds.

In the above situation, the set of SOM units most similar
to the bmu (i.e., units located in the vicinity of the bmu)
are also checked to ensure that there are no other
neighboring SOM units (i.e., corresponding to similar
operational states) with AD components below the FDS
thresholds. In the present work, for all reduced data
vectors, the maximum number of consecutive bmu values
that must be checked, to ensure that there are no other
proximal units that may also have AD components below
the FDS threshold, was set to nine (i.e., the six SOM
units adjacent to the hexagonal bmu plus three additional
SOM units with the shortest proximal distance from the
bmu). The above conservative heuristic strategy (to
reduce computational time) was employed in order to
check if there are proximal SOM units next to the bmu
that also satisfy the FDS threshold). When the first bmu
that satisfies the FDS threshold (i.e., with AD values
below the FDS threshold) is found, the confirmation and
correction of the faulty sensor is then carried out as
described in section 3.4.4. However, when none of the
first nine bmu values satisfy the FDS threshold, fault
isolation cannot be carried out, since none of the reduced
data vectors correspond to a normal plant operational
state, which is an indication that there are likely to be two
or more faulty sensors. Similar to the SFDI-SVR
approach (see section 3.3), a new set of reduced data
vectors, containing information for only m − k sensors,
needs to be used in order to isolate k faulty sensors; and

(c) The situation in which there is more than a single reduced
data vector that has all its AD components below the FDS
threshold, suggesting two or more faulty candidate (FC)
sensors. For each FC sensor, the total absolute difference
TADFC (eq 10) is computed as the sum of AD
components, excluding the FC sensor.

∑=
=
≠

TAD AD
s
s

m

s
yFC

1
FC (10)

In the above scenario, the reduced data vector (i.e., in
which the FC sensor has been removed) with the lowest
TADFC is identified as the data vector more likely to be
fault-free, and therefore its discarded sensor component
FC is inferred as faulty.

3.4.4. Fault Confirmation and Correction. Similar to the
SFDI-SVR (see section 3.3), in the SFDI-SOM one also needs
to ensure that the analysis is not biased by typical plant
fluctuations that may be interpreted as produced by faulty
sensor readings. Therefore, a minimum percentage of the
diagnostic trace period is required to confirm abnormal sensor
behavior and thus the approach was evaluated up to one-third
of the trace period (at 1 kHz data acquisition frequency; see
section 3.1). Once a sensor fault is confirmed, the faulty sensor
reading is corrected by replacing it with the corresponding
component value in its bmu centroid.

4. RESULTS AND DISCUSSION

4.1. Performance of SFDI-SVR. State-of-the-plant (STP)
models (see section 3.3) were first developed in order to
provide predictions for each one of the sensors of the plant.
Performances of STP models applied to the test dataset are
provided in Table 2. Models predicted feed, retentate, and
permeate flow rates with average absolute relative error

Figure 5. Detection and isolation algorithm for abnormal sensor
operation based on self-organizing maps (SOM). The parameters m,
AD, TAD and T refer to number of plant sensors (not including the
feed conductivity sensor), absolute difference, total absolute difference,
and sensor FDS threshold, respectively. Note: The ADy

s contains the
AD of all sensors except the FC sensor under consideration (i.e., s ≠
z) or except for the feed conductivity sensor (condfeed) (i.e., s ≠
condfeed). Sensor s is identified as FC sensor when each ADy

s of the
remaining sensors is below its corresponding FDS threshold (Tj). If
only one FC sensor is identified, then it is directly flagged as being
faulty. Note: If FC sensors are not encountered, this could suggest that
more than one sensor may be faulty. If more than a single FC sensor is
suspected, then the FC sensor with predictions closer to the
experimental values (minimum TAD) is selected as faulty.
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(AARE) values of 2.3 × 10−2%, 3.2 × 10−2%, and 2.3 × 10−2%,
respectively. Similarly, feed, retentate, and permeate conductiv-
ities were predicted with AARE levels of 0.33%, 0.32%, and
0.70%. Feed and retentate pressures were predicted with AARE
levels of 0.65% and 0.82%, respectively, with greater accuracy of
the flow rate compared to the pressure and conductivity sensor
models. It is noted that the linear correlation coefficient (r2)
(for the predicted versus measured values) was, in all cases,
≥0.994. As discussed in section 3.3.1, a model for the feed
conductivity sensor was not implemented since the feed
conductivity is an independent variable not affected by the
remainder of the process variables. In fact, SVR model for this
sensor (in terms of the readings from the other seven sensors)
yielded a model with a correlation coefficient of only 0.76. This
was not surprising, since the average deviation of the feed
sensor, relative to the steady-state average, was only ∼0.49%
while the stated manufacturer sensor performance was rated
within an error of ±2%.
The SFDI-SVR approach was evaluated for different sensor

