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 A B S T R A C T

This work explores the implementation of reinforcement learning (RL)-based approaches to replace model 
predictive control (MPC) in cases where practical implementations of MPC are infeasible due to excessive 
computation times. Specifically, with the use of externally enforced stability guarantees, an RL-based controller 
that is trained to optimize the same cost function as the MPC with a long horizon that achieves the desirable 
closed-loop performance can serve as a potentially more appealing real-time option as opposed to using the 
same MPC with a shorter horizon. A benchmark nonlinear chemical process model is used to demonstrate 
the feasibility of this RL-based framework that simultaneously guarantees stability and enables improvements 
in computational efficiency and potential control quality of the closed-loop system. To explore the influence 
of the RL training method, two RL algorithms are explored, with one imitation learning method used as a 
reference.
1. Introduction

Model Predictive Control (MPC) is a broadly applicable framework 
that enables finely customizable control policies through the use of 
constrained numerical optimization. Due to its core operating principle 
involving the construction of trajectories using an internal process 
dynamics model, MPC can account for the interactions between process 
variables over a horizon, resulting in high-quality control (Qin and 
Badgwell, 2003). A necessary consequence of this is poor scalability, 
as explicitly calculating these interactions across the various scenar-
ios considered during the optimization process is a computationally 
intensive process. Nonlinear constrained MPC problems are NP-hard, 
whereas linear convex cases have a polynomial-time complexity of 
roughly  (

𝑛4
) (Pardalos and Vavasis, 1991; Peng et al., 2024). Even for 

more efficient methods, such as Sequential Least Squares Programming 
(SLSQP), the subproblems alone require  (

𝑛2
) or  (

𝑛3
) time (Gill 

et al., 1979; Kraft, 1988). Thus, MPC is burdened with poor scalability 
due to its polynomial-time complexity scaling laws.

To tackle this issue, research has been focused on a mix of solutions 
that can be roughly categorized as either reduction of the problem’s 
scale or as optimization of the underlying computational framework. 
Reducing the problem scale with minimal performance losses is a 
viable and generally useful method to apply if possible; however, this 
approach fails to tackle the underlying scalability problem and is best 
suited for cases where a system is only barely infeasible, such that 
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the application will reduce the computation time enough to allow 
for real-time application (Tomasetto et al., 2025; Alora et al., 2023; 
Zarrouki et al., 2023). Optimization of the framework is an approach 
that directly improves these scaling laws. Thus far, some improvements 
have been found, but there remain issues in ease of applicability, gen-
eralizability, and quantifying the impact on these scaling laws (Meng 
et al., 2024; Yaren and Kizir, 2025; Adabag et al., 2024). The latter 
point is particularly important, as the system may perform better by 
some roughly constant multiple but can still trend towards a particular 
order-of-magnitude scaling law as the model increases in size, which 
would mean that the underlying scaling issue is not resolved.

Within this research exists a subcategory of approximate methods 
that use neural networks (NN) to approximate MPC behavior or its 
model to achieve their goals. Research has demonstrated the validity 
of using NNs as a replacement for the system dynamics used inside of 
MPC, as the NN is capable of solving the dynamics with significantly 
less time and resources while also utilizing its data-driven properties 
to match – and in some highly complex cases, surpass – first-principles 
models in predictive accuracy (Wu et al., 2019; Gordon et al., 2024; 
Patel et al., 2025; Alsmeier et al., 2024; Ren et al., 2022; Macmurray 
and Himmelblau, 1995). Unfortunately, as a consequence of being used 
inside MPC, the overall polynomial-time complexity issue still exists 
due to aforementioned polynomial-time subproblems and the iterative 
methodology.
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Thus, research has focused on using NNs as a direct replacement 
for MPC, bypassing the iterative process entirely. The research thus far 
has been favorable, demonstrating that this idea is feasible for various 
processes, but details on scalability and strict constraint satisfaction are 
lacking (Lucia and Karg, 2018; Bonzanini et al., 2020; Ahn et al., 2022; 
Gonzalez et al., 2024). In our prior works, both issues have been ex-
plored, demonstrating a framework with strict stability guarantees that 
worked even for a large-scale, highly nonlinear process (Khodaverdian 
et al., 2025b, 2026). These works highlighted a core issue with NN-
based control—data: as systems scale, the data required to adequately 
represent the operating region also scales.

Motivated by this problem, this work explores the use of Reinforce-
ment Learning (RL) as a lightweight training alternative that does not 
require the use of MPC in the data generation process. As opposed 
to behavioral cloning methods, such as using gradient descent on the 
mean squared error loss between the NN’s control action and the MPC’s 
control action (as was done previously), RL methods can either utilize 
the first-principles model directly or interact with a physical system 
to explore the state-space and learn. The resulting trained controller 
is applied to a benchmark chemical process in order to demonstrate 
the feasibility of the controller within this stability-guaranteeing frame-
work. Additionally, metrics during and after the training process are 
explored to observe the practical benefits of using RL as opposed to 
supervised learning. This analysis is explored with two different RL 
algorithms in order to assess the impact of the RL algorithm itself on 
the framework’s capabilities and practicality.

2. Preliminaries

2.1. Notation

The transpose of a vector 𝑥, set of real numbers, set difference, 
functions, and piecewise-constant functions with period 𝛥 are denoted 
by 𝑥⊤, R, 𝛺1∖𝛺2, 𝑓 (⋅), and 𝑆 (𝛥) respectively, where both 𝑓 and 𝑆 are 
arbitrary denotations. The initial instance of time (i.e., where 𝑡 = 0) is 
denoted 𝑡0, whereas arbitrary reference instances of time are denoted 
𝑡𝑘.

