
( )Aerosol Science and Technology 32:369 ] 391 2000
Q 2000 American Association for Aerosol Research
Published by Taylor and Francis
0278-6826 r00 r$12.00 q .00

Modeling and Control of a Titania
Aerosol Reactor

Ashish Kalani and Panagiotis D. Christo� des
DEPARTMENT OF CHEMICAL ENGINEERING,

UNIVERSITY OF CALIFORNIA,

LOS ANGELES, CA 90095-1592

ABSTRACT. We focus on modeling and control of an aerosol � ow reactor used to
produce titania powder. We initially present a detailed population balance model
for the process which accounts for simultaneous nucleation, Brownian and shear-
induced coagulation, and convective transport and describe the spatio-temporal
evolution of the aerosol volume distribution. Then, under the assumption of
lognormal aerosol volume distribution, the method of moments is employed for the
derivation of a model that describes the evolution of the three leading moments of
the volume distribution. The moment model, together with the fundamental model
that describes the temperature in the reactor and concentrations of the gas-phase
species, are subsequently used to synthesize a nonlinear output feedback controller
which manipulates the temperature of the reactor wall to achieve an aerosol size
distribution in the outlet of the reactor with desired geometric average particle
diameter. The nonlinear controller is successfully implemented on the process
model and is shown to deal effectively with external disturbances.

INTRODUCTION
Aerosol processes are increasingly being

used for the large scale production of nano-

and micron-sized particles. These processes
have largely replaced other processes which

involve multiple steps of wet chemistry, due

to the direct gas phase chemical reaction of

precursor vapor to form particles and the

ease of separation of the particulate prod-

ucts from the gas. Aerosol products, such
as TiO , B C, ® nd widespread use as pig-2 4

ments, reinforcing agents, ceramic powders,

optical ® bers, carbon blacks, and semicon-

ductor materials. Numerous experimental

studies have suggested that aerosol growth

occurs in stages, beginning with the gas

phase chemical reaction of the reactants to

produce monomers or molecules of the
(condensable species Friedlander 1977,

)1983 . The monomers form unstable clus-

ters, which grow further by scavenging

smaller clusters and by monomer condensa-
tion. Beyond a critical cluster size, nucle -

ation of stable aerosol particles occurs.

These particles grow further, mainly by co-
(agulation condensation and surface reac-

tion are some other growth mechanisms
( ))Pratsinis 1989; Pratsinis and Spicer 1998 .
The coagulation rate, which is affected ad-

ditively by Brownian and shear-induced
( )turbulent forces, has a strong effect on

particle size and morphology.



A. Kalani and P. D. Christo� des
32:4 April 2000

Aerosol Science and Technology370

Titania powder ® nds a major use as a

white pigment in paints and in absorbants

and is commercially produced by two main

processes: the gas phase oxidation of tita-

nium tetrachloride, resulting in micron sized

particles which are used as white pigments,

and the gas phase hydrolysis of titanium

tetrachloride, resulting in nano-sized parti-

cles which are used as UV absorbants. The

pigmentary properties of titania, such as

the opacity and gloss, depend largely on the

particle size. This fact suggests the design

and implementation of advanced model-

based feedback control systems on titania

aerosol reactors to produce powders with

desired size distributions. The development

of mathematical models for aerosol reac-

tors that accurately describe the evolution

of key variables that characterize the form

of the size distribution is usually addressed

through application of population balances
(to the particulate phase see Akhtar et al.

( ) ( )1991 and Kobata et al. 1991 for model-
)ing of titania aerosol reactors . The popula-

tion balances are coupled with material and

energy balances that describe the rate of

change of the state variables of the contin-
(uous phase these are usually systems of

nonlinear differential equations which in-

clude integrals over the entire particle size
)spectrum , leading to complete titania pro-

cess models. The complex nature of popu-

lation balances has motivated extensive

research efforts on the development of

numerical methods for the accurate com-

putation of their solution including sec-
(tional methods see, for example, Houn-

( )slow et al. 1988 , Landgrebe and Pratsinis
( ) ( )1990 , Kumar and Ramkrishna 1996a, b ,

( )Hill and Ng 1996 , and the review paper
( ))Ramkrishna 1985 . However, the high

complexity of the population balances ren-

ders them inappropriate for process simula-

tion and controller design. Fortunately, the

fact that most aerosol size distributions can

be adequately described by lognormal func-

( )tions Williams and Loyalka 1991 allows

utilizing the method of moments to derive

approximations of the population balances

that accurately describe the key propertie s

of the aerosol size distribution; such ap-

proximate models are suitable for process

simulation and controller design.

In the area of control of processes de-

scribed by population balance equations,

early research focused on stability analysis

using Laplace transform and Lyapunov
(functionals see, for example, Rawlings and

( )Ray 1987a, b for such studies in the con-
)text of emulsion polymerization reactors

and the application of linear conventional
(control schemes e.g., proportional-integral,

proportional-inte gral-derivative, self-tuning
)control to crystallizers and emulsion poly-

(merization processes e.g., Rohani and
( ) ( ))Bourne 1990 , Dimitratos et al. 1994 .

These conventional control schemes clearly

limit the achievable control quality and may

lead to poor performance, or even to desta-

bilization of the closed-loop system, in the

presence of severe process nonlinearities.

Motivated by this, recent research efforts

have focused on the analysis of basic con-

trollability and observability properties of
(population balance models Hashemi and

)Epstein 1982; Semino and Ray 1995 , as

well as the synthesis and implementation of

nonlinear population-balance model based

feedback controllers on spatially-homoge-
(neous Eaton and Rawlings 1990; Chiu and

)Christo® des 1999a, b, 2000 and spatially-
(inhomogeneous Kalani and Christo® des

)1999 particulate processes.

This work focuses on modeling and con-

trol of an aerosol ¯ ow reactor used to pro-

duce titania powder by gas phase oxidation

of titanium tetrachloride. Initially, a funda-

mental mathematical model is derived for

the process which describes the spatio-tem-

poral evolution of the three leading mo-

ments of the aerosol volume distribution,

as well as the evolution of the concentra-
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tions of the species and temperature of the
continuous phase. The model accounts for

simultaneous nucleation, Brownian and

turbulent coagulation, and convective

transport and comprises of eight nonlinear

® rst-order hyperbolic partial differential
( )equations PDEs . Then, the process model

is used to synthesize a nonlinear output

feedback controller which manipulates the

temperature of the reactor wall to achieve

an aerosol size distribution in the outlet of

the reactor with desired geometric average

particle diameter. The performance and
robustness of the nonlinear controller is

succe ssfully tested through compute r

simulations.

TITANIA PROCESS DESCRIPTION
AND MODELING

Process Description

Titania powder is produced under turbu-

lent and nonisothe rmal conditions in tubu-

lar reactors having very short residence

times, high temperatures, and relatively low

pressures. The premixed and preheated re-
(actants titanium tetrachloride and oxygen

)gas are injected into the reactor where the

following exothermic reaction, producing ti-

tania monomers and chlorine gas, takes

place:

( ) ( ) ( ) ( )TiCl g qO g ªTiO s q2Cl g .4 2 2 2

( )1

(The size of a single TiO molecule mono-2

)mer is larger than the thermodynamic

critical cluster size. As a result, chemical

reaction and nucleation become indistin-
(guishable Pratsinis et al. 1990; Akhtar et

)al. 1991 , thereby implying that the rapid
chemical reaction leads to a nucleation

burst. The TiO monomers coagulate lead-2

ing to a larger average particle size and

smaller particle concentration. Figure 1

shows a schematic diagram of a typical tita-

nia aerosol reactor. In titania aerosol reac-

tors, two forms of coagulation can be dis-

tinguished: Brownian coagulation and

shear-induced coagulation. Brownian coag-

ulation is the dominant mechanism for par-

ticle growth when the particle sizes are

small, and may occur as free molecule co-
agulation when the particle size is compa-

rable to the free mean path of the gas, or

as continuum coagulation when the carrier

gas can be assumed to be homogeneous

compared to the particulate phase. On the
(other hand, shear-induced coagulation in-

)duced by ¯ uid eddies becomes dominant

when the particle sizes attain macroscopic

dimensions. The interplay between Brown-

ian and shear-induced coagulation has a

strong effect on the shape of the particle

size distribution of the titania product
( )Pratsinis 1989; Xiong and Pratsinis 1991

and is explicitly taken into account in the

mathematical model presented in the next

subsection.

