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 A B S T R A C T

This work explores the use of supervised learning on data generated by a model predictive controller (MPC) 
to train a neural network (NN). The goal is to create an approximate control policy that can replace the 
MPC, offering reduced computational complexity while maintaining stability guarantees. Through the use of 
Lyapunov-based stability constraints, an MPC can be designed to guarantee stability. Once designed, this MPC 
can be used to generate a dataset of various state-space points and their resulting immediate optimal control 
actions. With the MPC dataset representing an optimal control policy, an NN is trained to function as a direct 
substitute for the MPC. The resulting approximate control policy can then be applied in real-time to the process, 
with stability guarantees being enforced through post-inference validation. If, for a given set of sensor readings, 
the NN yields control actions that violate the Lyapunov stability constraints used in the MPC, the control action 
is discarded and replaced with stabilizing control from a fallback stabilizing controller. This control architecture 
is applied to a benchmark chemical reactor model. Using this model, a comprehensive study of the stability, 
performance, robustness, and computational burden of the approach is carried out.
1. Introduction

Of the various methods for process control, Proportional–Integral–
Derivative (PID) control has stood out as the most common framework. 
Estimates suggest that around 90% of industrial control systems use 
some form of PID in their control loops (Åström and Hägglund, 2001). 
PID is a feedback control framework that uses separate constant weights 
to determine the influence of past (Integral), present (Proportional), 
and future (Derivative) errors of a given sensor reading relative to 
a desired set-point. Its construction is that of a Single-Input-Single-
Output (SISO) design, which limits a given PID controller to only 
control a single output variable. The SISO design can be used in parallel 
to give a non-interconnected Multiple-Input-Multiple-Output (MIMO) 
design, but the lack of interconnectivity is a limit on the design’s ability 
to handle complex dynamics. Despite these shortcomings, PID, even 
today, is a control method that continues to evolve in terms of tuning 
methods and applications to further extract improvements from the 
basic structure (Vilanova and Visioli, 2012). In its most basic form, that 
is, a controller where only a Proportional term is used, only two floating 
point operations (FLOPS) are needed to calculate the control action 
for a given sensor reading and desired set-point, making proportional 
control an extremely computationally efficient operation. Similarly, the 
integral control term can be approximated with a summation and the 
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derivative control term can be approximated with a finite difference 
approximation, meaning that both only require three FLOPS for a 
total of 8 FLOPS per PID. This computational efficiency, paired with 
only needing to tune a maximum of 3 parameters per controller, 
demonstrates the reasons why PID is so commonly used: simplicity and 
efficiency.

Simplicity is convenient, but it often comes with a loss of capa-
bility. PID, as a simple linear feedback controller, does not account 
for nonlinear dynamics, multivariable interactions, and constraints. For 
this reason, PID control’s effectiveness is often limited to linear systems 
(even though it is commonly used to control nonlinear processes). For 
nonlinear systems, especially those with highly nonlinear dynamics, 
model-based optimal control methods yield more favorable results. 
Notably, Model Predictive Control (MPC) is a form of optimal control 
that determines control actions through numerical optimization of a 
cost function, which may use an approximated state trajectory based on 
a model of the process dynamics. MPC is a flexible framework with the 
ability to optimize a cost function for an arbitrary horizon length while 
also accounting for input constraints. Unlike PID controllers, which 
are unsuitable for multivariable problems with significant interactions, 
MPC’s explicit use of the system’s dynamics enables it to consider 
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all of the interactions between the inputs and how these interactions 
evolve with time. This enables MPC to function as a general-purpose 
framework for process control of nonlinear systems. By tuning the 
cost function and the constraints, the behavior of the resulting process 
control can be customized as desired (Qin and Badgwell, 2003).

The use of a nonlinear model of the process dynamics is good for 
controller performance and robustness, but comes with a major conse-
quence: MPC’s computation time scales poorly with the dimensionality 
of the problem. In particular, the linear form of MPC is solvable 
with tools that have polynomial-time complexity (Peng et al., 2024). 
More specifically, certain MPC problems can be described via a convex 
quadratic programming problem. An extension of Karmarkar’s algo-
rithm has been shown to solve such problems with a time complexity 
of  (

𝐿2𝑛4
) where 𝐿 is the bit-length of the input and 𝑛 is the number 

of variables. Some alternative methods improve on this for the convex 
case, such as those shown in Kapoor and Vaidya (1986), but for non-
convex optimization problems that may arise in nonlinear constrained 
cases, the complexity becomes NP-hard (Pardalos and Vavasis, 1991).

In general, for nonlinear systems, MPC can achieve better control 
quality by incorporating nonlinear costs and/or nonlinear constraints. 
Such problems no longer necessarily fall into the linear or quadratic 
programming framework and are instead a form of nonlinear pro-
gramming (NLP) problem. Solving an NLP problem requires nonlinear 
iterative methods which do not have a neat Big O notation to describe 
their time complexity; however, some approximations can be made for 
specific algorithms. One such method is the Sequential Least Squares 
Programming (SLSQP) method. This method, among other changes, 
replaces its quadratic programming subproblem with a linear least 
squares problem (Kraft, 1988). Given that these subproblems typically 
have time complexities of  (

𝑛2
) or  (

𝑛3
) (Gill et al., 1979), it can 

be reasonably assumed that MPC has an overall time complexity with 
polynomial scaling in the problem size. Examples of this are easily seen 
by considering the construction of the Jacobian matrix, which has a 
time complexity of  (

𝑁2) where 𝑁 is the size of the state array. Not 
only do key components of the optimization algorithm scale poorly 
with high-dimensional inputs and constraints, but there is the added 
issue of the optimization process being an iterative approach. Thus, as 
the input and output dimensions scale in size, and as more constraints 
get enforced, MPC may become infeasible for real-time applications 
beyond a certain scale (Xi et al., 2013).

Current research on how to handle this computational complexity 
issue is split. Some studies focus on how the system can be reduced 
or simplified without significant performance loss (Tomasetto et al., 
2025; Alora et al., 2023; Zarrouki et al., 2023). Other studies focus on 
applying novel frameworks or optimizations to improve performance 
without reducing the system’s scale (Meng et al., 2024; Yaren and Kizir, 
2025; Adabag et al., 2024). A more recent development is the increase 
in research into the application of NNs to process control. The bulk of 
this research explores the use of NNs to model the system dynamics 
as opposed to using complex first-principles models. The goal of this 
research is to accelerate the computation time and/or improve the 
real-world accuracy of the model (Gordon et al., 2024; Patel et al., 
2025; Alsmeier et al., 2024). Not only is this approach generally 
faster, but in some cases, its accuracy can outperform first-principles 
models (Macmurray and Himmelblau, 1995).

Given the success of NNs in modeling nonlinear dynamics, a nat-
ural extension is to investigate broader applications of this approach. 
Consequently, a novel effort has begun to focus on the use of machine 
learning techniques to approximate the entire MPC as opposed to 
modeling a portion of the MPC problem (Lucia and Karg, 2018). Among 
this research, there are some cases in which the topic of guaranteeing 
closed-loop stability or performance is explored. Some cases explore the 
topic of guaranteed constraint satisfaction by projection of the solved 
control actions into a set which ensures constraints are met (Bonzanini 
et al., 2020). Others explore novel training methods, such as the 
2 
FORWARD-SWITCH method, which provides both constraint satisfac-
tion and performance guarantees in linear systems (Ahn et al., 2022). 
Such approaches highlight that this method of control is potentially 
viable, but further research is required to resolve the lack of strict 
constraint handling, particularly for nonlinear cases, and to determine 
how the approach compares to MPC when faced with the same high-
dimensional nonlinear problems that MPC may not be able to solve 
efficiently for real-time implementation (Gonzalez et al., 2024).

Motivated by the above considerations, this work explores these 
concerns and proposes a supervised learning approach that ensures 
stability through external enforcement of Lyapunov-based stability con-
straints as opposed to mapping or further optimization. This external 
enforcement either directly modifies the solved control action to satisfy 
simpler control action constraints, such as bounds, or replaces the con-
trol entirely with that of a fallback controller that is designed to satisfy 
the constraints in question. Whereas some approaches aim to ensure 
stability through modified training (Wang et al., 2022), this approach 
is method-agnostic, so long as sufficient stabilization constraints are 
enforced. If the stability constraint is violated, stability is guaranteed 
through fallback control to a reference stabilizing controller. This safe-
guards the closed-loop system against cases where erroneous outputs 
are generated. Simultaneously, this simplifies the design process and 
enables generalized compatibility. Using a benchmark nonlinear chem-
ical process example, we demonstrate how a simple NN architecture 
and training process can reduce the time complexity of optimal control 
while retaining close mapping to the MPC. The train-time performance 
and run-time performance of the resulting NN are examined to provide 
insight into the computational benefits and performance impacts of the 
method.

2. Preliminaries

2.1. Notation

The transpose of vector 𝑥 is denoted by 𝑥⊤. The set of real numbers 
is denoted by R. The set subtraction of set 𝐵 from set 𝐴 yields a set 
of elements that are in set 𝐴 but not in set 𝐵 and is denoted as 𝐴∖𝐵. 
Functions are denoted as 𝑓 (⋅).

