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 A B S T R A C T

This work proposes the implementation of encryption in model predictive control of nonlinear systems in which 
the system dynamics are modeled through machine-learning, denoted ML-based MPC, as a means to improve 
cybersecurity without significant performance losses. The Pallier cryptosystem is utilized for encryption and 
the closed-loop stability of the encrypted ML-based MPC is established accounting for the impacts of signal 
quantization loss due to encryption and sample-and-hold control. A nonlinear chemical process example is 
used to study the impact of different encryption levels on ML-based MPC closed-loop performance. Finally, we 
present the implementation of the encrypted ML-based MPC method in a two-layer economic model predictive 
control framework and in a distributed model predictive control scheme to optimize economic performance 
and control large-scale processes, respectively.
1. Introduction

Model predictive control (MPC) has emerged as a powerful method 
for controlling nonlinear dynamic systems, which optimizes process 
performance while accounting for stability, actuator, and safety con-
straints. Traditional MPC relies on first-principles models of the system 
to predict future states and determine control actions. However, de-
veloping accurate first-principles models for nonlinear systems is often 
challenging due to the inherent complexity of system dynamics, exter-
nal disturbances, and uncertainties. In recent years, MPC using machine 
learning (ML) to estimate the system dynamics formulation, referred to 
as ML-based MPC in this work, has gained significant attention as a 
promising alternative to address these challenges (Limon et al., 2017; 
Wong et al., 2018; Wu et al., 2025; Terzi et al., 2021; Hassanpour et al., 
2020). Using data-driven techniques, ML models can approximate the 
dynamics of the system without requiring explicit knowledge of the 
underlying physical laws.

Although ML-based MPC demonstrates significant advantages in 
controlling nonlinear systems, its growing reliance on data and commu-
nication channels introduces new vulnerabilities to the stable operation 
of networked control systems. In modern industrial control environ-
ments, sensors, controllers, and actuators are often connected through 
communication networks. This enables remote access, which signifi-
cantly increases the potential for cyber-attacks. Malicious cyber-attacks 
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can compromise the integrity of sensor data, manipulate control sig-
nals, or disrupt communication channels between system components, 
leading to catastrophic failures in critical infrastructure (Parker et al., 
2023). Specifically, attackers can exploit these vulnerabilities by inject-
ing false data, launching denial-of-service attacks, or tampering with 
control actions, thereby destabilizing the closed-loop system and/or 
causing unsafe operations. Therefore, the development of robust cyber-
secure architectures for control systems is essential to ensure stable and 
safe industrial operation.

In response to the increasing prevalence and threat of cyber-attacks, 
cybersecurity has emerged as a critical area of research in control 
systems (Arauz et al., 2022). Of the proposed improvements, the in-
corporation of encryption arguably demands the most attention, as 
post-quantum cryptography threatens the security of classical cryptog-
raphy (Benny et al., 2024). Among the various organizations pushing 
for enhanced cybersecurity protocols in industry is the National Insti-
tute of Standards and Technology, which emphasizes the enhancement 
of data security by means of protecting confidentiality of data in 
use, transit, or rest (National Institute of Standards and Technology, 
2024). Encrypted control systems integrate cryptographic techniques 
into the control process to protect sensitive data from interception 
or manipulation by cyber-attacks. By employing encryption schemes 
(e.g., homomorphic encryption), these systems allow for secure trans-
mission of data and control actions over potentially vulnerable net-
works. Although homomorphic encryption allows specific operations 
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(e.g., addition or multiplication) to be executed directly on encrypted 
data, ensuring that control actions can be executed securely with-
out revealing the underlying data, it is insufficient for the complex, 
nonlinear optimization computations required by MPC. In order to 
encrypt in such a way that works for MPC, one could use Fully-
Homomorphic encryption (FHE); however, homomorphic encryption 
is limited to polynomial operations, and thus all computations would 
need to be linearized. In addition, many FHE designs suffer from limited 
computational depth, significant computational overhead, compound-
ing estimation, or quantization losses (Sui et al., 2024). Industrial 
applications would require real-time control which, even for linearized 
models, is only feasible after applying novel optimizations to the en-
cryption scheme (Stobbe et al., 2022). Therefore, recent research has 
focused on developing methods to create secure connections between 
sensors, actuators, and control system centers, where decryption and 
more complex control tasks can be performed safely (Darup, 2020). The 
goal is to ensure that the communication between these components 
remains encrypted and secure throughout the entire process, from the 
acquisition of sensor data to the execution of control commands by the 
actuators.

Motivated by the above considerations, in this work, we aim to 
enhance the cyber-security of ML-based MPC by incorporating first-
generation encrypted control techniques (Schlüter et al., 2023) in its 
real-time implementation. Specifically, we propose the integration of 
the Paillier cryptosystem into the ML-MPC framework to protect con-
trol signals and process measurement feedback from potential cyber-
attacks. By analyzing the impact of quantization errors on closed-loop 
system, we establish the stability of the proposed closed-loop system 
under encrypted ML-MPC. A nonlinear chemical process is utilized to 
demonstrate how encryption can safeguard communication links with 
minimal effect on closed-loop performance. Finally, we demonstrate 
that the proposed encrypted ML-based MPC scheme is adaptable to var-
ious MPC frameworks, including encrypted two-layer economic MPC 
and distributed MPC.

2. Preliminaries

2.1. Class of systems

A class of continuous-time nonlinear systems is considered in this 
manuscript, which can be represented by the following ordinary differ-
ential equations: 
�̇� = 𝐹 (𝑥, 𝑢) = 𝑓 (𝑥) + 𝑔(𝑥)𝑢 (1)

where 𝑥 ∈ R𝑛 represents the state vector and 𝑢 ∈ R𝑚 is the manipulated 
input vector. The manipulated input is subject to the input constraints 
denoted by 𝑢 ∈ 𝑈 ∶= {𝑢𝑚𝑖𝑛𝑖 ≤ 𝑢𝑖 ≤ 𝑢𝑚𝑎𝑥𝑖 ,∀𝑖 = 1, 2,… , 𝑚} ⊂ R𝑚, where 𝑢𝑚𝑖𝑛𝑖
and 𝑢𝑚𝑎𝑥𝑖  are the minimum and maximum values for the manipulated 
input 𝑢𝑖. 𝑓 (⋅) and 𝑔(⋅) are assumed to be sufficiently smooth functions. 
Additionally, it is assumed that 𝑓 (0) = 0 such that the origin is a 
steady-state of the nominal system of Eq.  (1).

It is assumed that there is an explicit feedback controller 𝑢(𝑡) =
𝛷(𝑥(𝑡)) ∈ 𝑈 that can ensure exponential stability of the origin of Eq.  (1). 
The stabilizability assumption implies the existence of a continuously 
differentiable control Lyapunov function 𝑉 (𝑥) such that the following 
inequalities hold for all 𝑥 ∈ 𝐷, where 𝐷 is an open neighborhood 
around the origin: 
𝑐1|𝑥|

2 ≤ 𝑉 (𝑥) ≤ 𝑐2|𝑥|
2 (2a)

𝜕𝑉 (𝑥)
𝜕𝑥

𝐹 (𝑥,𝛷(𝑥)) ≤ −𝑐3|𝑥|
2 (2b)

|

|

|

|

𝜕𝑉 (𝑥)
𝜕𝑥

|

|

|

|

≤ 𝑐4|𝑥| (2c)

where 𝑐1, 𝑐2, 𝑐3, and 𝑐4 denote positive constants. Furthermore, due to 
the Lipschitz continuity of 𝐹 (𝑥, 𝑢) and the fact that 𝑢 is bounded, there 
2 
exist positive constants 𝑀𝐹 , 𝐿𝑥, and 𝐿′
𝑥 that ensure that for all 𝑥, 𝑥′ ∈ 𝐷

and 𝑢 ∈ 𝑈 the following inequalities are satisfied: 
|𝐹 (𝑥′, 𝑢) − 𝐹 (𝑥, 𝑢)| ≤ 𝐿𝑥|𝑥 − 𝑥′| (3a)

|𝐹 (𝑥, 𝑢)| ≤ 𝑀𝐹 (3b)

|

|

|

|

𝜕𝑉 (𝑥)
𝜕𝑥

𝐹 (𝑥, 𝑢) −
𝜕𝑉 (𝑥′)
𝜕𝑥

𝐹 (𝑥′, 𝑢)
|

|

|

|

≤ 𝐿′
𝑥|𝑥 − 𝑥′| (3c)

2.2. Paillier cryptosystem and quantization

The Paillier cryptosystem (Paillier, 1999) is an additive homomor-
phic encryption algorithm that allows an arbitrary number of addition 
operations to be performed in the encrypted space. The public and 
private keys used to encrypt and decrypt the ciphertext, respectively, 
can be calculated through the following set of steps:

1. Generate two prime integers denoted 𝑝 and 𝑞 randomly.
2. Verify that gcd(𝑝𝑞, (𝑝 − 1)(𝑞 − 1)) = 1 before proceeding, where 

gcd(𝑖, 𝑗) is a function that returns the greatest common divisor 
of natural numbers 𝑖, 𝑗. Repeat 1 as needed.

3. Define 𝑀 = 𝑝𝑞 to simplify the notation.
4. Randomly generate an integer 𝑔 ∈ Z∗

𝑀2 .
5. Define 𝜆 = lcm(𝑞 − 1, 𝑝 − 1), where lcm(𝑖, 𝑗) refers to the least 
common multiple of the integers 𝑖, 𝑗.

6. Define a function �̄�(𝑥) = (𝑥 − 1)∕𝑀 to simplify the notation.
7. Ensure that the following modular multiplicative inverse exists 
before proceeding:
𝑢 = (�̄�(𝑔𝜆 mod𝑀2))−1 mod 𝑀 . Repeat 4 as needed.

