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Abstract

This article proposes a nonlinear feedback control methodology for spatially inhomogeneous aerosol processes for which the
manipulated inputs, the control objectives and the measurements are distributed in space. Initially, a general nonlinear partial
integro-di!erential equation model which describes the spatio-temporal evolution of the aerosol size distribution, as well as the
evolution of the concentrations of species and temperature of the continuous phase is presented. The model accounts for simultaneous
chemical reaction, nucleation, condensation, coagulation and convective transport. Then, under the assumption of lognormal aerosol
size distribution, the method of moments is employed to reduce the original model into a set of "rst-order hyperbolic partial
di!erential equations (PDEs) which accurately describes the spatio-temporal evolution of the three leading moments needed to
precisely characterize the aerosol size distribution. This hyperbolic PDE system is then used as the basis for the synthesis of nonlinear
distributed output feedback controllers that enforce closed-loop stability and achieve an aerosol size distribution with desired
characteristics. The proposed nonlinear control method is successfully applied through simulations to a typical aerosol process and is
shown to outperform a conventional proportional integral control scheme and deal e!ectively with disturbances in the feed to the
process. ( 1999 Elsevier Science Ltd. All rights reserved.

1. Introduction

Aerosol processes are widely used in industry for the
production of "ne particles including pigments, carbon
black, optical "bers, silicon and ceramic powders, and
are characterized by coupled chemical reaction, nuclea-
tion, condensation and coagulation phenomena. In par-
ticular, in a typical aerosol process, aerosol precursors
(molecules of gaseous reactants) react to produce a
monomer (molecule of condensable species). The mono-
mer molecules form unstable clusters, which grow further
by monomer condensation. Beyond a critical cluster size,
nucleation of aerosol particles occurs. These particles
grow further, mainly by coagulation.

The dynamic models of aerosol processes are typically
obtained from the application of population, material
and energy balances, and consist of nonlinear partial
integro-di!erential equation systems (where the indepen-
dent variables are time, space and one or more internal
particle coordinates, such as particle volume, shape).
Nonlinearities usually arise from complex reaction, nu-

cleation, condensation and coagulation rates and their
nonlinear dependence on temperature. The complex na-
ture of aerosol process models has motivated an exten-
sive research activity on the development of numerical
methods for the accurate computation of their solution.
Examples of solution methods include the method of
self-preserving distributions (e.g. Ramabhadran and
Sein"eld, 1975; Friedlander, 1977), the method of
weighted residuals (Ramakrishna, 1985; Gelbard and
Sein"eld, 1978), the sectional method (e.g. Gelbard et al.,
1980; Landgrebe and Pratsinis, 1990), and discretization
via "xed/moving pivot techniques (e.g. Kumar and
Ramakrishna, 1996a, b). However, even though the
above methods can produce accurate solutions of aerosol
process models, they are not suitable for the derivation of
approximate models which can be used for the synthesis
of practically implementable feedback controllers. Fortu-
nately, the aerosol size distributions obtained by many
industrial reactors can be adequately described by
lognormal functions, and thus, the dominant dynamic
behavior of many aerosol processes can be accurately
captured by a model that describes the evolution of the
leading moments of the aerosol size distribution (Prat-
sinis, 1988; Williams and Loyalka, 1991). Moment mod-
els are much simpler to analyze, simulate and utilize for
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Fig. 1. A typical aerosol #ow reactor.

controller design than detailed aerosol process models,
while they contain the most important information about
the dynamics of the aerosol process.