2.2. Class of systems

In this work, we focus on nonlinear multiple-input multiple-output 
(MIMO) continuous-time systems described by a system of nonlinear 
first-order ordinary differential equations (ODEs) of the form: 

𝑥̇ = 𝐹 (𝑥, 𝑢) = 𝑓 (𝑥) +
𝑚
∑

𝑖=1
𝑔𝑖 (𝑥) 𝑢𝑖 (1)

where the state vector 𝑥 =
[

𝑥1, 𝑥2,… , 𝑥𝑛
]

∈ R𝑛 describes the process 
state variables which are assumed to be measurable at every sampling 
time 𝑡𝑘 (i.e., state feedback control problem is considered). The control 
input vector 𝑢 =

[

𝑢1, 𝑢2,… , 𝑢𝑚
]

∈ R𝑚 describes the applied control 
inputs, where 0 < 𝑚 ≤ 𝑛. Each control input is bounded, i.e., 𝑢𝑖,min ≤
𝑢𝑖 ≤ 𝑢𝑖,max ∀ 𝑖 = 1, 2,… , 𝑚 where 𝑢𝑖,min and 𝑢𝑖,max represent the lower 
and upper bounds of each control action, respectively. This bounded 
region, denoted 𝑈 ⊂ R𝑚, is a subset of the set of real numbers. The 
functions 𝑓 (⋅) and 𝑔𝑖 (⋅) ∀ 𝑖 = 1, 2,… , 𝑚 are assumed to be sufficiently 
smooth vector functions. Without loss of generality, we consider the 
origin as a steady-state of the open-loop system (i.e., Eq. (1) with 𝑢𝑖 = 0, 
∀ 𝑖 = 1, 2,… , 𝑚) by assuming that 𝑓 (0) = 0 (or 𝐹 (0, 0) = 0). We further 
designate the initial time as zero (𝑡0 = 0). Finally, the set 𝑆 (𝛥) is defined 
as the assortment of piecewise constant functions characterized by a 
period of 𝛥.
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2.3. Stabilizability assumption

The existence of an explicit feedback controller 𝑢 (𝑥) = 𝛷 (𝑥) ∈ 𝑈
that can ensure exponential stability of the origin of Eq. (1) is as-
sumed. This assumption is referred to as the stabilizability assumption. 
Specifically, this stabilizability assumption states that there exists a 
stabilizing controller 𝑢 (𝑥 (𝑡)) = 𝛷 (𝑥) ∈ 𝑈 in the sense that there exists 
a continuously differentiable control Lyapunov function 𝑉 (𝑥) such that 
the following inequalities hold for all 𝑥 ∈ 𝐷, where 𝐷 is an open 
neighborhood around the origin: 
𝑐1 |𝑥|

2 ≤ 𝑉 (𝑥) ≤ 𝑐2 |𝑥|
2 (2a)

𝜕𝑉 (𝑥)
𝜕𝑥

𝐹 (𝑥,𝛷 (𝑥)) ≤ −𝑐3 |𝑥|
2 (2b)

|

|

|

|

𝜕𝑉 (𝑥)
𝜕𝑥

|

|

|

|

≤ 𝑐4 |𝑥| (2c)

where 𝑐1, 𝑐2, 𝑐3, and 𝑐4 are positive constants. Along with the fact that 𝑢
is bounded, these assumptions ensure the existence of positive constants 
𝑀𝐹 , 𝐿𝑥, and 𝐿′

𝑥 that ensure that for all 𝑥, 𝑥′ ∈ 𝐷 and 𝑢 ∈ 𝑈 , the 
following inequalities are satisfied: 
|

|

|

𝐹
(

𝑥′, 𝑢
)

− 𝐹 (𝑥, 𝑢)||
|

≤ 𝐿𝑥
|

|

𝑥 − 𝑥′|
|

(3a)

|𝐹 (𝑥, 𝑢)| ≤ 𝑀𝐹 (3b)

|

|

|

|

|

𝜕𝑉 (𝑥)
𝜕𝑥

𝐹 (𝑥, 𝑢) −
𝜕𝑉

(

𝑥′
)

𝜕𝑥
𝐹
(

𝑥′, 𝑢
)

|

|

|

|

|

≤ 𝐿′
𝑥
|

|

𝑥 − 𝑥′|
|

(3c)

Remark 1.  With respect to the stabilizability assumption, we note that 
it can be viewed as the analogue of requiring that the (𝐴,𝐵) pair is 
stabilizable in the context of linear systems and it is further expressed 
in terms of the existence of a control Lyapunov function which is the 
minimum requirement for stabilization of nonlinear systems.

2.4. Lyapunov-based model predictive control

The design of a stabilizing MPC with an explicitly defined region 
of guaranteed closed-loop stability is ensured through the use of a 
Lyapunov-based MPC (LMPC) formulated as follows (Mhaskar et al., 
2006): 

 = min
𝑢∈𝑆(𝛥)∫

𝑡𝑘+𝑁𝛥

𝑡𝑘
𝐿 (𝑥̃ (𝑡) , 𝑢 (𝑡)) d𝑡 (4a)

s.t. ̇̃𝑥 (𝑡) = 𝐹 (𝑥̃ (𝑡) , 𝑢 (𝑡)) (4b)

𝑢 ∈ 𝑈, ∀ 𝑡 ∈ [𝑡𝑘, 𝑡𝑘 +𝑁𝛥) (4c)

𝑥̃(𝑡𝑘) = 𝑥
(

𝑡𝑘
)

(4d)

𝑉̇
(

𝑥̃
(

𝑡𝑘
)

, 𝑢
(

𝑡𝑘
))

≤ 𝑉̇
(

𝑥̃
(

𝑡𝑘
)

, 𝛷
(

𝑥̃
(

𝑡𝑘
)))

(4e)

where 𝛥 is the sampling period and it represents the time between two 
consecutive sensor readings for the state 𝑥. In this context, it is also 
equivalent to the duration of the optimal control input 𝑢. 𝑁 denotes 
the total number of sampling periods that the LMPC will simulate the 
state trajectory and optimize the control inputs for. In other words, 𝑁
is the length of the prediction and control horizons. Eq. (4a) represents 
a generalized cost function that is to be optimized, which can be tuned 
as necessary. For simplicity, a quadratic cost function is used in this 
paper. Eq. (4b) represents the model that is used to simulate the process 
dynamics. In this work, the dynamic model is a first-principles-based 
model where Eq. (4d) initializes the state measurements of the model 
using sensor readings at 𝑡𝑘, which denotes an arbitrary initial condition. 
The final constraint is the Lyapunov time derivative constraint, also 
referred to as the stability constraint. This constraint utilizes the prop-
erties of the stabilizability assumption from  Section 2.3 to ensure that 
3 
the MPC’s control action at each sampling time guarantees convergence 
of the closed-loop state to a small region around the origin. Thus, 
this constraint ensures faster, or at least as fast, convergence from 
the MPC’s solution relative to the reference exponentially stabilizing 
controller, 𝛷(𝑥). This stabilizing controller is often designed along with 
the Lyapunov function, increasing the complexity of the design process, 
which is why another form of Eq. (4e) can be used in practice, namely: 

𝑉̇
(

𝑥̃
(

𝑡𝑘
)

, 𝑢
(

𝑡𝑘
))

≤ −𝛼𝑉
(

𝑥̃
(

𝑡𝑘
))

(5)

where 𝛼 is a positive real number. This form of the constraint yields the 
same guarantees by forcing the 𝑉̇  term to be negative proportionally to 
the magnitude of 𝑉  as opposed to forcing it to be more negative than 
a reference controller, thereby allowing for stabilizability without the 
need to explicitly solve for a reference controller. 

Remark 2.  A major benefit of the LMPC design is its generalized 
support for cost functions. Although a quadratic cost function is used 
in this work, there are alternatives such as economic cost functions 
that incorporate economics through some function of the predicted 
state values 𝑥̃ and/or the current guess for the control input 𝑢. Such 
functions can also vary in time to account for economics, as has been 
demonstrated in our recent previous work (Khodaverdian et al., 2025).

Remark 3.  The stability constraints under continuous-time imple-
mentation of the controller, 𝛷 (𝑥), guarantee exponential stability of 
the closed-loop system. Practically, this is not possible, as there is 
a non-negligible computation and signal transmission time that pre-
vents continuous control. Thus, the control actions are applied in a 
sample-and-hold fashion. This causes the stability guarantees to only 
apply outside of a small region around the origin, as will be shown 
in Section 4.2 (i.e., it is possible to only establish convergence of the 
closed-loop state to a small region around the origin).

Remark 4.  The Lyapunov stability constraints are only applied at the 
current sampling time, 𝑡𝑘, in the LMPC optimization problem and not 
throughout the entire prediction horizon, as in the MPC only the first 
control action is applied to the closed-loop system (receding horizon 
implementation). This is not a requirement, but it is a convenient 
simplification of the constraints. In the receding horizon implementa-
tion, the control input trajectory that MPC generates over the entire 
prediction horizon is discarded, with the exception of the first control 
input, which is applied to the process.

