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 A B S T R A C T

This work proposes a novel two-layer multi-key control architecture to enhance the resilience of nonlinear 
chemical processes to cyberattacks. The architecture consists of an upper-layer nonlinear controller and a 
lower-layer of encrypted linear controllers. The nonlinear controllers process unencrypted sensor data to 
determine optimal control actions, which are then used to estimate the closed-loop state trajectory using a 
first-principle model of the plant. This trajectory is sampled and mapped to a valid subset before encryption, 
which can lead to minor inaccuracies. The resulting encrypted state-space data samples are used as set-points 
for the lower-layer controllers, which can be implemented using encrypted signals, allowing for obfuscation of 
the computation and transmission of the applied control inputs, thereby enhancing cybersecurity. This study 
further improves security by taking advantage of the Single-Input-Single-Output nature of some linear control 
methods to allocate a unique encryption key to each linear controller and its respective sensor data. Two 
nonlinear chemical process applications, including a benchmark chemical reactor example and one application 
modeled through the use of Aspen Dynamics, are used to demonstrate the application of the proposed two-layer 
architecture.
1. Introduction

Supervisory Control and Data Acquisition (SCADA) technology, an 
integral aspect of Industrial Control Systems (ICS), has revolutionized 
the management of complex operations by streamlining the transmis-
sion of data via networked communications. Although this development 
has simplified the managerial aspect of information transfer, it has 
also introduced new modes of compromising operations in the form 
of cybersecurity vulnerabilities. The networked communications are 
susceptible to various cyberattacks, such as signal manipulation, that 
can result in financial loss, infrastructure failure, and even loss of 
life (Babu et al., 2017; Gandhi et al., 2011; Simmons et al., 2009). 
Networked communications are a core aspect of Information Technol-
ogy (IT), which involves the storage, transmission, and processing of 
data, but despite the inherent susceptibility to cyber vulnerabilities, 
IT’s substantial progress in cybersecurity measures has minimized the 
frequency and magnitude of these attacks ((ACSC), 2024). Industrial 
operations are more akin to Operational Technology (OT) systems, 
which, unlike IT systems, have lagged behind in cybersecurity, ne-
cessitating the development of robust security measures tailored to 
the unique challenges of control systems (Conklin, 2016). The con-
sequence of this negligence has already resulted in an increase in 
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malicious attacks. In recent history, cyberattacks have been used to 
cripple critical infrastructure worldwide and are increasingly being 
used in warfare: for example, in 2010, a cyberworm dubbed Stuxnet 
damaged centrifuges used by Iran for uranium enrichment (Farwell and 
Rohozinski, 2011); on September 26, 2024, Microsoft reported findings 
on a ransomware-as-a-service organization dubbed Storm-0501 that 
exploited weak security to launch widespread ransomware attacks that 
even managed to infiltrate cloud environments (Microsoft Security 
Team, 2024). To prevent future cyberattacks, it is necessary to improve 
the cybersecurity of OT infrastructures. Cybersecurity, particularly for 
large-scale processes, has been a key focus in recent studies. From this, 
a wide range of methodologies have been devised, each with their own 
trade-offs.

An increasingly popular tool in the field of automatic control is 
machine learning, or more specific to this context, machine learning 
based cyberattack detectors (Wang et al., 2022; Aljohani et al., 2024). 
Sadly, the progression in cybersecurity has been met with equivalent 
progression in cyberattacks. Research into machine learning tools have 
uncovered a unique vulnerability in the form of adversarial attacks, and 
despite the progress in developing countermeasures to these types of 
cyberattacks, the issues of limited data, particularly on attack methods, 
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has complicated the development of these tools (Koay et al., 2023; Chen 
et al., 2017).

Other promising alternatives included miscellaneous backup control 
schemes (Huang et al., 2022), post-cyberattack system recovery (Wu 
et al., 2020), or more recently, self-healing and fault-tolerant sys-
tems (Aldrini et al., 2024). These methods focus on mitigating or recov-
ering from successful cyberattacks, and are powerful tools that should 
be incorporated if possible; however, such methods should not be 
used as an excuse to neglect preventative measures. The incorporation 
of encryption arguably demands the most attention, as post-quantum 
cryptography threatens the security of classical cryptography (Benny 
et al., 2024). Among the various organizations pushing for enhanced 
cybersecurity protocols in industry is the National Institute of Stan-
dards and Technology, which emphasizes the enhancement of data 
security by means of protecting confidentiality of data in use, transit, or 
rest (National Institute of Standards and Technology, 2024). Encrypted 
control systems integrate cryptographic techniques into the control 
process to protect sensitive data from interception or manipulation by 
cyberattacks. By employing encryption schemes (e.g., homomorphic 
encryption), these systems allow for secure transmission of data and 
control actions over potentially vulnerable networks.

Research involving the prevention of cyberattacks in the first place 
by means of linear encrypted controllers (Pan et al., 2023b,a) or oth-
erwise cyberattack-resilient controllers (Paridari et al., 2017) achieves 
the desired goal of cyber-resilience, but generally comes at the con-
sequence of requiring simple linear control schemes. Linear schemes 
have the benefit of being able to utilize semi-homomorphic encryption, 
which allows for specific operations such as addition and multiplication 
to be applied to encrypted data without the need to decrypt. Relative 
to nonlinear alternatives such as model predictive control (MPC), these 
control schemes perform poorly and with worse cost-efficiency, espe-
cially when applied to systems with highly nonlinear dynamics (Geng 
and Yang, 2014). Although homomorphic encryption allows specific 
operations (e.g., addition or multiplication) to be executed directly 
on encrypted data, ensuring that control actions can be executed se-
curely without revealing the underlying data, it is insufficient for the 
complex, nonlinear optimization computations required by MPC. In 
order to encrypt in such a way that works for MPC, one could use 
Fully-Homomorphic encryption (FHE); however, homomorphic encryp-
tion is limited to polynomial operations, and thus all computations 
would need to be linearized. In addition, many FHE designs suffer 
from limited computational depth, significant computational overhead, 
compounding estimation, or quantization losses (Sui et al., 2024). 
Industrial applications would require real-time control which, even for 
linearized models, is only feasible after applying novel optimizations 
to the encryption scheme (Stobbe et al., 2022). Thus, recent studies 
have considered the use of both advanced nonlinear control schemes 
such as Lyapunov-based economic model prediction control (LEMPC) 
and traditional linear control schemes such as proportional integral 
(PI) control to promote performance while allowing for improved 
cybersecurity (Kadakia et al., 2024).

Building on this development, we propose, in the present work, 
an encrypted two-layer control architecture that utilizes multiple en-
cryption keys. In this architecture, the upper-layer is composed of a 
nonlinear controller that reads sensor data from the plant and generates 
control inputs that would optimize the economics of the plant over 
some future trajectory. Due to the nonlinearity of these controllers, 
calculations are done in plaintext, which introduces a vulnerability. 
To mitigate this, the optimal control inputs are not directly applied 
to the process. Instead, a first-principles model of the plant is used to 
estimate the process state-trajectory from the optimal control inputs. 
This trajectory is sampled and used as set-points for the lower-layer 
control system to utilize. The lower-layer control is made of distributed 
linear controllers, each utilizing their own encryption key, which track 
the provided set-points by running calculations using only encrypted 
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signals. In order to solve arithmetic equations while encrypted, a homo-
morphic encryption scheme needs to be used. Homomorphic encryption 
schemes allow for addition and multiplication of encrypted data, which 
enables the use of linear encrypted controllers. Using a classical non-
linear chemical process example, this two-layer control scheme is first 
demonstrated to allow for secure control of a nonlinear system with 
minimal losses in performance. Subsequently, to further demonstrate 
the viability of this method in a large-scale case study, the two-layer 
control architecture is applied to a chemical process application mod-
eled through the use of Aspen Dynamics, to demonstrate the industrial 
viability of the approach.

2. Preliminaries

2.1. Notation

The transpose of vector 𝑥 is denoted by 𝑥⊤. The set of real numbers, 
integers, and natural numbers are denoted by R, Z, and N, respectively. 
Z𝑀  denotes the additive groups of integers modulo 𝑀 while Z∗

𝑀
denotes the multiplicative groups of integers modulo 𝑀 . Set subtraction 
of set 𝐵 from set 𝐴 yields a set of elements that are in set 𝐴 but not 
in set 𝐵 and is denoted as 𝐴∖𝐵. Functions are denoted as 𝑓 (⋅). lcm(𝑖, 𝑗)
and gcd(𝑖, 𝑗) denote the least common multiple and greatest common 
divisor of integers 𝑖 and 𝑗, respectively. 𝑥∕∕𝑦 denotes Integer Division 
as implemented in Python, which is functionally identical to the floor 
operation applied to the result of regular division, denoted ⌊ 𝑥

𝑦 ⌋.

2.2. Class of systems

This work focuses on nonlinear multiple-input multiple-output
(MIMO) continuous-time systems described by nonlinear first-order 
ordinary differential equations (ODE) of the form shown below: 

𝑥̇ = 𝐹 (𝑥, 𝑢) = 𝑓 (𝑥) +
𝑚
∑

𝑖=1
𝑔𝑖(𝑥)𝑢𝑖 (1)

The state vector 𝑥 = [𝑥1, 𝑥2,… , 𝑥𝑛] ∈ R𝑛 describes the raw sensor 
readings, the input vector 𝑢 = [𝑢1, 𝑢2,… , 𝑢𝑚] ∈ R𝑚 describes the applied 
control inputs where 𝑚 ≤ 𝑛. Each control input is bounded, 𝑢𝑖,min ≤
𝑢𝑖 ≤ 𝑢𝑖,max∀𝑖 = 1, 2,⋯ , 𝑚 where 𝑢𝑖,min and 𝑢𝑖,max represent the lower and 
upper bounds of each control action, respectively. The functions 𝑓 (⋅)
and 𝑔𝑖(⋅)∀𝑖 = 1, 2,⋯ , 𝑚 are assumed to be sufficiently smooth vector 
functions. Without loss of generality, we treat the origin as a steady-
state of Eq.  (1) by assuming that 𝑓 (0) = 0 (or 𝐹 (0, 0) = 0). We further 
designate the initial time as zero (𝑡0 = 0). Finally, the set 𝑆(𝛥) is defined 
as the assortment of piece-wise constant functions characterized by a 
period of 𝛥.

2.3. Paillier cryptosystem

In order to apply encryption to a linear process, homomorphic 
encryption needs to be applied. Namely, additively semi-homomorphic 
encryption allows for the error terms present in traditional PI control 
to be encrypted while leaving the gains as encoded weights. Among 
the various options, the Paillier cryptographic system was chosen due 
to it being a probabilistic additively semi-homomorphic asymmetric 
encryption scheme that simultaneously achieves low encryption cost 
and a low value of expansion relative to other homomorphic op-
tions, although any additively homomorphic scheme with support for 
an arbitrary number of operations would work for this design (Sen, 
2013). Asymmetric methods are particularly useful in the context of 
the two layer scheme, as it allows for the exposure of public-keys in 
the upper-layer without the risk of directly compromising the lower-
tier controllers. Additionally, the added time complexity relative to 
symmetric methods results in a conservative approach for determining 
the impact of encryption time on the process, as excessive time use 
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during these computations increases the required sampling time of the 
system, which worsens the ability to control the process.

