Computers and Chemical Engineering 204 (2026) 109396

Contents lists available at ScienceDirect

Computers
& Chemical
Engineering

Computers and Chemical Engineering

journal homepage: www.elsevier.com/locate/cace

Uniting neural network-based control and model predictive control:
Application to a large-scale nonlinear process

Arthur Khodaverdian *”, Dhruv Gohil ?, Panagiotis D. Christofides *"*

a Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA 90095, USA
b Department of Electrical and Computer Engineering, University of California, Los Angeles, CA 90095-1592, USA

ARTICLE INFO ABSTRACT
Keywords: This work proposes a method to overcome the issue of nonlinear model predictive control (MPC) requiring
Lyapunov stability practically infeasible computation times for large-scale systems. In particular, the use of Neural Networks

Approximate model predictive control
Neural networks

Stability guarantees

Closed-loop performance

Nonlinear processes

(NN) to approximate nonlinear MPC calculated control actions in a real-time closed-loop implementation with
externally enforced stability guarantees is explored. Using Lyapunov-based stability constraints, the reduced
computational complexity of NNs paired with the ability to train using MPC that would be infeasible to apply in
real-time systems (due to the use of a large prediction horizon to ensure good closed-loop performance) enables
the training of an NN-based approximate control policy that directly substitutes MPC. With a stabilizing fallback
controller available, this NN controller enables real-time stabilizing control of high-dimensional nonlinear
systems. To demonstrate this, Aspen Plus Dynamics, a dynamic chemical process simulation software, is used
to create a large-scale nonlinear chemical process example. Using an NN trained off of an offline MPC using
a first-principles model and a large prediction horizon, a comprehensive study of the resulting closed-loop
behavior is carried out to evaluate the closed-loop stability, performance, and robustness properties of the

approach.

1. Introduction

Controlling large-scale nonlinear chemical processes poses a unique
design challenge due to the need to address the possibility of highly
nonlinear behavior and interacting variables within the process net-
work. For systems of this scale, the best option for designing a reliable
and effective controller is to work within a model predictive control
(MPC) framework. MPCs are unique due to their explicit use of a predic-
tive model accounting for process dynamic behavior. Unlike traditional
controllers, such as Proportional-Integral-Derivative control, which
operate on a single input and regulate a single output without any
consideration of the interactive dynamics between process variables,
MPC uses an internal model of the process dynamics to forecast the
future trajectory of the process states for any given set of control
actions. With this trajectory, MPC can optimize control actions based
on the approximated impact they will have, which enables a tunable
controller with generalizable applicability (Qin and Badgwell, 2003).

A major consequence of explicitly calculating these control action
trajectories is the impact on computation time. For linear convex cases
(i.e., linear process model and convex cost and constraints), MPC is
solvable via convex quadratic programming, which is known to have

polynomial-time complexity with some forms reaching © (L?n*) where
L is the bit-length of the input and #» is the number of variables (Peng
et al., 2024). Certain novel optimization schemes can slightly reduce
this complexity, but for nonlinear constrained examples that arise in
nonlinear chemical processes, the optimization problem’s complexity
becomes NP-hard (Kapoor and Vaidya, 1986; Pardalos and Vavasis,
1991). Generally, these nonlinear programming (NLP) problems use an
iterative solution method to calculate a local optimum, which compli-
cates the derivation of any explicit Big O notation for time complexity.
Some methods, such as the Sequential Least Squares Programming
(SLSQP) method, are composed of subproblems that are of known
complexity (in SLSQP’s case, these subproblems include linear least
squares problems and are of O (n?) or O (n*)) (Gill et al., 1979; Kraft,
1988). Knowing this, it may be reasonably assumed that MPC operates
with polynomial-time complexity at best, which results in poor scaling.
Because of this poor scaling, MPC risks becoming infeasible to solve
in real-time for large-scale nonlinear processes when a long horizon is
used to improve closed-loop performance, as it may take longer to solve
than the controller time (Xi et al., 2013).

The handling of this scaling issue is a topic that recent research aims
to address; however, the current approaches are mixed in how this is

* Corresponding author at: Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA 90095, USA.

E-mail address: pdc@seas.ucla.edu (P.D. Christofides).

https://doi.org/10.1016/j.compchemeng.2025.109396

Received 13 August 2025; Received in revised form 4 September 2025; Accepted 5 September 2025

Available online 12 September 2025

0098-1354/© 2025 Elsevier Ltd. All rights are reserved, including those for text and data mining, Al training, and similar technologies.

https://www.elsevier.com/locate/cace
https://www.elsevier.com/locate/cace
https://orcid.org/0009-0007-5614-3632
mailto:pdc@seas.ucla.edu
https://doi.org/10.1016/j.compchemeng.2025.109396
https://doi.org/10.1016/j.compchemeng.2025.109396

A. Khodaverdian et al.

done. The two main approaches can be categorized as either a ‘Reduc-
tion’ approach or an ‘Optimization’ approach. The reduction approach
focuses on reducing the dimension of the process model used in MPC
without significant performance losses, which does not directly address
the scaling issue but instead attempts to alleviate it by artificially
lowering the scale (Tomasetto et al., 2025; Alora et al., 2023; Zarrouki
et al., 2023). The optimization approach aims to directly reduce the
computational time of the MPC; however, these optimizations have thus
far failed to directly address the time complexity scaling problem (Meng
et al., 2024; Yaren and Kizir, 2025; Adabag et al., 2024). The primary
issue with the optimization approach is that reducing computation time
by a flat order of magnitude does not change the general behavior of the
computation time scaling with polynomial complexity. In other words,
both major focuses simply delay the onset of this scaling problem.

A more recent development in this topic has been the applica-
tion of neural networks. Much of the research on neural network
applications has focused on the optimization approach, where an NN
replaces a component of the MPC problem. Most notably, NNs that
model the system dynamics have shown promise as replacements for
existing first-principles models in complex systems, as they can simul-
taneously improve the real-world accuracy of the predictions for the
system dynamics while also being faster to compute (Wu et al., 2019;
Gordon et al., 2024; Patel et al., 2025; Alsmeier et al., 2024; Ren
et al., 2022). As a data-driven approach, some highly complex systems
demonstrate better modeling through NNs than through first-principles
models (Macmurray and Himmelblau, 1995). Despite the success of
NNs in this context, the iterative nature of MPCs will still result in an
overall polynomial-time complexity.

Expanding on this line of logic, if neural networks can improve
the computation time of dynamics modeling with potentially better
accuracy than first-principles models, then how will a neural network
perform if it is instead trained to approximate the entire model pre-
dictive controller? This question has been a point of exploration in
novel research, which has shown the potential for this method to
be viable (Lucia and Karg, 2018; Bonzanini et al., 2020; Ahn et al.,
2022). The main challenges with this research thus far have been how
the network can be designed to operate in a way that strictly abides
by constraints and how the method scales (Gonzalez et al., 2024).
Constraint satisfaction is achievable through either mapping of outputs,
further optimizations of outputs, or by externally enforcing stabilizing
constraints with a fallback stabilizing controller (Khodaverdian et al.,
2025b). Other viable options include the use of constraints within
the loss function, which aids in the satisfaction of constraints during
training prior to any strict enforcement (Wang et al., 2022).

Although this neural network-based approach shows promising im-
provements to the computation time relative to model predictive con-
trol, the scalability and the resulting impact on time complexity remain
underexplored. Thus, the present work explores the case where a large-
scale system cannot run long-horizon model predictive control (thereby
ensuring good closed-loop performance) within its controller sampling
time. Specifically, a supervised learning approach with externally en-
forced Lyapunov-based stability constraints is used to design a neural
network-based control process that can be trained offline using this
practically infeasible model predictive controller (which has a long
prediction horizon) in order to approximate it in real-time. If instead of
the long-horizon MPC, a short-horizon form of the same MPC is used
as the stabilizing backup controller, then the NN-based controller will
ideally achieve performance that is similar to the long-horizon MPC,
which could not be utilized in real-time due to its long calculation time
exceeding the process sampling time. Aspen Plus Dynamics enables the
use of a large process model with high complexity. The performance of
the resulting NN-based control system is examined for this benchmark
process to demonstrate the viability of the method when applied to a
large-scale process.

Computers and Chemical Engineering 204 (2026) 109396

2. Preliminaries
2.1. Notation

We denote the transpose of a vector x as x'. R denotes the set of
real numbers. Subtraction of set B from set A produces the elements
present in A but absent from B and is written as A\ B. We represent
functions using f(-) where the choice of f is arbitrary.

2.2. Class of systems

This study examines nonlinear multiple-input multiple-output
(MIMO) continuous-time systems governed by nonlinear first-order
ordinary differential equations (ODEs) of the form:

m

x=Fu)=f()+) &M@y M

i=1

Here, the state vector x = [x;,x,... ,xn]T € R” represents the pro-
cess state variables, which are measured at every sampling time 7,
(i.e., a state feedback control scenario). The control input vector u =
[ul,uz,...,um]T € R™ represents the applied control actions, with
0 < m < n. To account for actuator physical limits, each control
action is bounded, i.e., u; iy < w; < U Vi = 1,2,...,m where
U; min and u; .. represent the lower and upper bounds of each control
action, respectively. This inequality constraint defines the bounded
subset of valid control actions, denoted U c R™. The functions f (-)
and g; () Vi = 1,2,...,m from Eq. (1) are assumed to be sufficiently
smooth vector functions. Without loss of generality, we consider the
origin as a steady-state of the open-loop system (i.e., Eq. (1) with u; =0,
Vi = 1,2,...,m) by assuming that f(0) = 0 (or F(0,0) = 0). The
initial time is defined as zero (¢, = 0). Finally, the set S (4) denotes the
assortment of piecewise constant functions characterized by a period of
A.