3. Neural network construction

3.1. Data generation

In order to get good fitting performance from a neural network 
trained via supervised learning, it is necessary to have a dense, diverse 
dataset of the desired operating region. In practice, it can be difficult 
to determine what a feasible operating region is and whether or not 
a given state is worth considering. Thus, the problem of generating 
sufficiently dense, diverse, and quality data is a system-specific problem 
that needs to be carefully considered. As a data-driven method, this step 
is critical.

A factor to consider is the fact that data generation can be done 
offline. The system dynamics, typically a first-principles model, along 
with a desired MPC to replace, provide a platform for the arbitrary 
generation of data. For any given state, MPC can be used to generate 
optimal control actions with the necessary constraints discussed earlier. 
This enables the minimal case for data generation with the state and 
control action pair. This is referred to as the minimal case, as MPC at 
the bare minimum requires an initial state and will output the resulting 
control action for the current sampling time. Additional data can be 
collected as needed, but it is critical to avoid mixing datasets built with 
different controller designs unless the NN is designed in such a way that 
enables the use of multiple models. 
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Remark 5.  Some research on the topic of machine learning applied to 
model predictive control, often referred to as ML-MPC, may sound sim-
ilar to the framework that is proposed in this paper; however, the two 
not only function differently, but can also be combined. The research on 
ML-MPC centers around an approach in which MPC is modified such 
that Eq. (4b) (i.e., the prediction model used in MPC) is no longer a 
first-principles model and is instead a data-driven NN model (Wu et al., 
2019a,b). This modification is beneficial for highly complex systems 
where first-principles models fail to sufficiently capture the process 
dynamics. In these cases, it is beneficial to gather real-world data from 
the process and use it to train an NN model (research shows that 
recurrent neural network models are a viable option (Alhajeri et al., 
2024)) that is capable of predicting the change in the process state for 
a given control action. In contrast, the present work uses offline data 
generated by an MPC to approximate the optimal control action for a 
given state and then uses this data to construct an NN that acts as the 
controller. These two frameworks can work at the same time, where 
one NN exists within the MPC as its model to better model the system 
dynamics, and the other NN is trained off of the data produced by this 
MPC to then function as a replacement used in the feedback loop. One 
NN applies the control action to predict the future state, and the other 
NN, as shown in this work, takes the current state and calculates the 
optimal control actions that should be applied to the process.

3.2. Controller neural network model type and training

The proposed controller implementation framework does not pro-
vide any specific guidance or have any specific restrictions on the 
neural network model type and training aspect of the controller design 
process. Unlike data generation, model training can be of any form that 
is desired. How the model is trained and the extent to which this is done 
impact the performance of the model, but the current framework is 
network performance agnostic and will guarantee closed-loop stability 
regardless of the type of neural network used to approximate the data 
and serve as the feedback controller. A model that performs poorly 
will simply result in the backup controller performing the bulk of the 
control actions. Thus, it is important to train the model to perform 
well if the quality of the control action and the resulting closed-loop 
performance are the priorities. 

Remark 6.  The robustness of this approach with respect to sensor noise 
and model uncertainty is dependent on the existence of the fallback 
controller. The NN-controller alone has no performance or stability 
guarantees as presented and will only attempt to mimic the LMPC with 
variable success. Thus, unless a fallback controller exists that is capable 
of enforcing the desired closed-loop stability and robustness properties 
with respect to measurement noise and model uncertainty, the im-
plementation of the NN-controller on its own provides no closed-loop 
stability and robustness guarantees.

4. Guaranteeing stability for neural network-based control

This section will cover the design of the NN-based approximate 
implementation of MPC with stability guarantees.

4.1. Practical implementation

As illustrated in Fig.  1, the NN implementation is designed as a 
direct substitute for any given MPC design. The only required inputs 
to the system are 𝑥(𝑡𝑘) (the sensor signals at a given reference time 
frame 𝑡𝑘). Unlike MPC, which benefits from a good initial guess for the 
optimal control, the NN implementation does not require this guess as 
an input, although the framework enables the chosen NN to accept this 
form of input if desired.

The novelty in this design occurs after the output of the NN is 
acquired. A validation block is used to represent the steps used to en-
sure that the given solution is one that satisfies the chosen constraints. 
4 
Notably, the guarantee of stability can be enforced here through check-
ing if the Lyapunov stability constraints are satisfied for a given NN 
output. If true, then the output is left unchanged, but if false, then 
the constraint is forcefully satisfied through fallback to a stabilizing 
controller of any desired form. General constraint satisfaction is guar-
anteed through similar enforcement; either the constraints are enforced 
through direct modification of the NN output, such as clipping at 
control bounds, or a fallback controller that guarantees constraint 
satisfaction is used in cases where constraints are violated. 

Remark 7.  Because the framework does not involve a specialized 
training process, modified forms of MPC are supported. One such 
design that can be beneficial to consider is a two-layer implementation 
of MPC, which is a cyber-secure design that generates an optimal 
trajectory instead of optimal control (Khodaverdian et al., 2025). A 
linear controller can then derive suboptimal control by tracking this 
trajectory, but can do so while encrypted, as homomorphic encryption 
enables addition and/or multiplication operations on encrypted data. In 
the context of the NN implementation, instead of using MPC to solve 
the optimal control, and then solving the predicted trajectory based on 
this control, the NN can be trained to either directly output an estimate 
trajectory or to continue calculating approximate control signals that 
will then be applied to a state estimator to build the trajectory.

Remark 8.  The design of this framework is intentionally left unspec-
ified, as the precise goal of MPC varies between different processes. 
Instead, the importance of this framework comes in the form of the 
validation block. This simplifies the design process significantly. Now, 
there is no longer any required complexity involved in trying to design 
a training loop that ensures the constraints are met. As a consequence, 
poor fitting will yield poorer results with respect to the goals of the 
optimal control, but this will not come at the expense of losing the 
ability to stabilize the system. Additionally, this complexity can be 
implemented anyway if it is deemed beneficial for performance, as the 
enforcements are external.

4.2. Closed-loop stability results

As discussed in  Section 2.3, the continuous-time form of the system 
under 𝛷 (𝑥) is rendered exponentially stable through the assumption’s 
statement. In practice, the control action needs to be applied in a 
sample-and-hold fashion, which violates the continuous-time imple-
mentation, and thus we must establish that the stability of the closed-
loop system is still guaranteed under sample-and-hold implementation 
of 𝛷 (𝑥) for sufficiently small sampling time.

4.2.1. Stability via a reference controller
The first form of the stability guarantee constraint is the form 

shown in Eq. (4e), which requires an exponentially stabilizing reference 
controller. 

Theorem 1.  For a nonlinear system described by Eq. (1), given the 
existence of an explicit feedback controller 𝛷(𝑥) that renders the nonlinear 
system exponentially stable with respect to the origin if applied continuously 
for any initial state satisfying 𝑉 (

𝑥
(

𝑡0
))

≤ 𝜌, there exists a positive constant 
𝜖𝑤 such that if the following conditions are satisfied, the sample-and-hold 
implementation of 𝛷(𝑥) ensures the convergence of the closed-loop state to 
a small region around the origin denoted 𝛺𝜌min

 and determined as follows: 

𝐿′
𝑥𝑀𝐹𝛥 −

𝑐3
𝑐2

𝜌𝑠 ≤ −𝜖𝑤 (6a)

𝜌min = max
{

𝑉
(

𝑥
(

𝑡𝑘 + 𝛥
)

|𝑉
(

𝑥
(

𝑡𝑘
))

≤ 𝜌𝑠
)}

(6b)

𝜌𝑠 < 𝑉
(

𝑥
(

𝑡𝑘
))

(6c)

𝜌 < 𝜌 < 𝜌 (6d)
𝑠 min
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Fig. 1. Model Predictive Controller (Left) application block diagram for a general process vs Neural Network based controller with validation and fallback stabilizing controller 
(Right).
Proof.  To start, we consider the reference controller itself. Due to the 
sample and hold implementation of the controller, we need to account 
for the fact that the state will continue to evolve while the control 
action remains fixed. Thus, we consider some time range representing 
a single sampling time interval denoted 𝑡 ∈ [

𝑡𝑘, 𝑡𝑘 + 𝛥
)

. Here, 𝑡𝑘 is the 
initial reference time frame, 𝛥 is the sampling time, and thus the range 
of possible times between one sensor reading and the next includes all 
times besides 𝑡𝑘 + 𝛥, where the new sensor reading will be available. 
Thus, we can denote an arbitrary time frame of the time derivative of 
the Lyapunov function as 

𝑉̇
(

𝑥 (𝑡) , 𝛷
(

𝑥
(

𝑡𝑘
)))

=
𝜕𝑉 (𝑥 (𝑡))

𝜕𝑥
𝐹
(

𝑥 (𝑡) , 𝛷
(

𝑥
(

𝑡𝑘
)))

(7)

After some algebraic manipulation, the expression becomes: 

𝑉̇
(

𝑥 (𝑡) , 𝛷
(

𝑥
(

𝑡𝑘
)))

=
𝜕𝑉 (𝑥 (𝑡))

𝜕𝑥
𝐹
(

𝑥 (𝑡) , 𝛷
(

𝑥
(

𝑡𝑘
)))