thresholds (see Table 3). Steady-state operation was considered
established (see section 3.1) when the measured process
variables did not vary with time by more than 3%, with respect
to the time-averaged values. Accordingly, the effect of the global
sensor threshold was evaluated for sensor deviations over a
range of 3.5% - 5% (i.e., slightly above the steady-state deviation
of normal plant operation). In addition, the SFDI-SVR
approach was assessed with individual sensor thresholds for
each sensor; these were based on each sensor’s maximum
deviation observed (relative to the average) during steady-state
plant operation. Sensor thresholds for the retentate and
permeate conductivity and feed pressure were set at 2%, feed
flow rate at 2.5% and 3.5% for the retentate and permeate flow

rate, retentate pressure and feed conductivity sensors (see
section 3.3.2). Using the above, performance of the SFDI-SVR
approach for sensor deviations (i.e., faults) between ±4% to
±50% and for sensor thresholds from 3.5% to 5%, as well as for
individual sensor thresholds is shown in detail in Table 3.
SFID-SVR performance (Table 3) was assessed in terms of

false negative (FN) and false positive (FP) detections being
respectively defined as faulty sensor readings not identified as
being faulty or fault-free sensor readings incorrectly identified
as faulty. For both global and individual sensor fault detection
thresholds, FN detections were zero (i.e., 100% detection of all
faulty readings) for the above range of sensor thresholds
(3.5%−5%) for up to sensor deviations of ±10%. FP detections
occurred for −10% ≤ sensor deviation ≤10%, with FP
detection of 0.81% and 0.4% for sensor deviations of +10%
and −10%, respectively, when using the global sensor
thresholds. There were no FP detections for the above range
of sensor deviations when using the individual sensor
thresholds. When the SFDI-SVR algorithm (Figure 3) was
challenged with lower sensor deviations (i.e., ±4% to ±9%), the
percentage of FPs and FNs increased as shown in Figure 6. As
expected, FN deviations increased with decreasing sensor
deviations and increasing global sensor thresholds. On the
other hand, FP detections remained essentially invariant with
respect to global sensor thresholds but increased with
decreasing sensor deviations. Overall, individual sensor thresh-
olds demonstrated lower FN detections, relative to the use of
global sensor thresholds, while FP detections were similar for
the two types of sensor thresholds.
In deploying the SFID-SVR, it is desirable to minimize the

number of FN detections from the viewpoint of plant safety
and maintenance of process and equipment integrity. On the

Table 3. Performance of the SFDI-SVR for Induced Sensor Deviations in the Range of ±4% to ±50% for both Global and
Individual Sensor Thresholdsa

Global Sensor Threshold

Individual Threshold 3.5% 4% 4.5% 5%

Dev. (%) FN (%) FP (%) FN (%) FP (%) FN (%) FP (%) FN (%) FP (%) FN (%) FP (%)

