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Abstract

This work focuses on fault-tolerant control of a gas phase polyethylene reactor. Initially, a family of candidate control configurations,
characterized by different manipulated inputs, is identified. For each control configuration, a bounded nonlinear feedback controller,
that enforces asymptotic closed-loop stability in the presence of constraints, is designed, and the constrained stability region associated
with it is explicitly characterized using Lyapunov-based tools. Next, a fault-detection filter is designed to detect the occurrence of a fault
in the control actuator by observing the deviation of the process states from the expected closed-loop behavior. A switching policy is then
derived, on the basis of the stability regions, to orchestrate the activation/deactivation of the constituent control configurations in a way
that guarantees closed-loop stability in the event of control system faults. Closed-loop system simulations demonstrate the effectiveness
of the fault-tolerant control strategy.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Increasingly faced with the requirements of safety, reli-
ability, and profitability, chemical process operation is rely-
ing extensively on highly automated process control
systems. Automation, however, tends to increase vulnera-
bility of the process to faults (for example, defects/malfunc-
tions in process equipment, sensors and actuators, faults in
the controllers or in the control loops) potentially causing a
host of economic, environmental, and safety problems that
can seriously degrade the operating efficiency of the process.
Problems due to faults may include physical damage to
the process equipment, increase in the wasteful use of
raw material and energy resources, increase in the down-
time for process operation resulting in significant produc-
tion losses, and jeopardizing personnel and environmental
safety. These considerations provide a strong motivation
for the development of methods for the design of advanced
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fault-tolerant control systems that ensure an efficient and
timely response to enhance fault recovery and prevent faults
from propagating or developing into total faults.

Fault-tolerant control has been an active area of
research for the past 10 years, and has motivated many
research studies in this area within the context of aerospace
engineering (see, for example, [37,3,47]). The whole notion
of fault-tolerant control is based on the underlying assump-
tion of the availability of more control configurations than
required. Under this assumption, the reliable control
approach (see, for example, [45,41]) dictates use of all the
control loops at the same time so that fault in one control
loop does not lead to the failure of the entire control struc-
ture. The use of only as many control loops as are required
at a time, is often motivated by economic considerations
(to save on unnecessary control action), and in this case,
fault-tolerant control can be achieved through control-loop
reconfiguration. Recently, fault-tolerant control has gained
increased attention within process control; however, the
available results have been based on the assumption of a
linear process description [23,43,2,38].

mailto:pdc@seas.ucla.edu


Cooling
Water

Bleed

Catalyst

Product

Fresh Feed
Ethylene
Comonomer
Inerts
Hydrogen

Fig. 1. Industrial gas phase polyethylene reactor system.
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One of the prerequisites in implementing fault-tolerant
control is the ability to detect and isolate the occurrence
of faults. Existing results on the design of fault-detection
filters include those that use past plant-data and those that
use fundamental process models for the purpose of fault-
detection filter design. Statistical and pattern recognition
techniques for data analysis and interpretation (for exam-
ple, [25,39,36,12,35,11,7,42,1,46]) use past plant-data to
construct indicators that identify deviations from normal
operation to detect faults. The problem of using fundamen-
tal process models for the purpose of detecting faults has
been studied extensively in the context of linear systems
[27,19,20,9,29] and more recently some existential results
in the context of nonlinear systems have been derived
[40,10].

A switch to fall-back control configuration (upon detec-
tion of a fault in a control configuration) results in an over-
all process that exhibits intervals of piecewise continuous
behavior interspersed by discrete transitions. A hybrid sys-
tems framework therefore provides a natural setting for
the analysis and design of fault-tolerant control structures.
However, at this stage, despite the large and growing body
of research work on a diverse array of hybrid system prob-
lems (for example, [22,21,8,15,31,5]), the use of a hybrid
system framework for the study of fault-tolerant control
problems has received limited attention. In [16], a hybrid
systems approach to fault-tolerant control was employed
where upon occurrence of a fault, stability region-based
reconfiguration is done to achieve fault-tolerant control.
In [34], the problem of implementing integrated fault-detec-
tion and fault-tolerant control (FDFTC) was addressed
under state and output feedback control and in [33], perfor-
mance and robustness considerations were incorporated in
the fault-tolerant control structure.