8. (𝑀,𝑔) and (𝜆, 𝑢) are the public and private keys, respectively.

Encryption is performed using Eq.  (4). 
𝐸𝑀 (𝑚, 𝑟) = 𝑐 = 𝑔𝑚𝑟𝑀 mod 𝑀2 (4)

where 𝑟 ∈ Z𝑀  and is a randomly generated scalar. Z∗
𝑀2  denotes the 

multiplicative group of integers modulo 𝑀2. 𝑐 is called ciphertext, and 
is the encrypted form of plaintext 𝑚. Decryption is done using Eq.  (5). 
𝐷𝑀 (𝑐) = 𝑚 = �̄�(𝑐𝜆 mod 𝑀2)𝑢 mod 𝑀 (5)

Paillier encryption only works for non-negative integers, but the 
cryptosystem can be modified to work for arbitrary scalars by quan-
tizing and mapping (Darup et al., 2017). Quantization maps from the 
set of real-numbers R to the set of signed fixed-point binary numbers, 
Q𝑙,𝑑 where 𝑙 is the total bit length 𝑙 and 𝑑 is the fractional bit length. 
This set can be represented using the two’s complement (Intel, 2024) 
representation as Q𝑙,𝑑 = {𝑞 ∈ Q|𝑞 = −2𝑙−𝑑−1𝛽𝑙 +

∑𝑙−1
𝑖=1 2

𝑖−𝑑−1𝛽𝑖, 𝛽𝑖 ∈
{0, 1}∀𝑖 = 1⋯ 𝑙}. Quantization can be done with Eq.  (6): 

𝑔𝑙,𝑑 ∶ R → Q𝑙,𝑑

𝑔𝑙,𝑑 (𝑎) ∶=  arg min 
𝑞∈Q𝑙,𝑑

|𝑎 − 𝑞| (6)

The quantized data can now be bijectively mapped to a subset of non-
negative integers (Darup et al., 2017). This subset is called the message 
space Z𝑀 : 

𝑓𝑀,𝑑 ∶ Q𝑙,𝑑 → Z𝑀

𝑓𝑀,𝑑 (𝑞) ∶= 2𝑑𝑞 mod 𝑀
(7)

To recover data after decryption is done, the mapping must be undone 
as follows: 
𝑓−1
𝑀,𝑑 ∶ Z𝑀 → Q𝑙,𝑑 (8)

𝑓−1
𝑀,𝑑 (𝑚) ∶=

1
2𝑑

{

𝑚 −𝑀 if 𝑚 ≥ 𝑀 −𝑀∕∕3 + 1
𝑚 otherwise

(9)

In Eq.  (9), the ‘//’ operation is known as integer division. Unlike 
traditional division, integer division truncates the decimal values. In 
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Python, negative results are instead floored, or truncated away from 
0. In this particular encoding of Pallier Encryption, roughly 1/3 of 
the message space is allocated solely to detecting overflow. Because 
the positive quadrant of the message space includes 0, the effective 
maximum integer stored in the message space is 𝑀∕∕3 − 1, and thus 
the negative quadrant begins at 𝑀 − (𝑀∕∕3 − 1) as shown above.

Overflow occurs when values become so large in the message space 
that they move from the positive subset to the negative subset, which 
is possible due to the bijective mapping of negative values to the upper 
half of the message space. This can occur from arithmetic operations 
that gradually increase the precision through subsequent multiplication 
operations or from operations that yield large numbers that cannot 
be contained within the defined message space. Thus, by allocating a 
third of the message space as invalid, there exists a buffer for detecting 
overflow at the expense of shrinking the usable message space.

Addition can be done using Eq.  (10). 
𝐷𝑀 ((𝐸𝑀 (𝑚1, 𝑟1) ⋅ 𝐸𝑀 (𝑚2, 𝑟2))mod𝑀2) = (𝑚1 + 𝑚2)mod𝑀 (10)

Note that the bijective mapping from earlier can map the same number 
to different values in the message space if the fractional bit length 𝑑 is 
different. This can cause issues when adding numbers, so the two terms 
are remapped to the larger of their respective 𝑑 values prior to adding. 
To allow for this, 𝑑 is tracked for encrypted objects. 
𝑚𝑑2 = 𝑚𝑑12

𝑑1−𝑑2 ∶ 𝑑1 < 𝑑2 (11)

Multiplication can be done with Eq.  (12). 
𝐷𝑀 (𝐸𝑀 (𝑚1, 𝑟1)𝑘mod𝑀2) = 𝑘𝑚1mod𝑀 (12)

Unlike addition, the exponent is plaintext, meaning one of the terms 
must be plaintext for multiplication to occur. If we substitute Eq.  (7) 
into the plaintext forms it can be seen that multiplication yields a new 
𝑑 equivalent to adding the respective 𝑑 values from the two multiplied 
terms.

3. Encrypted ML-based MPC

3.1. ML modeling of nonlinear systems

Given the high degree of coupling and complexity of nonlinear 
systems, deriving first-principles models for such systems may be im-
practical or infeasible in many real-world applications. To address 
this limitation, ML techniques, particularly recurrent neural networks 
(RNNs), have emerged as powerful tools for capturing the behavior of 
nonlinear systems using time-series data. Specifically, RNNs are well 
suited for modeling dynamic systems due to their ability to capture 
temporal dependencies and process sequential data. Unlike feedforward 
neural networks, which assume independence between inputs, RNNs 
use internal memory to store information about previous inputs, allow-
ing them to learn from past states and predict future system behavior. 
The formulation of RNNs can be presented as follows: 
ℎ𝑡 = 𝜎ℎ

(

𝑊ℎℎ𝑡−1 +𝑊𝑖𝑧𝑡
)

(13a)

�̂�𝑡 = 𝜎𝑦
(

𝑊𝑜ℎ𝑡
)

(13b)

where 𝑧𝑡 represents the RNN input, ℎ𝑡 represents the hidden states, �̂�𝑡
represents the output, The weight matrices 𝑊𝑖, 𝑊𝑜, and 𝑊ℎ are associ-
ated with the input vector, output layer, and hidden states, respectively. 
The activation functions applied to each element in the hidden and 
output layers are represented by 𝜎ℎ and 𝜎𝑦, respectively.

In this work, the RNN is constructed to capture the process dynamic 
behavior of the system of Eq.  (1), serving as the predictive model for 
the MPC framework. Specifically, the RNN receives the current state 
𝑥(𝑡) and manipulated input 𝑢(𝑡) at 𝑡 = 𝑡𝑘 to predict the future state of 
the nonlinear system of Eq.  (1) over 𝑡 ∈ [

𝑡𝑘, 𝑡𝑘 +𝑁𝛥
]

, where 𝛥 is the 
sampling period and 𝑁 is the prediction horizon. To accomplish this, 
3 
a dataset of state trajectories under randomized initial conditions and 
manipulated inputs within their operating constraints is first collected. 
Next, the dataset is preprocessed to ensure consistency and improve 
the learning process by using standard scalers for each dimension. 
Additionally, the dataset is segmented into training, validation, and 
testing sets to evaluate the performance of the model and avoid over-
fitting. Finally, a gradient-based optimizer (e.g., Adam) is employed 
to minimize the loss function (i.e., mean squared error (MSE)), which 
quantifies the difference between the predicted and true system states.

It is assumed that there is a stabilizing feedback controller 𝑢 =
𝛷𝑛𝑛(𝑥) ∈ 𝑈 for the RNN model, which is a Lipschitz continuous 
function and can ensure exponential stability of the origin within an 
open neighborhood �̂� around the origin. This implies that there exists a 
𝐶1 Control Lyapunov function 𝑉 (𝑥) such that the following inequalities 
are satisfied for all 𝑥 in �̂�: 
𝑐1|𝑥|

2 ≤ 𝑉 (𝑥) ≤ 𝑐2|𝑥|
2 (14a)

𝜕𝑉 (𝑥)
𝜕𝑥

𝐹𝑛𝑛
(

𝑥,𝛷𝑛𝑛(𝑥)
)

≤ −𝑐3|𝑥|
2 (14b)

|

|

|

|

𝜕𝑉 (𝑥)
𝜕𝑥

|

|

|

|

≤ 𝑐4|𝑥| (14c)

where 𝑐1, 𝑐2, 𝑐3, 𝑐4 are positive constants, and 𝐹𝑛𝑛 is the RNN model. 
The stability region 𝛺𝜌 is characterized as a level set of 𝑉  within the 
set where �̇� ≤ −𝑘𝑉 (𝑥) is satisfied using 𝑢 = 𝛷𝑛𝑛(𝑥) ∈ 𝑈 . While the 
Lyapunov function designed for the RNN model may not be the same 
as that for Eq.  (1), we will use the same notation, 𝑉 , throughout this 
manuscript for simplicity, with a slight abuse of notation.

Remark 1.  In this work, we consider traditional machine learning 
methods that train an RNN model on a central server using historical 
process operation data. However, it should be noted that there may be 
potential data security and privacy issues during the modeling stage, 
particularly for modeling nonlinear distributed systems. Traditional 
centralized training methods require the aggregation of all data on 
a central server for processing, which can expose data to insecure 
networks during transmission or storage, increasing the risk of data 
breaches or unauthorized access. One promising approach to address 
this issue is federated learning (Xu and Wu, 2024), a decentralized 
learning technique that allows individual systems to collaboratively 
train ML models without sharing raw data. Federated learning keeps 
data locally, exchanging only model weights between subsystems, and 
therefore ensures data privacy in modeling of large-scale systems.