−50 0 0 0 0 0 0 0 0 0 0
−40 0 0 0 0 0 0 0 0 0 0
−30 0 0 0 0 0 0 0 0 0 0
−20 0 0 0 0 0 0 0 0 0 0
−10 0 0 0 0.40 0 0.40 0 0.40 0 0.40
−9 0 0.81 0 0.81 0 0.81 0 0.81 0 0.81
−8 0 0.81 0 0.81 0 0.81 0 0.81 0 0.81
−7 0 1.61 0 2.02 0 2.02 0 1.61 0 1.61
−6 0.4 2.42 0.4 3.23 0.4 3.63 0.4 3.63 0.4 3.23
−5 0.4 3.63 0.81 5.24 1.21 6.05 2.02 5.65 6.45 4.84
−4 1.61 7.26 4.03 6.85 8.47 7.26 34.27 5.65 48.39 5.24
+4 5.24 6.85 8.06 6.85 31.85 6.45 45.16 6.05 52.82 6.05
+5 2.42 4.44 2.82 4.84 5.24 4.84 8.06 4.84 34.27 4.84
+6 0.81 3.23 1.21 4.03 1.61 3.63 2.02 3.23 4.44 3.23
+7 0.4 2.42 0.4 2.42 0.81 2.42 0.81 2.42 1.21 2.02
+8 0.4 2.02 0.4 2.02 0.4 2.02 0.4 2.02 1.21 2.02
+9 0.4 0.81 0.4 0.40 0.4 0.81 0.4 0.81 0.4 0.81
+10 0 0.81 0 0.81 0 0.81 0 0.81 0.4 0.81
+20 0 0 0 0 0 0 0 0 0 0
+30 0 0 0 0 0 0 0 0 0 0
+40 0 0 0 0 0 0 0 0 0 0
+50 0 0 0 0 0 0 0 0 0 0

aFN and FP respectively designate the percentages of false negatives and false positive of the total number of existent.
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other hand, the occurrence of FP detections in a plant would
trigger false alarms; these, however, can be minimized through
a secondary process of using traditional decision tree analysis. It
is noted that, in the current study, FP detections were
encountered only for small sensor deviations. Clearly, small
sensor deviations that are identified as either FP or FN
detections are of lesser concern, relative to those associated
with large sensor deviations, since the former are less likely to
have significant impact on plant operation. As is evident from
Figure 6, the number of FN detections increased (from 0.028%
to 0.23%) for higher sensor thresholds, while the number of FP
detections decreased marginally (from 0.062% to 0.056%) over
the range of global sensor thresholds of 3.5%−5%. Overall, it
can be concluded that for the present RO pilot system, a
greater allowance of sensor readings fluctuations, over a steady-
state operational period, can result in a higher rate of FN
detections, while the number of FP detections is only slightly
impacted. Therefore, the above observation suggests that
individual sensor thresholds may be preferred when sensor

performance accuracy data are available, while in the absence of
the above global sensor thresholds can be utilized.
The SFDI-SVR method was also tested with increasing and

decreasing sensor drifts (see section 3.1) to determine the
minimum sensor deviations at which fault detection can be
made (i.e., detection limit), with the detection performance
summarized in Table 4. Accordingly, fault detection was
evaluated for each one of the m plant sensors (not including the
conductivity sensor). The minimum deviation (MD) for a
given sensor that enabled fault detection, during a sensor drift
(as described in section 3.1), are provided in Table 4
representing the average (for each sensor) for 372 data traces
of sensor drifts (i.e., for periods of faulty sensor operation). To
check for consistency in the minimum sensor deviation at
which fault detection can be made, this detection limit was
compared for sensors measuring the same variable type. As
shown in Table 4, the fault detection limits for the feed and
retentate flow rates were similar (3.45% and 3.66%,
respectively), but higher (5.56%) for the permeate flow rate.

Figure 6. Total false positive and false negative detections for the plant eight sensors over the range of sensor deviations of ±4% to ±50%. The
results are shown for both global and individual (first data points as specified in the sensor threshold% axis) sensor thresholds.
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The fault detection limits for the feed and retentate pressures
were also similar (5.45% and 5.56%, respectively), and
essentially identical for the retentate and permeate conductivity
meters. As expected, the order of the fault detection limits
correlated with the accuracy of the sensor SVR models (Table
2), whereby, for similar type sensor measurements, the SVR
model of higher accuracy enabled a lower fault detection limit.
Once a faulty sensor was identified, faulty data were

corrected using the state-of-the-plant sensor SVR models (see
section 3.3.1). Thus, data correction was within the same
accuracy as that of the sensor SVR models (Table 2). As an
illustration, the feed pressure sensor corrections, for two
selected abnormal traces of sensor drifts (induced by increasing
perturbations of up to ±5% relative to normal sensor
operation), are shown in Figure 7. It is important to recognize

that sensor drifts can be mistaken for natural fluctuations of
sensor readings when sensor deviations are small. However, the
SFDI-SVR approach enabled detection of small sensor
deviations (3.45%−5.56%) with a reasonable accuracy (see
Tables 2 and 5).
4.2. Performance of SFDI-SOM. In the first step of the