2.3. Stabilizability assumption

We assume an explicit feedback control law u (x) = @ (x) € U exists
that can render the origin of Eq. (1) exponentially stable. This assump-
tion is referred to as the stabilizability assumption. Specifically, we
assume the existence of a continuously differentiable control Lyapunov
function V (x) such that the following inequalities hold for all x € D,
where D is an open neighborhood around the origin:

e IXP <V () <6 Ix? (2a)

W) (k. (x)) < —e3 |2 (2b)
0x

|‘”;)fx) < lx| (20)

with positive constants c¢;, ¢, ¢3, and ¢,. Combined with the previously
mentioned input bounds, the stabilizability assumption ensures the
existence of positive constants My, L,, and L’ that ensure, for all
x,x" € D and u € U, that the following inequalities are satisfied:

|F () = F x| < L x = ¥'| (3a)

[F(x,u)] < Mg (3b)

(3V(X)F(x W) — v (x,) F (x/ u) <1 |x _x/l 30)
ox ’ 0x B

A. Khodaverdian et al.
2.4. Lyapunov-based model predictive control
A Lyapunov-based MPC (LMPC) that ensures closed-loop stability

within an explicitly defined region is formulated as follows (Mhaskar
et al., 2006):

1+N4
J =uénsi&)/tk L(x@®),u(@) dt (4a)
st. X(0)=F@&@®,u(@) (4b)
ueU, YtEt,t,+NA) (40)
x(t) = x (1) (4d)
V(% () u (1)) S V(R (1) - @ (% (1)) (4e)

where 4 is the controller sampling interval. 4 in this context matches
both the time between state measurements as well as the hold time
for the control actions that will be applied in a sample-and-hold man-
ner. N is the number of intervals in the prediction/control horizon,
i.e., the horizon length. Eq. (4a) is the cost function to be optimized,
whereas Eq. (4b) is the model that enables the simulation of process
dynamics and is initialized by Eq. (4d) for any arbitrary time frame 7.
In this case, a quadratic form of the cost function and a first-principles
form of the process dynamics model are used. The stability constraint
(Eq. (4e)) leverages Section 2.3 to ensure that the LMPC’s control
action drives the state towards the origin at least as quickly as the
reference stabilizing controller @ (x). Alternatively, one may use:

V(%(1y).u(t)) < —aV (2(1;)) (5)

This form of the constraint enforces negativity for V proportional to V'
using a positive constant «, enabling stability without the need for an
explicit reference controller.

Remark 1. LMPC has flexible support for cost functions. While a
quadratic form is used here, a particularly beneficial option is an
economic-based cost function that can vary with %, u, and even time,
as was used in our prior work (Khodaverdian et al., 2025a).

Remark 2. As detailed in Section 2.3, continuous application of
@ (x) ensures exponential stability, but practically, sample-and-hold
implementation is needed to account for the computation and signal
transport induced delays. The consequence of this is that practical
implementations of @ (x) will limit guarantees to convergence of the
closed-loop system to a small neighborhood around the origin, as will
be detailed in Section 4.2.

Remark 3. The LMPC formulation is used for two identical LMPC
designs where the only variation is the horizon length. One LMPC is a
long-horizon LMPC where real-time application is infeasible due to the
computation time of the LMPC being longer than the sampling time of
the system. This long-horizon LMPC is used to generate training data.
The other LMPC is a short-horizon LMPC where real-time application
is feasible. Unlike the long-horizon LMPC, this short-horizon LMPC is
designed with a sufficiently small horizon such that the computation
time is never larger than the sampling time. This LMPC is used as a
stabilizing fallback controller where the quality of the control action
will suffer without the loss of closed-loop stability guarantees.

Remark 4. Stability constraints are only applied at 7,. Due to the
use of a receding horizon approach, only the initial control action is
necessary for closed-loop stability guarantees to be satisfied. Enforcing
these constraints along the full horizon can enhance the cost function
minimization, but comes with a large computational burden, making it
a difficult option to consider in real-time control. Although the offline
LMPC is not applied in real-time, both the LMPC used for training and
the LMPC used for real-time stabilizing fallback control are designed to
be identical, with the exception of the horizon length.

Computers and Chemical Engineering 204 (2026) 109396
3. Neural network design
3.1. Data generation

Supervised learning is most effective when using a comprehen-
sive, varied dataset that covers the target operating region; however,
high-dimensional process control often does not have a well-defined
operating region, making it difficult to prepare a sufficient dataset for
consistent network performance in real-world applications. As a data-
driven process, it is important to attempt to handle this problem in a
manner that can be applied more generally.

One such method that is viable for systems that use model predictive
control is to use the LMPC design as an offline process. The LMPC uses
an internal physics-based model of the process and can be simulated
offline in a closed-loop manner to generate approximate trajectories for
a given set of constraints, costs, and process dynamics. This enables on-
demand data generation. Additionally, because the process is simulated
offline, it is possible to take an LMPC that is otherwise infeasible to
apply in a real-time closed-loop system and use it to generate higher-
quality data. Model predictive controllers can be tuned to provide
higher-quality optimal control at the expense of computation time.
While this is a convenient way to generate a dataset of high-quality
state-control pairs, the higher computation time also limits the rate
at which training data is generated. Our approach aims to get a mix
of high-quality and high-quantity data. In order to prevent the risk of
data contamination, data generation is only done on a singular LMPC
formulation where only valid solutions are kept.

3.2. Controller neural network model type and training

The controller implementation framework ensures closed-loop sta-
bility and any robustness guarantees against measurement noise or
model uncertainty through fallback control to a stabilizing controller
that is capable of enforcing these guarantees. If constraints cannot
be satisfied by the fallback controller, such as excessive robustness
demands, then the NN-controller will not have guaranteed satisfaction
of these constraints. In other words, the NN-controller has no inherent
guarantees and relies on fallback control to ensure these guarantees
hold. Thus, the framework enables a broad design basis. The neural
network and its training can be of any desired form so long as there
exists some way in which state measurements can be converted to
approximated optimal control actions. If this NN is poorly constructed,
either through a suboptimal framework, poorly tuned hyperparameters,
or poor training, the end result will be a gradual shift towards the ap-
plied control action being mostly comprised of the fallback controller’s
solution. In order to avoid this, it is important that the NN demonstrates
good performance prior to implementation; otherwise, the quality of
the control action with respect to the desired cost function will suffer.

4. Guaranteeing stability for neural network-based control

This section covers how the NN-based approximate implementation
of MPC with stability guarantees functions.

4.1. Closed-loop implementation

Fig. 1 depicts the practical implementation of the NN controller
as a direct substitute for a given MPC design. Note the existence of
both a fallback controller and a constraint enforcer block. The fallback
controller is a key design aspect, as it is needed in order for any
guarantees to exist. The constraint enforcer block contains the logic
as to how the constraints are enforced for the given system. Some
constraints, such as bounds on the control actions, are enforceable by
simply clipping the solved control actions. Other constraints, such as
the stabilizing constraints, have complex conditional requirements that
need to be checked using sensor and control signals. This conditional

A. Khodaverdian et al.

P MPC {>

Sensor 1 Actuator 1

— ® o

Actuator 2

Process

Actuator N

Computers and Chemical Engineering 204 (2026) 109396

Fallback ;

Control
Constraint
Enforcer ’
NN ,
A

Sensor 1 Actuator 1

Actuator 2
® O <

Actuator N

Sensor 2

Process

Fig. 1. Model predictive controller (Left) application block diagram for a general process vs. neural network-based controller with validation and fallback
stabilizing controller (Right). Failsafe control is implied to be within either the fallback control block, constraint enforcer block, or both, as desired.

computation is done, and the decision as to whether or not the fallback
control is applied is made. In other words, the constraint enforcer does
the necessary checks to determine which constraints are violated, and
either directly modifies the control action to satisfy the constraints or
replaces the control action with that of the fallback controller.

A notable aspect of the framework is that the only necessary infor-
mation for the NN is the sensor signals at a given reference time frame
x (;). Additional information, such as time-series data, can potentially
improve the controller’s performance, but is not necessary. Thus, a
minimal realization of this NN-controller is one of

o RT S R 6)
u(ty) =, (x (1)) %)

D

Remark 5. For complex systems, it is beneficial to have a short-horizon
form of the existing MPC as the fallback controller. This minimizes the
scaling problem while still guaranteeing stability, but comes at the risk
of poor control quality. Because MPC is a numerical approach, there are
many cases where, even if a solution exists, the framework might not
be able to solve it properly. In such cases, the MPC will fail, requiring
its own fallback controller, referred to as the failsafe controller. Thus,
the existence of stabilizing fallback control is a core requirement for
any such form of control with stabilizing guarantees.

Remark 6. A benefit of this framework is the support for modified
MPC formats. An example that enables a cyber-secure implementation
of MPC is the two-layer framework. This framework does not directly
transmit the MPC’s optimal control trajectory; instead, it uses these
control actions with the internal process model to estimate the state
trajectory, and transmits this trajectory with encryption. Through ho-
momorphic encryption, this trajectory can be used as set-points for a
linear controller, enabling computations to be done without decrypting
the signal, thereby obfuscating the control signal. This gives improved
cybersecurity at the cost of poorer quality control due to linear control.
In the context of the NN-controller, either the control trajectory can
be used to analytically make the estimated state trajectory, or the NN-
controller can be trained to encompass this step and will generate the
estimated state trajectory directly.

Remark 7. Specific design details for MPC and the NN are left un-
specified here because these are process-dependent design parameters
that are not influenced by the framework. The framework’s novelty
is the external constraint enforcer block, which simplifies the design
process by not requiring complex training or architectural features
while simultaneously supporting these complex features without loss
of its guarantees.

4.2. Closed-loop stability under LMPC

Section 2.3 presents the stabilizability assumption for a continuous-
time controller; however, practical implementation requires a sample-
and-hold implementation for the controller. Thus, the closed-loop prop-
erties need to be re-evaluated under sample-and-hold implementation
of the controller. As will be shown below, instead of closed-loop
exponential stability, the controller will guarantee convergence of the
closed-loop state to a small region around the origin whose size is
proportional to the sampling time.

Theorem 1. Consider an MPC described by Eq. (4) using either Eq. (4e)
or Eq. (5) as the stabilizability assumption with Eq. (4b) describing a
nonlinear system of the form described by Eq. (1). Given the existence
of an explicit feedback controller @(x) that renders the nonlinear system
exponentially stable with respect to the origin if applied continuously for
any initial state satisfying V (x (15)) < p, there exists positive constants e,,
and a such that if the following conditions are satisfied, the sample-and-hold
implementation of u (t) ensures the convergence of the closed-loop state to a
small region around the origin denoted 2, = and determined as follows:

L' MpA—apg < —¢, (8a)
Prmin = max {V (x (1, + 4) [V (x (1)) < 0,)} (8b)
ps <V (x (1)) (80
Ps < Prin < P (8d)
Proof.

