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Abstract

This work focuses on feedback control of particulate processes in the presence of sensor data losses. Two typical particulate process examples,
a continuous crystallizer and a batch protein crystallizer, modeled by population balance models (PBMs), are considered. In the case of the
continuous crystallizer, a Lyapunov-based nonlinear output feedback controller is first designed on the basis of an approximate moment model
and is shown to stabilize an open-loop unstable steady-state of the PBM in the presence of input constraints. Then, the problem of modeling
sensor data losses is investigated and the robustness of the nonlinear controller with respect to data losses is extensively investigated through
simulations. In the case of the batch crystallizer, a predictive controller is first designed to obtain a desired crystal size distribution at the end
of the batch while satisfying state and input constraints. Subsequently, we point out how the constraints in the predictive controller can be
modified as a means of achieving constraint satisfaction in the closed-loop system in the presence of sensor data losses.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Particulate processes play a key role in a broad range of
process industries ranging from chemical, materials and min-
erals to agricultural, food and pharmaceutical. These areas of
manufacturing have a current value exceeding, according to
some estimates, two trillion dollars and a growth factor of 5 to
10 over the next decade. Examples include the crystallization of
proteins for pharmaceutical applications, the emulsion polymer-
ization for the production of latex, the fluidized bed production
of solar-grade silicon particles through thermal decomposition
of silane gas and the aerosol synthesis of titania powder used
in the production of white pigments. Particulate processes are
widely recognized as presenting a number of processing chal-
lenges which are not encountered in gas or liquid processes.
One of these challenges is to operate the particulate process
in a way that it consistently makes products with a desired
particle size distribution (PSD). For example, in crystallization
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processes, the shape of the crystal size distribution is an impor-
tant quality index which strongly affects crystal function and
downstream processing such as filtration, centrifugation and
milling (Rawlings et al., 1993).

Population balances have provided a natural framework for
the mathematical modeling of PSDs (see, for example, the
tutorial article (Hulburt and Katz, 1964) and the review article
(Ramkrishna, 1985)), and have been successfully used to de-
scribe PSDs in many particulate processes. Population balance
modeling of particulate processes typically leads to systems
of nonlinear partial integro-differential equations that describe
the rate of change of the PSD. The population balance models
(PBMs) are also coupled with the material, momentum and en-
ergy balances that describe the rate of change of the state vari-
ables of the continuous phase, leading to complete particulate
process models. In the context of PBM-based control of partic-
ulate processes, the main difficulty in synthesizing practically
implementable nonlinear feedback controllers is the distributed
parameter nature of the PBMs which does not allow their direct
use for the synthesis of low-order (and therefore, practically
implementable) nonlinear output feedback controllers. To over-
come this problem, we took advantage of the property that the
dominant dynamic behavior of many particulate process models
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is low-dimensional and proposed (Chiu and Christofides, 1999)
a model reduction procedure, based on a combination of the
method of weighted residuals and the concept of approximate
inertial manifold, which leads to the construction of low-order
ordinary differential equation (ODE) systems that accurately re-
produce the dominant dynamics of broad classes of particulate
process models. These ODE systems were subsequently used
for the synthesis of nonlinear (Chiu and Christofides, 1999;
Kalani and Christofides, 1999; Christofides, 2002), robust (Chiu
and Christofides, 2000; El-Farra et al., 2001), and predictive
(Shi et al., 2005, 2006) controllers that enforce desired sta-
bility, performance, robustness and constraint handling proper-
ties in the closed-loop system. Owing to the low-dimensional
structure of the controllers, the computation of the control ac-
tion involves the solution of a small set of ODEs, and thus, the
developed controllers can be readily implemented in real-time
with reasonable computing power. In addition to these results,
an online optimal control methodology including various per-
formance objectives was developed for a seeded batch cooling
crystallizer in Xie et al. (2001) and Zhang and Rohani (2003).
The reader may refer to Daoutidis and Henson (2002), Doyle
et al. (2002), Braatz and Hasebe (2002) and Christofides et al.
(2007) for reviews of results on simulation and control of par-
ticulate processes.

Despite this progress on the design of advanced feedback
control systems for particulate processes, the problem of
investigating controller stability, performance and robustness
in the presence of sensor data losses has received no attention.
Sensor data losses may arise due to a host of reasons including
measurement sample loss, intermittent failures associated with
measurement techniques, as well as those induced via data
packet losses over transmission lines. Previous work on con-
trol subject to actuator/sensor faults has exclusively focused
on lumped parameter systems. Specifically, in El-Farra et al.
(2005), communication losses were modeled as delays in im-
plementing the control action and in Mhaskar et al. (2006)
the problem of unavailability of some of the states for mea-
surement was considered and reconfiguration-based strategies
were devised to achieve fault-tolerance subject to faults in the
control actuators. Furthermore, in Mhaskar et al. (2007), a the-
oretical framework was developed for the modeling, analysis
and reconfiguration-based fault-tolerant control of nonlinear
processes subject to asynchronous sensor data losses (inter-
mittent unavailability of measurements). Specifically, for each
control configuration, the stability region (i.e., the set of initial
conditions starting from where closed-loop stabilization un-
der continuous availability of measurements is guaranteed) as
well as the maximum allowable data loss rate which preserves
closed-loop stability was computed and this characterization
was utilized in taking preventive action, i.e., to trigger re-
configuration, as well as in making the decision as to which
backup configuration should be employed in the closed-loop
system to maintain stability. The method was applied to a
lumped polyethylene reactor model.