Process Model

In this subsection, we present a general
model for the titania aerosol process having

simultaneous chemical reaction, coagula-

tion, and convective transport. The spatio-

temporal evolution of the particle volume

distribution in the process can be obtained

from a population balance and is described
by the following partial integro-differential

equation:

( ( ) )­ n ­ v z , t nz
( ) ( )q y I v* d v y v*

­ t ­ z
v1

( ) ( )s b v y v , v , x n v y v , z , tH
2 0

( )= n v , z , t d v
`

( ) ( )y n v , z , t b v , v , xH
0

( ) ( )= n v , z , t d v , 2
( )where n v, z, t denotes the TiO particle2

volume distribution function, v is the parti-

w xcle volume, t is the time, zg 0, L is the
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FIGURE 1. A titania aerosol reactor.

spatial coordinate , L is the length of the
( )reactor, v z, t is the velocity of the ¯ uid inz

( )the axial direction, I v* is the nucleation
( )rate, b v y v, v, x is the coagulation rate,

( )d ? is the standard Dirac function, and
( )x z, t is an n-dimensional vector of state

variables that describe properties of the gas
( ) (continuous phase e.g., concentrations of

O and Cl , and temperature of the reac-2 2

)tor ; the e xplic it e xpre ssions of
( ) ( ) ( )v z, t , I v* , b v y v, v, x and the equa-z

tions that describe the variables x taken

into account in our model are given below.
Referring to the population balance

( )equation of Equation 2 , the term ­ n r ­ t
describes the rate of change of particle

concentration in the particle volume inter-

val v, v qdv and in the spatial interval z, z
( ( ) )q dz, the term ­ v z, t n r ­ z corre-z

sponds to convective transport of aerosol
( ) ( )particles, and the term I v* d v y v* ac-

counts for the nucleation of particles of

critical volume v* through chemical reac-

tion. Furthermore, the gain and loss of

particles by coagulation is described by the
terms

v1
( ) ( ) ( )b v y v , v , x n v y v , z , t n v , z , t d vH

2 0

`
( ) ( )and n v , z , t b v , v , xH

0

( ) ( )= n v , z , t d v , 3

respectively. As noted previously, for tita-

nia and most other ceramic powders, the

nucleation rate is equal to the rate of

chemical reaction and the critical volume is

the same as the monomer volume. In par-
(ticular, it has been established Pratsinis et

)al. 1990 that the high-temperature oxida-

tion of TiCl is a ® rst-order reaction,4

thereby implying the following expression

for the nucleation rate:

( ) ( )I v s N kC , 41 a v 1

( ) y1where k s k exp yE rRT sec , with k0 ac 0

s 8.26 = 10 4 secy 1 and E s 88.8a c

KJmoly1 ; N is the Avogadro’s constanta v

( 23 y 1)6.023 = 10 amol , v is the monomer1

volume and C is the TiCl concentration.1 4

On the other hand, the overall collision

frequency function, b , is de ® ned as the

sum of the Brownian and turbulent shear
(collision frequency functions b and b ,B T

)respectively :

( )b s b q b . 5B T

The Brownian collision frequency function,

b , has different expressions for the freeB

molecule size and continuum size regimes
( )Pratsinis 1988 . Speci® cally, in the free
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molecule size regime, b , takes the formB
1

21 1 21 1

3 3( ) ( )b v , v , x s B q v q v ,FM 1( )v v ( )6
1 1
6 2( ) ( )B s 3 r4 p 6k Tv rm ,1 B 1 1

while, in the continuum size regime, it is

given by

( ) ( )C v C v
( )b v , v , x s B q1 1C 2 ( )3 3v v

2 k T
1 1 B
3 3( ) ( )= v q v , B s . 72

3 m

( ) ( )In Equations 6 ] 7 , k is the Boltzmann’sB
( y23 y 1)constant 1.38 = 10 JK , T is the tem-

perature of the gas, m is the viscosity of the
( )gas, m is the monomer mass, and C v s 11

qB l rr is the Cunningham correction3

factor with r and l being the particle ra-

dius and the mean free path of the gas,

respectively, and B s 1.257. The gas mean3

(free path is given by l s n p M rw
1

2)2 k TN , where n is the kinematic vis-B a v

cosity of the gas and M is the molecularw

weight of the gas. The turbulent shear colli-

sion frequency function b has the follow-T
( )ing form Pratsinis 1988 :

31 1

3 3( ) ( )b v , v , x s B v q v ,T 4
1

2( ) ( )B s 2.3 3 r4 p e r n4 d
( )8

3
32( )e s 4 rD f r2 v ,d z

where e is the turbulent energy dissipa-d

tion rate, D is the tube diameter, and f is
1
4( )the Fanning friction factor 0.0791 rRe

with Re being the Reynolds number.

The spatio-temporal evolution of the

concentration of species and temperature
of the gas phase can be obtained from mass

and energy balances and are described by

the following set of equations:

( )­ C ­ v Ci z i
s y q a kC , i s 1, . . . , 3,i i­ t ­ z

( )­ T ­ v Tz
s y

­ t ­ z

( )9

( ( ) )q kC D H qUa T y T rC ,1 w p v

where C and C are O and Cl concen-2 3 2 2

trations, a , a , and a are y1, y1, and1 2 3

2, respectively, D H is the heat of reaction,

U is the overall heat transfer coef® cient, a
is the heat transfer area per unit volume
( )4 rD , T is the wall temperature , and Cw p v

is the volumetric heat capacity of the gas

phase. Owing to the rapid and complete

consumption of TiCl very close to the4

(inlet of the reactor which is due to the
)very high reaction rate , the physical prop-

erties of the gas phase are calculated under

the assumption that it includes only O and2

Cl . Therefore, the viscosity of the gas is2

(calculated from the following reaction Bird
)et al. 1960; Kelley 1960 :

2 y ai i y 1 y 1X( )m T s T kgm sec ,p
y F qy F1 i1 2 i2is 1

( )10

where y and y are the O and Cl mole1 2 2 2

fractions, respectively, while the volumetric
heat capacity of the gas is computed from

( )the following relation Kelley 1960 :

( )C Tp v

2 d i2
s 4.18 C d qd T qp i i0 i1 2( )Tis 1

y3 y 1 ( )Jm K . 11

The values of the parameters used in Equa-
( ) ( )tion 10 ] 11 are given in Table 1.

