
Digital Chemical Engineering 16 (2025) 100262

A
2
l

Contents lists available at ScienceDirect

Digital Chemical Engineering

journal homepage: www.elsevier.com/locate/dche

Original Article

Neural network implementation of model predictive control with stability

guarantees
Arthur Khodaverdian a , Dhruv Gohil a, Panagiotis D. Christofides a,b,∗
a Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA 90095, USA
b Department of Electrical and Computer Engineering, University of California, Los Angeles, CA 90095-1592, USA

A R T I C L E I N F O

Keywords:
Neural network
Model predictive control
Nonlinear processes
Approximate optimal control

 A B S T R A C T

This work explores the use of supervised learning on data generated by a model predictive controller (MPC)
to train a neural network (NN). The goal is to create an approximate control policy that can replace the
MPC, offering reduced computational complexity while maintaining stability guarantees. Through the use of
Lyapunov-based stability constraints, an MPC can be designed to guarantee stability. Once designed, this MPC
can be used to generate a dataset of various state-space points and their resulting immediate optimal control
actions. With the MPC dataset representing an optimal control policy, an NN is trained to function as a direct
substitute for the MPC. The resulting approximate control policy can then be applied in real-time to the process,
with stability guarantees being enforced through post-inference validation. If, for a given set of sensor readings,
the NN yields control actions that violate the Lyapunov stability constraints used in the MPC, the control action
is discarded and replaced with stabilizing control from a fallback stabilizing controller. This control architecture
is applied to a benchmark chemical reactor model. Using this model, a comprehensive study of the stability,
performance, robustness, and computational burden of the approach is carried out.
1. Introduction

Of the various methods for process control, Proportional–Integral–
Derivative (PID) control has stood out as the most common framework.
Estimates suggest that around 90% of industrial control systems use
some form of PID in their control loops (Åström and Hägglund, 2001).
PID is a feedback control framework that uses separate constant weights
to determine the influence of past (Integral), present (Proportional),
and future (Derivative) errors of a given sensor reading relative to
a desired set-point. Its construction is that of a Single-Input-Single-
Output (SISO) design, which limits a given PID controller to only
control a single output variable. The SISO design can be used in parallel
to give a non-interconnected Multiple-Input-Multiple-Output (MIMO)
design, but the lack of interconnectivity is a limit on the design’s ability
to handle complex dynamics. Despite these shortcomings, PID, even
today, is a control method that continues to evolve in terms of tuning
methods and applications to further extract improvements from the
basic structure (Vilanova and Visioli, 2012). In its most basic form, that
is, a controller where only a Proportional term is used, only two floating
point operations (FLOPS) are needed to calculate the control action
for a given sensor reading and desired set-point, making proportional
control an extremely computationally efficient operation. Similarly, the
integral control term can be approximated with a summation and the

∗ Corresponding author at: Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA 90095, USA.
E-mail address: pdc@seas.ucla.edu (P.D. Christofides).

derivative control term can be approximated with a finite difference
approximation, meaning that both only require three FLOPS for a
total of 8 FLOPS per PID. This computational efficiency, paired with
only needing to tune a maximum of 3 parameters per controller,
demonstrates the reasons why PID is so commonly used: simplicity and
efficiency.

Simplicity is convenient, but it often comes with a loss of capa-
bility. PID, as a simple linear feedback controller, does not account
for nonlinear dynamics, multivariable interactions, and constraints. For
this reason, PID control’s effectiveness is often limited to linear systems
(even though it is commonly used to control nonlinear processes). For
nonlinear systems, especially those with highly nonlinear dynamics,
model-based optimal control methods yield more favorable results.
Notably, Model Predictive Control (MPC) is a form of optimal control
that determines control actions through numerical optimization of a
cost function, which may use an approximated state trajectory based on
a model of the process dynamics. MPC is a flexible framework with the
ability to optimize a cost function for an arbitrary horizon length while
also accounting for input constraints. Unlike PID controllers, which
are unsuitable for multivariable problems with significant interactions,
MPC’s explicit use of the system’s dynamics enables it to consider
https://doi.org/10.1016/j.dche.2025.100262
Received 12 July 2025; Received in revised form 3 August 2025; Accepted 8 Augu
vailable online 18 August 2025
772-5081/© 2025 The Authors. Published by Elsevier Ltd on behalf of Institution o
icense (http://creativecommons.org/licenses/by/4.0/).
st 2025

f Chemical Engineers (IChemE). This is an open access article under the CC BY

https://www.elsevier.com/locate/dche
https://www.elsevier.com/locate/dche
https://orcid.org/0009-0007-5614-3632
mailto:pdc@seas.ucla.edu
https://doi.org/10.1016/j.dche.2025.100262
https://doi.org/10.1016/j.dche.2025.100262
http://creativecommons.org/licenses/by/4.0/

A. Khodaverdian et al. Digital Chemical Engineering 16 (2025) 100262
all of the interactions between the inputs and how these interactions
evolve with time. This enables MPC to function as a general-purpose
framework for process control of nonlinear systems. By tuning the
cost function and the constraints, the behavior of the resulting process
control can be customized as desired (Qin and Badgwell, 2003).

The use of a nonlinear model of the process dynamics is good for
controller performance and robustness, but comes with a major conse-
quence: MPC’s computation time scales poorly with the dimensionality
of the problem. In particular, the linear form of MPC is solvable
with tools that have polynomial-time complexity (Peng et al., 2024).
More specifically, certain MPC problems can be described via a convex
quadratic programming problem. An extension of Karmarkar’s algo-
rithm has been shown to solve such problems with a time complexity
of  (

𝐿2𝑛4
) where 𝐿 is the bit-length of the input and 𝑛 is the number

of variables. Some alternative methods improve on this for the convex
case, such as those shown in Kapoor and Vaidya (1986), but for non-
convex optimization problems that may arise in nonlinear constrained
cases, the complexity becomes NP-hard (Pardalos and Vavasis, 1991).

In general, for nonlinear systems, MPC can achieve better control
quality by incorporating nonlinear costs and/or nonlinear constraints.
Such problems no longer necessarily fall into the linear or quadratic
programming framework and are instead a form of nonlinear pro-
gramming (NLP) problem. Solving an NLP problem requires nonlinear
iterative methods which do not have a neat Big O notation to describe
their time complexity; however, some approximations can be made for
specific algorithms. One such method is the Sequential Least Squares
Programming (SLSQP) method. This method, among other changes,
replaces its quadratic programming subproblem with a linear least
squares problem (Kraft, 1988). Given that these subproblems typically
have time complexities of  (

𝑛2
) or  (

𝑛3
) (Gill et al., 1979), it can

be reasonably assumed that MPC has an overall time complexity with
polynomial scaling in the problem size. Examples of this are easily seen
by considering the construction of the Jacobian matrix, which has a
time complexity of  (

𝑁2) where 𝑁 is the size of the state array. Not
only do key components of the optimization algorithm scale poorly
with high-dimensional inputs and constraints, but there is the added
issue of the optimization process being an iterative approach. Thus, as
the input and output dimensions scale in size, and as more constraints
get enforced, MPC may become infeasible for real-time applications
beyond a certain scale (Xi et al., 2013).

Current research on how to handle this computational complexity
issue is split. Some studies focus on how the system can be reduced
or simplified without significant performance loss (Tomasetto et al.,
2025; Alora et al., 2023; Zarrouki et al., 2023). Other studies focus on
applying novel frameworks or optimizations to improve performance
without reducing the system’s scale (Meng et al., 2024; Yaren and Kizir,
2025; Adabag et al., 2024). A more recent development is the increase
in research into the application of NNs to process control. The bulk of
this research explores the use of NNs to model the system dynamics
as opposed to using complex first-principles models. The goal of this
research is to accelerate the computation time and/or improve the
real-world accuracy of the model (Gordon et al., 2024; Patel et al.,
2025; Alsmeier et al., 2024). Not only is this approach generally
faster, but in some cases, its accuracy can outperform first-principles
models (Macmurray and Himmelblau, 1995).

Given the success of NNs in modeling nonlinear dynamics, a nat-
ural extension is to investigate broader applications of this approach.
Consequently, a novel effort has begun to focus on the use of machine
learning techniques to approximate the entire MPC as opposed to
modeling a portion of the MPC problem (Lucia and Karg, 2018). Among
this research, there are some cases in which the topic of guaranteeing
closed-loop stability or performance is explored. Some cases explore the
topic of guaranteed constraint satisfaction by projection of the solved
control actions into a set which ensures constraints are met (Bonzanini
et al., 2020). Others explore novel training methods, such as the
2
FORWARD-SWITCH method, which provides both constraint satisfac-
tion and performance guarantees in linear systems (Ahn et al., 2022).
Such approaches highlight that this method of control is potentially
viable, but further research is required to resolve the lack of strict
constraint handling, particularly for nonlinear cases, and to determine
how the approach compares to MPC when faced with the same high-
dimensional nonlinear problems that MPC may not be able to solve
efficiently for real-time implementation (Gonzalez et al., 2024).