2.2. Class of systems

This paper considers systems described by nonlinear first-order 
ordinary differential equations (ODEs) of the form: 

𝑥̇ = 𝐹 (𝑥, 𝑢) = 𝑓 (𝑥) + 𝑔 (𝑥) 𝑢 = 𝑓 (𝑥) +
𝑚
∑

𝑖=1
𝑔𝑖 (𝑥) 𝑢𝑖 (1)

For these systems, the state vector 𝑥 =
[

𝑥1, 𝑥2,… , 𝑥𝑛
]⊤ ∈ R𝑛 is the 

vector representation of all relevant state variables for the process. 
These states are assumed to be measured at fixed sampling intervals of 
length 𝛥, as is standard for state feedback control. Similarly, the control 
input vector 𝑢 =

[

𝑢1, 𝑢2,… , 𝑢𝑚
]⊤ ∈ R𝑚 is the vector representation of 

all relevant variables that are applied as control actions. Unlike the 
system states, the control actions are bounded as a means to account 
for physical limits that real actuators would face. The lower (𝑢𝑖,min) and 
upper (𝑢𝑖,max) bounds on the control actions form the boundary of the 
set of valid control actions, defined as: 

𝑈 ∶=

⎧

⎪

⎨

⎪

⎩

𝑢 ∈ R𝑚

|

|

|

|

|

|

|

|

𝑢 =
[

𝑢1, 𝑢2,… , 𝑢𝑚
]⊤

𝑢𝑖,min ≤ 𝑢𝑖 ≤ 𝑢𝑖,max

∀ 𝑖 = 1, 2,… , 𝑚

⎫

⎪

⎬

⎪

⎭

⊂ R𝑚 (2)

Additionally, we utilize the deviation variable form of the system as a 
means to render the origin of the open-loop system (i.e., a system of the 
form shown in Eq. (1) where 𝑢𝑖 = 0 ∀ 𝑖 = 1, 2,… , 𝑚) as a steady state, 
thus ensuring 𝑓 (0) = 0 without loss of generality. In other words, we 
treat 𝐹 (0, 0) = 0. We further assume that systems satisfying Eq. (1) have 
sufficiently smooth vector functions for 𝑓 ⋅  and 𝑔 ⋅ ∀ 𝑖 = 1, 2,… , 𝑚.
( ) 𝑖 ( )

2 
2.3. Stabilizability assumption

The core assumptions that ensure stabilizability are collectively 
referred to as the stabilizability assumption. The stabilizability assump-
tion consists of two main assumptions. The first is that we assume the 
existence of a sufficiently smooth explicit feedback control law that ren-
ders the origin of the system described by Eq. (1) exponentially stable. 
This controller is referred to as the reference stabilizing controller, or 
reference controller, as a shorthand.
𝛷∶R𝑛 → 𝑈 (3)

𝑢 (𝑥) = 𝛷 (𝑥) (4)

The second is the assumption that there exists a sufficiently smooth 
Lyapunov function 𝑉 (𝑥) which, when applied to the closed-loop system 
utilizing the reference controller for all 𝑥 bounded by an open neigh-
borhood near the origin, denoted 𝐷, satisfies the following inequalities:
𝑐1 |𝑥|

2 ≤ 𝑉 (𝑥) ≤ 𝑐2 |𝑥|
2 (5a)

𝜕𝑉 (𝑥)
𝜕𝑥

𝐹 (𝑥,𝛷 (𝑥)) ≤ −𝑐3 |𝑥|
2 (5b)

|

|

|

|

𝜕𝑉 (𝑥)
𝜕𝑥

|

|

|

|

≤ 𝑐4 |𝑥| (5c)

𝑐𝑖 > 0 ∀ 𝑖 ∈ {1, 2, 3, 4} (5d)

The remaining parts of the stabilizability assumption are derived from 
the sufficiently smooth assumption for the system dynamics men-
tioned earlier. This implies Lipschitz continuity for 𝑉 (𝑥), 𝛷 (𝑥), and 
𝐹 (𝑥,𝛷 (𝑥)). Additionally, because 𝛷 (𝑥) is bounded and 𝑥 is implied to 
be bounded through the restriction of 𝑥 ∈ 𝐷, we can say that 𝐹 (𝑥,𝛷 (𝑥))
is bounded. Finally, note that the product of two continuously dif-
ferentiable functions yields a function that is at least continuously 
differentiable. Thus, the stabilizability assumption implies the existence 
of positive constants 𝑀𝐹 , 𝐿𝑥, 𝐿′

𝑥 that ensure, for all 𝑥, 𝑥′ ∈ 𝐷 and 𝑢 ∈ 𝑈 , 
that the following inequalities are satisfied: 
|

|

|

𝐹
(

𝑥′, 𝑢
)

− 𝐹 (𝑥, 𝑢)||
|

≤ 𝐿𝑥
|

|

𝑥 − 𝑥′|
|

(6a)

|𝐹 (𝑥, 𝑢)| ≤ 𝑀𝐹 (6b)

|

|

|

|

|

𝜕𝑉 (𝑥)
𝜕𝑥

𝐹 (𝑥, 𝑢) −
𝜕𝑉

(

𝑥′
)

𝜕𝑥
𝐹
(

𝑥′, 𝑢
)

|

|

|

|

|

≤ 𝐿′
𝑥
|

|

𝑥 − 𝑥′|
|

(6c)

2.4. Lyapunov-based model predictive control

The stabilizability assumption can be applied to MPC to yield the 
Lyapunov-based MPC (LMPC) that solves for optimal control while 
ensuring closed-loop stability within 𝐷 (Mhaskar et al., 2006). 