This work focuses on the problem of feedback control of
particulate processes in the presence of sensor data losses. Two
typical particulate process examples, a continuous crystallizer

and a batch protein crystallizer, are considered and are modeled
by PBMs. In the case of the continuous crystallizer, a Lyapunov-
based nonlinear output feedback controller is first designed
on the basis of an approximate moment model and is shown
to stabilize an open-loop unstable steady-state of the PBM in
the presence of input constraints. Then, the robustness of the
nonlinear controller with respect to data losses is extensively
investigated through simulations. In the case of the batch crys-
tallizer, a predictive controller is first designed to obtain a crys-
tal size distribution at the end of the batch that has desired shape
while satisfying state and input constraints. Subsequently, we
point out how the constraints in the predictive controller can
be modified as a means of achieving constraint satisfaction in
the closed-loop system in the presence of sensor data losses.
Extensive simulations are presented to demonstrate the effect
of sensor data losses on closed-loop stability and performance
in both examples.

2. Handling sensor malfunctions: continuous crystallizer

In the present section, we consider a standard model of a
continuous crystallizer and address the problem of stabilization
of its open-loop unstable steady-state using both state feedback
and output feedback control in the presence of sensor data
losses. We begin with the presentation of the crystallizer model,
continue with the controller design and modeling of sensor
data losses and conclude with extensive simulation results and
discussion.

2.1. PBM of a continuous crystallizer

We consider a continuous crystallizer which is fed by a
stream of solute at concentration c0. Under the assumptions
of isothermal operation, constant volume, mixed suspension,
nucleation of crystals of infinitesimal size and mixed product
removal, a dynamic model for a continuous crystallizer can be
derived from a population balance for the particle phase and a
mass balance for the solute concentration of the following form
(Lei et al., 1971; Jerauld et al., 1983):

�n

�t̄
= −�(R(t̄)n)

�r
− n

�
+ �(r − 0)Q(t̄),

dc

dt̄
= (c0 − �)

�̄�
+ (� − c)

�
+ (� − c)

�̄

d�̄

dt̄
, (1)

where n(r, t̄) is the density of crystals of radius r ∈ [0, ∞) at
time t̄ in the suspension, � is the residence time, c is the solute
concentration in the crystallizer, c0 is the solute concentration
in the feed and �̄=1−∫ ∞

0 n(r, t̄) 4
3�r3 dr is the volume of liquid

per unit volume of suspension. R(t̄) is the growth rate, �(r −0)

is the standard Dirac function, and Q(t̄) is the nucleation rate.
The term �(r − 0)Q(t̄) accounts for the production of crystals
of infinitesimal (zero) size via nucleation. R(t̄) and Q(t̄) are
assumed to follow McCabe’s law and Volmer’s nucleation law,
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Table 1
Process parameters of the continuous crystallizer

c0 = 1000.0 kg/m3

cs = 980.2 kg/m3

c0s = 999.943 kg/m3

� = 1770.0 kg/m3

� = 1.0 h
k1 = 5.065 × 10−2 mm m3 kg−1 h−1

k2 = 7.958 mm−3 h−1

k3 = 1.217 × 10−3

respectively:

R(t̄) = k1(c − cs),

Q(t̄) = �̄k2 exp

[
− k3

(c/cs − 1)2

]
, (2)

where k1, k2 and k3 are constants and cs is the concentration
of solute at saturation.

A spatial discretization scheme based on Galerkin’s method
with 1000 spatial modes was used to obtain the solution of the
system of Eqs. (1)–(2) (simulations of the system using more
discretization modes led to identical results). The values of the
process parameters used in the simulations can be found in
Table 1. The crystallizer exhibits highly oscillatory behavior,
which is the result of the interplay between growth and nucle-
ation caused by the relative nonlinearity of the nucleation rate
as compared to the growth rate (compare the nonlinear depen-
dence of Q(t̄) and R(t̄) on c in Eq. (2)). To establish that the
dynamics of the crystallizer are characterized by a small num-
ber of degrees of freedom, the method of moments is applied
to the system of Eqs. (1)–(2) to derive an approximate ODE
model. Specifically, the jth moment of n(r, t̄) is defined as

�j =
∫ ∞

0
rjn(r, t̄) dr, j = 0, . . . , (3)

and upon multiplying the population balance in Eq. (1) by rj ,
integrating over all particle sizes, and introducing the following
set of dimensionless variables and parameters:

x̃0 = 8��3�0, x̃1 = 8��2�1, x̃2 = 4���2,

x̃3 = 4
3��3, . . . ,

t = t̄

�
, � = k1�(c0s − cs), Da = 8��3k2�,

F = k3c
2
s

(c0s − cs)
2
, 	 = (� − cs)

(c0s − cs)
,

ỹ = (c − cs)

(c0s − cs)
, u = (c0 − c0s)