SFDI-SOM approach, the fault-free RO plant data were utilized
to construct a SOM that characterizes the normal plant
operational states. This resulted in a 240-unit (20 rows and 12
columns) SOM with quantization and topographic errors of
0.397 and 0.214, respectively42 for which a hexagonal grid was
selected for the 2D map representation. Although the shape of

the complete SOM is toroidal, in the current work, for the sake
of clarity, the SOM is presented as a series of 2D component
plane maps (see Figures 4 and 8). In order to confirm detection
of abnormal sensor behavior (see section 3.4), a minimum
percentage of faulty readings (MPFR), of the total sensor
readings in a prescribed period, was required to be identified as
faulty. Accordingly, the performance of the SFDI-SOM method
was evaluated, for MPFR (of the total data trace; see section
3.1) in the range of 13%−33% and sensor deviations (from
normal operation) in the range of ±10% to ±50% (see Table
5). In contrast to the SFDI-SVR approach, SFDI-SOM had a
lower level of detection provision, whereby deviations below
±10% resulted in a significant number of FN detections; thus,
the SFDI-SOM approach was only evaluated for sensor
deviations of ±10% or above. While the above is a limitation,
the SFDI-SOM approach has other advantages, as discussed
later in this section.
The number of undetected sensor faults (i.e., FN readings)

was greater with increasing requirement of higher percentage of
faulty data (of the total trace data) for fault confirmation, while
the number of false positive (FP) detections decreased. For
example, for sensor deviations of +20%, FN detections
increased from 1.7% to 1.85% as the percentage of trace
readings declared as faulty increased from 13% to 33%, while
FP detections decreased from 0.31% to none for the same
range. As expected, the number of FN and FP detections
increased with smaller sensor deviations (from normal
behavior), as it was more challenging for SFDI-SOM to
identify such faults. For example, for sensor deviations of +10%,
the percent FN and FP detections were as high as 6.64% and
1.54%, respectively (Table 5), based on the MPFR requirement
of at least 13% for fault confirmation. As is evident from Table
5, one can tune the acceptance criterion of percentage of false
negative relative to false positive detections by tuning the
MPFR requirement for fault confirmation. Here, we note again
(as in section 4.1), that the occurrence of FN detections is
more problematic than FP detections; hence, one should
establish fault confirmation criteria based on the acceptable
balance between FN and FP detections.
Once the faulty sensors were detected and isolated, data

reconciliation was carried out by replacing the faulty values with
the values associated with the centroids of the bmu values (see

Table 4. Minimum Sensor Deviation That Enabled First
Fault Detectiona

avg. det. limitb

(%)
accuracy of sensor SVR model,

AAREc (%)

feed flow rate 3.45 0.02
retentate flow rate 3.66 0.03
permeate flow rate 5.56 0.09
retentate
conductivity

3.73 0.32

permeate
conductivity

3.73 0.70

feed pressure 5.45 0.65
retentate pressure 5.56 0.82
aBased on individual sensor thresholds. bavg. det. limit = minimum
sensor deviations at which fault detection can be made (based on 372
data traces of sensor drift tests; see section 3.1). cAARE = average
absolute relative error.

Figure 7. Corrections of feed pressure sensor for sensor readings with
sensor drifts up to ±5%, relative to expected normal operation values
and using the individual sensor thresholds.