The Paillier cryptosystem (Paillier, 1999) is used to encrypt raw 
sensor readings (𝑥) and calculated set-points (𝑥𝑠𝑝). Control inputs calcu-
lated by the linear controllers (𝑢) using these encrypted readings will 
be decrypted locally at their relevant equipment. Due to the Paillier 
cryptosystems additively semi-homomorphic nature, we can solve a 
subset of linear calculations without decrypting sensor data. Each linear 
controller will be designated its own unique pair of public and private 
keys for encryption. Sensor readings and set-points will be converted 
into positive integers prior to encryption. The linear controllers will 
proceed to run calculations on encrypted data without needing to 
decrypt intermediary results, ensuring security. The data is encrypted 
using the controller’s respective public key, and decrypted using the 
controller’s respective private key. Both keys are generated as follows:

1. Randomly generate two large prime integers (𝑝 and 𝑞).
2. Check if gcd(𝑝𝑞, (𝑝 − 1)(𝑞 − 1)) = 1. If true, proceed, otherwise, 
repeat 1.

3. Solve 𝑀 = 𝑝𝑞.
4. Generate an integer 𝑔 ∈ Z∗

𝑀2 .
5. Solve 𝜆 = lcm(𝑞 − 1, 𝑝 − 1).
6. Define the function 𝐿̄(𝑥) = (𝑥 − 1)∕𝑀 .
7. Check if the modular multiplicative inverse exists:

𝑢 = (𝐿̄(𝑔𝜆 mod𝑀2))−1 mod 𝑀 . If not, repeat from (4). If it exists, 
(𝑀,𝑔) is the public key and (𝜆, 𝑢) is the private key.

This key-generation process is done for every linear controller in the 
plant, and the keys are securely stored and distributed. The encryption 
formula is as follows: 
𝐸𝑀 (𝑚, 𝑟) = 𝑐 = 𝑔𝑚𝑟𝑀 mod 𝑀2 (2)

such that 𝑟 ∈ Z𝑀  and is randomly generated. The resulting ciphertext 
form of 𝑚 is denoted as 𝑐. To decrypt, the equation is as follows: 
𝐷𝑀 (𝑐) = 𝑚 = 𝐿̄(𝑐𝜆 mod 𝑀2)𝑢 mod 𝑀 (3)

2.4. Quantization and mapping

The Paillier cryptosystem only operates on non-negative integers, 
thus, data must be mapped from R to Z𝑀  by means of quantization and 
subsequent bijective mapping (Schulze Darup et al., 2018). Quantiza-
tion involves mapping from R to Q𝑙,𝑑 where Q𝑙,𝑑 is the set of signed 
fixed-point binary numbers of bit length 𝑙 and fractional bit length 
𝑑. Using the 2’s complement representation (Intel, 2024) the set can 
be defined as Q𝑙,𝑑 = {𝑞 ∈ Q|𝑞 = −2𝑙−𝑑−1𝛽𝑙 +

∑𝑙−1
𝑖=1 2

𝑖−𝑑−1𝛽𝑖, 𝛽𝑖 ∈
{0, 1}∀𝑖 = 1⋯ 𝑙}. For 𝑎 ∈ R, we define the function 𝑔𝑙,𝑑 : 

𝑔𝑙,𝑑 ∶ R → Q𝑙,𝑑

𝑔𝑙,𝑑 (𝑎) ∶= arg min
𝑞∈Q𝑙,𝑑

|𝑎 − 𝑞| (4)

Bijective mapping of the quantized data to the set of non-negative 
integers is denoted by 𝑓𝑀,𝑑 , as outlined in Schulze Darup et al. (2018), 
to ensure that the quantized data is mapped into a subset of the message 
space Z𝑀 : 

𝑓𝑀,𝑑 ∶ Q𝑙,𝑑 → Z𝑀

𝑓𝑀,𝑑 (𝑞) ∶= 2𝑑𝑞 mod 𝑀
(5)

To complete the encryption process, elements in this space are con-
verted to ciphertexts using Eq.  (2) which can then be decrypted back 
to the message space. The following inverse mapping, denoted as 𝑓−1

𝑀,𝑑 , 
allows for the retrieval of the quantized form: 
𝑓−1
𝑀,𝑑 ∶ Z𝑀 → Q𝑙,𝑑 (6)

𝑓−1
𝑀,𝑑 (𝑚) ∶=

1
𝑑

{

𝑚 −𝑀 if 𝑚 ≥ 𝑀 −𝑀∕∕3 + 1
(7)
2 𝑚 otherwise
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In this particular implementation of Pallier encryption, ∼1/3 of the 
message space is allocated to detecting overflow. We can define the 
positive quadrant as the first 𝑀∕∕3 items (i.e. 𝑚 < 𝑀∕∕3 or 𝑚 ≤
𝑀∕∕3 − 1) and the negative quadrant as the last 𝑀∕∕3 items (i.e. 𝑚 >
𝑀 − 𝑀∕∕3 or 𝑚 ≥ 𝑀 − (𝑀∕∕3 − 1)). The remaining values where 
𝑀∕∕3 ≤ 𝑚 ≤ 𝑀 −𝑀∕∕3 are considered invalid values. Any number 
that encodes into this region or decodes from this region are considered 
invalid or the result of overflow respectively.

2.5. Encrypted arithmetic

As an additively semi-homomorphic encryption scheme, Paillier 
encryption allows for an arbitrary number of arithmetic operations on 
ciphertexts. In particular, plaintext addition is achieved through the 
multiplication of the corresponding ciphertexts, as shown below. 
𝐷𝑀 ((𝐸𝑀 (𝑚1, 𝑟1) ⋅ 𝐸𝑀 (𝑚2, 𝑟2))mod𝑀2)

= (𝑚1 + 𝑚2)mod𝑀
(8)

For this to work, any value 𝑚, given the same 𝑟, must encrypt to the 
same ciphertext. Because of the quantization and bijective mapping 
steps, depending on the fractional bit length, the same number may 
map to different values within the message space. To prevent this, 𝑑 is 
tracked. When two terms with different values of 𝑑 are added, the term 
with the larger 𝑑 value will be modified to share the smaller 𝑑 value 
using the equation below: 

𝑚𝑑2 = 𝑚𝑑12
𝑑1−𝑑2 ∶ 𝑑1 < 𝑑2 (9)

Plaintext multiplication on the other hand is achieved by: 

𝐷𝑀 (𝐸𝑀 (𝑚1, 𝑟1)𝑘mod𝑀2) = 𝑘𝑚1mod𝑀 (10)

Note that in the case of multiplication, the exponent is plaintext, 
which means multiplication is not possible while keeping both terms 
encrypted. Further note that the multiplication process will lead to a 
new value for 𝑑 equal to the sum of the 𝑑 values of the terms being 
multiplied.

2.6. Overflow

In the process of quantizing and bijectively mapping real valued 
data to a subset of non-negative integers, we introduced a scaling 
factor of 2𝑑 . This scaling factor can change as arithmetic operations 
are done. Addition will result in the highest precision of the two, and 
Multiplication will result in a new precision exponent equal to the sum 
of the precision exponents (i.e 2𝑑12𝑑2 = 2𝑑1+𝑑2 = 2𝑑3 ); however, the 
size of the message space is a constant that is predefined during the 
key generation process. Due to modulus operations, negative valued 
data will map to the upper half of the message space. Because of this 
mapping, there is a sharp transition between the positive and negative 
halves of the message space that data can cross. This is called overflow, 
and it may ruin data if not caught. To help in detection of overflow, the 
message space is segmented into 3 partitions. Positive real numbers 
are mapped to the lower third of this space, while negative numbers 
are mapped to the upper third. The center is left empty, meaning that 
entering this zone is only possible from overflow. This is done by 
enforcing a maximum value of ∼1/3 of the message space, which is 
seen in the reverse bijective mapping in  Eq.  (7).

3. Development of the two-layer multi-key encrypted control ar-
chitecture

This section will cover the design of the proposed two-layer multi-
key encrypted control architecture and its corresponding nonlinear and 
linear controllers.
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Fig. 1. Two-layer control architecture block diagram.
3.1. Design and implementation

As illustrated in Fig.  1, the reference time frame is 𝑡𝑘. All sensor 
signals 𝑥(𝑡𝑘) are encrypted using a unique public key and become 
ciphertext. These signals are sent to a nonlinear controller where they 
are then decrypted. The controller solves the optimal control inputs for 
some time horizon. These inputs are not directly implemented, instead, 
they are passed to a first-principles model that calculates an estimate 
of the state-trajectory. This trajectory is sampled, and the sampled 
state values are encrypted with their respective public key before being 
transmitted to the linear controllers for computation of the applied 
control input. Encrypted sensor signals are also sent to the linear 
controllers to compute the current error with respect to the current set-
point. By using the Paillier cryptosystem, the error can be calculated 
without decrypting the ciphertext; however, PI controller weights or 
other constant parameter multiplications are left as plaintext, which 
leaves them vulnerable. The encrypted control actions are transmitted 
to their respective actuators, at which point the signal is decrypted. In 
the case of model-predictive-control (MPC), this continues until all set-
points corresponding to the first MPC control action are used, at which 
point the MPC recalculates the optimal control inputs.

As seen in the system design shown in Fig.  1, there are four primary 
vulnerable points to cyberattacks: the nonlinear controller’s decrypted 
state input and unencrypted optimal control signals, the unencrypted 
set-points, and economic data used in the nonlinear controller. Cyberat-
tack detection can be implemented to minimize the risks posed by these 
components, but in this case, security of the encrypted signals is prior-
itized (Paridari et al., 2017). To minimize the risk of the entire system 
being compromised in the case of private/public keys being deciphered, 
we have implemented multiple keys, where one key corresponds to one 
linear controller. If this was not the case, the keys being compromised 
would compromise the entire process, whereas multiple keys isolate the 
damage to individual units, allowing for additional countermeasures. 
Additionally, this allows for each linear controller to individually verify 
that the signal received uses the correct encryption key. If not, a simple 
backup control design would be to default to steady-state operation for 
safety until a new key gets implemented.

Because Pallier encryption is used, this design introduces quanti-
zation error to the state variable readings, set-point calculations, and 
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control input calculations with a magnitude less than 2−𝑑 . An additional 
benefit of the multi-key design is the ability to vary this quantization 
error as needed for each linear controller. Lower precision can be 
used for larger terms such as the heat input to allow for improved 
overflow detection, whereas higher precision can be used for terms 
that require more precise numerical estimations, such as concentration 
measurements.