Motivated by the above considerations, this work explores these
concerns and proposes a supervised learning approach that ensures
stability through external enforcement of Lyapunov-based stability con-
straints as opposed to mapping or further optimization. This external
enforcement either directly modifies the solved control action to satisfy
simpler control action constraints, such as bounds, or replaces the con-
trol entirely with that of a fallback controller that is designed to satisfy
the constraints in question. Whereas some approaches aim to ensure
stability through modified training (Wang et al., 2022), this approach
is method-agnostic, so long as sufficient stabilization constraints are
enforced. If the stability constraint is violated, stability is guaranteed
through fallback control to a reference stabilizing controller. This safe-
guards the closed-loop system against cases where erroneous outputs
are generated. Simultaneously, this simplifies the design process and
enables generalized compatibility. Using a benchmark nonlinear chem-
ical process example, we demonstrate how a simple NN architecture
and training process can reduce the time complexity of optimal control
while retaining close mapping to the MPC. The train-time performance
and run-time performance of the resulting NN are examined to provide
insight into the computational benefits and performance impacts of the
method.

2. Preliminaries

2.1. Notation

The transpose of vector 𝑥 is denoted by 𝑥⊤. The set of real numbers
is denoted by R. The set subtraction of set 𝐵 from set 𝐴 yields a set
of elements that are in set 𝐴 but not in set 𝐵 and is denoted as 𝐴∖𝐵.
Functions are denoted as 𝑓 (⋅).

2.2. Class of systems

In this work, we focus on nonlinear multiple-input multiple-output
(MIMO) continuous-time systems described by a system of nonlinear
first-order ordinary differential equations (ODEs) of the form:

𝑥̇ = 𝐹 (𝑥, 𝑢) = 𝑓 (𝑥) +
𝑚
∑

𝑖=1
𝑔𝑖 (𝑥) 𝑢𝑖 (1)

where the state vector 𝑥 =
[

𝑥1, 𝑥2,… , 𝑥𝑛
]

∈ R𝑛 describes the process
state variables which are assumed to be measurable at every sampling
time 𝑡𝑘 (i.e., state feedback control problem is considered). The control
input vector 𝑢 =

[

𝑢1, 𝑢2,… , 𝑢𝑚
]

∈ R𝑚 describes the applied control
inputs, where 0 < 𝑚 ≤ 𝑛. Each control input is bounded, i.e., 𝑢𝑖,min ≤
𝑢𝑖 ≤ 𝑢𝑖,max ∀ 𝑖 = 1, 2,… , 𝑚 where 𝑢𝑖,min and 𝑢𝑖,max represent the lower
and upper bounds of each control action, respectively. This bounded
region, denoted 𝑈 ⊂ R𝑚, is a subset of the set of real numbers. The
functions 𝑓 (⋅) and 𝑔𝑖 (⋅) ∀ 𝑖 = 1, 2,… , 𝑚 are assumed to be sufficiently
smooth vector functions. Without loss of generality, we consider the
origin as a steady-state of the open-loop system (i.e., Eq. (1) with 𝑢𝑖 = 0,
∀ 𝑖 = 1, 2,… , 𝑚) by assuming that 𝑓 (0) = 0 (or 𝐹 (0, 0) = 0). We further
designate the initial time as zero (𝑡0 = 0). Finally, the set 𝑆 (𝛥) is defined
as the assortment of piecewise constant functions characterized by a
period of 𝛥.

A. Khodaverdian et al. Digital Chemical Engineering 16 (2025) 100262
2.3. Stabilizability assumption

The existence of an explicit feedback controller 𝑢 (𝑥) = 𝛷 (𝑥) ∈ 𝑈
that can ensure exponential stability of the origin of Eq. (1) is as-
sumed. This assumption is referred to as the stabilizability assumption.
Specifically, this stabilizability assumption states that there exists a
stabilizing controller 𝑢 (𝑥 (𝑡)) = 𝛷 (𝑥) ∈ 𝑈 in the sense that there exists
a continuously differentiable control Lyapunov function 𝑉 (𝑥) such that
the following inequalities hold for all 𝑥 ∈ 𝐷, where 𝐷 is an open
neighborhood around the origin:
𝑐1 |𝑥|

2 ≤ 𝑉 (𝑥) ≤ 𝑐2 |𝑥|
2 (2a)

𝜕𝑉 (𝑥)
𝜕𝑥

𝐹 (𝑥,𝛷 (𝑥)) ≤ −𝑐3 |𝑥|
2 (2b)

|

|

|

|

𝜕𝑉 (𝑥)
𝜕𝑥

|

|

|

|

≤ 𝑐4 |𝑥| (2c)

where 𝑐1, 𝑐2, 𝑐3, and 𝑐4 are positive constants. Along with the fact that 𝑢
is bounded, these assumptions ensure the existence of positive constants
𝑀𝐹 , 𝐿𝑥, and 𝐿′

𝑥 that ensure that for all 𝑥, 𝑥′ ∈ 𝐷 and 𝑢 ∈ 𝑈 , the
following inequalities are satisfied:
|

|

|

𝐹
(

𝑥′, 𝑢
)

− 𝐹 (𝑥, 𝑢)||
|

≤ 𝐿𝑥
|

|

𝑥 − 𝑥′|
|

(3a)

|𝐹 (𝑥, 𝑢)| ≤ 𝑀𝐹 (3b)

|

|

|

|

|

𝜕𝑉 (𝑥)
𝜕𝑥

𝐹 (𝑥, 𝑢) −
𝜕𝑉

(

𝑥′
)

𝜕𝑥
𝐹
(

𝑥′, 𝑢
)

|

|

|

|

|

≤ 𝐿′
𝑥
|

|

𝑥 − 𝑥′|
|

(3c)

Remark 1. With respect to the stabilizability assumption, we note that
it can be viewed as the analogue of requiring that the (𝐴,𝐵) pair is
stabilizable in the context of linear systems and it is further expressed
in terms of the existence of a control Lyapunov function which is the
minimum requirement for stabilization of nonlinear systems.

2.4. Lyapunov-based model predictive control

The design of a stabilizing MPC with an explicitly defined region
of guaranteed closed-loop stability is ensured through the use of a
Lyapunov-based MPC (LMPC) formulated as follows (Mhaskar et al.,
2006):

 = min
𝑢∈𝑆(𝛥)∫

𝑡𝑘+𝑁𝛥

𝑡𝑘
𝐿 (𝑥̃ (𝑡) , 𝑢 (𝑡)) d𝑡 (4a)

s.t. ̇̃𝑥 (𝑡) = 𝐹 (𝑥̃ (𝑡) , 𝑢 (𝑡)) (4b)

𝑢 ∈ 𝑈, ∀ 𝑡 ∈ [𝑡𝑘, 𝑡𝑘 +𝑁𝛥) (4c)

𝑥̃(𝑡𝑘) = 𝑥
(

𝑡𝑘
)

(4d)

𝑉̇
(

𝑥̃
(

𝑡𝑘
)

, 𝑢
(

𝑡𝑘
))

≤ 𝑉̇
(

𝑥̃
(

𝑡𝑘
)

, 𝛷
(

𝑥̃
(

𝑡𝑘
)))

(4e)

where 𝛥 is the sampling period and it represents the time between two
consecutive sensor readings for the state 𝑥. In this context, it is also
equivalent to the duration of the optimal control input 𝑢. 𝑁 denotes
the total number of sampling periods that the LMPC will simulate the
state trajectory and optimize the control inputs for. In other words, 𝑁
is the length of the prediction and control horizons. Eq. (4a) represents
a generalized cost function that is to be optimized, which can be tuned
as necessary. For simplicity, a quadratic cost function is used in this
paper. Eq. (4b) represents the model that is used to simulate the process
dynamics. In this work, the dynamic model is a first-principles-based
model where Eq. (4d) initializes the state measurements of the model
using sensor readings at 𝑡𝑘, which denotes an arbitrary initial condition.
The final constraint is the Lyapunov time derivative constraint, also
referred to as the stability constraint. This constraint utilizes the prop-
erties of the stabilizability assumption from Section 2.3 to ensure that
3
the MPC’s control action at each sampling time guarantees convergence
of the closed-loop state to a small region around the origin. Thus,
this constraint ensures faster, or at least as fast, convergence from
the MPC’s solution relative to the reference exponentially stabilizing
controller, 𝛷(𝑥). This stabilizing controller is often designed along with
the Lyapunov function, increasing the complexity of the design process,
which is why another form of Eq. (4e) can be used in practice, namely:

𝑉̇
(

𝑥̃
(

𝑡𝑘
)

, 𝑢
(

𝑡𝑘
))

≤ −𝛼𝑉
(

𝑥̃
(

𝑡𝑘
))

(5)

where 𝛼 is a positive real number. This form of the constraint yields the
same guarantees by forcing the 𝑉̇ term to be negative proportionally to
the magnitude of 𝑉 as opposed to forcing it to be more negative than
a reference controller, thereby allowing for stabilizability without the
need to explicitly solve for a reference controller.

Remark 2. A major benefit of the LMPC design is its generalized
support for cost functions. Although a quadratic cost function is used
in this work, there are alternatives such as economic cost functions
that incorporate economics through some function of the predicted
state values 𝑥̃ and/or the current guess for the control input 𝑢. Such
functions can also vary in time to account for economics, as has been
demonstrated in our recent previous work (Khodaverdian et al., 2025).