(c0s − cs)
, (4)

where c0s is the steady-state solute concentration in the feed, the
dominant dynamics of the process of Eq. (1) can be adequately
captured by the fifth-order moments model which includes the

dynamics of the first four moments and those of the solute
concentration in the following form:

dx̃0

dt
= −x̃0 + (1 − x̃3)Da e−F/ỹ2

,

dx̃1

dt
= −x̃1 + ỹx̃0,

dx̃2

dt
= −x̃2 + ỹx̃1,

dx̃3

dt
= −x̃3 + ỹx̃2,

dỹ

dt
= 1 − ỹ − (	 − ỹ)ỹx̃2

1 − x̃3
+ u

1 − x̃3
, (5)

where x̃
, 
=0, 1, 2, 3, are dimensionless moments of the crys-
tal size distribution, ỹ is dimensionless concentration of the
solute in the crystallizer and u is a dimensionless concentra-
tion of the solute in the feed. Note that the moments of order 4
and higher do not affect those of order 3 and lower, and more-
over, the state of the infinite dimensional system is bounded
when x̃3 and ỹ are bounded, and it converges to a globally
exponentially stable equilibrium point when limt→∞ x̃3 = c1
and limt→∞ ỹ =c2, where c1, c2 are constants. The reader may
refer to El-Farra et al. (2001) for a detailed derivation of the
moments model, and to Christofides (2002) for further results
and references in this area. The stability properties of the fifth-
order model of Eq. (5) have been also studied and it has been
shown Jerauld et al. (1983) that the global phase space of this
model has a unique unstable steady-state surrounded by a sta-
ble periodic orbit, and that the linearization of the system of
Eq. (1) around the unstable steady-state includes two isolated
complex conjugate eigenvalues with a positive real part.

2.2. Bounded Lyapunov-based control

Having obtained a low-order ODE model that captures the
dominant dynamics of the continuous crystallizer, we proceed
in this section to address the controller synthesis problem on the
basis of the low-order model of Eq. (5). The control objective
is to stabilize the crystallizer at an unstable steady-state (which
corresponds to a desired PSD) using constrained control action.
To this end, we initially rewrite the moments model of Eq. (5)
in a more compact form:

˙̃x(t) = f (x̃(t)) + g(x̃(t))ũ(t),

|u|�umax,

z̃(t) = h(x̃(t)), (6)

where x̃=[x̃0 x̃1 x̃2 x̃3 ỹ]′, x̃
=x
−xs

 , 
=0, 1, 2, 3, z̃=z−zs ,

ũ = u − us , umax > 0 denotes the bound on the manipulated
input, the superscript at xs


 refers to the unstable steady-state
at which we would like to asymptotically stabilize the system,
h(x̃(t)) = x̃0 and z denotes the measured output. In the system
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of Eq. (6), f and g have the following form:

f (x̃) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−x̃0 + (1 − x̃3)Da e−F/ỹ2

−x̃1 + ỹx̃0

−x̃2 + ỹx̃1

−x̃3 + ỹx̃2

1 − ỹ − (	 − ỹ)ỹx̃2

1 − x̃3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

g(x̃) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0

0

0

0
1

1 − x̃3

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

Next we will review the design procedure of the bounded
controller through state feedback and output feedback ap-
proaches. In the state feedback problem, measurements of x̃
(t)

and ỹ(t) are assumed to be available for all t. In the output feed-
back problem, with the measurements of only z̃= x̃0 available,
the controller is constructed through a standard combination
of a state feedback controller with a state observer. The state
feedback controller is synthesized via Lyapunov techniques
and the state observer is an extended Luenberger-type observer.

2.2.1. State feedback control
Consider the system of Eq. (6), for which a control Lya-

punov function (CLF), V (x̃), is available. Using the CLF,
we construct, using the results in Lin and Sontag (1991) (see
also El-Farra and Christofides, 2001, 2003), the following
continuous bounded control law:

u(x̃) = −k(x̃)LgV (x̃), (7)

where

k(x̃) =

⎧⎪⎪⎨
⎪⎪⎩

Lf V (x̃) +
√

(Lf V (x̃))2 + (umaxLgV (x̃))4

(LgV (x̃))2[1 +
√

1 + (umaxLgV (x̃))2]
, LgV (x̃) �= 0,

0, LgV (x̃) = 0,

(8)

where Lf V (x̃)=(�V (x̃)/�x̃)f (x̃), and LgV (x̃)=(�V (x̃)/�x̃)

g(x̃). An estimate of the constrained stability region of the
above controller can be obtained using the level sets of V , i.e.,

� = {x̃ ∈ Rn : V (x̃)�cmax}, (9)

where cmax > 0 is the largest number for which every nonzero
element of � is fully contained in the set:

� = {x̃ ∈ Rn : Lf V (x̃) < umax|LgV (x̃)|}. (10)

2.2.2. Output feedback control
Under the hypothesis that the system of Eq. (6) is locally

observable (that is, its linearization around the desired operating
steady-state is observable), the practical implementation of a
nonlinear state feedback controller of the form of Eq. (7) will be

achieved by employing the following nonlinear state observer:

d

dt
= f () + g()u + L(z̃ − h()), (11)

where  denotes the observer state vector (the dimension of
the vector  is equal to the dimension of x̃ in the system of
Eq. (6)), z̃ is the measured output and L is a matrix chosen so
that the eigenvalues of the matrix