In spite of the vast amount of literature on solution
methods and dynamical analysis for aerosol processes,
few papers are available on feedback control of aerosol
processes based on nonlinear population balance models.
In fact, even the broader subject of control of particulate
processes based on population balance models has re-
ceived very little attention. More speci"cally, previous
research on control of particulate processes has mainly
focused on: (a) the understanding of controllability and
observability properties of population balance models
(Heshemi and Epstein, 1982; Semino and Ray, 1995a), (b)
stability analysis using Laplace transform and Lyapunov
functionals (e.g. Hale and Verduyn Lunel, 1993; Rawlings
and Ray, 1987), and (c) the application of conventional
control schemes (e.g. proportional-integral, propor-
tional-integral-derivative, self-tuning control) to crystal-
lizers and emulsion polymerization processes (e.g.
Semino and Ray, 1995b; Rohani and Bourne, 1990;
Dimitratos et al., 1994). These conventional control
schemes clearly limit the achievable control quality and
may lead to poor performance, or even to destabilization
of the closed-loop system, in the presence of severe pro-
cess nonlinearities. A notable exception on model-based
control of particulate processes is an optimization-based
control method which was developed in Eaton and Rawl-
ings (1990) (see also Rawlings et al., 1993) and success-
fully applied to a batch crystallization process.

In this work, we develop a nonlinear feedback control
method for spatially inhomogeneous aerosol processes
for which the manipulated inputs, the control objectives
and the measurements are distributed in space. Initially,
a general nonlinear partial integro-di!erential equation
model which describes aerosol processes with simulta-
neous chemical reaction, nucleation, condensation, co-
agulation and convective transport is presented. Then,
under the assumption of lognormal aerosol size distribu-
tion, the method of moments is employed to reduce the
original model into a set of "rst-order hyperbolic PDEs
which accurately describes the spatio-temporal evolution
of the three leading moments needed to exactly charac-
terize the aerosol size distribution. This hyperbolic par-
tial di!erential equations (PDEs) system is then used as
the basis for the synthesis of nonlinear distributed output
feedback controllers that use process measurements to
achieve an aerosol size distribution with desired charac-
teristics (e.g. geometric average particle volume). The
controller design problem is addressed by using recent
results on nonlinear control of hyperbolic PDE systems
(Christo"des and Daoutidis, 1996). The performance of
the proposed control method is successfully tested
through simulations on a typical aerosol process and is
shown to be superior to the one of a proportional inte-
gral controller.

2. Preliminaries

2.1. Spatially inhomogeneous aerosol process model

We consider aerosol processes with simultaneous
chemical reaction, nucleation, condensation, coagulation
and convective transport. Fig. 1 shows one such aerosol
process in a typical aerosol #ow reactor. A general math-
ematical model which describes the spatio-temporal
evolution of the particle size distribution in such aerosol
processes can be obtained from a population balance and
consists of the following nonlinear partial integro-di!er-
ential equation:
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where n (v, z, t) denotes the particle size distribution func-
tion, v is the particle volume, t is the time, z3[0, ¸] is the
spatial coordinate, ¸ is the length of the process, v

z
is the

velocity of the #uid, G(xN , v, z), I (v*), b (v!vN , vN , xN ) are
nonlinear scalar functions and d ()) is the standard Dirac
function.

On the other hand, a mathematical model which pre-
dicts the spatio-temporal evolution of the concentrations
of species and temperature of the gas phase can be
obtained from mass and energy balances and has the
following form:

LxN
Lt

"AM
LxN
Lz

#fM (xN )#gN (xN ) b (z) u (t)#AI P
=

0

a (g, v, x) dv, (2)

where xN (z, t) is an n-dimensional vector of state variables
that depend on space and time, AM , AI are constant ma-
trices, fM (xN ), gN (xN ), a(g, v, x) are nonlinear vector functions,
u(t) is the axially distributed manipulated input (e.g. wall
temperature) and b (z) is a known function which deter-
mines how the control action u (t), is distributed in space
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(for example, b(z)"1 when u (t) is uniformly distributed
in space). The term AI :=

0
a(g, v, x) dv accounts for mass

and heat transfer from the continuous phase to all the
particles in the population.

In the population balance of Eq. (1), the term Ln/Lt
describes the rate of change of particle concentration in
the particle volume interval v, v#dv and in the spatial
interval z, z#dz, and the term v

z
Ln/Lz corresponds to

convective transport of aerosol particles at velocity v
z
.