The ¯ uid ¯ ow is assumed to be choked

once the gas velocity reaches the acoustic

limit. The pressure drop occurring due to
(frictional losses at the wall there is no

change in the number of moles in the gas
)phase due to chemical reaction is modeled

( )as Xiong and Pratsinis 1991

­ P
2s y2 f r v rD , v - v ,z z z , sn­ z

2 ( )s y2 f r v rD , v G v , 12z , sn z z , sn
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( ) ( )TABLE 1. Parameters used in Equations 10 – 11 .

y 6a s 1.73 = 101
y 6a s 1.46 = 102

F s 1.011

F s 1.5912

F s 0.60521

F s 1.022

d s 7.1610
y 3d s 1011

4d s y4.0 = 1012

d s 8.8520
y 4d s 1.6 = 1021

4d s y6.8 = 1022

where P is the pressure, r is the gas den-

sity, and v is the sonic velocity in the gasz, sn

medium at a given temperature and is equal
1
2( )to g RT rM , with g and R being thew

( )heat capacity ratio 1.4 and the universal
( y1 y 1)gas constant 8.314Jmol K , respec-

tively. Therefore, the equation which de-
( )scribes the velocity pro® le, v z, t , whenz

v - v , takes the formz z ,sn

­ v ­ vz z 2 ( )s yv q2 fv rD . 13z z­ t ­ z

REMARK 1: Some remarks need to be made
( ) ( ) )for Equations 2 and 9 : a the spatial

differential operators are nonlinear due to
(the nonlinearity in the ¯ ux terms i.e., the

velocity pro® le is not constant and changes

with time and space according to Equation
( ) )13 ; b diffusive and dispersive effects in

the axial and radial directions are ne-
)glected; c particle deposition on the tube

)walls is neglected; and d the coalescence
between two colliding particles is assumed

to be instantaneous.

( )REMARK 2: In Equation 6 , the expansion

of the expression for b yields a veryFM

large number of terms which are necessary

for covering a wide range of the particle
volumes; this adds signi® cant complexity to

the numerical simulation of the process

model. To circumvent this computational

problem, the following approximation, pro-
( )posed in Lee et al. 1984 , was used in our

numerical calculations described in the fol-

lowing sections:

1
21 1 1 1

( )q s b q , 141 1( ) ( )2 2v v v v

where the coef® cient b depends on the

geometric standard deviation and moments

of the particle volume distribution.

( )REMARK 3: In Equation 2 , it has been
assumed that there is instantaneous coales-

cence between the colliding particles. How-

ever, below a temperature of about 1500 K ,

the coalescence rate becomes comparable

to or slower than the coagulation rate and

the above assumption no longer holds
( )Xiong and Pratsinis 1991 . Colliding parti-

( )cles fail to fuse or coalesce , causing fur-

ther growth by particle collision to be negli-

gible. Therefore, following the development
( )in Xiong and Pratsinis 1991 , we assume

that the coagulation rate below 1500 K is 0.

LOGNORMAL AEROSOL MOMENT
MODEL
The complexity of the population balance

(model partial integro-differential equa-
) ( )tion of Equation 2 does not allow its

direct use for numerical computation of the
(size distribution in real-time a direct dis-

cretization of this model through ® nite-

differences or sectional method leads to

thousands of ordinary differential equa-
)tions , as well as for the synthesis of feed-

back controllers that can be readily imple-

mented in practice. Motivated by the need

to circumvent these problems and the ex-

perimental observation that titania aerosol

volume distributions can be adequately
(characterized by lognormal self-preserv-

)ing functions, we initially apply the method
( )of moments to Equation 2 to compute

approximate models that describe the spa-



Modeling and Control of a Titania Aerosol Reactor

32:4 April 2000

Aerosol Science and Technology 375

tio-temporal evolution of the three leading

moments of the volume distribution in the

free molecule size, continuum size, and tur-

bulent shear regimes. Then, under the as-

sumption of lognormal volume distribution,

we compute the moment model that de-

scribes aerosol dynamics over the entire

particle volume spectrum. This approach is

based on the fact that moment models pro-

vide adequate simpli® cation of the popula-

tion balance equation by modeling the key

average bulk propertie s of the evolving

product.

Moment Model

In this subsection, the PDEs describing the

spatio-temporal evolution of the three lead-
(ing moments i.e., the zeroth, ® rst, and sec-
)ond moments of the volume distribution

for the free molecule size, continuum size,

and turbulent shear regimes are presented.

To this end, we de ® ne the k th moment as

the particle volume weighted integral of the

particle number density function:

`
k( ) ( ) ( )M z , t s v n v , z , t dv . 15Hk

0

The computation of the moment equa-

tions is done by substituting the appropri-

ate expressions for the nucleation and
( )coagulation rates into Equation 2 , multi-

plying by v k , and integrating over all parti-

cle volumes. The detailed derivation of

some of the moment equations given below

is described in the appendix.

We begin with the presentation of the

PDE that describes the evolution of the

® rst moment, M , which physically corre-1

sponds to the aerosol volume. Since the

aerosol volume is independent of the coag-

ulation rate and depends only on the nucle-

ation rate, the PDE that describes the evo-

lution of M is the same for all three1

regimes and has the following form:

( )­ M ­ v M1 z 1
( )s y qN kC v . 16a v 1 1­ t ­ z

Free molecule size regime. Substituting b s
( )b into Equation 2 and integrating overFM

all particle volumes, the spatio-temporal

evolution of the zeroth moment, M , which0

represents the aerosol concentration and is

affected by nucleation and coagulation, is

given by

( )­ M ­ v M0 z 0
s y qN kCa v 1­ t ­ z

(y b B M M0 1 2 r3 y 1 r2

) ( )q2 M M qM M , 171 r 3 y 1 r6 1 r6 0

where the coef® cient b is used as b in0

( )Equation 14 and is calculated for the ze-
roth moment. On the other hand, the evo-

lution of the second moment, M , which2

depends both on nucleation and coagula-

tion, is described by

( )­ M ­ v M2 z 2 2s y qN kC va v 1 1­ t ­ z

(q2b B M M q2 M M2 1 5 r3 1 r2 4 r3 5 r6

) ( )qM M , 187 r 6 1

where b is used as b but for the coagula-2 0

tion kernel of the second moment.

Continuum size regime. Similar to the case

of the free molecule regime, the PDEs that
describe the spatio-temporal evolution of

the zeroth and second moments of the

aerosol volume distribution in the contin-

uum size regime can be obtained by setting
( ) kb s b in Equation 2 , multiplying by vC

( )k is equal to 0 and 2, respectively , and
integrating over all particle volumes. The



A. Kalani and P. D. Christo� des
32:4 April 2000

Aerosol Science and Technology376

resulting PDEs have the following form:

( )­ M ­ v M0 z 0
s y qN kCa v 1­ t ­ z

2y B M qM M2 0 1 r3 y 1 r3

1

3( ) (qB l 4 p r3 M M3 0 y 1 r3

) ( )qM M , 191 r 3 y 2 r3

( )­ M ­ v M2 z 2 2s y qN kC va v 1 1­ t ­ z

2q2 B M qM M2 1 4 r3 2 r3

1

3( ) (qB l 4 p r3 M M3 1 2 r3

) ( )qM M . 201 r 3 4 r3

Turbulent shear regime. Finally, following

the same approach as in the free molecule

and continuum size regimes, we obtain the
following PDEs that describe the spatio-

temporal evolution of the zeroth and sec-

ond moments of the aerosol volume distri-

bution in the turbulent shear regime:

( )­ M ­ v M0 z 0
s y qN kCa v 1­ t ­ z

( ) ( )y B M M q3M M , 214 0 1 1 r3 2 r3

( )­ M ­ v M2 z 2 2s y qN kC va v 1 1­ t ­ z

( )q2 B M M q 3M M .4 1 2 4 r3 5 r3

( )22

Lognormal Particle Volume Distribution

Studies suggest that the volume distribu-

tions of many aerosol products including

titania can be adequately approximated by

unimodal lognormal functions. In addition,

the variables included in lognormal func-
tions, like the geometric average particle

volume, are frequently used in industry to

characterize aerosol products. Therefore, it

is meaningful to represent titania aerosol
volume distributions by lognormal func-

tions. Speci® cally, titania aerosols can be

adequately approximated by unimodal log-
(normal functions of the form Xiong and

)Pratsinis 1991 :