Remark 3. The stability constraints under continuous-time imple-
mentation of the controller, 𝛷 (𝑥), guarantee exponential stability of
the closed-loop system. Practically, this is not possible, as there is
a non-negligible computation and signal transmission time that pre-
vents continuous control. Thus, the control actions are applied in a
sample-and-hold fashion. This causes the stability guarantees to only
apply outside of a small region around the origin, as will be shown
in Section 4.2 (i.e., it is possible to only establish convergence of the
closed-loop state to a small region around the origin).

Remark 4. The Lyapunov stability constraints are only applied at the
current sampling time, 𝑡𝑘, in the LMPC optimization problem and not
throughout the entire prediction horizon, as in the MPC only the first
control action is applied to the closed-loop system (receding horizon
implementation). This is not a requirement, but it is a convenient
simplification of the constraints. In the receding horizon implementa-
tion, the control input trajectory that MPC generates over the entire
prediction horizon is discarded, with the exception of the first control
input, which is applied to the process.

3. Neural network construction

3.1. Data generation

In order to get good fitting performance from a neural network
trained via supervised learning, it is necessary to have a dense, diverse
dataset of the desired operating region. In practice, it can be difficult
to determine what a feasible operating region is and whether or not
a given state is worth considering. Thus, the problem of generating
sufficiently dense, diverse, and quality data is a system-specific problem
that needs to be carefully considered. As a data-driven method, this step
is critical.

A factor to consider is the fact that data generation can be done
offline. The system dynamics, typically a first-principles model, along
with a desired MPC to replace, provide a platform for the arbitrary
generation of data. For any given state, MPC can be used to generate
optimal control actions with the necessary constraints discussed earlier.
This enables the minimal case for data generation with the state and
control action pair. This is referred to as the minimal case, as MPC at
the bare minimum requires an initial state and will output the resulting
control action for the current sampling time. Additional data can be
collected as needed, but it is critical to avoid mixing datasets built with
different controller designs unless the NN is designed in such a way that
enables the use of multiple models.

A. Khodaverdian et al. Digital Chemical Engineering 16 (2025) 100262
Remark 5. Some research on the topic of machine learning applied to
model predictive control, often referred to as ML-MPC, may sound sim-
ilar to the framework that is proposed in this paper; however, the two
not only function differently, but can also be combined. The research on
ML-MPC centers around an approach in which MPC is modified such
that Eq. (4b) (i.e., the prediction model used in MPC) is no longer a
first-principles model and is instead a data-driven NN model (Wu et al.,
2019a,b). This modification is beneficial for highly complex systems
where first-principles models fail to sufficiently capture the process
dynamics. In these cases, it is beneficial to gather real-world data from
the process and use it to train an NN model (research shows that
recurrent neural network models are a viable option (Alhajeri et al.,
2024)) that is capable of predicting the change in the process state for
a given control action. In contrast, the present work uses offline data
generated by an MPC to approximate the optimal control action for a
given state and then uses this data to construct an NN that acts as the
controller. These two frameworks can work at the same time, where
one NN exists within the MPC as its model to better model the system
dynamics, and the other NN is trained off of the data produced by this
MPC to then function as a replacement used in the feedback loop. One
NN applies the control action to predict the future state, and the other
NN, as shown in this work, takes the current state and calculates the
optimal control actions that should be applied to the process.

3.2. Controller neural network model type and training

The proposed controller implementation framework does not pro-
vide any specific guidance or have any specific restrictions on the
neural network model type and training aspect of the controller design
process. Unlike data generation, model training can be of any form that
is desired. How the model is trained and the extent to which this is done
impact the performance of the model, but the current framework is
network performance agnostic and will guarantee closed-loop stability
regardless of the type of neural network used to approximate the data
and serve as the feedback controller. A model that performs poorly
will simply result in the backup controller performing the bulk of the
control actions. Thus, it is important to train the model to perform
well if the quality of the control action and the resulting closed-loop
performance are the priorities.

Remark 6. The robustness of this approach with respect to sensor noise
and model uncertainty is dependent on the existence of the fallback
controller. The NN-controller alone has no performance or stability
guarantees as presented and will only attempt to mimic the LMPC with
variable success. Thus, unless a fallback controller exists that is capable
of enforcing the desired closed-loop stability and robustness properties
with respect to measurement noise and model uncertainty, the im-
plementation of the NN-controller on its own provides no closed-loop
stability and robustness guarantees.

4. Guaranteeing stability for neural network-based control

This section will cover the design of the NN-based approximate
implementation of MPC with stability guarantees.

4.1. Practical implementation

As illustrated in Fig. 1, the NN implementation is designed as a
direct substitute for any given MPC design. The only required inputs
to the system are 𝑥(𝑡𝑘) (the sensor signals at a given reference time
frame 𝑡𝑘). Unlike MPC, which benefits from a good initial guess for the
optimal control, the NN implementation does not require this guess as
an input, although the framework enables the chosen NN to accept this
form of input if desired.

The novelty in this design occurs after the output of the NN is
acquired. A validation block is used to represent the steps used to en-
sure that the given solution is one that satisfies the chosen constraints.
4
Notably, the guarantee of stability can be enforced here through check-
ing if the Lyapunov stability constraints are satisfied for a given NN
output. If true, then the output is left unchanged, but if false, then
the constraint is forcefully satisfied through fallback to a stabilizing
controller of any desired form. General constraint satisfaction is guar-
anteed through similar enforcement; either the constraints are enforced
through direct modification of the NN output, such as clipping at
control bounds, or a fallback controller that guarantees constraint
satisfaction is used in cases where constraints are violated.

Remark 7. Because the framework does not involve a specialized
training process, modified forms of MPC are supported. One such
design that can be beneficial to consider is a two-layer implementation
of MPC, which is a cyber-secure design that generates an optimal
trajectory instead of optimal control (Khodaverdian et al., 2025). A
linear controller can then derive suboptimal control by tracking this
trajectory, but can do so while encrypted, as homomorphic encryption
enables addition and/or multiplication operations on encrypted data. In
the context of the NN implementation, instead of using MPC to solve
the optimal control, and then solving the predicted trajectory based on
this control, the NN can be trained to either directly output an estimate
trajectory or to continue calculating approximate control signals that
will then be applied to a state estimator to build the trajectory.

Remark 8. The design of this framework is intentionally left unspec-
ified, as the precise goal of MPC varies between different processes.
Instead, the importance of this framework comes in the form of the
validation block. This simplifies the design process significantly. Now,
there is no longer any required complexity involved in trying to design
a training loop that ensures the constraints are met. As a consequence,
poor fitting will yield poorer results with respect to the goals of the
optimal control, but this will not come at the expense of losing the
ability to stabilize the system. Additionally, this complexity can be
implemented anyway if it is deemed beneficial for performance, as the
enforcements are external.

4.2. Closed-loop stability results

As discussed in Section 2.3, the continuous-time form of the system
under 𝛷 (𝑥) is rendered exponentially stable through the assumption’s
statement. In practice, the control action needs to be applied in a
sample-and-hold fashion, which violates the continuous-time imple-
mentation, and thus we must establish that the stability of the closed-
loop system is still guaranteed under sample-and-hold implementation
of 𝛷 (𝑥) for sufficiently small sampling time.

4.2.1. Stability via a reference controller
The first form of the stability guarantee constraint is the form

shown in Eq. (4e), which requires an exponentially stabilizing reference
controller.

Theorem 1. For a nonlinear system described by Eq. (1), given the
existence of an explicit feedback controller 𝛷(𝑥) that renders the nonlinear
system exponentially stable with respect to the origin if applied continuously
for any initial state satisfying 𝑉 (

𝑥
(

𝑡0
))

≤ 𝜌, there exists a positive constant
𝜖𝑤 such that if the following conditions are satisfied, the sample-and-hold
implementation of 𝛷(𝑥) ensures the convergence of the closed-loop state to
a small region around the origin denoted 𝛺𝜌min

 and determined as follows:

𝐿′
𝑥𝑀𝐹𝛥 −

𝑐3
𝑐2

𝜌𝑠 ≤ −𝜖𝑤 (6a)

𝜌min = max
{

𝑉
(

𝑥
(

𝑡𝑘 + 𝛥
)

|𝑉
(

𝑥
(

𝑡𝑘
))

≤ 𝜌𝑠
)}

(6b)

𝜌𝑠 < 𝑉
(

𝑥
(

𝑡𝑘
))

(6c)

𝜌 < 𝜌 < 𝜌 (6d)
𝑠 min

A. Khodaverdian et al. Digital Chemical Engineering 16 (2025) 100262
Fig. 1. Model Predictive Controller (Left) application block diagram for a general process vs Neural Network based controller with validation and fallback stabilizing controller
(Right).
Proof. To start, we consider the reference controller itself. Due to the
sample and hold implementation of the controller, we need to account
for the fact that the state will continue to evolve while the control
action remains fixed. Thus, we consider some time range representing
a single sampling time interval denoted 𝑡 ∈ [

𝑡𝑘, 𝑡𝑘 + 𝛥
)

. Here, 𝑡𝑘 is the
initial reference time frame, 𝛥 is the sampling time, and thus the range
of possible times between one sensor reading and the next includes all
times besides 𝑡𝑘 + 𝛥, where the new sensor reading will be available.
Thus, we can denote an arbitrary time frame of the time derivative of
the Lyapunov function as