Industrial processes stand to gain from an application of
fault-tolerant control structures that prevent loss of product
(due, for example, to limit cycles) and possible loss of equip-
ment (due, for example, to unacceptably high temperatures)
in the event of a fault in the control configuration, while
accounting explicitly for the complex process characteristics
manifested in the form of nonlinearities, constraints and
uncertainty. Motivated by these considerations, this work
focuses on fault-tolerant control of a gas phase polyethylene
reactor modeled by seven nonlinear ordinary differential
equations (ODEs). Polyethylene is the most popular of all
synthetic commodity polymers, with current worldwide
production of more than 40 billion tonnes per year. Large
proportion of this polyethylene is produced in gas phase
reactors using Ziegler-Natta catalysts. In a gas phase poly-
ethylene reactor, the temperature in the reaction zone is
kept above the dew point of the reactant and below the
melting point of the polymer to prevent melting and conse-
quent agglomeration of the product particles. Most com-
mercial gas phase fluidized bed polyethylene reactors are
operated in a relatively narrow temperature range between
75 �C and 110 �C [44]. It has been demonstrated [4,28,24]
that without feedback temperature control (or in the event
of failure in the control configuration), industrial gas phase
polyethylene reactors are prone to unstable steady-states,
limit cycles, and excursions toward unacceptable high tem-
perature steady-states which can lead to loss of product as
well as damage the equipment.

To develop a fault-tolerant control system for the gas
phase polyethylene reactor, we initially describe the process
evolution on the basis of a detailed model and identify a
family of candidate control configurations. For each con-
trol configuration, a bounded nonlinear feedback control-
ler, that enforces asymptotic closed-loop stability in the
presence of constraints, is designed, and the constrained
stability region associated with it is explicitly characterized
using Lyapunov-based tools. Next, a fault-detection filter is
designed to detect the occurrence of a fault in the control
actuator by observing the deviation of the process states
from the expected closed-loop behavior. A switching policy
is then derived, on the basis of the stability regions, to
orchestrate the activation/deactivation of the constituent
control configurations in a way that guarantees closed-loop
stability in the event of control system faults. Closed-loop
system simulations demonstrate the effectiveness of the
fault-tolerant control strategy as well as investigate an
application in the presence of measurement noise.
2. Process description and modeling

Fig. 1 shows a schematic of an industrial gas phase poly-
ethylene reactor system. The feed to the reactor consists of
ethylene, comonomer, hydrogen, inerts, and catalyst. A
stream of unreacted gases flows from the top of the reactor
and is cooled by passing through a heat exchanger in coun-
ter-current flow with cooling water. Cooling rates in the
heat exchanger are adjusted by instantaneously blending
cold and warm water streams while maintaining a constant
total cooling water flowrate through the heat exchanger.
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Mass balance on hydrogen and comonomer have not been
considered in this study because hydrogen and comonomer
have only mild effects on the reactor dynamics [28]. A
mathematical model for this reactor has the form [6]:

d½In�
dt
¼

F In � ½In�
½M1�þ½In�

bt

V g

d½M1�
dt
¼

F M1
� ½M1�
½M1�þ½In�

bt � RM1

V g

dY 1

dt
¼ F cac � kd1

Y 1 �
RM1MW 1

Y 1

Bw

dY 2

dt
¼ F cac � kd2

Y 2 �
RM1MW 1

Y 2

Bw

dT
dt
¼ H f þ H g1 � H g0 � Hr � H pol

MrCpr þ BwCppol

dT w1

dt
¼ F w

Mw
ðT wi � T w1

Þ � UA
MwCpw

ðT w1
� T g1

Þ

dT g1

dt
¼ F g

Mg
ðT � T g1

Þ þ UA
MgCpg

ðT w1
� T g1

Þ

ð2:1Þ

where
Table 1
Process variables

ac Active site concentration of catalyst
bt Overhead gas bleed
Bw Mass of polymer in the fluidized bed
Cpm1 Specific heat capacity of ethylene
Cv Vent flow coefficient
Cpw, CpIn, Cppol Specific heat capacity of water, inert gas and polymer
Ea Activation energy
Fc, Fg Flow rate of catalyst and recycle gas
FIn, F M1

, Fw Flow rate of inert, ethylene and cooling water
Hf, Hg0 Enthalpy of fresh feed stream, total gas outflow

stream from reactor
Hg1 Enthalpy of cooled recycle gas stream to reactor
Hpol Enthalpy of polymer
Hr Heat liberated by polymerization reaction
Hreac Heat of reaction
[In] Molar concentration of inerts in the gas phase
kd1

, kd2
Deactivation rate constant for catalyst site 1, 2

kp0 Pre-exponential factor for polymer propagation rate
[M1] Molar concentration of ethylene in the gas phase
Mg Mass holdup of gas stream in heat exchanger
MrCpr Product of mass and heat capacity of reactor walls
Mw Mass holdup of cooling water in heat exchanger
MW 1