3.2. ML-based MPC

In this work, we develop an encrypted ML-based MPC framework 
for the nonlinear system of Eq.  (1), which incorporates secure com-
munication between sensors, controllers, and actuators. The goal is 
to optimize closed-loop performance under MPC while ensuring data 
security across communication links. As shown in Fig.  1, the sensor 
measurements 𝑥(𝑡) are encrypted and transmitted to the MPC to prevent 
eavesdropping or tampering. The encrypted states are then decrypted to 
obtain the quantized states ̂𝑥(𝑡), which are then used by the ML model 
within the MPC to predict future states over a prediction horizon 𝛥. 
The MPC solves an optimization problem at each time step to compute 
the optimal manipulated inputs 𝑢(𝑡), which are then encrypted before 
transmitting to the actuator. At the actuator, the encrypted manipulated 
input signals are decrypted to obtain the quantized control signal ̂𝑢(𝑡), 
which is implemented to the nonlinear process. The proposed closed-
loop system secures both sensor-to-controller and controller-to-actuator 
communication while maintaining the desired control performance.

Specifically, the optimization problem of the ML-based MPC is 
shown as follows: 

 = min
𝑡𝑘+𝑁

𝐿(�̃�(𝑡), 𝑢(𝑡))𝑑𝑡 (15a)

𝑢∈𝑆(𝛥)∫𝑡𝑘
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Fig. 1. Framework of closed-loop system under encrypted ML-based MPC.
 s.t. ̇̃𝑥(𝑡) = 𝐹𝑛𝑛(�̃�(𝑡), 𝑢(𝑡)) (15b)

�̃�(𝑡𝑘) = 𝑥(𝑡𝑘) (15c)

𝑢(𝑡) ∈ 𝑈, ∀𝑡 ∈
[

𝑡𝑘, 𝑡𝑘+𝑁
)

(15d)

�̇�
(

𝑥(𝑡𝑘), 𝑢(𝑡𝑘)
)

≤ �̇�
(

𝑥(𝑡𝑘), 𝛷𝑛𝑛
(

𝑥(𝑡𝑘)
))

,

 if 𝑥(𝑡𝑘) ∈ 𝛺𝜌∖𝛺𝜌min

(15e)

𝑉 (�̃�(𝑡)) ≤ 𝜌min, ∀𝑡 ∈
[

𝑡𝑘, 𝑡𝑘+𝑁
)

,  if 𝑥(𝑡𝑘) ∈ 𝛺𝜌min
(15f)

where �̃� represent the predicted state trajectory, 𝑆(𝛥) represent the 
set of piecewise constant functions with the sampling period 𝛥, 𝑁
is the number of sampling periods in the prediction horizon, and 
�̇� (𝑥, 𝑢) is the time derivative of 𝑉 (𝑥), i.e., 𝜕𝑉

𝜕𝑥 𝐹𝑛𝑛 (𝑥, 𝑢). The objective 
function of Eq.  (15a) is formulated by minimizing the integral of the 
cost function 𝐿(�̃�(𝑡), 𝑢(𝑡)) over the prediction horizon. The RNN model 
𝐹𝑛𝑛 is the predictive model for MPC to optimize control actions. The 
constraints specified in Eqs.  (15e) and (15f) are imposed to guarantee 
the closed-loop stability within the defined stability region.

3.3. Closed-loop stability of encrypted ML-MPC

In the closed-loop design illustrated in Fig.  1, there are sources 
of error. Specifically, state quantization errors exist in the sensor-
controller communication link, and input quantization errors occur in 
the controller-actuator communication link. According to the mapping 
in Eq.  (6), these quantization errors are bounded as follows: 

|𝑥(𝑡) − 𝑥(𝑡)| ≤ 𝜂12−𝑑 (16a)

|𝑢(𝑡) − �̂�(𝑡)| ≤ 𝜂22−𝑑 (16b)

where 0 ≤ 𝜂1, 𝜂2 ≤ 0.5, and 𝑑 represent the quantization parameter 
in the mapping described by Eq.  (6). Quantization rounds numbers to 
the nearest element in the set Q𝑙,𝑑 , which is equivalent to rounding 
to the nearest number that is divisible by the precision term 2−𝑑 . 
Thus, the quantization error is bounded by the worst-case rounding 
error, which is the magnitude of this precision term. The coefficients 
𝜂1 and 𝜂2 account for the non worst-case errors. Given the quantization 
error introduced into the input, the nonlinear system of Eq.  (1) in the 
closed-loop design of Fig.  1 can be presented as follows: 
�̇� = 𝐹 (𝑥, �̂�) = 𝑓 (𝑥) + 𝑔(𝑥)�̂�

= 𝑓 (𝑥) + 𝑔(𝑥)
(

𝑢 + 𝑒2
) (17)

where 𝑒2 = �̂�(𝑡) − 𝑢(𝑡) and |
|

𝑒2|| ≤ 𝜂22−𝑑 . Additionally, an error occurs 
in the computed manipulated inputs because the MPC processes the 
quantized state ̂𝑥 instead of the actual state 𝑥. Based on the stabilizing 
4 
control law 𝑢 = 𝛷𝑛𝑛(𝑥) ∈ 𝑈 , the resulting error in the control input 
remains bounded as follows: 

|𝛷𝑛𝑛(𝑥) −𝛷𝑛𝑛(𝑥)| ≤ 𝐿1|𝑥 − 𝑥| ≤ 𝐿′
12

−𝑑 (18)

where 𝐿1 is the Lipschitz constant for the controller 𝛷𝑛𝑛(𝑥) and 𝐿′
1 =

𝐿1𝜂1. Additionally, to demonstrate that the origin of Eq.  (1) can be 
rendered exponentially stable ∀𝑥 ∈ 𝛺𝜌 under the controller 𝛷𝑛𝑛(𝑥)
designed for the RNN model, we prove that �̇�  for the system of Eq. 
(1) can still be rendered negative under 𝑢 = 𝛷𝑛𝑛(𝑥) ∈ 𝑈 . Based on Eq. 
(14b), the time-derivative of 𝑉  is derived as follows: 

�̇� =
𝜕𝑉 (𝑥)
𝜕𝑥

𝐹
(

𝑥,𝛷𝑛𝑛(𝑥)
)

=
𝜕𝑉 (𝑥)
𝜕𝑥

(

𝐹𝑛𝑛
(

𝑥,𝛷𝑛𝑛(𝑥)
)

+ 𝐹
(

𝑥,𝛷𝑛𝑛(𝑥)
)

− 𝐹𝑛𝑛
(

𝑥,𝛷𝑛𝑛(𝑥)
))

≤ −𝑐3|𝑥|
2 + 𝑐4|𝑥|

(

𝐹
(

𝑥,𝛷𝑛𝑛(𝑥)
)

− 𝐹𝑛𝑛
(

𝑥,𝛷𝑛𝑛(𝑥)
))

(19)

If the modeling error is trained to satisfy |𝐹 (

𝑥,𝛷𝑛𝑛(𝑥)
)

− 𝐹𝑛𝑛(𝑥,𝛷𝑛𝑛(𝑥))|
≤ 𝛽|𝑥| for all states and inputs, and 𝛽 satisfies 𝛽 < 𝑐3∕𝑐4, then we have 
�̇� ≤ −𝑐3|𝑥|

2 ≤ 0 where 𝑐3 = −𝑐3 + 𝑐4𝛽 > 0. Therefore, the closed-loop 
state of the nonlinear system of Eq.  (1) converges to the origin under 
the control law 𝑢 = 𝛷𝑛𝑛(𝑥) ∈ 𝑈 for all 𝑥0 ∈ 𝛺𝜌. 

Theorem 1.  Consider the nonlinear system of Eq.  (1) with an initial state 
𝑥0 ∈ 𝛺𝜌. The origin of Eq.  (17) is practically stable under encrypted ML-
MPC designed with the stabilizing control law 𝑢 = 𝛷𝑛𝑛(𝑥) ∈ 𝑈 . This implies 
that for all 𝑥0 ∈ 𝛺𝜌, the closed-loop state 𝑥(𝑡) remains within 𝛺𝜌 at all 
times, and the following inequalities are satisfied: 

�̇� ≤ −𝑐5|𝑥|
2, ∀ |𝑥| ≥

𝑐42−𝑑
(

𝛾1 + 𝛾2
)

𝑐3𝜃
= 𝜇 (20a)

lim sup
𝑡→∞

|𝑥(𝑡)| ≤ 𝑏 (20b)

Proof.  The time derivative of 𝑉  can be expressed as follows based on 
the nonlinear system of Eq.  (17): 

�̇� = 𝜕𝑉
𝜕𝑥

𝐹 (𝑥, �̂�)

= 𝜕𝑉
𝜕𝑥

𝐹
(

𝑥,𝛷𝑛𝑛(𝑥) + 𝑒2
)

= 𝜕𝑉
𝜕𝑥

[

𝑓 (𝑥) + 𝑔(𝑥)
(

𝛷𝑛𝑛(𝑥) + 𝑒2
)]

= 𝜕𝑉
𝜕𝑥

[

𝑓 (𝑥) + 𝑔(𝑥)
(

𝛷𝑛𝑛(𝑥) −𝛷𝑛𝑛(𝑥) +𝛷𝑛𝑛(𝑥) + 𝑒2
)]

= 𝜕𝑉
𝜕𝑥

(𝑓 (𝑥)+𝑔(𝑥)𝛷𝑛𝑛(𝑥))+
𝜕𝑉
𝜕𝑥

𝑔(𝑥)(𝛷𝑛𝑛(𝑥)−𝛷𝑛𝑛(𝑥))+
𝜕𝑉
𝜕𝑥

𝑔(𝑥)𝑒2

(21)

The following expression can be derived based on Eq.  (19): 