𝑉̇
(

𝑥 (𝑡) , 𝛷
(

𝑥
(

𝑡𝑘
)))

=
𝜕𝑉 (𝑥 (𝑡))

𝜕𝑥
𝐹
(

𝑥 (𝑡) , 𝛷
(

𝑥
(

𝑡𝑘
)))

(7)

After some algebraic manipulation, the expression becomes:

𝑉̇
(

𝑥 (𝑡) , 𝛷
(

𝑥
(

𝑡𝑘
)))

=
𝜕𝑉 (𝑥 (𝑡))

𝜕𝑥
𝐹
(

𝑥 (𝑡) , 𝛷
(

𝑥
(

𝑡𝑘
)))

−
𝜕𝑉

(

𝑥
(

𝑡𝑘
))

𝜕𝑥
𝐹
(

𝑥
(

𝑡𝑘
)

, 𝛷
(

𝑥
(

𝑡𝑘
)))

+
𝜕𝑉

(

𝑥
(

𝑡𝑘
))

𝜕𝑥
𝐹
(

𝑥
(

𝑡𝑘
)

, 𝛷
(

𝑥
(

𝑡𝑘
)))

(8)

Via Section 2.3, the existence of the controller implies the exis-
tence of a continuously differentiable Lyapunov function. This further
implies that the Lyapunov function and its derivatives are Lipschitz
continuous, hence Eq. (3c). Additionally, the Lyapunov function must
satisfy Eq. (2b). Thus, Eq. (8) simplifies to

𝑉̇
(

𝑥 (𝑡) , 𝛷
(

𝑥
(

𝑡𝑘
)))

≤ 𝐿′
𝑥
|

|

|

𝑥 (𝑡) − 𝑥
(

𝑡𝑘
)

|

|

|

− 𝑐3
|

|

|

𝑥
(

𝑡𝑘
)

|

|

|

2
(9)

We can further simplify this using the integral triangle inequality as
follows:
|

|

|

𝑥 (𝑡) − 𝑥
(

𝑡𝑘
)

|

|

|

≤
|

|

|

|

|

∫

𝑡

𝑡𝑘
𝐹
(

𝑥 (𝜏) , 𝛷
(

𝑥
(

𝑡𝑘
)))

d𝜏
|

|

|

|

|

≤ ∫

𝑡

𝑡𝑘

|

|

|

𝐹
(

𝑥 (𝜏) , 𝛷
(

𝑥
(

𝑡𝑘
)))

|

|

|

d𝜏

≤ ∫

𝑡

𝑡𝑘
𝑀𝐹 d𝜏

≤ 𝑀𝐹
(

𝑡 − 𝑡𝑘
)

≤ 𝑀𝐹𝛥

(10)

which can be substituted in Eq. (9) to yield:

𝑉̇
(

𝑥 (𝑡) , 𝛷
(

𝑥
(

𝑡𝑘
)))

≤ 𝐿′
𝑥𝑀𝐹𝛥 − 𝑐3

|

|

|

𝑥
(

𝑡𝑘
)

|

|

|

2
(11)

Note the existence of both a positive term and a negative term in the
upper bound for the time derivative of the Lyapunov function. This
implies that for a given non-zero sampling time, there exists a lower
bound for 𝑥 denoted 𝜌 > 0. We denote 𝛺 as the level set of 𝑉
| | 𝑠 𝜌𝑠

5
where for any 𝑉 (𝑥 (𝑡)) ≤ 𝜌𝑠, 𝑉̇ ≤ 0 cannot be guaranteed. Thus, the
sample and hold assumption results in incomplete convergence to the
origin. As a result, the condition described by Eq. (6c) must be satisfied.
This condition can be combined with Eq. (3b) to yield

𝜌𝑠 < 𝑉
(

𝑥
(

𝑡𝑘
))

≤ 𝑐2
|

|

|

𝑥
(

𝑡𝑘
)

|

|

|

2
(12)

𝜌𝑠
𝑐2

≤ |

|

|

𝑥
(

𝑡𝑘
)

|

|

|

2
(13)

−𝑐3
|

|

|

𝑥
(

𝑡𝑘
)

|

|

|

2
≤

−𝑐3
𝑐2

𝜌𝑠 (14)

which results in
𝑉̇
(

𝑥 (𝑡) , 𝛷
(

𝑥
(

𝑡𝑘
)))

≤ 𝐿′
𝑥𝑀𝐹𝛥 −

𝑐3
𝑐2

𝜌𝑠 (15)

It can now be seen why 𝛺𝜌𝑠 is necessary. Because of the sample and
hold implementation, we get an upper bound on the rate of change
to the Lyapunov function that can be positive for small values of |𝑥|.
Although the positive factor in the upper bound can be decreased, the
only such method is to reduce 𝛥. It can be seen that as 𝛥 approaches 0,
we approach a continuous-time system, which will not have this issue.
Thus, for any 𝛥 > 0, we have a small region around the origin (𝛺𝜌𝑠)
where we cannot guarantee the decrease of 𝑉 (

𝑥
(

𝑡𝑘
))

. As a result, given
a reference state within this region, Eq. (6b) describes a larger region
where all such states will be contained within. Given sufficiently long
run time, the final result will ultimately converge to 𝛺𝜌𝑚𝑖𝑛 and remain in
this region. States within 𝛺𝜌min

∖𝛺𝜌𝑠 will converge into 𝛺𝜌𝑠 , but within
𝛺𝜌𝑠 the sample and hold implementation prevents any guarantees of
further convergence to the origin. In order to sufficiently stabilize the
system, a sufficiently small 𝛥 must be chosen, as a smaller 𝛥 results in
a smaller 𝜌𝑠 before the upper bound of 𝑉̇ becomes positive.

More broadly, we say that for sufficiently small 𝛥 and for all 𝑥 (𝑡𝑘
)

∈
𝛺𝜌∖𝛺𝜌𝑠 we can ensure

𝑉̇
(

𝑥 (𝑡) , 𝛷
(

𝑥
(

𝑡𝑘
)))

≤ − 𝜖𝑤 (16)

where 𝜖𝑤 is some positive constant, for 𝑡 ∈
[

𝑡𝑘, 𝑡𝑘 + 𝛥
)

. As such, we
can ensure that the control Lyapunov function will decay with time,
ultimately causing the closed-loop state to converge to a small region
around the origin. □

Theorem 2 below establishes closed-loop stability under the MPC
of Eq. (4).

Theorem 2. For the MPC described by Eq. (4) where Eq. (4b) describes
a nonlinear system of the form described by Eq. (1), given the existence
of an explicit feedback controller 𝛷(𝑥) that renders the nonlinear system
exponentially stable with respect to the origin if applied continuously for any
initial condition satisfying 𝑉 (

𝑥
(

𝑡
))

≤ 𝜌, there exists a positive constant
0

A. Khodaverdian et al. Digital Chemical Engineering 16 (2025) 100262
𝜖𝑤 such that if the following conditions are satisfied, the sample-and-
hold implementation of 𝑢 (𝑡) of the MPC ensures that the closed-loop state
converges to a small region around the origin denoted 𝛺𝜌min

 characterized
as follows:
𝐿′
𝑥𝑀𝐹𝛥 −

𝑐3
𝑐2

𝜌𝑠 ≤ −𝜖𝑤 (17a)

𝜌min = max
{

𝑉
(

𝑥
(

𝑡𝑘 + 𝛥
)

|𝑉
(

𝑥
(

𝑡𝑘
))

≤ 𝜌𝑠
)}

(17b)

𝜌𝑠 < 𝑉
(

𝑥
(

𝑡𝑘
))

(17c)

𝜌𝑠 < 𝜌min < 𝜌 (17d)

Proof. We provide a sketch of the proof building on the proof of
Theorem 1. Eq. (4e) constrains the control action solutions such that
the time derivative of the Lyapunov function is more negative than
that of the system if the exponentially stabilizing controller 𝛷(𝑥 (𝑡)) was
used. Theorem 1 demonstrates how this reference controller ensures
that the closed-loop system state converges to a small region around
the origin when applied in a sample-and-hold manner. Thus, under the
same constraints, the MPC solution will yield
𝑉̇ (𝑥̃(𝑡𝑘), 𝑢) ≤ 𝑉̇ (𝑥̃(𝑡𝑘), 𝛷

(

𝑥̃
(

𝑡𝑘
))

) ≤ −𝜖𝑤 (18)

Repeated application of this result yields convergence of the closed-
loop system state to a small region around the origin. □

4.2.2. Stability via alternative Lyapunov stability constraint
Another convenient form is called the Alpha Form of the stabilizing

constraint demonstrated in Eq. (5). Here, instead of relying on the
existence of a stabilizing controller, we utilize the positive definite
nature of the Lyapunov function to ensure a consistently negative time
derivative of the function by using a constant 𝛼 > 0. Theorem 3 below
establishes closed-loop stability under the MPC of Eq. (4) with the
stability constraint of Eq. (4e).