Case 1 (Eq. (4e) as the Lyapunov Constraint). The sample-and-hold
implementation results in states evolving without new control actions
over t € [1;.1; + 4); thus, the time derivative of the Lyapunov function
for any given point in this interval is:

_ Ve,
ox

V(x(t),u(tk)) = (x(t),u(lk)) 9

Adding and subtracting the derivative at 7:

v (x0.u(1)) = I ey, u ()

_ wp(x (1) o (1)) 10)
; wp(x(zk),u(n))

A. Khodaverdian et al.

Using Lipschitz continuity of V' and stabilizability assumptions Egs. (2b)
and (3c), we simplify with Eq. (4e):

. 2
V(x @ (1)) < L Jx@ = x (1) | = e3 [x (1) an

By the integral triangle inequality:

1
[@ = x (1) 5/ |F (x().u(t))|dr < Mpa 12)
Tk
Thus:
V (x@),u (1)) < L.MpA—cs)x(,k)‘z (13

For small |x|, the L' MyA term may dominate. Thus, stability re-
quires Eq. (8c). Paired with Eq. (3b), this yields:

V (x),u (1)) S LLMpA—2p < L' MpA—ap, (14)
]
For x (1) € Q,\Q2, and sufficiently small 4, Eq. (8a) ensures:

Vi(x(0,u(t)) < —e, (15)

As such, we can ensure that the control Lyapunov function will decay
with time, ultimately causing the closed-loop state to converge to a
small region around the origin denoted 2, _ defined by Eq. (8b)

Case 2 (Eq. (5) as the Lyapunov Constraint). Following similar steps as
before:

V(x®),u(t)) = F(x®,u(t)) (16)
Using Eq. (5), this simplifies as before:

_ oV (x(@)
ox

V(x@,u(t)) <L,

x(0=x (1) —aV (x (1) S L Mpd—ap, (17)
Thus, the result is the same as the prior case. []

There are two valid forms of the Lyapunov constraint whose stabil-
ity guarantees are demonstrated in the above proof, but both guarantee
convergence of the closed-loop system to a small region around its
origin whose size is proportional to the sampling time of the system.
Notably, neither of these conditions explicitly utilizes the NN-control,
whereas both require the existence of a reference stabilizing controller,
which emphasizes the fact that the NN-control itself lacks constraint
guarantees.

Remark 8. Eq. (5) provides an alternate form of the Lyapunov con-
straint that can potentially simplify the design process of the LMPC
due to the lack of needing to explicitly find the reference stabilizing
controllers. The consequence of this is that the existence of a solution
that satisfies this form of the constraint is dependent on how large «
is. Thus, the solution depends on «. Specifically, as a increases, the
magnitude of V proportionally increases. If the control actions were
unbounded, this would not be an issue, but because the system has
bounded control actions, it is possible that such a large magnitude V is
not achievable within the control bounds. This is a case in which the
LMPC problem is over-constrained to the point where a valid solution
does not exist. In reality, « only needs to be large enough to counteract
the impact of the sample-and-hold implementation on the upper-bound
of the V. Increasing it further than this point will reduce p,, which is
not necessary beyond a certain degree. Thus, it is important to choose
an « that is sufficiently small to prevent overconstraining while still
being sufficiently large to guarantee stability.

Remark 9. It is important to emphasize that this proof is independent
of the horizon length of the LMPC. The proof is written in general form
and thus any applied sample-and-hold control action that satisfies the
stability constraint will ensure stability as defined. In other words, the
only requirement for ensuring convergence to a small region around the
origin is to enforce the stability constraint for ¢, so long as the LMPC is
resolved for subsequent control actions. An alternative to this would be
to enforce the stability constraint for all control actions in the horizon,
but this would significantly impact computation time.

Computers and Chemical Engineering 204 (2026) 109396

4.2.1. Closed-loop stability under NN controller

The framework used in this paper is not a pure LMPC-based ap-
proach, and instead is of the form shown on the right half of Fig.
1. This control system conditionally applies control actions depending
on satisfaction of the Lyapunov constraint. Theorem 2 demonstrates
how this framework also guarantees closed-loop convergence to a small
region around the origin.

Theorem 2. Consider the following:

* An LMPC described by Eq. (4) using Eq. (5) as the stabilizability
assumption with Eq. (4b) describing a nonlinear system of the form
described by Eq. (1).

» The existence of an explicit feedback controller &(x) that renders
the nonlinear system exponentially stable with respect to the origin
if applied continuously for any initial state satisfying V (x (1)) < p.

* A neural network-based controller whose control actions are clipped
to satisfy the bounds defined in Eq. (4c) (&, (x (t;)) € U).

For a process of the form shown on the right of Fig. 1 with a constraint
enforcer implemented as

u(,k)z{fbm(X(fk))’ FV(x (1) @un (x (1)) < =¥ (x (1))

@
@pypc (). FV(x (1) Pun (x (1)) > —aV (x (1))

where

£ = upppe (). IV (x (1) .u(t)) € —aV (x (1))
Pure (1) {ab(x(zk)), iV (x 1) (1)) >~V (x (1))

such that u,uy yrpe, @, D, Py ypc € U, there exists positive constants ¢,
and a such that is Egs. (8a)-(8d) are satisfied, application of u (t,) in a
sample-and-hold manner to the closed-loop system guarantees convergence
to a small region around the origin (2,) for any reference time frame t,.

Proof.

Case 1 (V (x(t). P, (x (1)) > —aV (x(2))). This case contains
two further subcases to consider. In the first, the LMPC fails to find
a solution. In such a case, the LMPC solution is no longer guaranteed
to satisfy the constraints, and so some form of controller needs to be
applied that is capable of handling these rarer failure modes. For this
case, the reference stabilizing controller, @ (x (1)), is used as the final
layer of fallback control, referred to as failsafe control. As discussed
in Section 2.3, this reference controller guarantees satisfaction of the
constraints and is explicit, meaning there is no chance of failure. The
proof for this controller in the case of a sample-and-hold implemen-
tation follows Theorem 1 with the only change being in the initial
formulation of V.

V(0.2 (x (1)) = D (0,0 (x (1))
SO k1) 0 (3 1)) 20)
+ 0D () 0 (1))

As discussed in Theorem 1, the Lipschitz property applies for any u €
U, and the remaining term is already in the valid form, and so the
remaining proof follows exactly as shown in Theorem 1.

For the remaining case where the LMPC solution is valid, the proof
is exactly as shown in Theorem 1.

Case 2 (V (x (1), ®,, (x (t))) < —aV (x (#)))- This case once again
follows the form from Theorem 1 with the only difference being the

A. Khodaverdian et al.

initial formulation.

. oV
V (x(@). @ (x (1)) = LED

0 F (x 0.y (x (1))

- wwm,% (x (%)) @1
av (x (1))

o F (x (1) @ (x (1)

Once again, the Lipschitz continuity applies for any such u € U, and
it is assumed that @, is the NN-controller’s solution after clipping the
control action to fit the control bounds. Because V (x (#;) ,®,, (x (¢)))
satisfies V (x (1), ®,, (x (1;))) < —aV (x(t;)), the expression simpli-
fies to the same form shown in Eq. (17). Thus, the remaining proof
follows exactly as shown in Theorem 1. []

Remark 10. There are a multitude of techniques available that en-
able the NN-controller to better approximate the LMPC, including
its constraints, as was briefly discussed in Section 1. If the current
framework is applied without any fallback controller, then the burden
of ensuring constraint satisfaction falls on the techniques applied to
the NN-controller. Unless such a technique is capable of demonstrating
stability guarantees for the general NLP case of a nonlinear system
with nonlinear constraints and nonlinear cost, the system does not have
guarantees for stability from the NN-controller alone.

5. Application to a chemical process example

To explore how this framework performs when applied to a large-
scale system, a benchmark nonlinear chemical process example is
constructed using Aspen Plus Dynamics. For this example, an LMPC is
built using a quadratic cost function for both the state and control vari-
ables. The resulting NN-controller is trained to approximate this LMPC.
The final process is controlled using the NN-controller with a short-
horizon form of the LMPC as the fallback control, and Proportional
control as the final failsafe. Using this control framework, the result-
ing closed-loop behavior is analyzed to determine the performance
tradeoff.

5.1. Process description

The process involves three elementary second-order irreversible
exothermic reactions. The reactions involve ethylene (E), benzene (B),
ethylbenzene (EB), and diethylbenzene (DEB), where the main reaction
is labeled as “primary” below:

CoHy + CgHg — CgHpg (primary) (22a)
CoHy + CgHyg —> CioHyg (22b)
CgHg + C1oH14 —> 2CgHjg (220)

The remaining two reactions are considered to be side reactions. These
three reactions occur in two separate non-isothermal, well-mixed con-
tinuous stirred tank reactors (CSTR) that are ordered in series.

5.2. Aspen Plus Dynamics model development

The goal when building the Aspen Plus Dynamics model is to have
a high-fidelity model of the process that can best capture the real-
world dynamics. To do this, we start by using Aspen Plus to build the
baseline of the process and determine the steady-states for operation or
initialization as follows:

1. Properties:
(a) Setup:

i. Valid Phases: Liquid-Only
ii. Free Water: No

Computers and Chemical Engineering 204 (2026) 109396

(b) Components (CAS numbers):

i. 71-43-2 (benzene)
ii. 141-93-5 (diethylbenzene)
iii. 74-85-1 (ethylene)
iv. 100-41-4 (ethylbenzene)
v. 110-54-3 (Hexane)[Solvent]

(¢) Methods:

i. Base Method: PSRK

ii. Free-water method: STEAM-TA
iii. Water solubility: 3
iv. Use true components: True

2. Simulation:

(a) Main Flowsheet: Refer to Fig. 2

(b) Reactions: Refer to Eq. (22) and Table 1. Irreversible
elementary power-law reactions are used.

(c) Pressure: All feed streams are at 20 bars. All Pumps set
their outlet pressure to 15 bars. All reactors operate at
a fixed pressure of 15 bars. Valves 1, 2, 3, and 4 drop
the pressure of their outlets by 5, 5, 2, and 14 bars,
respectively.

3. Steady-States (T} and 7T, are the temperatures of CSTR 1 and 2
from Fig. 2, respectively):

(a) Desired Steady State: T} = 350K, T, = 400K
(b) Cold Steady State: T} = 300K, 7, = 300K
(c) Hot Steady State: T} = 450K, 7, = 500K

Then, this model is converted to an Aspen Plus Dynamics process as
follows:

. Open ‘Dynamics’ tab.

. Enable ‘Dynamic Mode’ and run once.

. Run ‘Pressure Checker’ to ensure no pressure issues remain.

. Run ‘Pressure Driven’ to generate the Aspen Plus Dynamics
software.

