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Abstract

This article presents a comprehensive study on simulation, estimation and control of size distribution in aerosol processes with
simultaneous chemical reaction, nucleation, condensation and coagulation. Initially, a typical aerosol process is considered and a
detailed population balance model is presented which describes how the aerosol size distribution evolves with time. The
population balance is complemented with mass and energy balances that describe the evolution of the continuous phase species
and temperature of the system. Sectional representations and unimodal lognormal moment approximations of the population
balance model are then derived and solved. It is found that the moment model provides reasonably accurate estimates of the
average properties of the aerosol size distribution computed by the sectional model for long times. Then, a nonlinear state
estimator is constructed on the basis of the moment model, which employs measurements of the geometric average particle
diameter to compute the evolution of the average properties of the aerosol size distribution. Finally, a nonlinear controller is
designed on the basis of the moment model and is implemented on the sectional model to achieve an aerosol size distribution with
desired geometric average particle diameter. The robustness properties of the nonlinear estimator and controller with respect to
significant parametric model uncertainty are successfully tested through computer simulations. © 2002 Elsevier Science Ltd. All
rights reserved.
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1. Introduction

Aerosol processes are commonly used for the large
scale production of nano and micron sized particles
from direct gas phase chemical reaction. Aerosol prod-
ucts, such as TiO2 and B4C, find widespread industrial
use as pigments, reinforcing agents, ceramic powders,
carbon blacks and semiconductor materials. The
growth process of aerosol particles may be divided into
different stages. The first stage is gas phase chemical
reaction, which produces monomers or molecules of the
condensable species (Friedlander, 1977, 1983). In the
next stage, these monomers coalesce to form unstable

clusters, which grow further by monomer condensation.
The clusters nucleate into stable aerosol particles, once
a thermodynamic critical cluster size is attained.
Growth then occurs mainly by coagulation and conden-
sation; the relative strength of each greatly affects the
particle size and morphology. It is now well-understood
that the physico-chemical and mechanical properties of
materials made with participates depend heavily on the
characteristics of the corresponding particle size distri-
bution (PSD; for example, a nearly monodisperse PSD
is required for titania pigments to obtain the maximum
hiding powder per unit mass). Therefore, the problem
of synthesizing and implementing high-performance
model-based feedback control systems on particulate
processes to achieve PSDs with desired characteristics
has significant industrial value.

Aerosol processes are modeled by population balance
equations, which give rise to nonlinear partial integro-
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differential equation systems (where the independent
variables are time and one or more internal particle
coordinates, such as particle volume and shape). The
nonlinearities usually arise from complex reaction, nu-
cleation, condensation and coagulation rates and their
nonlinear dependence on temperature. A variety of
solution techniques have been developed to address the
complexity at various levels. Under appropriate simpli-
fying assumptions, analytical solutions have been devel-
oped to solve the population balance equation (such as
the use of Laplace transforms for solving agglomera-
tion problems in the absence of particle growth Fried-
lander, 1977); however, in most cases, one needs to
resort to numerical solutions. One of the standard
numerical techniques is to discretize the population
balance equation using finite difference/element meth-
ods (see, for example, Hounslow, 1990; Hill & Ng,
1995, 1996; Kumar & Ramkrishna, 1996a,b; Nicmanis
& Hounslow, 1998; Mantzaris, Daoutidis & Srienc,
2001 and the review paper Ramkrishna, 1985), but
these methods suffer from extremely large computa-
tional requirements which cannot be accommodated by
conventional computers. Sectional models offer a com-
putationally less demanding solution by approximating
the continuous size distribution by a finite number of
sections within which the PSD function is assumed to
be constant (Gelbart & Seinfeld, 1978; Gelbard, Tam-
bour & Seinfield, 1980; Landgrebe & Pratsinis, 1990).
But even these models are unsuitable for the synthesis
of practically-implementable feedback controllers. For-
tunately, in most cases, the aerosol size distribution can
be adequately described by lognormal functions; this
makes it possible to develop moment models which
describe the evolution of the key moments of the sys-
tem as well as important bulk properties, such as the
geometric average volume of the size distribution. Mo-
ment models have proven to be simpler to analyze and
simulate (e.g. Frenklach & Harris, 1987; Pratsinis,
1988). An alternative approach to population balance
modeling involves the use of Monte Carlo techniques
(Akhtar, Lipscomb & Pratsinis, 1994; Van Peborgh
Gooch & Hounslow, 1996; Tandon & Rosner, 1999).

In spite of the rich literature on population balance
modeling, numerical solution and dynamical analysis of
aerosol processes, the issue of population balance
model-based feedback control of size distribution in
aerosol processes has received little attention in the
past. Even the broader subject of control of systems
modeled by population balance equations has been
inadequately explored. Prior research in this area has
primarily focused on understanding the observability
and controllability properties of population balance
equations (Hashemi & Epstein, 1982; Semino & Ray,
1995a), stability analysis using Laplace transform and
Lyapunov functional (e.g. Hale & Verduyn Lunel,
1993; Rawlings & Ray, 1987) and the application of

conventional control schemes (e.g. proportional-inte-
gral, proportional-integral-derivative, self-tuning con-
trol) to crystallizers and emulsion polymerization
processes (e.g. Semino & Ray, 1995b; Rohani &
Bourne, 1990; Dimitratos, Elicabe & Georgakis, 1994).
Unfortunately, conventional control schemes perform
poorly in the face of severe process nonlinearities, and
may even lead to destabilization of the closed loop
system. These limitations of conventional control
schemes, together with recent developments in measure-
ment technology based on laser diffraction techniques
which allow nonintrusive and fast on-line measurement
of key properties of PSDs at very high frequency (see,
for example, Rawlings, Miller & Witkowski, 1993 for
an excellent review of the available measurement tech-
nology), have motivated research efforts towards syn-
thesizing for nonlinear model-based feedback con-
trollers on spatially-homogeneous particulate processes
(Eaton & Rawlings, 1990; Chiu & Christofides, 1999,
2000; El-Farra, Chiu & Christofides, 2001) with appli-
cation to size distribution control in batch (Eaton &
Rawlings, 1990) and continuous crystallizers (Chiu &
Christofides, 1999, 2000; El-Farra et al., 2001).

Recently, motivated by the development of fast on-
line measurement techniques and the availability of
high-performance software and hardware which allows
instantaneous calculation of the appropriate control
actions on the basis of advanced model-based control
algorithms, we initiated an effort to develop measure-
ment/model-based control strategies for precise control
of size distribution in aerosol processes. Even though
aerosol systems are characterized by very small resi-
dence times, design and implementation of advanced
feedback control techniques could make a significant
impact on the industrial practice of aerosol processing
by reducing product variability and off-spec aerosol
production. More specifically, our research work fo-
cused on moment-model based control of a class of
spatially-inhomogeneous aerosol processes with appli-
cation to a titania aerosol reactor (Kalani &
Christofides, 1999, 2000). However, in these studies, the
developed nonlinear controllers were implemented on
moment model approximations of the population bal-
ances, and therefore, the important issue of evaluating
the controller performance on the basis of accurate
discretizations of the population balance (for example,
sectional approximations) was not studied. Motivated
by this, the objective of this article is to present a
comprehensive study of simulation, estimation and con-
trol of size distribution in an aerosol process with
simultaneous chemical reaction, nucleation, condensa-
tion and coagulation using detailed sectional discretiza-
tions of the population balance. We choose to focus on
an aerosol system that involves all the above mentioned
phenomena rather than a specific aerosol process
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(where some of these mechanisms may not be impor-
tant; see Kalani & Christofides, 2000 for example)
because our objective is to present and evaluate general
simulation, estimation and feedback control techniques
that are applicable to a broad range of aerosol systems.