CL = �f

�

∣∣∣∣
(=s )

− L
�h

�

∣∣∣∣
(=s )

,

where s is the operating steady-state, lie in the open left-half
of the complex plane. The state observer of Eq. (11) consists of
a replica of the system of Eq. (6) plus a linear gain multiplying
the discrepancy between the actual and the estimated values
of the output, and therefore, it is an extended Luenberger-type
observer. The combination of the state observer of Eq. (11) with
the state feedback controller of Eq. (7) leads to the following
nonlinear output feedback controller:

d0

dt
= −0 + (1 − 3)Da e−F/2

4 + L0(h(x̃) − h()),

d1

dt
= −1 + 40 + L1(h(x̃) − h()),

d2

dt
= −2 + 41 + L2(h(x̃) − h()),

d3

dt
= −3 + 42 + L3(h(x̃) − h()),

d4

dt
= 1 − 4 − (	 − 4)42

1 − 3
+ L4(h(x̃) − h()),

u = −k()LgV (), (12)

where L = [L0 L1 L2 L3 L4]T are the observer parameters
and h() = 0. The practical implementation of the nonlinear

controller of Eq. (12) requires online measurements of the
controlled output x̃0; in practice, such measurements can be
obtained by using, for example, light scattering (Bohren and
Huffman, 1983; Rawlings et al., 1993) and FBRM (focused-
beam reflectance measurement, Barthe and Rousseau, 2006).

2.3. Modeling sensor data loss

Following the approach presented in Mhaskar et al. (2007),
sensor data losses are modeled within the framework of random
Poisson processes. Specifically, at a given time t an ‘event’ takes
place that determines whether the system will be closed-loop
or open-loop (see Fig. 1). For a given rate of data loss 0�r �1,
a random variable P is chosen from a uniform probability dis-
tribution between 0 and 1. If P �r , the event is deemed to be
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Fig. 1. Closed-loop system in the (a) absence, and (b) presence of sensor
data losses.

‘measurement loss’ (which implies that the process operates in
open-loop), while if P > r , the event is understood to be ‘mea-
surement available’ (which implies that the process operates in
closed-loop). Furthermore, with W defined as the number of
events per unit time, another random variable � with uniform
probability distribution between 0 and 1 determines the time
for which the current event will last, given by �= (− ln �/W).
At t + � another event takes place and whether it represents a
measurement or loss of measurement, as well as its duration,
is similarly determined.

Note that in the presence of constraints in the manipulated
input, prolonged duration of measurement loss may land the
system states at a point starting from where stabilization may
not be achievable (even with continuous measurement). There-
fore, the presence of manipulated input constraints implies that
the sensor data loss rate should be defined over a finite time
interval. Specifically, for a positive real number T ∗, we define
r ∈ [0, 1] as sensor data loss rates over the finite time interval
of duration T ∗. This implies that over every successive finite
time interval T ∗, the measurements are available for a total
time of T ∗ × (1 − r). Note that this definition does not impose
any restrictions on the distribution of sequences of measure-
ment loss and availability over the time interval T ∗ and does
not need to hold for any finite interval T ∗ but only successive
time intervals T ∗ (requiring the data loss rate to hold over any
fixed finite time interval T ∗ would be equivalent to require it
hold over infinitesimal time intervals). All it says is that over
the time interval T ∗, if the duration of all the measurement loss
events is summed up, then that sum is equal to T ∗ ×r . In simu-
lating data losses, this definition can be practically realized by
picking W to be sufficiently large; the reasoning behind this is
as follows: a larger value of W increases the number of events
per unit time, and when W is sufficiently large, we can get a
sufficiently large number of events over every finite time inter-
val T ∗ such that the rate of data loss is sufficiently close to r.

Table 2
Dimensionless parameter values of the continuous crystallizer

� = k1�(c0s − cs) = 1.0 mm
Da = 8��3k2� = 200.0
F = k3c

2
s /(c0s − cs)

2 = 3.0
	 = (� − cs)/(c0s − cs) = 40.0

2.4. Simulation results

In this subsection, we apply the state feedback controller
of Eq. (7) and output feedback controller of Eq. (12) to the
crystallizer process model and evaluate their robustness in the
presence of sensor data losses. Specifically, the objective is to
compute a data loss rate r∗, defined over a finite time interval
T ∗, such that if r < r∗ then convergence to a desired neigh-
borhood is achieved in the presence of data losses. Note that
implicit in this analysis is the understanding that during the
time that sensor measurements are unavailable, the values of
the measured variables (in computing the control action) are
‘frozen’ at the last available measurement. This results in the
value of the manipulated variable being frozen at the last com-
puted value. Note also, that the value of r∗ is expected to depend
on the interval T ∗ over which it is defined (see the simulation
example in Mhaskar et al., 2007, for a demonstration). To un-
derstand this more clearly, note that for convergence to a desired
neighborhood of the origin, one can come up with a value �∗
such that if only one measurement was received every �∗, then
convergence to the desired neighborhood would be achieved.
The robustness analysis in Mhaskar et al. (2007) exploits this
fact together with the definition of the data loss rate, to ensure
that over a �∗ duration within T ∗ (and across two time inter-
vals), at least one measurement is received. In summary, �∗ is
fixed by the given size of the neighborhood to the origin where
convergence is desired (�′); given a T ∗ over which the data loss
rate is defined, r∗ can then in turn be picked such that the maxi-
mum duration of open-loop behavior across intervals stays less
than �∗.