−
𝜕𝑉

(

𝑥
(

𝑡𝑘
))

𝜕𝑥
𝐹
(

𝑥
(

𝑡𝑘
)

, 𝛷
(

𝑥
(

𝑡𝑘
)))

+
𝜕𝑉

(

𝑥
(

𝑡𝑘
))

𝜕𝑥
𝐹
(

𝑥
(

𝑡𝑘
)

, 𝛷
(

𝑥
(

𝑡𝑘
)))

(8)

Via  Section 2.3, the existence of the controller implies the exis-
tence of a continuously differentiable Lyapunov function. This further 
implies that the Lyapunov function and its derivatives are Lipschitz 
continuous, hence Eq. (3c). Additionally, the Lyapunov function must 
satisfy Eq. (2b). Thus, Eq. (8) simplifies to 

𝑉̇
(

𝑥 (𝑡) , 𝛷
(

𝑥
(

𝑡𝑘
)))

≤ 𝐿′
𝑥
|

|

|

𝑥 (𝑡) − 𝑥
(

𝑡𝑘
)

|

|

|

− 𝑐3
|

|

|

𝑥
(

𝑡𝑘
)

|

|

|

2
(9)

We can further simplify this using the integral triangle inequality as 
follows: 
|

|

|

𝑥 (𝑡) − 𝑥
(

𝑡𝑘
)

|

|

|

≤
|

|

|

|

|

∫

𝑡

𝑡𝑘
𝐹
(

𝑥 (𝜏) , 𝛷
(

𝑥
(

𝑡𝑘
)))

d𝜏
|

|

|

|

|

≤ ∫

𝑡

𝑡𝑘

|

|

|

𝐹
(

𝑥 (𝜏) , 𝛷
(

𝑥
(

𝑡𝑘
)))

|

|

|

d𝜏

≤ ∫

𝑡

𝑡𝑘
𝑀𝐹 d𝜏

≤ 𝑀𝐹
(

𝑡 − 𝑡𝑘
)

≤ 𝑀𝐹𝛥

(10)

which can be substituted in Eq. (9) to yield: 

𝑉̇
(

𝑥 (𝑡) , 𝛷
(

𝑥
(

𝑡𝑘
)))

≤ 𝐿′
𝑥𝑀𝐹𝛥 − 𝑐3

|

|

|

𝑥
(

𝑡𝑘
)

|

|

|

2
(11)

Note the existence of both a positive term and a negative term in the 
upper bound for the time derivative of the Lyapunov function. This 
implies that for a given non-zero sampling time, there exists a lower 
bound for 𝑥  denoted 𝜌 > 0. We denote 𝛺  as the level set of 𝑉
| | 𝑠 𝜌𝑠

5 
where for any 𝑉 (𝑥 (𝑡)) ≤ 𝜌𝑠, 𝑉̇ ≤ 0 cannot be guaranteed. Thus, the 
sample and hold assumption results in incomplete convergence to the 
origin. As a result, the condition described by Eq. (6c) must be satisfied. 
This condition can be combined with Eq. (3b) to yield

𝜌𝑠 < 𝑉
(

𝑥
(

𝑡𝑘
))

≤ 𝑐2
|

|

|

𝑥
(

𝑡𝑘
)

|

|

|

2
(12)

𝜌𝑠
𝑐2

≤ |

|

|

𝑥
(

𝑡𝑘
)

|

|

|

2
(13)

−𝑐3
|

|

|

𝑥
(

𝑡𝑘
)

|

|

|

2
≤

−𝑐3
𝑐2

𝜌𝑠 (14)

which results in 
𝑉̇
(

𝑥 (𝑡) , 𝛷
(

𝑥
(

𝑡𝑘
)))

≤ 𝐿′
𝑥𝑀𝐹𝛥 −

𝑐3
𝑐2

𝜌𝑠 (15)

It can now be seen why 𝛺𝜌𝑠  is necessary. Because of the sample and 
hold implementation, we get an upper bound on the rate of change 
to the Lyapunov function that can be positive for small values of |𝑥|. 
Although the positive factor in the upper bound can be decreased, the 
only such method is to reduce 𝛥. It can be seen that as 𝛥 approaches 0, 
we approach a continuous-time system, which will not have this issue. 
Thus, for any 𝛥 > 0, we have a small region around the origin (𝛺𝜌𝑠 ) 
where we cannot guarantee the decrease of 𝑉 (

𝑥
(

𝑡𝑘
))

. As a result, given 
a reference state within this region, Eq. (6b) describes a larger region 
where all such states will be contained within. Given sufficiently long 
run time, the final result will ultimately converge to 𝛺𝜌𝑚𝑖𝑛  and remain in 
this region. States within 𝛺𝜌min

∖𝛺𝜌𝑠  will converge into 𝛺𝜌𝑠 , but within 
𝛺𝜌𝑠  the sample and hold implementation prevents any guarantees of 
further convergence to the origin. In order to sufficiently stabilize the 
system, a sufficiently small 𝛥 must be chosen, as a smaller 𝛥 results in 
a smaller 𝜌𝑠 before the upper bound of 𝑉̇  becomes positive.

More broadly, we say that for sufficiently small 𝛥 and for all 𝑥 (𝑡𝑘
)

∈
𝛺𝜌∖𝛺𝜌𝑠  we can ensure 

𝑉̇
(

𝑥 (𝑡) , 𝛷
(

𝑥
(

𝑡𝑘
)))

≤ − 𝜖𝑤 (16)

where 𝜖𝑤 is some positive constant, for 𝑡 ∈
[

𝑡𝑘, 𝑡𝑘 + 𝛥
)

. As such, we 
can ensure that the control Lyapunov function will decay with time, 
ultimately causing the closed-loop state to converge to a small region 
around the origin. □

Theorem  2 below establishes closed-loop stability under the MPC 
of Eq. (4).

Theorem 2.  For the MPC described by Eq. (4) where Eq. (4b) describes 
a nonlinear system of the form described by Eq. (1), given the existence 
of an explicit feedback controller 𝛷(𝑥) that renders the nonlinear system 
exponentially stable with respect to the origin if applied continuously for any 
initial condition satisfying 𝑉 (

𝑥
(

𝑡
))

≤ 𝜌, there exists a positive constant 
0
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𝜖𝑤 such that if the following conditions are satisfied, the sample-and-
hold implementation of 𝑢 (𝑡) of the MPC ensures that the closed-loop state 
converges to a small region around the origin denoted 𝛺𝜌min

 characterized 
as follows: 
𝐿′
𝑥𝑀𝐹𝛥 −

𝑐3
𝑐2

𝜌𝑠 ≤ −𝜖𝑤 (17a)

𝜌min = max
{

𝑉
(

𝑥
(

𝑡𝑘 + 𝛥
)

|𝑉
(

𝑥
(

𝑡𝑘
))

≤ 𝜌𝑠
)}

(17b)

𝜌𝑠 < 𝑉
(

𝑥
(

𝑡𝑘
))

(17c)

𝜌𝑠 < 𝜌min < 𝜌 (17d)

Proof.  We provide a sketch of the proof building on the proof of 
Theorem  1. Eq. (4e) constrains the control action solutions such that 
the time derivative of the Lyapunov function is more negative than 
that of the system if the exponentially stabilizing controller 𝛷(𝑥 (𝑡)) was 
used. Theorem  1 demonstrates how this reference controller ensures 
that the closed-loop system state converges to a small region around 
the origin when applied in a sample-and-hold manner. Thus, under the 
same constraints, the MPC solution will yield 
𝑉̇ (𝑥̃(𝑡𝑘), 𝑢) ≤ 𝑉̇ (𝑥̃(𝑡𝑘), 𝛷

(

𝑥̃
(

𝑡𝑘
))

) ≤ −𝜖𝑤 (18)

Repeated application of this result yields convergence of the closed-
loop system state to a small region around the origin. □

4.2.2. Stability via alternative Lyapunov stability constraint
Another convenient form is called the Alpha Form of the stabilizing 

constraint demonstrated in Eq. (5). Here, instead of relying on the 
existence of a stabilizing controller, we utilize the positive definite 
nature of the Lyapunov function to ensure a consistently negative time 
derivative of the function by using a constant 𝛼 > 0. Theorem  3 below 
establishes closed-loop stability under the MPC of Eq. (4) with the 
stability constraint of Eq. (4e).