Remark 1. The upper-layer shown in this paper does not necessarily 
need to be an MPC or EMPC. The purpose of the upper-layer is to 
provide economically optimized set-points for the lower-layer to track. 
Thus, the upper-layer can be of any type of nonlinear controller, so long 
as it provides set-points to the lower-layer.

Remark 2. Although there are still cybersecurity vulnerabilities present 
in the proposed control architecture, because no component has both 
the public and private key simultaneously, and all signals relevant to 
the control signal calculation are encrypted, the risks of cyberattacks 
are limited to cases where components are physically compromised or 
cases where keys are deciphered.

3.2. Dynamic economic optimization

The upper-layer controller can be formulated as a Lyapunov-based 
(economic) model-predictive-controller (LEMPC) formulated as follows: 

 = max
𝑢∈𝑆(𝛥)∫

𝑡𝑘+𝑁𝛥

𝑡𝑘
𝐿 (𝑥̃(𝑡), 𝑢(𝑡)) d𝑡 (11a)

s.t. ̇̃𝑥(𝑡) = 𝑓 (𝑥̃(𝑡), 𝑢(𝑡)) (11b)

𝑢 ∈ 𝑈, ∀ 𝑡 ∈ [𝑡𝑘, 𝑡𝑘 +𝑁𝛥) (11c)

𝑥̃(𝑡𝑘) = 𝑥̂(𝑡𝑘) (11d)
if 𝑥̃(𝑡𝑘) ∈ 𝛺𝜌𝑠𝑒𝑐𝑢𝑟𝑒 , ∀ 𝑡 ∈ [𝑡𝑘, 𝑡𝑘 +𝑁𝛥)

𝑉 (𝑥̃(𝑡𝑘)) ≤ 𝜌𝑠𝑒𝑐𝑢𝑟𝑒

}

(11e)

if 𝑥̃(𝑡𝑘) ∈ 𝛺𝜌∖𝛺𝜌𝑠𝑒𝑐𝑢𝑟𝑒 ,

𝑉̇ (𝑥̃(𝑡𝑘), 𝑢) ≤ 𝑉̇ (𝑥̃(𝑡𝑘), 𝛷(𝑥̃(𝑡𝑘)))

}

(11f)
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In this formulation, 𝛥 is the sampling period representing the duration 
of the control input 𝑢 as well as the time between sensor readings of 
the state 𝑥. Eq.  (11a) is the cost function that must be optimized, which 
incorporates economics using a function of both the predicted state 
values 𝑥̃ and the current optimal determination for the control input 
trajectory over the prediction horizon, 𝑢. Eq.  (11b) represents the first-
principles model that is used to simulate system dynamics, where Eq. 
(11d) initializes the state measurements of the model using quantized 
sensor readings. (𝑡𝑘) denotes an arbitrary initial time-frame, whereas 
𝑁 denotes the total number of sampling periods that the LEMPC will 
optimize the control inputs for. The remaining constraints are necessary 
to ensure stability of the closed-loop system by utilizing a Lyapunov 
function, the mathematical proof of which is discussed in our prior 
work (Kadakia et al., 2024). Eq.  (11e) ensures that if the current state 
values lie within an economic region represented by a level set of the 
Lyapunov function, then it will remain in this level set for all future 
times. As disturbances, delays, and dynamics can lead to a violation 
of this in future sensor readings, we include a second operating mode 
represented by Eq.  (11f) where the rate of change of the Lyapunov 
function must be more negative than the rate induced by a stabilizing 
reference control that is assumed to exist.

3.3. Constraining the rate of change of control actions

PI control is not traditionally implemented in a manner where the 
set-points change with time, but in this implementation, the sudden set-
point change, especially in the early stages of the process, will result 
in large jumps in the error term. To improve the feasibility of the 
control action, we clip the control action proportionally to the decision 
variables magnitude. Specifically, any change in the heating terms is 
bounded by a maximum change in magnitude of ±0.2𝑇 2. Alternative 
forms of this can be chosen as needed, but in order to remain secure 
while applying this, it is important that this step be done either with 
a secure offline module to allow for safe decryption, or it can be done 
using fully-homomorphic encryption with some approximation of the 
min/max operations.

3.4. Constraining the rate of change of set-point update

An alternative to the constraint shown in  Section 3.3 is to improve 
the linear controllers ability to track the set-points generated by simu-
lating and sampling the closed-loop state trajectory under the optimal 
control actions calculated by the LEMPC by enforcing a maximum rate 
of change constraint to the set-points sent to the lower-layer over two 
consecutive set-points. This method, along with the method in  Sec-
tion 3.3 are done as alternatives to enforcing additional constraints 
to the LEMPC system above, as additional constraints increase com-
putational time and may worsen an optimization tools ability to find 
solutions; specific details for the implementation of these constraint are 
given in the application section below.

4. Application to a benchmark chemical process example

To demonstrate the proposed encrypted control framework, we will 
first consider a benchmark nonlinear chemical process example. The 
objective is to operate the process around a steady-state and improve 
process economic behavior for approaching a desired operating point 
relative to traditional PI control and tracking MPC to demonstrate the 
frameworks economic benefits over the former, and minimal loss of 
performance compared to the latter. Solving the optimization problem 
of the upper-layer LEMPC requires a nonlinear solver. In this example, 
we selected to use a Python implementation of IPOPT via the Cyipopt 
module (mechmotum, 2018).
5 
Table 1
Parameter values for the chemical process example.
 𝑁𝑎𝑚𝑒 𝐿𝑎𝑏𝑒𝑙 𝑉 𝑎𝑙𝑢𝑒 𝑈𝑛𝑖𝑡𝑠  
 Flow Rate 𝐹 5 m3∕hr  
 Reactor Volume 𝑉 1 m3  
 Pre-exponential Factor 𝑘0 8.46 × 106 m3∕(kmol hr) 
 Activation Energy 𝐸 5 × 104 kJ∕kmol  
 Gas Constant 𝑅 8.314 kJ∕(kmolK)  
 Liquid Density 𝜌𝐿 1000 kg∕m3  
 Enthalpy of Reaction 𝛥𝐻 −1.15 × 104 kJ∕kmol  
 Inlet Temperature 𝑇0 300 K  
 s.s Heat Input Rate 𝑄̇𝑠 0 kJ∕hr  
 s.s Inlet Concentration 𝐶𝐴0𝑠 4 kmol∕m3  
 s.s Concentration 𝐶𝐴𝑠 1.9537 kmol∕m3  
 s.s Temperature 𝑇𝑠 401.87 K  
 Specific Heat 𝐶𝑝 0.231 kJ∕(kgK)  
s.s stands for steady-state

4.1. Process model and control problem

A perfectly mixed continuous stirred tank reactor (CSTR) is used to 
convert reactant 𝐴 to product 𝐵 by means of a second-order irreversible 
exothermic elementary reaction 𝐴 → 𝐵. The temperature of the CSTR 
is regulated using a jacket. For simplicity, the heat transfer dynamics 
of a jacket are reduced to a direct heat input term (𝑄̇) which can be 
negative or positive as needed. A second-order rate law is used for the 
reaction in question, i.e., 𝑟𝐴 = 𝑘0𝑒

− 𝐸
𝑅𝑇 𝐶2

𝐴. Using dynamic mass and 
energy balances, we can derive the following dynamic model of the 
process, consisting of two first-order ODEs: 
d𝐶𝐴
d𝑡

= 𝐹
𝑉
(𝐶𝐴0 − 𝐶𝐴) − 𝑘0e

−𝐸
𝑅𝑇 𝐶2

𝐴 (12a)

d𝑇
d𝑡

= 𝐹
𝑉
(𝑇0 − 𝑇 ) + −𝛥𝐻

𝜌𝐿𝐶𝑝
𝑘0e

−𝐸
𝑅𝑇 𝐶2

𝐴 + 𝑄̇
𝜌𝐿𝐶𝑝𝑉

(12b)

The constant parameters used in these ODEs are defined in detail 
in Table  1. The reactor concentration (𝐶𝐴) and temperature (𝑇 ) are 
chosen to be the state variables, whereas the heat input rate (𝑄̇) and 
inlet concentration of species A (𝐶𝐴0) are chosen to be the manipulated 
inputs.

The states and manipulated inputs are converted into deviation 
variable form, meaning we denote the state variables as 𝑥 = [𝐶𝐴 −
𝐶𝐴𝑠, 𝑇 − 𝑇𝑠] and the input variables as 𝑢 = [𝐶𝐴0 −𝐶𝐴0𝑠, 𝑄̇− 𝑄̇𝑠]. These 
deviation variables are defined with respect to the unstable steady-state 
values of the respective terms. For the input variables, we introduce 
upper and lower bounds of [−3.5, 3.5] kmol∕m3 and [−5 × 105, 5 ×
105] kJ∕hr for the two elements of 𝑢 respectively. All simulations begin 
at the unstable steady-state at 𝑡0 = 0 and optimize a cost function that 
varies with time based on the consumption of species 𝐴, production of 
species 𝐵, and the current deviation form heat input rate 𝑄̇ − 𝑄̇𝑠 as 
shown in Eq.  (13)

𝐿(𝑥𝐸 , 𝑢) = 𝐴1𝑘0𝑒
− 𝐸

𝑅𝑇 𝐶2
𝐴 − 𝐴2(𝐶𝐴0 − 𝐶𝐴0𝑠 ) − 𝐴3(𝑄̇ − 𝑄̇𝑠)2 (13)

To simulate the evolving economics of operation, this cost function 
includes 𝐴 terms which are time-varying weights for each component 
as defined in Table  2. The first-principles model shown in Eq.  (12) are 
used in both the MPC as the process model shown in Eq.  (11b) and in 
the trajectory estimator that is used to generate the set-points for the 
lower-layer controller.

4.2. Stability analysis

The control Lyapunov function for this system is of the form 𝑉 (𝑥) =
𝑥⊤𝑃𝑥 where 𝑃  is a positive definite matrix defined as: 

𝑃 =
[

1060 22
22 0.52

]

(14)
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Table 2
Time-varying LEMPC weights for chemical process example.
 Time (𝑡) 𝐴1 𝐴2 𝐴3  
 0 hr ≤ 𝑡 < 1 hr 1 17 1 × 10−8  
 1 hr ≤ 𝑡 < 2 hr 0.99 14 0.8 × 10−8  
 2 hr ≤ 𝑡 < 3 hr 1.01 5 0.84 × 10−8 
 3 hr ≤ 𝑡 < 4 hr 0.98 7 0.9 × 10−8  
 𝑡 ≥ 4 hr 1.02 9 0.9 × 10−8  

Stability can be guaranteed within a level set of this Lyapunov 
function, denoted 𝛺𝜌 with a value of 𝜌 = 135. This level set was 
determined by simulating the system with the reference stabilizing 
controller. Starting at a large 𝑉 , 100 initial conditions were sampled 
along the level set boundary. For each initial condition, the closed-loop 
system under the reference controller was simulated for 10 sampling 
times, and 𝑉̇  was checked at each. Once 𝑉̇  returned negative values for 
all 10 time steps for all 100 points, the boundary of the stability region 
of the stabilizing controller was deemed found. To allow for sufficient 
room for disturbances and cyberattack detection, a deeper sub-region 
𝛺𝜌𝑠𝑒𝑐𝑢𝑟𝑒  is chosen where 𝜌𝑠𝑒𝑐𝑢𝑟𝑒 = 85.