The manuscript is structured as follows: Initially, a
general aerosol population balance model is presented
which accounts for simultaneous chemical reaction, nu-
cleation, condensation and coagulation and describes
how the aerosol size distribution evolves with time. The
population balance is complemented with mass and
energy balances that describe the evolution of the con-
tinuous phase species and temperature of the system.
Sectional representations and lognormal moment ap-
proximations of the population balance model are then
derived and solved. It is found that the moment model
provides reasonably accurate estimates of the average
properties of the aerosol size distribution computed by
the sectional model for long times. Then, a nonlinear
state estimator is constructed on the basis of the mo-
ment model, which employs measurements of the geo-
metric average particle diameter to compute the
evolution of the average properties of the aerosol size
distribution. Finally, a nonlinear controller is designed
on the basis of the moment model and is implemented
on the sectional model to achieve an aerosol size distri-
bution with desired geometric average particle diame-
ter. The robustness properties of the nonlinear
estimator and controller with respect to significant
parametric model uncertainty are successfully tested
through computer simulations.

2. Preliminaries

2.1. Spatially-homogeneous aerosol process model

We consider general aerosol processes with simulta-
neous chemical reaction, nucleation, condensation and
coagulation. A general mathematical model which de-
scribes the temporal evolution of the PSD in such
aerosol processes can be obtained from a population
balance and consists of the following nonlinear partial
integro-differential equation (Friedlander, 1977):

�n
�t

+
�(G(x̄, �)n)

��
−I(�*)�(�−�*)

=
1
2
� �

0
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�(�, �̄, x̄)n(�̄, t)d�̄ (1)

where n(�, t) denotes the PSD function, � is the particle
volume, t is the time, G(x̄, �), I(�*), �(�− �̄, �̄, x̄) are
nonlinear scalar functions and �(·) is the standard
Dirac function.

On the other hand, a mathematical model which
predicts the temporal evolution of the concentrations of
species and temperature of the gas phase can be ob-
tained from mass and energy balances and has the
following form:

dx̄
dt

= f� (x̄)+ ḡ(x̄)u(t)+A� ��

0

a(�, �, x̄)d� (2)

where x̄(t) is an n-dimensional vector of state variables
that depend on time, Ā is constant matrix,
f� (x̄), ḡ(x̄), a(�, �, x̄) are nonlinear vector functions
and u(t) is the time-varying manipulated input (e.g.
wall temperature). The term Ā ��

0 a(�, �, x)d� accounts
for mass and heat transfer from the continuous phase
to all the particles in the population.

In the population balance of Eq. (1), the term �n/�t
describes the rate of change of particle concentration in
the particle volume interval �, �+d�. The terms
�(G(x̄, �)n)/�� and I(�*)�(�−�*) account for the loss
or gain of particles by condensation at rate G and the
formation of new particles of critical volume �* by
nucleation at rate I, respectively. Finally, the gain and
loss of particles by Brownian coagulation is described
by the terms:
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respectively. G(x̄, �) and �(x̄, �1, �2) are the diffusional
condensation growth function and the Brownian coagu-
lation coefficient, respectively, for which two different
expressions are used for the free molecule size and
continuum size regimes (Pratsinis, 1988): (a) for the free
molecule size regime:
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and (b) for the continuum size regime:
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In Eqs. (4) and (5), S is the saturation ratio, T is the
temperature, Df is the condensable vapor diffusivity, �
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is the mean free path of the gas (�=��Mw/2kBTNav,
where � and Mw are the kinematic viscosity and
molecular weight of the fluid, respectively, and Nav is
the Avogadro’s number), � is the viscosity of the
fluid, ns, is the monomer concentration at saturation
(ns=Ps/kBT, where Ps is the saturation pressure), m0

is the monomer mass, �0 is the monomer volume, r is
the particle radius, C(�)=1+B5�/r is the Cunning-
ham correction factor and B5=1.257. Expressions for
the diffusional condensation growth function and the
Brownian coagulation coefficient for the entire parti-
cle size spectrum are based on the work of Fuchs and
Sutugin (see, for example, Friedlander, 1977; Xiong &
Pratsinis, 1991) and have the following form:
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where dpi, mi and Kni are the diameter, mass and
Knudsen number (Kni=2�/dpi), respectively, for one
of the colliding particles with volume �i. Finally, the
nucleation rate I(�*) is assumed to follow the classi-
cal Becker–Doring theory and is given by the follow-
ing expression (Pratsinis, 1988):

I=n4
2s0
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where s0 is the monomer surface area and k* is the
number of monomers in the critical size nucleus
which is given by:

k*=
�

6
� 4�

ln S
�3

(9)

where �=��0
2/3/kBT and � is the surface tension.

Remark 1: Referring to the system of Eqs. (1) and (2),
several remarks are in order (a) the manipulated input

u(t), enters the system through Eq. (2) (mass and
energy balance model); this assumption is usually
satisfied in most practical applications where the wall
temperature is chosen as the manipulated input; (b) the
nonlinearities in Eq. (2) appear in an additive fashion
(e.g. complex reaction rates, Arrhenius dependence of
reaction rates on temperature); and (c) the effect of
particle curvature on aerosol evaporation rate (Kelvin
effect) is neglected; this is done to simplify the form of
the right hand side of the moment model through direct
expression of various integral terms over the entire
particle size spectrum in terms of the moments of the
aerosol size distribution (see Section 4).

Remark 2: In Eq. (4), the expansion of the expression
for �FM yields an unmanageable number of terms
necessary for covering a wide range of the particle sizes.
To simplify calculations in future sections, the
following approximation will be made:�1

�
+

1
�̄

�1/2

=b
� 1

�1/2+
1

�1/2

�
(10)

Coefficient b depends on the geometric standard
deviation and moments of the PSD (Lee, Chen &
Gieseke, 1984).

3. Sectional model

Sectional models divide the continuous PSD into a
finite number of sections within which the size distri-
bution function is assumed to be constant. A single
conservation equation is developed for a given inte-
gral property in each section. This limits the number
of conservation equations that need to be solved for
generating the size distribution, to the number of sec-
tions being considered. The accuracy and computa-
tional speed of sectional models depends on the
number of sections employed, on the selection of the
numerically conserved integral property of the distri-
bution, and on the treatment of the lower end of the
size distribution (Gelbard et al., 1980; Landgrebe &
Pratsinis, 1990).

3.1. Theoretical de�elopment

We assume that the entire particle volume spectrum
is divided into m arbitrary sections, and consider a
general property, q(�, t), of the aerosol size distribu-
tion having the following form (Gelbard et al., 1980):

q(�, t)=	� �n(�, t) (11)

where 	 and � are constants. An integral quantity of
the aerosol property in a given section I, may then be
defined as:
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Ql(t)=
� �l

�l−1

q(�, t)d�l l=1, 2, ...., m (12)

where �l−1 and �l denote the volumes of the smallest
and largest particles, respectively, in section l (note that
�0 denotes the volume of the monomer). To obtain a
closed set of equations for the sectional model, it is
assumed that the property q(�, t) is constant within a
given section l, i.e. q(� t)=ql(t), where ql(t) is a
constant for section l. Substituting from Eqs. (11) and
(12), we thus obtain an equation relating the size distri-
bution function n(�, t) to the corresponding integral
sectional property Ql(t):

n(�, t)=
Ql(t)

	� �(�l−�l−1)
(13)

Following the derivation described in Appendix A,
we obtain the following integro-differential equation
representing the rate of change of Ql(t) in section l :
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The first term on the right-hand side of Eq. (14)
represents the increase in Ql due to nucleation of new
particles in section l (the expression, 
(condition)
equates to 1 if the condition is satisfied or 0 if it is not).
The second and third terms (both evaluated only for
l�1) represent the increase in Ql due to coagulation in
the lower sections, and due to the coagulation phenom-
ena between particles in the lower sections and those in
section l, respectively. The next two terms (the second
of these two terms is evaluated only for l�m) give the
decrease in Ql due to loss of particles to the higher
sections by coagulation in section l, and due to coagula-
tion of particles in section l, with those in higher
sections, respectively. The last two terms represent the
net change in Ql due to an influx of particles growing
due to the condensation of monomers, from section
l−1, and the outflux of particles to section l+1 due to

condensation (the first of these two terms is evaluated
only for l�1, and the second is evaluated only for
l�m). The collision integrals �x, y, z have the following
form:

1�� i, j, l
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The variable �l has the following form (Friedlander,
1977):
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�
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where w= (48�2)1/3Dfns�0(S−1), Df is the diffusion co-
efficient of the condensing species, and ��l=�il−�l−1.
A monomer balance for the system gives the following
equation for the rate of change of the monomer con-
centration n1:

dn1

dt
=RrNav−Ik*−� �
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Ql
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where Rr is the chemical reaction rate.