Molecular weight of monomer
Pv Pressure downstream of bleed vent
R, RR Ideal gas constant, unit of J

mol K, m3 atm
mol K

T, Tf, Tfeed Reactor, reference, feed temperature
T g1

, T w1
Temperature of recycle gas, cooling water stream
from exchanger

Twi Inlet cooling water temperature to heat exchanger
UA Product of heat exchanger coefficient with area
Vg Volume of gas phase in the reactor
Vp Bleed stream valve position
Y1, Y2 Moles of active site type 1, 2
bt ¼ V pCv

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð½M1� þ ½In�Þ � RR � T � P v

p
RM1 ¼ ½M1� � kp0 � exp

�Ea

R
1

T
� 1

T f

� �� �
� ðY 1 þ Y 2Þ

Cpg ¼
½M1�

½M1� þ ½In�
Cpm1 þ

½In�
½M1� þ ½In�

CpIn

H f ¼ F M1
Cpm1ðT feed � T f Þ þ F InCpInðT feed � T f Þ

H g1 ¼ F gðT g1
� T f ÞCpg

H g0 ¼ ðF g þ btÞðT � T f ÞCpg

H r ¼ H reacMW 1
RM1

H pol ¼ CppolðT � T f ÞRM1MW 1

ð2:2Þ

Table 1 includes the definition of all the variables used in
Eqs. (2.1) and (2.2). The values of the process parameters
are listed in Table 2. Under these operating conditions,
the open-loop system behaves in an oscillatory fashion
(i.e., the system possesses an open-loop unstable steady-
state surrounded by a limit cycle).

The control objective is to stabilize the reactor. To
accomplish this objective we consider the following manip-
ulated input candidates:

(1) Feed temperature, u1 ¼
F M1

Cpm1þF InCpIn

MrCprþBwCppol
ðT feed � T s

feedÞ,
subject to the constraint ju1j 6 u1

max ¼
F M1

Cpm1þF InCpIn

MrCprþBwCppol
ð20Þ K

s .
Table 2
Parameter values and units

Vg 500 m3

Vp 0.5
Pv 17 atm
Bw 7 · 104 kg
kp0 85 · 10�3 m3

mol s

Ea (9000)(4.1868) J
mol

Cpm1 (11)(4.1868) J
mol K

Cv 7.5 atm�0:5 mol
s

Cpw, CpIn (103)(4.1868), (6.9)(4.1868) J
kg K

Cppol (0.85 · 103)(4.1868) J
kg K

kd1
0.0001 s�1

kd2
0.0001 s�1

MW 1
28.05 · 10�3 kg

mol

Mw 3.314 · 104 kg
Mg 6060.5 mol
MrCpr (1.4 · 107)(4.1868) J

K

Hreac (�894 · 103)(4.1868) J
kg

UA (1.14 · 106)(4.1868) J
K s

FIn, F M1
, Fg 5, 190, 8500 mol

s

Fw (3.11 · 105)(18 · 10�3) kg
s

F s
c

5:8
3600

kg
s

Tf, T s
feed, Twi 360, 293, 289.56 K

RR 8.20575 · 10�5 m3 atm
mol K

R 8.314 J
mol K

ac 0.548 mol
kg

umax
1 , umax

2 5.78 · 10�4, 3.04 · 10�4 K
s , mol

s

[In]s 439.68 mol
m3

[M1]s 326.72 mol
m3

Y 1s , Y 2s 3.835, 3.835 mol
Ts, T w1s

, T g1s
356.21, 290.37, 294.36 K
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(2) Catalyst flowrate, u2 ¼ ðF c � F s
cÞac, subject to the

constraint ju2j 6 u2
max ¼ 2

3600

� �
ac

mol
s

.

Each of the above manipulated inputs represents a
unique control configuration (or control loop) that, by
itself, can stabilize the reactor. The first control configura-
tion, with feed temperature (Tfeed) as the manipulated
input, will be considered as the primary configuration. In
the event of some faults in this configuration, however,
the plant supervisor, will have to activate the fall-back con-
figuration in order to maintain closed-loop stability. The
question which we address in the next section, is how the
supervisor determines, from observing the evolution of
the process, that a fault has occurred in the control config-
uration and whether or not the fall-back control configura-
tion will be able to stabilize the reactor if the primary
control configuration fails.

3. Fault-tolerant control

Having identified the candidate control configurations
that can be used, we outline in this section the main steps
involved in the fault-tolerant control system design proce-
dure. These include: (a) the synthesis of a stabilizing feed-
back controller for each control configuration, (b) the
explicit characterization of the constrained stability region
associated with each configuration, (c) the design of a fault-
detection filter, and (d) the design of a switching law that
orchestrates the re-configuration of control system in a
way that guarantees closed-loop stability in the event of
faults in the active control configuration.