The reference stabilizing controller used to determine the stability 
region is a set of PI controllers for 𝐶𝐴0 and 𝑄̇ with proportional gains 
of 𝐾𝐶𝐴0

= 104 and 𝐾𝑄 = 10 and integral time constants of 𝜏𝐶𝐴0
= 10−6

and 𝜏𝑄̇ = 10−3, respectively. These controllers used a sampling time 
of 𝛥𝑃𝐼,reference = 7.2 s. The lower-layer controllers used in this example 
share the same gains, but operate with 𝛥𝑃𝐼 = 0.36 s. 

Remark 3. Even if the lower-layer controller was used as the reference, 
we found that the same stability region is valid. The stability region 
is a conservative region within the true stability region of the closed-
loop system. Further, for ease of computation, a P controller with 
proportional gains 𝐾𝐶𝐴0

= 2 and 𝐾𝑄 = 12,000 was used as the reference 
controller for the LEMPC constraint shown in Eq.  (11f).

4.3. Control system parameters

In order to apply encryption to a process, the sampling time of 
the controller must sufficiently exceed the computation time associated 
with the solution of the control inputs as well as the encryption–
decryption process. In other words, 𝛥𝑀𝑃𝐶 must exceed the time it 
takes to solve the LEMPC once, solve and sample the estimated state 
trajectories, encrypt, and then transmit the relevant set-points to the 
lower-layer. 𝛥𝑃𝐼  must then exceed the computation and decryption 
time. The delay involved with signal transmission in a networked 
environment is neglected, as magnitude of this delay is insignificant 
relative to the other parameters. These requirements must be fulfilled 
for both the upper and lower-layer control systems in an encrypted 
two-layer control architecture and can be expressed as follows: 

𝛥𝑖 > max (Enc time)𝑖 + max (Dec time)𝑖 + max (Computation time)𝑖
Tier index ∶ 𝑖 = {1, 2}

(15a)

Here 𝛥1 and 𝛥2 represent the lower(𝛥𝑃𝐼 ) and upper(𝛥𝑀𝑃𝐶 ) control 
layer, respectively. The closed-loop system will be simulated over a 
period of 5 hrs, during which the objective function weights change 
in intervals of 1 hr. The LEMPC continuously optimizes for a horizon 
length of 432 s with a sampling period of 𝛥𝑀𝑃𝐶 = 7.2 s which corre-
sponds to a horizon length of 𝑁 = 60. The sampling period was selected 
to be sufficiently small to yield smooth trajectories and minimize the 
risk of instability induced by the sample-and-hold implementation of 
the control signals. Additionally, the sampling period was selected to 
be sufficiently large to allow ample room for computation as is required 
as discussed above. This is enabled by the low-dimensionality of the 
process and the simplicity of the encryption key – as mentioned in
6 
Remark  4 – which results in low net computation times. The optimal 
control inputs are then applied to a simulated process model of Eq.  (12) 
to yield the predicted state-trajectory. A total of 5 set-points are sam-
pled from this trajectory in constant intervals of 1.44 s. Sensor readings 
for the state variables are passed to the PI controller in intervals of 
0.36 s.

To achieve sufficient precision while maintaining low computa-
tional overhead, the LEMPC uses the forward explicit Euler method 
with an integration step size (ℎ𝑐,𝐿𝐸𝑀𝑃𝐶 ) of 0.36 s. The PI controller fol-
lows the same numerical simulation structure, but with an integration 
step size (ℎ𝑐,𝑃 𝐼 ) of 0.036 s.

4.4. Encryption

To encrypt the sensor–controller–actuator signals, we need to select 
a sufficiently large 𝑑, and appropriate 𝑙 and 𝑀 values. The selection 
of 𝑑 depends on the desired precision of data, which we chose to be 
𝑑 = 12. 𝑙 needs to be chosen such that Q𝑙,𝑑 encompasses the range 
of expected data values that will be encrypted. Large terms such as 
the heat input would dictate the smallest value of 𝑙, but since we use 
PythonPaillier (Data61, 2013) in our design, the selection of 𝑙 is done 
automatically based on 𝑀 . 

Remark 4. To ensure robustness, NIST recommends using keys with at 
least 2048 bits for authorization data, and 256 bits for less important 
data, such as conversation keys (Ferraiolo and Regenscheid, 2024). 
Increasing the key length increases computation time, so it is important 
to secure the signals to as high of a key length as the hardware is 
capable of. For reference, we used PythonPaillier’s default, where 𝑀
is some 256-bit long integer.

4.5. Closed-loop simulation results

We use the vector 𝛾 to denote the absolute value of the ratio of 
the difference between two consecutive set-point values sent to the 
lower-layer over the time difference between two consecutive set-point 
changes. The closed-loop system results where 𝛾 = [+∞ +∞] are seen 
in Figs.  2 and 5 where the progression through time on the state-
space plot is depicted by a color change from green to red. From this 
plot, we can see the impact of the time varying weights on the closed-
loop system response and economic performance. When 𝛾 becomes 
finite such that the difference between two consecutive set-point values 
over the time difference between two consecutive set-point changes is 
limited to 100 for 𝐶𝐴 and 10,000 for 𝑇  (i.e., 𝛾 = [100 10, 000]), we 
obtain the results in Figs.  3 and 6. As this set-point rate of change 
constraint is further tightened, the maximum set-point change drops to 
50 for 𝐶𝐴 and 5000 for 𝑇  (i.e., 𝛾 = [50 5, 000]), which yields the results 
shown in Figs.  4 and 7. Notably, we do not apply constraints to the 
rate of change of the control actions directly in this example.

It can be seen in all results that the time-varying economics results 
in roughly three operating zones where optimal operation is found. The 
influence of tightening the set-point rate of change constraint does not 
change the existence of these zones, but instead indirectly limits how 
sharp the state-trajectory is allowed to change by limiting the rate of 
change for the controllers’ set-points. Due to the PI control’s imperfect 
tracking of the optimal state-trajectory, the tightening of the set-point 
rate of change constraint results in marginally improved tracking up to 
a certain point, which yields small improvements to the net objective 
function as seen in Table  3.

Although there seems to be a slight trend towards better cost 
with tightening of the set-point rate of change constraint, this trend 
falls apart as the tightening increases, as expected. Because we only 
implement the first control input of the LEMPC, after every 7.2 s the set-
points are reset with respect to the current set-point values. This sudden 
shift leads to jagged movement in the set-points on the initial point 
of each LEMPC control input. Because of this, the process dynamics 
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Fig. 2. State-space plot of the closed-loop trajectory for 𝛾 = [∞, ∞].

Fig. 3. State-space plot of the closed-loop trajectory for 𝛾 = [100 10, 000].

Fig. 4. State-space plot of the closed-loop trajectory for 𝛾 = [50 5, 000].

and poor tracking of the PI controllers can lead to gradual divergence 
from the economic and stability regions. These phenomena are shown 
in Figs.  8 and 9 which are simulations where the maximum set-point 
rate of change is 1 for 𝐶  and 100 for 𝑇  (i.e., 𝛾 = [1 100]).
𝐴
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Table 3
Impact of 𝛾 on economic objective values.
 Max set-point rate of change Net objective function Increase (%) 
 𝐶𝐴 𝑇  
 ±∞ ±∞ 65.165 27.39  
 ±100 ±10, 000 66.361 29.73  
 ±50 ±5, 000 65.944 28.92  
 ±1 ±100 59.786 16.88  
 0 0 51.153 00.00  

Remark 5. By design, the two-layer implementation will yield varying 
results depending on the ability of the PI controllers regarding tracking 
the optimal state-trajectories. Due to the differences between the actual 
and constrained set-point trajectories, the observed divergence due to 
significant tightening of the set-point change is unavoidable at extreme 
values, and thus it is suggested that significant tightening is used 
sparingly.

5. Application to a chemical process modeled by an Aspen Plus 
simulator

This section showcases the practical application of the proposed 
encrypted two-layer control framework in the context of a large-scale 
chemical process modeled using an Aspen simulator. A first-principles 
based model is initially built to represent this large-scale process in 
a manner that can be used as the prediction model within an LMPC 
(in this study a quadratic, tracking cost function is employed). Using 
this first-principles model, the optimal control from the LMPC is used 
to predict the future trajectory of the state variables for the process. 
In the lower-layer, a fully encrypted PI controller is used, and the 
trajectory solved in the upper-layer (where the LMPC is used) is sam-
pled to provide set-points that the lower-layer PI controllers will use. 
The resulting control action is applied to a second dynamic model 
of the same process built using Aspen Plus Dynamics. Unlike tradi-
tional steady-state solvers, Aspen Plus Dynamics is a dynamic process 
simulator that allows for the detailed simulation of the time-varying 
dynamics of complex processes. This allows for the control actions to 
be applied to a process that mimics reality as close as possible without 
the need to construct a physical experimental process. The upper-layer 
LMPC computations can be done in a SCADA system using Python 
with readily available numerical integration and optimization solvers. 
By applying the control actions of the PI controllers to the Aspen 
model, but solving the upper-layer using a first-principles based LMPC 
and using a lower-layer to calculate the control actions implemented 
on the process, we can simultaneously explore the dynamics arising 
from modeling, tracking, and quantization error. To demonstrate the 
improved performance relative to linear control, and the improved 
cyber resilience with minimal performance loss relative to nonlinear 
control clearly, the closed-loop system performance under the two-layer 
architecture is compared to an unencrypted tracking PI controller and 
tracking MPC system.