4. Lognormal aerosol moment model

4.1. Moment model

Even though sectional models put a limit on the
number of equations required to approximately solve
the population balance model, the computational re-
quirements of the solution method make them unsuit-
able for use in systems that generate responses in real
time. Moment models provide adequate simplification
by modeling the key average bulk properties of the
evolving product, which may then be used to generate
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the approximate PSD under the assumption of a self-
preserving form (Williams & Loyalka, 1991). For the
purpose of this study, the kth moment is defined as
the particle volume weighted summation of the parti-
cle number density function:

Mk(t)=
��

0

�kn(�, t)d�, (21)

In this subsection, the ODEs describing the tempo-
ral evolution of the three leading moments (i.e. the
zeroth, first and second moments) of the size distribu-
tion for the free molecule size, continuum size
regimes, are presented. The derivation of these equa-
tions from the population balance equation is given
in Appendix B.

4.1.1. Free molecule size regime
The temporal evolution of the zeroth moment M0

(particle concentration), which is affected by nucle-
ation and coagulation, is given by:

dM0

dt
=I−b0B2(M2/3 M−1/2+2M1/3 M−1/6+M1/6 M0)

(22)

where the coefficient b0 is used as b in Eq. (10) and is
calculated for the zeroth moment. The evolution of
M1 (aerosol volume), which is affected by nucleation
and condensation, is given by:

dM1

dt
=I�*+B1(S−1)M2/3 (23)

Finally, the second moment, M2, depends on nucle-
ation, condensation and coagulation and is described
by:

dM2

dt
=I�*2+2B1(S−1)M5/3

+2b2B2(M5/3M1/2+2M4/3M5/6+M7/6M1) (24)

where b2 is used as b0 but for the coagulation kernel
of the second moment.

4.1.2. Continuum size regime
Similar to the case of the free molecule regime, the

dynamics of the zeroth and second moments of the
aerosol size distribution in the continuum size regime
is described by the following ODE system:

dM0

dt
=I−B4

[M0
2+M1/3M−1/3+B5�

�4�

3
�1/5

(M0M−1/3+M1/3M−2/3)],

(25)

dM1

dt
=I�*+B3(S−1)M1/3, (26)

dM2

dt
=I�*2+2B3(S−1)M4/3+2B4

[M1
2+M4/3M2/3+B5�

�4�

3
�1/3

(M1M2/3+M1/3M4/3)] (27)

4.2. Lognormal particle size distribution

Studies suggest that aerosol PSDs can be ade-
quately described by unimodal lognormal functions.
This result makes it possible to develop a moment
model for the aerosol process in terms of the three
leading moments of the size distribution. The lognor-
mal distribution is given (Xiong & Pratsinis, 1991) as:

n(�)=
1

3�2� ln 
exp

�
−

ln 2(�/�g)
18 ln2

�1
�

(28)

where �g is the geometric average particle volume and
 is the standard deviation. �g and  may be ex-
pressed in terms of the first three moments of the
distribution according to the following relations
(Brock, Kuhn & Zehavi, 1986):

�g=
M1

2

M0
3/2M2

1/2, ln2 =
1
9

ln
�M0M2

M1
2

�
. (29)

Further, the moment description of the system may
be closed as follows:

Mk=M0�g
k exp

�9
2

k2 ln2 
�

(30)

Clearly, the three leading moments are sufficient to
generate the lognormal PSD. By expressing the other
moments in Eqs. (22)– (27) in terms of the zeroth,
first and second moments through the use of Eqs.
(29) and (30), a set of moment equations representing
the dynamics of the leading moments may be ob-
tained. The zeroth and second moment equations for
the free molecule size and continuum size regimes
may be combined to describe the aerosol dynamics
over the entire particle size spectrum by using the

Table 1
Dimensionless variables for the model of Eqs. (31)–(36)

Aerosol concentrationN=M0/ns

V=M1/ns�0 Aerosol volume
Second aerosol momentV2=M2/ns�0

2

�= (2�m0/kBT)1/2 Characteristic time for particle growth
/nss0

K= (2kBT/3�)ns� Coagulation coefficient
Kn 0

=�/r0 Monomer Knudsen number
Nucleation rateI �=I/(ns/�)
Reaction rate groupR ��=Rr/(ns/�)

��g=�g/�0

r �g=rg/r0


= t/�
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harmonic average of the dimensionless coagulation
rates in the free molecule size and continuum size
regimes (the dimensionless harmonic average coagula-
tion rate reduces to the appropriate limits in the two
limiting size regimes and closely approximates the
Fuchs-Sutugin approximation in the transition regime
Pratsinis, 1988). This leads to the following equations
(see Table 1 for the list of dimensionless variables):

Zeroth moment (aerosol concentration):

dN
d


=I �−�N2 (31)

where:

1
�
=

1
�FM

+
1

�C

, �FM=r �g
1/2b0�

exp
�25

8
ln2 

�
+2 exp

�5
8

ln2 
�

+exp
�1

8
ln2 

�n
,

�C=K
�

1+exp(ln2 )

+B5
�Kn 0

r �g

�
exp

�1
2

ln2 
�

(1+exp(2 ln2 ))
n

(32)

First moment (aerosol volume):

dV
d


=I �k*+�(S−1)N (33)

where:

1
�
=

1
�FM

+
1

�C

,

�FM=��g
2/3 exp(2 ln2 ), �C=

4Kn 0

3
��g

1/3 exp
�1

2
ln2 

�
(34)

Second, aerosol moment:

dV2

d

=I �k*2+2�(S−1)V+2�V2 (35)

where:

1
�
=

1
�FM

+
1
�C

,
1
�
=

1
�FM

+
1
�C

,

�FM=��g
1/2b2 exp(8 ln2 ),

�C=
4Kn 0

3
��g

1/3 exp
�7

2
ln2 

�
,

�FM=r �g
1/2 b2 exp

�3
2

ln2 
�

×
�

exp
�25

8
ln2 

�
+2 exp

�5
8

ln2 
�

+exp
�1

8
ln2 

�n
,�C=K

�
1+exp

(ln2 )+B5
�Kn 1

r �g

�
exp

�
−

1
2

ln2 
�

× (1+exp(−2 ln2 ))
n

(36)

Remark 3: In Eqs. (32) and (36), b0=0.633+
0.09202−0.0223 and b2=0.39+0.5−0.2142+
0.0293, respectively. These polynomial expressions are
obtained as functions of  by regression (Pratsinis,
1988).

Remark 4: The rate of change of S can be obtained
from a monomer balance and is given by:

dS
d


=R �rNav−I �k*−�(S−1)N (37)

5. Open-loop simulation study

In this section, we study and compare the results
obtained from the simulation of the sectional and
moment models for a typical aerosol process in a
cylindrical volume with diameter DT, and with the
following chemical reaction: A+B�C and the fol-
lowing reaction rate: Rr=krC1C2. Referring to the
sectional model; by assuming the integral property Ql

in section l to be the number concentration Nl in the
section (note that 	=1 and �=0 in Eq. (11)), Eqs.
(2), (14) and (20) produce the following mathematical
model that describes the evolution of the number
concentrations in the first m sections, together with
that of the monomer and reactant concentrations and
the fluid temperature:

dN1

dt
=I(�*)
(�0��*��1)−

1
2

3�� 1,1N1
2−N1 �

m

i=2

4�� i,1Ni

−�1N1,

dNl

dt
=I(�*)
(�l−1��*��l)+

1
2

�
l−1

i=1

�
l−1

j=1

1�� i, j,lNi Nj

−Nl �
l−1

i=1

2�� i,lNi−
1
2

3�� l,lNl
2−Nl �

m

i= l+1

4�� i,lNi

+�l−1Nl−1−�lNl, 2� l�m

dNm

dt
=I(�*)
(�m−1��*��m)+

1
2

�
m−1

i=1

�
m−1

j=1

1�� i, j,mNi Nj

−Nl �
m−1

i=1

2�� i,mNi−
1
2

3�� m,mNm
2 +�m−1Nm−1

dn0

dt
=krC1C2Nav−Ik*−� �

m

l=1

Nl

(�l−�l−1)
� �l

�l−1

�1/3
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Table 2
Process model parameters for the simulation study