To present our results in a compact form, we write the
model of Eq. (2.1) in a deviation (from the operating
unstable steady-state) variable form, by defining x ¼
½x1 x2 x3 x4 x5 x6 x7�T where x1 = In � Ins, x2 ¼ M1 �M1s ,
x3 ¼ Y 1 � Y 1s , x4 ¼ Y 2 � Y 2s , x5 = T � Ts, x6 ¼ T w1

� T w1s
,

x7 ¼ T g1
� T g1s

, and obtain a continuous-time nonlinear
system with the following state-space description:

_xðtÞ ¼ fkðtÞðxðtÞÞ þ gkðtÞðxðtÞÞukðtÞ

jukðtÞj 6 umax
k

kðtÞ 2 K ¼ f1; 2g
ð3:3Þ

where xðtÞ 2 R7 denotes the vector of process state vari-
ables and ukðtÞ 2 ½�umax

k ; umax
k � � R denotes the constrained

manipulated input associated with the kth control configu-
ration. k(t), which takes values in the finite index set K, rep-
resents a discrete state that indexes the vector fields fk(Æ),
gk(Æ) as well as the manipulated input uk(Æ). The explicit
form of the vector fields fk(t)(x(t)) and gk(t)(x(t)) can be ob-
tained by comparing Eqs. (2.1) and (3.3) and is omitted for
brevity. For each value that k assumes in K, the process is
controlled via a different manipulated input which defines a
given control configuration. Switching between the two
available control configurations is controlled by a higher-
level supervisor that monitors the process and orchestrates,
accordingly, the transition between the different control
configurations in the event of control system fault. This
in turn determines the temporal evolution of the discrete
state, k(t). The supervisor ensures that only one control
configuration is active at any given time, and allows only
a finite number of switches over any finite interval of time.
The control objective is to stabilize the process of Eq. (3.3)
in the presence of actuator constraints and faults in the
control system. The basic problem is how to detect the
occurrence of a fault and coordinate switching between
the different control configurations (or manipulated inputs)
in a way that respects actuator constraints and guarantees
closed-loop stability in the event of faults. To simplify the
presentation of our results, we will focus only on the state
feedback problem where measurements of all process states
are available for all times.

3.1. Constrained feedback controller synthesis

In this step, we synthesize, for each control config-
uration, a feedback controller that enforces asymptotic
closed-loop stability in the presence of actuator constraints.
This task is carried out on the basis of the process input/
output dynamics. While our control objective is to achieve
full state stabilization, process outputs are introduced only
to facilitate transforming the system of Eq. (2.1) into a form
more suitable for explicit controller synthesis.

1. For the primary control configuration with u1 ¼
F M1

Cpm1þF InCpIn

MrCprþBwCppol
ðT feed � T s

feedÞ, we consider the output

y1 = T � Ts. This choice yields a relative degree of
r1 = 1 with respect to u1. The input/output dynamics
can be then expressed in terms of the time-derivative
of the variable: e1 = T � Ts.

2. For the fall-back control configuration with u2 ¼
ðF c � F s

cÞac, we choose the output y2 = T � Ts which
yields a relative degree of r2 = 2 and the corresponding
variables for describing the input/output dynamics take

the form: e1
2 ¼ T � T s, e2

2 ¼
HfþHg1�Hg0�Hr�Hpol

MrCprþBwCppol
. In particu-

lar, for the fall-back control configuration, the system
describing the input/output dynamics has the following
form:

_e2 ¼ A2e2 þ l2ðe2Þ þ b2a2u2 :¼ �f 2ðe2Þ þ �g2ðe2Þu2 ð3:4Þ
where

A2 ¼
0 1

0 0

" #
; b2 ¼

0

1

" #
; e2 ¼

e1
2

e2
2

" #
;

l2ð�Þ ¼ L2
f2

h2ðxÞ; a2ð�Þ ¼ Lg2
Lf2

h2ðxÞ

h2(x) = y2 is the output associated with the fall-back
control configuration (the explicit form of the functions
f2(Æ) and g2(Æ) is omitted for brevity).

The inverse dynamics, for both the first and second con-
trol configurations, have the following form:
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_g1 ¼ W1;kðe; gÞ

..

.

_g7�rk ¼ W7�rk ;kðe; gÞ

ð3:5Þ

where k = 1,2 and W1;k � � �W7�rk ;k are nonlinear functions of
their arguments describing the evolution of the inverse
dynamics of the kth mode.