2 ( )1 ln v rv 1g
( )n v , z , t s exp y ,

2( )X v18ln s3 2 p ln s
( )23

where v is the geometric average particleg

volume and s is the standard deviation. vg

and s can be expressed in terms of the

® rst three moments of the distribution ac-
(cording to the following relations Brock et

)al. 1986 :

M 2 1 M M1 0 22 ( )v s , ln s s ln . 243 1g 2( )2 2 9 MM M 10 2

Furthermore, the moment description of

the system can be closed according to the
following relation:

9
k 2 2 ( )M s M v exp k ln s . 25k 0 g ( )2

( ) ( )From Equations 23 ] 24 , it is clear that

lognormal aerosols can be accurately de-

scribed in terms of the three leading mo-

ments of the volume distribution. There-

fore, volume distributions of lognormal

aerosols can be exactly obtained by simulat-
ing the moment model that describes the

spatio-temporal evolution of the three lead-

ing moments of the distribution over the

entire particle volume spectrum. Such a

moment model can be obtained as follows.

First, the higher-order and fractional mo-
( ) ( )ments in Equations 16 ] 22 are expressed

in terms of the zeroth, ® rst, and second

moments through the use of Equations
( ) ( )24 ] 25 . Then, the zeroth and second mo-

ment equations for the free molecule size

and continuum size regimes are combined
to describe the aerosol dynamics over the

entire particle volume spectrum by using
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the harmonic average of the dimensionless

coagulation rates in the free molecule size
(and continuum size regimes the dimen-

sionless harmonic average coagulation rate

reduces to the appropriate limits in the two

limiting size regimes and closely approxi-

mates the Fuchs-Sutugin approximation in
( )the transition regime Pratsinis 1988 . Fi-

nally, by adding the dimensionless turbu-
( )lent shear-induced coagulation rate to the

dimensionless harmonic mean Brownian

coagulation rate, the following PDE system

that describes the evolution of the three

leading moments of the titania aerosol vol-

ume distribution over the entire particle
(volume spectrum is obtained see Table 2

)for the list of dimensionless variables .

Zeroth moment:

( )­ N ­ v Nz 2 ( )s y f q k 9 x y j N , 261­ u ­ z

where

j jFM C
j s q j ,Tj q jFM C

25
1 1X 2
2 2j s b r T exp ln sFM 0 g ( )8

5 1
2 2q2exp ln s qexp ln s ,( ) ( )8 8

y1 2( )j s K c T 1 qexp ln sC 1

( )27

( X ) ( 2 )qB K rr exp 0.5ln s3 n g1

2( ( ))= 1 qexp 2 ln s ,

9X 2j s K h v exp ln sT 2 g ( )2

w ( 2 ) x= 1 q3exp y2 ln s .

First moment:

( )­ V ­ v Vz
( )s y f qk 9 x . 281­ u ­ z

( ) ( )TABLE 2. Dimensionless variables for the model of Equations 26 – 30 .

N s M rC N Aerosol number concentration0 0 av

V s M rC N v Aerosol volume concentration1 0 av 1
2V s M rC N v Second aerosol moment2 2 0 a v 1

1y
2( ) ( )t T s 6 k Tr v rm rC N Characteristic time for particle growth in free molecule regimef m B 1 1 1 0 av

( )t T s 3 m r2 k TC N Characteristic time for particle growth in continuum regimec B 0 av
1y
2( ) ( )t T s 4p e r n r6.9v C N Characteristic time for particle growth by shear forcess f d 1 0 a v

( ) ( )t T s 1 rk exp yE rRT Characteristic time for chemical reactionr 0 ac

K s l rr Monomer Knudsen numbern1 1

( )t s t Tf m , o f m 0

( )t s t Tc , o c 0

( )t s t Ts f , o s f 0

( )t s t Tr, o r 0

k 9 s t r t r, o

K s t r t1 f m , o c , o

K s t r t2 f m , o s f , o

c s m r m o
1 1y
2 2( ) ( )h s e r n e r nd d , o oX

v s v rvg g 1Xr s r rrg g 1

z s z rL
v s v rvz z z , o

f s v t rLz , o f m , o

u s t r t f m , o
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Second moment:

( )­ V ­ v V2 z 2 2 ( )s y f qk 9 x q2 z V , 291­ u ­ z

where

z zFM C
z s q z ,Tz q zFM C

3 25
1 1X 2 2
2 2z s b r T exp ln s exp ln sFM 2 g ( ) ( )2 8

5 1
2 2q2exp ln s qexp ln s ,( ) ( )8 8

( )30y1 2( )z s K c T 1 qexp ln sC 1

( X ) ( 2 )qB K rr exp y0.5ln s3 n g1

2( ( ))= 1 qexp y2 ln s ,

( 2 )z s exp 9 ln s j .T T

Finally, the model of the titania aerosol
reactor is completed by deriving the dimen-

sionless PDEs, which describe the spatio-

temporal evolution of the concentration of

the species, and the temperature and
(¯ uid-dynamics of the gas phase see Tables

2, 3, and 4 for the list of dimensionless
variables and physical and process parame-

)ters :

­ C ­ v C( )i z i
s y f q a k 9 C ,i i­ u ­ z

( )i s 1, . . . , 3, 31

­ T ­ v T( )z
s y f

­ u ­ z

y1 ( )q Ak 9 C qB T y T C , 32( )1 w p v

­ v ­ vz z 2 ( )s y f v qEv . 33z z­ u ­ z

( ) ( )REMARK 4: In Equations 27 and 30 , b0

s 0.633 q 0.092 s 2 y 0.022 s 3 and b s2

0.39 q 0.5 s y 0.214 s 2 q 0.029s 3, respec-

TABLE 3. Process model parameters for the simula-
tion study.

L s 125 m Reactor length

D s 0.25 m Reactor diameter
5Res 5 = 10 Reynolds number

P s 4 atm Inlet pressureo

T s 2000K Inlet temperatureo

y s 0.4 Inlet TiCl molar1o 4

fraction
y 1v s 87.2 msec Inlet velocity of processz , o

¯ uid
y 3C s 24.37 molm Inlet concentration of0

process ¯ uid
y 2 y 1 y 1U s 160 Jm s K Overall heat transfer

coef® cient
y1D H s 88 K Jmol Heat of reactionR

y 3 y 1C s 1615.25 Jm K Inlet volumetric heatp v , o

capacity of process ¯ uid
y 5 y 1 y 1m s 6.7 = 10 kgm s Inlet viscosity of processo

¯ uid
y 29 3v s 3.12 = 10 m Monomer volume1

TABLE 4. Dimensionless variables for the model of
( ) ( )Equations 31 – 33 .

C s C rCp v p v p v , o

A s C D H rC T0 p v , o 0

B s Uat rCf m , o p v , o

E s 2 f t v rDf m , o z , o

C s C rCi i 0

T s T rT0

T s T rTw w 0

tively. These polynomial expressions are

obtained as functions of s by regression
( )Pratsinis 1988 .