DT=0.05 m Process diameter
P0=1 atm Process pressure
T0=298 K Initial temperature
Y1o=Y2o=40 ppm Initial mole fraction

of reactants
Overall coefficient ofU=10.4 J m−2 s−1 K−1

heat transfer
�Hr=175.7 K J ml−1 Heat of reaction

Heat capacity ofCp=29.1 J mol−l K−l

process fluid
Mw=14.0×10−3 kg mol−l Molecular weight of

process fluid
k=11.4 m3 mol−l s−l Reaction constant
�=3.5×10−6 kg m−1 s−1 Viscosity of process

fluid
Vaporlog Ps(mmHg)=−4644/T+0.906
pressure–temperaturelog T−0.00162T+9.004
relation

�=0.08 Nm−1 Surface tension
Monomer volume�0=5.33×10−29 m3

R=8.314 J mol−1 K−1 Universal gas
constant

Nav=6.023×1023 c mol−1 Avogadro’s constant
Boltzmann’s constantkB=1.38×10−23 J K−l

where �Hr is the heat of reaction, U is the overall heat
transfer coefficient at the system boundary, Tw is the
temperature at the system boundary of the heat trans-
ferring medium, and Cpv is the volumetric heat capacity
of the fluid. For the purposes of simulation, the Fuchs–
Sutugin expression for the Brownian coagulation coeffi-
cient (Eq. (7)) was used in the evaluation of the
collision integrals �x, y, z. Further, a geometric con-
straint was applied at the section boundaries (�i=2�i

i=1, 2, …, m ; Gelbard et al., 1980; Landgrebe &
Pratsinis, 1990). This allows simulating the size distri-
bution over a wider particle volume spectrum and
eliminates the need of using the discontinuous function

 in evaluating the collision integrals. The simplified
expressions for the collision integrals are given below:

1�� i, j,l=0 1� i, j� l−1, 2� l�m

1�� i,l−1,l=
� xi

xi−1

� xl−1

xl−1−�

�(u, �)
(xi−xi−1)(xl−1−xl−2)

dud�

1� i� l−1, 2� l�m

1�� l−1,l−1,l=
� xl−1

xl−2

� xl−1

xl−2

�(u, �)
(xl−1−xl−2)2 dud�

2� l�m

2�� i,l=
� xi

xi−1

� xl

xl−�

�(u, �)
(xi−xi−1)(xl−xl−1)

dud�

i� l, 2� l�m

3�� l,l=
� xl

xl−1

� xl

xl−1

�(u, �)
(xl−xl−1)2 dud� 1� l�m

4�� i,l=
� xi

xi−1

� xl

xl−1

�(u, �)
(xi−xi−1)(xl−xl−1)

dud�

l� i, 1� l�m (39)

The number of sections considered was 40 and the
collision integrals in each section were evaluated using
the Gauss Quadrature method. The process parameters
used in the simulations are given in Table 2. Through-
out the paper, the aerosol reactor is initially assumed to
be filled with species A and B (the initial mole fractions
of A and B are given in Table 2). We performed a set
of simulation runs of the aerosol reactor to study the
long-time behavior of the aerosol size distribution for
three different sets of parameters. Fig. 1, displays the
aerosol size distributions at the end of the three simula-
tion runs (t=80 s) for the nominal parameter values
given in Table 2 (solid line), for the nominal parameter
values and a 20 ppm increase in the initial concentra-
tion of each of the reactant species (long-dashed line),
and for the nominal parameter values and a 5 °C
decrease in the initial fluid temperature (short-dashed
line). These results confirm a lognormal shape for the
size distributions for long times and motivate the use of
a unimodal lognormal moment model to obtain esti-

Fig. 1. Profiles of aerosol size distribution function at t=80 s for
three different simulation runs. Under nominal conditions (solid line),
20 ppm increase in the initial concentration of each reactant (long-
dashed line), and 5 °C decrease in the initial fluid temperature
(short-dashed line).

1+Kn
1+1.71Kn+1.333Kn2 d�

dC1

dt
= −krC1C2

dC2

dt
= −krC1C2

dT
dt

= (krC1C2�Hr+4UDT
−1(Tw−T))Cpv

−1 (38)
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mates of the first three moments of the aerosol size
distribution that describe key average properties of the
aerosol product. In addition to the evolution of the
entire size distribution, the sectional model can be used
to obtain the total number concentration NT, the geo-
metric average particle volume �g, and the geometric
standard deviation  from the following expressions
(Landgrebe & Pratsinis, 1990):

NT= �
m

l=1

Nl (40)

ln �g= �
m

l=1

Nl

NT

��(� ln �)l

��l

−1
�

(41)

ln2g=
1
9

�
m

l=1

Nl

NT

��[� ln2(�/�g)]l−2�[� ln � ]l+2(1+ ln �g)
��l

�
(42)

where �(� ln �)l=�l ln �l−�l−1 ln �l−1 and �[� ln2(�/
�g)]l=�l ln2(�l/�g)−�l−1 ln2(�l−1/�g). The results for
NT,  and �g are presented later in this section.

Under the assumption of lognormal aerosol size dis-
tribution, the dimensionless model that describes the
evolution of the first three moments of the distribution,
along with the saturation ratio, reactant concentrations
and fluid temperature, takes the form:

dN
dt

=I �−�N2

dV
dt

=I �k*+�(S−1)N

dV2

dt
=I �k*2+2�(S−1)V+2�V2

dS
dt

=CC� 1C� 2−I �k*−�(S−1)N

dC� 1

dt
= −A1C� 1C� 2

dC� 2

dt
= −A2C� 1C� 2

dT�
dt

=BC� 1C� 2T� +ET� (T� w−T� ) (43)

where C� 1 and C� 2 are the dimensionless reactant concen-
trations, T� , T� w are the dimensionless fluid temperature
and the dimensionless temperature of the heat transfer-
ring medium at the system boundary, respectively, and
A1, A2, B, C, E are dimensionless quantities (the explicit
expressions of A1, A2, B, C, E are given in Table 3).

We also performed a set of simulation runs to com-
pare the predictions of the sectional and moment mod-
els for the conditions given in Tables 2 and 3,
respectively. Fig. 2 shows the temporal evolution of the
dimensionless total number concentration of the aero-
sol system, N, computed by the sectional (solid line)
and moment (dashed line) models. As expected, N
increases rapidly in the beginning due to a nucleation
burst. However, there is an abrupt end to the increase
in N once the nucleation subsides; thereafter N begins
to decrease slowly as the new monomers being formed
condense on the surface of particles and the particles
coagulate to form bigger particles. Both coagulation
and condensation cause the particles to grow in size,
increasing the geometric average particle diameter, dpg.

Table 3
Dimensionless variables for the model of Eq. (43)

A1=�kPoy2o/RT0

A2=�kPoy1o/RT0

B=Pok��H�y1oy2o/RT0
2Cp

C=Navk�y1oy2o(Po/RTo)2/nso

E=4URTo�/DTCpPo

C� i=yi/yioT�
T� =T/To

T� w=Tw/To

Fig. 2. Open-loop profiles of N computed by the sectional (solid line)
and moment (dashed line) models.

Fig. 3. Open-loop profiles of dpg computed by the sectional (solid
line) and moment (dashed line) models.
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Fig. 4. Open-loop profiles of  computed by the sectional (solid line)
and moment (dashed line) models.

of the assumption of unimodal lognormal size distribu-
tion made in the derivation of the moment model.