Moreover, the terms L(G(xN , v, z)n)/Lv and I(v*)d(v!v*)
account for the loss or gain of particles by condensation
at rate G and the formation of new particles of critical
volume v* by nucleation at rate I, respectively. Finally,
the gain and loss of particles by Brownian coagulation is
captured by the terms

1

2 P
v
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b (v!vN , vN , xN )n (v!vN , z, t)n (vN , z, t) dvN , and

n(v, z, t) P
=
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b (v, vN , xN )n (vN , z, t) dvN , (3)

respectively. G(xN , v, z) and b are the condensational
growth and collision frequency function, respectively, for
which two di!erent expressions are used for the free
molecule size and continuum size regimes (Pratsinis,
1988): (a) for the free molecule size regime:
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and (b) for the continuum size regime:
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In Eqs. (4) and (5), S is the saturation ratio, ¹ is the
temperature, D is the condensable vapor di!usivity, j is
the mean free path of the gas, k is the viscosity of the
#uid, n

s
is the monomer concentration at saturation

(n
s
"P

s
/k

B
¹, where P

s
is the saturation pressure), m

1
is

the monomer mass, v
1

is the monomer volume, r is the
particle radius, C(v)"1#B

5
j/r is the Cunningham cor-

rection factor and B
5
"1.257. Finally, the nucleation

rate I (v*) is assumed to follow the classical Becker}Dor-

ing theory and is given by the following expression (Prat-
sinis, 1988):
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where s
1

is the monomer surface area and k* is the
number of monomers in the critical size nucleus which is
given by:
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n
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3
, (7)

where R"cv2@3
1

/k
B
¹ and c is the surface tension.

Remark 1. Referring to the system of Eqs. (1) and (2),
several remarks are in order: (a) the spatial di!erential
operators are linear; this assumption is valid for spatially
inhomogeneous aerosol processes for which the particle
and gas velocities can be considered to be independent of
temperature, concentrations and particle size distribu-
tion; (b) plug-#ow is considered and di!usive phenomena
in radial and axial directions are neglected; these assump-
tions are made to simplify the development; (c) turbulent
coagulation is neglected; this assumption is made to
simplify the notation of the theoretical results of the
paper and can be readily relaxed; (d) the e!ect of particle
curvature on aerosol evaporation rate (Kelvin e!ect) is
neglected; this is done to achieve closure of the integral
(moment) aerosol equations (see Section 3 below); (e) the
manipulated input u (t), is a lumped variable (i.e., inde-
pendent of the spatial coordinate z) and enters the system
through Eq. (2) (mass and energy balance model); this
assumption is usually satis"ed in most practical appli-
cations where the wall temperature is chosen as the
manipulated input; and (f ) the nonlinearities in Eq. (2)
appear in an additive fashion (e.g. complex reaction rates,
Arrhenius dependence of reaction rates on temperature).

2.2. Methodological framework for control of aerosol
processes

The complexity of the partial integro-di!erential equa-
tion model of Eqs. (1) and (2) does not allow its direct use
for the synthesis of a practically implementable nonlinear
model-based feedback controller for spatially inhomo-
geneous aerosol processes. This obstacle, together with
the experimental observation that many aerosol size dis-
tributions can be adequately approximated by lognormal
functions, motivate employing the following methodo-
logy for controller design:

1. Initially, the aerosol size distribution is assumed to be
described by a lognormal function and the method
of moments is applied to the population balance of
Eq. (1) to compute a hyperbolic PDE system (where
the independent variables are time and space) that
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describes the spatio-temporal behavior of the three
leading moments needed to exactly describe the evolu-
tion of the lognormal aerosol size distribution.

2. Then, nonlinear geometric control methods (Christo-
"des and Daoutidis, 1996) are applied to the resulting
system of hyperbolic PDEs to synthesize nonlinear
distributed output feedback controllers that use pro-
cess measurements at di!erent locations along the
length of the process to adjust the manipulated input
(typically, wall temperature), in order to achieve an
aerosol size distribution with desired characteristics
(e.g. geometric average particle volume).