�̇� ≤ −𝑐 |𝑥|2 + 𝜕𝑉 𝑔(𝑥)(𝛷 (𝑥) −𝛷 (𝑥)) + 𝜕𝑉 𝑔(𝑥)𝑒 (22)
3 𝜕𝑥 𝑛𝑛 𝑛𝑛 𝜕𝑥 2
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By applying the inequalities from Eqs. (2b), (16), (17), and (19), the 
following result can be obtained: 

�̇� ≤ −𝑐3|𝑥|
2 + 𝑐4𝛾1|𝑥|2−𝑑 + 𝑐4𝛾2|𝑥|2−𝑑

≤ −𝑐3|𝑥|
2 + 𝑐4|𝑥|2−𝑑

(

𝛾1 + 𝛾2
)

≤ −(1 − 𝜃)𝑐3|𝑥|
2 − 𝜃𝑐3|𝑥|

2 + 𝑐42−𝑑
(

𝛾1 + 𝛾2
)

|𝑥|

(23)

where 𝑔(𝑥) in Eq.  (22) is assumed to be bounded by 𝛾, ∀𝑥 ∈ 𝛺𝜌, 𝛾 > 0, 
𝛾1 = 𝛾𝐿′

1, and 𝛾2 = 𝛾𝜂2. Therefore, if the condition of Eq.  (20a) on |𝑥|
is satisfied, that is, |𝑥| ≥ 𝑐42−𝑑(𝛾1+𝛾2)

𝑐3𝜃
= 𝜇, the following holds: 

�̇� ≤ −(1 − 𝜃)𝑐3|𝑥|
2 ≤ −𝑐5|𝑥|

2 (24)

where 𝑐5 = (1 − 𝜃)𝑐3. Therefore, it follows that �̇�  is negative for all 
𝑥 ∈ 𝛺𝜌 that meet the condition specified in Eq.  (20a) based on Eq. 
(24).

Given that 𝛺𝜌 is a level set of 𝑉  and that �̇�  is negative for all 𝑥 ∈ 𝛺𝜌, 
it follows that the closed-loop state 𝑥(𝑡) remains within 𝛺𝜌 at all times. 
Additionally, by applying theorem 4.18 from Ref. Khalil (2002), it can 
be derived that: 
lim sup
𝑡→∞

|𝑥(𝑡)| ≤ 𝑏 (25)

where 𝑏 is a positive constant that can be represented as a class 
function of 𝜇. As the quantization parameter 𝑑 increases towards infin-
ity, 𝜇 approaches zero based on its definition in Eq.  (20a). Therefore, 
the ultimate bound converges to zero, indicating that larger values 
of 𝑑 reduce the error between the state and input trajectories of the 
encrypted and non-encrypted control systems. This confirms that, for 
sufficiently large 𝑑, the closed-loop states of Eq.  (17) are ultimately 
uniformly bounded under 𝑢 = 𝛷𝑛𝑛(𝑥) ∈ 𝑈 . □

Unlike uncertainties, quantization losses due to encryption are both 
strictly bounded and adjustable. Theorem  1 demonstrates how sta-
bility is guaranteed when applying ML-based Lyapunov-based control 
assuming a sufficiently low modeling error in the dynamics RNN model 
and an encryption level that can be tolerated by the closed-loop sys-
tem under ML-based Lyapunov-based control. In other words, through 
the analysis, given the robustness margin, expressed in terms of the 
bound in the Lyapunov function derivative along the trajectory of 
the closed-loop system under ML-based Lyapunov-based control, one 
can determine the encryption level that leads to an additional error 
contribution for which closed-loop stability is maintained. This result 
is used to establish closed-loop stability under encrypted ML-MPC in 
Theorem  2 below.

Theorem 2.  Consider the nonlinear system of Eq.  (1), operating under 
the closed-loop encrypted LMPC framework with the stabilizing controller 
𝑢 = 𝛷𝑛𝑛(𝑥) ∈ 𝑈 and the initial state 𝑥0 ∈ 𝛺𝜌. Let 𝜖𝑤 > 0, 𝛥 > 0 and 
𝜌 > 𝜌min > 𝜌𝑠 satisfy, 
𝜌min = max{𝑉 (𝑥(𝑡 + 𝛥)) ∣ 𝑉 (𝑥(𝑡)) ≤ 𝜌𝑠} (26a)
−𝑐3
𝑐2

𝜌𝑠 + 𝐿′
𝑥𝑀𝐹𝛥 + 𝐿′

𝑤𝛿𝑠 ≤ −𝜖𝑤 (26b)

where |𝑒2| ≤ 𝜂22−𝑑 = 𝛿 and 𝐿′
𝑤 > 0. Then, the closed-loop state 𝑥(𝑡) is 

always bounded in 𝛺𝜌 and is ultimately bounded in 𝛺𝜌min .

Proof.  The proof closely follows the approach used for Theorem  2 
in Suryavanshi et al. (2023) and involves the following steps. Consider 
the state 𝑥𝑡𝑘 ∈ 𝛺𝜌∖𝛺𝜌𝑠 . The time-derivative of 𝑉  under the control 
inputs calculated by the LMPC of Eq. (15) for the nonlinear system 
of Eq.  (17) at 𝑡𝑘 can be written as: 

�̇� =
𝜕𝑉 (𝑥(𝑡))

𝜕𝑥
𝐹
(

𝑥(𝑡), 𝑢(𝑡𝑘), 𝑒2
)

=
𝜕𝑉

(

𝑥𝑡𝑘
)

𝜕𝑥
𝐹
(

𝑥𝑡𝑘 , 𝑢(𝑡𝑘)
)

+
𝜕𝑉 (𝑥(𝑡))

𝜕𝑥
𝐹
(

𝑥(𝑡), 𝑢(𝑡𝑘), 𝑒2
)

−
𝜕𝑉

(

𝑥𝑡𝑘
)

𝐹
(

𝑥 , 𝑢(𝑡 )
)

(27)
𝜕𝑥 𝑡𝑘 𝑘

5 
In the encrypted LMPC, the constraint of Eq.  (15e) ensures that, if 
𝑥𝑡𝑘 ∈ 𝛺𝜌∖𝛺𝜌min , then the closed-loop state is driven towards the origin 
at 𝑡𝑘+1 (to a lower level set of 𝑉 ). Based on the inequality of Eq.  (2b), 
it follows from Eq.  (27) that: 

�̇� ≤ − 𝑐3
|

|

|

𝑥𝑡𝑘
|

|

|

2
+

𝜕𝑉 (𝑥(𝑡))
𝜕𝑥

𝐹
(

𝑥(𝑡), 𝑢(𝑡𝑘), 𝑒2
)

−
𝜕𝑉

(

𝑥𝑡𝑘
)

𝜕𝑥
𝐹
(

𝑥𝑡𝑘 , 𝑢(𝑡𝑘)
)

(28)

Based on the fact that the error, |𝑒2| ≤ 𝜂22−𝑑 = 𝛿 is bounded, the 
Lipschitz conditions of Eq. (3), and the inequality of Eq.  (2a), it follows 
from Eq.  (28) that: 
�̇� ≤ −

𝑐3
𝑐2

𝜌𝑠 + 𝐿′
𝑥|𝑥(𝑡) − 𝑥𝑡𝑘 | + 𝐿′

𝑤𝛿 (29)

where 𝐿′
𝑤 > 0. Due to the continuity of 𝑥(𝑡), ∀𝑡 ∈ [𝑡𝑘, 𝑡𝑘+1], we can 

write that |𝑥(𝑡) − 𝑥𝑡𝑘 | ≤ 𝑀𝐹𝛥, ∀𝑡 ∈ [𝑡𝑘, 𝑡𝑘+1]. Using this bound, it follows 
from Eq.  (29) that: 
�̇� ≤ −

𝑐3
𝑐2

𝜌𝑠 + 𝐿′
𝑥𝑀𝐹𝛥 + 𝐿′

𝑤𝛿 (30)

Thus, if −𝑐3𝑐2
𝜌𝑠 + 𝐿′

𝑥𝑀𝐹𝛥 + 𝐿′
𝑤𝛿𝑠 ≤ −𝜖𝑤, then �̇� ≤ −𝜖𝑤 for any 𝑥𝑡𝑘 ∈

𝛺𝜌 ⧵ 𝛺𝜌𝑠 . This establishes that the state of the closed-loop system is 
always bounded in 𝛺𝜌, and it ultimately converges to 𝛺𝜌𝑠 ⊆ 𝛺𝜌min  and 
then remains there. □

4. Application to a chemical reactor

A non-isothermal continuous stirred tank reactor (CSTR), assumed 
to be well-mixed, is considered for the simulation. The reactor has an 
irreversible, second-order, exothermic reaction in which a reactant 𝐴
is transformed into product 𝐵 (𝐴 → 𝐵) in the CSTR. Heat is added or 
removed via a heating jacket at a rate 𝑄. The dynamic model of the 
CSTR is expressed as follows: 
𝑑𝐶𝐴
𝑑𝑡

= 𝐹
𝑉
(𝐶𝐴0 − 𝐶𝐴) − 𝑘0𝑒

−𝐸
𝑅𝑇 𝐶2

𝐴

𝑑𝑇
𝑑𝑡

= 𝐹
𝑉
(𝑇0 − 𝑇 ) − 𝛥𝐻

𝜌𝐿𝐶𝑝
𝑘0𝑒

−𝐸
𝑅𝑇 𝐶2

𝐴 + 𝑄
𝜌𝐿𝐶𝑝𝑉

(31)

where 𝐶𝐴0 is the feed concentration of reactant 𝐴, 𝑄 is the rate of 
heat input, 𝐶𝐴 is the concentration of reactant 𝐴, and 𝑇  is the reactor 
temperature.