Table 5. Performance of SOM-Based Abnormal Behavior
Detection and Isolation Tool for Induced Deviations from
−50% to +50%

Percent of Faulty Sensor Data Required for Fault
Confirmationa

13% 20% 33%

deviation (%) FN (%) FP (%) FN (%) FP (%) FN (%) FP (%)

+50 0 0 0 0 0 0
+40 0 0 0 0 0 0
+30 0.62 0.15 0.62 0 0.93 0
+20 1.7 0.31 1.7 0.15 1.85 0
+10 6.64 1.54 7.41 0.15 8.02 0
−10 3.24 4.17 3.55 1.54 4.17 0
−20 0.46 1.85 0.46 0 0.46 0
−30 0.15 1.85 0.15 0 0.15 0
−40 0 0.46 0 0 0 0
−50 0 0.46 0 0 0 0

aPercent of faulty data readings (false negatives (FN) and false
positives (FP)) of the total data trace required for fault confirmation.
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section 3.4.4) corresponding to the reduced data vectors and
discarding the faulty sensor data. The differences between the
corrected values and the expected values (known from the
experimental data) were calculated by means of the AARE
values, being, in all cases, smaller than 5%. The accuracy of data
correction (of faulty sensors) via the SFDI-SOM approach was
in the AARE range of 0.19%-4.22% for the eight plant sensors
(Table 6). The above level of accuracy for faulty data correction
is somewhat lower than that which was achieved (0.02%−
0.82% AARE) for the SFDI-SVR approach. However, the
SFDI-SOM is simpler to use, because it does not require
individual sensor models but only a single SOM construction,
based on the fault-free plant operational data.
An attractive element for using SOM, which can make its use

beneficial as either an add-on to SFDI-SVR or SFDI-SOM is in
that SOM can provide a visual representation of sensor
deviations from normal plant operation. For example, based on
historical plant data used to construct the plant SOM and the
desired operational domain, one can establish visually the
location of a given plant operation state over the SOM. When

the plant operates under normal conditions, the bmu values
representing plant data are located in a contiguous SOM area
corresponding to normal plant operation. In contrast, when
sensor readings are faulty, significant drifts of the bmu are
observed. As an illustration, Figure 8 shows one example of the
effect of an increasing perturbation up to +50% for the feed

Figure 8. Plant behavior trajectory for a data trace with a drift in the feed rate sensor reading. The deviation from the nominal value increases linearly
with time up to a deviation of +50%. Note: The trajectory of the best matching unit (bmu) for the faulty data vector with time is marked as 1−5 (at
successive 5-s intervals).

Table 6. Accuracy of Corrections Using the SFDI-SOM Tool

corrected variable AAEa AAREb (%)

feed conductivity (μS) 20.31 0.19
feed flow rate (m3/h) 0.01 2.95
feed pressure (bar) 0.42 2.75
retentate conductivity (μS) 283 1.96
retentate flow rate (m3/h) 0.01 4.22
retentate pressure (bar) 0.26 3.89
permeate conductivity (μS) 40.81 3.37
permeate flow rate (m3/h) 0.02 3.96

aAAE = average absolute error. bAARE = average absolute relative
error.
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flow rate sensor. Each subfigure represents the so-called
component planes of the SOM, which are generated by
plotting each individual component of the centroid of the SOM
units. Accordingly, each component plane depicts the
distribution of the sensor readings for each of the eight plant
sensors (i.e., retentate, feed and permeate flow rates, feed and
permeate pressures, and retentate, permeate and feed
conductivities) over the SOM grid. Note that each component
plane corresponds to a slice of the SOM and therefore the
overlaying SOM units are all for the same plant operational
state (see Figure 4). In the example of Figure 8, normal plant
operation associated with SOM unit marked with an asterisk
(*) and the deviated operational state resulting from
information provided by the faulty feed flow rate is depicted
by black or white circles. Figure 8 shows the bmu of the faulty
data moving away (i.e., trajectory) from the location
corresponding to the normal operation bmu (i.e., bmu of the
vector with fault-free operational parameters). The drift in
sensor readings is apparent in the example of Figure 8, where
the bmu associated with the faulty data vector drifts, along the
shown trajectory of increasing time (at 5-s intervals), further
away from the bmu associated with the expected normal plant
operation (marked with an asterisk). The above depiction of
the state of the plant and sensor deviation can provide a rapid
and visual aid for plant operators to monitor plant operational
status and to detect abnormal plant behavior. The above visual
approach does not identify the specific faulty sensor, but can
provide an early warning, which could then proceed with the
process of faulty sensor identification and isolation (by either
SFDI-SVR or SFDI-SOM), as described in sections 3.3.2 and
3.4.3.