3. Lognormal aerosol size distribution + moment model

In this section, we assume that the aerosol size distri-
bution can be adequately represented by a lognormal
function and use the method of moments to derive a
PDE system which describes the spatio-temporal evolu-
tion of the three leading moments of the distribution. The
assumption of lognormal aerosol size distribution is mo-
tivated by experimental results, as well as from the fact
that the parameters of a lognormal function are very
frequently used in practice to measure and characterize
aerosol size distributions. More speci"cally, a lognormal
aerosol size distribution is described by (Pratsinis, 1988)
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where v
g
is the geometric average particle volume and p is

the standard deviation. De"ning the kth moment of the
distribution as
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one can exactly express v
g
and p in terms of the "rst three

moments of the distribution according to the following
relations (Brock et al., 1986):

v
g
"

M2
1

M3@2
0

M1@2
2

, ln2 p"
1

9
lnA

M
0
M

2
M2

1
B . (10)

Clearly, the precise characterization of a lognormal aero-
sol size distribution requires only knowledge of the three
leading moments. Therefore, in the remainder of this
section, we derive the PDE system that describes the
evolution of the "rst three leading moments of the entire
particle size distribution. To this end, we initially com-
pute the moment models for the free molecule size regime
and continuum size regime. These models are then used
to derive the moment model that describes aerosol dy-
namics over the entire particle size spectrum by using the
harmonic average of the condensation and coagulation
rates in the free molecule and continuum regimes.

Free molecule size regime. The PDE system that de-
scribes the spatio-temporal evolution of the kth moment
of the aerosol size distribution will be computed by
substituting Eq. (4) into Eq. (1), multiplying by vk, and
integrating over all particle sizes. Following this proced-
ure, one can show (the detailed calculations are omitted
due to space limitations) that the evolution of M

0
(par-

ticle concentration), which is only a!ected by nucleation
and coagulation, is governed by
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is used for the relationship:
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and was computed by the expression b
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0.092p2!0.022p3 (Pratsinis, 1988). The evolution of
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(aerosol volume), which is a!ected by nucleation and

condensation, is given by
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Finally, the second moment, M
2
, depends on nucleation,

condensation and coagulation and is described by
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where b
2

is used as b
0

but for the coagulation kernel of
the second moment and is computed by the expression
b
2
"0.39#0.5p!0.214p2#0.029p3 (Pratsinis, 1988).

Continuum size regime. Similar to the case of the free
molecule regime, the spatio-temporal evolution of the kth
moment of the aerosol size distribution in the continuum
size regime is described by a PDE system, which can be
obtained by substituting Eq. (5) into Eq. (1), multiplying
by vk, and integrating over all particle sizes. More speci"-
cally, the evolution of the zeroth, "rst and second mo-
ments is governed by the following PDEs:
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Table 1
Dimensionless variables
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Combining the moment models of Eqs. (11), (13) and (14)
and Eqs. (15)}(17) by using the harmonic average of the
condensation and coagulation rates in the free molec-
ule and continuum regimes, we derive the following di-
mensionless (see Table 1 for the list of dimensionless
variables) model for aerosol nucleation, condensation,
coagulation and convective transport in the entire par-
ticle size spectrum.

Zeroth moment (aerosol concentration):
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First moment (aerosol volume):
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Expressing t and z in Eq. (2) in dimensionless variables
and de"ning a new vector of state variables x"
[N < <

2
xN ], the approximate PDE system of Eqs. (18),

(20) and (22) and the system of Eq. (2) (which describes
the spatio-temporal evolution of concentrations of spe-
cies and temperature of the continuous phase) yield the
following general "rst-order hyperbolic PDE system:

Lx
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LzN
#f (x)#g (x)b (zN )u (h), (24)

where the speci"c form of the matrix A and the nonlinear
vector functions f (x), g (x) is omitted due to space limita-
tions. The system of Eq. (24) will be used for controller
design in the next section.