Using a quadratic Lyapunov function of the form
V k ¼ eT

k P kek, where Pk is a positive-definite symmetric
matrix that satisfies the Riccati inequality AT

k P k þ P kAk �
P kbkbT

k P k < 0, we synthesize, for each control-loop, a
bounded nonlinear feedback control law (see [26,13,14])
of the form:

uk ¼ �rðx; umax
k ÞL�gk V k ð3:6Þ

where

rðx; umax
k Þ ¼

L��f k
V k þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðL��f k

V kÞ2 þ ðumax
k jL�gk V kjÞ4

q
ðjL�gk V kjÞ2 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðumax

k jL�gk V kjÞ2
q� � ð3:7Þ

and L��f k
V k ¼ L�f k

V k þ qjekj2, q > 0. The scalar function r(Æ)
in Eqs. (3.6) and (3.7) can be considered as a nonlinear con-
troller gain. It can be shown that each control configura-
tion asymptotically stabilizes the e states in each mode.
This result, together with the property of the g states to
be input-to-state stable, can be used to show, via a small
gain argument, asymptotic stability for each control config-
uration (verified through simulation and analysis of the
system of Eq. (3.7) with ek = 0 for both k = 1 and k = 2).
This controller gain, which depends on both the size of
actuator constraints, umax

k , and the particular configuration
used is shaped in a way that guarantees constraint satisfac-
tion and asymptotic closed-loop stability within a
well-characterized region in the state-space. The character-
ization of this region is discussed in the next step.

3.2. Characterization of constrained stability regions

Given that actuator constraints place fundamental limi-
tations on the initial conditions that can be stabilized, it is
important for the control system designer to explicitly
characterize these limitations by identifying, for each con-
trol configuration, the set of admissible initial conditions
starting from where the constrained closed-loop system is
asymptotically stable. As discussed in step (d) below, this
characterization is necessary for the design of an appropri-
ate switching policy that ensures the fault-tolerance of the
control system. The control law designed in step (a) pro-
vides such a characterization. Specifically, using a Lyapu-
nov argument, one can show that the set

Hðumax
k Þ ¼ fx 2 R7 : L��f k

V k 6 umax
k jL�gk V kjg ð3:8Þ

describes a region in the state space where the control ac-
tion satisfies the constraints and the time-derivative of the
corresponding Lyapunov function is negative-definite
along the trajectories of the closed-loop system. Note that
the size of this set depends, as expected, on the magnitude
of the constraints. In particular, the set becomes smaller as
the constraints become tighter (smaller umax

k ). For a given
control configuration, one can use the above inequality to
estimate the stability region associated with this configura-
tion. This can be done by constructing the largest invariant
subset of H, which we denote by Xðumax

k Þ. Confining the ini-
tial conditions within the set Xðumax

k Þ ensures that the
closed-loop trajectory stays within the region defined by
Hðumax

k Þ, and thereby Vk continues to decay monotonically,
for all times that the kth control configuration is active (see
[13] for further discussion on this issue).

An estimate of the region of constrained closed-loop sta-
bility for the full system is obtained by defining a composite
Lyapunov function of the form V ck ¼ V k þ V gk

, where
V gk
¼ gTP gk

g and P gk
is a positive definite matrix and

choosing a level set of V ck , Xck , for which _V ck < 0 for all
x in Xck .

Remark 1. Note that the composite Lyapunov functions,
V ck , used in implementing the switching rules, are in
general different from the Lyapunov functions Vk used in
designing the controllers. Owing to the ISS property of the
gk-subsystem of each mode, only a Lyapunov function for
the ek subsystem, namely Vk, is needed and used to design a
controller that stabilizes the full ek � gk interconnection for
each mode. However, when implementing the switching
rules (constructing the Xck ), we need to track the evolution
of x (and hence the evolution of both ek and gk). Therefore,
the Lyapunov functions used in verifying the switching
conditions at any given time, V ck , are based on x. From the
asymptotic stability of each mode, the existence of these
Lyapunov functions is guaranteed by converse Lyapunov
theorems. Note also that the above controller design is only
one example of a controller design that allows for an
explicit characterization of the stability region and is used
for the purpose of illustration. Other controller designs
such as the hybrid predictive controller [18,30,17,32] that
enable implementation of predictive controllers with a well
characterized stability region can also be used to achieve
fault-tolerant control within the proposed framework.