Analysis of the Open-Loop System

In this subsection, we perform several sim-
(ulation runs of the open-loop uncon-

)trolled process which allows us to obtain

key insights into the interplay of the vari-

ous coagulation mechanisms taking place in
the process and the formulation of a mean-

(ingful control con® guration i.e., selection

of manipulated variable and measure-
)ments . The process model of Equations
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( ) ( ) ( ) ( ) ( )26 , 28 , 29 , 31 ] 33 was numerically

solved by using the method of ® nite-
(differences for spatial discretization the

spatial interval was discretized into 200 eq-
)uispaced subintervals , the computation of

the integrals over the entire particle vol-

ume spectrum was done by using Wilson’ s

method, and the time-integration was ac-

complished by using a standard 4th-order

Runge-Kutta algorithm. We established

through numerous simulations that the re-

sult obtained with this discretization scheme

are accurate in the sense that further in-

crease in the number of discretization in-

tervals yields almost identical results.

Figure 2 displays the steady-state pro® le

of the geometric standard deviation of the

particle volume distribution versus the geo-

metric average particle diameter along the

axis of the reactor. As discussed previously,

the nucleation burst at the beginning of the

reactor causes a sudden increase in s .

However, with the rapid completion of the

chemical reaction, s begins to decrease

and approaches its asymptotic value under
( )Brownian coagulation about 1.4 . Towards

the end of the reactor, shear-induced coag-

ulation becomes important due to the in-

creasing average particle size and extends

the higher end of the size distribution, thus
(causing s to increase again Pratsinis

)1989 . In this work, the residence time in

the reactor is chosen so that the geometric

average particle diameter of the aerosol

product is the one corresponding to the

smallest powder polydispersity.

On the other hand, since the control

objective in titania aerosol reactor is to

produce titania powder with desired size

distribution, we also studied the effect of

the wall temperature on the geometric av-

erage particle diameter; a variable that is

typically used in industry to characterize

and compare different aerosol size distribu-

tions. Understanding of this effect could

lead to a formulation of a meaningful con-

( )FIGURE 2. Steady-state pro� le of s versus d m m .p g
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trol problem. Figure 3 gives the plots of the

geometric average particle diameter, d ,p g

with two different values of the wall tem-

perature, 2000K and 2400K . It was as-

sumed that the coagulation rate below
(1500K is negligible Xiong and Pratsinis

)1991 , hence, there was no increase in d p g

in the middle part of the reactor where the

process temperature drops below 1500K
due to Joule cooling. From these results, it

is clear that the wall temperature is a vari-

able that has a very signi® cant effect on the

geometric average particle diameter, and

therefore it is a meaningful choice for ma-
(nipulated input see subsection Closed-

Loop Simulations below for results of the
)closed-loop system .

Finally, in order to simplify the presenta-

tion of the controller synthesis results in

the next section, we rewrite the process

model in a vector form. De® ning a new

wvector of state variables x s N V V C C2 i 2

xC T v , the PDE system of Equations3 z
( ) ( ) ( ) ( ) ( )26 , 28 , 29 , 31 ] 33 can be written in

the following general form:

­ x ­ x
( ) ( ) ( ) ( ) ( )s A x q f x qg x b z u u ,

­ u ­ z
( )34

( )where A x is a matrix which includes ele-

ments that may be nonlinear functions of
( ) ( )x, f x , g x are nonlinear vector functions,

( ) (u u is the manipulated input wall temper-
) ( )ature , and b z is a function that deter-

mines how the control action is distributed

in space. The speci® c form of the matrix
( )A x and the nonlinear vector functions
( ) ( )f x , g x is omitted due to space limita-

( )tions. The system of Equation 34 will be

used for controller design in the next sec-
tion.

( )FIGURE 3. Steady-state pro� le of d m m for two different wall temperature values.p g
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NONLINEAR CONTROL

Controller Synthesis

In this subsection, we discuss the theoreti-

cal results needed to synthesize nonlinear

output feedback controllers for titania

aerosol reactors that attain size distribu-
tions with desired characteristics on the

basis of PDE models of the form of Equa-
( )tion 34 . The reader may refer to

( )Christo® des and Daoutidis 1996 for de-

tails and explanations of the various con-

cepts and results presented below. Owing
to the hyperbolic nature of the PDE model

( )of Equation 34 , the eigenvalues of the

corresponding spatial differential operator

cluster along vertical or nearly vertical

asymptotes in the complex plane, which

implies that an in® nite number of eigen-
modes is required to accurately describe

the dynamic behavior of the PDE. This

property does not allow deriving low-order

approximations of the PDE model of Equa-
( )tion 34 using modal decomposition tech-

niques and suggests addressing the control
problem directly on the basis of the PDE

system.

We initially de ® ne a general controlled
( )output, y u , as

1
( ) ( ) ( ( ) ) ( )y u s c z h x z , u dz’ Ch x ,H

0

( )35

( ( ))where h x z, u is a nonlinear function of
(the state of the process this allows consid-

ering controlled outputs that depend in a
) ( )nonlinear fashion on x, e.g., d , c z is ap g

smooth known function which depends on
(the desired control objective for example,

regulation of d in the outlet of the aerosolp g
( ) ( ))reactor requires c z s d z y 1 , and C is

an integral operator. The de ® nition of con-

trolled output allows introducing the con-

cept of characteristic index between the
output y and the manipulated input u
which will be used in the synthesis of the

controller. More speci® cally, referring to
( )the system of Equation 34 , the character-

istic index of y with respect to u is the
(smallest integer s for which Christo® des

)and Daoutidis 1996

s y 1n ­ x j
( ) ( )CL L qL h x b z k 0,pg a fj( )­ zjs 1

( )36

where a denotes the jth column vector ofj
( )the matrix A x and L , L denote thea fj

( ( )standard Lie derivative notation L h x sf
( ) ( ))­ h r ­ x f x . From the above de ® nition,

it follows that s depends on the structure
( ( )of the process matrix A x and functions

( ) ( ) ( ))f x , g x , h x , as well as on the actuator
and performance speci® cation functions,
( ) ( )b z and c z , respectively.

The state feedback control problem is

formulated as the one of synthesizing dis-

tributed controllers of the general form

( ) ( ) ( )u s S x q s x y , 37sp

( )where S x is a smooth nonlinear operator,
( )s x is an invertible matrix of smooth func-

tionals, and y is the set-point that stabi-sp

lize the closed-loop system and force the

following linear input routput response :

sd y dy
( )g q ? ? ? q g qy s y , 38s 1 spsd u d u

where g , g ? ? ? ,g are adjustable parame-1 2 s

ters, which have to be chosen so that the
s s y 1roots of the polynomial g s q g ss s y 1

q ? ? ? q g s q1 s 0 lie in the left-half of the1

complex plane in order to guarantee stabil-

ity of the input routput dynamics of the

closed-loop system.
This controller synthesis problem leads

to the following nonlinear distributed state
(feedback controlle r Christo® des and
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)Daoutidis 1996 :

s y 1n ­ x j
u s Cg L L qLps g a fj( )­ zjs 1

y1

( ) ( ) ( )= h x b z y y Ch xspw
n

s n ­ x j
( )y Cg L qL h x ,p pn a fj 5( )­ zn s 1 js 1

( )39

which enforces stability and the response of
( )Equation 38 in the closed-loop system of
( ) ( )Equations 34 ] 39 , provided that the sys-

( )tem of Equation 34 is minimum-phase
(this property is needed to ensure stability

of the internal dynamics of the closed-loop
system and is satis® ed by the titania aerosol

)reactor; see next subsection .