Following the proposed methodology, we first use the re-
duced moments model of Eq. (5) to design the controllers. The
control objective is to suppress the oscillatory behavior of the
crystallizer and stabilize it at an unstable steady-state that cor-
responds to a desired PSD by manipulating the solute feed con-
centration. The values of the dimensionless model parameters in
Eq. (5) can be found in Table 2. The dimensionless solute feed
concentration, u, is subject to the constraints: −umax �u�umax.
For umax = 2, the constraint on the inlet solute concentration
corresponds to 960 kg/m3 �c0 �1040 kg/m3 and for umax =4,
the constraint on the inlet solute concentration corresponds to
920 kg/m3 �c0 �1080 kg/m3. The desired steady-state is x̃s =
[x̃s

0 x̃s
1 x̃s

2 x̃s
3 ỹs]′ = [0.0652 0.0399 0.0244 0.0149 0.6118]′,

and us = 0.2.
To facilitate the design of the bounded controller and con-

struction of the CLF, we initially rewrite the moments model of
Eq. (5) in deviation variable form—thus translating the steady-
state to the origin—to obtain the system of Eq. (6) which we
transform into the normal form. We introduce the invertible
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Fig. 2. Evolution of the closed-loop state and input profiles under state feedback control (solid lines) and output feedback control (dashed lines) for umax = 2
and no sensor data losses.

coordinate transformation: [�′ �′]′=�(x)=[x̃0 f1(x̃) x̃1 x̃2 x̃3]′,
where � = [�1 �2]′ = [x̃0 f1(x̃)]′, ȳ = �1, f1(x̃) = −x̃0 +
(1 − x̃3)Da exp(−F/ỹ2), and � = [�1 �2 �3]′ = [x̃1 x̃2 x̃3]′.
The state-space description of the system in the transformed
coordinates takes the form

�̇ = A� + bl(�, �) + b	(�, �)u,

�̇ = �(�, �), (13)

where

A =
[

0 1
0 0

]
, b =

[
0
1

]
, l(�, �) = L2

f h(�−1(�, �))

is the second-order Lie derivative of the scalar function, h(·),
along the vector field f (·), and 	(�, �) = LgLf h(�−1(�, �))

is the mixed Lie derivative. The forms of f (·) and g(·) can
be obtained by re-writing the system of Eq. (5) in the form of
Eq. (6), and are omitted for brevity.

The partially linear �-subsystem in Eq. (13) is used to de-
sign a bounded controller that stabilizes the full interconnected
system of Eq. (13) and, consequently, the original system of
Eq. (5). For this purpose, a quadratic function of the form,
V� =�′P�, is used as a CLF in the controller synthesis formula
of Eqs. (7)–(8), where the positive-definite matrix,

P =
[

1.7321 1.0000
1.0000 1.7321

]
,

is chosen to satisfy the Riccati matrix equality: A′P + PA −
Pbb′P = −Q̄ where

Q̄ =
[

1 0
0 1

]

is a positive-definite matrix. The stability region estimate
for the system is obtained as a level set of the Lya-
punov function. For details on how to construct estimate
of the stability regions for this system, see Shi et al.
(2006). We initialize the crystallizer model at the fol-
lowing initial conditions [x̃0(0) x̃1(0) x̃2(0) x̃3(0) ỹ(0)]′ =
[0.066 0.041 0.025 0.015 0.560]′ and initialize the ob-
server at [0(0) 1(0) 2(0) 3(0) 4(0)]′ = [0.047 0.028
0.017 0.010 0.5996]′. The matrix L was chosen as L =
[L0 L1 L2 L3 L4]′ = [1 0 0 0 0]′ to satisfy the requirement
that the eigenvalues of the matrix

CL = �f

�

∣∣∣∣
(=s )

− L
�h

�

∣∣∣∣
(=s )

,

where s is the operating steady-state, lie in the open left-half
of the complex plane.

We pick the value of number of events to be W =400 events
per hour. Fig. 2 shows the evolution of the closed-loop state
(and state estimates in the case of output feedback control) and
input profiles with umax = 2 and no sensor losses under both
state feedback control (solid lines) and output feedback control
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Fig. 3. Evolution of the closed-loop state (and state estimates in the case of output feedback control) and input profiles under state feedback control (solid
lines) and output feedback control (dashed lines) for umax = 2 and 90% probability of sensor data losses.

(dashed lines). In both cases, we observe that the states of the
closed-loop system converge to the desired steady-state. Fig. 3
shows the evolution of the closed-loop state (and state estimates
in the case of output feedback control) and input profiles with
umax = 2 and 90% probability of sensor losses. Even though
the amount of losses is very significant, both the state feed-
back controller (solid lines) and the output feedback controller
(dashed lines) achieve stabilization of the process at the de-
sired steady-state. However, if the sensor data loss rate is 95%
closed-loop stability under both state feedback (solid lines) and
output feedback control cannot be achieved (dashed lines), see
Fig. 4. We did not observe a significant difference between state
feedback control and output feedback control in the sensor data
loss rate for which closed-loop stability is preserved. This is ex-
pected due to the nature of the system dynamics. Specifically,
we observed that even with continued open-loop operation, the
process stays in a region such that if continuous measurements
are received from a certain point in time onwards, closed-loop
stability is achieved. The output feedback problem, up until the
time that the state has not converged to the true values can be
thought of as open-loop operation, however, once the state esti-
mates converge then the problem ‘reverts’ to the state feedback
problem and the preservation of closed-loop stability depends
only on the data loss rate.