4.1. Control problem formulation and MPC design

The rate of heat input (𝑄) and the feed concentration of reactant 𝐴
(𝐶𝐴0) are chosen as the control inputs. The state variables and control 
inputs are defined in deviation variable form relative to their steady 
state. The resulting state-space is defined as 𝑥 = [𝐶𝐴 − 𝐶𝐴𝑠

, 𝑇 − 𝑇𝑠], 
and the resulting control input variables are defined as 𝑢 = [𝐶𝐴0 −
𝐶𝐴0𝑠 , 𝑄 − 𝑄𝑠]. The control inputs are bounded such that [−3.5 kmol

m3 ≤
𝐶𝐴0 ≤ 3.5 kmol

m3 ] and [−5 × 105 kJ
h ≤ 𝑄 ≤ 5 × 105 kJ

h ]. The value of the 
control inputs are dictated by the MPC defined in Eq. (15). Relevant 
parameters used in the dynamic model are shown in Table  1.

To demonstrate the importance of a high precision parameter, the 
system will be designed with 3 variants: an unencrypted control system, 
a system with 𝑑 = 4 precision, and a system with 𝑑 = 12 precision. 
As discussed in Section 2.2, real numbers are not natively supported, 
which is why data must be quantized and mapped prior to encryption. 
The precision coefficient 𝑑 implies that our data is rounded to the near-
est 2−𝑑 which introduces an error upwards of 2−𝑑−1 to any encrypted 
values.

The MPC for this system operates with a sampling time of 0.01 h
(36 s) over 12 iterations for a total operating time of 0.12 h. Because no 
physical plant was used, the sensor readings were calculated using the 
dynamic model shown in Eq.  (31) with the parameters shown in Table 
1. Integration was performed with the forward Euler method with an 
integration step size of ℎ = 1 × 10−4 h. The MPC uses the ML model to 
𝑐
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Fig. 2. Impact of (d = 4) precision compared to (d = 12) precision for concentration.
Table 1
Parameter values for the chemical process example.
 Name Label Value Units  
 Flow rate 𝐹 5 m3∕h  
 Reactor volume 𝑉 1 m3  
 Pre-exponential factor 𝑘0 8.46𝑒6 m3∕(kmol h) 
 Activation energy 𝐸 5𝑒4 kJ∕kmol  
 Gas constant 𝑅 8.314 kJ/(kmol K) 
 Liquid density 𝜌𝐿 1000 kg∕m3  
 Enthalpy of reaction 𝛥𝐻 −1.15𝑒4 kJ∕kmol  
 Inlet temperature 𝑇0 300 K  
 Steady-state heat input rate 𝑄𝑠 0 kJ∕h  
 Steady-state feed concentration 𝐶𝐴0𝑠 4 kmol∕m3  
 Steady-state concentration 𝐶𝐴𝑠 1.9537 kmol∕m3  
 Steady-state temperature 𝑇𝑠 401.8727 K  
 Specific heat 𝐶𝑝 0.231 kJ/(kg K)  

calculate its state trajectory based on the current state measurements 
from the simulation of the dynamic model. The MPC uses a prediction 
horizon of 2 sampling periods. The Lyapunov function used to ensure 
stability is of the form 𝑉 = 𝑥𝑇 𝑃𝑥 where 𝑃  is defined in Eq.  (32): 

𝑃 =
[

1060 22
22 0.52

]

(32)

Using this Lyapunov function, we define the two operating modes based 
on if the value of this function exceeds 𝜌𝑚𝑖𝑛 = 2. If true, we enforce 
Eq.  (15e) where �̇�  is required to be less than −𝑘𝑉 (�̃�(𝑡)), where 𝑘 > 0, 
since the stability region is characterized for the set of states that satisfy 
�̇� ≤ −𝑘𝑉 (�̃�(𝑡)) for all states within 𝛺𝜌. If false, then we enforce Eq. 
(15f). The objective function for MPC is chosen to be: 
𝐿(�̃�(𝑡), 𝑢(𝑡)) = (𝑇 − 𝑇𝑠)2 + 1000(𝐶𝐴 − 𝐶𝐴𝑠

)2 (33)

Remark 2.  IPOPT is used as the optimizer in the MPC. A tolerance of 
1𝑒−5 was used with a max of 1000 iterations to allow for a sufficiently 
locally optimal solution to be found. The necessary gradients for the 
optimizer are solved numerically with a step-size of 0.1. The resulting 
MPC solutions are found within a sufficiently fast time frame such that 
the total computation time, including encryption and decryption is less 
than the sampling time of the process. Data samples are generated by 
running open-loop simulations with various initial states and manip-
ulated inputs following the method in our previous work (Wu et al., 
2019). Specifically, we collected approximately 10,000 data samples by 
evenly distributing data points for two states – reactant concentration 
and reactor temperature – and two manipulated inputs – inlet reactant 
concentration and heat input rate – within their respective ranges. The 
RNN model achieves a sufficiently small modeling error of approxi-
mately 10−5. The model consists of two hidden layers with 128 and 
6 
64 neurons, respectively, and employs the Adam optimizer for training. 
The mean squared error (MSE) is used as the loss function to minimize 
prediction errors. To prevent overfitting, we apply an early stopping 
mechanism, which monitors the validation loss and halts training when 
no significant improvement is observed.

Remark 3.  The encryption method of choice is the Pallier cryptosys-
tem, although other encryption methods will also work for the given 
design as no arithmetic operations are done on the encrypted data.

Remark 4.  The implementation of the Pallier cryptosystem is done 
by the Python Pallier package (Data61, 2013), which uses base 16 
precision as opposed to our base 2 precision. This is why the small 
precision coefficient 𝑑 is chosen as 4 instead of 1, as a value of 1 
would be rounded to 4 because the base 16 exponent is calculated by 
⌊log16 2−1⌋ = −1 and thus the precision is 16−1 = 2−4.

4.2. Simulation results

As shown in Figs.  2 to 5, the impact of encryption is initially 
negligible, but as time goes on the system begins to deviate from the 
nominal closed-loop trajectories; the light blue curves in Figs.  2 to 5 
correspond to the closed-loop states and the manipulated input profiles 
under the ML-MPC system in the absence of encryption. Although the 
overall behavior of each term remains similar, the quantization errors 
can compound with system dynamics to produce larger errors than 
what might be expected. This is best seen in Fig.  4 where the 𝑑 = 4
precision plot produces an input at 𝑡 = 0.05 h that is visibly larger than 
the unencrypted system, whereas the 𝑑 = 12 precision plot yields a far 
more similar input to the unencrypted system. Furthermore, Figs.  2 to 3 
show that the impact of quantization errors is minimal with respect 
to tracking control as neither plot shows oscillatory behavior, offset 
tracking, or delayed convergence. The primary impact of quantization 
errors is also seen in the control inputs as discussed earlier.

5. Two-layer architecture and distributed scheme of encrypted 
ML-based MPC

In this section, we demonstrate that the proposed encrypted ML-
based MPC method can be applied to various control schemes with 
different control objectives. Specifically, we consider the two-layer con-
trol framework and the iterative distributed scheme that optimize pro-
cess economic performance and control large-scale nonlinear systems, 
respectively.
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Fig. 3. Impact of (d = 4) precision compared to (d = 12) precision for temperature.
Fig. 4. Impact of (d = 4) precision compared to (d = 12) precision for inlet concentration.
Fig. 5. Impact of (d = 4) precision compared to (d = 12) precision for heat input.
5.1. Two-layer architecture of encrypted ML-based EMPC

Traditional tracking MPCs are equipped with an upper-tier op-
timizer that determines the optimal steady-states to maximize the 
economic profits (e.g., energy consumption and efficiency). Economic 
7 
MPC (EMPC) can be utilized to improve economic performance while 
ensuring closed-loop stability. In this subsection, the proposed en-
crypted ML-based MPC is incorporated into the two-layer architecture 
(see Fig.  6) to optimize economic performance while maintaining the 
security and stability of the closed-loop system.
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Fig. 6. Encrypted ML-based EMPC with two-layer architecture.
 

The encrypted ML-based EMPC scheme in Fig.  6 consists of two 
layers, where the upper layer contains the EMPC using the decrypted 
plaintext, and the lower layer is with a set of linear controllers (i.e., PI 
controllers) using encrypted information. The communication channels 
using encrypted data, as illustrated in Fig.  6, are highlighted in blue. 
Specifically, in Fig.  1, at time 𝑡𝑘, the sensor signal 𝑥(𝑡𝑘) is encrypted 
as 𝑒1, and then the ciphertext 𝑒1 is transmitted to the ML-based EMPC, 
where the state information is decrypted to plaintext �̂�(𝑡𝑘). The optimal 
state trajectory over [𝑡𝑘, 𝑡𝑘 + 𝛥) is calculated in the EMPC using the 
decrypted state signal �̂�(𝑡𝑘), and the machine learning model is used to 
predict the system dynamics. Next, the optimal state trajectory obtained 
by the EMPC is encrypted and transmitted to the lower layer with 
linear controllers. Due to the homomorphic property of the Pailier 
cryptosystem, the linear PI controller is selected to generate the control 
input signal in the encrypted space with the encrypted set point and 
encrypted state signals. The encrypted control input is transmitted to 
the actuator, which has access to the private key to decrypt the input 
signal to plaintext �̂�(𝑡𝑘). The two controllers in the upper and lower 
layers are working together to improve the economic performance of 
the encrypted ML-based EMPC scheme while ensuring the security and 
stability of the closed-loop system.