The implementation of the distributed
( )nonlinear controller of Equation 39 re-

( )quires knowledge of the state x z, t at all

positions and times, which may not be
available in some practical applications. To

overcome this problem, we use the follow-

ing state observer to estimate the state
( ) ( )x z,t of the system of Equation 34 in

space and time:

­ w ­ w
( ) ( ) ( ) ( )s A w q f w qg w b z u

­ u ­ z

( ( ) ) ( )qP y y Ch w , 40

where w denotes the observer state vector

and P is a linear operator, designed on the

basis of the linearization of the system of
( )Equation 40 so that the system of Equa-

( ) (tion 40 is exponentially stable see
( )Christo® des and Daoutidis 1996 for de-

)tails . The combination of the state feed-
( )back controller of Equation 39 with the

( )state observer of Equation 40 leads to a
nonlinear output feedback controller of the

form

­ w ­ w
( ) ( )s A w q f w

­ u ­ z

( ) ( )qg w b z g CLs g

s y 1n ­ wj
= L qLp a fj( )­ zjs 1

y1

( ) ( )= h w b z

( )= y y Ch wspw
( )41

n
s n ­ wj

( )y g C L qL h wp pn a fj 5( )­ zn s 1 js 1

( ( ))qP y y Ch w ,

s y 1n ­ wj
u s g CL L qLps g a fj( )­ zjs 1

y1

( ) ( ) ( )= h w b z y y Ch ws pw
n

s n ­ wj
( )y g C L qL h wp pn a fj 5( )­ zn s 1 js 1

that enforces stability and the input rout-
( )put response of Equation 38 in the

closed-loop system. As expected, the imple-

mentation of the output feedback con-
( )troller of Equation 41 requires algebraic

manipulations as well as differentiations

and integrations in space.

REMARK 5: Note that in the case of imper-
(fect initialization of the observer states i.e.,

( ) ( ))w z, 0 / x z,0 , although a slight deterio-
(ration of the performance may occur i.e.,
( )the input routput response of Equation 38

will not be exactly imposed in the closed-
)loop system , the distributed output feed-

( )back controller of Equation 41 guarantees
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exponential stability and asymptotic output
tracking in the closed-loop system. Further-

more, in the case of open-loop stable pro-

cesses, the integral gain of the observer, P,

can be set identically equal to 0, in which

case the rate of convergence of the esti-
( ) ( )mates, w z, u , to the true values, x z, u ,

depends on the location of the stable poles

of the open-loop process.

REMARK 6: The local exponential stability

of the closed-loop system under the con-
( )troller of Equation 41 guarantees robust-

(ness i.e., boundedness of the state of the
)closed-loop system with respect to suf® -

ciently small external disturbances and
uncertainty in the process parameters. Fur-

thermore, it is possible to implement a lin-
(ear error feedback controller for example,

( ) )a proportional integral PI controller
( )around the y y y loop to ensure asymp-sp

totic offsetless output tracking in the
closed-loop system, in the presence of dis-

turbances and model uncertainty.

REMARK 7: It can be shown using singular
perturbation techniques that the controller

( )of Equation 41 possesses a robustne ss

property with respect to unmodeled dynam-

ics provided that they are asymptotically
(stable and suf® ciently fast i.e., the con-

troller enforces exponential stability and
output tracking despite the presence of ad-

)ditional dynamics in the process . This ro-

bustness property is of signi® cant practical

importance because unmodeled dynamics

occur frequently in practice due to actuator

and sensor dynamics, as well as other fast
process dynamics.

Closed-Loop Simulations

Motivated by the results of the simulations

presented in subsection Analysis of the
Open-Loop System, the control problem

was formulated as the one of controlling

the geometric average particle diameter in

the outlet of the reactor by manipulating
the wall temperature , i.e.,

( ) ( )y u s Cd s d 1, u ,p g p g

( ) ( ) ( )u u s T u y T , 42w w s

1( ) ( )( )where C ? s H d z y 1 ? dz and T s0 w s

T rT s 1. Since coagulation is the mainw s o

mechanism that affects the size of the

aerosol particles, we take advantage of the

fact that coagulation is negligible below

1500 K , to control the coagulation by vary-

ing the process temperature . It was veri® ed
through open-loop simulations that the

process model with the above manipulated

input and controlled output is minimum

phase. Therefore, the model of Equation
( )34 was used as the basis for the synthesis

of a nonlinear controller utilizing the con-
trol method described in the previous sub-

section. For this model, s was found to be

equal to 2 and the necessary output feed-

back controller was synthesized using the
( ) ( )formula of Equation 41 with y y Ch wsp
( )replaced by y y Ch x . The tuning pa-sp

rameters of the controller were chosen as

g s 50 and g s 400 to enforce a slightly1 2

underdamped response in the closed-loop

system. Owing to the stability of the open-

loop process, the observer gain, P, was set
identically equal to 0.

Several simulation runs were performed

to evaluate the disturbance rejection and

set-point tracking capabilities of the nonlin-

ear controller, as well as its robustne ss with

respect to uncertainty in model parameters
and unmodeled actuator dynamics. In all

simulation runs, the aerosol reactor was

initially assumed to be at steady-state.

In the ® rst set of simulation runs, we

tested the ability of the controller to main-

tain the reactor at the operating steady-
state in the presence of three parallel

disturbances: one in the inlet feed tempera-
(ture ramp decrease up to y5% of steady-

state value in 20 s, constant at y5% until

30 s, ramp increase to y2.5% in the next
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)20 s and constant thereafter , the second in
(the inlet mole fraction of TiCl ramp de-4

crease up to y5% of steady-state value in

20 s, constant at y5% until 30 s, ramp

increase to y2.5% in the next 20 s and
)constant thereafter , and the third in the

(inlet volumetric ¯ ow rate ramp decrease

up to y5% of steady-state value in 20 s,

constant at y5% until 30 s, ramp increase

to y2.5% in the next 20 s and constant
)thereafter . The resulting closed-loop out-

( )put top plot-dashed line and manipulated

input pro® les are shown in Figure 4; the
( )open-loop output pro® le top plot-solid line

under the disturbances is also shown for

comparison. One can clearly see that there
(is an offset deviation of the d at thep g

)steady-state from the set-point value in the
(case of open-loop operation uncontrolled

)process , while when feedback control is

implemented on the reactor one can see

that this offset has been eliminated. Note

that the controller achieves this attenuation

of the effect of disturbances without using

any measurements of the disturbances. Re-

garding complete elimination of the effect

of disturbances on d at the exit of thep g

reactor, we note that this is not possible to

be achieved by any control algorithm; this

is due to the fact that these disturbances

propagate rapidly through the reactor, ow-

ing to the very small residence time of the

reactor, about 1 s, and affect the process
(outlet before any control actuator mecha-

nism with which the wall temperature is
)adjusted with realistic limits can react. In

the second set of simulation runs, we tested

the ability of the controller to maintain the

reactor at the operating steady state in the

presence of three disturbances in series:
(one in the inlet feed temperature ramp

decrease up to y5% of steady-state value

from 0 to 10 s, constant from 10 to 20 s,

ramp increase to y2.5% in the next 10 s
)and constant thereafter , the second in the

(inlet mole fraction of TiCl ramp decrease4

up to y5% of steady-state value from 20 to

30 s, constant at y5% from 30 to 40 s,

ramp increase to y2.5% in the next 10 s
)and constant thereafter , and the third in

(the inlet volumetric ¯ ow rate ramp de-

crease up to y5% of steady-state value

from 40 to 50 s, constant at y5% from 50

to 60 s, ramp increase to y2.5% in the
)next 10 s and constant thereafter . Figure 5

(shows the open-loop output top plot-solid
) (line , closed-loop output top plot-dashed
)line , and manipulated input pro® les. Again

the controller performs very well regulating

the output at the steady-state value, after

an initial transient period. From these two

simulation runs, it is evident that even

though the very small residence time of the

reactor and the natural limits on the re-

sponse of the control actuator do not allow

completely eliminating the effect of distur-

bances on d for all times, the use ofp g

feedback control helps to attenuate, and

eventually eliminate, the effect of distur-

bances and signi® cantly improve process

performance compared to open-loop opera-

tion.