We also investigated the effect of different magnitude of ma-
nipulated input constraints on the sensor data loss rate that en-
sures closed-loop stability. Fig. 5 shows the evolution of the

state and input profiles with umax =4 and no sensor data losses.
The states of the closed-loop system under both state feed-
back control (solid lines) and output feedback control (dashed
lines) converge to the steady-state. Fig. 6 shows the evolution
of the state and input profiles with umax = 4 and 70% proba-
bility of sensor data losses. In this case, closed-loop stability is
maintained. However, when the data loss rate increases to 75%
closed-loop stability is not achieved under both state feedback
control (solid lines) and output feedback control (dashed lines),
see Fig. 7.

The reduced data loss rate under larger input constraints is
expected because larger input constraints means that the input
has a stronger effect on the process which implies that large
time intervals of open-loop behavior of the manipulated input
(when data losses occur) have an increased destabilizing effect
on the closed-loop system. Table 3 summarizes r∗ values for
different umax; the larger the manipulated input constraint, the
more sensitive the system toward sensor data loss. This obser-
vation also suggests that if excessive data loss rate occurs, the
value of umax can be artificially reduced to accommodate the
data loss and if the current state resides in the stability region
with the reduced umax, closed-loop stability can be preserved.

3. Handling sensor malfunctions: batch crystallizer

In this section, we consider a batch particulate process and
address the problem of producing PSD at the end of the batch
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Fig. 4. Evolution of the closed-loop state (and state estimates in the case of output feedback control) and input profiles under state feedback control (solid
lines) and output feedback control (dashed lines) for umax = 2 and 95% probability of sensor data losses.

that has desired characteristics while satisfying state and control
constraints during the batch and handling sensor data losses.

3.1. PBM of a protein batch crystallizer

The batch crystallizer considered in this work is taken from
our previous work (see Shi et al., 2005). A PBM is used to
describe the evolution of the crystal size distribution (CSD),
n(r, t). The evolution of the solute concentration, C, and
crystallizer temperature, T, are described by two ODEs. The
process model has the following form:

�n(r, t)

�t
+ G(t)

�n(r, t)

�r
= 0, n(0, t) = B(t)

G(t)
,

dC

dt
= −24�kvG(t)�2(t),

dT

dt
= − UA

MCp

(T − Tj ), (14)

where G(t) is the growth rate, B(t) is the nucleation rate, � is
the density of crystals, kv is the volumetric shape factor, U is
the overall heat-transfer coefficient, A is the total heat-transfer
surface area, M is the mass of solvent in the crystallizer, Cp is
the heat capacity of the solution, Tj is the jacket temperature
and �2 = ∫ ∞

0 r2n(r, t) dr is the second moment of the CSD.

The crystal nucleation rate B(t) (Galkin and Vekilov, 1999;
Bhamidi et al., 2002) is given by an equation of the following
form:

B(t) = kaC exp

(
− kb

�2

)
, (15)

where ka and kb are parameters that are obtained using exper-
imental results. The supersaturation, �, is the concentration of
the solution in excess of the saturation concentration (solubil-
ity) and is understood to be the driving force for the crystal
nucleation and growth. The supersaturation is defined as

� = ln(C/Cs), (16)

where C is the solute concentration and Cs is the solubility and
expressed as follows:

Cs(T ) = 1.0036 × 10−3T 3 + 1.4059 × 10−2T 2

− 0.12835T + 3.4613 (17)

as a result of third-order polynomial data fitting based on sol-
ubility data in Sazaki et al. (1996). Eq. (17) exhibits trends
similar to the experimental solubility data of being low at low
temperature and increasing significantly with increasing tem-
perature. The crystal growth rate G(t) is derived based on an
empirical model to describe the growth rate of the tetragonal
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Fig. 5. Evolution of the closed-loop state (and state estimates in the case of output feedback control) and input profiles under state feedback control (solid
lines) and output feedback control (dashed lines) for umax = 4 and no sensor data losses.

HEW lysozyme crystals as a function of supersaturation in the
following form:

G(t) = kg�
g , (18)

where kg is the pre-exponential factor of the growth rate. Pa-
rameter values for this model are given in Table 4. Note that
because of the tetragonal form of the crystals and the existence
of about 46% of solvent in each crystal (Leung et al., 1999),
the volumetric shape factor, kv , is set equal to 0.54.