The EMPC in the upper layer can be represented by the following 
optimization problem: 

 =max
𝑢∈𝑆(𝛥)∫

𝑡𝑘+𝑁

𝑡𝑘
𝐿𝑒(�̃�(𝑡), 𝑢(𝑡)) d𝑡 (34a)

s.t. ̇̃𝑥(𝑡) = 𝐹𝑛𝑛(�̃�(𝑡), 𝑢(𝑡)) (34b)

�̃�(𝑡𝑘) = �̂�(𝑡𝑘) (34c)

𝑢 ∈ 𝑈, ∀ 𝑡 ∈ [𝑡𝑘, 𝑡𝑘+𝑁 ) (34d)

|
̇̃𝑥(𝑡)| ≤ 𝛾𝑆 , ∀ 𝑡 ∈ [𝑡𝑘, 𝑡𝑘+𝑁 ) (34e)

𝑉 (�̃�(𝑡𝑘)) ≤ 𝜌𝑒, ∀ 𝑡 ∈ [𝑡𝑘, 𝑡𝑘+𝑁 ), if �̃�(𝑡𝑘) ∈ 𝛺𝜌𝑒 (34f)

�̇� (�̃�(𝑡𝑘), 𝑢) ≤ �̇� (�̃�(𝑡𝑘)), 𝛷(�̃�(𝑡𝑘)), if �̃�(𝑡𝑘) ∈ 𝛺𝜌∖𝛺𝜌𝑒 (34g)

where 𝐿𝑒(�̃�(𝑡), 𝑢(𝑡)) denotes the economic loss function, and �̃�(𝑡) is pre-
dicted using the RNN model 𝐹𝑛𝑛. In Eq.  (34c), the decrypted plaintext 
�̂�(𝑡𝑘) is utilized to update the state value at 𝑡𝑘 for the EMPC. Unlike 
Eq. (15), a new constraint is introduced in Eq. (34e) to limit the rate 
of change in the reference trajectory, where 𝛾𝑆 is a positive constant. 
Note that the solution of Eq. (34) is the input signal 𝑢, the optimal 
state trajectory 𝑥𝐸 over the time period [𝑡𝑘.𝑡𝑘 + 𝛥) is obtained using 
the predictive model in Eq. (34b) and the input signal is implemented 
in a sample-and-hold fashion. Since the optimal solution of the EMPC 
is transmitted to the PI controller, the limitation in Eq. (34e) ensures 
that the lower layer can track the obtained optimal state trajectory 
𝑥𝐸 . Eqs. (34f) and (34g) are the Lyapunov constraints to guarantee 
the closed-loop stability of the nonlinear system. It is worth noting 
that only linear mathematical operations are permissible in the en-
crypted space. Therefore, in the EMPC, the encrypted state signal is 
8 
decrypted to the plaintext, which is utilized in the calculation. Then, 
the resulting optimal state set point is encrypted into the ciphertext 𝑒2
and transmitted to the linear controller.

The PI controller in the lower layer approximated by the recursive 
rule is described as 
𝑢(𝑡𝑘) = 𝐾𝑃 𝑒(𝑡𝑘) +𝐾𝐼𝑒(𝑡𝑘) + 𝐼𝑡𝑘−1 (35)

where 𝐾𝑃  and 𝐾𝐼  denote the proportional and integral gains, and 𝐼𝑡𝑘−1
is the integral control signal at 𝑡𝑘−1. 𝑒(𝑡𝑘) = �̂�𝐸 (𝑡𝑘) − �̂�(𝑡𝑘) denotes the 
error between the encrypted state set point �̂�𝐸 (𝑡𝑘) via LMPC and the 
encrypted state signal �̂�(𝑡𝑘) via sensor. The control signal generated 
by the PI controller is calculated through a linear operation on the 
encrypted information, remaining in the encrypted space. The control 
signal is transmitted to the actuator, where the encrypted input signal 
is decrypted and converted into the quantized input signal �̂�(𝑡𝑘), which 
is then applied to the nonlinear process.

Connections between the upper and lower tiers can be described as: 
(1) the ML-based EMPC in the upper tier calculates the set-point, and 
transmits the set-point to the lower tier; (2) the decryption is conducted 
and the plaintext is utilized in the calculation of the EMPC, and then 
the optimal solution obtained is encrypted. While in the lower tier, 
the encrypted information is provided to the PI controller, and the 
encrypted input signal is transmitted to the actuator. The two-layer 
encrypted ML-based EMPC scheme in Fig.  6 improves the closed-loop 
performance of the nonlinear system through the collaboration between 
the MPC and PI controller. The ML-based EMPC utilizes the machine 
learning model to predict the system dynamics for the calculation of 
the state set-point with optimal economic profit, and the PI controller 
is designed to track the optimal state trajectory. Since it is calculated 
in the encrypted space (i.e., linear operation of the encrypted state 
set-point from EMPC and the encrypted state signal from sensors), the 
lower layer with linear PI controllers improves the security, of which 
the encrypted control action is transmitted to the actuator. In addition, 
since only the actuator and EMPC have access to the private key for the 
decryption, the risk of cyber-attacks is reduced for the proposed two-
layer framework. Finally, closed-loop stability can be guaranteed with 
selected parameters in the proposed scheme following the procedure 
outlined in Kadakia et al. (2024b).

5.2. Encrypted distributed ML-based MPC

In this subsection, the encrypted distributed ML-based LMPC scheme
is developed for large-scale nonlinear processes. In practice, chemical 
processes are often interconnected, and the presence of multiple input 
and state variables makes controlling such complex nonlinear systems 
challenging. The distributed MPC method consists of multiple individ-
ual MPCs, each dedicated to a specific subsystem. These controllers 
communicate and coordinate with each other to ensure effective control 
of the overall system (Chen et al., 2020, 2021; Kadakia et al., 2024a). 
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Note that communication between individual controllers within the 
closed-loop system increases the risk of cyber-attacks. To mitigate this 
risk, the proposed encrypted method is employed, ensuring secure in-
formation exchange while maintaining control performance and system 
stability. Additionally, the complexity of system dynamics makes it 
challenging to derive an explicit first-principles model. To address this, 
a data-driven neural network model is utilized as the predictive model 
in the distributed MPC scheme.

A nonlinear process network with two interconnected subsystems 
is used as an example to show the encrypted distributed ML-based 
LMPC scheme. The selection of two subsystems is for the simplicity 
of notation, and the proposed method can be readily extended to 
the case with multiple nonlinear subsystems. The proposed encrypted 
distributed ML-based LMPC scheme is illustrated in Fig.  7. Specifically, 
the implementation strategy for the encrypted control scheme is as 
follows:

1. At each sampling time 𝑡𝑘, the state signals 𝑥(𝑡𝑘) from the two 
subsystems are collected by the sensors, and then encrypted 
into the ciphertext 𝑒𝑥, which is transmitted to the individual 
controllers.

2. The ciphertext 𝑒𝑥 is first decrypted to the plaintext �̂�(𝑡𝑘) in each 
individual controller, where it is used in the calculation of the 
ML-based LMPC.

3. At iteration 𝑘 = 1, the 𝑏𝑡ℎ (i.e., 𝑏 = 1, 2) LMPC evaluates the opti-
mal trajectories of the control action 𝑢𝑏(𝑡) for 𝑡 ∈ [𝑡𝑘, 𝑡𝑘+𝑁 ) using 
the quantized state �̂�(𝑡𝑘). For the calculation of 𝑏𝑡ℎ LMPC, the 
neural network model is utilized to predict the state trajectory 
to optimize the control actions. Moreover, it is assumed that the 
control action for the 𝑎𝑡ℎ subsystem is the neural-network-based 
controller 𝛷𝑎

𝑛𝑛(�̂�(𝑡𝑘)), where 𝑎 = 1, 2 and 𝑎 ≠ 𝑏.
4. After the calculation of the first iteration, the control action 
obtained by the 𝑏𝑡ℎ LMPC for the next sampling period is en-
crypted and transmitted to the actuator of the 𝑏𝑡ℎ subsystem. In 
addition, the computed control inputs over 𝑁 sampling times 
for the two LMPCs are encrypted and exchanged between each 
other. For example, the control inputs 𝑢1 obtained by the ML-
based LMPC 1 over [𝑡𝑘, 𝑡𝑘+𝑁 ) is encrypted to the ciphertext 𝑒1, 
and transmitted to the LMPC 2, where they are decrypted to the 
quantized plaintext �̂�1.

5. At iteration 𝑘 > 1:

(a) Each LMPC recalculates the optimal future input trajec-
tory for its own subsystem, based on the decrypted state 
measurement �̂� and the quantized control input �̂� of the 
other subsystems.

(b) Subsequently, the new input trajectory is shared with 
the other LMPC following the encryption and decryption 
process in Step 4. The cost function is calculated and the 
value is stored.

(c) A termination condition is set for the iterative distributed 
LMPC scheme. If the condition is met, the optimal input 
trajectory for the next sampling time is encrypted in each 
LMPC, and the ciphertext is transmitted to the corre-
sponding subsystem. If the termination condition is not 
satisfied, reiterate the aforementioned steps (5.𝑎 → 5.𝑏).

6. The encrypted control action is decrypted at the actuator, and 
the quantized input action �̂�𝑏(𝑡) is implemented at the 𝑏𝑡ℎ sub-
system over one sampling time period.

In Fig.  7, the communication between the sensors, the controllers, 
and the actuators is encrypted, developing a secure information ex-
change scheme for the distributed ML-based MPC. Specifically, the 
state information exchanged between the sensor and the controller 
is encrypted, and the control action is encrypted by the individual 
controller before being transmitted to each subsystem. Moreover, the 
9 
control input trajectory, which is exchanged between the LMPCs in the 
iterative distributed scheme, is encrypted and then transmitted to other 
individual controllers, where the signal is decrypted using the private 
key.