In the next simulation run, we tested the

set-point tracking capabilities of the con-

troller for a 10% increase in the set-point

value of d at the exit of the reactor whichp g

was imposed at t s 0 s. Figure 6 shows the

pro® les of the controlled output and ma-

nipulated input. It is clear that the nonlin-

ear controller smoothly derives the con-

trolled output to the new set-point value,

while requesting a smooth control action
(which is physically realizable i.e., the rate

of change of the wall temperature is less
)than 2 K per s .

Finally, we tested the robustne ss of the

controller with respect to parametric model

uncertainty and unmodeled actuator dy-

namics. In both simulation runs, a 10%

increase in the set-point value of d at thep g

exit of the reactor was imposed at t s 0 s.

Figure 7 shows the closed-loop output and
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( ) ( ) (( ( ) ( ))FIGURE 4. Open-loop pro� le solid line and closed-loop pro� le dashed line of d 1, t I d 1, 0 rrrrrpg p g
( ( )))d 1,0 % and manipulated input pro� le under nonlinear control. Parallel disturbances in inlet � ow rate,p g

temperature of inlet stream, and inlet precursor mole fraction.

manipulated input pro® les in the presence

of 5% constant modeling errors in the pa-

rameters A, B, and E. Again, the nonlinear

controller exhibits very good robustne ss

properties, driving the output to its new set

point. To test the robustness with respect

to unmodeled actuator dynamics, the pro-
( ) ( )cess model of Equations 26 ] 33 was

augmented with the following dynamical

system, which represents the actuator dy-
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( ) ( ) (( ( ) ( ))FIGURE 5. Open-loop pro� le solid line and closed-loop pro� le dashed line of d 1, t I d 1, 0 rrrrrp g p g
( ( )))d 1,0 % and manipulated input pro� le under nonlinear control. Disturbances in series in inlet � ow rate,p g

temperature of inlet stream, and inlet precursor mole fraction.

namics, e z s y z q z , e z s y z q u,Ç Çz 1 1 2 z 2 2

where z , z g R are actuator states, z is1 2 1

the actuator output, and e is a small pa-z

rameter characterizing how fast the actua-

tor dynamics are. When e s 0.05, we foundz

that the nonlinear controller regulates suc-

cessfully the closed-loop output to its new

set-point value exhibiting very good robust-

ness with respect to unmodeled dynamics;

the closed-loop output and manipulated in-
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(( ( )) ( ( )))FIGURE 6. Closed-loop pro� le of y I d 1, t rrrrr y I d 1,0 % and manipulated input pro� le unders p p g s p p g

nonlinear control. Nominal conditions-set-point change.
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(( ( )) ( ( )))FIGURE 7. Closed-loop pro� le of y I d 1, t rrrrr y I d 1,0 % and manipulated input pro� le unders p p g s p p g

nonlinear control. Parametric uncertainty-set-point change.
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put pro® les for this simulation run are, as
expected, almost identical to the ones

shown in Figure 6, and therefore they will

be omitted for brevity.

REMARK 8: Regarding the practical imple-

mentation of the nonlinear output feed-

back controller, we note that the wall

temperature , T , cannot be manipulatedw

directly but indirectly through manipula-

tion of the furnace temperature . To this

end, a controller should be designed based

on an ODE model that describes the fur-

nace dynamics, and should operate in an

internal loop to manipulate the electrical
(power supply or fuel ¯ ow rate depending

)on the type of furnace used to ensure that

the furnace temperature obtains the values

computed by the distributed controller. Of

course, when such a controller is used, a

slight deterioration of the closed-loop re-
sponse obtained under the assumption that

T can be manipulated directly will occur.w

CONCLUSIONS
In this work, we studied the modeling and
control of an aerosol ¯ ow reactor used to

produce titania powder by gas phase oxida-

tion of titanium tetrachloride. Initially, a

fundamental mathematical model was de-

rived for the process which describes the

spatio-temporal evolution of the three lead-
ing moments of the aerosol volume distri-

bution, as well as the evolution of the con-

centrations of the species and temperature

of the continuous phase. The model ac-

counts for simultaneous nucleation, Brown-

ian and shear-induced coagulation, and
convective transport and comprises of eight

nonlinear ® rst-order hyperbolic PDEs. The

process model was subsequently used to

synthesize a nonlinear output feedback

controller which manipulates the tempera-

ture of the reactor wall to achieve an
aerosol size distribution in the outlet of the

reactor with desired geometric average par-

ticle diameter. The performance and ro-

bustness of the nonlinear controller were

successfully tested through computer simu-

lations.

Financial support from a National Science Foundation
CAREER award, CTS 9733509, is gratefully acknowl-
edged. The authors would also like to thank S. K. Fried-
lander for helpful suggestions.

References
Akhtar, M. K., Xiong, Y., and Pratsinis, S. E.

( )1991 . Vapor Synthesis of Titania Powder by
Titanium Tetrachloride Oxidation, AIChE J.
37:1561] 1570.

Bird, R. B., Stewart, E. W., and Lightfoot, E. N.
( )1960 . Transport Phenomena, John Wiley &
Sons, Inc., New York.

( )Brock, J. R., Kuhn, P. J., and Zehavi, D. 1986 .
Condensation Aerosol Formation and Growth
in a Laminar Coaxial Jet: Experimental, J.
Aerosol Sci. 17:11 ] 22.

( )Chiu, T., and Christo® des, P. D. 1999a . Robust
Nonlinear Control of a Continuous Crystal-

( )lizer, Comp. & Chem. Eng. 23 s :249 ] 252.

( )Chiu, T., and Christo® des, P. D. 1999b . Non-
linear Control of Particulate Processes,
AIChE J. 45:1279] 1297.

( )Chiu, T., and Christo® des, P. D. 2000 . Robust
Control of Particulate Processes Using Un-
certain Population Balances, AIChE J.
46:266 ] 280.

( )Christo® des, P. D., and Daoutidis, P. 1996 .
Feedback Control of Hyperbolic PDE Sys-
tems, AIChE J. 42:3063] 3086.

Dimitratos, J., Elicabe, G., and Georgakis, C.
( )1994 . Control of Emulsion Polymerization
Reactors, AIChE J. 40:1993] 2021.

( )Eaton, J. W., and Rawlings, J. B. 1990 . Feed-
back Control of Chemical Processes Using
On-line Optimization Techniques, Comp. &
Chem. Engng. 14:469 ] 479.

( )Friedlander, S. K. 1977 . Smoke, Dust, and
Hase: Fundamentals of Aerosol Behavior, Wi-
ley, New York.

( )Friedlander, S. K. 1983 . Dynamics of Aerosol
Formation by Chemical Reaction, Annals.
N.Y . Acad. Sci. 83:354 ] 364.

http://www.ingentaconnect.com/content/external-references?article=/0001-1541^28^2937L.1561[aid=704314]
http://www.ingentaconnect.com/content/external-references?article=/0021-8502^28^2917L.11[aid=704315,csa=0021-8502^26vol=17^26iss=1^26firstpage=11]
http://www.ingentaconnect.com/content/external-references?article=/0001-1541^28^2945L.1279[aid=704316]
http://www.ingentaconnect.com/content/external-references?article=/0001-1541^28^2946L.266[aid=704317]
http://www.ingentaconnect.com/content/external-references?article=/0001-1541^28^2942L.3063[aid=585079]
http://www.ingentaconnect.com/content/external-references?article=/0001-1541^28^2940L.1993[aid=704318]
http://www.ingentaconnect.com/content/external-references?article=/0001-1541^28^2937L.1561[aid=704314]
http://www.ingentaconnect.com/content/external-references?article=/0021-8502^28^2917L.11[aid=704315,csa=0021-8502^26vol=17^26iss=1^26firstpage=11]
http://www.ingentaconnect.com/content/external-references?article=/0001-1541^28^2946L.266[aid=704317]


A. Kalani and P. D. Christo� des
32:4 April 2000

Aerosol Science and Technology390

( )Hashemi, R., and Epstein, M. A. 1982 . Observ-
ability and Controllability Considerations in
Crystallization Process Design, AIChE Symp.
Ser. 78:81 ] 190.