Remark 2. The computation of the fractional moments
in Eqs. (11), (13) and (14) and Eqs. (15)}(17) can be
performed by expressing the fractional moments in terms
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which was derived by substituting the lognormal size
distribution of Eq. (8) into Eq. (9) and using the expres-
sions for v

g
and ln2 p of Eq. (10).

Remark 3. The rate of change of S can be obtained from
a monomer balance and is given by:
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4. Nonlinear feedback controller design

In this section, we synthesize nonlinear distributed
output feedback controllers for spatially inhomogeneous
aerosol processes described by Eqs. (1) and (2) that
achieve aerosol size distributions with desired character-
istics. The controller design problem will be addressed
on the basis of the hyperbolic PDE system of Eq. (24).
Such systems are characterized by spatial di!erential
operators whose eigenvalues cluster along vertical or
nearly vertical asymptotes in the complex plane, which
implies that an in"nite number of eigenmodes is required
to accurately describe their dynamic behavior. This
prohibits the application of modal decomposition tech-
niques to derive ODE models that approximately de-
scribe the dynamics of the PDE system and suggests
addressing the control problem directly on the basis of
the PDE system. The geometric control methodology
developed in Christo"des and Daoutidis (1996) will be
employed for controller design (the reader may refer to
Christo"des and Daoutidis (1996) for details and proofs
of the results).

We initially de"ne a general controlled output, y (h), as

y(h)"P
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0

c(zN )h (x(zN , h))dzN,Ch(x), (27)

where h (x(zN , h)) is a nonlinear function of the state of the
process (this allows considering controlled outputs that
depend in a nonlinear fashion of x, e.g. v

g
), c (zN ) is a

smooth known function which depends on the desired
control objective (for example, regulation of v

g
in the

outlet of an aerosol reactor requires c(zN )"d (zN!1)), and
C is an integral operator. The de"nition of controlled
output allows introducing the concept of characteristic
index between the output y and the manipulated input
u which will be used in the synthesis of the controller.
More speci"cally, referring to the system of Eq. (24), the
characteristic index of y with respect to u is the smallest
integer p for which (Christo"des and Daoutidis, 1996):
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tion, it follows that p depends on the structure of the
process (matrix A and functions f (x), g (x), h (x)), as well as
on the actuator and performance speci"cation functions,
b(zN ) and c(zN ), respectively.

The state feedback control problem is formulated as
the one of synthesizing distributed controllers of the
general form
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where S(x) is a smooth nonlinear operator, s(x) is an
invertible matrix of smooth functionals, and y
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set-point, that stabilize the closed-loop system and force
the following linear input/output response:

cp
dpy
dhp

#2#c
1

dy

dh
#y"y

sp
, (30)

where c
1
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2
,2, cp are adjustable parameters which can

be chosen to guarantee input/output stability in the
closed-loop system.

This controller synthesis problem leads to the fol-
lowing nonlinear distributed state feedback controller
(Christo"des and Daoutidis, 1996):

u"CCcp¸gA
n
+
j/1

Lx
j

LzN
¸
a
j

#¸
fB

p~1
h (x)b(zN )D

~1

]Gysp!Ch(x)!
p
+
l/1

CclA
n
+
j/1

Lx
j

LzN
¸
a
j

#¸
fB

l
h (x)H,

(31)

which enforces stability and the response of Eq. (30) in
the closed-loop system of Eqs. (24)}(31), provided that
the the system of Eq. (24) is minimum-phase (the reader
may refer to Christo"des and Daoutidis (1996) for a rig-
orous de"nition of the concept of minimum-phase for
hyperbolic PDE systems).

The implementation of the distributed nonlinear con-
troller of Eq. (31) requires knowledge of the state x (zN , h)
at all positions and times, which may not be available in
some practical applications. To overcome this problem,
we use the following state observer to estimate the state
x(zN , h) of the system of Eq. (24) in space and time:

Lu
Lh

"A
Lu
LzN

#f (u)#g (u) b(zN )u#P(y!Ch (u)), (32)

where u denotes the observer state vector and P is a
linear operator, designed on the basis of the linearization
of the system of Eq. (32) so that the system of Eq. (32) is
exponentially stable.