 = min
𝑢∈𝑆(𝛥)∫

𝑡𝑘+𝑁𝛥

𝑡𝑘
𝐿 (𝑥̃ (𝑡) , 𝑢 (𝑡)) d𝑡 (7a)

s.t. ̇̃𝑥 (𝑡) = 𝐹 (𝑥̃ (𝑡) , 𝑢 (𝑡)) (7b)

𝑢 ∈ 𝑈, ∀ 𝑡 ∈ [𝑡𝑘, 𝑡𝑘 +𝑁𝛥) (7c)

𝑥̃(𝑡𝑘) = 𝑥
(

𝑡𝑘
)

(7d)

𝑉̇
(

𝑥̃
(

𝑡𝑘
)

, 𝑢
(

𝑡𝑘
))

≤ 𝑉̇
(

𝑥̃
(

𝑡𝑘
)

, 𝛷
(

𝑥̃
(

𝑡𝑘
)))

(7e)

In this formulation, the optimization takes place over a horizon of 
length 𝑁𝛥, with 𝛥 denoting the controller’s sampling period and 𝑁 the 
horizon’s sampling step count. This formulation uses sample-and-hold 
control, as continuous-time control is infeasible for real-world pro-
cesses. For simplicity, the sampling interval for both the controllers and 
state measurements is treated as equivalent. Eq. (7a) denotes an arbi-
trary cost as a function of the control actions and estimated states over 
the horizon. Eq. (7b) represents the process dynamics, which are used 
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for numerical integration during optimization to predict how the states 
of the closed-loop system evolve over the horizon. Eq. (7d) enforces 
an initialization step where the sensor readings are used as a ground 
truth initial state, and Eq. (7c) enforces the control bounds. Eq. (7e) 
denotes the stability constraint; the implementation of the stabilizabil-
ity assumption. This constraint ensures that the system is at least as 
stabilizing as the reference controller. An alternative form is provided:
𝑉̇
(

𝑥̃
(

𝑡𝑘
)

, 𝑢
(

𝑡𝑘
))

≤ −𝛼𝑉
(

𝑥̃
(

𝑡𝑘
))

(8)

This formulation uses the properties of the Lyapunov function from Sec-
tion 2.3 as opposed to using the reference controller. Using a positive 
constant 𝛼 to control the strength of this constraint, this formulation 
allows for stability guarantees without needing to directly apply the 
reference controller. 

Remark 1.  Referring to Eqs. (7e) and (8), we note that they can be 
thought of as constraints imposed on the MPC at the sampling time 
𝑡𝑘 to ensure that the closed-loop state converges towards the origin 
and further guarantee that the stability region of the Lyapunov-based 
controller (expressed in terms of a level set of 𝑉̇  embedded in 𝐷) 
becomes a stability region of the LMPC. These constraints originate 
from properties of Lyapunov functions that satisfy the stabilizability 
assumption. Notably, Eq. (7e) is derived from the negative upper bound 
of 𝑉̇  for the process under stabilizing control as shown in Eq. (5b), 
and Eq. (8) is derived from the fact that Lyapunov functions are positive 
outside of the origin, where they are 0, which is a general property of 
Lyapunov functions.

Remark 2.  LMPC does not pose constraints on the form of the cost 
function. Although this paper will use a quadratic cost function, other 
formulations are supported. Economic MPC is one such modification 
that can enable enhanced cost-efficiency of processes in a manner that 
supports time-varying economics (Khodaverdian et al., 2025a).

Remark 3.  Eq. (7e) is only applied at 𝑡𝑘 because this formulation is 
a receding horizon LMPC, where only the first control input from the 
solution is applied. After applying the first solution for one sampling 
interval, the LMPC problem is re-solved. This approach relaxes the con-
straints of the optimization problem, allowing for faster solutions, but 
comes at the cost of marginally reduced accuracy of the cost-optimal 
trajectory.

Remark 4.  Consider an LMPC formulation that satisfies the design 
above. We consider two cases of this LMPC: one with a long horizon 
and one with a short horizon. The long-horizon case is used purely for 
reference of what the truly optimal behavior would be (MPC optimal 
control action calculation improves with increased horizon length), as 
this case would take longer to calculate than the sampling interval, 
thereby making it infeasible for real-time control. The short-horizon 
case is a suboptimal solution relative to the long-horizon LMPC that 
is, however, faster to solve in real-time. This short-horizon LMPC can 
thus be used as a fallback controller as a means to enforce the stability 
guarantees for the closed-loop system at the expense of poor cost 
optimality.

2.5. Reinforcement learning

Reinforcement learning (RL) is a framework in which an agent 
interacts with an environment via a policy—a mapping from states 
to actions—to record states (𝑠), actions (𝑎), and rewards (𝑟) to use to 
learn how to adapt its policy to maximize cumulative rewards. These 
values are typically stored in a replay buffer for use in training as 
 ∶=

{(

𝑠𝑖, 𝑎𝑖, 𝑟𝑖, 𝑠′𝑖
)}𝑁

𝑖=1. Here, 𝑠′ denotes the future state that results 
from taking action 𝑎 at state 𝑠. To guide learning, the agent often uses a 
value function that estimates long-term returns. There are two common 
3 
forms of the value function, the state-value function denoted 𝑉  and the 
action-value function denoted 𝑄.

The state-value function is a function that quantifies how good the 
current state is. In the context of a continuous deterministic system, it 
yields the discounted cumulative reward starting at a provided state for 
some given policy: 

𝑉 𝜋 (𝑠) = 𝑟 (𝑠, 𝜋 (𝑠)) + 𝛾𝑉 𝜋 (𝑠′
)

(9)

where 0 < 𝛾 < 1. This equation is commonly referred to as the Bellman 
Equation for the state-value function. The optimal state-value function, 
also known as the Bellman optimality equation, is found for the case 
where the action used maximizes the state-value function for all states.

𝑉 (𝑠) = max
𝑎

[

𝑟 (𝑠, 𝑎) + 𝛾𝑉
(

𝑠′
)]

(10)

Once this optimal state-value function is known, the optimal policy is 
known. 

𝜋 (𝑠) = argmax
𝑎

[

𝑟 (𝑠, 𝑎) + 𝛾𝑉
(

𝑠′
)]

(11)

Thus, there is a relationship between the state-value function and the 
policy that allows for the iterative solution of the optimal policy. In fact, 
there are two common iterative methods for doing this: value iteration 
and policy iteration.

In value iteration, the value function is first fully optimized by 
iteratively applying the Bellman optimality equation from Eq. (10) 
to the current form of the state-value function for all states. Once 
enough sweeps of the state-space are done such that the state-value 
function is now optimal, the optimal policy is extracted from it greed-
ily via Eq. (11). In other words, the following equation is applied 
iteratively 

𝑉𝑖+1 (𝑠) = max
𝑎

[

𝑟 (𝑠, 𝑎) + 𝛾𝑉𝑖
(

𝑠′
)]

(12)

where the subscript 𝑖 denotes the iteration number for the value func-
tion. This method in particular is model-dependent due to the max
operation, which requires an explicit way to determine the reward 
function and the solving of 𝑠′.