5. In Aspen Plus Dynamics, delete the newly generated Tempera-

ture PID controllers.

HWN -

Remark 11. The desired steady state in this example, as shown
in Table 1, was chosen because ethylbenzene is the desired product.
Relative to lower temperature steady states, higher temperature steady
states tend to provide higher concentrations of this species because
these reactions are irreversible, and so conversion rates increase as tem-
perature increases. It was noted during the formulation of the example
that exceeding the chosen steady state temperatures posed an increased
risk of thermal runaway. Thus, the desired steady state is selected, not
only due to it being the optimal point for safe ethylbenzene production,
but also because it provided a strong reason to control the process (to
avoid thermal runaway).

Remark 12. ‘Liquid-Only’ is enforced by having a relatively low tem-
perature for the relatively high operating pressures. High temperatures
are a particularly troubling behavior with this assumption, even if
the temperatures could be controlled, because Aspen Plus Dynamics
decreases the fluid’s density instead of changing phase. Through testing,
it is found that increasing the volume of the reactors, without increasing
the fluid volume, counteracts this issue by giving buffer room for the
fluid level to rise before overflow becomes an issue, as is the case at
extreme temperatures.

A. Khodaverdian et al.

Table 1

Aspen model constants and steady-state values.

Computers and Chemical Engineering 204 (2026) 109396

Cp, =2kmolm™

Cp,, = Tkmol m™3

E, =71160kJ kmol™"

ky = 1.528 x 10° m® kmol ™" s~

Cp =2kmolm™
'

Cp,, = 6kmol m™3
E, = 83.680kJ kmol ™'
ky =2.778 x 10* m® kmol ™" 5!

V, =V, = 60m?

T,, = Ty, = 300K

E; = 62.760kJ kmol ™!

ks = 0.4167 m* kmol ™! s~

F =432m*h™! F, =47.87m*h™! R =8.314kJkmol ™' K~

py =639.153kgm™ py = 607.504kgm™3 C,=2411kIkg™ K

AH, = —1.04 x 10° kJ kmol ™! AH, = —1.02 x 10° kJ kmol ™' AH; = —5.5x 10? kJ kmol ™"
T, = 300K Ty, = 350K Ty, = 450K

Ty, = 300K Ty, = 400K Ty, = 500K

Cp, = 6.956kmol m>

Cpep, =3.1x 107 kmolm™
Cp, = 1.9576kmol m™3

Cgp, =4.24x1072kmolm™
Cp, = 6.435kmol m3

Cpip, =2.8x 10 kmolm™
Cy, = 1.961 kmolm™

Cpp, =3.87X% 1072 kmol m~3
0,. = —56.4623kW

Q,, = —562121 kW

Cp,, =5.73kmol m™3

Cprp, =3.93% 105 kmol m™
Cp, = 0.954kmol m™3

Cgp,, =0.956kmolm™

Cp, =4.23kmol m™3

Cpep, =2.16% 10~*kmol m~3
Cg, =0.171kmolm™3

Cpp, = 1.64kmolm™

0,, = —412.254kW
0,, = —733.54kW

Cp,, =4.133kmol m™3
Cpep,, =42x 107 kmolm™
Cpg,, = 1.1444 x 1072 kmol m~3
Cgp,, = 1.636kmolm™>
Cp,, =3.055kmol m
Cpep,, =45X 10~*kmol m™3
Cp,, =2.5875% 1073 kmol m~3
Cgp,, = 1.361kmol m™3

1 = 221.16kW
Q,;, =2573.8TkW

‘o’ subscript stands for inlet/feed stream values.

‘s’ subscript stands for ‘desired’ steady-state values, i.e., the point representing the origin.

¢’ subscript stands for the cold steady-state values.
‘h’ subscript stands for the hot steady-state values.
Values shown are rounded for readability.

V4

PRODUCT

&l

csTR2

Fig. 2. Aspen Plus Dynamics model flow sheet.

Remark 13. The Temperature PID controllers typically set in Aspen
are removed because the control signal for this system is the heating
rate to each reactor, which gives control over the temperatures. How
exactly this heating is applied is up to the user to decide. In our case, we
use Python to calculate the control action and Aspen Plus Dynamics to
apply these actions to the system for a fixed time duration (i.e, sample-
and-hold control implementation). This is achieved through a custom
script using Aspen Plus Dynamics Visual Basic’s scripting support to
read and write data, such as the system’s state measurements, to a
folder that Python can also read and write from. This handshake
between the two software applications enables states to be calculated
by Aspen and controls to be calculated by Python, with the needed
information being exchanged in the folder as ‘.txt’ files.

5.3. First-principles model development

The process dynamics model that the LMPC will use is a first-
principles model for the considered process that is built using mass

and energy balances. The resulting system of ODEs representing the
dynamical model of the first CSTR is as follows:

dCp F\Cg, — F,; Cp
1 01 outy ~ By
=y, —F 23a
ar v, L1=rg3 (23a)
dCpep —F.u,CpEB
i L. lVl ! +rio—"3 (23b)
dCg F\Cg, —F,; C
1 01 outy ~ Ey
=y —F 23c
ar v, 1,1 12 (23¢)
dCEB _Fout CEB
< L= Ilfl ! +ryp—ria+2r; (23d)
3
ar; T, F =T\ Fyy, N Z —AH,; 0, (23)
a 7 c, it e €
1 i1 1%y pphy

Similarly, the system of ODEs representing the dynamical model of the
second CSTR is as follows:

dCBZ F2CBo2 + Foutl CBZ

“ar = v, —I =3

Cy, — F,

outy

(24a)

A. Khodaverdian et al.

dCDE32 outl CDEBI autz CDEBZ
= + - 24b
ar v rp=rg3 (24b)
dCE2 FZCEDZ + FouI| CEI Foutz CE2 (24¢)
—_— = —ry =T
dr V2 2,1 2,2
dCEB out CEB out CEB
-~ - ! ! 7 22 b ryy — 20, (24d)
dT: T, F, =T\ Fpy —TLF, 3, —AH,
—2- = l 4 Lry o+ 2 (24e)
dr v = nC, 7 G

where the ‘0’ subscript denotes the outlet values and the reaction
rates are second-order elementary with non-isothermal reaction rate
constants:

E,
=k 2
r, 1 ICXP[RTW:I (5a)
E
Pz = ky exp [RTZ] £,Cep, n=12 (Reactor Index) (25b)
n
ke | B2 2
I'pj3 = K3 €Xp RT Cpes,Ca, (250)
n

Remark 14. The specific heat capacities (C,) for both reactor volumes
are assumed to be the same in the first-principles model of the process.
No unique notation is used to distinguish between the two in an attempt
to improve the readability of the equations.

5.4. Control problem

The state variables that are considered are the concentrations of
these 4 components, as well as the temperature in each of the two
reactors. For simplicity, the state variables are defined in deviation
variable form with respect to a desired steady state. Steady-state values
of these terms are denoted with the ‘s’ subscript. The resulting state
vector is of the form:

—Cg,,»Cegp, —Cgp,,» T1 — T,
= Cgp,,. T — Tyl
(26)

x=[Cp, —Cp,.Cpep, — Cpes,,-Ck,

Cs, = Cs,,-CpE, =~ CpEs,,»CE, = Ck,,» CEB,

where the 1 and 2 subscripts represent the reactor numbering. Simi-
larly, the control actions are represented in deviation variable form but
only consist of the heating/cooling rate of the individual reactors:

u=lu,u]=[0; -0 0 — Oyl (27a)
—25x10° <u; <5x10° -0, [kW] (27b)
—25%10° <up, <5%x10° = Q,, [kW] (27¢)

These bounds were selected after consideration of feasible limits for re-
actors of the provided scale. Specifically, the lower bounds are made by
looking at the cooling rate needed in order to keep the first-principles
model of the system at the desired steady state, applying a safety factor
of roughly 10, and then selecting the smallest magnitude to be shared.
The upper bounds were chosen such that the system should be capable
of reaching the desired temperatures in roughly one hour, assuming no
reactions. To provide additional safety room, this was approximated as
heating the reactor volumes worth of water (60 m?) by 80K in 1h.
The overall objective of this controller is to bring the closed-loop
system to a small region around its origin defined by V' < 2 in the most
cost-effective manner as dictated by the quadratic objective function, at
which point the state is deemed sufficiently close to the steady state and
any further convergence can be achieved through simpler means with
minimal impact on the objective. The corresponding Lyapunov function
that satisfies the properties discussed in Section 2.3 is a quadratic
Lyapunov function of the form ¥ = x' Px with P defined as follows:

P = diag (500, 10, 200, 2500, 0.25, 1000, 1, 1000, 500, 0.5) (28)

Computers and Chemical Engineering 204 (2026) 109396

Because of the deviation variable notation, this origin represents the
desired unstable steady state. This state was validated as an unstable
steady state through testing in Aspen Plus Dynamics. The process is
initialized to a point very close to the origin, at which point the
simulation is left to run in the Dynamics mode with no further changes
to the manipulated inputs. This open-loop simulation was left to run
for 6h worth of simulated process time, after which it was observed
that the state evolved away from the origin towards a new steady state,
indicating that the origin is an unstable steady state. Using this method,
three steady states were chosen: the hot, cold, and desired steady states
detailed in Table 1.

All simulations start (1, = 0) at either the hot or cold steady states
and are driven towards a small region around the desired steady state
via a quadratic cost function.

LEOu@®)=%" (000 +u' (1)Qu®) 29)

where Q, and Q, are the weight matrices for the state and control
variables, respectively. These matrices are diagonal and are defined as
follows:

0, = diag(5.5.5,650,2.5,25,2,25,100,6) (30
Q, = diag (5x 1075, 1x 107%) (€39)

5.5. Stability analysis

A set of proportional controllers with gains shown below are used
as reference stabilizing controllers for this process:

K = diag (400, 250) (32)

The Lyapunov stability constraint is of the form shown in Eq. (5) where
a=15x107.

Remark 15. The primary reason for not using Eq. (4¢) as the Lyapunov
constraint is due to the high dimensionality of the system. There is no
direct way to guarantee that the controller is stabilizing for all potential
conditions that the LMPC may encounter within our operating region;
therefore, we bypass the risk of a poorly designed reference controller
by using the alternate form of the constraint. This alternative form, as
discussed before, does not directly need this stabilizing controller to be
known. As such, a small value of « is used to counteract any potential
over-constraining risks, and the reference controller is reserved as a
final failsafe in case the LMPC system fails to solve for any reason.