The state observer of Eq. (32) can be coupled with the
state feedback controller of Eq. (31) to derive a nonlinear
distributed output feedback controller of the form

Lu
Lh

"A
Lu
LzN

#f (u)#g (u)b(zN )

]CcpC¸
gA

n
+
j/1

Lu
j

LzN
¸

a
j

#¸
fB

p~1
h (u)b (zN )D

~1

]Gysp!Ch(u)!
p
+
l/1

clC

]A
n
+
j/1

Lu
j

LzN
¸
a
j

#¸
fB

l
h(u)H#P(y!Ch(u)),
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Table 2
Dimensionless variables for the model of Eq. (34)

A
1
"qkP

0
y
20

/R¹
0

A
2
"qkP

0
y
10

/R¹
0

B"P
0
kqDH

R
y
10

y
20

/R¹2
0
C

p
C"N

av
kqy

10
y
20

(P
0
/R¹

0
)2/n

s0
E"4;R¹

0
q/DC

p
P
0

CM
i
"y

i
/y

i0
¹M

¹M "¹/¹
0

¹M
w
"¹

w
/¹

0

u"CcpC¸
gA

n
+
j/1

Lu
j

LzN
¸

a
j

#¸
fB

p~1
h(u)b (zN )D

~1

]Gysp!Ch (u)!
p
+
l/1

clCA
n
+
j/1

Lu
j

LzN
¸

a
j

#¸
fB

l
h (u)H

(33)

that enforces stability and the input/output response of
Eq. (30) in the closed-loop system of Eqs. (24)} (33).

Remark 4. The calculation of the control action from the
controllers of Eqs. (31)} (33) requires algebraic manipula-
tions as well as di!erentiations and integrations in space,
which is expected because of their distributed nature.

Remark 5. Note that in the case of imperfect initializa-
tion of the observer states (i.e., u(zN , 0)Ox (zN , 0)), although
a slight deterioration of the performance may occur, (i.e.,
the input/output response of Eq. (30) will not be exactly
imposed in the closed-loop system), the distributed out-
put feedback controller of Eq. (33) guarantees exponen-
tial stability and asymptotic output tracking in the
closed-loop system.

Remark 6. The exponential stability of the closed-loop
system guarantees that in the presence of small errors in
process parameters, the states of the closed-loop system
will be bounded. Furthermore, one can also couple the
nonlinear controller of Eq. (31) (Eq. (33)) with a propor-
tional integral controller (i.e., substitute y

sp
!Ch(x)

(y
sp
!Ch(u)) by y

sp
!y#(1/q)m

p
, where m

p
is the integral

controller state, which is governed by mQ
p
"y

sp
!y,

m
p
(0)"0) to ensure asymptotic o!setless output tracking

in the closed-loop system, in the presence of constant
unknown process parameters and unmeasured distur-
bance inputs.

5. Simulation study

In this section, we describe an application of the pro-
posed nonlinear control method to an aerosol #ow reac-
tor used to produce NH

4
Cl particles. (see Dahlin et al.

(1981) for further discussion on such a reactor.) The
following chemical reaction takes place NH

3
#HClP

NH
4
Cl where NH

3
, HCl are the reactant species and

NH
4
Cl is the monomer species. Under the assumption of

lognormal aerosol size distribution, the mathematical
model that describes the evolution of the "rst three mo-
ments of the distribution, together with the monomer
(NH

4
Cl) and reactant (NH

3
, HCl) concentrations and

reactor temperature takes the form

LN

Lh
"!v

zl

LN

LzN
#I@!mN2,

L<
Lh

"!v
zl

L<
LzN

#I@k*#g (S!1)N ,

L<
2

Lh
"!v

zl

L<
2

LzN
#I@k*2#2e(S!1) <#2f<2,

LS

Lh
"!v

zl

LS

LzN
#CCM

1
CM

2
!I@k*!g (S!1)N, (34)