Similarly, policy iteration utilizes the Bellman equation from Eq. (9) 
for the current policy guess instead of the optimal equation from
Eq. (10). This enables faster sweeps through the state-space, but re-
quires that after the state-value function converges, the policy must 
be updated greedily via Eq. (11). Then, the entire iterative loop must 
be done again with this new policy, continuing a cycle of iteratively 
improving the state-value function and the policy until both converge. 
The benefit of both methods is that they guarantee monotonic con-
vergence to the optimal value function, and thus optimal policy. The 
consequence of this is that both methods require the ability to do 
a full sweep of the state-space and action-space, neither of which is 
feasible for continuous-time systems, resulting in a loss of guarantees. 
Additionally, the need for a perfect process model complicates the 
applicability to systems whose real-world dynamics may not fit well 
with simple models.

An alternative would be to use model-free approaches, which enable 
learning the model and extracting optimal results through data and 
interaction with the system. To do this, the action-value function 𝑄 is 
commonly used as opposed to the state-value function 𝑉 . This is done 
because the state-value function inherently assumes a fixed policy and 
will thus average the impact of various actions taken for a given state 
in the data. On the other hand, the action-value function explicitly uses 
state–action pairs, which avoids this issue entirely. Further, the training 
can be done in two forms, on-policy or off-policy.

On-policy training utilizes the current policy when updating the 𝑄
function, whereas off-policy training works with any source for a given 
action. An example of each would be SARSA and Q-learning, as shown 
below. The first equation represents the iterative value improvement 
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step used in SARSA, which is on-policy, and the second represents 
Q-learning, which is off-policy, and can be written as follows:

𝑄 (𝑠, 𝑎) ← 𝑄 (𝑠, 𝑎) + 𝛼
[

𝑟 + 𝛾𝑄
(

𝑠′, 𝑎′
)

−𝑄 (𝑠, 𝑎)
]

(13)

𝑄 (𝑠, 𝑎) ← 𝑄 (𝑠, 𝑎) + 𝛼
[

𝑟 + 𝛾 max
𝑎′

𝑄
(

𝑠′, 𝑎′
)

−𝑄 (𝑠, 𝑎)
]

(14)

In both cases, the actions are implied to be from some greedily derived 
policy, with the exception of the max action used in Q-learning. These 
learning methods can be applied in a step-by-step manner to a system 
over as many episodes as needed until convergence. Q-learning’s use 
of the max operator leads it towards being more sample efficient, but 
comes with the consequence of overestimation bias that can lead to 
risky actions. Further, both methods rely on a policy that is derived 
from the value function itself, which remains a computationally inten-
sive process. This is mitigatable by using an Actor–Critic framework, 
where the policy, referred to as the Actor, is isolated from the value 
function and is independently iteratively improved.

2.6. Hamilton–Jacobi-bellman-based RL control

Hamilton–Jacobi–Bellman (HJB)-based reinforcement learning con-
trol formulates the control problem as solving the HJB optimality 
equation. In this framework, the value function is defined as follows: 

𝑉 ∗ (𝑥) = min
𝑢(⋅)

{

∫

∞

𝑡
𝑟 (𝑥 (𝜏) , 𝑢 (𝜏)) 𝑑𝜏

}

(15)

The 𝑉 ∗ (𝑥) quantifies the best long-term cost achievable starting from 
a given state with the following HJB condition: 

min
𝑢

𝐻
(

𝑥, 𝑢, 𝑉 ∗) = min
𝑢

{

𝑟 (𝑥, 𝑢) + 𝜕𝑉 ∗

𝜕𝑥
𝐹 (𝑥, 𝑢)

}

= 0 (16)

Consequently, the optimal policy is the action that minimizes this 
Hamiltonian at each state: 

𝜋∗ (𝑥) = argmin
𝑢

𝐻
(

𝑥, 𝑢, 𝑉 ∗) (17)

To ensure a fair comparison between LMPC and RL, the instant cost 𝑟
in the RL formulation is chosen to match the quadratic cost function 
used in LMPC: 

𝑟 (𝑥, 𝑢) = 𝐿 (𝑥, 𝑢) = 𝑥⊤𝑊𝑥𝑥 + 𝑢⊤𝑊𝑢𝑢 (18)

so that the HJB Hamiltonian becomes 

𝐻(𝑥, 𝑢, 𝑉 ∗) = 𝑥⊤𝑊𝑥𝑥 + 𝑢⊤𝑊𝑢𝑢 +
𝜕𝑉 ∗

𝜕𝑥
(

𝑓 (𝑥) + 𝑔(𝑥)𝑢
)

. (19)

Accordingly, the HJB condition (Eq. (16)) can be solved under the 
stationarity conditions (Lewis et al., 2012): 

𝜋∗ (𝑥) = −1
2
𝑊 −1

𝑢 𝑔 (𝑥)⊤
𝜕𝑉 ∗ (𝑥)

𝜕𝑥
(20)

Since the exact optimal value function 𝑉 ∗ (𝑥) is not available in 
closed form, we introduce a differentiable critic network 𝑉𝑤 (𝑥) param-
eterized by neural network weights 𝑤. The critic is trained to minimize 
the mean squared residual of the HJB equation evaluated at sampled 
states {𝑥 (𝑡𝑖

)}𝑁
𝑖=1. Specifically, the training objective and the weight 

update are given as follows: 

 (𝑤) = 1
𝑁

𝑁
∑

𝑖=1

(

𝑟
(

𝑥
(

𝑡𝑖
)

, 𝑢
(

𝑡𝑖
))

+
(

𝜕𝑉𝑤

𝜕𝑥

)

(

𝑓
(

𝑥
(

𝑡𝑖
))

+ 𝑔
(

𝑥
(

𝑡𝑖
))

𝑢
(

𝑡𝑖
))

)2

(21a)

𝑤 ← 𝑤 − 𝛼𝑤 ∇𝑤  (𝑤) (21b)

Here,  (𝑤) denotes the loss function, and 𝛼𝑤 is the learning rate that 
determines the step size of gradient descent.
4 
Remark 5.  The optimal control policy obtained from the HJB condi-
tion does not explicitly account for stability constraints. To enhance the 
accuracy of the approximated optimal value function, the neural net-
work performance could be further improved by incorporating stability 
criteria in the training process; however, this aspect is not within the 
scope of the present study.