The fact that the dominant dynamics of the crystallizer are
characterized by a small number of degrees of freedom (Chiu
and Christofides, 1999), method of moments (Hulburt and Katz,
1964) (see also Christofides, 2002; Shi et al., 2006; Mantzaris
and Daoutidis, 2004) is applied to the system of Eq. (14) to
derive an approximate ODE model. Defining the ith moment
of n(r, t) as

�i =
∫ ∞

0
rin(r, t) dr, i = 0, 1, . . . ,∞ (19)

multiplying the population balance in Eq. (14) by ri , and in-
tegrating over all crystal sizes, the following infinite set of
ODEs, which describes the rate of change of the moments of the
crystal size distribution, solute concentration and temperature,

is obtained

d�0

dt
= B(t),

d�i

dt
= iG(t)�i−1(t), i = 1, 2, . . . , ∞,

dC

dt
= −24�kvG(t)�2(t),

dT

dt
= − UA

MCp

(T − Tj ). (20)

Note that in Eq. (20), the ODEs describing the dynamics of
the first N moments, where N is any positive integer greater
than or equal to 3, the solute concentration and the crystal-
lizer temperature are independent of the moments of order
N + 1 and higher. This implies that a set of ordinary differen-
tial equations, which include the first N moments and the evo-
lution of the solute concentration and crystallizer temperature,
would provide an accurate description of the evolution of the
first N moments, the solute concentration and the crystallizer
temperature.

As will be seen in Section 3.3, the control objective will
require computation of �3 and �4, hence N is chosen as 4 and
the following reduced-order model is used for the purpose of
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Fig. 6. Evolution of the closed-loop state (and state estimates in the case of output feedback control) and input profiles under state feedback control (solid
lines) and output feedback control (dashed lines) for umax = 4 and 70% probability of sensor data losses.

controller design:

d�0

dt
= B(t),

d�i

dt
= iG(t)�i−1(t), i = 1, 2, 3, 4,

dC

dt
= −24�kvG(t)�2(t),

dT

dt
= − UA

MCp

(T − Tj ). (21)

3.2. State estimator design

In this section, we present an observer design that uses mea-
surements of the solute concentration, C, and temperature T
and the reduced order moments model, to generate estimates
of the moments. Similar to the continuous crystallizer exam-
ple, an extended Luenberger-type observer is used to estimate
the values of the moments of the CSD and takes the following
form:

d�̂0

dt
= B̂(t) + L0(Cm − Ĉ),

d�̂i

dt
= iĜ(t)�̂i−1(t) + Li(Cm − Ĉ), i = 1, . . . , 4,

dĈ

dt
= −24�kvĜ(t)�̂2(t) + L5(Cm − Ĉ), (22)

where Cm is the online measurement of the solute concentra-
tion, B̂(t) and Ĝ(t) are the nucleation and growth rates com-
puted using the online measurement of T and values of the es-
timates of �̂i and Ĉ, and Li , i =0, . . . , 5 are the observer gains
(these values were obtained via running open-loop simulations
and comparing the evolution of the state with the state estimates
for different choices of the observer gains), reported in Table 5.

Note that since the states �3 and �4 do not effect the evolu-
tion of the concentration, these states are not observable from
the concentration measurements. For the batch crystallization
considered in this work, the initial values of the moments at the
beginning of the batch run are identically equal to 0, because
there are no crystals initially inside the crystallizer. In the case
of a perfect model, therefore, the state estimates are naturally
initialized at the true values and would continue to track the
true values. In the case of plant-model mismatch, the observer
continues to generates satisfactory estimates of the observable
states.

3.3. Predictive controller formulation and closed-loop results

In the case of continuous crystallizer operation, the over-
riding objective is often stabilization, and the presence of
constraints on the manipulated input limits the set of initial
conditions starting from where stabilization can be achieved.
For batch processes, in contrast, the expression of performance
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Fig. 7. Evolution of the closed-loop state (and state estimates in the case of output feedback control) and input profiles under state feedback control (solid
lines) and output feedback control (dashed lines) for umax = 4 and 75% probability of sensor data losses.

Table 3
Summary of r∗ values for different umax for the continuous crystallizer
example

umax r∗ (% sensor data loss)

1 0.05 (95)
2 0.10 (90)
3 0.20 (80)
4 0.30 (70)
6 0.35 (65)

Table 4
Parameter values for the batch crystallizer model of Eqs. (14)–(18)

ka 1044.4/(min cm3) kg 3.1451 × 10−9 cm/ min
kb 51.33 g 5.169
kv 0.54 � 1.40 × 103 mg/cm3

U 1800 kJ/m2 h K A 0.25 m2

M 10 kg Cp 4.13 kJ/K kg

considerations in the form of appropriate constraints or through
the objective function, and the achievement of a PSD that
has the desired characteristics, is an important issue. Based
on these considerations, we present in the remainder of this
section a predictive controller formulation where, at time ti ,
the control trajectory is computed by solving an optimization

problem of the form:

min − �4(tf )

�3(tf )

s.t.
d�0

dt
= kaC exp

(
− kb

�2

)
,

d�i

dt
= ikg�

g�i−1(t), i = 1, . . . , 4,

dC

dt
= −24�kvkg�

g�2(t),

dT

dt
= − UA

MCp

(T − Tj ),

�i (ti ) = �̂i (ti ),

C(ti) = Ĉ(ti),

ti � t � tf ,

Tmin �T �Tmax,

Tj min �Tj �Tj max,

�min + �����max − �,∣∣∣∣dCs

dt

∣∣∣∣ �k1, (23)
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Table 5
Parameter values for the Luenberger-type observer of Eq. (22)