The results generated from the sectional and moment
models show remarkable consistency. This justifies the
use of lognormal moment models for the design of
estimation and control systems for the aerosol process.
6. State estimation

A sectional model based observer design for an aero-
sol process may be unsuitable for use in systems that
deliver real time responses. Motivated by the degree of
consistency between the results of the sectional model
and the lognormal moment model, we propose the use
of the lognormal moment model for the design of a
nonlinear estimator for the aerosol process which will
yield estimates of average properties of the aerosol size
distribution. This would result in an observer that can
provide reasonable state estimates with minimal com-
putational requirements, and is the subject of study in
this section.

To begin our brief presentation on observer design,
we first write the model of Eq. (43) in the following
vector form:

x̃� = f� (x̃)+ g̃(x̃)u

yi=h� i(x̃), i=1, …, m (44)

where the explicit form of x̃,f� ,g̃ can be obtained by
comparing Eqs. (43) and (44) and yi denotes the ith
measured output (e.g. geometric average particle diame-
ter; see closed-loop simulations later in the section). An
extended Luenberger-type observer has the following
form (e.g. Chiu & Christofides, 1999):

d�

dt
= f� (�)+ g̃(�)u+L(y−h� (�)) (45)

where � denotes the observer state vector (the dimen-
sion of the vector � is equal to the dimension of x̃ in
the system of Eq. (44)), y= [y1 y2 … yl ]T is the mea-
sured output vector, h� (�) is the estimated output vector
and L is a matrix chosen so that the eigenvalues of the
matrix CL= (�f� /��(�=�s))−L(�h̃/��(�=�s))
where �s is the operating steady-state, �f� /�� and �h� /��

are Jacobian matrices of appropriate dimensions, lie in
the open left-half of the complex plane. The state
observer of Eq. (45) consists of a replica of the system
of Eq. (44) plus a linear gain multiplying the dis-
crepancy between the actual and the estimated values of
the measured output.

We used the above methodology to construct a non-
linear state observer employing the moment model of
Eq. (43) as the basis for design and using the geometric
average particle diameter as the measured output. The
observer gain was computed to guarantee that the state
observer is an exponentially stable system. To study the
ability of the nonlinear state observer to estimate aver-

Fig. 5. Open-loop profiles of dpg computed by the sectional model
(solid line) and the moment model-based state estimator (dashed line)
under nominal conditions.

This is evident from Fig. 3 which displays the profile of
dpg as a function of time, based on the sectional (solid
line) and moment (dashed line) models. Fig. 4 presents
the temporal evolution of the geometric standard devia-
tion, , based on the sectional and moment models.
Initially, the size distribution broadens as new particles
nucleate and grow by Brownian coagulation and con-
densation. Eventually, nucleation subsides causing the
low end of the particle size spectrum to deplete rapidly
and the spread of the size distribution narrows resulting
in an early maximum in . Thereafter,  decreases to
attain a final constant value of about 1.4 for the
sectional model (solid line); this value is expected for an
aerosol system with coagulation as the dominant
growth phenomenon. Furthermore, in Fig. 4, we also
observe that the moment model (dashed line) predicts a
value for  which is slightly lower than the value of 

predicted by the sectional model which is a consequence
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age properties of the aerosol size distribution, we com-
pare in Fig. 5 the estimated profile (dashed line) and the
actual (solid line) profile (with the sectional model
substituted for the actual process) of the geometric
average particle diameter for the aerosol system under
the conditions of Tables 2 and 3. It is clear that the
observer estimates of dpg converge very quickly to the
true value computed by the sectional model; note that the
results are shown from t=0 to 15 s to show that the
convergence of the estimation error is very fast compared
to the entire batch cycle t=80 s. Fig. 6 shows a similar
plot but with errors in some of the modeling parameters
(5% decrease in �, 4% increase in Df and 5% decrease in
�0). Again, the profile of the estimated value of dpg

(dashed line) converges to the value computed by the
sectional model (solid line), thus showing the robustness
of the observer in the presence of significant uncertainties

in the model parameters. To further investigate the
robustness of the state observer with respect to errors in
model parameters, we show in Fig. 7 the profiles of the
actual (solid line) and estimated (dashed line) values of
dpg in the presence of 7% increase in � and 5% decrease
in the surface tension value, �. Again, the robustness
properties of the state observer are excellent. Finally, it
is important to note that it was verified that the state
observer provides accurate estimates of the three leading
moments of the aerosol size distribution, which is, of
course, expected given the accuracy of the estimates of
dpg (detailed presentation of these results is omitted for
brevity).

In the next section, the above state observer will be
coupled with a nonlinear controller which will be de-
signed on the basis of the moment model to lead to an
output feedback controller that will be implemented on
the sectional model to achieve tight control of dpg.

7. Nonlinear control

We will begin with the design of the nonlinear con-
troller, and we will follow with closed-loop simulations
to study the robustness properties of the controller with
respect to parametric model uncertainties and unmod-
eled actuator dynamics.

7.1. Output feedback controller synthesis

We use the model of Eq. (43) to synthesize a nonlinear
finite-dimensional output feedback controller that guar-
antees stability and enforces output tracking in the
closed-loop distributed parameter system. The output
feedback controller is constructed through a standard
combination of a state feedback controller with a state
observer. The state feedback controller is synthesized via
geometric control methods and the state observer is an
extended Luenberger-type observer, as discussed in the
previous section.

To proceed with our brief presentation of the con-
troller synthesis results (more details can be found in
Isidori, 1989 and are omitted here for brevity), we need
to define the relative order of the output yi with respect
to the vector of manipulated inputs u as the smallest
integer ri for which

[Lg̃ 1
Lf�

ri−1h� i(x̃)···Lg̃m
Lf�

ri−1(x̃)]�/ [0···0] (46)

where g̃i is the ith vector of the matrix g̃, or ri=� if such
an integer does not exist, and the characteristic matrix

C(x̃)=

�
�
�
�
�

Lg̃ 1
Lf�

r1−1h� 1(x̃) ··· Lg̃m
Lf�

r1−1h� 1(x̃)
Lg̃ 1

Lf�
r2−1h� 2(x̃) ··· Lg̃m

Lf�
r2−1h� 2(x̃)

� ··· �
Lg̃ 1

Lf�
rm−1h� m(x̃) ··· Lg̃m

Lf�
rm−1h� m(x̃)

�
�
�
�
�

(47)

Fig. 6. Open-loop profiles of dpg computed by the sectional model
(solid line) and the moment model-based state estimator (dashed line)
under parametric uncertainty in �, Df and �0.

Fig. 7. Open-loop profiles of dpg computed by the sectional model
(solid line) and the moment model-based state estimator (dashed line)
under parametric uncertainty in � and �.
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The state feedback control problem is formulated as
the one of synthesizing nonlinear state feedback con-
trollers of the general form:

u=p(x̃)+Q(x̃)� (48)

where p(x̃) is a smooth vector function, Q(x̃) is a
smooth matrix, and ��Rm is the constant reference
input vector, which guarantee local exponential stability
and enforce a linear input–output response in the
system of Eq. (44). This controller synthesis problem
leads to the following nonlinear controller (Isidori,
1989):

u={[�1r 1
···�mrm

]C(x̃)}−1��− �
m

i=1

�
ri

k=0

�ikLf�
kh� i(x̃)

	
(49)

where the parameters �ik are chosen so that the roots of
the equation det(B(s)=0 are in the open left-half of the
complex plane (B(s) is an l× l matrix, whose (i, j )th
element is of the form 
ri

k=0 � jk
i sk). The controller of

Eq. (49) enforces exponential stability in the closed-loop
system, provided the unforced (��0) zero dynamics of
the system of Eq. (44) are locally exponentially stable.