LCM
1

Lh
"!v

zl

LCM
1

LzN
!A

1
CM

1
CM

2
,

LCM
2

Lh
"!v

zl

LCM
2

LzN
!A

2
CM

1
CM

2
,

L¹M
Lh

"!v
zl

L¹M
LzN

#BCM
1
CM

2
¹M #E¹M (¹M

w
!¹M ),

where CM
1

and CM
2

are the dimensionless concentrations of
NH

3
and HCl, respectively, ¹M , ¹M

w
are the dimensionless

reactor and wall temperatures, respectively, and A
1
, A

2
,

B, C, E are dimensionless quantities. The explicit expres-
sions of A

1
, A

2
, B, C, E are given in Table 2 and the

values of the process parameters used in the simulations
are given in Table 3.

Fig. 2 displays the steady-state pro"le of the dimen-
sionless total particle concentration, N, as a function of
dimensionless reactor length. As expected, N increases
very fast close to the inlet of the reactor (approximately,
the "rst 3% of the reactor) due to a nucleation burst, and
then, it slowly decreases in the remaining part of the
reactor due to coagulation. Note that even though co-
agulation decreases the total number of particles, it leads
to the formation of bigger particles, and thus, it increases
the geometric average particle volume, v

g
.

We formulate the control problem as the one of con-
trolling the geometric average particle volume in the
outlet of the reactor, v

g
(1, h), (v

g
(1, h) is directly related to

the geometric average particle diameter, and hence, it is
a key product characteristic of industrial aerosol pro-
cesses) by manipulating the wall temperature, i.e.

y(h)"Cv
g
"v

g
(1, h), u (h)"¹M

w
(h)!¹M

ws
, (35)

where C())":1
0
d (zN!1)()) dzN and ¹M

ws
"¹

ws
/¹

0
"1.

Since coagulation is the main mechanism that determines
the size of the aerosol particles, we focus on controlling

A. Kalani, P.D. Christoxdes/Chemical Engineering Science 54 (1999) 2669}2678 2675



Table 3
Process model parameters for the simulation study

¸"20 m Reactor length
D"0.05 m Reactor diameter
Re"2000 Reynolds number
P
0
"1 atm Process pressure

¹
0
"298 K Inlet temperature

y
10
"y

20
"40 ppm Inlet mole fraction of reactants

;"10.4 Jm~2 s~1 K~1 Overall coe$cient of heat transfer
DH

R
"175.7 KJ mol~1 Heat of reaction

C
p
"29.1 J mol~1 K~1 Heat capacity of process #uid

M=
g
"14.0]10~3 kgmol~1 Mol. wt. of process #uid

k"11.4 m3 mol~1 s~1 Reaction constant
k"3.5]10~6 kgm~1 s~1 Viscosity of process #uid
M="53.5]10~3 kgmol~1 Mol. wt. of condensable species
log P

s
(mm Hg)"!4644/¹#0.906 log¹!0.00162¹#9.004 Vapor pressure}temperature relation

c"0.08 N m~1 Surface tension
v
1
"5.33]10~29 m3 Monomer volume

R"8.314 Jmol~1K~1 Universal gas constant
N

av
"6.023]1023 d mol~1 Avogadro's constant

k
B
"1.38]10~23 J K~1 Boltzmann's constant

Fig. 2. Steady-state pro"le of dimensionless particle concentration. Fig. 3. Closed-loop pro"les of v
g

in the outlet of the reactor under
nonlinear and proportional integral controllers.

the part of the reactor where coagulation occurs. There-
fore, the wall temperature is assumed to be equal to its
steady-state value in the "rst 3.5% of the reactor (where
nucleation mainly occurs), and it is adjusted by the con-
troller in the remaining part of the reactor (where coagu-
lation takes place).