L0 −0.4 L1 0.05
L2 0.001 L3 1.7 × 10−5

L4 3 × 10−7 L5 −0.1

B(t)

G(t)
�nfine, ∀t � tf /2, (24)

where �4/�3 is the volume-averaged crystal size, Tmin and Tmax
are the constraints on the crystallizer temperature, T, and are
specified as 4 and 22 ◦C, respectively. Tj min and Tj max are the
constraints on the manipulated variable, Tj , and are specified
as 3 and 22 ◦C, respectively. The constraints on the supersat-
uration � are �min = 1.72 and �max = 2.89. The constant, k1
(chosen to be 0.065 mg/ml min), specifies the maximum rate of
change of the saturation concentration Cs . nfine is the largest al-
lowable number of nuclei at any time instant during the second
half of the batch run, and is set to 5/�m ml. The parameter � is
used to allow for tightening of the constraints in the controller
to enable constraint satisfaction for the system in the presence
of sensor data losses and plant model mismatch. In the context
of batch crystallizer control, previous work has shown that the
objective of maximizing the volume-averaged crystal size can
result in a large number of fines in the final product (Ma et al.,
2002). Therefore, the constraint of Eq. (24) restricts the num-
ber of nuclei formed at any time instant during the second half
of the batch run in order to limit the fines in the final product.
Measurements of the solute concentration and the crystallizer
temperature are assumed to be available; �m, the maximum
possible delay between two successive measurements, is taken
as 5 min. The measurements are used by the Luenberger-type
observer to generate estimates of the moments, which are used
as initial conditions of the states in the moments model. tf , the
total batch time, is chosen as 24 h. The optimization problem
is solved using sequential quadratic programming (SQP). A
second-order accurate finite difference scheme with 3000 dis-
cretization points is used to obtain the solution of the PBM of
Eq. (14).

We apply the control action computed by the low-order pre-
dictive controller of Eq. (23) on the PBM and study the prob-
lem of constraint satisfaction in the presence of sensor data
losses and model uncertainty. Specifically, we consider a case
of process-model mismatch by changing the value of the pa-
rameter g (the exponent relating growth rate to supersatura-
tion) from its nominal value of 5.169 to 4.652 (a 10% change)
in the predictive controller. We first show simulation results
with maximum duration between successive measurement of
�m = 5 min and � in Eq. (23) is 0. Solid lines in Fig. 8 depict
the implementation of the predictive controller where the state
constraints are satisfied for the entire batch run and the perfor-
mance objective is achieved (the supersaturation is within the
lower and upper bounds, 1.72���2.89). Note that the possi-
ble errors in the values of the unobservable states has an im-
pact on the achievement of the product properties as described
by the objective function. However, the satisfactory estimation
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Fig. 8. (a) Jacket temperature and (b) supersaturation profiles under output
feedback control; sampling time of 5 min (solid lines), sampling time of
10 min without constraint modification (dashed lines) and sampling time of
10 min under the predictive controller with tightened constraints (dash-dotted
lines).

of the observable states and the expression of the performance
considerations as constraints on the observable states allows
the achievement of most of the desired properties at the end
of the batch run. Consider now the case where, due to sensor
data losses, the maximum duration between successive mea-
surement increases from �m = 5 to 10 min. Implementation
of the predictive controller of Eq. (23), with the same values
of controller parameters as before (1.72���2.89), leads to
violation of the state constraints (see dashed lines in Fig. 8).
To alleviate the problem of state constraint violation in the
presence of sensor data losses, we implement the controller of
Eq. (23) with a tightened constraint on the supersaturation
�=0.24 (1.96���2.65). As can be seen by the dotted lines in
Fig. 8, the predictive controller is able to successfully achieve
the performance objective (the supersaturation is within the
lower and upper bound, 1.72���2.89), while at the same
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time respecting the state and input constraints in the presence
of sensor data losses.

4. Conclusions

This work investigated the problem of preserving closed-
loop stability and performance of feedback control of particu-
late processes in the presence of sensor data losses. To demon-
strate the issue of sensor data losses in the context of specific
process applications, two typical particulate process examples,
a continuous crystallizer and a batch protein crystallizer, were
considered and modeled by PBMs. In both examples, feedback
control systems was first designed on the basis of low-order
models and applied to the PBMs to enforce closed-loop stabil-
ity and constraint satisfaction. Subsequently, the robustness of
the control systems in the presence of sensor data losses was
investigated. Specifically, in the case of the continuous crystal-
lizer, a Lyapunov-based nonlinear output feedback controller
was designed and was shown to stabilize an open-loop unstable
steady-state of the PBM in the presence of input constraints. It
was demonstrated that this controller is robust with respect to
significant sensor data losses but, as expected, it cannot main-
tain closed-loop stability when the sensor data losses exceed a
certain threshold. In the case of the batch crystallizer, a pre-
dictive controller was first designed to obtain a desired crystal
size distribution at the end of the batch while satisfying state
and input constraints. In the presence of sensor data losses, we
pointed out how the constraints in the predictive controller can
be modified as a means of achieving constraint satisfaction in
the closed-loop system in the presence of data losses.
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