5.1. Process description

The process considered is the production of Ethylbenzene (EB) from 
Ethylene (E) and Benzene (B) as reactive raw materials. The main 
reaction, labeled as ‘‘primary’’, is a second-order, exothermic, and ir-
reversible reaction that occurs alongside two additional side reactions. 
This reaction scheme is illustrated in Eq.  (16) and takes place in two 
non-isothermal, well-mixed continuous stirred tank reactors (CSTR). 
The chemical reactions involved are as follows: 
C2H4 + C6H6 C8H10 (primary) (16a)

C2H4 + C8H10 C10H14 (16b)

C H  + C H 2 C H (16c)
6 6 10 14 8 10
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Fig. 5. Closed-loop states for 𝛾 = [∞ ∞].
Fig. 6. Closed-loop states for 𝛾 = [100 10, 000].
The state variables are the concentration of Ethylene, Benzene, 
Ethylbenzene, Di-Ethylbenzene and the reactor temperature, for each 
CSTR𝑖, 𝑖 = (1, 2), respectively in deviation terms that is:

𝑥𝑇 = [𝐶𝐸1
− 𝐶𝐸1𝑠

, 𝐶𝐵1
− 𝐶𝐵1𝑠

, 𝐶𝐸𝐵1
− 𝐶𝐸𝐵1𝑠

, 𝐶𝐷𝐸𝐵1
− 𝐶𝐷𝐸𝐵1𝑠

, 𝑇1 −
𝑇1𝑠, 𝐶𝐸2

− 𝐶𝐸2𝑠
, 𝐶𝐵2

− 𝐶𝐵2𝑠
, 𝐶𝐸𝐵2

− 𝐶𝐸𝐵2𝑠
, 𝐶𝐷𝐸𝐵2

− 𝐶𝐷𝐸𝐵2𝑠
, 𝑇2 − 𝑇2𝑠]

The subscript ‘‘s’’ denotes the steady-state value. The rates of heat 
removal for each reactor [𝑄1 − 𝑄1𝑠, 𝑄2 − 𝑄2𝑠] are the control inputs 
manipulated by the lower-layer using an encrypted PI control system 
(two PIs), which are bounded by the closed sets [−4× 103kW, 5(×103 −
𝑄1𝑠)kW] and, [−3×104kW, (5×103 −𝑄2𝑠)kW] respectively. The bounds 
of the heat input terms were designed in a way that is feasible to 
8 
implement in practice. The lower bounds are roughly 10× what is 
necessary to maintain the first-principles model at the desired unstable 
steady-state, and the upper bounds are roughly the amount of heat 
necessary to heat up 60m3 of pure water by 80K in 1 hr.

The control objective is to move from a stable steady-state with 
poor economic performance to an unstable steady-state with higher 
economic performance in a stable and efficient manner. This is required 
for both CSTRs simultaneously, and both reactors must remain at this 
unstable steady-state. To identify the stability condition of the starting 
steady-state and the operating steady-state, we conducted two open-
loop simulations in Aspen Plus Dynamics for a total simulation of 
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Fig. 7. Closed-loop states for 𝛾 = [50 5, 000].
Fig. 8. State-space plot of the closed-loop trajectory for 𝛾 = [1 100] without stabilizing 
control.

process time of 6 h. In both cases, the state variables and manipu-
lated inputs were initialized to the stable steady-state values. At this 
point, the system was run using the Dynamic option within Aspen 
Plus Dynamics with the manipulated inputs remaining fixed for the 
full duration. The starting steady-state remained approximately the 
same after the simulation, whereas the operating steady-state stabilized 
to a distinct steady-state, providing clear evidence that the selected 
operating condition is an unstable steady-state whereas the starting 
steady-state is a stable steady-state. The main reason behind choosing 
this operating state was due to the increased yield of Ethylbenzene, our 
desired product.

5.2. Aspen Plus dynamics model development

In order to model a process to a degree of accuracy that closely 
resembles a real-world implementation of the two-layer control system, 
9 
Fig. 9. Optimal versus constrained set-point values used by the PI controllers. Orange 
is the secure region boundary, Green is the actual state-trajectory, and black is the set-
points. (For interpretation of the references to color in this figure legend, the reader 
is referred to the web version of this article.)

it is necessary to use high-fidelity simulators such as Aspen Plus Dynam-
ics V12. Our process is first modeled inside Aspen Plus to determine 
the starting and operating steady-states or the process before being 
converted into an Aspen Plus Dynamics model that functions using 
pressure driven flow. The construction of the Aspen Plus model is as 
follows:

1. Properties:

(a) Low temperature and high pressures ensure that the only 
valid phase is Liquid.

(b) Component Specification (CAS numbers):

i. 71-43-2
ii. 141-93-5
iii. 74-85-1
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Table 4
Parameter values, steady-state values, and model configuration of the Aspen model.
 𝑇1𝑜 = 𝑇2𝑜 = 300K 𝑇1𝑑 = 350K 𝑇1𝑠 = 300K  
 𝑉1 = 𝑉2 = 60m3 𝑇2𝑑 = 400K 𝑇2𝑠 = 300K  
 𝐶𝐵𝑜1

= 2 kmol∕m3 𝐶𝐵1𝑑
= 5.73 kmol∕m3 𝐶𝐵1𝑠

= 6.96 kmol∕m3  
 𝐶𝐸𝑜1

= 7 kmol∕m3 𝐶𝐷𝐸𝐵1𝑑
= 3.93 × 10−5 kmol∕m3 𝐶𝐷𝐸𝐵1𝑠

= 3.10 × 10−8 kmol∕m3 
 𝐶𝐵𝑜2

= 2 kmol∕m3 𝐶𝐸1𝑑
= 0.954 kmol∕m3 𝐶𝐸1𝑠

= 1.96 kmol∕m3  
 𝐶𝐸𝑜2

= 6 kmol∕m3 𝐶𝐸𝐵1𝑑
= 0.956 kmol∕m3 𝐶𝐸𝐵1𝑠

= 0.042 kmol∕m3  
 𝐸1 = 71.160 kJ∕kmol 𝐶𝐵2𝑑

= 4.23 kmol∕m3 𝐶𝐵2𝑠
= 6.44 kmol∕m3  

 𝐸2 = 83.680 kJ∕kmol 𝐶𝐷𝐸𝐵2𝑑
= 2.16 × 10−4 kmol∕m3 𝐶𝐷𝐸𝐵2𝑠

= 2.82 × 10−8 kmol∕m3 
 𝐸3 = 62.760 kJ∕kmol 𝐶𝐸2𝑑

= 0.171 kmol∕m3 𝐶𝐸2𝑠
= 1.96 kmol∕m3  

 𝑘1 = 1.528 × 106 m3 kmol−1 s−1 𝐶𝐸𝐵2𝑑
= 1.64 kmol∕m3 𝐶𝐸𝐵2𝑠

= 0.039 kmol∕m3  
 𝑘2 = 2.778 × 104 m3 kmol−1 s−1 𝑄1𝑑 = −412.254 kW 𝑄1𝑠 = −56.4623 kW  
 𝑘3 = 0.4167m3 kmol−1 s−1 𝑄2𝑑 = −733.54 kW 𝑄2𝑠 = −56.2121 kW  
 𝐹1 = 43.2m3∕h 𝐹2 = 47.87m3∕h 𝑅 = 8.314 kJ kmol−1 K−1  
 𝜌1 = 639.153 kg∕m3 𝜌2 = 607.504 kg∕m3 𝐶𝑝 = 2.411 kJ kg−1 K−1  
 𝛥𝐻1 = −1.04 × 105 kJ∕kmol 𝛥𝐻2 = −1.02 × 105 kJ∕kmol 𝛥𝐻3 = −5.5 × 102 kJ∕kmol  
‘o’ subscript stands for inlet flow values
‘d’ subscript stands for ’desired’, i.e. the point being tracked
‘s’ subscript stand for the initial steady-state values
iv. 100-41-4
v. 110-54-3

(c) The PSRK method is chosen. The interested reader may 
refer to Table  4 for stream properties. The purpose of 
Hexane in this system is to serve as a solvent.

2. Simulation:

(a) Construct the Main Flowsheet to match Fig.  10.
(b) Construct the Reactions to match the forms from Eq. 

(16) with parameter values specified in Table  4. The 
implementation is as irreversible elementary power-law 
reactions.

(c) CSTRs,Valves, and Feed streams are designed to match 
the specifications shown in Table  4. The valves and 
pumps are key elements, as the process’ flow is pressure 
driven, and these valves serve as pressure regulators. 
Valves 1,2, 3 and 4 drop the pressure by 5, 5, 2, and 14 
bars respectively. The Pump sets the discharge pressure 
to 15 bars. The feed streams all operate at a pressure of 
20 bars.

3. Once fully prepared, Aspen Plus is used to solve for the steady-
state that defines the initial process state.

4. A pressure checker tool is available in Aspen Plus to ensure no 
pressure issues are present before converting to an Aspen Pus 
Dynamics file via the Pressure Driven option after running once 
with Dynamic mode steady-state.

5. The resulting Dynamics file will automatically add controllers 
for both the fluid level and temperatures in both reactors. Since 
we control the heating rates, the temperature controllers are re-
moved in favor of constant heating duty. By running the simula-
tion for fixed time intervals using scripts, followed by modifying 
the constant heating duty, a sample-and-hold implementation of 
control is applied.

5.3. First-principles model development

The first-principles model for the CSTRs is formulated by employing 
the theory of mass and energy balances. The dynamic model of the first 
CSTR is described by the following ODEs:

d𝐶𝐸1

d𝑡
=

(𝐹1𝐶𝐸𝑜1 − 𝐹𝑜𝑢𝑡1𝐶𝐸1
)

𝑉1
− 𝑟1,1 − 𝑟1,2 (17a)

d𝐶𝐵1 =
(𝐹1𝐶𝐵𝑜1 − 𝐹𝑜𝑢𝑡1𝐶𝐵1

)
− 𝑟1,1 − 𝑟1,3 (17b)
d𝑡 𝑉1
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d𝐶𝐸𝐵1

d𝑡
=

−𝐹𝑜𝑢𝑡1𝐶𝐸𝐵1

𝑉1
+ 𝑟1,1 − 𝑟1,2 + 2𝑟1,3 (17c)

d𝐶𝐷𝐸𝐵1

d𝑡
=

−𝐹𝑜𝑢𝑡1𝐶𝐷𝐸𝐵1

𝑉1
+ 𝑟1,2 − 𝑟1,3 (17d)

d𝑇1
d𝑡

=
(𝑇1𝑜𝐹1 − 𝑇1𝐹𝑜𝑢𝑡1 )

𝑉1
+

3
∑

𝑖=1

−𝛥𝐻𝑖
𝜌1𝐶𝑝

𝑟1,𝑖 +
𝑄1

𝜌1𝐶𝑝𝑉1
(17e)

Consequently, the dynamic model of the second CSTR is represented by 
the following ODEs: 
d𝐶𝐸2

d𝑡
=

(𝐹2𝐶𝐸𝑜2 + 𝐹𝑜𝑢𝑡1𝐶𝐸1
− 𝐹𝑜𝑢𝑡2𝐶𝐸2

)
𝑉2

− 𝑟2,1 − 𝑟2,2 (18a)

d𝐶𝐵2

d𝑡
=

(𝐹2𝐶𝐵𝑜2 + 𝐹𝑜𝑢𝑡1𝐶𝐵1
− 𝐹𝑜𝑢𝑡2𝐶𝐵2

)
𝑉2

− 𝑟2,1 − 𝑟2,3 (18b)

d𝐶𝐸𝐵2

d𝑡
=

𝐹𝑜𝑢𝑡1𝐶𝐸𝐵1
− 𝐹𝑜𝑢𝑡2𝐶𝐸𝐵2

𝑉2
+ 𝑟2,1 − 𝑟2,2 + 2𝑟2,3 (18c)

d𝐶𝐷𝐸𝐵2

d𝑡
=

𝐹𝑜𝑢𝑡1𝐶𝐷𝐸𝐵1
− 𝐹𝑜𝑢𝑡2𝐶𝐷𝐸𝐵2

𝑉2
+ 𝑟2,2 − 𝑟2,3 (18d)

d𝑇2
d𝑡

=
(𝑇2𝑜𝐹2 − 𝑇1𝐹𝑜𝑢𝑡1 − 𝑇2𝐹𝑜𝑢𝑡2 )