Remark 6.  In the practical implementation, the instantaneous cost 
(or reward) 𝑟 used in HJB-RL training is evaluated for a discrete time 
representation of the system. In this discrete-time representation, the 
LMPC’s integral cost is approximated as a sum over a finite number 
of steps of size 𝛥 where the state term in the cost function is replaced 
with the future state (𝑥(𝑡𝑘 + 𝛥)). Likewise, the reward function used in 
the HJB-RL training uses the future state (𝑥(𝑡𝑘 + 𝛥)) as opposed to the 
current state (𝑥(𝑡𝑘)).

2.7. Twin delayed DDPG-based RL control

While Actor–Critic methods are traditionally on-policy, there exist 
modern forms that maintain the core idea of having a separate Actor 
and Critic while enabling off-policy reinforcement learning. Twin De-
layed DDPG, also known as TD3, is an off-policy Actor–Critic method 
that is designed for use with deterministic continuous systems. The 
algorithm is an evolution of the Deep Deterministic Policy Gradient 
(DDPG) algorithm with three modifications that aim to dampen ex-
treme behaviors that are common in DDPG: the addition of clipped 
policy noise, the addition of a second 𝑄 function, and the addition of 
update delays for the policy and target networks. With these changes, 
the algorithm lessens the risk of overestimation of the 𝑄 function, 
which in theory should make the training more stable than DDPG. 
These algorithms represent both the Actor and Critic as neural net-
works, where the target networks refer to a set of networks that are 
initially identical to the Actor and Critic networks. The target networks 
further assist in dampening extreme behaviors by effectively taking 
a portion of the weight updates away from the main networks and 
applying them to their own weights, thereby dampening the learning 
process and smoothing the change in weights. The two Critic networks 
are updated by minimizing the mean squared temporal difference (TD) 
error loss, while the Actor network is updated by minimizing the nega-
tive mean 𝑄-value under the current policy. Both updates use gradient 
descent. The algorithm is roughly provided below in Algorithm 1.

3. Guaranteeing stability for reinforcement learning-based con-
trol

The following section details the closed-loop form of the proposed 
RL control architecture alongside a formal derivation of its stability 
properties.

3.1. Closed-loop implementation

The closed-loop system operates with two main sources of control 
signals: the RL-controller and the fallback controller. The RL-controller 
is an NN trained using RL to function as a direct substitute for the 
LMPC, so it is capable of taking the sensor readings and providing ap-
proximately optimal control. The fallback controller is a short-horizon 
form of the LMPC that is only ever used if the constraint enforcer denies 
the RL-controller’s solution. The constraint enforcer is an algorithmic 
check of the stability guarantee used in the LMPC design (i.e., ei-
ther Eqs. (7e) or (8)). If the RL-controller violates this constraint, the 
fallback controller is used instead. Additionally, the constraint enforcer 
can enforce the control bounds by simply clipping the control signal 
within these bounds. As a final check, if the fallback control violates 
the constraint due to the LMPC solution failing, a failsafe controller is 
applied in the form of the reference controller used in  Section 2.3. 
A block diagram representation of this system is shown in Fig.  1, 
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Algorithm 1 TD3
1: Initialize critic networks 𝑄𝜃1 , 𝑄𝜃2 , and actor network 𝜋𝜙 with random parameters 𝜃1, 𝜃2, 𝜙
2: Initialize target networks 𝜃′1 ← 𝜃1, 𝜃′2 ← 𝜃2, 𝜙′ ← 𝜙
3: Initialize replay buffer 
4: while not converged do 
5: Observe the environment’s current state 𝑠
6: Select action with exploration noise 𝑎 = 𝜋𝜙(𝑠) + 𝜖, 𝜖 ∼  (0, 1)
7: Clip action within lower and upper bounds 𝑎𝐿𝑜𝑤𝑒𝑟 ≤ 𝑎 ≤ 𝑎𝑈𝑝𝑝𝑒𝑟
8: Apply 𝑎 and observe reward 𝑟, new state 𝑠′, and done signal 𝑑
9: Store transition tuple (𝑠, 𝑎, 𝑟, 𝑠′, 𝑑) in 
10: if update_after steps have been taken and step counter%update_every = 0 then 
11: Sample mini-batch of 𝑁 transitions (𝑠𝑗 , 𝑎𝑗 , 𝑟𝑗 , 𝑠′𝑗 , 𝑑𝑗 )𝑁𝑗=1 ∼ 
12: 𝑎′𝑗 = 𝜋𝜙′ (𝑠′𝑗 ) + 𝜖𝑗 , 𝜖𝑗 ∼ clip( (0,policy_noise),−noise_clip,noise_clip)
13: Clip 𝑎̃′𝑗 within lower and upper bounds 𝑎𝐿𝑜𝑤𝑒𝑟 ≤ 𝑎′ ≤ 𝑎𝑈𝑝𝑝𝑒𝑟
14: 𝑦𝑗 = 𝑟𝑗 + 𝛾(1 − 𝑑𝑗 )min(𝑄𝜃′1

(𝑠′𝑗 , 𝑎
′
𝑗 ), 𝑄𝜃′2

(𝑠′𝑗 , 𝑎
′
𝑗 ))