5.6. Control system parameters

The sampling time for this system is 4 = 5s. Two LMPCs are
considered, one called the long-horizon LMPC with a horizon length
of N = 250 and one called the short-horizon LMPC with a horizon
length of N = 20. The only difference between the two LMPCs is the
fact that the long-horizon LMPC optimizes the trajectory over 1250s
while the short-horizon LMPC optimizes its trajectory over 100s. The
consequence of this is that the long-horizon LMPC has improved cost
optimization; however, the computational burden of this long-horizon
results in the computation time exceeding the sampling time, making
the long-horizon LMPC infeasible for real-time control. Instead, the
short-horizon LMPC is used for real-time control, but at the expense
of poorer closed-loop performance.

Numerical integration of the LMPC model is carried out using
a Radau collocation method with a collocation degree of 5 and an
integration step size of 4, = 0.05s. The LMPC problem is solved using
IPOPT with SPRAL as the linear solver and the mu_strategy argu-
ment set to adaptive. Additionally, IPOPT’s tolerance and acceptable
tolerance are set to 1 x 107® and 1 x 107°, respectively. The process of
building the LMPC is done using the do_mpc package, which utilizes
64-bit precision floats due to its use of the Casadi package (Wachter
and Biegler, 2006; Fiedler et al., 2023; Andersson et al., 2019).

A. Khodaverdian et al.

Computers and Chemical Engineering 204 (2026) 109396

All State Trajectories

Cg, [kmol/m?3]

Cpes, [kmolim3]

Cg, [kmol/m?3]

0 5000 10000 15000 20000 25000
Time [s]

400 A

350 A

300 A

T2 [K]

250 A

200 ~

0 5000 10000 15000 20000 25000
Time [s]

Fig. 3. Generated closed-loop trajectories used for training of the neural network before any filtering.

Remark 16. IPOPT attempts to solve the optimization problem to a
defined tolerance, but in some systems, the iterative process gets stuck
in an oscillatory loop and fails to converge within the desired toler-
ances. The acceptable tolerance argument defines a larger tolerance
value in an attempt to capture these oscillatory cases and treat them as
‘acceptable’ solutions. These are solutions that satisfy the constraints,
but fail to optimize the cost to the desired tolerances, and the decision
on how to handle these solutions is left to the engineer designing the
LMPC. This term was included due to the highly nonlinear dynamics

of the system as a precaution against cases where excessively tight
tolerances might lead to ‘failed’ solutions that are not truly failures.

5.7. Data generation

Data generation for a system with a 10-dimensional input is a
challenge that requires compromise due to the infeasibility of densely
sampling the state space. For a system with 10 inputs with » unique
values per input, the total number of combinations of these inputs into

A. Khodaverdian et al.

Computers and Chemical Engineering 204 (2026) 109396

Control Inputs Across Trajectories

Q1 Heatmap

5 0]

Q

€

2 50

&

=]

§ 100 4

©

=

0 7007 14015
Time [s]
Q2 Heatmap

5 O]

Q

€

2 50

2

8

@ 100 -1

©

=

0 7007 14015

Time [s]

5000

o
Q1 [kW]

-5000

21022 28030

—10000

Q2 [kW]

—20000

21022

28030

Fig. 4. Heat-map of LMPC control actions per-trajectory used for training of the neural network. All trajectories start at a unique initial point and terminate after

satisfying V' < 2.

unique points in the state space is n'. Thus, it can be seen that if a brute
force approach were applied in which, given some lower and upper
bound for each state variable, an even distribution of n > 2 points is
sampled, then the resulting number of samples to generate and train
with grows excessively. For example, if the variables range from 0 to
1, then 5 samples corresponding to steps of size 0.25 will result in a
total of 10 million samples to generate and process. Simply doubling
the number of samples per variable, in this case, increases the value to
10 billion. Thus, a brute force approach is not considered.

Instead, data is generated in a physics-informed manner. It is known
that the process’s dynamics function is based on one primary reaction,
which involves ethylene and benzene. Additionally, it is known that
all reactions are exothermic, irreversible, and that cooling is limited.
Thus, data is generated by artificially lowering the dimensionality of
the system. Instead of varying 10 state variables, the data is generated
by varying 6. These states correspond to the concentration of benzene,
ethylene, and the temperature of each CSTR. This gives a range of
starting points, after which we simulate the first-principles model in
a closed-loop manner using the long-horizon form of the LMPC until
the state enters a small level set of the Lyapunov function chosen as
V<2

Specifically, the concentrations for ethylene and benzene for both
reactors are randomly generated between 0 and 7 with the same units
specified in Table 1. The temperature for both reactors is randomly
generated between 200 and 300 K. To speed up data generation, the
data generation was parallelized, resulting in a total of 5179308 sam-
ples across 1136 unique trajectories. These trajectories are visualized
in Fig. 3 where it can be seen how the state dynamics evolve over time
as the system converges to a small region around the origin. Some of
the samples are points where the LMPC failed to solve, in which case
the failsafe proportional control was applied, but these samples are not
used in the final dataset. Because the NN-controller is designed to only
take the current state as the input, time-series data is not needed; thus,
these trajectories are effectively converted into a list of state points
with a control input paired with them. The resulting control actions

10

are difficult to visualize in a readable form, so they are presented as a
heatmap in Fig. 4.

The data should ideally be smooth to ensure good model training
and diverse enough to cover the region in which we should expect our
states to lie. As seen in Fig. 5, the ethylene and benzene distributions
are well sampled across various temperatures, but this is not true for the
remaining states, as their concentrations are poorly distributed except
for points surrounding the origin. The data is visually smooth, as the
color-coded control action gradients demonstrate somewhat consistent
behaviors, although there is a potential abundance of max-heating
control actions. Most notably, there is a severe lack of data for high
temperature values, which may pose problems during runtime. A care-
ful look at the histograms for the state and control variables, as shown
in Figs. 6 and 7, reveals that despite the bulk of temperature readings
being centered around the origin, the concentrations for diethylbenzene
and ethylbenzene demonstrate good variety. This suggests that these
two concentrations have less impact on the behavior of the trajectory
than the two concentrations that were chosen to be randomly sampled.
Thus, the logic behind the data generation is supported by the results.

Remark 17. The concentration range is selected to be reasonable based
on the values of the feed stream concentrations detailed in Table 1. The
temperature range is selected after trial and error. Due to the potential
for high initial concentrations of reactive components in a fully exother-
mic system with limited cooling, it is observed that for high initial
temperatures, the LMPC struggles to prevent thermal runaway. Thus,
low-temperature initial values are selected as the overshooting risk is
eliminated. This reduces the failure rate of the LMPC at the expense
of data above the desired steady-state temperatures being effectively
nonexistent.

Remark 18. Due to computational limits, despite a sampling time of
the long-horizon LMPC being 5s, the computation time per-solution
exceeds this. This is not an issue during data generation, as the closed-
loop process is simulated offline here, meaning the effective delay

A. Khodaverdian et al.

Computers and Chemical Engineering 204 (2026) 109396

Concentrations vs Temperatures Colored by Control Inputs
Reactor 2: Concentrations vs T»

Reactor 1: Concentrations vs T,

4000 A

Cg, [kmol/m3]

le-5

Cpes, [kmol/m?3]

71
2000 A 61
54
ad
34
24
14
04

Q1 [kW]
o

Cg, [kmol/m3]

—2000 1

1.4 4

1.2 4
1.0 A
0.8
—4000 0.6 1
0.4
0.2
0.0

Ces, [kmol/im3]

T T T
200 225 250 275 300 325 350
T1 [K]

Cpes, [kmol/m3]

0.0012 A

0.0010

0.0008 +

0.0006

0.0004 4

0.0002 4

0.0000 +

Ces, [kmol/m?]

Ce, [kmolim?]

Cg, [kmol/m3]

2.5 A

2.0 4

— | -

T
200

250

T
300
T2 [K]

350

400

T 5000

- —5000

- —10000 3

Q2 [

1 —15000

—20000

—25000

Fig. 5. Sampled state space visualization color-coded by heat input. The temperature of each respective reactor is used as the reference variable to make properties

of the 10-dimensional state space somewhat observable.

11

A. Khodaverdian et al.

Computers and Chemical Engineering 204 (2026) 109396

Histograms of States

Reactor 1 States

Frequency (log scale)

0 1 2 3 4 5 6 7
Csg, [kmol/m3]

Frequency (log scale)

0 1 2 3 4 5 6 7
Cpes, [kmol/m3] le-5

Frequency (log scale)

0 1 2 3 4 5 6
Cg, [kmol/m3]

~

Frequency (log scale)

00 02 04 06 08 1.0 12 1
Ces, [kmol/m?]

EN

105 -

104 o

103 4

Frequency (log scale)

|

102 =

200 220 240 260 280 300 320 340 360
T1 [K]

Reactor 2 States

Frequency (log scale)

o
i
N

3 4 5 6 7
Cs, [kmol/m3]

Frequency (log scale)

0.0000 0.0002 0.0004 0.0006 0.0008 0.0010 0.0012
Cpes, [kmol/m3]

Frequency (log scale)

Cg, [kmol/m?3]

Frequency (log scale)

0.0 0.5 1.0 1.5 2.0 25
Ces, [kmol/m?3]

105 o

104 o

10° 4

Frequency (log scale)

1

102 -

200 225 250 275 300 325 350 375 400
T> [K]

Fig. 6. Log-scale Histogram of the state variables during data generation.

between sensor readings and their resulting optimal control actions
does not exist. This is a key benefit of the data-driven approach, as
it enables the generation of higher-quality data than what would be
feasible to apply in real-time control. Assuming the NN-controller is
designed such that the control actions it generates closely match those

12

of the LMPC, the resulting control would be better than the shorter-
horizon LMPC counterpart that would have been necessary for real-time
control.

Remark 19. V <2 is used as the cutoff for the training data. In other
words, p, = 2 is assumed. This value was chosen to be conservative as a

A. Khodaverdian et al.

Computers and Chemical Engineering 204 (2026) 109396

Histograms of Control Inputs

Q1 Histogram

Q> Histogram

= = =

o o o
w > v
. ! L

Frequency (log scale)

=

o
N
L

105 -

104 -

10° 4

Frequency (log scale)

—-4000 —2000 0 2000 4000 —25000 —20000 —15000 —10000 -5000 0 5000
Q1 [kW] Q2 [kW]
Fig. 7. Log-scale Histogram of the control variables during data generation.
Predicted Q7 vs True Q; - All Data

5000 A

0 -

— —5000 -
=
=
S

§ —10000 A
B
©
g
[a

—15000 A

—20000 A

—25000 A

—25000 -20000 -15000 -10000 -—-5000 0 5000

True Q7 [kW]

Fig. 8. Predicted vs. actual (true) values for the first control action (Q,; — Q,,).

precaution in case the value of « was chosen to be too small, such that
the small region around the origin would interfere with data generation
near the origin. To avoid any chance of this occurring, a large cutoff is
chosen.