𝑉2
+

3
∑

𝑖=1

−𝛥𝐻𝑖
𝜌2𝐶𝑝

𝑟2,𝑖 +
𝑄2

𝜌2𝐶𝑝𝑉2
(18e)

where the reaction rates are determined using the following expres-
sions: 

𝑟𝑛,1 = 𝑘1e
−𝐸1
𝑅𝑇𝑛 𝐶𝐸𝑛

𝐶𝐵𝑛
(19a)

𝑟𝑛,2 = 𝑘2e
−𝐸2
𝑅𝑇𝑛 𝐶𝐸𝑛

𝐶𝐸𝐵𝑛
𝑛 = 1, 2 (reactor index) (19b)

𝑟𝑛,3 = 𝑘3e
−𝐸3
𝑅𝑇𝑛 𝐶𝐷𝐸𝐵𝑛

𝐶𝐵𝑛
(19c)

5.4. Implementing encryption in the two-layer control architecture

Before implementing encryption–decryption in the closed-loop sys-
tem, it is crucial to carefully choose the values: 𝑑, and 𝑙. 𝑙 is determined 
by looking at the maximum and minimum permissible values of the 
states and inputs, and from these data the number of integer bits, 𝑙−𝑑, 
is determined. Recall from Eq.  (4) that the largest value in the set Q𝑙1 ,𝑑
is obtained using the formula 2𝑙−𝑑−1 − 2−𝑑 , while the smallest value 
is −2𝑙−𝑑−1. From this, it can be seen that 𝑙 must be sufficiently large, 
and that 𝑑, the quantization parameter, should be selected based on 
factors such as desired accuracy and the range of state and input values. 
Additionally, the bit length for the encryption keys must be selected to 
be larger than 𝑙. Considering that NIST recommends a key size of 2048 
for authorization data or 256 for less important data, we can simply set 
𝑙 equal to the key’s bit length to ensure sufficient room for arithmetic 
operation (Ferraiolo and Regenscheid, 2024). For the sake of limiting 
computational complexity, 𝑙 = 256 is used, although any sufficiently 
large value can be used so long as the resulting delay from computation 
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Fig. 10. Aspen Plus Dynamics model flow sheet.
time is within insignificant margins. In the set Q𝑙,𝑑 , rational numbers 
are separated by a resolution of 2−𝑑 , meaning that a higher value of 𝑑
leads to lower quantization errors. For simulation purposes, we use the 
quantization parameter 𝑑 = 12 as performing encryption using a higher 
quantization parameter provides nearly identical trajectories as the case 
without encryption (Suryavanshi et al., 2023). After determining all 
the quantization parameters, the implementation of Paillier Encryption 
is carried out using the ‘‘phe’’ module in Python, specifically Python-
Paillier (Data61, 2013). This module includes encryption, decryption, 
and encoding processes which automatically apply the quantization and 
mapping described above.

5.5. Implementing the fully-encrypted lower-layer controller

In the lower-layer, since linear control is used, control input com-
putations are confined to linear addition and multiplication operations, 
ensuring their execution within a fully-encrypted domain that guaran-
tees security against cyberattacks during networked communication. 
The selection of lower-layer controlled inputs, which possess the ca-
pability to stabilize the entire system, is a pivotal task that requires 
adherence to a well-defined procedure. For the purposes of this exam-
ple, the critical criteria to meet was a minimization of overshoot in 
the Temperature to ensure the risk of thermal runaway is minimized 
given a fixed sampling time for the linear controllers of 𝛥𝑃𝐼 = 3 s along 
with demonstrated tracking capabilities with no-overshoot. To achieve 
this, rigorous simulations of the nonlinear chemical process model were 
done until the criteria from above was met. For the given process, a 
natural phenomena occurs at high temperature wherein the reactions 
run to completion, which results in a sharp Temperature drop due to 
the lack of heat generated from the exothermic reactions. Controller 
gains were increased until the results demonstrated the ability to limit 
the overshoot below the temperature point in which this phenomena 
occurs. This was done for both the stabilizing P controller used in 
the LMPC for use in equation Eq.  (11f) as well as the PI controllers 
that are used for comparisons as seen in  Section 5.8. For the PI 
controller that is used in the two-layer design, the same criteria were 
used, but additional fine tuning was done through simulations using the 
Aspen Plus Dynamics model until the controller demonstrated sufficient 
tracking capabilities.

5.6. Implementation of the upper-layer LMPC

The first-principles model, expressed by equations in Eqs.  (17) 
and (18), serves as the foundational process model within the LMPC 
framework. These first-principles model is used in both the MPC as 
the process model shown in Eq.  (11b) and in the trajectory estimator 
that is used to generate the set-points for the lower-layer controller. 
For solving the optimization problem, we leverage the SciPy Python 
module’s minimize function (Virtanen et al., 2020). More specifically, 
we use the ‘SLSQP’ method to solve the LMPC optimization problem 
at each sampling time. The optimization problem at hand falls under 
the category of constrained non-convex optimization problems. Conse-
quently, the resultant solution is a local optimum rather than a global 
11 
one. The control inputs chosen for manipulation by the lower-layer 
controller consist of the heating rate for each CSTR. This results in a 
total of 2 control variables that are to be optimized over a prediction 
horizon of length 10.

The process of resolving this optimization problem involves defining 
constraints for the LMPC. The optimization problem operates within a 
feasible region and employs an iterative methodology to progressively 
navigate towards the optimal solution by traversing the interior of the 
feasible region. The LMPC achieves this while utilizing two distinct 
operating modes. Specifically, while within the feasible region, every 
future state within the prediction horizon is constrained to also be 
within the feasible region. This operating mode is described in Eq. 
(11e). While outside the feasible region, but within the stability region, 
the initial slope of the Lyapunov function is constrained to be more-
negative than some reference stabilizing controller. This operating 
mode is described in Eq.  (11f). These parameters function as the 
primary constraints of the optimization problem. If the optimization 
fails for any reason, the system utilizes the control input calculated by 
the backup controller as the solution.

5.7. Sampling time criteria

To implement encryption in a practical setting, it is crucial to ensure 
that the upper-layer’s sampling time, 𝛥𝑀𝑃𝐶 exceeds the combined 
computation time of the LMPC solution as well as the future trajectory 
simulation required for the lower-layer control system set-points. Addi-
tionally the lower-layer’s sampling time 𝛥𝑃𝐼  must exceed the combined 
maximum of the encryption–decryption time as well as the maximum 
time needed for computing the control action. The delay involved 
with signal transmission in a networked environment is neglected, as 
magnitude of this delay is insignificant relative to the other parameters. 
These requirements must be fulfilled for both the upper and lower-layer 
control systems in an encrypted two-layer control architecture and can 
be expressed as follows: 

𝛥𝑖 > max (Enc time)𝑖 + max (Dec time)𝑖 + max (Computation time)𝑖
Tier index ∶ 𝑖 = {1, 2}

(20a)

Here 𝛥1 and 𝛥2 represent the lower(𝛥𝑃𝐼 ) and upper(𝛥𝑀𝑃𝐶 ) control 
layer, respectively. Notably, since the upper-layer is not encrypted, 
but the set-points that are transmitted are, the decryption time is 0. 
The sampling time, 𝛥𝑀𝑃𝐶 is carefully selected as 30 s, considering the 
aforementioned condition to ensure proper implementation. 30 s was 
deemed sufficiently long to allow for both MPC computation as well as 
encryption based off of observed computation times during the design 
process of the MPC. Existing literature that uses the same chemical 
process example has demonstrated similar results, with encrypted cen-
tralized MPC computations taking 15.28 s on average (Kadakia et al., 
2023). Experimental validation demonstrated sufficiently smooth tra-
jectories for the process without the presence of excessive oscillatory 
behavior, thus the sampling time is deemed sufficient for the purposes 
of demonstration.
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Fig. 11. Closed-loop temperature profiles under the three different control strategies.
Based on these results, the integration step ℎ𝑐 is chosen as (10−2×𝛥)
to evaluate the cost function of the LMPC through the first-principles 
model. Because the lower-layer operates over a smaller step size of 
𝛥𝑃𝐼 = 3 s, we use a proportionally smaller integration step size of 
ℎ𝑐𝑃𝐼 = 10−2 × 𝛥𝑃𝐼 . Additionally, the set-points are sampled from the 
future trajectory of length 10𝛥𝑀𝑃𝐶 in increments of 𝛥𝑆𝑒𝑡−𝑃𝑜𝑖𝑛𝑡 = 120 s. 
Because we only apply the first MPC control action before recalculating 
the trajectory, only the first set-point is utilized, and these set-points 
are updated in intervals of 𝛥𝑀𝑃𝐶 . The positive definite matrix 𝑃  in 
the control Lyapunov function 𝑉 = 𝑥𝑇 𝑃𝑥 for this system is taken as 
𝑃 = diag[200, 250, 2500, 10, 0.25, 1000, 1000, 500, 1, 0.5] based 
on extensive simulations. A prediction horizon of 𝑁 = 10 is employed 
in the LMPC framework. To ensure stability in the LMPC, we set the 
criterion 𝜌𝑚𝑖𝑛 = 450K. Additionally, a contractive constraint of the form 
𝑉̇𝑀𝑃𝐶 ≤ 𝑉̇𝑃  is utilized for Eq.  (11f), where 𝑉̇𝑃  is the stabilizing backup 
Proportional controller with gains [500, 500] that was designed as de-
scribed in  Section 5.6. The weight matrices 𝑄1 and 𝑄2 in the LMPC cost 
function are chosen as 𝑄1 = diag[5, 5, 650, 5, 2.5, 25, 25, 100, 2, 6]
and 𝑄2 = diag[5 × 10−6, 1.25 × 10−5], respectively. The cost function is 
defined as 𝐿(𝑥(𝑡), 𝑢(𝑡)) = 𝑥𝑇𝑄 𝑥 + 𝑢𝑇𝑄 𝑢.
1 2

12 
5.8. Closed-loop simulation results

The Aspen Plus Dynamics model is simulated with 3 forms of 
control: tracking PI control to drive the process to temperatures 350 K 
and 400 K in reactors 1 and 2, respectively, tracking MPC to the same 
steady-state, and the two-layer design for tracking to the same steady-
state as well. The results, as seen in Figs.  11 to 13, demonstrate that 
tracking MPC has minimal temperature overshoot and jaggedness in the 
control actions as expected from the chosen cost-function. The tracking 
PI demonstrates smoother control action at the expense of significant 
overshoot in the Temperature, which puts the reactor at greater risk of 
thermal runaway. The two-layer architecture yields results that are very 
similar to the tracking MPC design despite having encrypted control. 
Thus, the goal of enhanced cybersecurity with minimal impact on 
process performance has been achieved for the highly nonlinear Aspen 
Dynamics model.