The optimization problem of the 𝑏𝑡ℎ LMPC at iteration 𝑘 = 1 is 
constructed as follows: 

 = min
𝑢𝑏∈𝑆(𝛥)∫

𝑡𝑘+𝑁

𝑡𝑘
𝐿(�̃�(𝑡), 𝛷𝑎

𝑛𝑛(�̃�(𝑡)), 𝑢𝑏(𝑡)) d𝑡, (36a)

s.t. ̇̃𝑥(𝑡) = 𝐹𝑛𝑛(�̃�(𝑡), 𝛷𝑎
𝑛𝑛(�̃�(𝑡)), 𝑢𝑏(𝑡)) (36b)

𝑢𝑏(𝑡) ∈ 𝑈𝐵 , ∀ 𝑡 ∈ [𝑡𝑘, 𝑡𝑘+𝑁 ) (36c)

�̃�(𝑡𝑘) = �̂�(𝑡𝑘) (36d)
�̇� (�̂�(𝑡𝑘), 𝛷𝑎

𝑛𝑛(�̂�(𝑡𝑘)), 𝑢𝑏(𝑡𝑘)) ≤ �̇� (�̂�(𝑡𝑘), 𝛷𝑎
𝑛𝑛(�̂�(𝑡𝑘)), 𝛷

𝑏
𝑛𝑛(�̂�(𝑡𝑘))),

if �̂�(𝑡𝑘) ∈ 𝛺𝜌∖𝛺𝜌min
(36e)

𝑉 (�̃�(𝑡)) ≤ 𝜌min, ∀ 𝑡 ∈ [𝑡𝑘, 𝑡𝑘+𝑁 ), if �̂�(𝑡𝑘) ∈ 𝛺𝜌min
(36f)

The system dynamics is predicted using the neural network in Eq. (36b).
In addition, the neural network-based candidate controller 𝛷𝑛𝑛 is 
selected for the calculation of the LMPC. At iteration 𝑘 > 1, following 
the exchange of the optimal input trajectories �̂�𝑎(𝑡), the 𝑏𝑡ℎ LMPC is 
modified as: 

 = min
𝑢𝑏∈𝑆(𝛥)∫

𝑡𝑘+𝑁

𝑡𝑘
𝐿(�̃�(𝑡), �̂�𝑎(𝑡), 𝑢𝑏(𝑡)) d𝑡, (37a)

s.t. ̇̃𝑥(𝑡) = 𝐹𝑛𝑛(�̃�(𝑡), �̂�𝑎(𝑡), 𝑢𝑏(𝑡)) (37b)

𝑢𝑏(𝑡) ∈ 𝑈𝑏, ∀ 𝑡 ∈ [𝑡𝑘, 𝑡𝑘+𝑁 ) (37c)

�̃�(𝑡𝑘) = �̂�(𝑡𝑘) (37d)
�̇� (�̂�(𝑡𝑘), �̂�𝑎(𝑡𝑘), 𝑢𝑏(𝑡𝑘)) ≤ �̇� (�̂�(𝑡𝑘), 𝛷𝑎

𝑛𝑛(�̂�(𝑡𝑘)), 𝛷
𝑏
𝑛𝑛(�̂�(𝑡𝑘))),

if �̂�(𝑡𝑘) ∈ 𝛺𝜌∖𝛺𝜌min
(37e)

𝑉 (�̃�(𝑡)) ≤ 𝜌min, ∀ 𝑡 ∈ [𝑡𝑘, 𝑡𝑘+𝑁 ), if �̂�(𝑡𝑘) ∈ 𝛺𝜌min
(37f)

The key difference for the 𝑏𝑡ℎ LMPC at iterations 𝑘 = 1 and 𝑘 > 1 lies 
in the calculation of �̇� . For the first iteration, the control action for 
the 𝑎𝑡ℎ subsystem is estimated using the NN-based candidate controller 
𝛷𝑎

𝑛𝑛(�̂�(𝑡𝑘)). At iteration 𝑘 > 1, the time derivative of the Lyapunov 
function in Eq. (37e) is calculated using the decrypted control signal 
�̂�𝑎(𝑡𝑘), which is exchanged from the 𝑎𝑡ℎ LMPC. The exchange of control 
actions between each individual controller in the iterative distributed 
control scheme can improve the closed-loop performance, since the up-
dated optimal control actions from other controllers are utilized in the 
calculation of the ML-based LMPC. However, the frequent communica-
tion between individual controllers increases the risk of cyber-attacks. 
In this work, despite the encrypted information transformation be-
tween the sensor and the controller, as well as the controller and the 
actuator, the optimal control trajectory is encrypted and exchanged 
between individual controllers, which enhances the cybersecurity of the 
closed-loop system.

6. Conclusion

This work presented a machine learning-based model predictive 
control scheme that uses encryption in the measurement-controller 
and controller-actuator links to improve cybersecurity. Specifically, to 
improve cybersecurity, the measurement signals and the control signals 
that the MPC employed and calculated, respectively, were encrypted 
using the Pallier cryptosystem with varying degrees of precision. The 
impact of encryption quantization error on closed-loop stability was 
studied. A model predictive control system that utilized a machine 
learning model to describe the process dynamics was used to evaluate 
the impact of encryption error in the context of a nonlinear non-
isothermal continuous stirred tank reactor example. The data loss from 
encryption induced quantization error led to minor deviations from 
the baseline (without any encryption) closed-loop state trajectory with 
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Fig. 7. Encrypted distributed ML-based MPC.
more noticeable deviations present in the resulting control inputs that 
scaled inversely with the size of the precision parameter 𝑑. The simu-
lation results demonstrated how encryption can be used in a chemical 
process application with minimal impact on system performance while 
simultaneously increasing security against cyber-attacks. Finally, the 
encrypted ML-based MPC framework was extended to a two-layer 
economic model predictive control framework and a distributed model 
predictive control scheme.

CRediT authorship contribution statement

Arthur Khodaverdian: Writing – original draft, Methodology, In-
vestigation, Conceptualization. Guoquan Wu: Writing – original draft, 
Methodology, Investigation, Conceptualization. Zhe Wu: Writing – 
original draft, Supervision, Methodology, Investigation, Funding ac-
quisition, Conceptualization. Panagiotis D. Christofides: Writing – 
original draft, Supervision, Methodology, Investigation, Funding acqui-
sition, Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to 
influence the work reported in this paper.

Acknowledgments

Financial support from National Science Foundation, Department of 
Energy, and NRF-CRP 27-2021-0001, Singapore is gratefully acknowl-
edged.

Data availability

Data will be made available on request.

References

Arauz, T., Chanfreut, P., Maestre, J., 2022. Cyber-security in networked and distributed 
model predictive control. Annu. Rev. Control. 53, 338–355.

Benny, S., Desai, I., Uriarte, L., Tsai, I., McMahan, L., 2024. A meta-analysis on NIST 
post-quantum cryptographic primitive finalists. J. Emerg. Investig. 7.

Chen, S., Wu, Z., Christofides, P.D., 2021. Cyber-security of centralized, decentralized, 
and distributed control-detector architectures for nonlinear processes. Chem. Eng. 
Res. Des. 165, 25–39.

Chen, S., Wu, Z., Rincon, D., Christofides, P.D., 2020. Machine learning-based 
distributed model predictive control of nonlinear processes. AIChE J. 66, e17013.

Darup, M.S., 2020. Encrypted model predictive control in the cloud. In: Privacy in 
Dynamical Systems. Springer Singapore, pp. 231–265.
10 
Darup, M.S., Redder, A., Shames, I., Farokhi, F., Quevedo, D., 2017. Towards encrypted 
MPC for linear constrained systems. IEEE Control. Syst. Lett. 2, 195–200.

Data61, C., 2013. Python paillier library. https://github.com/data61/python-paillier. 
(Accessed 12 August 2024).

Hassanpour, H., Corbett, B., Mhaskar, P., 2020. Integrating dynamic neural network 
models with principal component analysis for adaptive model predictive control. 
Chem. Eng. Res. Des. 161, 26–37.

Intel, 2024. Intel®64 IA-32 architectures software developer’s manual combined 
volumes: 1, 2A, 2B, 2C, 2D, 3A, 3B, 3C, 3D, and 4. Section 4.2.1.2.

Kadakia, Y.A., Abdullah, F., Alnajdi, A., Christofides, P.D., 2024a. Encrypted distributed 
model predictive control of nonlinear processes. Control Eng. Pract. 145, 105874.

Kadakia, Y.A., Abdullah, F., Alnajdi, A., Christofides, P.D., 2024b. Integrating dynamic 
economic optimization and encrypted control for cyber-resilient operation of 
nonlinear processes. AIChE J. 70 (9), e18509.

Khalil, H.K., 2002. Nonlinear Systems. Prentice Hall.
Limon, D., Calliess, J., Maciejowski, J.M., 2017. Learning-based nonlinear model 

predictive control. IFAC- Pap. 50, 7769–7776.
National Institute of Standards and Technology, 2024. The NIST Cybersecurity 

Framework (CSF) 2.0. Technical Report, National Institute of Standards and 
Technology.

Paillier, P., 1999. Public-key cryptosystems based on composite degree residuos-
ity classes. In: Proceedings of the International Conference on the Theory 
and Applications of Cryptographic Techniques. Springer, Berlin, Heidelberg, pp. 
223–238.

Parker, S., Wu, Z., Christofides, P.D., 2023. Cybersecurity in process control, operations, 
and supply chain. Comput. Chem. Eng. 171, 108169.

Schlüter, N., Binfet, P., Darup, M.S., 2023. A brief survey on encrypted control: From 
the first to the second generation and beyond. Annu. Rev. Control. 56, 100913.

Stobbe, P., Keijzer, T., Ferrari, R.M., 2022. A fully homomorphic encryption scheme 
for real-time safe control. In: Proceedings of 61st IEEE Conference on Decision and 
Control. Cancun, Mexico, pp. 2911–2916.