Theorem 3.  Consider an MPC described by Eq. (4) where Eq. (4b) 
describes a nonlinear system of the form described by Eq. (1) and the 
constraint from Eq. (4e) is replaced with Eq. (5). Suppose there exists an 
explicit feedback controller 𝛷(𝑥) that renders the nonlinear system exponen-
tially stable with respect to the origin if applied continuously for any initial 
condition satisfying 𝑉 (

𝑥
(

𝑡0
))

≤ 𝜌. Then, there exists a positive constant 𝜖𝑤
and a positive constant 𝛼 such that, if the following conditions are satisfied, 
then the sample-and-hold implementation of 𝑢 (𝑡) ensures convergence of the 
closed-loop state to a small region around the origin denoted 𝛺𝜌min

 defined 
as follows: 
𝐿′
𝑥𝑀𝐹𝛥 − 𝛼𝜌𝑠 ≤ −𝜖𝑤 (19a)

𝜌min = max
{

𝑉
(

𝑥
(

𝑡𝑘 + 𝛥
)

|𝑉
(

𝑥
(

𝑡𝑘
))

≤ 𝜌𝑠
)}

(19b)

𝜌𝑠 < 𝑉
(

𝑥
(

𝑡𝑘
))

(19c)

𝜌𝑠 < 𝜌min < 𝜌 (19d)

Proof.  As is done in Theorem  1, we can denote an arbitrary time frame 
of the time derivative of the Lyapunov function under MPC 

𝑉̇
(

𝑥 (𝑡) , 𝑢
(

𝑡𝑘
))

=
𝜕𝑉 (𝑥 (𝑡))

𝜕𝑥
𝐹
(

𝑥 (𝑡) , 𝑢
(

𝑡𝑘
))

(20)

Through some algebraic manipulation of the expression. 

𝑉̇
(

𝑥 (𝑡) , 𝑢
(

𝑡𝑘
))

=
𝜕𝑉 (𝑥 (𝑡))

𝜕𝑥
𝐹
(

𝑥 (𝑡) , 𝑢
(

𝑡𝑘
))

−
𝜕𝑉

(

𝑥
(

𝑡𝑘
))

𝜕𝑥
𝐹
(

𝑥
(

𝑡𝑘
)

, 𝑢
(

𝑡𝑘
))

+
𝜕𝑉

(

𝑥
(

𝑡𝑘
))

𝐹
(

𝑥
(

𝑡
)

, 𝑢
(

𝑡
))

(21)
𝜕𝑥 𝑘 𝑘

6 
for 𝑡 ∈
[

𝑡𝑘, 𝑡𝑘 + 𝛥
)

. Using  Section 2.3, the existence of the controller 
implies the existence of a continuously differentiable Lyapunov func-
tion. This further implies that the Lyapunov function and its derivatives 
are Lipschitz continuous, hence Eq. (3c). Additionally, the Lyapunov 
function must satisfy Eq. (5). Thus, Eq. (21) simplifies to 

𝑉̇
(

𝑥 (𝑡) , 𝑢
(

𝑡𝑘
))

≤ 𝐿′
𝑥
|

|

|

𝑥 (𝑡) − 𝑥
(

𝑡𝑘
)

|

|

|

− 𝛼𝑉
(

𝑥
(

𝑡𝑘
))

(22)

for 𝑡 ∈
[

𝑡𝑘, 𝑡𝑘 + 𝛥
)

. We can further simplify this using the integral 
triangle inequality as in Eq. (10) to obtain: 

𝑉̇
(

𝑥 (𝑡) , 𝑢
(

𝑡𝑘
))

≤ 𝐿′
𝑥𝑀𝐹𝛥 − 𝛼𝑉

(

𝑥
(

𝑡𝑘
))

(23)

Following the same logic as Theorem  1, the sample and hold assump-
tion results in incomplete convergence to the origin. As a result, the 
condition described by Eq. (6c) must be satisfied. This condition yields

𝜌𝑠 < 𝑉
(

𝑥
(

𝑡𝑘
))

(24)

−𝛼𝑉
(

𝑥
(

𝑡𝑘
))

< −𝛼𝜌𝑠 (25)

which results in 

𝑉̇
(

𝑥 (𝑡) , 𝑢
(

𝑡𝑘
))

≤ 𝐿′
𝑥𝑀𝐹𝛥 − 𝛼𝜌𝑠 (26)

Following the logic of Theorem  1, we say that for sufficiently small 𝛥
and for all 𝑥 (𝑡𝑘

)

∈ 𝛺𝜌∖𝛺𝜌𝑠  we can ensure 

𝑉̇
(

𝑥 (𝑡) , 𝑢
(

𝑡𝑘
))

≤ − 𝜖𝑤 (27)

where 𝜖𝑤 is some positive constant, 𝑡 ∈
[

𝑡𝑘, 𝑡𝑘 + 𝛥
)

. As such, we 
can ensure that the control Lyapunov function will decay with time, 
ultimately causing the system to converge to a small region around the 
origin. □

The choice between these constraints is up to the control system 
designer, but both ensure convergence of the closed-loop state to a 
small region around the origin proportional to the sampling time. It 
should be noted, however, that a proof of this form does not exist for 
the Neural Network controller, as strict constraint guarantees are not 
involved. 

Remark 9.  If the Lyapunov constraint of the form shown in Eq. (5) is 
used, the extent to which the control is stabilizing is determined by the 
magnitude of 𝛼. Large values can be beneficial for rapid stabilization 
or for stabilizing systems when large sampling times are needed, but 
this comes at the risk of over-constraining the system. Of the possible 
control actions that can be used, a subset of these will be valid for a 
given 𝑉  and 𝛼. As 𝛼 increases, this subset becomes smaller as more 
control action will be needed to provide the stronger stabilizing control. 
Thus, there will be fewer valid control action solutions. Ideally, the 
consequence of this will be a reduction in the optimality of the MPC. 
Since control actions are bounded, the reality is that for a given 𝑉  and 
𝛼, the requested rate of stabilization can be too large for any control 
action to satisfy it. Therefore, it is important to choose an 𝛼 that is 
sufficiently large to guarantee stability while being small enough not 
to over-constrain the optimization problem.

4.2.3. Closed-loop stability under NN controller implementation
Theorem  4 below establishes closed-loop stability of the process 

under control in the form shown in the block diagram on the right 
of Fig.  1. 

Theorem 4.  For a nonlinear system described by Eq. (1), assuming the 
existence of an explicit feedback controller 𝛷(𝑥) that renders the nonlinear 
system exponentially stable with respect to the origin if applied continuously 
for any initial condition satisfying 𝑉 (

𝑥
(

𝑡0
))

≤ 𝜌, and a neural network 
controller 𝛷 (

𝑥
(

𝑡
)) trained to fit the MPC solution described by Eq. (4) 
𝑛𝑛 𝑘
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Fig. 2. State distribution of the generated data used for NN controller training.
where Eq. (4b) is of the form shown in Eq. (1). Then, a constraint enforcer 
implementation of the form: 

𝑢 =

⎧

⎪

⎨

⎪

⎩

𝛷𝑛𝑛
(

𝑥
(

𝑡𝑘
))

, if 𝑉̇ (

𝑥
(

𝑡𝑘
)

, 𝛷𝑛𝑛
(

𝑥
(

𝑡𝑘
)))

≤ 𝑉̇
(

𝑥
(

𝑡𝑘
)

, 𝛷
(

𝑥
(

𝑡𝑘
)))

𝛷
(

𝑥
(

𝑡𝑘
))

, if 𝑉̇ (

𝑥
(

𝑡𝑘
)

, 𝛷𝑛𝑛
(

𝑥
(

𝑡𝑘
)))

> 𝑉̇
(

𝑥
(

𝑡𝑘
)

, 𝛷
(

𝑥
(

𝑡𝑘
)))

(28)

applied to a process as shown in Fig.  1 implies the existence of a positive 
constant 𝜖𝑤 such that if the following conditions are satisfied, the sample-
and-hold implementation of 𝑢 ensures the convergence of the closed-loop 
state to a small region around the origin denoted 𝛺𝜌min

 and determined 
using Eqs. (6a)–(6d).

Proof. 

Case 1.  Consider the case where 𝑉̇
(

𝑥
(

𝑡𝑘
)

, 𝛷𝑛𝑛
(

𝑥
(

𝑡𝑘
)))

>
𝑉̇
(

𝑥
(

𝑡𝑘
)

, 𝛷
(

𝑥
(

𝑡𝑘
)))

. In this case, the neural network controller does 
not produce a control action that would ensure convergence of the 
closed-loop system state to a small region around the origin; however, 
the constraint enforcer compensates for this by flipping the control ac-
tion to instead utilize the control provided by the fallback controller. It 
is assumed that the fallback controller is an explicit feedback controller 
that renders the nonlinear system exponentially stable with respect 
to the origin if applied continuously for any initial state satisfying 
𝑉
(

𝑥
(

𝑡0
))

≤ 𝜌. Thus, the fallback controller satisfies Theorem  1 which 
implies Eq. (16). Thus, the fallback controller ensures that the closed-
loop system state converges to a small region around the origin when 
applied in a sample-and-hold manner.
7 
Case 2.  Consider the case where 𝑉̇
(

𝑥
(

𝑡𝑘
)

, 𝛷𝑛𝑛
(

𝑥
(

𝑡𝑘
)))

≤ 𝑉̇
(

𝑥
(

𝑡𝑘
)

, 𝛷
(

𝑥
(

𝑡𝑘
)))

. In this case, the proof follows the same logic 
as in Theorem  2. Here, the fallback controller is a controller that 
satisfies Theorem  1, which implies Eq. (16). Thus, the fallback con-
troller ensures that the closed-loop system state converges to a small 
region around the origin when applied in a sample-and-hold manner. 
Consequently, the NN controller satisfies 
𝑉̇
(

𝑥
(

𝑡𝑘
)

, 𝛷𝑛𝑛
(

𝑥
(

𝑡𝑘
)))

≤ 𝑉̇
(

𝑥
(

𝑡𝑘
)

, 𝛷
(

𝑥
(

𝑡𝑘
)))

≤ −𝜖𝑤 (29)

which ensures that application of the NN controller yields convergence 
of the closed-loop system state to a small region around the origin. □

Remark 10.  Although the NN can be applied directly to the system 
without any fallback control if desired, doing so will no longer preserve 
the stability guarantees described above. Miscellaneous techniques may 
exist that improve the NN’s ability to satisfy these constraints even 
in the case of poor mapping to a reference MPC, but unless these 
techniques strictly enforce the constraints that are necessary, then the 
system is not guaranteed to be stabilized by the NN’s control.