■ CONCLUSIONS
Sensor fault detection and isolation (SFDI), as well as sensor
data corrections approaches for spiral-wound reverse-osmosis
(RO) plant operation were assessed based on the use of both
support-vector regression (SVR) plant sensor models and self-
organizing map (SOM) representation of plant operation.
SFDI-SVR was based on data-driven models developed for
individual RO plant sensors using the support vector regression
model building approach. SFDI-SVR enabled fault detection
without false negative detections for sensor deviations in the
range of ±10% or greater when sensor thresholds (global or
individual) were just below 5%. False positive (FP) detections
were higher than false negative (FN) detections by up to a
factor of 2 and greater in some cases, particularly for increasing
global sensor detection threshold and small sensor deviations
(e.g., approaching the expected normal sensor fluctuations
under normal steady-state conditions). Overall, individual
sensor thresholds provided lower false negative detection rate
for all sensor deviations, but false positive detections appeared
to be nearly invariant with respect to sensor threshold in the
range of 3.5%−5%. Corrections of faulty sensor readings were
within the accuracy level of the SVR sensor models (based on
evaluation of sensor performance for normal plant operation).
The SFDI-SOM’s performance was inferior to SFDI-SVR,
demonstrating no FN detections only for sensor deviations in
the range of ±40% or higher, with increased FN detections of
3.24%−6.64% for sensor deviations in the range of ±10% with
SOM minimum percentage of faulty readings (MPFR) of 13%
(i.e., percent of sensor reading in a given monitoring trace
being identified as faulty) for fault confirmation and somewhat
higher (4.17%−8.02%) for MPFR of 33%. Corrections of the

abnormal sensor readings with SFDI-SOM were with average
absolute relative error (AARE) values of <5%. Although SFDI-
SOM was of lower accuracy than SFDI-SVR, its application is
simpler, since it does not require a model to be developed for
each of the plant sensors. Moreover, SOM provides a pictorial
representation of plant operation and trajectory of faulty sensor
behavior that could be beneficial to plant operators. Overall,
both approaches were robust and able to handle noisy plant
data. Clearly the choice of using either one or integration of
both of the above approaches for RO plants would have to be
made on the basis of acceptability of FN, relative to FP fault
detections and desirability for visual representation of plant
operation that is feasible via SOM.
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■ NOMENCLATURE
AAE = average absolute error
AARE = average absolute relative error
AD = absolute difference
ANN = artificial neural network
b = bias vector
bmu = best matching unit
Cf = feed conductivity
Cp = permeate conductivity
Cr = retentate conductivity
CE = centroid
condfeed = feed conductivity sensor reading
FDI = fault detection and isolation
FDS = fault detection SOM
FN = false negative
FP = false positive
FTC = fault tolerant control
f(x) = function obtained by SVR
m = number of sensors not including feed conductivity
n = number of experimental values
Pf = feed pressure
Pr = retentate pressure
PARD = percent absolute relative difference
PCA = principal component analysis
Qf = feed flow rate
Qp = permeate flow rate
Qr = retentate flow rate
RO = reverse osmosis
r2 = correlation coefficient
s = sensor under consideration
SFDI = sensor fault detection and isolation
SOM = self-organizing-map
STDV = standard deviation
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SVM = support vector machines
SVR = support vector regression
T = threshold
TAD = total absolute difference
TDS = total dissolved solids
TPARD = total percent absolute relative difference
Vi = average variable value for the given steady state
VFD = variable frequency drive
w = normal vector to hyperplane
x = vector of input RO parameters in the SVR model
y = vector of input parameters in the SOM
yi = experimental value for a given variable i
yi* = predicted value for a given variable i
yi
(n) = normalized value for a given variable i

Greek Symbols
ε = tolerance of the SVR models
γ = regularization parameter
ξ = upper slack variable
ξ* = lower slack variable
σ = variance/width of the Gaussian
Φ = kernel function
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