Remark 2. Note that in practical implementation when the
state trajectory gets close to the desired equilibrium point,
the first ðjL�gk V kjÞ2 term in the denominator of the control
law of Eq. (3.7) could cause chattering in the control action.
To alleviate this chattering, a small positive number mk may
be added to the first ðjL�gk V kjÞ2 term in the denominator. The
addition of mk allows for achieving practical stability, with
decrease in magnitude of mk (while keeping it large enough
to avoid chattering) resulting in the state trajectory going
further closer to the desired equilibrium point.
3.3. Fault-detection filter design

The next step in implementing fault-tolerant control is
that of designing appropriate fault-detection filters that
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can detect the occurrence of a fault in the control actuator
by observing the behavior of the closed-loop process. To
this end, we design for a given control configuration, a
fault detection filter of the form:

_wðtÞ ¼ fkðwðtÞÞ þ gkðwðtÞÞukðwÞ

jukj 6 umax
k

rkðtÞ ¼ kxðtÞ � wðtÞk

ð3:9Þ

where xðtÞ 2 R7 denotes the vector of process state vari-
ables and ukðtÞ 2 ½�umax

k ; umax
k � � R denotes the constrained

manipulated input associated with the kth control configu-
ration, wðtÞ 2 R7 is the vector of filter states and rkðtÞ 2 R is
the residual that detects the occurrence of a fault. The filter
states are initialized at the same value as the process states
(w(0) = x(0)) and essentially predict the evolution of the
process in the absence of actuator faults. The residuals cap-
tures the difference between the predicted evolution of the
states in the absence of faults and that of the process state,
thereby detecting faults in the control actuators. Specifi-
cally, the value of rk(t) becomes non-zero at the earliest
time that a fault occurs (for a detailed analysis of the detec-
tion properties of the filter, see [34]).

Remark 3. Note that in the presence of measurement
noise, the value of r(t) will be nonzero even in the absence
of faults. To handle this problem, the filter should declare a
fault only if the value of r(t) increases beyond some
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Fig. 2. Evolution of the op
threshold, d, where d accounts for the deviation of the
plant measurements from the nominal measurements in the
absence of faults (see the simulation section for a demon-
stration). Note also, that plant model mismatch or
unknown disturbances can also cause the value of r(t) to
be nonzero even in the absence of faults. The FDFTC
problem in the presence of time varying disturbances with
known bounds on the disturbances can be handled by
redesigning the filter as well as the controllers for the
individual control configuration. Specifically, as in the case
of measurement noise, the filter should declare a fault only
if the value of r(t) increases beyond some threshold, d,
where d accounts for the deviation of the plant dynamics
from the nominal dynamics in the absence of faults. The
controllers for the individual control configurations need to
be redesigned to mitigate the effect of disturbances on the
process, in a way that allows the characterization of the
robust stability regions. The robust stability region can
subsequently be used in deciding which backup control
configuration should be implemented in the closed-loop.
With regard to the fault-detection filter, the detection
threshold provides a suitable handle that can be used to
achieve early fault detection. In the presence of noise,
however, having a small fault-detection threshold can lead
to the triggering of false alarms (as demonstrated in the
simulation example) and should be picked to achieve the
desired tradeoff between avoiding false alarms and detect-
ing faults.
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3.4. Fault-tolerant switching logic

Having designed the feedback control laws, character-
ized the stability region associated with each control con-
figuration, and designed the fault-detection filter, the
fourth step is to derive the switching policy that the super-
visor needs to employ to activate/deactivate the appropri-
ate control configurations in the event of faults. The key
idea here is that, because of the limitations imposed by con-
straints on the stability region of each configuration, the
supervisor can only activate the control configuration for
which the closed-loop state is within the stability region
at the time of control system fault. Without loss of gener-
ality, let the initial actuator configuration be k(0) = 1, Tfault

be the time when this configuration fails and let Tdetect be
the earliest time at which the value of r1ðtÞ > dr1

> 0 (where
dr1

is the detection threshold chosen based on the accept-
able level of deviation of the actual closed-loop perfor-
mance from the desired one), then the switching rule
given by

kðt P T detectÞ ¼ 2 if xðT detectÞ 2 Xc2
ðumax

2 Þ ð3:10Þ
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Fig. 3. Closed-loop state profiles under
guarantees asymptotic closed-loop stability. The imple-
mentation of the above switching law requires monitoring
the closed-loop state trajectory with respect to the stability
regions associated with the various actuator configura-
tions. This idea of tying the switching logic to the stability
regions was first proposed in [15] for the control of
switched nonlinear systems.

4. Simulation results

Several simulation runs were carried out to evaluate
the effectiveness of the proposed fault-detection and
fault-tolerant control strategy. Fig. 2 shows the evolution
of the open-loop state profiles. Under the operating condi-
tions listed in Table 2, the open-loop system behaves in
an oscillatory fashion (i.e., the system possesses an open-
loop unstable steady-state surrounded by a stable limit
cycle).