Remark 11.  We note that the Lyapunov time-derivative is not com-
puted for a discrete-time system, as the Lyapunov function is formu-
lated with respect to a system described by Eq. (1), i.e, a continuous-
time system. Thus, the resulting derivative is of the form 𝑉̇ = 2𝑥𝑃 𝑥̇⊤

and can be defined explicitly for a given set of state measurements 
and control signals. The construction of such a Lyapunov function is 
a general design problem for process control and is thus not detailed 
in the present paper; in practice, quadratic Lyapunov functions have 
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Fig. 3. State distribution of the generated data color coded by the value of the first control action 𝐶𝐴0 − 𝐶𝐴0𝑠.𝑠 .
been found to work well. The proofs from Section 4 demonstrate how 
the sample-and-hold implementation impacts the upper bound of this 
derivative for the closed-loop system under the stabilizing reference 
controller and provides a robustness margin with respect to bounded 
disturbances.

5. Application to a chemical process example

To demonstrate the performance of the proposed NN control frame-
work, we apply the framework to a benchmark nonlinear chemical 
process example. The objective of the MPC is to stabilize the system 
to a predefined steady state by minimizing a quadratic cost function of 
the deviation variable form of the state variables with respect to this 
steady state. The objective of the resulting NN is to provide solutions 
that roughly matches what the MPC would provide for any given 
point in the state space. This would demonstrate the ability for a low-
dimensional system to be accurately modeled using neural networks, 
thus enabling performance gains with minimal control quality loss.

5.1. Process model and control problem

The chosen benchmark nonlinear chemical process example is a per-
fectly mixed continuous stirred tank reactor (CSTR). The CSTR converts 
a generalized reactant 𝐴 to product 𝐵 via a second-order irreversible 
exothermic elementary reaction 𝐴 → 𝐵 based on the following second-
order non-isothermal elementary rate law 𝑟𝐴 = 𝑘0 exp

(

− 𝐸
𝑅𝑇

)

𝐶2
𝐴. In 

practice, the temperature of the reactor would be controlled through 
a jacket, but for modeling simplicity, heat transfer is modeled as a 
8 
direct heating or cooling input term (𝑄̇). Pure species 𝐴 of variable 
concentration is fed into the reactor at a fixed rate; thus, the dynamics 
of this model consist of the following pair of first-order ODEs: 
d𝐶𝐴
d𝑡

= 𝐹
𝑉
(𝐶𝐴0 − 𝐶𝐴) − 𝑘0 exp

(

− 𝐸
𝑅𝑇

)

𝐶2
𝐴 (30a)

d𝑇
d𝑡

= 𝐹
𝑉
(𝑇0 − 𝑇 ) + −𝛥𝐻

𝜌𝐿𝐶𝑝
𝑘0 exp

(

− 𝐸
𝑅𝑇

)

𝐶2
𝐴 + 𝑄̇

𝜌𝐿𝐶𝑝𝑉
(30b)

In this system, 𝐹 , 𝑉 , 𝑇0, 𝑘0, 𝛥𝐻 , 𝜌𝐿, 𝐶𝑃 , and 𝐸 are defined as constants 
as detailed in Table  1 along with the reference unstable steady state val-
ues. The reactant concentration (𝐶𝐴) and the reactor temperature (𝑇 ) 
are chosen to be the state variables, whereas the heat input rate (𝑄̇) and 
inlet concentration of species A (𝐶𝐴0) are chosen to be the manipulated 
inputs. The state variables and manipulated inputs are converted into 
deviation variable form relative to the chosen unstable steady state, 
meaning we denote the state variables as 𝑥 =

[

𝐶𝐴 − 𝐶𝐴𝑠, 𝑇 − 𝑇𝑠
] and 

the input variables as 𝑢 =
[

𝐶𝐴0 − 𝐶𝐴0𝑠, 𝑄̇ − 𝑄̇𝑠
]

. The input variables are 
bounded as follows: 

−3.5 ≤𝑢1 ≤ 3.5
[

kmolm−3] (31a)

−5 × 105 ≤𝑢2 ≤ 5 × 105
[

kJ h−1
]

(31b)

All simulations begin at a random point within the state space bounded 
by the level set 𝑉 = 120 at 𝑡𝑘 = 0 and optimize a quadratic cost function 
as shown in Eq.  (32)

𝐿 𝑥̃ 𝑡 , 𝑢 𝑡 = 𝑥̃ 𝑡 𝑄 𝑥̃ 𝑡 ⊤ + 𝑢 𝑡 𝑄 𝑢 𝑡 ⊤ (32)
( ( ) ( )) ( ) 𝑥 ( ) ( ) 𝑢 ( )
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Fig. 4. State distribution of the generated data color coded by the value of the second control action 𝑄 −𝑄𝑠.𝑠.
where the weight matrices are defined as

𝑄𝑥 =
[

1000 0
0 1

]

(33)

𝑄𝑢 =
[

10 0
0 10−8

]

(34)

5.2. Stability analysis

The reference stabilizing controller used to determine the stability 
region is a set of P controllers for 𝐶𝐴0 and 𝑄̇ with gains of 𝐾𝐶𝐴0

= 2 and 
𝐾𝑄 = 5, 000 respectively. The control Lyapunov function for this system 
is of the form 𝑉 (𝑥) = 𝑥⊤𝑃𝑥 where 𝑃  is a positive definite matrix defined 
as: 

𝑃 =
[

1060 22
22 0.52

]

(35)

Stability can be guaranteed within a level set of this Lyapunov function, 
denoted 𝛺𝜌, with a value of 𝜌 = 120. This level set was determined by 
simulating the system with the reference stabilizing controller. Starting 
at a large 𝑉 , 100 initial conditions were sampled along the level set 
boundary. For each initial condition, the closed-loop system under 
the reference controller was simulated for 10 sampling times, and 
𝑉̇  was checked at each. Once 𝑉̇  returned negative values for all 10 
time steps for all 100 points, the boundary of the stability region of 
the stabilizing controller was deemed found. To validate, level sets 
smaller than this, in increments of 1, are also checked to ensure that all 
subsequent level sets satisfy the stabilizing controller assumption. Using 
this procedure, we selected 𝜌 = 120 as a conservative estimate of the 
9 
Table 1
Parameter values for the chemical process example.
 𝑁𝑎𝑚𝑒 𝐿𝑎𝑏𝑒𝑙 𝑉 𝑎𝑙𝑢𝑒 𝑈𝑛𝑖𝑡𝑠  
 Flow Rate 𝐹 5 m3 h−1  
 Reactor Volume 𝑉 1 m3  
 Pre-exponential Factor 𝑘0 8.46 × 106 m3 kmol−1 h−1 
 Activation Energy 𝐸 5 × 104 kJ kmol−1  
 Gas Constant 𝑅 8.314 kJ kmol−1 K−1 
 Liquid Density 𝜌𝐿 1000 kgm−3  
 Enthalpy of Reaction 𝛥𝐻 −1.15 × 104 kJ kmol−1  
 Inlet Temperature 𝑇0 300 K  
 s.s Heat Input Rate 𝑄̇𝑠 0 kJ h−1  
 s.s Inlet Concentration 𝐶𝐴0𝑠 4 kmolm−3  
 s.s Concentration 𝐶𝐴𝑠 1.954 kmolm−3  
 s.s Temperature 𝑇𝑠 401.9 K  
 Specific Heat 𝐶𝑝 0.231 kJ kg−1 K  
s.s stands for steady-state.

stability region. Because this example is entirely first-principles based, 
there is no modeling error, and due to the small step size used, the small 
region around the origin in which we cannot guarantee negative 𝑉̇  is 
found to be of the order of 𝑉 < 10−23, and is thus negligibly small. To be 
conservative, we terminate the simulation once the current trajectory 
enters a level set for which 𝑉 ≤ 1. 

As a final measure of caution regarding stability, we slightly modify 
the stabilizing constraint to be of the form 

𝑉̇
(

𝑥
(

𝑡
)

, 𝑢
(

𝑡
))

+ 0.065 ≤ min
(

0, 𝑉̇
(

𝑥
(

𝑡
)

, 𝛷
(

𝑥
(

𝑡
))))

(36)
𝑘 𝑘 𝑘 𝑘
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Fig. 5. Predicted vs. actual (true) values for the first control action 𝐶𝐴0 − 𝐶𝐴0𝑠.𝑠 .
This prevents the possibility of the reference control generating non-
negative time derivatives for the Lyapunov function while also forcing 
the MPC control to be more stabilizing to a specified magnitude at 
minimum. The bias term exists because the stabilizing control is not 
robustly verified, and so there is a potential risk in violating the 
assumptions for the controller, which are necessary for stability of the 
system. In other words, we artificially enforce a lower bound for 𝜖𝑤 to 
be 0.065 ≤ 𝜖𝑤 as a precautionary measure. 