5.8. Neural network training

Before training, the data is filtered. Any point along the closed-
loop trajectories that make up the training data where any of the

13

temperatures exceed 100 K deviation from the origin is discarded,
as are any duplicate values, NaN values, and values where V' < 2.
Temperatures beyond 100 K deviation from the origin are deemed to be
outside the reasonable operating region of the system. The remaining
filters are used to purge duplicate or meaningless data. The data is then
split into Training, Validation, and Testing sets by first splitting the data
into a Train/Test set with an 80/20 split and then further splitting this

A. Khodaverdian et al.

Computers and Chemical Engineering 204 (2026) 109396

Predicted Q; vs True Q- - All Data

5000 A

—5000 A

—10000 A

Predicted Q, [kW]

—15000 A

—20000 A

—25000 A

—25000 -20000 -15000 -10000 -—5000 0

5000

True Q> [kW]

Fig. 9. Predicted vs. actual (true) values for the second control action (Q, — Q,,).

Training set into a Train/Validation set with a 90/10 split for a total
Train/Val/Test split of 0.72/0.08/0.2.

Some aspects of the Neural Network were fixed during the design
process. The loss function was chosen to be Mean Squared Error (MSE),
the optimizer was chosen to be AdamW, and the scheduler was chosen
to be ReduceLROnPlateau with a factor of 0.9, patience of 2, and eps
of 0.

The neural network was built and tuned using Optuna to determine
the best architecture and set of hyperparameters. The Optuna study was
designed to minimize the best-case validation loss while optimizing the
following parameters: learning rate, weight decay, architecture type
(either feedforward or residual), layer count, size of each individual
layer, whether or not to use Batch Normalization or Dropout (on a per-
layer basis), and batch sizing. Batch sizing was decided to be 1024 after
running a smaller Optuna study on a subset of the data. The remaining
terms were decided during a larger Optuna study of 1000 trials. Each
study ran for a maximum of 100 epochs with an early stopping patience
of 5 with pruning enabled.

In general, the data set (and how representative it is with respect
to the operating region) used to train the NN controller as well as the
structure and type of the NN used significantly influence the fit of the
NN to the LMPC behavior and the resulting closed-loop performance. In
the present application, the best NN controller was a Residual Neural
Network with 2 hidden layers of size 512 and no BatchNormalization or
Dropout. The resulting learning rate was approximately 3.74x10™* with

14

a weight decay of approximately 2.29x 10~3. Some analysis was done to
check the quality of this model before any decision was made on further
training. First, plots on the predicted vs. actual control actions are
constructed based on the predicted control action the neural network
generates (after clipping) for all data (i.e, including training, validation,
and test sets) and are shown in Figs. 8 and 9. From these plots, two
things are made clear. First, there is a lack of data where the system
needs to apply strong cooling. Second, the neural network’s predictions
fit extremely well to the generated data. To determine how we can
expect these predictions to vary in quality over various temperatures,
an additional two plots are made that look at the residuals (actual
value - predicted value) with respect to the temperature at which the
chosen CSTR is currently operating. As shown in Figs. 10 and 11, there
is minimal variation in the NN’s prediction error across the temper-
ature ranges. Notably, the noise seems to elevate as the temperature
approaches the origin. The y-axis on both plots is seemingly not fit due
to the existence of the occasional extremely noisy result. Such points
are accounted for by virtue of the fallback control systems, and thus, it
was deemed unnecessary to further train this model.

5.9. Closed-loop simulation results
The closed-loop behavior of this controller is analyzed by sim-

ulating the process starting at two distinct steady states specified
in Table 1. The cold steady state represents a type of real-world case

A. Khodaverdian et al.

Computers and Chemical Engineering 204 (2026) 109396

Residuals Q7 vs T; - All Data

5000 A

—5000 A

—10000 A

Residuals Q1 [kW]

—15000 A

—20000 A

—-100 —-80 -60

-40 =20

T1 [K]

Fig. 10. Residual (O, ;ppc — Q),,) Vs. temperature values for the first CSTR.

where the data used during training is somewhat comparable to the
data experienced during inference. The hot steady state represents the
opposite—data that does not exist during training in any form—and
exists to demonstrate the architecture’s robustness to poor model be-
havior while maintaining stability guarantees. Starting at these steady
states, the closed-loop system is simulated by solving control actions
in Python, and solving the state evolution using Aspen Plus Dynamics,
which yielded the trajectories shown in Fig. 12. As expected from
the training data’s results, the cold steady state’s trajectory had no
issues reaching the small region around the origin without needing
any fallback control. Similarly, it is seen that the initialization at the
hot steady state caused problems for the controller, requiring a large
number of fallback control actions provided by the short-horizon LMPC.
Notably, the system still managed to stabilize towards the desired
steady state even though there was a case of proportional failsafe
control being needed. This demonstrates the framework’s ability to
maintain stability guarantees even if the trained model poorly fits to
data encountered during inference. Additionally, we can look at the
results for the long-horizon LMPC for these same initial steady state
points as a reference to see how well the NN-controller matches this
controller. These results are seen in Fig. 13. Fig. 14 combines the
two controllers’ trajectories on the same plots for easier comparison.
It can be seen that even the LMPC struggles in the hot steady state
case due to the difficult dynamics of this example, requiring failsafe
proportional control at multiple points. Despite this, the NN-controller

15

is seen to perform worse than the LMPC in the hot steady state case
while maintaining near identical performance in the cold steady state
case. This demonstrates the NN-controller’s ability to generalize to
unseen data so long as this data is not exceedingly different from
its training data. Prior discussion highlighted the fact that the data
generation done for this example failed to sufficiently sample high-
temperature points, and it is likely that this lack of data is the primary
cause for this poor performance in the hot steady state case. Regardless,
the closed-loop results demonstrate the framework’s robustness while
maintaining stability guarantees.

With regard to the computational benefit of the NN controller com-
pared to the short-horizon LMPC and the long-horizon LMPC, the NN
controller demonstrates significant improvements in computation time.
Specifically, the long-horizon LMPC took, on average, roughly 15.8 s to
solve, which is more than 3 times longer than the sampling time of
the process. The short-horizon LMPC took, on average, roughly 0.58s,
which allows it to be applied in real-time due to it being roughly 10
times smaller than the sampling time of the process. The NN controller
took, on average, roughly 17 x 10™*s to solve. This is roughly 300
times faster than the short-horizon LMPC, and roughly 10,000 times
faster than the long-horizon LMPC. These results indicate a potential for
NN-controllers to demonstrate similar control quality to LMPC without
being impacted by the polynomial scaling behavior of NLP frameworks.

Remark 20. The long-horizon LMPC is used to generate Fig. 13
despite it being previously discussed how such an LMPC cannot be

A. Khodaverdian et al.

Computers and Chemical Engineering 204 (2026) 109396

Residuals Q> vs T> - All Data

5000 A

—5000 A

—10000 A

Residuals Q, [kW]

—15000 A

—20000 A

—-100 —-80

-60

-40 -20 0

T, [K]

Fig. 11. Residual (O, pc — Q,,,) Vs temperature values for the first CSTR.

applied in real-time. Since this example is done via simulation, such
a limitation is irrelevant, as the Aspen Plus Dynamics model is paused
while Python calculates the control action. Practically, the long-horizon
LMPC cannot be applied in real-time, and this figure is only provided
with the intent to demonstrate that the NN-controller did a good job
fitting to the long horizon LMPC control actions, such that it is capable
of handling unseen data that is closely related to its training data
without significant deviation from the optimal control action trajectory.

Remark 21. Fig. 12 demonstrates a potential problem with the use
of fallback control without any form of management for the change
in control actions between individual steps via the jittery segments
where the enforcer is swapping between NN control and the LMPC
fallback rapidly. This is a problem that can cause feasibility issues in
practice and must be handled through the fallback controller’s design.
One such method is to add an additional constraint in the LMPC where
the change in the control action between samples is bounded.

Remark 22. With respect to the impact of measurement noise in
the training procedure of the NN controller and its closed-loop imple-
mentation, it is important to clarify the following. The NN controller,
@, is calculated off-line using long-horizon LMPC solutions, and thus,
measurement noise is not present during its training. That said, there
is mismatch between the process model used to make forward state
evolution predictions within LMPC and the actual process dynamics,

16

and this is why in our application an ASPEN model is used to simu-
late the process and a first-principles model is used in the LMPC to
generate data in order to evaluate the robustness of our approach. Of
course, during the implementation of the NN controller, @,,, there is
measurement noise but its impact is no different compared to impact of
noise on another feedback control system in that the feedback control
system continues to maintain closed-loop stability in the presence of
sufficiently small levels of measurement noise.