Theorem 3. Consider an MPC described by Eq. (4) where Eq. (4b)
describes a nonlinear system of the form described by Eq. (1) and the
constraint from Eq. (4e) is replaced with Eq. (5). Suppose there exists an
explicit feedback controller 𝛷(𝑥) that renders the nonlinear system exponen-
tially stable with respect to the origin if applied continuously for any initial
condition satisfying 𝑉 (

𝑥
(

𝑡0
))

≤ 𝜌. Then, there exists a positive constant 𝜖𝑤
and a positive constant 𝛼 such that, if the following conditions are satisfied,
then the sample-and-hold implementation of 𝑢 (𝑡) ensures convergence of the
closed-loop state to a small region around the origin denoted 𝛺𝜌min

 defined
as follows:
𝐿′
𝑥𝑀𝐹𝛥 − 𝛼𝜌𝑠 ≤ −𝜖𝑤 (19a)

𝜌min = max
{

𝑉
(

𝑥
(

𝑡𝑘 + 𝛥
)

|𝑉
(

𝑥
(

𝑡𝑘
))

≤ 𝜌𝑠
)}

(19b)

𝜌𝑠 < 𝑉
(

𝑥
(

𝑡𝑘
))

(19c)

𝜌𝑠 < 𝜌min < 𝜌 (19d)

Proof. As is done in Theorem 1, we can denote an arbitrary time frame
of the time derivative of the Lyapunov function under MPC

𝑉̇
(

𝑥 (𝑡) , 𝑢
(

𝑡𝑘
))

=
𝜕𝑉 (𝑥 (𝑡))

𝜕𝑥
𝐹
(

𝑥 (𝑡) , 𝑢
(

𝑡𝑘
))

(20)

Through some algebraic manipulation of the expression.

𝑉̇
(

𝑥 (𝑡) , 𝑢
(

𝑡𝑘
))

=
𝜕𝑉 (𝑥 (𝑡))

𝜕𝑥
𝐹
(

𝑥 (𝑡) , 𝑢
(

𝑡𝑘
))

−
𝜕𝑉

(

𝑥
(

𝑡𝑘
))

𝜕𝑥
𝐹
(

𝑥
(

𝑡𝑘
)

, 𝑢
(

𝑡𝑘
))

+
𝜕𝑉

(

𝑥
(

𝑡𝑘
))

𝐹
(

𝑥
(

𝑡
)

, 𝑢
(

𝑡
))

(21)
𝜕𝑥 𝑘 𝑘

6
for 𝑡 ∈
[

𝑡𝑘, 𝑡𝑘 + 𝛥
)

. Using Section 2.3, the existence of the controller
implies the existence of a continuously differentiable Lyapunov func-
tion. This further implies that the Lyapunov function and its derivatives
are Lipschitz continuous, hence Eq. (3c). Additionally, the Lyapunov
function must satisfy Eq. (5). Thus, Eq. (21) simplifies to

𝑉̇
(

𝑥 (𝑡) , 𝑢
(

𝑡𝑘
))

≤ 𝐿′
𝑥
|

|

|

𝑥 (𝑡) − 𝑥
(

𝑡𝑘
)

|

|

|

− 𝛼𝑉
(

𝑥
(

𝑡𝑘
))

(22)

for 𝑡 ∈
[

𝑡𝑘, 𝑡𝑘 + 𝛥
)

. We can further simplify this using the integral
triangle inequality as in Eq. (10) to obtain:

𝑉̇
(

𝑥 (𝑡) , 𝑢
(

𝑡𝑘
))

≤ 𝐿′
𝑥𝑀𝐹𝛥 − 𝛼𝑉

(

𝑥
(

𝑡𝑘
))

(23)

Following the same logic as Theorem 1, the sample and hold assump-
tion results in incomplete convergence to the origin. As a result, the
condition described by Eq. (6c) must be satisfied. This condition yields

𝜌𝑠 < 𝑉
(

𝑥
(

𝑡𝑘
))

(24)

−𝛼𝑉
(

𝑥
(

𝑡𝑘
))

< −𝛼𝜌𝑠 (25)

which results in

𝑉̇
(

𝑥 (𝑡) , 𝑢
(

𝑡𝑘
))

≤ 𝐿′
𝑥𝑀𝐹𝛥 − 𝛼𝜌𝑠 (26)

Following the logic of Theorem 1, we say that for sufficiently small 𝛥
and for all 𝑥 (𝑡𝑘

)

∈ 𝛺𝜌∖𝛺𝜌𝑠 we can ensure

𝑉̇
(

𝑥 (𝑡) , 𝑢
(

𝑡𝑘
))

≤ − 𝜖𝑤 (27)

where 𝜖𝑤 is some positive constant, 𝑡 ∈
[

𝑡𝑘, 𝑡𝑘 + 𝛥
)

. As such, we
can ensure that the control Lyapunov function will decay with time,
ultimately causing the system to converge to a small region around the
origin. □

The choice between these constraints is up to the control system
designer, but both ensure convergence of the closed-loop state to a
small region around the origin proportional to the sampling time. It
should be noted, however, that a proof of this form does not exist for
the Neural Network controller, as strict constraint guarantees are not
involved.

Remark 9. If the Lyapunov constraint of the form shown in Eq. (5) is
used, the extent to which the control is stabilizing is determined by the
magnitude of 𝛼. Large values can be beneficial for rapid stabilization
or for stabilizing systems when large sampling times are needed, but
this comes at the risk of over-constraining the system. Of the possible
control actions that can be used, a subset of these will be valid for a
given 𝑉 and 𝛼. As 𝛼 increases, this subset becomes smaller as more
control action will be needed to provide the stronger stabilizing control.
Thus, there will be fewer valid control action solutions. Ideally, the
consequence of this will be a reduction in the optimality of the MPC.
Since control actions are bounded, the reality is that for a given 𝑉 and
𝛼, the requested rate of stabilization can be too large for any control
action to satisfy it. Therefore, it is important to choose an 𝛼 that is
sufficiently large to guarantee stability while being small enough not
to over-constrain the optimization problem.

4.2.3. Closed-loop stability under NN controller implementation
Theorem 4 below establishes closed-loop stability of the process

under control in the form shown in the block diagram on the right
of Fig. 1.

Theorem 4. For a nonlinear system described by Eq. (1), assuming the
existence of an explicit feedback controller 𝛷(𝑥) that renders the nonlinear
system exponentially stable with respect to the origin if applied continuously
for any initial condition satisfying 𝑉 (

𝑥
(

𝑡0
))

≤ 𝜌, and a neural network
controller 𝛷 (

𝑥
(

𝑡
)) trained to fit the MPC solution described by Eq. (4)
𝑛𝑛 𝑘

A. Khodaverdian et al. Digital Chemical Engineering 16 (2025) 100262
Fig. 2. State distribution of the generated data used for NN controller training.
where Eq. (4b) is of the form shown in Eq. (1). Then, a constraint enforcer
implementation of the form:

𝑢 =

⎧

⎪

⎨

⎪

⎩

𝛷𝑛𝑛
(

𝑥
(

𝑡𝑘
))

, if 𝑉̇ (

𝑥
(

𝑡𝑘
)

, 𝛷𝑛𝑛
(

𝑥
(

𝑡𝑘
)))

≤ 𝑉̇
(

𝑥
(

𝑡𝑘
)

, 𝛷
(

𝑥
(

𝑡𝑘
)))

𝛷
(

𝑥
(

𝑡𝑘
))

, if 𝑉̇ (

𝑥
(

𝑡𝑘
)

, 𝛷𝑛𝑛
(

𝑥
(

𝑡𝑘
)))

> 𝑉̇
(

𝑥
(

𝑡𝑘
)

, 𝛷
(

𝑥
(

𝑡𝑘
)))

(28)

applied to a process as shown in Fig. 1 implies the existence of a positive
constant 𝜖𝑤 such that if the following conditions are satisfied, the sample-
and-hold implementation of 𝑢 ensures the convergence of the closed-loop
state to a small region around the origin denoted 𝛺𝜌min

 and determined
using Eqs. (6a)–(6d).

Proof.

Case 1. Consider the case where 𝑉̇
(

𝑥
(

𝑡𝑘
)

, 𝛷𝑛𝑛
(

𝑥
(

𝑡𝑘
)))

>
𝑉̇
(

𝑥
(

𝑡𝑘
)

, 𝛷
(

𝑥
(

𝑡𝑘
)))

. In this case, the neural network controller does
not produce a control action that would ensure convergence of the
closed-loop system state to a small region around the origin; however,
the constraint enforcer compensates for this by flipping the control ac-
tion to instead utilize the control provided by the fallback controller. It
is assumed that the fallback controller is an explicit feedback controller
that renders the nonlinear system exponentially stable with respect
to the origin if applied continuously for any initial state satisfying
𝑉
(

𝑥
(

𝑡0
))

≤ 𝜌. Thus, the fallback controller satisfies Theorem 1 which
implies Eq. (16). Thus, the fallback controller ensures that the closed-
loop system state converges to a small region around the origin when
applied in a sample-and-hold manner.
7
Case 2. Consider the case where 𝑉̇
(

𝑥
(

𝑡𝑘
)

, 𝛷𝑛𝑛
(

𝑥
(

𝑡𝑘
)))

≤ 𝑉̇
(

𝑥
(

𝑡𝑘
)

, 𝛷
(

𝑥
(

𝑡𝑘
)))

. In this case, the proof follows the same logic
as in Theorem 2. Here, the fallback controller is a controller that
satisfies Theorem 1, which implies Eq. (16). Thus, the fallback con-
troller ensures that the closed-loop system state converges to a small
region around the origin when applied in a sample-and-hold manner.
Consequently, the NN controller satisfies
𝑉̇
(

𝑥
(

𝑡𝑘
)

, 𝛷𝑛𝑛
(

𝑥
(

𝑡𝑘
)))

≤ 𝑉̇
(

𝑥
(

𝑡𝑘
)

, 𝛷
(

𝑥
(

𝑡𝑘
)))

≤ −𝜖𝑤 (29)

which ensures that application of the NN controller yields convergence
of the closed-loop system state to a small region around the origin. □

Remark 10. Although the NN can be applied directly to the system
without any fallback control if desired, doing so will no longer preserve
the stability guarantees described above. Miscellaneous techniques may
exist that improve the NN’s ability to satisfy these constraints even
in the case of poor mapping to a reference MPC, but unless these
techniques strictly enforce the constraints that are necessary, then the
system is not guaranteed to be stabilized by the NN’s control.