15: Compute critic losses: 1 = MSE(𝑄𝜃1 (𝑠𝑗 , 𝑎𝑗 ), 𝑦𝑗 ), 2 = MSE(𝑄𝜃2 (𝑠𝑗 , 𝑎𝑗 ), 𝑦𝑗 )
16: 𝑐𝑟𝑖𝑡𝑖𝑐 = 1 + 2
17: Zero gradients for critics 
18: Backward pass on 𝑐𝑟𝑖𝑡𝑖𝑐
19: Gradient descent step for 𝜃1 and 𝜃2
20: if iteration counter mod policy_freq = 0 then 
21: Compute actor loss: 𝑎𝑐𝑡𝑜𝑟 = − 1

𝑁
∑

𝑄𝜃1 (𝑠𝑗 , 𝜋𝜙(𝑠𝑗 ))
22: Zero gradients for actor 
23: Backward pass on 𝑎𝑐𝑡𝑜𝑟
24: Gradient descent step for 𝜙
25: Soft update targets:

𝜃′𝑘 ← 𝜏𝜃𝑘 + (1 − 𝜏)𝜃′𝑘 for 𝑘 = 1, 2
𝜙′ ← 𝜏𝜙 + (1 − 𝜏)𝜙′

26: end if
27: end if
28: if 𝑠′ is in the terminal region then 
29: Reset environment 
30: Select a new initial state 𝑠
31: end if
32: end while
Fig. 1. Generalized process control block diagram for Model Predictive Control (Left) and Reinforcement Learning-based control (Right). The fallback control 
block contains a failsafe controller.
where all relevant controllers function as explicit feedback control laws, 
thereby using an RL-controller of the form:

𝛷RL ∶ R𝑛 → R𝑚 (22)

𝑢
(

𝑡𝑘
)

∶= 𝛷RL
(

𝑥
(

𝑡𝑘
))

(23)

Remark 7.  The fallback controller does not need to be a short-horizon 
form of the LMPC. It can be any such controller that satisfies Eqs. (7e) 
or (8). A short-horizon LMPC is used as the fallback because it satisfies 
these constraints by design and additionally provides some form of cost 
optimization that simpler designs, such as P control, do not consider.
5 
Remark 8.  In order for a signal to pass through the constraint enforcer, 
it must satisfy all required constraints. Consider the case of requiring 
both clipping of the control signal to fit within the actuator bounds (the 
maximum magnitude of the respective control action) and enforcement 
of the Lyapunov stability constraint. It is important to note that in 
the constraint enforcer, the Lyapunov stability constraints are only 
checked after clipping is done. This is because the Lyapunov stability 
constraint is something that must be satisfied for the finalized (the 
one to be implemented on the process) control signal, whereas all 
control actions need to be clipped within the bounds before they can be 
considered finalized. Clipping is necessary to satisfy the control bounds 
if the model does not inherently satisfy the bounds by using a tanh
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activation for its output layer. The control bounds exist as physical 
limits for a given actuator; therefore, they must be satisfied at all times. 
The Lyapunov stability constraint can be satisfied for a range of valid 
control actions, some of which may exceed the control bounds. But in 
order for a signal to pass the constraint enforcer, it must satisfy both the 
control bounds and the Lyapunov stability constraint, so it is possible 
for a control action to satisfy the stability constraint prior to clipping, 
but fail to satisfy it after clipping, thereby requiring fallback control 
that would then guarantee satisfaction of both.

Remark 9.  The novelty of this framework is the ability to guaran-
tee closed-loop stability through external constraint enforcement. The 
LMPC design, beyond the needed stability constraints, is not important 
to the framework’s novelty, but it remains important to the particular 
design problems engineers will need to consider for their particular use 
cases.

Remark 10.  RL is used for the RL-based controllers as a means 
of speeding up the training process. Imitation-learning-based methods 
face scaling issues in regards to the time it takes to solve the LMPC 
optimization problem for sufficiently diverse datasets. This is due to 
the increasing computational demands of LMPC for higher-dimensional 
problems and due to the increasing difficulty in densely and diversely 
sampling the relevant states. RL, through simulated interactions with a 
first-principles model of the process (prior to the real-time implemen-
tation of the RL-based controllers on the process), bypasses the scaling 
issues of the LMPC optimization problem entirely.

Remark 11.  For both of the RL-based controllers and the FNN-based 
controller, training is done prior to real-time implementation of the 
controller on the process. In other words, all NN training in this work 
is done offline. While online training is possible through the use of 
transfer learning, this is not explored in the present work. The real-
time implementation of these controllers to the process assumes that 
training is complete and that the constraint enforcer is present (to 
ensure closed-loop stability).

3.2. Closed-loop stability

For a continuous-time system,  Section 2.3 provides assumptions 
that would guarantee exponential stability of the origin; however, 
continuous-time control is not possible due to the need for computation 
of control actions as well as signal transmission delays. To resolve 
this, the sample-and-hold control implementation applies a fixed con-
trol action for a fixed interval 𝑡 ∈

[

𝑡𝑘, 𝑡𝑘 + 𝛥
) before updating. The 

consequence of this is that the stabilizability assumption guarantees 
convergence to a small region around the origin instead of exponential 
stability.

3.2.1. Closed-loop stability under LMPC

Theorem 1.  Take an LMPC as defined in Eq. (7), which applies ei-
ther Eqs. (7e) or (8), and where Eq. (7b) models a system matching Eq. (1). 
𝑢 (𝑡) denotes the first control input vector from the LMPC’s solution. If a 
reference controller and Lyapunov function described by Section 2.3 exists 
for 𝑥 (𝑡0

)

∈ 𝐷 ∶= {𝑥 ∣ 𝑉 (𝑥) ≤ 𝜌}, then there must exist a pair of constants 
𝜖𝑤, 𝛼 > 0 such that the closed-loop state is driven to a small area around 
the origin (𝛺𝜌min

) by the sample-and-hold implementation of 𝑢 (𝑡) if the 
conditions below hold for any sampling instant 𝑡𝑘: 
𝐿′
𝑥𝑀𝐹𝛥 − 𝛼𝜌𝑠 ≤ −𝜖𝑤 (24a)

𝜌min ∶= max
{

𝑉
(

𝑥
(

𝑡𝑘 + 𝛥
)

|𝑉
(

𝑥
(

𝑡𝑘
))