The state feedback control law of Eq. (48) and the
state observer of Eq. (45) can be combined to yield the
following nonlinear output feedback controller:

d�

dt
= f� (�)+ g̃(�){[�1r 1

···�mrm
]C(�)}−1

×
�

�− �
m

i=1

�
ri

k=0

�ikLf�
kh� i(�)

	
+L(y−h� (�))

u={[�1r 1
···�mrm

]C(�)}−1��− �
m

i=1

�
ri

k=0

�ikh� i(�)
	

(50)

Remark 5: The exponential stability of the closed-loop
system guarantees that in the presence of small
initialization errors of the observer states (i.e.
�(0)� x̃(0)), uncertainty in the process parameters and
disturbances, the states of the closed-loop system will
be bounded. Furthermore, it is possible to incorporate
integral action in the nonlinear controller of Eq. (52) by
substituting the term �−�oh� (�) (single-input
single-output case) with the term �−�0h� (x̃) (tracking
error) to ensure asymptotic offsetless output tracking in
the closed-loop system, in the presence of constant
parametric uncertainty (see Daoutidis & Christofides,
1995 for details). Finally, the nonlinear controller of

Eq. (50) possesses a robustness property with respect to
fast and asymptotically stable unmodeled dynamics
(e.g. actuator and sensor dynamics, fast process
dynamics; i.e. the controller enforces exponential
stability and output tracking in the closed-loop system
despite the presence of additional dynamics in the
process, as long as they are stable and sufficiently fast).

7.2. Closed-loop simulations

We formulate the control problem as one of tracking
the geometric average particle diameter of the aerosol
system along a time-varying profile, by manipulating
the wall temperature, i.e.:

y(t)=dpg(t), u(t)=T� w(t)−T� ws (51)

where T� ws=Tws/T0=1. It was verified through open-
loop simulations that the process model with the above
manipulated input and controlled output is minimum
phase. Therefore, the model of Eq. (44) was used as the
basis for the synthesis of a nonlinear controller utilizing
the control method described in the previous subsec-
tion. For this model, the relative order r was found to
be equal to 2 and the necessary output feedback con-
troller was synthesized using the formula of Eq. (50)
and takes the form;

where � is the set-point, �0, �1, �2, and L are controller
parameters and h̃(�)=dpg. The tuning parameters of
the controller were chosen as �0=1, �1=25 and �2=
300 to enforce a slightly underdamped response in the
closed-loop system. The observer gain was chosen as in
Section 6. Integral action was also incorporated in the
nonlinear controller of Eq. (52) (i.e. the term �−�0h̃(�)
was substituted by �−�0h̃(x̄)) to ensure offsetless
tracking in the presence of constant uncertainty in
process parameters. Since we are dealing with a batch
operation, the reference input � is time-varying and is
taken to be the desired profile for dpg computed by the
sectional model and shown in Fig. 3 (solid line). The
practical implementation of the nonlinear controllers of
Eq. (49) requires on-line measurements of dpg; in prac-
tice, such measurements can be obtained by using, for
example, light scattering (see Rawlings et al., 1993 for
details).

Several simulation runs were performed to evaluate
the disturbance rejection and set-point tracking capabil-
ities of the nonlinear controller, as well as its robustness
with respect to uncertainty in model parameters and
unmodeled actuator dynamics.

d�

dt
= f� (�)+L(y−h� (�))+ g̃(�)[�2Lg̃Lf� h� (�)]−1{�−�0h� (�)−�1Lf� h� (�)−�2Lf�

2(�)}

ũ(t)= [�2Lg̃Lf� h� (�))]−1{�−�0h� (�)−�1Lf� h� (�)−�2Lf�
2h� (�)} (52)
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Fig. 8. Top plot, open-loop profile (dashed line) and closed-loop
profile (solid line) of dpg under uncertainty in the reaction rate
constant. Bottom plot, manipulated input profile.

operate the process under feedback control. Fig. 9
presents the open-loop profile (dashed line) and closed-
loop profile (solid line) for dpg (top plot), and the
corresponding manipulated input profile (bottom plot)
in the case of a 8% decrease in the parameters used to
evaluate the vapor pressure, Ps (refer to Table 2 for the
nominal parameters). Again, the nonlinear controller
allows achieving an aerosol product with the desired
dpg, clearly outperforming open-loop operation. Note
that the manipulated input profiles in both runs are
smooth functions of time.

We also tested the robustness properties of the non-
linear controller with respect to parametric model un-
certainty and unmodeled actuator dynamics in the
presence of a set-point change. Specifically, in addition
to the parametric uncertainties considered in the previ-
ous two simulation runs, the process model of Eq. (38)
was augmented with the following dynamical system,
which represents the actuator dynamics, �zz1= −z1+
z2, �zz2= −z2+u, where z1, z2�R are the actuator
states, are the actuator states, z1 is the actuator output

Fig. 9. Top plot, open-loop profile (dashed line) and closed-loop
profile (solid line) of dpg under uncertainty in the saturation pressure.
Bottom plot, manipulated input profile.

The first two simulation runs evaluate the perfor-
mance of the nonlinear controller when there are sig-
nificant errors in the modeling parameters. The
objective of these simulations is to show that the use of
feedback control allows producing an aerosol product
with a desired geometric average particle diameter
(dpg=0.18 �m which is the value of dpg for the open-
loop system shown in Fig. 3 (solid line) computed with
a constant wall temperature) within a given type of
batch reactor and prespecified cycle time even in the
case where the process model is not exactly known. Fig.
8 presents the open-loop profile (dashed line) and
closed-loop profile (solid line) for dpg (top plot), and the
corresponding manipulated input profile (bottom plot)
in the case of 6% error in the value of the rate constant,
k. It is clear that the use of feedback control allows
producing an aerosol product with a dpg that exactly
matches the desired one (i.e. dpg=0.18 �m) at the end
of the batch cycle. Note that in the case of open-loop
operation, the dpg at the end of the batch cycle is about
10% off than the desired one, implying the need to
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and �z is a small parameter characterizing how fast are
the actuator dynamics. For all values of ��1, the
nonlinear controller was found to exhibit very good
robustness properties, keeping the output on the
set-point profile (the profiles of dpg for these simulation
runs are very close to the closed-loop profiles of Figs. 8
and 9, and thus, they will be omitted for brevity).

Remark 6: It is important to point out that even though
in our study we have chosen specific expressions for the
nucleation, condensation and coagulation mechanisms
in order to carry out the numerical calculations, the
approach that we employed for the design of nonlinear
estimators and controllers is applicable to most aerosol
systems for which the hypothesis of unimodal
lognormal aerosol size distribution for long times is
valid. Finally, the interested reader may refer to Chiu
and Christofides (1999), Kalani and Christofides (1999)
for extensive comparisons of nonlinear control
algorithms of the type used in the present simulation
study with conventional proportional-integral control
schemes that clearly demonstrate the superior
performance and robustness properties of the nonlinear
controllers.

8. Conclusions

In this work, we presented a comprehensive study on
simulation, estimation and control of size distribution
in aerosol processes with simultaneous chemical reac-
tion, nucleation, condensation and coagulation. Ini-
tially, a typical aerosol process was considered and a
detailed population balance model was presented
which accounts for the aforementioned phenomena
and describes how the aerosol size distribution evolves
with time. The population balance was complemented
with mass and energy balances that describe the evolu-
tion of the continuous phase species and temperature
of the system. Sectional representations and lognormal
moment approximations of the population balance
model were then derived and used to simulate and
provide estimates for the states of the process, respec-
tively. It was found that a nonlinear state estimator
based on the moment model provides accurate esti-
mates of the average properties of the aerosol size
distribution computed by the sectional model. The mo-
ment model, together with the species and energy bal-
ance equations were used as the basis for the synthesis
of an output feedback controller which ensures that the
geometric average particle diameter of the aerosol size
distribution follows a prespecified trajectory. The ro-
bustness properties of the nonlinear estimator and con-
troller with respect to significant parametric model
uncertainty were successfully tested through computer
simulations.
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Appendix A

The following aerosol growth phenomena were con-
sidered for the derivation of the integro-differential
equations for the sectional model: (1) nucleation of
aerosol particles, (2) growth by condensation of
monomers on the aerosol particle surface, and (3)
growth by coagulation. The mathematical derivation of
the rate of change of the integral property, Qt(t) in
section l, due to each of the above mentioned phe-
nomenon is given below:

A.1. Nucleation

Nucleation of an aerosol particle with volume �* in
section l increases the property q by an amount, 	�*�.
Given that the rate of nucleation in section l is:
I(�*)
(�l−1��*��l), the flux of Ql into section l is
given as:

dQl

dt
�nucleation=	�* �I(�*)
(�l−1��*��l) (53)

A.2. Condensation

Diffusional condensation growth (the growth expres-
sion is given by Eq. (6)) may cause particles to exit the
current section and enter the next higher section, as
their size increases by condensation of monomers on
the surface. Accounting for influx (due to condensation
growth) of particles into section l from section l−1
and the outflux into section l+1, and substituting the
variable �l as defined in Section 3.1, the net flux of Ql

into section l is given as:

dQl

dt
�condensation=	� l−1

�1/3 n(�l−1, t)�l−1��l

−	� l
�1/3 n(�l, t)�l��l (54)

Substituting for n(�, t) from Eq. (13), the above
equation simplifies to the following:

dQl

dt
�condensation=�l−1Ql−1−�lQl (55)

A.3. Coagulation

Coagulation may change the integral property Ql in
section l due to one of the following reasons (Gelbard
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et al., 1980): (i) addition of particles to section l due to
coagulation of particles in the lower sections, (ii) addition
of particles to section l due to coagulation of particles
in the lower sections with particles in section l, (iii) loss
of particles from section/due to coagulation of particles
in the lower sections with those in section l, (iv) loss of
particles from section l due to coagulation of particles
within section l, and (v) loss of particles from section l
due to coagulation of particles in section l with particles
in the higher sections.

The total rate of coagulation between particles in
sections lower than l (note that l�1) is given by:

1
2
� xl−1

x 0

� xl−1

x 0

�(u, �)n(u, t)n(�, t)dud� (56)

where u and � are the volumes of the colliding particles,
x0 is particle volume at the lower limit of the first section
(i.e. the monomer volume) and xl−1 is the particle
volume at the juncture of sections l−1 and l. The new
particles being formed appear in section i only if their
volume is greater than xl−1 and less than xl. Thus, the
net rate of addition of particles to section l is given by:

1
2
� xl−1

x 0

� xl−1

x 0


(xl−1�u+��xl)�(u, �)n(u, t)n(�, t)

×dud�, (57)

and hence, the flux of Q into section l due to coagulation
of particles in the lower sections is given as:

1
2
� xl−1

x 0

� xl−1

x 0

	(u+�)�
(xl−1�u+��xl)�(u, t)n(�, t)

×dud� (58)

In order to account for the contributions of various
sections to the change in Ql, the integrals in Eq. (58) are
replaced by a sum of integrals over each section as
follows:

1
2

�
l−1

i=1

�
l−1

j=1

� xi

xi−1

� xj

xj−1

	(u+�)�
(xl−1�u+��xl)�(u, �)

×n(u, t)n(�, t)dud�, (59)

Substituting for n from Eq. (13), the following expres-
sion is obtained and represents the change in Qi due to
coagulation in the lower sections:

1

2
�

l−1

i=1

�
l−1

j=1

Qi Qj

� xi

xi−1

� xj

xj−1

(u+�)�
(xl−1�u+��xl)�(u, �)

	u���(xi−xi−1)(xj−xj−1)
d�d�,

(60)

Following the derivation as described above, the flux
of Q into section l due to coagulation of particles in
section l with particles in lower sections is given by:� xl−1

x 0

� xl

xl−1

	 [(u+�)�−u �]
(u+��xl)�(u, �)n(u, t)

×n(�, t)dud�, (61)

and the outflux of Q from section l due to coagulation
of particles in lower sections with those in section l is
given by:� xl−1

x 0

� xl

xl−1

	u �
(u+��xl)�(u, �)n(u, t)n(�, t)dud�

(62)

Eqs. (61) and (62) may be added together and sim-
plified to obtain the following:

Ql �
l−1

i=1

Qi

� xi

xi−1

� xl

xl−1

{u�
(u+��xl)− [(u+�)�−u�]}�(u, �)

	u���(xi−xi−1)(xl−xl−1)
dud�

(63)

Coagulation of particles within section l may result in
a loss of Ql either due to a reduction in the number of
particles in section l or due to the formation of new
particles with volume greater than xl. The loss of Ql due
to the former phenomenon is given as:

1
2
� xl

xl−1

� xl

xl−1

	 [u �+� �(u+�)�]
(u+��xl)�(u, �)n(u, t)

×n(�, t)dud�, (64)

while the outflux of Q from section l due to the latter
phenomenon is given by:

1
2
� xl

xl−1

� xl

xl−1

	(u �+� �)
(u+��xl)�(u, �)n(u, t)n(�, t)

×dud� (65)

Adding together Eqs. (64) and (65) and simplifying, the
following equation is obtained:

1
2

Ql
2 � xl

xi−1

� xl

xl−1

{(u �+� �)
(u+��xl)+ [u �+� �− (u+�)�]}�(u, �)
	u �� �(xl−xl−1)2 dud�

(66)

Finally, the outflux of Ql due to the coagulation of
particles in section l with those in higher sections is given
as (assuming m is the maximum number of sections being
considered):� xm

xl

� xl

xl−1

	u ��(u, �)n(u, t)n(�, t)dud�, (67)

which gives, on substitution of n from Eq. (13), the
following expression:

Ql �
m

i=1+1

Qi
� xi

xi−1

� xi

xl−1

{u ��(u, �)}
	u �� �(xi−xi−1)(xl−xl−1)

dud�

(68)

The net rate of change of Ql due to coagulation is
obtained by adding the expressions in Eqs. (60), (63), (66)
and (68):

dQl

dt
�
coagulation

=
1
2

�
l−1

i=1

�
l−1

j=1

1�� i, j,lQi Qj−Ql �
l−1

i=1

2�� i,lQi

−
1
2

3�� l,lQl
2−Ql �

m

i=1+1

4�� i,lQi, (69)



A. Kalani, P.D. Christofides / Computers and Chemical Engineering 26 (2002) 1153–11691168

where the collision integrals 1�� i, j,l,
2�� i,l,

3�� l,l,
4�� i,l, have the

forms detailed in Eqs. (15)– (18).

Appendix B

In this Appendix, a derivation of the ODEs describing
the evolution of the three leading moments of the aerosol
in the free molecular size regime (Eqs. (22)– (24)), is
given. The derivation of the moment equations in the
continuum size regime (Eqs. (25)– (27)) is similar. The
population balance equation (Eq. (1)) may be written as:

�n
�t

= −
�(GFM(x̄, �)n)

��
+I(�*)�(�−�*)

+
1
2
� �

0

�FM(�− �̄, �̄)n(�− �̄)n(�̄)d�̄

−n(�)
��

0

�FM(�, �̄)n(�̄)d�̄ (70)

B.1. Zeroth moment

Integrating both sides of the equation from 0 to � for
the particle volume, making the substitution �− �̄=y in
the third term on the right hand side and using that (Eq.
(21)) M0=��

0 n(�)d�, we obtain:

dM0

dt
= −

��

0

�(GFM)(x̄, �)n)
��

d�+I

+
1
2
��

0

��

0

�FM(y, �̄)n(y)n(�̄)d�̄dy

−
��

0

��

0

�FM(�, �̄)n(�)n(�̄)d�̄d� (71)

The first term on the right hand side of Eq. (71) solves
to zero. The collision frequency function �FM, of Eq. (4)
may be written as:

�FM(�, �̄)=B1b0(�−1/2+ �̄−1/2)(�1/2+ �̄1/2)2 (72)

Writing y as �, substituting the expression for �FM and
using Eq. (21) in Eq. (71), we get:

dM0

dt
=I−

B1b0

2
��

0

(M0�
1/6+2M1/3�

−1/6+M2/3�
−1/2

+M−1/2�
2/3+2M−1/6�

1/3+M1/6)n(�)d� (73)

Using Eq. (21) once again, we finally obtain Eq. (22):

dM0

dt
=I−B1b0(M2/3M−1/2+2M1/3M−1/6+M1/6M0)

(74)

B.2. First moment

Multiplying both sides of Eq. (70) by �1, integrating

from 0 to � for the particle volume, substituting the
expression for GFM from Eq. (4) and using that M1=
M1=��

0 �n(�)d�, we obtain Eq. (23):

dM1

dt
=I�*+B1(S−1)M2/3 (75)

B.3. Second moment:

Multiplying both sides of Eq. (70) by �2 and perform-
ing calculations similar to the case for the zeroth moment
(with coefficient b2 used as b0 in the expression of �FM)
we obtain Eq. (24):

dM2

dt
=I�*2+2B1(S−1)M5/3

+2b2B1(M5/3M1/2+2M4/3M5/6+M7/6M1) (76)

References

Akhtar, M. K., Lipscomb, G. G., & Pratsinis, S. E. (1994). Monte
carlo simulation of particle coagulation and sintering. Aerosol
Science and Technology, 21, 83–93.