Remark 11. We note that the Lyapunov time-derivative is not com-
puted for a discrete-time system, as the Lyapunov function is formu-
lated with respect to a system described by Eq. (1), i.e, a continuous-
time system. Thus, the resulting derivative is of the form 𝑉̇ = 2𝑥𝑃 𝑥̇⊤

and can be defined explicitly for a given set of state measurements
and control signals. The construction of such a Lyapunov function is
a general design problem for process control and is thus not detailed
in the present paper; in practice, quadratic Lyapunov functions have

A. Khodaverdian et al. Digital Chemical Engineering 16 (2025) 100262
Fig. 3. State distribution of the generated data color coded by the value of the first control action 𝐶𝐴0 − 𝐶𝐴0𝑠.𝑠 .
been found to work well. The proofs from Section 4 demonstrate how
the sample-and-hold implementation impacts the upper bound of this
derivative for the closed-loop system under the stabilizing reference
controller and provides a robustness margin with respect to bounded
disturbances.

5. Application to a chemical process example

To demonstrate the performance of the proposed NN control frame-
work, we apply the framework to a benchmark nonlinear chemical
process example. The objective of the MPC is to stabilize the system
to a predefined steady state by minimizing a quadratic cost function of
the deviation variable form of the state variables with respect to this
steady state. The objective of the resulting NN is to provide solutions
that roughly matches what the MPC would provide for any given
point in the state space. This would demonstrate the ability for a low-
dimensional system to be accurately modeled using neural networks,
thus enabling performance gains with minimal control quality loss.

5.1. Process model and control problem

The chosen benchmark nonlinear chemical process example is a per-
fectly mixed continuous stirred tank reactor (CSTR). The CSTR converts
a generalized reactant 𝐴 to product 𝐵 via a second-order irreversible
exothermic elementary reaction 𝐴 → 𝐵 based on the following second-
order non-isothermal elementary rate law 𝑟𝐴 = 𝑘0 exp

(

− 𝐸
𝑅𝑇

)

𝐶2
𝐴. In

practice, the temperature of the reactor would be controlled through
a jacket, but for modeling simplicity, heat transfer is modeled as a
8
direct heating or cooling input term (𝑄̇). Pure species 𝐴 of variable
concentration is fed into the reactor at a fixed rate; thus, the dynamics
of this model consist of the following pair of first-order ODEs:
d𝐶𝐴
d𝑡

= 𝐹
𝑉
(𝐶𝐴0 − 𝐶𝐴) − 𝑘0 exp

(

− 𝐸
𝑅𝑇

)

𝐶2
𝐴 (30a)

d𝑇
d𝑡

= 𝐹
𝑉
(𝑇0 − 𝑇) + −𝛥𝐻

𝜌𝐿𝐶𝑝
𝑘0 exp

(

− 𝐸
𝑅𝑇

)

𝐶2
𝐴 + 𝑄̇

𝜌𝐿𝐶𝑝𝑉
(30b)

In this system, 𝐹 , 𝑉 , 𝑇0, 𝑘0, 𝛥𝐻 , 𝜌𝐿, 𝐶𝑃 , and 𝐸 are defined as constants
as detailed in Table 1 along with the reference unstable steady state val-
ues. The reactant concentration (𝐶𝐴) and the reactor temperature (𝑇)
are chosen to be the state variables, whereas the heat input rate (𝑄̇) and
inlet concentration of species A (𝐶𝐴0) are chosen to be the manipulated
inputs. The state variables and manipulated inputs are converted into
deviation variable form relative to the chosen unstable steady state,
meaning we denote the state variables as 𝑥 =

[

𝐶𝐴 − 𝐶𝐴𝑠, 𝑇 − 𝑇𝑠
] and

the input variables as 𝑢 =
[

𝐶𝐴0 − 𝐶𝐴0𝑠, 𝑄̇ − 𝑄̇𝑠
]

. The input variables are
bounded as follows:

−3.5 ≤𝑢1 ≤ 3.5
[

kmolm−3] (31a)

−5 × 105 ≤𝑢2 ≤ 5 × 105
[

kJ h−1
]

(31b)

All simulations begin at a random point within the state space bounded
by the level set 𝑉 = 120 at 𝑡𝑘 = 0 and optimize a quadratic cost function
as shown in Eq. (32)

𝐿 𝑥̃ 𝑡 , 𝑢 𝑡 = 𝑥̃ 𝑡 𝑄 𝑥̃ 𝑡 ⊤ + 𝑢 𝑡 𝑄 𝑢 𝑡 ⊤ (32)
(() ()) () 𝑥 () () 𝑢 ()

A. Khodaverdian et al. Digital Chemical Engineering 16 (2025) 100262
Fig. 4. State distribution of the generated data color coded by the value of the second control action 𝑄 −𝑄𝑠.𝑠.
where the weight matrices are defined as

𝑄𝑥 =
[

1000 0
0 1

]

(33)

𝑄𝑢 =
[

10 0
0 10−8

]

(34)

5.2. Stability analysis

The reference stabilizing controller used to determine the stability
region is a set of P controllers for 𝐶𝐴0 and 𝑄̇ with gains of 𝐾𝐶𝐴0

= 2 and
𝐾𝑄 = 5, 000 respectively. The control Lyapunov function for this system
is of the form 𝑉 (𝑥) = 𝑥⊤𝑃𝑥 where 𝑃 is a positive definite matrix defined
as:

𝑃 =
[

1060 22
22 0.52

]

(35)

Stability can be guaranteed within a level set of this Lyapunov function,
denoted 𝛺𝜌, with a value of 𝜌 = 120. This level set was determined by
simulating the system with the reference stabilizing controller. Starting
at a large 𝑉 , 100 initial conditions were sampled along the level set
boundary. For each initial condition, the closed-loop system under
the reference controller was simulated for 10 sampling times, and
𝑉̇ was checked at each. Once 𝑉̇ returned negative values for all 10
time steps for all 100 points, the boundary of the stability region of
the stabilizing controller was deemed found. To validate, level sets
smaller than this, in increments of 1, are also checked to ensure that all
subsequent level sets satisfy the stabilizing controller assumption. Using
this procedure, we selected 𝜌 = 120 as a conservative estimate of the
9
Table 1
Parameter values for the chemical process example.
 𝑁𝑎𝑚𝑒 𝐿𝑎𝑏𝑒𝑙 𝑉 𝑎𝑙𝑢𝑒 𝑈𝑛𝑖𝑡𝑠
 Flow Rate 𝐹 5 m3 h−1
 Reactor Volume 𝑉 1 m3
 Pre-exponential Factor 𝑘0 8.46 × 106 m3 kmol−1 h−1
 Activation Energy 𝐸 5 × 104 kJ kmol−1
 Gas Constant 𝑅 8.314 kJ kmol−1 K−1
 Liquid Density 𝜌𝐿 1000 kgm−3
 Enthalpy of Reaction 𝛥𝐻 −1.15 × 104 kJ kmol−1
 Inlet Temperature 𝑇0 300 K
 s.s Heat Input Rate 𝑄̇𝑠 0 kJ h−1
 s.s Inlet Concentration 𝐶𝐴0𝑠 4 kmolm−3
 s.s Concentration 𝐶𝐴𝑠 1.954 kmolm−3
 s.s Temperature 𝑇𝑠 401.9 K
 Specific Heat 𝐶𝑝 0.231 kJ kg−1 K
s.s stands for steady-state.

stability region. Because this example is entirely first-principles based,
there is no modeling error, and due to the small step size used, the small
region around the origin in which we cannot guarantee negative 𝑉̇ is
found to be of the order of 𝑉 < 10−23, and is thus negligibly small. To be
conservative, we terminate the simulation once the current trajectory
enters a level set for which 𝑉 ≤ 1.