The most notable consequence of the proposed two-layer design 
is the visible jaggedness of the control action due to the shifting set-
points as the reactor heats up. As was true in  Section 4, the nature 
of the shifting set-points introduces problems with the PI controllers 
tracking. Fig.  9 demonstrates the divergent behavior of poor tracking 
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Fig. 12. Manipulated input profiles for the first CSTR control action (the top plot is the input under two-layer control, the middle plot is the input under tracking MPC and the 
bottom plot is the input under PI control only).
in the two-layer design, but at a closer glance, it can be seen that it 
also demonstrates a sharp transition in the set-point trajectory after 
each recalculation of the optimal control inputs in the upper-layer. 
When the MPC is resolved, the set-point that the lower-layer is tracking 
will suddenly shift to a new value. In the early stages of the systems’ 
response, the temperature variable experiences significant changes as 
the reactors heat up. This large jump in the set-point, when the PI 
control is capable of tracking, results in sudden bursts of control action 
that gradually weaken only to spike again when the set-point moves 
once more. This problem was mitigated as described in  Section 3.3 
by bounding the change in magnitude of the control inputs based on 
the magnitude of the state variable, but it could be further mitigated as 
described in  Section 3.4 by bounding the change in the set-points them-
selves. Both constraints mitigate the issue of jaggedness but come at the 
expense of longer settling time and a higher risk of over-constraining 
the control action to the point of risking closed-loop instability.
13 
6. Conclusion

This work proposed a two-layer multi-key control framework that 
is implemented with nonlinear Lyapunov-based (economic) model pre-
dictive controller (LEMPC) in the upper-layer and linear proportional 
integral (PI) control in the lower-layer to allow for cyber-secure op-
eration while allowing for economic optimization. The upper-layer 
LEMPC solves optimal control inputs, which are used to simulate the 
optimal closed-loop state-trajectory. This trajectory is sampled and used 
as set-points for the lower-layer PI control system to use in order to 
improve economic operation. Due to the linear nature of PI control, 
homomorphic encryption such as Pallier encryption can be used to 
calculate the applied control while remaining encrypted, enhancing 
cybersecurity of the feedback control layer. Two nonlinear chemical 
process applications, including a benchmark chemical reactor example 
and one application modeled through the use of Aspen Dynamics, were 
used to demonstrate the application, and evaluate the performance and 
robustness of the proposed two-layer control architecture.
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Fig. 13. Manipulated input profiles for the second CSTR control action (the top plot is the input under two-layer control, the middle plot is the input under tracking MPC and 
the bottom plot is the input under PI control only).
CRediT authorship contribution statement

Arthur Khodaverdian: Writing – original draft, Methodology, 
Investigation, Conceptualization. Dhruv Gohil: Writing – original 
draft, Methodology, Investigation, Conceptualization. Panagiotis D. 
Christofides: Writing – review & editing, Supervision, Methodology, 
Investigation, Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to 
influence the work reported in this paper.

Acknowledgments

Financial support from the National Science Foundation, United 
States, CBET-2227241, is gratefully acknowledged.
14 
References

(ACSC), A.C.S.C., 2024. Principles of Operational Technology Cyber Security. Technical 
Report, Australian Cyber Security Centre.

Aldrini, J., Chihi, I., Sidhom, L., 2024. Fault diagnosis and self-healing for smart 
manufacturing: a review. J. Intell. Manuf. 35, 2441–2473.

Aljohani, A., AlMuhaini, M., Poor, H.V., Binqadhi, H.M., 2024. A deep learning-based 
cyber intrusion detection and mitigation system for smart grids. IEEE Trans. Artif. 
Intell. 5, 3902–3914.

Babu, B., Ijyas, T., P., M., Varghese, J., 2017. Security issues in SCADA based industrial 
control systems. In: 2nd International Conference on Anti-Cyber Crimes. ICACC, 
Abha, Saudi Arabia, pp. 47–51.

Benny, S., Desai, I., Uriarte, L., Tsai, I., McMahan, L., 2024. A meta-analysis on NIST 
post-quantum cryptographic primitive finalists. J. Emerg. Investig. 7.

Chen, L., Ye, Y., Bourlai, T., 2017. Adversarial machine learning in malware detection: 
Arms race between evasion attack and defense. In: European Intelligence and 
Security Informatics Conference. Athens, Greece, pp. 99–106.

Conklin, W.A., 2016. IT vs. OT security: A time to consider a change in CIA to include 
resilienc. In: 49th Hawaii International Conference on System Sciences. Kauai, 
Hawaii, pp. 2642–2647.

Data61, C., 2013. Python paillier library.
Farwell, J.P., Rohozinski, R., 2011. Stuxnet and the future of cyber war. Survival 53, 

23–40.

http://refhub.elsevier.com/S2772-5081(25)00017-1/sb1
http://refhub.elsevier.com/S2772-5081(25)00017-1/sb1
http://refhub.elsevier.com/S2772-5081(25)00017-1/sb1
http://refhub.elsevier.com/S2772-5081(25)00017-1/sb2
http://refhub.elsevier.com/S2772-5081(25)00017-1/sb2
http://refhub.elsevier.com/S2772-5081(25)00017-1/sb2
http://refhub.elsevier.com/S2772-5081(25)00017-1/sb3
http://refhub.elsevier.com/S2772-5081(25)00017-1/sb3
http://refhub.elsevier.com/S2772-5081(25)00017-1/sb3
http://refhub.elsevier.com/S2772-5081(25)00017-1/sb3
http://refhub.elsevier.com/S2772-5081(25)00017-1/sb3
http://refhub.elsevier.com/S2772-5081(25)00017-1/sb4
http://refhub.elsevier.com/S2772-5081(25)00017-1/sb4
http://refhub.elsevier.com/S2772-5081(25)00017-1/sb4
http://refhub.elsevier.com/S2772-5081(25)00017-1/sb4
http://refhub.elsevier.com/S2772-5081(25)00017-1/sb4
http://refhub.elsevier.com/S2772-5081(25)00017-1/sb5
http://refhub.elsevier.com/S2772-5081(25)00017-1/sb5
http://refhub.elsevier.com/S2772-5081(25)00017-1/sb5
http://refhub.elsevier.com/S2772-5081(25)00017-1/sb6
http://refhub.elsevier.com/S2772-5081(25)00017-1/sb6
http://refhub.elsevier.com/S2772-5081(25)00017-1/sb6
http://refhub.elsevier.com/S2772-5081(25)00017-1/sb6
http://refhub.elsevier.com/S2772-5081(25)00017-1/sb6
http://refhub.elsevier.com/S2772-5081(25)00017-1/sb7
http://refhub.elsevier.com/S2772-5081(25)00017-1/sb7
http://refhub.elsevier.com/S2772-5081(25)00017-1/sb7
http://refhub.elsevier.com/S2772-5081(25)00017-1/sb7
http://refhub.elsevier.com/S2772-5081(25)00017-1/sb7
http://refhub.elsevier.com/S2772-5081(25)00017-1/sb8
http://refhub.elsevier.com/S2772-5081(25)00017-1/sb9
http://refhub.elsevier.com/S2772-5081(25)00017-1/sb9
http://refhub.elsevier.com/S2772-5081(25)00017-1/sb9


A. Khodaverdian et al. Digital Chemical Engineering 15 (2025) 100233 
Ferraiolo, H., Regenscheid, A., 2024. Cryptographic Algorithms and Key Sizes for Per-
sonal Identity Verification. Technical Report NIST SP 800-78-5, National Institute 
of Standards and Technology, Gaithersburg, MD.

Gandhi, R., Sharma, A., Mahoney, W., Sousan, W., Zhu, Q., Laplante, P., 2011. 
Dimensions of cyber-attacks: Cultural, social, economic, and political. IEEE Technol. 
Soc. Mag. 30, 28–38.

Geng, H., Yang, G., 2014. Linear and nonlinear schemes applied to pitch control of 
wind turbines. Sci. World J. 2014, 406382.

Huang, H., Wlazlo, P., Mao, Z., Sahu, A., Davis, K., Goulart, A., Zonouz, S., Davis, C.M., 
2022. Cyberattack defense with cyber-physical alert and control logic in industrial 
controllers. IEEE Trans. Ind. Appl. 58, 5921–5934.

Intel, 2024. Intel®64 and IA-32 architectures software developer’s manual combined 
volumes: 1, 2A, 2B, 2C, 2D, 3A, 3B, 3C, 3D, and 4. Section 4.2.1.2.

Kadakia, Y.A., Abdullah, F., Alnajdi, A., Christofides, P.D., 2024. Integrating dynamic 
economic optimization and encrypted control for cyber-resilient operation of 
nonlinear processes. AIChE J. 70, e18509.

Kadakia, Y.A., Alnajdi, A., Abdullah, F., Christofides, P.D., 2023. Encrypted distributed 
model predictive control with state estimation for nonlinear processes. Digit. Chem. 
Eng. 9, 100133.

Koay, A.M.Y., Ko, R.K.L., Hettema, H., Radke, K., 2023. Machine learning in industrial 
control system (ICS) security: current landscape, opportunities and challenges. J. 
Intell. Inf. Syst. 60, 377–405.

mechmotum, 2018. cyipopt. https://github.com/mechmotum/cyipopt.
Microsoft Security Team, 2024. Storm-0501: Ransomware attacks expanding to hybrid 

cloud environments. Microsoft Secur. Blog.
National Institute of Standards and Technology, 2024. The NIST Cybersecurity 

Framework (CSF) 2.0. Technical Report, National Institute of Standards and 
Technology.

Paillier, P., 1999. Public-key cryptosystems based on composite degree residuosity 
classes. In: Stern, J. (Ed.), Advances in Cryptology — EUROCRYPT ’99. Springer 
Berlin Heidelberg, Berlin, Heidelberg, pp. 223–238.

Pan, J., Sui, T., Liu, W., Wang, J., Kong, L., Zhao, Y., 2023a. Secure control using 
homomorphic encryption and efficiency analysis. Secur. Commun. Netw. 2023.

Pan, J., Sui, T., Liu, W., Wang, J., Kong, L., Zhao, Y., Wei, Z., 2023b. Secure control 
of linear controllers using fully homomorphic encryption. Appl. Sci. 13.
15 
Paridari, K., O’Mahony, N., Mady, A.E.D., Chabukswar, R., Boubekeur, M., Sandberg, H., 
2017. A framework for attack-resilient industrial control systems: Attack detection 
and controller reconfiguration. Proc. IEEE 106, 113–128.

Schulze Darup, M., Redder, A., Shames, I., Farokhi, F., Quevedo, D., 2018. Towards 
encrypted MPC for linear constrained systems. IEEE Control. Syst. Lett. 2, 195–200.