The model of Eq. (34) was used as the basis for the
synthesis of a nonlinear controller utilizing the proposed
control method. For this model, p was found to be equal
to 2 and the necessary controller was synthesized using
the formula of Eq. (31) and is of the form:

u"CCcp¸gA
n
+
j/1

Lx
j

LzN
¸
a
j

#¸
fBh (x)b(zN )D

~1

]Gysp!Ch(x)!
2
+
l/1

CclA
n
+
j/1

Lx
j

LzN
¸

a
j

#¸
fB

l
h (x)H ,

(36)

where c
1
"580 and c

2
"1.6]105, to enforce a slightly

underdamped response. Note that since the control
objective is to regulate v

g
in the outlet of the reactor

(and therefore, C())":1
0
d (zN!1) ()) dzN ), the practical

implementation of the controller of Eq. (36) requires
only measurements of the process variables at zN"1
(outlet of the reactor), which can be readily obtained in
practice.

Two simulation runs were performed to evaluate the
set-point tracking capabilities of the nonlinear controller
and compare its performance with the one of a propor-
tional integral controller. In all the simulation runs, the
aerosol reactor was initially assumed to be at steady-state
and a 5% increase in the set-point value of v

g
(1, 0) was

imposed at t"0 s (i.e. y
sp
"1.05v

g
(1, 0)). Fig. 3 and

4 show the controlled output and manipulated input
pro"les, respectively, of the nonlinear controller, and
compare them with the corresponding pro"les of
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Fig. 4. Manipulated input pro"les for nonlinear and proportional
integral controllers.

Fig. 5. Closed-loop pro"les of v
g

in the outlet of the reactor under
nonlinear and proportional integral controllers in the presence of
disturbance in NH

3
feed concentration.

Fig. 6. Closed-loop pro"les of v
g

in the outlet of the reactor under
nonlinear and proportional integral controllers in the presence of
disturbance in the feed temperature.

a proportional integral controller of the form

mQ
p
"y

sp
!y, m

p
(0)"0,

u"K (y
sp
!y)#

1

q
m
p

(37)

with K"2]1015 and q"5]10~8 (K and q were com-
puted after extensive trial and errors.). The proposed
nonlinear controller regulates v

g
(1, h) successfully, to its

new set-point value and outperforms the proportional
integral controller. Figs. 5 and 6 show the controlled
outputs in the wake of a 5% increase in the inlet con-
centration of NH

3
(from t"0 to 500 s) and inlet tem-

perature (from t"0 to 100 s), respectively. Again, the
nonlinear controller outperforms the proportional integ-
ral controller.

Remark 7. Regarding the practical implementation of
the nonlinear distributed controller of Eq. (36), we note
that the wall temperature, ¹M

w
is not manipulated directly,

but indirectly through manipulation of the jacket inlet
#ow rate. To this end, a controller should be designed
based on an ODE model that describes the jacket dy-
namics, that operates in an internal loop to manipulate
the jacket inlet #ow rate to ensure that the jacket temper-
ature obtains the values computed by the distributed
robust controller (Christo"des and Daoutidis, 1996). Of
course, when such a controller is used, a slight deterio-
ration of the closed-loop response obtained under the
assumption that ¹M

w
can be manipulated directly, will

occur.

6. Conclusions

In this work, we developed a nonlinear feedback
control methodology for aerosol processes with simulta-
neous nucleation, condensation, coagulation and convec-
tive transport. Under the assumption that the aerosol
size distribution is described by a lognormal function, the
method of moments was initially employed to exactly
reduce the population balance model into a set of three
"rst-order hyperbolic PDEs which accurately describes
the spatio-temporal evolution of the three leading mo-
ments of the aerosol size distribution. This system, to-
gether with the hyperbolic PDE system that describes the
spatio-temporal evolution of the concentrations of spe-
cies and temperature of the continuous phase, were used
as the basis for the synthesis of nonlinear distributed
output feedback controllers that use process measure-
ments to attain an aerosol size distribution with desired
characteristics. The control method was successfully
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tested on a typical aerosol process and was shown to
outperform a proportional integral control scheme and
deal e!ectively with disturbances in the feed to the pro-
cess.
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