Brock, J. R., Kuhn, P. J., & Zehavi, D. (1986). Condensation aerosol
formation and growth in a laminar coaxial jet: experimental.
Journal of Aerosol Science, 17, 11–22.

Chiu, T., & Christofides, P. D. (1999). Nonlinear control of particu-
late processes. American Institute of Chemical Engineers Journal,
45, 1279–1297.

Chiu, T., & Christofides, P. D. (2000). Robust control of particulate
processes using uncertain population balances. American Institute
of Chemical Engineers Journal, 46, 266–280.

Daoutidis, P., & Christofides, P. D. (1995). Dynamic feedforward/out
put feedback control of nonlinear processes. Chemical Engineering
Science, 50, 1889–2007.

Dimitratos, J., Elicabe, G., & Georgakis, C. (1994). Control of
emulsion polymerization reactors. American Institute of Chemical
Engineers Journal, 40, 1993–2021.

Eaton, J. W., & Rawlings, J. B. (1990). Feedback control of chemical
processes using on-line optimization techniques. Computers and
Chemical Engineering, 14, 469–479.

El-Farra, N. H., Chiu, T. Y., & Christofides, P. D. (2001). Analysis
and control of particulate processes with input constraints. Amer-
ican Institute of Chemical Engineers Journal, 47, 1849–1865.

Frenklach, M., & Harris, S. J. (1987). Dynamic modeling using the
method of moments. Journal of Colloid Interface Science, 118,
252–261.

Friedlander, S. K. (1977). Smoke, dust, and haze : fundamentals of
aerosol beha�ior. New York: Wiley.

Friedlander, S. K. (1983). Dynamics of aerosol formation by chemi-
cal reaction. Annals of New York Academy of Science, 83, 354–
364.

Gelbard, F., Tambour, Y., & Seinfield, J. H. (1980). Sectional repre-
sentation of simulating aerosol dynamics. Journal of Colloid Inter-
face Science, 68, 363–382.

Gelbart, F., & Seinfeld, J. H. (1978). Numerical solution of the
dynamic equation for particulate processes. Journal of Computer
Physics, 28, 357–375.

Hale, J. K., & Verduyn Lunel, S. M. (1993). Introduction to functional
differential equations. New York: Springer.

Hashemi, R., & Epstein, M. A. (1982). Observability and control-
lability considerations in crystallization process design. Amercan
Institute of Chemical Engineers Symposium Series, 78, 81–190.



A. Kalani, P.D. Christofides / Computers and Chemical Engineering 26 (2002) 1153–1169 1169

Hill, P. J., & Ng, K. M. (1995). New discretization procedure for the
breakage equation. American Institute of Chemical Engineers
Journal, 41, 1204–1216.

Hill, P. J., & Ng, K. M. (1996). New discretization procedure for the
agglomeration equation. American Institute of Chemical Engineers
Journal, 42, 727–741.

Hounslow, M. J. (1990). A discretized population balance for contin-
uous systems at steady-state. American Institute of Chemical Engi-
neers Journal, 36, 106–116.

Isidori, A. (1989). Nonlinear control systems : an introduction (second
ed.). Berlin, Heidelberg: Springer.

Kalani, A., & Christofides, P. D. (1999). Nonlinear control of spa-
tially-in homogeneous aerosol processes. Chemical Engineering
Science, 54, 2669–2678.

Kalani, A., & Christofides, P. D. (2000). Modeling and control of a
titania aerosol reactor. Aerosol Science and Technology, 32, 369–
391.

Kumar, S., & Ramkrishna, D. (1996a). On the solution of population
balance equations by discretization—I. A fixed pivot technique.
Chemical Engineering Science, 51, 1311–1332.

Kumar, S., & Ramkrishna, D. (1996b). On the solution of population
balance equations by discretization—II. A moving pivot tech-
nique. Chemical Engineering Science, 51, 1333–1342.

Landgrebe, J. D., & Pratsinis, S. E. (1990). A discrete sectional model
for particulate production by gas phase chemical reaction and
aerosol coagulation in the free molecular regime. Journal of
Colloid Interface Science, 139, 63–86.

Lee, K. W., Chen, H., & Gieseke, J. A. (1984). Log-normally
preserving size distribution for Brownian coagulation in the free-
molecule regime. Aerosol Science and Technology, 3, 53–62.

Mantzaris, N. V., Daoutidis, P., & Srienc, F. (2001). Numerical
solution of multivariable cell population balance models. Parts: I,
II and III. Computers and Chemical Engineering, 25, 1411–1481.

Nicmanis, M., & Hounslow, M. J. (1998). Finite-element methods for

steady-state population balance equations. American Institute of
Chemical Engineers Journal, 44, 2258–2272.

Pratsinis, S. E. (1988). Simultaneous nucleation, condensation, and
coagulation in aerosol reactors. Journal of Colloid Interface Sci-
ence, 124, 416–426.

Ramkrishna, D. (1985). The status of population balances. Re�iew of
Chemical Engineering, 3, 49–95.

Rawlings, J. B., & Ray, W. H. (1987). Emulsion polymerization
reactor stability: simplified model analysis. American Institute of
Chemical Engineers Journal, 33, 1663–1667.

Rawlings, J. B., Miller, S. M., & Witkowski, W. R. (1993). Model
identification and control of solution crystallization processes.
I&EC Research, 32, 1275–1296.

Rohani, S., & Bourne, J. R. (1990). Self-tuning control of crystal size
distribution in a cooling batch crystallizer. Chemical Engineering
Science, 12, 3457–3466.

Semino, D., & Ray, W. H. (1995a). Control of systems described by
population balance equations-I. Controllability analysis. Chemical
Engineering Science, 50, 1805–1824.

Semino, D., & Ray, W. H. (1995b). Control of systems described by
population balance equations-II. Emulsion polymerization with
constrained control action. Chemical Engineering Science, 50,
1825–1839.

Tandon, P., & Rosner, D. E. (1999). Monte carlo simulation of
particle aggregation and simultaneous restructuring. Journal of
Colloid Interface Science, 213, 273–286.

Van Peborgh Gooch, J. R., & Hounslow, M. J. (1996). Monte carlo
simulation of size-enlargement machanisms in crystallisation.
American Institute of Chemical Engineers Journal, 42, 1864–1874.

Williams, M. M. R., & Loyalka, S. K. (1991). Aerosol science : theory
and practics. Oxford, UK: Pergamon Press.

Xiong, Y., & Pratsinis, S. E. (1991). Gas phase production of
particles in resctive turbulent flows. Journal of Aerosol Science, 12,
637–655.


	Simulation, estimation and control of size distribution in aerosol processes with simultaneous reaction, nucle...
	Introduction
	Preliminaries
	Spatially-homogeneous aerosol process model
	Remark 1
	Remark 2


	Sectional model
	Theoretical development

	Lognormal aerosol moment model
	Moment model
	Free molecule size regime
	Continuum size regime

	Lognormal particle size distribution
	Remark 3
	Remark 4


	Open-loop simulation study
	State estimation
	Nonlinear control
	Output feedback controller synthesis
	Remark 5

	Closed-loop simulations
	Remark 6


	Conclusions
	Acknowledgements
	Appendix A
	Nucleation
	Condensation
	Coagulation

	Appendix B
	Zeroth moment
	First moment
	Second moment:

	References