Sui, T., Wang, J., Liu, W., Pan, J., Wang, L., Zhao, Y., Kong, L., 2024. Optimizing 
encrypted control algorithms for real-time secure control. J. Franklin Inst. 361 (5), 
106677.

Suryavanshi, A., Alnajdi, A., Alhajeri, M., Abdullah, F., Christofides, P.D., 2023. 
Encrypted model predictive control design for security to cyberattacks. AIChE J. 
69, e18104.

Terzi, E., Bonassi, F., Farina, M., Scattolini, R., 2021. Learning model predictive control 
with long short-term memory networks. Internat. J. Robust Nonlinear Control 31, 
8877–8896.

Wong, W., Chee, E., Li, J., Wang, X., 2018. Recurrent neural network-based model 
predictive control for continuous pharmaceutical manufacturing. Mathematics 6, 
242.

Wu, Z., Christofides, P.D., Wu, W., Wang, Y., Abdullah, F., Alnajdi, A., Kadakia, Y., 
2025. A tutorial review of machine learning-based model predictive control 
methods. Rev. Chem. Eng. 41, 42.

Wu, Z., Tran, A., Rincon, D., Christofides, P.D., 2019. Machine-learning-based predictive 
control of nonlinear processes. Part II: Computational implementation. AIChE J. 65 
(11), e16734.

Xu, Z., Wu, Z., 2024. Privacy-preserving federated machine learning modeling and 
predictive control of heterogeneous nonlinear systems. Comput. Chem. Eng. 187, 
108749.

http://refhub.elsevier.com/S0098-1354(25)00170-X/sb1
http://refhub.elsevier.com/S0098-1354(25)00170-X/sb1
http://refhub.elsevier.com/S0098-1354(25)00170-X/sb1
http://refhub.elsevier.com/S0098-1354(25)00170-X/sb2
http://refhub.elsevier.com/S0098-1354(25)00170-X/sb2
http://refhub.elsevier.com/S0098-1354(25)00170-X/sb2
http://refhub.elsevier.com/S0098-1354(25)00170-X/sb3
http://refhub.elsevier.com/S0098-1354(25)00170-X/sb3
http://refhub.elsevier.com/S0098-1354(25)00170-X/sb3
http://refhub.elsevier.com/S0098-1354(25)00170-X/sb3
http://refhub.elsevier.com/S0098-1354(25)00170-X/sb3
http://refhub.elsevier.com/S0098-1354(25)00170-X/sb4
http://refhub.elsevier.com/S0098-1354(25)00170-X/sb4
http://refhub.elsevier.com/S0098-1354(25)00170-X/sb4
http://refhub.elsevier.com/S0098-1354(25)00170-X/sb5
http://refhub.elsevier.com/S0098-1354(25)00170-X/sb5
http://refhub.elsevier.com/S0098-1354(25)00170-X/sb5
http://refhub.elsevier.com/S0098-1354(25)00170-X/sb6
http://refhub.elsevier.com/S0098-1354(25)00170-X/sb6
http://refhub.elsevier.com/S0098-1354(25)00170-X/sb6
https://github.com/data61/python-paillier
http://refhub.elsevier.com/S0098-1354(25)00170-X/sb8
http://refhub.elsevier.com/S0098-1354(25)00170-X/sb8
http://refhub.elsevier.com/S0098-1354(25)00170-X/sb8
http://refhub.elsevier.com/S0098-1354(25)00170-X/sb8
http://refhub.elsevier.com/S0098-1354(25)00170-X/sb8
http://refhub.elsevier.com/S0098-1354(25)00170-X/sb9
http://refhub.elsevier.com/S0098-1354(25)00170-X/sb9
http://refhub.elsevier.com/S0098-1354(25)00170-X/sb9
http://refhub.elsevier.com/S0098-1354(25)00170-X/sb10
http://refhub.elsevier.com/S0098-1354(25)00170-X/sb10
http://refhub.elsevier.com/S0098-1354(25)00170-X/sb10
http://refhub.elsevier.com/S0098-1354(25)00170-X/sb11
http://refhub.elsevier.com/S0098-1354(25)00170-X/sb11
http://refhub.elsevier.com/S0098-1354(25)00170-X/sb11
http://refhub.elsevier.com/S0098-1354(25)00170-X/sb11
http://refhub.elsevier.com/S0098-1354(25)00170-X/sb11
http://refhub.elsevier.com/S0098-1354(25)00170-X/sb12
http://refhub.elsevier.com/S0098-1354(25)00170-X/sb13
http://refhub.elsevier.com/S0098-1354(25)00170-X/sb13
http://refhub.elsevier.com/S0098-1354(25)00170-X/sb13
http://refhub.elsevier.com/S0098-1354(25)00170-X/sb14
http://refhub.elsevier.com/S0098-1354(25)00170-X/sb14
http://refhub.elsevier.com/S0098-1354(25)00170-X/sb14
http://refhub.elsevier.com/S0098-1354(25)00170-X/sb14
http://refhub.elsevier.com/S0098-1354(25)00170-X/sb14
http://refhub.elsevier.com/S0098-1354(25)00170-X/sb15
http://refhub.elsevier.com/S0098-1354(25)00170-X/sb15
http://refhub.elsevier.com/S0098-1354(25)00170-X/sb15
http://refhub.elsevier.com/S0098-1354(25)00170-X/sb15
http://refhub.elsevier.com/S0098-1354(25)00170-X/sb15
http://refhub.elsevier.com/S0098-1354(25)00170-X/sb15
http://refhub.elsevier.com/S0098-1354(25)00170-X/sb15
http://refhub.elsevier.com/S0098-1354(25)00170-X/sb16
http://refhub.elsevier.com/S0098-1354(25)00170-X/sb16
http://refhub.elsevier.com/S0098-1354(25)00170-X/sb16
http://refhub.elsevier.com/S0098-1354(25)00170-X/sb17
http://refhub.elsevier.com/S0098-1354(25)00170-X/sb17
http://refhub.elsevier.com/S0098-1354(25)00170-X/sb17
http://refhub.elsevier.com/S0098-1354(25)00170-X/sb18
http://refhub.elsevier.com/S0098-1354(25)00170-X/sb18
http://refhub.elsevier.com/S0098-1354(25)00170-X/sb18
http://refhub.elsevier.com/S0098-1354(25)00170-X/sb18
http://refhub.elsevier.com/S0098-1354(25)00170-X/sb18
http://refhub.elsevier.com/S0098-1354(25)00170-X/sb19
http://refhub.elsevier.com/S0098-1354(25)00170-X/sb19
http://refhub.elsevier.com/S0098-1354(25)00170-X/sb19
http://refhub.elsevier.com/S0098-1354(25)00170-X/sb19
http://refhub.elsevier.com/S0098-1354(25)00170-X/sb19
http://refhub.elsevier.com/S0098-1354(25)00170-X/sb20
http://refhub.elsevier.com/S0098-1354(25)00170-X/sb20
http://refhub.elsevier.com/S0098-1354(25)00170-X/sb20
http://refhub.elsevier.com/S0098-1354(25)00170-X/sb20
http://refhub.elsevier.com/S0098-1354(25)00170-X/sb20
http://refhub.elsevier.com/S0098-1354(25)00170-X/sb21
http://refhub.elsevier.com/S0098-1354(25)00170-X/sb21
http://refhub.elsevier.com/S0098-1354(25)00170-X/sb21
http://refhub.elsevier.com/S0098-1354(25)00170-X/sb21
http://refhub.elsevier.com/S0098-1354(25)00170-X/sb21
http://refhub.elsevier.com/S0098-1354(25)00170-X/sb22
http://refhub.elsevier.com/S0098-1354(25)00170-X/sb22
http://refhub.elsevier.com/S0098-1354(25)00170-X/sb22
http://refhub.elsevier.com/S0098-1354(25)00170-X/sb22
http://refhub.elsevier.com/S0098-1354(25)00170-X/sb22
http://refhub.elsevier.com/S0098-1354(25)00170-X/sb23
http://refhub.elsevier.com/S0098-1354(25)00170-X/sb23
http://refhub.elsevier.com/S0098-1354(25)00170-X/sb23
http://refhub.elsevier.com/S0098-1354(25)00170-X/sb23
http://refhub.elsevier.com/S0098-1354(25)00170-X/sb23
http://refhub.elsevier.com/S0098-1354(25)00170-X/sb24
http://refhub.elsevier.com/S0098-1354(25)00170-X/sb24
http://refhub.elsevier.com/S0098-1354(25)00170-X/sb24
http://refhub.elsevier.com/S0098-1354(25)00170-X/sb24
http://refhub.elsevier.com/S0098-1354(25)00170-X/sb24
http://refhub.elsevier.com/S0098-1354(25)00170-X/sb25
http://refhub.elsevier.com/S0098-1354(25)00170-X/sb25
http://refhub.elsevier.com/S0098-1354(25)00170-X/sb25
http://refhub.elsevier.com/S0098-1354(25)00170-X/sb25
http://refhub.elsevier.com/S0098-1354(25)00170-X/sb25

	Encrypted machine learning-based model predictive control architectures for nonlinear systems
	Introduction
	Preliminaries
	Class of systems
	Paillier cryptosystem and quantization

	Encrypted ML-based MPC
	ML modeling of nonlinear systems
	ML-based MPC
	Closed-loop stability of encrypted ML-MPC

	Application to a chemical reactor
	Control problem formulation and MPC design
	Simulation Results

	Two-layer architecture and distributed scheme of encrypted ML-based MPC
	Two-layer architecture of encrypted ML-based EMPC
	Encrypted distributed ML-based MPC

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Data availability
	References