Sen, J., 2013. Homomorphic encryption — Theory and application. In: Sen, J. 
(Ed.), Theory and Practice of Cryptography and Network Security Protocols and 
Technologies. IntechOpen, Rijeka, http://dx.doi.org/10.5772/56687.

Simmons, C., Shiva, S., Dasgupta, D., Wu, C., 2009. AVOIDIT: A Cyber Attack 
Taxonomy. Technical Report, University of Memphis.

Stobbe, P., Keijzer, T., Ferrari, R.M., 2022. A fully homomorphic encryption scheme 
for real-time safe control. In: Proceedings of 61st IEEE Conference on Decision and 
Control. Cancun, Mexico, pp. 2911–2916.

Sui, T., Wang, J., Liu, W., Pan, J., Wang, L., Zhao, Y., Kong, L., 2024. Optimizing 
encrypted control algorithms for real-time secure control. J. Franklin Inst. 361, 
106677.

Suryavanshi, A., Alnajdi, A., Alhajeri, M., Abdullah, F., Christofides, P.D., 2023. 
Encrypted model predictive control design for security to cyberattacks. AIChE J. 
69, e18104.

Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., 
Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., 
Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., 
Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Lax-
alde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., 
Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Con-
tributors, 2020. SciPy 1.0: Fundamental Algorithms for Scientific Computing in 
Python. Nature Methods 17, 261–272.

Wang, W., Harrou, F., Bouyeddou, B., Senouci, S.-M., Sun, Y., 2022. Cyber-attacks 
detection in industrial systems using artificial intelligence-driven methods. Int. J. 
Crit. Infrastruct. Prot. 38, 100542.

Wu, Z., Chen, S., Rincon, D., Christofides, P.D., 2020. Post cyber-attack state recon-
struction for nonlinear processes using machine learning. Chem. Eng. Res. Des. 159, 
248–261.

http://refhub.elsevier.com/S2772-5081(25)00017-1/sb10
http://refhub.elsevier.com/S2772-5081(25)00017-1/sb10
http://refhub.elsevier.com/S2772-5081(25)00017-1/sb10
http://refhub.elsevier.com/S2772-5081(25)00017-1/sb10
http://refhub.elsevier.com/S2772-5081(25)00017-1/sb10
http://refhub.elsevier.com/S2772-5081(25)00017-1/sb11
http://refhub.elsevier.com/S2772-5081(25)00017-1/sb11
http://refhub.elsevier.com/S2772-5081(25)00017-1/sb11
http://refhub.elsevier.com/S2772-5081(25)00017-1/sb11
http://refhub.elsevier.com/S2772-5081(25)00017-1/sb11
http://refhub.elsevier.com/S2772-5081(25)00017-1/sb12
http://refhub.elsevier.com/S2772-5081(25)00017-1/sb12
http://refhub.elsevier.com/S2772-5081(25)00017-1/sb12
http://refhub.elsevier.com/S2772-5081(25)00017-1/sb13
http://refhub.elsevier.com/S2772-5081(25)00017-1/sb13
http://refhub.elsevier.com/S2772-5081(25)00017-1/sb13
http://refhub.elsevier.com/S2772-5081(25)00017-1/sb13
http://refhub.elsevier.com/S2772-5081(25)00017-1/sb13
http://refhub.elsevier.com/S2772-5081(25)00017-1/sb14
http://refhub.elsevier.com/S2772-5081(25)00017-1/sb14
http://refhub.elsevier.com/S2772-5081(25)00017-1/sb14
http://refhub.elsevier.com/S2772-5081(25)00017-1/sb15
http://refhub.elsevier.com/S2772-5081(25)00017-1/sb15
http://refhub.elsevier.com/S2772-5081(25)00017-1/sb15
http://refhub.elsevier.com/S2772-5081(25)00017-1/sb15
http://refhub.elsevier.com/S2772-5081(25)00017-1/sb15
http://refhub.elsevier.com/S2772-5081(25)00017-1/sb16
http://refhub.elsevier.com/S2772-5081(25)00017-1/sb16
http://refhub.elsevier.com/S2772-5081(25)00017-1/sb16
http://refhub.elsevier.com/S2772-5081(25)00017-1/sb16
http://refhub.elsevier.com/S2772-5081(25)00017-1/sb16
http://refhub.elsevier.com/S2772-5081(25)00017-1/sb17
http://refhub.elsevier.com/S2772-5081(25)00017-1/sb17
http://refhub.elsevier.com/S2772-5081(25)00017-1/sb17
http://refhub.elsevier.com/S2772-5081(25)00017-1/sb17
http://refhub.elsevier.com/S2772-5081(25)00017-1/sb17
https://github.com/mechmotum/cyipopt
http://refhub.elsevier.com/S2772-5081(25)00017-1/sb19
http://refhub.elsevier.com/S2772-5081(25)00017-1/sb19
http://refhub.elsevier.com/S2772-5081(25)00017-1/sb19
http://refhub.elsevier.com/S2772-5081(25)00017-1/sb20
http://refhub.elsevier.com/S2772-5081(25)00017-1/sb20
http://refhub.elsevier.com/S2772-5081(25)00017-1/sb20
http://refhub.elsevier.com/S2772-5081(25)00017-1/sb20
http://refhub.elsevier.com/S2772-5081(25)00017-1/sb20
http://refhub.elsevier.com/S2772-5081(25)00017-1/sb21
http://refhub.elsevier.com/S2772-5081(25)00017-1/sb21
http://refhub.elsevier.com/S2772-5081(25)00017-1/sb21
http://refhub.elsevier.com/S2772-5081(25)00017-1/sb21
http://refhub.elsevier.com/S2772-5081(25)00017-1/sb21
http://refhub.elsevier.com/S2772-5081(25)00017-1/sb22
http://refhub.elsevier.com/S2772-5081(25)00017-1/sb22
http://refhub.elsevier.com/S2772-5081(25)00017-1/sb22
http://refhub.elsevier.com/S2772-5081(25)00017-1/sb23
http://refhub.elsevier.com/S2772-5081(25)00017-1/sb23
http://refhub.elsevier.com/S2772-5081(25)00017-1/sb23
http://refhub.elsevier.com/S2772-5081(25)00017-1/sb24
http://refhub.elsevier.com/S2772-5081(25)00017-1/sb24
http://refhub.elsevier.com/S2772-5081(25)00017-1/sb24
http://refhub.elsevier.com/S2772-5081(25)00017-1/sb24
http://refhub.elsevier.com/S2772-5081(25)00017-1/sb24
http://refhub.elsevier.com/S2772-5081(25)00017-1/sb25
http://refhub.elsevier.com/S2772-5081(25)00017-1/sb25
http://refhub.elsevier.com/S2772-5081(25)00017-1/sb25
http://dx.doi.org/10.5772/56687
http://refhub.elsevier.com/S2772-5081(25)00017-1/sb27
http://refhub.elsevier.com/S2772-5081(25)00017-1/sb27
http://refhub.elsevier.com/S2772-5081(25)00017-1/sb27
http://refhub.elsevier.com/S2772-5081(25)00017-1/sb28
http://refhub.elsevier.com/S2772-5081(25)00017-1/sb28
http://refhub.elsevier.com/S2772-5081(25)00017-1/sb28
http://refhub.elsevier.com/S2772-5081(25)00017-1/sb28
http://refhub.elsevier.com/S2772-5081(25)00017-1/sb28
http://refhub.elsevier.com/S2772-5081(25)00017-1/sb29
http://refhub.elsevier.com/S2772-5081(25)00017-1/sb29
http://refhub.elsevier.com/S2772-5081(25)00017-1/sb29
http://refhub.elsevier.com/S2772-5081(25)00017-1/sb29
http://refhub.elsevier.com/S2772-5081(25)00017-1/sb29
http://refhub.elsevier.com/S2772-5081(25)00017-1/sb30
http://refhub.elsevier.com/S2772-5081(25)00017-1/sb30
http://refhub.elsevier.com/S2772-5081(25)00017-1/sb30
http://refhub.elsevier.com/S2772-5081(25)00017-1/sb30
http://refhub.elsevier.com/S2772-5081(25)00017-1/sb30
http://refhub.elsevier.com/S2772-5081(25)00017-1/sb31
http://refhub.elsevier.com/S2772-5081(25)00017-1/sb31
http://refhub.elsevier.com/S2772-5081(25)00017-1/sb31
http://refhub.elsevier.com/S2772-5081(25)00017-1/sb31
http://refhub.elsevier.com/S2772-5081(25)00017-1/sb31
http://refhub.elsevier.com/S2772-5081(25)00017-1/sb31
http://refhub.elsevier.com/S2772-5081(25)00017-1/sb31
http://refhub.elsevier.com/S2772-5081(25)00017-1/sb31
http://refhub.elsevier.com/S2772-5081(25)00017-1/sb31
http://refhub.elsevier.com/S2772-5081(25)00017-1/sb31
http://refhub.elsevier.com/S2772-5081(25)00017-1/sb31
http://refhub.elsevier.com/S2772-5081(25)00017-1/sb31
http://refhub.elsevier.com/S2772-5081(25)00017-1/sb31
http://refhub.elsevier.com/S2772-5081(25)00017-1/sb31
http://refhub.elsevier.com/S2772-5081(25)00017-1/sb31
http://refhub.elsevier.com/S2772-5081(25)00017-1/sb32
http://refhub.elsevier.com/S2772-5081(25)00017-1/sb32
http://refhub.elsevier.com/S2772-5081(25)00017-1/sb32
http://refhub.elsevier.com/S2772-5081(25)00017-1/sb32
http://refhub.elsevier.com/S2772-5081(25)00017-1/sb32
http://refhub.elsevier.com/S2772-5081(25)00017-1/sb33
http://refhub.elsevier.com/S2772-5081(25)00017-1/sb33
http://refhub.elsevier.com/S2772-5081(25)00017-1/sb33
http://refhub.elsevier.com/S2772-5081(25)00017-1/sb33
http://refhub.elsevier.com/S2772-5081(25)00017-1/sb33

	Enhancing cybersecurity of nonlinear processes via a two-layer control architecture
	Introduction
	Preliminaries
	Notation
	Class of systems
	Paillier cryptosystem
	Quantization and mapping
	Encrypted arithmetic
	Overflow

	Development of the two-layer multi-key encrypted control architecture
	Design and implementation
	Dynamic economic optimization
	Constraining the rate of change of control actions
	Constraining the rate of change of set-point update

	Application to a benchmark chemical process example
	Process model and control problem
	Stability analysis
	Control system parameters
	Encryption
	Closed-loop simulation results

	Application to a chemical process modeled by an Aspen Plus simulator
	Process description
	Aspen Plus dynamics model development
	First-Principles model development
	Implementing encryption in the two-layer control architecture
	Implementing the fully-encrypted lower-layer controller
	Implementation of the upper-layer LMPC
	Sampling time criteria
	Closed-loop simulation results

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	References