First, process operation under primary control configu-
ration was considered (i.e., the feed temperature, Tfeed, was
the manipulated input) and a bounded nonlinear controller
was designed using the formula of Eqs. (3.6) and (3.7).
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Specifically, a quadratic function of the form V 1 ¼
1
2
ðT � T sÞ2 and q1 = 0.01 were used to design the controller

and a composite Lyapunov function of the form V c1
¼ 5�

10�3ðIn � InsÞ4 þ 5 � 10�4ðM1 � M1sÞ2 þ 5 � 10�11ðY 1 �
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Fig. 4. Manipulated input profile under primary control configuration.
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Fig. 5. Evolution of the closed-loop state profiles under primary control confi
switch to (or fall-back control configuration is not activated) resulting in open
fails at Tfault = 5 h 34 min.
Y 1sÞ2 þ 5 � 10�11ðY 2 � Y 2sÞ2 þ 5 � 10�4ðT � T sÞ2 þ 5 �
10�2ðT w1

� T w1sÞ
2 þ 5 � 10�11ðT g1

� T g1s
Þ2 was used to

estimate the stability region of the primary control config-
uration yielding a cmax

1 ¼ 62.
The first ðjL�gk V kjÞ2 term in the denominator of the con-

trol law of Eq. (3.7) was replaced by ðjL�gk V kjÞ2 þ mk (as dis-
cussed in Remark 2), with m1 = 1 and m2 = 5 · 10�9, to
alleviate chattering of the control action close to the
desired equilibrium point under configurations 1 and 2,
respectively. Fig. 3 shows the evolution of the closed-loop
state profiles and Fig. 4 shows the evolution of the manip-
ulated inputs starting from the initial condition
Inð0Þ ¼ 450 mol

m3 , M1ð0Þ ¼ 340 mol
m3 , Y1(0) = 4.6 mol, Y2(0) =

4.6 mol, T(0) = 360 K, T w1
ð0Þ ¼ 300 K, and T g1

ð0Þ ¼
300 K for which V c1

¼ 61:4. Since this initial state is
within the stability region of the primary control configura-
tion (i.e., V c1

ðxð0ÞÞ 6 cmax
1 ), the primary control configura-

tion is able to stabilize the system at the steady-state of
interest.

Next, we considered the case of having a fault in the pri-
mary control configuration. In this case, the supervisor had
available a fall-back control configuration with the catalyst
flowrate, Fc, as the manipulated input. A quadratic Lyapu-
nov function of the form V 2 ¼ eT

2 P 2e2 and q2 = 0.01 was
used to design the controller that used the fall-back control
configuration and a composite Lyapunov function of the
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form V c2
¼ 5� 10�3ðIn� InsÞ4 þ 5� 10�4ðM1 �M1sÞ2þ

5� 10�11ðY 1 � Y 1sÞ2 þ 5� 10�11ðY 2 � Y 2sÞ2 þ 5� 10�4ðT �
T sÞ2 þ 5� 10�11ðT w1

� T w1sÞ
2 þ 5� 10�11ðT g1

� T g1s
Þ2 was

used to estimate the stability region of the fall-back control
configuration yielding a cmax

2 ¼ 56:8.
To demonstrate that control loop reconfiguration results

in fault-tolerant reactor control in the presence of input
constraints, we carried out the following simulations: We
first initialized the reactor at Inð0Þ ¼ 450 mol

m3 , M1ð0Þ ¼
340 mol

m3 , Y1(0) = 4.6 mol, Y2(0) = 4.6 mol, T(0) = 360 K,
T w1
ð0Þ ¼ 300 K, and T g1

ð0Þ ¼ 300 K resulting in V c1
¼

61:4 which implied that this initial state was within the sta-
bility region of the primary control configuration. Consider
now, a fault in the primary control configuration at time
Tfault = 5 h 34 min (see dashed lines in Figs. 5 and 6). In
the case of no switching to fall-back control configuration
or no backup control configurations available, closed-loop
stability is not achieved and the process behaves in an oscil-
latory fashion (solid line in Fig. 5).

However, applying our fault-detection and fault-toler-
ant control strategy, the supervisor kept track of the resid-
ual value r1 (see dashed line in Fig. 7) and observed
the residual value r1 becoming non-zero at Tfault = 5 h
34 min. At Tdetect = 5 h 54 min, the residual value r1

reached the detection threshold ðdr1
¼ 0:5Þ and a fault on

primary control configuration was declared. The supervi-
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process starts operating open-loop (dotted lines). At Tdetect = 5 h 54 min, t
configuration and the control system switches to the fall-back control configu
sor, then, checked if switching to fall-back control con-
figuration would preserve stability. This was done by
evaluating the value of the composite Lyapunov function
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measurement noise. A detection threshold of 0.5 triggers false alarm even
before real fault on primary control configuration at Tfault = 5 h 34 min. A
new detection threshold of 0.7 is picked and implemented. At Tdetect = 5 h
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filter residual back to normal.
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of the fall-back control configuration at Tdetect = 5 h
54 min where the states were of the following values:
InðT detectÞ ¼ 449:7 mol

m3 , M1ðT detectÞ ¼ 316:9 mol
m3 , Y1(Tdetect) =

3.86 mol, Y2(Tdetect) = 3.86 mol, T(Tdetect) = 356.3 K,
T w1
ðT detectÞ ¼ 290:4 K, and T g1