Remark 12.  Using conservative estimates of both regions is important, 
as it is infeasible to thoroughly test all level sets. During this portion 
of the design process, the level sets are checked in increments of 1, 
which leaves room for intermediate level sets to violate the constraint. 
To avoid this, we used a smaller subset of the stability region that was 
found in order to minimize the possibility of this influencing the system. 
Similarly, because our testing was sufficient for whole numbers, 𝑉 < 1
10 
is conservatively chosen to over-estimate the small region around the 
origin in order to avoid the same possibilities.

Remark 13. 𝜌𝑠 was found to be of the order of 10−23 by using a 
modified form of the methodology described above. Starting at the level 
set where 𝜌 = 1, in increments of 0.1, until 𝜌 = 0.1 was reached, we 
followed the same methodology as above. This process was repeated 
where the terms were all decreased by an order of magnitude until 
eventually a point where 𝑉̇ > 0 was found.

5.3. Control system parameters

The reference controllers used a sampling time of 𝛥𝑃𝐼,reference = 7.2 s. 
The MPC optimizes the system over a horizon of length 𝑁 = 60 with 
the same sampling period of 𝛥 = 7.2 s, which corresponds to optimizing 
for the next 432 s. Of the resulting 60 control action solutions, we 
only apply the first before resolving the MPC (i.e., receding horizon 
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Fig. 6. Predicted vs. actual (true) values for the second control action 𝑄 −𝑄𝑠.𝑠.
implementation). In an attempt to reduce the computational burden, 
integration of the model used in LMPC is done via the forward Euler 
method with a fixed step size of 0.36 s for which numerical stability is 
ensured.

5.4. Data generation

In our case, the operating region is explicitly known to be all states 
bounded by the level set 𝑉 = 120. Thus, we generate data by sampling 
random states within this region. These random states are paired with 
their corresponding optimal control input for the same time instant by 
solving MPC and storing the first control action. The MPC was solved in 
Python using the SciPy package’s minimize function. Specifically, the 
function was designed to use the SLSQP method with a max iteration 
count of 1000, and an ‘ftol’ and ‘eps’ value of 1e−4 (Virtanen et al., 
2020). In order to prevent data contamination, if the MPC fails to solve 
for any reason, the sample is discarded. This process is parallelized 
11 
for performance and is terminated after roughly 1 million points are 
generated. The resulting state distribution plot is shown in Fig.  2, which 
demonstrates the density and diversity of the data within our operating 
region.

As a low-dimensional model, it is also convenient to visualize the 
control distribution in the state-space plot by color coding the state 
distribution plot based on the control action value. These plots are 
shown in Figs.  3 and 4. Although most of the state space can be visually 
seen as numerically smooth, there are regions with rapid changes in the 
optimal action. Such regions can pose issues when training, as smooth 
data is preferred.

Remark 14.  Because 𝜌𝑠 is of the order of 10−23, it is effectively 
negligible. Thus, data sampling within the state-space was allowed to 
include points within 𝜌 ≤ 1. Due to the stability constraints in the MPC, 
any points that would violate Eq. (16), such as those within 𝜌𝑠, are 
discarded anyways.
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Fig. 7. Closed-loop state trajectory examples for the process controlled under MPC (dashed line) and NN with Proportional control as fallback control (solid line).
5.5. Neural network training

The neural network used is a Feedforward Neural Network, where 
the inputs and outputs are scaled using a StandardScaler. The Stan-
dardScaler is fit on the training set, which is composed of 80% of the 
generated samples, chosen randomly, with the remaining samples being 
used as the test set. This model was trained with the Adam optimizer 
on Mean Squared Error (MSE) loss using a flat learning rate of 0.001, 
utilizing early stopping as the terminating condition. Early stopping 
was set to 200 epochs. The neural network was designed with 4 hidden 
layers of size 128, 64, 32, and 16, respectively. Hyperparameter tuning 
yielded marginally better loss, but for the sake of simplicity, this result 
was discarded. The resulting Actual vs Predicted plots are shown in 
Figs.  5 and 6. These results correspond to the training results, which 
yielded an MSE of roughly 0.02. Of the two, the inlet concentration 
control action better maps the training data, whereas the heat input 
does not show as good mapping.

5.6. Closed-loop simulation results

To demonstrate the closed-loop behavior of this controller, we split 
the state space into rings. Starting from the stability region boundary, 
we sample the region between this boundary and the adjacent level set 
that is 1 unit smaller. We do this for all rings between the boundary and 
the minimal region 𝑉 = 1 in increments of 1. To get decent sampling 
per ring, we used 10 randomly generated samples and simulated the 
trajectory for each sample from the initial point until the trajectory 
either enters the minimal region 𝑉 ≤ 1 or completes a full horizon 
worth of control actions. Data from each trajectory is gathered and 
presented in Fig.  8. Sample trajectories are shown in Fig.  7, where the 
term steps refers to the number of sampling times that have elapsed as 
well as the number of control actions that have been applied thus far.
12 
The sample trajectories for the NN controller demonstrate a rough 
similarity to the MPC results. The trajectories visibly deviate over the 
duration of the trajectory, but when averaged out over the various 
rings, both controllers exhibit similar trends regarding the number of 
steps needed to reach the minimal region. Notably, we can see that 
on average, the MPC and NN share very similar steps needed, whereas 
MPC tends to have higher maximum steps needed in some parts of the 
ring. Most importantly, the time-complexity of the NN over the full 
trajectory is 3 orders of magnitude smaller than the designed MPC, 
and is only 1 order of magnitude larger than a simple P controller, 
which demonstrates higher step requirements on average. This enables 
the use of the NN with roughly 100x smaller sampling times before the 
NN-based controller design begins to have feasibility concerns as the 
computational time reaches the order of the sampling time.

For the implementation used in this example, it is also possible to 
modify the MPC implementation to maximize its performance, ignoring 
the feasibility implications. In the given system, one can lower the 
sampling time and extend the horizon length to maximize the MPC’s 
performance. Doing so in real-world applications will be impossible, 
as the computational time for solving the MPC risks exceeding the 
sampling time; however, the NN is trained using offline MPC data 
applied to an internal model of the system. Thus, the feasibility of the 
controller in real-world applications is irrelevant, as the optimal control 
for a given state with the new sampling time and horizon length will be 
the same regardless of if the control gets applied. With the performance 
benefits, an NN can then be trained on this data to approximate it 
within the necessary sampling time limits. This enables the potential for 
higher quality control through this framework than otherwise possible 
with traditional MPC, but a good fit is needed for this benefit to be 
important.

In this example, the neural network that was used to fit the LMPC 
control action data was subjected to a certain, albeit small, error, and so 
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Fig. 8. Performance results of state trajectories compared by the control system type and the level set region in which the initial state lies. Performance in this context includes 
the average cost, steps, and computation time, as well as the maximum steps.
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when analyzing the rate at which the fallback proportional controller 
was needed for the NN to maintain the specified stability guarantees, 
we found that roughly 2.6% of operating points required the use of the 
fallback control. Fig.  7 demonstrates how the NN, when applied for 
the same initial point as the MPC, produces a trajectory that does not 
track the MPC’s trajectory. The bulk of the control actions generated by 
the NN are valid with regard to the stability constraint. Thus, the NN 
framework demonstrates that even in the absence of a close fit to the 
training data, the existence of the fallback control enables enhanced 
performance while maintaining stability guarantees.

6. Conclusion

The work proposes a framework for approximating optimization-
based model predictive control using neural networks while main-
taining stability guarantees through the use of externally enforced 
Lyapunov stability constraints (expressed in terms of the negative defi-
niteness of the time derivative of a Lyapunov function) and stabilizing 
fallback control. Randomly sampled points in the operating region are 
fed into a Lyapunov-based MPC to generate optimal control inputs. 
These points are paired together and stored as training data. After any 
desired data pre-processing and filtering is done, a neural network is 
trained to fit the data. The resulting neural network acts as a nonlinear 
feedback controller and a substitute for the MPC, where constraints are 
checked after computation of the NN’s output (i.e., control actions). If 
the Lyapunov stability constraints are violated, the stabilizing fallback 
controller is used to ensure that the system maintains its stability 
guarantees. As a result, the NN substitute enables approximate optimal 
control with a potential for several orders of magnitude improvement 
in the speed of real-time calculation of the control actions when applied 
to a benchmark nonlinear chemical process example. This framework 
enables the use of approximate optimal control in environments where 
computation of the corresponding MPC is infeasible due to control 
action computation time exceeding the sampling time. Additionally, 
the framework applies these guarantees through external constraints, 
which do not hinder the flexibility of the NN design at all.