6. Conclusion

This work applies a data-driven method for approximating model
predictive control in a manner that retains stability guarantees through
external enforcement of negative definiteness for a Lyapunov function
by means of fallback control to an overall controller that is capable of
guaranteeing such constraints. Specifically, the proposed NN controller
framework ensures both guaranteed closed-loop stability (due to the
use of the fall-back short horizon LMPC) and very good closed-loop
performance as the NN controller is trained using data from an LMPC
with a long horizon that can only be solved off-line. Data is gener-
ated through physics-informed sampling and state simulation using
a first-principles-based approximation of the process model. Using a
Lyapunov-based model predictive controller (LMPC) that cannot be
used in a real-time system due to its computation time exceeding the
process’s sampling time (owing to the use of a long prediction horizon

A. Khodaverdian et al.

Computers and Chemical Engineering 204 (2026) 109396

Controller Comparison: Hot vs Cold Steady States

Hot

Cold

100

80

60

40

20

Reactor 1 & 2 Temperature Deviation (K)

Reactor 1 & 2 Temperature Deviation (K)

=20

-60
Controllers/Sources
NN Reactor 1
NN Reactor 2
—— P Reactor 1

P Reactor 2
—— MPC Reactor 1
MPC Reactor 2

-80

—-100

5000

—5000

—10000

—15000

Reactor 1 & 2 Control Inputs (kW)

—20000

Reactor 1 & 2 Control Inputs (kW)

6000

4000

2000

—2000

—4000

—6000

0 2500 5000 7500 10000

Time (s)

12500 15000

17500

0 2000 4000

Time (s)

6000 8000

Fig. 12. Closed-loop trajectories of reactor temperatures and heat inputs under NN-controller with fallback control when applied to the Aspen Plus Dynamics

model.

to enhance closed-loop performance), state-control action pairs are
generated for points along various trajectories. These trajectories are
filtered to only include valid LMPC solutions and are split into datasets
to train a neural network (NN) to predict the control action based on
the current (measured) state values. This NN functions as a replacement
for the LMPC. In order to guarantee stability, a shorter horizon form
of the LMPC that is capable of running in real-time with reduced
performance is used as fallback control, with a reference stabilizing
proportional controller used as the final failsafe controller in case the
LMPC fails to solve. This pair of controllers is managed by an enforcer
that checks the time derivative of a Lyapunov function and determines
if it is sufficiently negative to ensure stability based on the desired form
of the constraint. If satisfied, the NN is used, but if not, fallback control
is used. This framework enables the system to operate with slightly
reduced control quality while retaining the stability guaranteed for a
process that would otherwise not be feasible to control using long-
horizon LMPC. This design is additionally appealing due to the lack of
compromises made to ensure stability, which enables broader support
for different NN or LMPC designs. The approach was demonstrated
using a large-scale nonlinear process modeled and controlled within
an Aspen simulation environment. This application allowed addressing
numerous practical questions on the implementation of the proposed
approach. While the lessons learned from the ASPEN example are
specific to this application, we believe they provide insights into how
to handle similar issues in the context of other applications.

17

CRediT authorship contribution statement

Arthur Khodaverdian: Writing — original draft, Software, Method-
ology, Investigation, Conceptualization. Dhruv Gohil: Software, Inves-
tigation. Panagiotis D. Christofides: Writing — original draft, Supervi-
sion, Methodology, Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

Financial support from the National Science Foundation, CBET-
2227241, is gratefully acknowledged.

Data availability

Data will be made available on request.

A. Khodaverdian et al.

Controller Comparison: Hot vs Cold Steady States

Computers and Chemical Engineering 204 (2026) 109396

Hot Cold
100
0
g g
c c
S 80 k]
§ .’§ -20
> >
3 3
a a
[)
< 60 o
=1 2 —40
e e
v QJ
Q Q
E £
@ 40 ® 60
< <]
- i i
= = i
S 20 2 _go Controllers/Sources
® 8 —— P Reactor 1
QU k75
4 4 - P Reactor 2
—— MPC Reactor 1
0 B s e e KOO MPC Reactor 2
6000
0
= __ 4000
2 2
< -5000 =
2 £
a a 2000
£ 1=
£ —10000 g
c c 0
o o
o o
o~ o~
< <
~ —15000 ~ -2000
= i
o o
2 S
s} 9]
© ©
Q QU
o < _4000
—20000
—6000
0 2000 4000 6000 8000 0 2000 4000 6000 8000
Time (s) Time (s)

Fig. 13. Closed-loop trajectories of reactor temperatures and heat inputs under LMPC with fallback control when applied to the Aspen Plus Dynamics model.

Controller Comparison: Hot vs Cold Steady States

Hot Cold
100
0
g g
=4 80 [-4
2 2
® & -20
.5 .5
o S0 o
g S
2 2 -40
e a0 I
o o
a a
5 5
e ©
~ 20 N 60
< %]
— —
i o
g o £
8 5 —80 Controllers/Sources
© o —— NN Reactor 1
Q Q
= e NN Reactor 2
=20 —— MPC Reactor 1
e e e e e s e KLU MPC Reactor 2
0 2500 5000 7500 10000 12500 15000 17500 0 2000 4000 6000 8000
Time (s) Time (s)

Fig. 14. Closed-loop trajectories of reactor temperatures under the LMPC and the NN-controller with fallback control when applied to the Aspen Plus Dynamics

model.

References Alsmeier, H., Savchenko, A., Findeisen, R., 2024. Neural horizon model predictive
control - increasing computational efficiency with neural networks. In: Proceedings
of the American Control Conference. Toronto, Canada, pp. 1646-1651.

Adabag, E., Atal, M., Gerard, W., Plancher, B., 2024. MPCGPU: Real-time nonlinear
model predictive control through preconditioned conjugate gradient on the GPU. In:
Proceedings of International Conference on Robotics and Automation. Yokohama,
Japan, pp. 9787-9794.

Comput. 11 (1), 1-36.

Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M., 2019. CasADi — A
software framework for nonlinear optimization and optimal control. Math. Program.

Bonzanini, A.D., Paulson, J.A., Graves, D.B., Mesbah, A., 2020. Toward safe dose
delivery in plasma medicine using projected neural network-based fast approximate

Ahn, K., Mhammedi, Z., Mania, H., Hong, Z.-W., Jadbabaie, A., 2022. Model predictive NMPC. IFAC Pap. (ISSN: 2405-8963) 53, 5279-5285.
control via on-policy imitation learning. arXiv preprint arXiv:2210.09206. Fiedler, F., Karg, B., L'uken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.,
2023. Do-mpc: Towards FAIR nonlinear and robust model predictive control.
Alora, J.I., Pabon, L.A., Kohler, J., Cenedese, M., Schmerling, E., Zeilinger, M.N., Control Eng. Pract. 140, 105676.
Haller, G., Pavone, M., 2023. Robust nonlinear reduced-order model predictive Gill, P.E., Murray, W., Picken, S.M., Wright, M.H., 1979. The design and structure of a
control. In: Proceedings of 62nd Conference on Decision and Control. Marina Bay fortran program library for optimization. ACM Trans. Math. Soft. (ISSN: 0098-3500)
Sands, Singapore, pp. 4798-4805. 5 (3), 259-283.

18

http://refhub.elsevier.com/S0098-1354(25)00399-0/sb1
http://refhub.elsevier.com/S0098-1354(25)00399-0/sb1
http://refhub.elsevier.com/S0098-1354(25)00399-0/sb1
http://refhub.elsevier.com/S0098-1354(25)00399-0/sb1
http://refhub.elsevier.com/S0098-1354(25)00399-0/sb1
http://refhub.elsevier.com/S0098-1354(25)00399-0/sb1
http://refhub.elsevier.com/S0098-1354(25)00399-0/sb1
http://arxiv.org/abs/2210.09206
http://refhub.elsevier.com/S0098-1354(25)00399-0/sb3
http://refhub.elsevier.com/S0098-1354(25)00399-0/sb3
http://refhub.elsevier.com/S0098-1354(25)00399-0/sb3
http://refhub.elsevier.com/S0098-1354(25)00399-0/sb3
http://refhub.elsevier.com/S0098-1354(25)00399-0/sb3
http://refhub.elsevier.com/S0098-1354(25)00399-0/sb3
http://refhub.elsevier.com/S0098-1354(25)00399-0/sb3
http://refhub.elsevier.com/S0098-1354(25)00399-0/sb4
http://refhub.elsevier.com/S0098-1354(25)00399-0/sb4
http://refhub.elsevier.com/S0098-1354(25)00399-0/sb4
http://refhub.elsevier.com/S0098-1354(25)00399-0/sb4
http://refhub.elsevier.com/S0098-1354(25)00399-0/sb4
http://refhub.elsevier.com/S0098-1354(25)00399-0/sb5
http://refhub.elsevier.com/S0098-1354(25)00399-0/sb5
http://refhub.elsevier.com/S0098-1354(25)00399-0/sb5
http://refhub.elsevier.com/S0098-1354(25)00399-0/sb5
http://refhub.elsevier.com/S0098-1354(25)00399-0/sb5
http://refhub.elsevier.com/S0098-1354(25)00399-0/sb6
http://refhub.elsevier.com/S0098-1354(25)00399-0/sb6
http://refhub.elsevier.com/S0098-1354(25)00399-0/sb6
http://refhub.elsevier.com/S0098-1354(25)00399-0/sb6
http://refhub.elsevier.com/S0098-1354(25)00399-0/sb6
http://refhub.elsevier.com/S0098-1354(25)00399-0/sb7
http://refhub.elsevier.com/S0098-1354(25)00399-0/sb7
http://refhub.elsevier.com/S0098-1354(25)00399-0/sb7
http://refhub.elsevier.com/S0098-1354(25)00399-0/sb7
http://refhub.elsevier.com/S0098-1354(25)00399-0/sb7
http://refhub.elsevier.com/S0098-1354(25)00399-0/sb8
http://refhub.elsevier.com/S0098-1354(25)00399-0/sb8
http://refhub.elsevier.com/S0098-1354(25)00399-0/sb8
http://refhub.elsevier.com/S0098-1354(25)00399-0/sb8
http://refhub.elsevier.com/S0098-1354(25)00399-0/sb8

A. Khodaverdian et al.

Gonzalez, C., Asadi, H., Kooijman, L., Lim, C.P., 2024. Neural networks for fast
optimisation in model predictive control: A review. arXiv preprint arXiv:2309.
02668.

Gordon, D.C., Winkler, A., Bedei, J., Schaber, P., Pischinger, S., Andert, J., Koch, C.R.,
2024. Introducing a deep neural network-based model predictive control frame-
work for rapid controller implementation. In: Proceedings of American Control
Conference. Toronto, Canada, pp. 5232-5237.

Kapoor, S., Vaidya, P.M., 1986. Fast algorithms for convex quadratic programming and
multicommodity flows. In: Proceedings of the Eighteenth Annual ACM Symposium
on Theory of Computing. Berkeley, California, USA, pp. 147-159.

Khodaverdian, A., Gohil, D., Christofides, P.D., 2025a. Enhancing cybersecurity of
nonlinear processes via a two-layer control architecture. Digit. Chem. Eng. 15,
100233.

Khodaverdian, A., Gohil, D., Christofides, P.D., 2025b. Neural network implementation
of model predictive control with stability guarantees. Digit. Chem. Eng. 16, 100262.

Kraft, D., 1988. A Software Package for Sequential Quadratic Programming. Deutsche
Forschungs- Und Versuchsanstalt Fiir Luft- Und Raumfahrt Koln: Forschungsbericht,
Wiss. Berichtswesen d. DFVLR.

Lucia, S., Karg, B., 2018. A deep learning-based approach to robust nonlinear model
predictive control. IFAC Pap. (ISSN: 2405-8963) 51, 511-516.