As a final measure of caution regarding stability, we slightly modify
the stabilizing constraint to be of the form

𝑉̇
(

𝑥
(

𝑡
)

, 𝑢
(

𝑡
))

+ 0.065 ≤ min
(

0, 𝑉̇
(

𝑥
(

𝑡
)

, 𝛷
(

𝑥
(

𝑡
))))

(36)
𝑘 𝑘 𝑘 𝑘

A. Khodaverdian et al. Digital Chemical Engineering 16 (2025) 100262
Fig. 5. Predicted vs. actual (true) values for the first control action 𝐶𝐴0 − 𝐶𝐴0𝑠.𝑠 .
This prevents the possibility of the reference control generating non-
negative time derivatives for the Lyapunov function while also forcing
the MPC control to be more stabilizing to a specified magnitude at
minimum. The bias term exists because the stabilizing control is not
robustly verified, and so there is a potential risk in violating the
assumptions for the controller, which are necessary for stability of the
system. In other words, we artificially enforce a lower bound for 𝜖𝑤 to
be 0.065 ≤ 𝜖𝑤 as a precautionary measure.

Remark 12. Using conservative estimates of both regions is important,
as it is infeasible to thoroughly test all level sets. During this portion
of the design process, the level sets are checked in increments of 1,
which leaves room for intermediate level sets to violate the constraint.
To avoid this, we used a smaller subset of the stability region that was
found in order to minimize the possibility of this influencing the system.
Similarly, because our testing was sufficient for whole numbers, 𝑉 < 1
10
is conservatively chosen to over-estimate the small region around the
origin in order to avoid the same possibilities.

Remark 13. 𝜌𝑠 was found to be of the order of 10−23 by using a
modified form of the methodology described above. Starting at the level
set where 𝜌 = 1, in increments of 0.1, until 𝜌 = 0.1 was reached, we
followed the same methodology as above. This process was repeated
where the terms were all decreased by an order of magnitude until
eventually a point where 𝑉̇ > 0 was found.

5.3. Control system parameters

The reference controllers used a sampling time of 𝛥𝑃𝐼,reference = 7.2 s.
The MPC optimizes the system over a horizon of length 𝑁 = 60 with
the same sampling period of 𝛥 = 7.2 s, which corresponds to optimizing
for the next 432 s. Of the resulting 60 control action solutions, we
only apply the first before resolving the MPC (i.e., receding horizon

A. Khodaverdian et al. Digital Chemical Engineering 16 (2025) 100262
Fig. 6. Predicted vs. actual (true) values for the second control action 𝑄 −𝑄𝑠.𝑠.
implementation). In an attempt to reduce the computational burden,
integration of the model used in LMPC is done via the forward Euler
method with a fixed step size of 0.36 s for which numerical stability is
ensured.

5.4. Data generation

In our case, the operating region is explicitly known to be all states
bounded by the level set 𝑉 = 120. Thus, we generate data by sampling
random states within this region. These random states are paired with
their corresponding optimal control input for the same time instant by
solving MPC and storing the first control action. The MPC was solved in
Python using the SciPy package’s minimize function. Specifically, the
function was designed to use the SLSQP method with a max iteration
count of 1000, and an ‘ftol’ and ‘eps’ value of 1e−4 (Virtanen et al.,
2020). In order to prevent data contamination, if the MPC fails to solve
for any reason, the sample is discarded. This process is parallelized
11
for performance and is terminated after roughly 1 million points are
generated. The resulting state distribution plot is shown in Fig. 2, which
demonstrates the density and diversity of the data within our operating
region.

As a low-dimensional model, it is also convenient to visualize the
control distribution in the state-space plot by color coding the state
distribution plot based on the control action value. These plots are
shown in Figs. 3 and 4. Although most of the state space can be visually
seen as numerically smooth, there are regions with rapid changes in the
optimal action. Such regions can pose issues when training, as smooth
data is preferred.

Remark 14. Because 𝜌𝑠 is of the order of 10−23, it is effectively
negligible. Thus, data sampling within the state-space was allowed to
include points within 𝜌 ≤ 1. Due to the stability constraints in the MPC,
any points that would violate Eq. (16), such as those within 𝜌𝑠, are
discarded anyways.

A. Khodaverdian et al. Digital Chemical Engineering 16 (2025) 100262
Fig. 7. Closed-loop state trajectory examples for the process controlled under MPC (dashed line) and NN with Proportional control as fallback control (solid line).
5.5. Neural network training

The neural network used is a Feedforward Neural Network, where
the inputs and outputs are scaled using a StandardScaler. The Stan-
dardScaler is fit on the training set, which is composed of 80% of the
generated samples, chosen randomly, with the remaining samples being
used as the test set. This model was trained with the Adam optimizer
on Mean Squared Error (MSE) loss using a flat learning rate of 0.001,
utilizing early stopping as the terminating condition. Early stopping
was set to 200 epochs. The neural network was designed with 4 hidden
layers of size 128, 64, 32, and 16, respectively. Hyperparameter tuning
yielded marginally better loss, but for the sake of simplicity, this result
was discarded. The resulting Actual vs Predicted plots are shown in
Figs. 5 and 6. These results correspond to the training results, which
yielded an MSE of roughly 0.02. Of the two, the inlet concentration
control action better maps the training data, whereas the heat input
does not show as good mapping.

5.6. Closed-loop simulation results

To demonstrate the closed-loop behavior of this controller, we split
the state space into rings. Starting from the stability region boundary,
we sample the region between this boundary and the adjacent level set
that is 1 unit smaller. We do this for all rings between the boundary and
the minimal region 𝑉 = 1 in increments of 1. To get decent sampling
per ring, we used 10 randomly generated samples and simulated the
trajectory for each sample from the initial point until the trajectory
either enters the minimal region 𝑉 ≤ 1 or completes a full horizon
worth of control actions. Data from each trajectory is gathered and
presented in Fig. 8. Sample trajectories are shown in Fig. 7, where the
term steps refers to the number of sampling times that have elapsed as
well as the number of control actions that have been applied thus far.
12
The sample trajectories for the NN controller demonstrate a rough
similarity to the MPC results. The trajectories visibly deviate over the
duration of the trajectory, but when averaged out over the various
rings, both controllers exhibit similar trends regarding the number of
steps needed to reach the minimal region. Notably, we can see that
on average, the MPC and NN share very similar steps needed, whereas
MPC tends to have higher maximum steps needed in some parts of the
ring. Most importantly, the time-complexity of the NN over the full
trajectory is 3 orders of magnitude smaller than the designed MPC,
and is only 1 order of magnitude larger than a simple P controller,
which demonstrates higher step requirements on average. This enables
the use of the NN with roughly 100x smaller sampling times before the
NN-based controller design begins to have feasibility concerns as the
computational time reaches the order of the sampling time.

For the implementation used in this example, it is also possible to
modify the MPC implementation to maximize its performance, ignoring
the feasibility implications. In the given system, one can lower the
sampling time and extend the horizon length to maximize the MPC’s
performance. Doing so in real-world applications will be impossible,
as the computational time for solving the MPC risks exceeding the
sampling time; however, the NN is trained using offline MPC data
applied to an internal model of the system. Thus, the feasibility of the
controller in real-world applications is irrelevant, as the optimal control
for a given state with the new sampling time and horizon length will be
the same regardless of if the control gets applied. With the performance
benefits, an NN can then be trained on this data to approximate it
within the necessary sampling time limits. This enables the potential for
higher quality control through this framework than otherwise possible
with traditional MPC, but a good fit is needed for this benefit to be
important.

In this example, the neural network that was used to fit the LMPC
control action data was subjected to a certain, albeit small, error, and so

A. Khodaverdian et al.

Fig. 8. Performance results of state trajectories compared by the control system type and the level set region in which the initial state lies. Performance in this context includes
the average cost, steps, and computation time, as well as the maximum steps.

Digital Chemical Engineering 16 (2025) 100262

13

A. Khodaverdian et al. Digital Chemical Engineering 16 (2025) 100262
when analyzing the rate at which the fallback proportional controller
was needed for the NN to maintain the specified stability guarantees,
we found that roughly 2.6% of operating points required the use of the
fallback control. Fig. 7 demonstrates how the NN, when applied for
the same initial point as the MPC, produces a trajectory that does not
track the MPC’s trajectory. The bulk of the control actions generated by
the NN are valid with regard to the stability constraint. Thus, the NN
framework demonstrates that even in the absence of a close fit to the
training data, the existence of the fallback control enables enhanced
performance while maintaining stability guarantees.

6. Conclusion

The work proposes a framework for approximating optimization-
based model predictive control using neural networks while main-
taining stability guarantees through the use of externally enforced
Lyapunov stability constraints (expressed in terms of the negative defi-
niteness of the time derivative of a Lyapunov function) and stabilizing
fallback control. Randomly sampled points in the operating region are
fed into a Lyapunov-based MPC to generate optimal control inputs.
These points are paired together and stored as training data. After any
desired data pre-processing and filtering is done, a neural network is
trained to fit the data. The resulting neural network acts as a nonlinear
feedback controller and a substitute for the MPC, where constraints are
checked after computation of the NN’s output (i.e., control actions). If
the Lyapunov stability constraints are violated, the stabilizing fallback
controller is used to ensure that the system maintains its stability
guarantees. As a result, the NN substitute enables approximate optimal
control with a potential for several orders of magnitude improvement
in the speed of real-time calculation of the control actions when applied
to a benchmark nonlinear chemical process example. This framework
enables the use of approximate optimal control in environments where
computation of the corresponding MPC is infeasible due to control
action computation time exceeding the sampling time. Additionally,
the framework applies these guarantees through external constraints,
which do not hinder the flexibility of the NN design at all.