≤ 𝜌𝑠
)}

(24b)

𝜌𝑠 < 𝑉
(

𝑥
(

𝑡𝑘
))

(24c)

𝜌 < 𝜌 < 𝜌 (24d)
𝑠 min

6 
Proof. 

Case 1 (Eq. (7e) as the Lyapunov constraint). Starting with the definition 
of the time derivative of the Lyapunov function, we can manipulate the 
expression algebraically by adding and subtracting equivalent terms: 

𝑉̇
(

𝑥 (𝑡) , 𝑢
(

𝑡𝑘
))

=
𝜕𝑉 (𝑥 (𝑡))

𝜕𝑥
𝐹
(

𝑥 (𝑡) , 𝑢
(

𝑡𝑘
))

(25)

𝑉̇
(

𝑥 (𝑡) , 𝑢
(

𝑡𝑘
))

=
𝜕𝑉 (𝑥 (𝑡))

𝜕𝑥
𝐹
(

𝑥 (𝑡) , 𝑢
(

𝑡𝑘
))

−
𝜕𝑉

(

𝑥
(

𝑡𝑘
))

𝜕𝑥
𝐹
(

𝑥
(

𝑡𝑘
)

, 𝑢
(

𝑡𝑘
))

+
𝜕𝑉

(

𝑥
(

𝑡𝑘
))

𝜕𝑥
𝐹
(

𝑥
(

𝑡𝑘
)

, 𝑢
(

𝑡𝑘
))

(26)

Plugging in Eqs. (5b), (6c) and (7e): 

𝑉̇
(

𝑥 (𝑡) , 𝑢
(

𝑡𝑘
))

≤ 𝐿′
𝑥
|

|

|

𝑥 (𝑡) − 𝑥
(

𝑡𝑘
)

|

|

|

− 𝑐3
|

|

|

𝑥
(

𝑡𝑘
)

|

|

|

2
(27)

Via the integral triangle inequality: 
|

|

|

𝑥 (𝑡) − 𝑥
(

𝑡𝑘
)

|

|

|

≤ ∫

𝑡

𝑡𝑘

|

|

|

𝐹
(

𝑥 (𝜏) , 𝑢
(

𝑡𝑘
))

|

|

|

d𝜏 ≤ 𝑀𝐹𝛥 (28)

Plugging into Eq. (27): 

𝑉̇
(

𝑥 (𝑡) , 𝑢
(

𝑡𝑘
))

≤ 𝐿′
𝑥𝑀𝐹𝛥 − 𝑐3

|

|

|

𝑥
(

𝑡𝑘
)

|

|

|

2
(29)

If |𝑥| is small, the 𝐿′
𝑥𝑀𝐹𝛥 term may dominate and make the upper 

bound of 𝑉̇  positive, invalidating any stability guarantee; hence the need 
for Eq. (24c). Applying this with Eq. (5a) yields: 
𝑉̇
(

𝑥 (𝑡) , 𝑢
(

𝑡𝑘
))

≤ 𝐿′
𝑥𝑀𝐹𝛥 −

𝑐3
𝑐2

𝜌𝑠 ≤ 𝐿′
𝑥𝑀𝐹𝛥 − 𝛼𝜌𝑠 (30)

which simplifies using Eq. (24a): 
𝑉̇
(

𝑥 (𝑡) , 𝑢
(

𝑡𝑘
))

≤ − 𝜖𝑤 (31)

Thus, with sufficiently small 𝛥, any closed-loop state 𝑥 (𝑡𝑘
)

∈ 𝛺𝜌∖𝛺𝜌𝑠  will 
decay over time towards 𝛺𝜌𝑠 , ultimately converging to 𝛺𝜌min

.

Case 2 (Eq. (8) as the Lyapunov constraint). The proof for this cases 
follows the same form as above with the exception of using Eq. (8) as 
opposed to Eq. (7e), which results in the −𝑐3 ||

|

𝑥
(

𝑡𝑘
)

|

|

|

2 term being replaced 
by −𝛼𝑉 (

𝑥
(

𝑡𝑘
))

. 

𝑉̇
(

𝑥 (𝑡) , 𝑢
(

𝑡𝑘
))

≤ 𝐿′
𝑥
|

|

|

𝑥 (𝑡) − 𝑥
(

𝑡𝑘
)

|

|

|

− 𝛼𝑉
(

𝑥
(

𝑡𝑘
))

≤ 𝐿′
𝑥𝑀𝐹𝛥 − 𝛼𝜌𝑠

(32)

Remark 12.  The alternate form of the stability constraint from Eq. (8) 
does not explicitly use the reference controller, but still requires it 
to exist due to the Lyapunov function needing to satisfy Eq. (5). A 
consequence of using this form is that 𝛼 must be defined by the user. 
An excessively small 𝛼 risks being overpowered by the 𝐿′

𝑥𝑀𝐹𝛥 term, 
whereas an excessively large 𝛼 risks the solution being infeasible due 
to the control bounds.

Remark 13.  The proof demonstrates stability guarantees for any such 
interval in which the stability constraints are enforced. As presented 
in Eq. (7), this implies that stability guarantees do not exist beyond the 
first sampling interval; hence, the receding horizon approach would 
functionally satisfy the stability guarantees but is not guaranteed to 
optimize with respect to a trajectory that satisfies these guarantees for 
all points beyond the first sampling interval.