Macmurray, J., Himmelblau, D., 1995. Modeling and control of a packed distillation
column using artificial neural networks. Comput. Chem. Eng. 19, 1077-1088.
Meng, D., Chu, H., Tian, M., Gao, B., Chen, H., 2024. Real-time high-precision nonlinear
tracking control of autonomous vehicles using fast iterative model predictive

control. IEEE Trans. Intell. Veh. 9, 3644-3657.

Mhaskar, P., El-Farra, N.H., Christofides, P.D., 2006. Stabilization of nonlinear systems
with state and control constraints using Lyapunov-based predictive control. Syst.
Contr. Lett. 55, 650-659.

Pardalos, P.M., Vavasis, S.A., 1991. Quadratic programming with one negative
eigenvalue is NP-hard. J. Global Optim. 1, 15-22.

19

Computers and Chemical Engineering 204 (2026) 109396

Patel, R., Bhartiya, S., Gudi, R.D., 2025. Neural network-based model predictive control
framework incorporating first-principles knowledge for process systems. Ind. Eng.
Chem. Res. 64 (18), 9287-9302.

Peng, Y., Yan, H., Rao, K., Yang, P., Lv, Y., 2024. Distributed model predictive control
for unmanned aerial vehicles and vehicle platoon systems: a review. Intell. Robot.
4, 293-317.

Qin, S.J., Badgwell, T.A., 2003. A survey of industrial model predictive control
technology. Control Eng. Pract. 11, 733-764.

Ren, Y.M., Alhajeri, M.S., Luo, J., Chen, S., Abdullah, F., Wu, Z., Christofides, P.D.,
2022. A tutorial review of neural network modeling approaches for model
predictive control. Comput. Chem. Eng. 165, 107956.

Tomasetto, M., Braghin, F., Manzoni, A., 2025. Latent feedback control of distributed
systems in multiple scenarios through deep learning-based reduced order models.
Comput. Methods Appl. Mech. Engrg. (ISSN: 0045-7825) 442, 118030.

Wichter, A., Biegler, L.T., 2006. On the implementation of a primal-dual interior point
filter line search algorithm for large-scale nonlinear programming. Math. Program.
106 (1), 25-57, (preprint).

Wang, R., Li, H., Xu, D., 2022. Learning model predictive control law for nonlinear
systems. In: Proceedings of International Symposium on Autonomous Systems.
Hangzhou, China, pp. 1-6.

Wu, Z., Tran, A., Rincon, D., Christofides, P.D., 2019. Machine-learning-based predictive
control of nonlinear processes. Part I: Theory. AIChE J. 65, e16729.

Xi, Y.-G., Li, D., Lin, S., 2013. Model predictive control — Status and challenges. Acta
Automat. Sinica 39, 222-236.

Yaren, T., Kizir, S., 2025. Real-time nonlinear model predictive control of a robotic
arm using spatial operator algebra theory. J. Field Robot. in Press.

Zarrouki, B., Nunes, J., Betz, J., 2023. RZNMPC: A real-time reduced robustified
nonlinear model predictive control with ellipsoidal uncertainty sets for autonomous
vehicle motion control. arXiv preprint arXiv:2311.06420.

http://arxiv.org/abs/2309.02668
http://arxiv.org/abs/2309.02668
http://arxiv.org/abs/2309.02668
http://refhub.elsevier.com/S0098-1354(25)00399-0/sb10
http://refhub.elsevier.com/S0098-1354(25)00399-0/sb10
http://refhub.elsevier.com/S0098-1354(25)00399-0/sb10
http://refhub.elsevier.com/S0098-1354(25)00399-0/sb10
http://refhub.elsevier.com/S0098-1354(25)00399-0/sb10
http://refhub.elsevier.com/S0098-1354(25)00399-0/sb10
http://refhub.elsevier.com/S0098-1354(25)00399-0/sb10
http://refhub.elsevier.com/S0098-1354(25)00399-0/sb11
http://refhub.elsevier.com/S0098-1354(25)00399-0/sb11
http://refhub.elsevier.com/S0098-1354(25)00399-0/sb11
http://refhub.elsevier.com/S0098-1354(25)00399-0/sb11
http://refhub.elsevier.com/S0098-1354(25)00399-0/sb11
http://refhub.elsevier.com/S0098-1354(25)00399-0/sb12
http://refhub.elsevier.com/S0098-1354(25)00399-0/sb12
http://refhub.elsevier.com/S0098-1354(25)00399-0/sb12
http://refhub.elsevier.com/S0098-1354(25)00399-0/sb12
http://refhub.elsevier.com/S0098-1354(25)00399-0/sb12
http://refhub.elsevier.com/S0098-1354(25)00399-0/sb13
http://refhub.elsevier.com/S0098-1354(25)00399-0/sb13
http://refhub.elsevier.com/S0098-1354(25)00399-0/sb13
http://refhub.elsevier.com/S0098-1354(25)00399-0/sb14
http://refhub.elsevier.com/S0098-1354(25)00399-0/sb14
http://refhub.elsevier.com/S0098-1354(25)00399-0/sb14
http://refhub.elsevier.com/S0098-1354(25)00399-0/sb14
http://refhub.elsevier.com/S0098-1354(25)00399-0/sb14
http://refhub.elsevier.com/S0098-1354(25)00399-0/sb15
http://refhub.elsevier.com/S0098-1354(25)00399-0/sb15
http://refhub.elsevier.com/S0098-1354(25)00399-0/sb15
http://refhub.elsevier.com/S0098-1354(25)00399-0/sb16
http://refhub.elsevier.com/S0098-1354(25)00399-0/sb16
http://refhub.elsevier.com/S0098-1354(25)00399-0/sb16
http://refhub.elsevier.com/S0098-1354(25)00399-0/sb17
http://refhub.elsevier.com/S0098-1354(25)00399-0/sb17
http://refhub.elsevier.com/S0098-1354(25)00399-0/sb17
http://refhub.elsevier.com/S0098-1354(25)00399-0/sb17
http://refhub.elsevier.com/S0098-1354(25)00399-0/sb17
http://refhub.elsevier.com/S0098-1354(25)00399-0/sb18
http://refhub.elsevier.com/S0098-1354(25)00399-0/sb18
http://refhub.elsevier.com/S0098-1354(25)00399-0/sb18
http://refhub.elsevier.com/S0098-1354(25)00399-0/sb18
http://refhub.elsevier.com/S0098-1354(25)00399-0/sb18
http://refhub.elsevier.com/S0098-1354(25)00399-0/sb19
http://refhub.elsevier.com/S0098-1354(25)00399-0/sb19
http://refhub.elsevier.com/S0098-1354(25)00399-0/sb19
http://refhub.elsevier.com/S0098-1354(25)00399-0/sb20
http://refhub.elsevier.com/S0098-1354(25)00399-0/sb20
http://refhub.elsevier.com/S0098-1354(25)00399-0/sb20
http://refhub.elsevier.com/S0098-1354(25)00399-0/sb20
http://refhub.elsevier.com/S0098-1354(25)00399-0/sb20
http://refhub.elsevier.com/S0098-1354(25)00399-0/sb21
http://refhub.elsevier.com/S0098-1354(25)00399-0/sb21
http://refhub.elsevier.com/S0098-1354(25)00399-0/sb21
http://refhub.elsevier.com/S0098-1354(25)00399-0/sb21
http://refhub.elsevier.com/S0098-1354(25)00399-0/sb21
http://refhub.elsevier.com/S0098-1354(25)00399-0/sb22
http://refhub.elsevier.com/S0098-1354(25)00399-0/sb22
http://refhub.elsevier.com/S0098-1354(25)00399-0/sb22
http://refhub.elsevier.com/S0098-1354(25)00399-0/sb23
http://refhub.elsevier.com/S0098-1354(25)00399-0/sb23
http://refhub.elsevier.com/S0098-1354(25)00399-0/sb23
http://refhub.elsevier.com/S0098-1354(25)00399-0/sb23
http://refhub.elsevier.com/S0098-1354(25)00399-0/sb23
http://refhub.elsevier.com/S0098-1354(25)00399-0/sb24
http://refhub.elsevier.com/S0098-1354(25)00399-0/sb24
http://refhub.elsevier.com/S0098-1354(25)00399-0/sb24
http://refhub.elsevier.com/S0098-1354(25)00399-0/sb24
http://refhub.elsevier.com/S0098-1354(25)00399-0/sb24
http://refhub.elsevier.com/S0098-1354(25)00399-0/sb25
http://refhub.elsevier.com/S0098-1354(25)00399-0/sb25
http://refhub.elsevier.com/S0098-1354(25)00399-0/sb25
http://refhub.elsevier.com/S0098-1354(25)00399-0/sb25
http://refhub.elsevier.com/S0098-1354(25)00399-0/sb25
http://refhub.elsevier.com/S0098-1354(25)00399-0/sb26
http://refhub.elsevier.com/S0098-1354(25)00399-0/sb26
http://refhub.elsevier.com/S0098-1354(25)00399-0/sb26
http://refhub.elsevier.com/S0098-1354(25)00399-0/sb26
http://refhub.elsevier.com/S0098-1354(25)00399-0/sb26
http://refhub.elsevier.com/S0098-1354(25)00399-0/sb27
http://refhub.elsevier.com/S0098-1354(25)00399-0/sb27
http://refhub.elsevier.com/S0098-1354(25)00399-0/sb27
http://refhub.elsevier.com/S0098-1354(25)00399-0/sb28
http://refhub.elsevier.com/S0098-1354(25)00399-0/sb28
http://refhub.elsevier.com/S0098-1354(25)00399-0/sb28
http://refhub.elsevier.com/S0098-1354(25)00399-0/sb29
http://refhub.elsevier.com/S0098-1354(25)00399-0/sb29
http://refhub.elsevier.com/S0098-1354(25)00399-0/sb29
http://arxiv.org/abs/2311.06420

	Uniting neural network-based control and model predictive control: Application to a large-scale nonlinear process
	Introduction
	Preliminaries
	Notation
	Class of systems
	Stabilizability assumption
	Lyapunov-based model predictive control

	Neural network design
	Data generation
	Controller neural network model type and training

	Guaranteeing stability for neural network-based control
	Closed-loop implementation
	Closed-loop stability under LMPC
	Closed-loop stability under NN controller

	Application to a chemical process example
	Process description
	Aspen Plus Dynamics model development
	First-principles model development
	Control problem
	Stability analysis
	Control system parameters
	Data generation
	Neural network training
	Closed-loop simulation results

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Data availability
	References