CRediT authorship contribution statement

Arthur Khodaverdian: Writing – original draft, Software, Method-
ology, Investigation, Conceptualization. Dhruv Gohil: Software, Inves-
tigation. Panagiotis D. Christofides: Writing – original draft, Method-
ology, Funding acquisition, Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgment

Financial support from the National Science Foundation, United
States, CBET-2227241, is gratefully acknowledged.

References

Adabag, E., Atal, M., Gerard, W., Plancher, B., 2024. MPCGPU: Real-time nonlinear
model predictive control through preconditioned conjugate gradient on the GPU. In:
Proceedings of International Conference on Robotics and Automation. Yokohama,
Japan, pp. 9787–9794.

Ahn, K., Mhammedi, Z., Mania, H., Hong, Z.W., Jadbabaie, A., 2022. Model predictive
control via on-policy imitation learning. arXiv preprint arXiv:2210.09206.

Alhajeri, M.S., Ren, Y.M., Ou, F., Abdullah, F., Christofides, P.D., 2024. Model
predictive control of nonlinear processes using transfer learning-based recurrent
neural networks. Chem. Eng. Res. Des. 205, 1–12.
14
Alora, J.I., Pabon, L.A., Köhler, J., Cenedese, M., Schmerling, E., Zeilinger, M.N.,
Haller, G., Pavone, M., 2023. Robust nonlinear reduced-order model predictive
control. In: Proceedings of 62nd Conference on Decision and Control. Marina Bay
Sands, Singapore, pp. 4798–4805.

Alsmeier, H., Savchenko, A., Findeisen, R., 2024. Neural horizon model predictive
control - increasing computational efficiency with neural networks. In: Proceedings
of the American Control Conference. Toronto, Canada, pp. 1646–1651.

Åström, K., Hägglund, T., 2001. The future of PID control. Control Eng. Pract. 9,
1163–1175.

Bonzanini, A.D., Paulson, J.A., Graves, D.B., Mesbah, A., 2020. Toward safe dose
delivery in plasma medicine using projected neural network-based fast approximate
NMPC. IFAC-PapersOnLine 53, 5279–5285.

Gill, P.E., Murray, W., Picken, S.M., Wright, M.H., 1979. The design and structure of a
fortran program library for optimization. ACM Trans. Math. Soft. 5 (3), 259–283.

Gonzalez, C., Asadi, H., Kooijman, L., Lim, C.P., 2024. Neural networks for fast
optimisation in model predictive control: A review. arXiv preprint arXiv:2309.
02668.

Gordon, D.C., Winkler, A., Bedei, J., Schaber, P., Pischinger, S., Andert, J., Koch, C.R.,
2024. Introducing a deep neural network-based model predictive control frame-
work for rapid controller implementation. In: Proceedings of American Control
Conference. Toronto, Canada, pp. 5232–5237.

Kapoor, S., Vaidya, P.M., 1986. Fast algorithms for convex quadratic programming and
multicommodity flows. In: Proceedings of the Eighteenth Annual ACM Symposium
on Theory of Computing. Berkeley, California, USA, pp. 147–159.

Khodaverdian, A., Gohil, D., Christofides, P.D., 2025. Enhancing cybersecurity of
nonlinear processes via a two-layer control architecture. Digit. Chem. Eng. 15,
100233.

Kraft, D., 1988. A software package for sequential quadratic programming. Deutsche
Forschungs- und Versuchsanstalt für Luft- und Raumfahrt Köln: Forschungsbericht,
Wiss. Berichtswesen d. DFVLR.

Lucia, S., Karg, B., 2018. A deep learning-based approach to robust nonlinear model
predictive control. IFAC-PapersOnLine 51, 511–516.

Macmurray, J., Himmelblau, D., 1995. Modeling and control of a packed distillation
column using artificial neural networks. Comput. Chem. Eng. 19, 1077–1088.

Meng, D., Chu, H., Tian, M., Gao, B., Chen, H., 2024. Real-time high-precision nonlinear
tracking control of autonomous vehicles using fast iterative model predictive
control. IEEE Trans. Intell. Veh. 9, 3644–3657.

Mhaskar, P., El-Farra, N.H., Christofides, P.D., 2006. Stabilization of nonlinear systems
with state and control constraints using Lyapunov-based predictive control. Syst.
Contr. Lett. 55, 650–659.

Pardalos, P.M., Vavasis, S.A., 1991. Quadratic programming with one negative
eigenvalue is NP-hard. J. Global Optim. 1, 15–22.

Patel, R., Bhartiya, S., Gudi, R.D., 2025. Neural network-based model predictive control
framework incorporating first-principles knowledge for process systems. Ind. Eng.
Chem. Res. 64 (18), 9287–9302.

Peng, Y., Yan, H., Rao, K., Yang, P., Lv, Y., 2024. Distributed model predictive control
for unmanned aerial vehicles and vehicle platoon systems: a review. Intell. Robot.
4, 293–317.

Qin, S.J., Badgwell, T.A., 2003. A survey of industrial model predictive control
technology. Control Eng. Pract. 11, 733–764.

Tomasetto, M., Braghin, F., Manzoni, A., 2025. Latent feedback control of distributed
systems in multiple scenarios through deep learning-based reduced order models.
Comput. Methods Appl. Mech. Engrg. 442, 118030.

Vilanova, R., Visioli, A. (Eds.), 2012. PID control in the third millennium: Lessons
learned and new approaches. In: Advances in Industrial Control, Springer London,
p. XIV, 602.

Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D.,
Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M.,
Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R.,
Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Lax-
alde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R.,
Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Con-
tributors, 2020. SciPy 1.0: Fundamental Algorithms for Scientific Computing in
Python. Nature Methods 17, 261–272.

Wang, R., Li, H., Xu, D., 2022. Learning model predictive control law for nonlinear
systems. In: Proceedings of International Symposium on Autonomous Systems.
Hangzhou, China, pp. 1–6.

Wu, Z., Tran, A., Rincon, D., Christofides, P.D., 2019a. Machine learning-based
predictive control of nonlinear processes. Part I: Theory. AIChE J. 65, e16729.

Wu, Z., Tran, A., Rincon, D., Christofides, P.D., 2019b. Machine-learning-based predic-
tive control of nonlinear processes. Part II: Computational implementation. AIChE
J. 65, e16734.

Xi, Y.G., Li, D., Lin, S., 2013. Model predictive control — Status and challenges. Acta
Automat. Sinica 39, 222–236.

Yaren, T., Kizir, S., 2025. Real-time nonlinear model predictive control of a robotic
arm using spatial operator algebra theory. J. Field Robot. (in Press).

Zarrouki, B., Nunes, J., Betz, J., 2023. R2NMPC: A real-time reduced robustified
nonlinear model predictive control with ellipsoidal uncertainty sets for autonomous
vehicle motion control. arXiv preprint arXiv:2311.06420.

http://refhub.elsevier.com/S2772-5081(25)00046-8/sb1
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb1
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb1
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb1
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb1
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb1
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb1
http://arxiv.org/abs/2210.09206
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb3
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb3
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb3
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb3
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb3
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb4
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb4
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb4
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb4
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb4
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb4
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb4
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb5
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb5
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb5
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb5
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb5
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb6
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb6
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb6
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb7
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb7
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb7
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb7
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb7
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb8
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb8
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb8
http://arxiv.org/abs/2309.02668
http://arxiv.org/abs/2309.02668
http://arxiv.org/abs/2309.02668
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb10
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb10
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb10
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb10
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb10
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb10
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb10
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb11
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb11
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb11
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb11
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb11
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb12
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb12
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb12
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb12
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb12
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb13
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb13
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb13
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb13
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb13
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb14
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb14
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb14
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb15
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb15
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb15
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb16
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb16
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb16
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb16
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb16
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb17
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb17
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb17
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb17
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb17
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb18
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb18
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb18
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb19
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb19
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb19
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb19
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb19
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb20
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb20
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb20
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb20
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb20
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb21
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb21
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb21
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb22
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb22
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb22
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb22
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb22
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb23
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb23
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb23
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb23
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb23
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb24
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb24
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb24
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb24
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb24
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb24
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb24
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb24
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb24
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb24
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb24
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb24
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb24
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb24
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb24
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb25
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb25
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb25
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb25
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb25
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb26
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb26
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb26
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb27
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb27
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb27
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb27
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb27
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb28
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb28
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb28
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb29
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb29
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb29
http://arxiv.org/abs/2311.06420

	Neural network implementation of model predictive control with stability guarantees
	Introduction
	Preliminaries
	Notation
	Class of systems
	Stabilizability assumption
	Lyapunov-based model predictive control

	Neural network construction
	Data generation
	Controller neural network model type and training

	Guaranteeing stability for neural network-based control
	Practical implementation
	Closed-loop stability results
	Stability via a reference controller
	Stability via alternative Lyapunov stability constraint
	Closed-loop stability under NN controller implementation

	Application to a chemical process example
	Process model and control problem
	Stability analysis
	Control system parameters
	Data generation
	Neural network training
	Closed-loop simulation results

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgment
	References