CRediT authorship contribution statement

Arthur Khodaverdian: Writing – original draft, Software, Method-
ology, Investigation, Conceptualization. Dhruv Gohil: Software, Inves-
tigation. Panagiotis D. Christofides: Writing – original draft, Method-
ology, Funding acquisition, Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to 
influence the work reported in this paper.

Acknowledgment

Financial support from the National Science Foundation, United 
States, CBET-2227241, is gratefully acknowledged.

References

Adabag, E., Atal, M., Gerard, W., Plancher, B., 2024. MPCGPU: Real-time nonlinear 
model predictive control through preconditioned conjugate gradient on the GPU. In: 
Proceedings of International Conference on Robotics and Automation. Yokohama, 
Japan, pp. 9787–9794.

Ahn, K., Mhammedi, Z., Mania, H., Hong, Z.W., Jadbabaie, A., 2022. Model predictive 
control via on-policy imitation learning. arXiv preprint arXiv:2210.09206.

Alhajeri, M.S., Ren, Y.M., Ou, F., Abdullah, F., Christofides, P.D., 2024. Model 
predictive control of nonlinear processes using transfer learning-based recurrent 
neural networks. Chem. Eng. Res. Des. 205, 1–12.
14 
Alora, J.I., Pabon, L.A., Köhler, J., Cenedese, M., Schmerling, E., Zeilinger, M.N., 
Haller, G., Pavone, M., 2023. Robust nonlinear reduced-order model predictive 
control. In: Proceedings of 62nd Conference on Decision and Control. Marina Bay 
Sands, Singapore, pp. 4798–4805.

Alsmeier, H., Savchenko, A., Findeisen, R., 2024. Neural horizon model predictive 
control - increasing computational efficiency with neural networks. In: Proceedings 
of the American Control Conference. Toronto, Canada, pp. 1646–1651.

Åström, K., Hägglund, T., 2001. The future of PID control. Control Eng. Pract. 9, 
1163–1175.

Bonzanini, A.D., Paulson, J.A., Graves, D.B., Mesbah, A., 2020. Toward safe dose 
delivery in plasma medicine using projected neural network-based fast approximate 
NMPC. IFAC-PapersOnLine 53, 5279–5285.

Gill, P.E., Murray, W., Picken, S.M., Wright, M.H., 1979. The design and structure of a 
fortran program library for optimization. ACM Trans. Math. Soft. 5 (3), 259–283.

Gonzalez, C., Asadi, H., Kooijman, L., Lim, C.P., 2024. Neural networks for fast 
optimisation in model predictive control: A review. arXiv preprint arXiv:2309.
02668.

Gordon, D.C., Winkler, A., Bedei, J., Schaber, P., Pischinger, S., Andert, J., Koch, C.R., 
2024. Introducing a deep neural network-based model predictive control frame-
work for rapid controller implementation. In: Proceedings of American Control 
Conference. Toronto, Canada, pp. 5232–5237.

Kapoor, S., Vaidya, P.M., 1986. Fast algorithms for convex quadratic programming and 
multicommodity flows. In: Proceedings of the Eighteenth Annual ACM Symposium 
on Theory of Computing. Berkeley, California, USA, pp. 147–159.

Khodaverdian, A., Gohil, D., Christofides, P.D., 2025. Enhancing cybersecurity of 
nonlinear processes via a two-layer control architecture. Digit. Chem. Eng. 15, 
100233.

Kraft, D., 1988. A software package for sequential quadratic programming. Deutsche 
Forschungs- und Versuchsanstalt für Luft- und Raumfahrt Köln: Forschungsbericht, 
Wiss. Berichtswesen d. DFVLR.

Lucia, S., Karg, B., 2018. A deep learning-based approach to robust nonlinear model 
predictive control. IFAC-PapersOnLine 51, 511–516.

Macmurray, J., Himmelblau, D., 1995. Modeling and control of a packed distillation 
column using artificial neural networks. Comput. Chem. Eng. 19, 1077–1088.

Meng, D., Chu, H., Tian, M., Gao, B., Chen, H., 2024. Real-time high-precision nonlinear 
tracking control of autonomous vehicles using fast iterative model predictive 
control. IEEE Trans. Intell. Veh. 9, 3644–3657.

Mhaskar, P., El-Farra, N.H., Christofides, P.D., 2006. Stabilization of nonlinear systems 
with state and control constraints using Lyapunov-based predictive control. Syst. 
Contr. Lett. 55, 650–659.

Pardalos, P.M., Vavasis, S.A., 1991. Quadratic programming with one negative 
eigenvalue is NP-hard. J. Global Optim. 1, 15–22.

Patel, R., Bhartiya, S., Gudi, R.D., 2025. Neural network-based model predictive control 
framework incorporating first-principles knowledge for process systems. Ind. Eng. 
Chem. Res. 64 (18), 9287–9302.

Peng, Y., Yan, H., Rao, K., Yang, P., Lv, Y., 2024. Distributed model predictive control 
for unmanned aerial vehicles and vehicle platoon systems: a review. Intell. Robot. 
4, 293–317.

Qin, S.J., Badgwell, T.A., 2003. A survey of industrial model predictive control 
technology. Control Eng. Pract. 11, 733–764.

Tomasetto, M., Braghin, F., Manzoni, A., 2025. Latent feedback control of distributed 
systems in multiple scenarios through deep learning-based reduced order models. 
Comput. Methods Appl. Mech. Engrg. 442, 118030.

Vilanova, R., Visioli, A. (Eds.), 2012. PID control in the third millennium: Lessons 
learned and new approaches. In: Advances in Industrial Control, Springer London, 
p. XIV, 602.

Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., 
Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., 
Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., 
Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Lax-
alde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., 
Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Con-
tributors, 2020. SciPy 1.0: Fundamental Algorithms for Scientific Computing in 
Python. Nature Methods 17, 261–272.

Wang, R., Li, H., Xu, D., 2022. Learning model predictive control law for nonlinear 
systems. In: Proceedings of International Symposium on Autonomous Systems. 
Hangzhou, China, pp. 1–6.

Wu, Z., Tran, A., Rincon, D., Christofides, P.D., 2019a. Machine learning-based 
predictive control of nonlinear processes. Part I: Theory. AIChE J. 65, e16729.

Wu, Z., Tran, A., Rincon, D., Christofides, P.D., 2019b. Machine-learning-based predic-
tive control of nonlinear processes. Part II: Computational implementation. AIChE 
J. 65, e16734.

Xi, Y.G., Li, D., Lin, S., 2013. Model predictive control — Status and challenges. Acta 
Automat. Sinica 39, 222–236.

Yaren, T., Kizir, S., 2025. Real-time nonlinear model predictive control of a robotic 
arm using spatial operator algebra theory. J. Field Robot. (in Press).

Zarrouki, B., Nunes, J., Betz, J., 2023. R2NMPC: A real-time reduced robustified 
nonlinear model predictive control with ellipsoidal uncertainty sets for autonomous 
vehicle motion control. arXiv preprint arXiv:2311.06420.

http://refhub.elsevier.com/S2772-5081(25)00046-8/sb1
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb1
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb1
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb1
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb1
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb1
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb1
http://arxiv.org/abs/2210.09206
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb3
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb3
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb3
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb3
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb3
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb4
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb4
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb4
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb4
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb4
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb4
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb4
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb5
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb5
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb5
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb5
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb5
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb6
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb6
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb6
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb7
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb7
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb7
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb7
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb7
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb8
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb8
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb8
http://arxiv.org/abs/2309.02668
http://arxiv.org/abs/2309.02668
http://arxiv.org/abs/2309.02668
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb10
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb10
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb10
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb10
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb10
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb10
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb10
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb11
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb11
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb11
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb11
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb11
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb12
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb12
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb12
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb12
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb12
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb13
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb13
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb13
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb13
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb13
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb14
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb14
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb14
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb15
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb15
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb15
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb16
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb16
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb16
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb16
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb16
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb17
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb17
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb17
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb17
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb17
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb18
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb18
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb18
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb19
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb19
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb19
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb19
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb19
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb20
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb20
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb20
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb20
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb20
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb21
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb21
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb21
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb22
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb22
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb22
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb22
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb22
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb23
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb23
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb23
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb23
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb23
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb24
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb24
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb24
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb24
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb24
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb24
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb24
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb24
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb24
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb24
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb24
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb24
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb24
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb24
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb24
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb25
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb25
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb25
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb25
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb25
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb26
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb26
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb26
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb27
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb27
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb27
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb27
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb27
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb28
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb28
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb28
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb29
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb29
http://refhub.elsevier.com/S2772-5081(25)00046-8/sb29
http://arxiv.org/abs/2311.06420

	Neural network implementation of model predictive control with stability guarantees
	Introduction
	Preliminaries
	Notation
	Class of systems
	Stabilizability assumption
	Lyapunov-based model predictive control

	Neural network construction
	Data generation
	Controller neural network model type and training

	Guaranteeing stability for neural network-based control
	Practical implementation
	Closed-loop stability results
	Stability via a reference controller
	Stability via alternative Lyapunov stability constraint
	Closed-loop stability under NN controller implementation


	Application to a chemical process example
	Process model and control problem
	Stability analysis
	Control system parameters
	Data generation
	Neural network training
	Closed-loop simulation results

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgment
	References