( )Hill, P. J., and Ng, K. M. 1996 . New Discretiza-
tion Procedure for the Agglomeration Equa-
tion, AIChE J. 42:727 ] 741.

Hounslow, M. J., Ryall, R. L., and Marshall, V.
( )R. 1988 . A Discretized Population Balance

for Nucleation, Growth and Aggregation,
AIChE J. 34:1821] 1832.

( )Kalani, A., and Christo® des, P. D. 1999 . Non-
linear Control of Spatially-Inhomogeneous
Aerosol Proce sses, Chem . E ng. S ci.
54:2669] 2678.

( )Kelley, K. 1960 . High-Temperature Heat-Con-
tent, Heat-Capacity and Entropy Data for the
Elements and Inorganic Compounds, United
States Government Printing Of® ce, Washing-
ton, D.C.

Kobata, A., Kusakabe, K., and Morooka, S.
( )1991 . Growth and Transformation of TiO2

Crystallites in Aerosol Reactor, AIChE J.
37:347 ] 359.

( )Kumar, S., and Ramkrishna, D. 1996a . On the
Solution of Population Balance Equations by
Discretization-I. A Fixed Pivot Technique,
Chem. Eng. Sci. 51:1311] 1332.

( )Kumar, S., and Ramkrishna, D. 1996b . On the
Solution of Population Balance Equations by
Discretization-II. A Moving Pivot Technique,
Chem. Eng. Sci. 51:1333] 1342.

( )Landgrebe, J. D., and Pratsinis, S. E. 1990 . A
Discrete Sectional Model for Particulate Pro-
duction by Gas Phase Chemical Reaction and
Aerosol Coagulation in the Free Molecular
Regime, J. Coll. Inter. Sci. 139:63 ] 86.

( )Lee, K. W., Chen, H., and Gieseke, J. A. 1984 .
Log-NormallyPreserving Size Distribution for
Brownian Coagulation in the Free-Molecule
Regime, Aerosol Sci. Tech. 3:53 ] 62.

( )Pratsinis, S. E. 1988 . Simultaneous Nucleation,
Condensation, and Coagulation in Aerosol
Reactors, J. Coll. Inter. Sci. 124:416] 426.

( )Pratsinis, S. E. 1989 . Particle Production by
Gas-to-Particle Conversion in Turbulent
Flows, J. Aerosol Sci. 20:1461] 1464.

Pratsinis, S. E., Bai, H., Biswas, P., Frenklach,
( )M., and Mastrangelo, S. V. R. 1990 . Kinetics

w xof Titanium IV Chloride Oxidation, J. Am .
Ceram. Soc. 73:2158] 2161.

( )Pratsinis, S. E., and Spicer, P. T. 1998 . Compe-
tition Between Gas Phase and Surface Oxida-
tion of TiCl During Synthesis of TiO Parti-4 2

cles, Chem. Eng. Sci. 53:1861] 1868.

( )Ramkrishna, D. 1985 . The Status of Popula-
tion Balances, Rev. Chem. Eng. 3:49 ] 95.

( )Rawlings, J. B., and Ray, W. H. 1987a . Emul-
sion Polymerization Reactor Stability: Simpli-
® ed Model Analysis, AIChE J. 33:1663] 1667.

( )Rawlings, J. B., and Ray, W. H. 1987b . Stabil-
ity of Continuous Emulsion Polymerization
Reactors: a Detailed Model Analysis, Chem .
Eng. Sci. 42:2767] 2777.

( )Rohani, S., and Bourne, J. R. 1990 . Self-Tun-
ing Control of Crystal Size Distribution in a
Cooling Batch Crystallizer, Chem . Eng. Sci.
12:3457] 3466.

( )Semino, D., and Ray, W. H. 1995 . Control of
Systems Described by Population Balance
Equations-I. Control-lability Analysis, Chem .
Eng. Sci. 50:1805] 1824.

( )Williams, M. M. R., and Loyalka, S. K. 1991 .
Aerosol Science: Theory & Practice. Pergamon
Press, Oxford, England.

( )Xiong, Y., and Pratsinis, S. E. 1991 . Gas Phase
Production of Particles in Reactive Turbulent
Flows, J. Aerosol Sci. 12:637 ] 655.

Received May 19, 1999; accepted October 1,
1999.

APPENDIX
In this section, the derivation of the hyper-
bolic PDEs describing the evolution of the

three leading moments of the aerosol in

the free molecule size regime, Equations
( ) ( )16 ] 18 , is given. The derivation of the

moment equations in the continuum size

and turbulent size regimes, Equations
( ) ( )19 ] 22 , is similar and will be omitted for

brevity. Substituting the expression for the

nucleation rate into the population balance
( )of Equation 2 , we obtain

( )­ n ­ v nz
( )s y qN kC d v y va v 1 1­ t ­ z

v1
( ) ( ) ( )q b vyv , v n vyv n v d vH FM

2 0

`
( ) ( ) ( ) ( )y n v b v , v n v d v . 43H FM

0

Zeroth moment: Integrating both sides of

the equation over particle volume, making

the substitution v y v s y in the third term
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on the right-hand side and using that M s0
` ( )H n v dv, we obtain0

( )­ M ­ v M0 z 0
s y qN kCa v 1­ t ­ z

` `1
( ) ( ) ( )q b y, v n y n v d vdyH H FM

2 0 0

` `
( ) ( ) ( )y b v , v n v n v d vdv .H H FM

0 0

( )44

The collision frequency function for the

free molecule regime, b , given in Equa-FM
( )tion 6 can be written as

21 1 1 1y y2 2 3 3( ) ( ) ( )b v , v s B b v q v v q v .FM 1 0

( )45

Writing y as v, substituting the expression
( )for b in Equation 44 , and using Equa-FM

( )tion 15 , we get

( )­ M ­ v M0 z 0
s y qN kCa v 1­ t ­ z

`B b
1 11 0 y6 6y M v q2 M vH ( 0 1 r3

2 0
1 2 1y 2 3 3qM v qM v q2 M v2 r 3 y 1 r2 y 1 r6

( ) ( )qM n v dv . 46)1 r 6

( )Using again Equation 15 , we ® nally

obtain

( )­ M ­ v M0 z 0
s y qN kCa v 1­ t ­ z

(yB b M M q2 M M1 0 2 r3 y 1 r2 1 r3 y 1 r6

) ( )qM M . 471 r 6 0

First moment: Multiplying both sides of
( )Equation 43 by v, integrating over all

particle volume and using that M s1
` ( )H vn v dv, we obtain0

( )­ M ­ v M1 z 1
( )s y qN kC v . 48a v 1 1­ t ­ z

Second moment: Multiplying both sides of
( ) 2Equation 43 by v and performing calcu-

lations similar to the case for the zeroth
(moment with coef® cient b used as b in2 0

)the expression of b , we obtainFM

( )­ M ­ v M2 z 2 2s y qN kC va v 1 1­ t ­ z

(q2b B M M q2 M M2 1 5 r3 1 r2 4 r3 5 r6

) ( )qM M . 497 r 6 1