ðT detectÞ ¼ 294:3 K. Since
V c2
ðxðT detectÞÞ ¼ 49:6 6 cmax

2 , the state, at the time the filter
detected the fault in the primary control configuration, was
within the stability region of the fall-back control configu-
ration. Therefore, switching to fall-back control configura-
tion would preserve closed-loop stability (see solid lines in
Fig. 6).

Next, we also investigated the implementation of the
fault-detection and fault-tolerant control strategy in the
presence of measurement noise. Specifically, we considered
Gaussian measurement noise of the following magnitude:
In ¼ 0:5 mol

m3 , M1 ¼ 0:3 mol
m3 , Y1 = 0.04 mol, Y2 = 0.04 mol,

T = 0.8 K, T w1
¼ 0:3 K, and T g1

¼ 0:3 K. Note that in
the presence of measurement noise, the value of the resid-
ual stayed non-zero even in the absence of actuator faults
(for the measurement noise considered in this study, a
detection threshold of dr1

¼ 0:5 was no longer appropriate
and triggered false alarms). A new threshold that captured
the effect of the measurement noise on the value of the
residual was needed. A detection threshold of ðdr1

¼ 0:7Þ
was then picked. Consider once again a fault in the
primary control configuration at time Tfault = 5 h 34 min.
This fault was detected by the fault-detection filter via
the residual reaching the threshold at Tdetect = 5 h 54 min
(see dashed line in Fig. 9). The supervisor, then, checked
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parametric model uncertainty and disturbances.
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if switching to fall-back control configuration would pre-
serve stability. As before, this was done by evaluating the
value of the composite Lyapunov function of the fall-back
control configuration at Tdetect = 5 h 54 min where the
states were of the following values: InðT detectÞ ¼ 449:3 mol

m3 ,
M1ðT detectÞ ¼ 327:5 mol

m3 , Y1(Tdetect) = 3.83 mol, Y2(Tdetect) =
3.83 mol, T(Tdetect) = 355.6 K, T w1

ðT detectÞ ¼ 290:4 K,
and T g1

ðT detectÞ ¼ 294:4 K. Since V c2
ðxðT detectÞÞ ¼ 42:7 6

cmax
2 , the state, at the time the filter detected the fault

in the primary control configuration, was within the stabil-
ity region of the fall-back control configuration. Subse-
quent switching to the fall-back control configuration
once again resulted in closed-loop stability (see solid lines
in Fig. 8).

Finally, we also evaluated the robustness of the control-
ler that is a vital component of the fault-tolerant control
structure. We considered values of some of the process
parameters being different from the ones used in the
controller design, specifically, Ea = 38.058 kJ/mol and
Hreac = 3780.429 kJ/kg and also in the presence of distur-
bance in the inlet coolant temperature, with Twi = 288.56
K. The dotted lines in Fig. 10 shows the open-loop profiles
illustrating the effect of the presence of disturbances and
uncertainty in the parameters on the process states. In con-
trast, when the primary control configuration is imple-
mented, the controller is able to reject the disturbances
and stabilize the process at the desired equilibrium point
(see solid lines in Fig. 10).
5. Conclusions

In this work we focused on fault-tolerant control of a
gas phase polyethylene reactor. Initially, a family of candi-
date control configurations, characterized by different
manipulated inputs, were identified. For each control con-
figuration, a bounded nonlinear feedback controller, that
enforced asymptotic closed-loop stability in the presence
of constraints, was designed, and the constrained stabil-
ity region associated with it was explicitly characterized
using Lyapunov-based tools. A fault-detection filter was
designed to detect the occurrence of a fault in the control
actuator by observing the deviation of the process states
from the expected closed-loop behavior. A switching pol-
icy was then derived, on the basis of the stability regions,
to orchestrate the activation/deactivation of the constitu-
ent control configurations in a way that guaranteed
closed-loop stability in the event of control system faults.
Closed-loop simulations were carried out to implement the
fault-tolerant control strategy on the gas phase polyethyl-
ene reactor and to demonstrate the implementation of the
fault-tolerant control method in the presence of measure-
ment noise.
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