3.2.2. Closed-loop stability under RL-controller with constraint enforcement
As seen in Fig.  1, the framework operates by conditionally se-

lecting which control signal to send to the actuators. Despite the 
RL-controller having no stability guarantees, the stability guarantees for 
the LMPC shown in Theorem  1 also guarantee stability for the modified 
framework via the constraint enforcer.
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Theorem 2.  Consider an LMPC as given in Eq. (7), which employs 
either Eq. (7e) or Eq. (8) as the stabilizability constraint, and where Eq. (7b) 
represents a nonlinear system matching the structure in Eq. (1). Assume a 
reference controller and Lyapunov function described by Section 2.3 exists 
for 𝑥 (𝑡0

)

∈ 𝐷 ∶= {𝑥 ∣ 𝑉 (𝑥) ≤ 𝜌}, and a reinforcement learning-based 
controller with control outputs clipped to meet the constraints in Eq. (7c) 
(𝛷RL

(

𝑥
(

𝑡𝑘
))

∈ 𝑈) exists. For the RL-based process setup illustrated in Fig. 
1 whose constraint enforcer is defined as 

𝑢
(

𝑡𝑘
)

=

{

𝛷RL
(

𝑥
(

𝑡𝑘
))

, if 𝑉̇ (

𝑥
(

𝑡𝑘
)

, 𝛷RL
(

𝑥
(

𝑡𝑘
)))

≤ 𝑆
(

𝑥
(

𝑡𝑘
))

𝛷LMPC
(

𝑡𝑘
)

, if 𝑉̇ (

𝑥
(

𝑡𝑘
)

, 𝛷RL
(

𝑥
(

𝑡𝑘
)))

> 𝑆
(

𝑥
(

𝑡𝑘
))

(33)

where 𝑆 (𝑥) denotes the stability threshold—defined as either 𝑉̇ (𝑥,𝛷 (𝑥)) or 
−𝛼𝑉 (𝑥) depending on the chosen form of the constraint—and 

𝛷LMPC
(

𝑡𝑘
)

=

{

𝑢LMPC
(

𝑡𝑘
)

, if 𝑉̇ (

𝑥
(

𝑡𝑘
)

, 𝑢LMPC
(

𝑡𝑘
))

≤ 𝑆
(

𝑥
(

𝑡𝑘
))

𝛷
(

𝑥
(

𝑡𝑘
))

, if 𝑉̇ (

𝑥
(

𝑡𝑘
)

, 𝑢LMPC
(

𝑡𝑘
))

> 𝑆
(

𝑥
(

𝑡𝑘
))

(34)

such that 𝑢, 𝑢𝐿𝑀𝑃𝐶 , 𝛷,𝛷RL, 𝛷𝐿𝑀𝑃𝐶 ∈ 𝑈 , then there must exist a pair of 
constants 𝜖𝑤, 𝛼 > 0 such that the closed-loop state is driven to a small area 
around the origin (𝛺𝜌min

) by the sample-and-hold implementation of 𝑢 (𝑡) if 
the conditions in Eq. (24a)–(24d) hold for any sampling instant 𝑡𝑘

Proof. 

Case 1 (𝑉̇ (

𝑥
(

𝑡𝑘
)

, 𝛷RL
(

𝑥
(

𝑡𝑘
)))

> 𝑆
(

𝑥
(

𝑡𝑘
))

). We consider the remaining 
two subcases for the LMPC control action.

Case 1.1 (𝑉̇ (

𝑥
(

𝑡𝑘
)

, 𝑢LMPC
(

𝑡𝑘
))

> 𝑆
(

𝑥
(

𝑡𝑘
))

). Here, 𝛷𝐿𝑀𝑃𝐶
(

𝑡𝑘
) is 

used and equals 𝛷 (

𝑥
(

𝑡𝑘
))

. The proof follows Theorem  1, but Eq. (26) 
is composed of 𝛷 (𝑥) instead. Because the Lipschitz continuity expression 
from Eq. (6c) is applicable for any 𝑢, and Eq. (5b) is satisfied, the case 
simplifies to Case  1 from Theorem  1.

Case 1.2 (𝑉̇ (

𝑥
(

𝑡𝑘
)

, 𝑢LMPC
(

𝑡𝑘
))

≤ 𝑆
(

𝑥
(

𝑡𝑘
))

). Here, 𝛷𝐿𝑀𝑃𝐶
(

𝑡𝑘
) is used 

and equals 𝑢𝐿𝑀𝑃𝐶
(

𝑡𝑘
)

, the first control action of the LMPC solution. 
Theorem  1 details the proof for this controller.

Case 2 (𝑉̇ (

𝑥
(

𝑡𝑘
)

, 𝛷RL
(

𝑥
(

𝑡𝑘
)))

≤ 𝑆
(

𝑥
(

𝑡𝑘
))

). This case follows the steps 
from Theorem  1, but Eq. (26) is composed of 𝛷RL (𝑥) terms instead. The 
Lipschitz continuity expression from Eq. (6c) is applicable for any 𝑢, thus 
the case simplifies to the form used in Theorem  1 where the respective case 
is chosen depending on the form of 𝑆 (𝑥).

Remark 14.  The RL-controller has no stability guarantees alone, hence 
why every case eventually reforms to be in terms of the reference 
controller, as the reference controller’s existence and use are solely for 
the enforcement and satisfaction of stability guarantees.

4. Application to a chemical process example

In this section, the proposed stable RL framework is implemented on 
a chemical process, and the efficacy of the framework is demonstrated 
by comparing it with various controllers.

4.1. Process description

The model chemical process of choice for this study is a simulated 
continuous stirred-tank reactor (CSTR). The CSTR is assumed to be per-
fectly mixed. Specifically, we consider a singular irreversible reaction 
that is exothermic, making the CSTR non-isothermal. The reaction is 
treated as an arbitrary liquid-phase reaction (𝐴 → 𝐵) with second-order 
dynamics. The CSTR is insulated in the sense that there is no external 
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Table 1
Parameter values of the CSTR model.
 Var. Value Var. Value  
 𝐶𝐴𝑠 1.954 kmolm−3 𝐶𝐴0𝑠 4.0 kmolm−3  
 𝐶𝑝 0.231 kJ kg−1 K−1 𝛥𝐻 −11,500 kJ kmol−1 
 𝐸 5.0 × 104 kJ kmol−1 𝐹 10m3 h−1  
 𝑘0 8.46 × 106 m3 kmol−1 h−1 𝑄̇𝑠 0.0 kJ h−1  
 𝑅 8.314 kJ kmol−1 K−1 𝜌𝐿 1.0 × 103 kgm−3  
 𝑇0 300.0K 𝑇0𝑠 300.0K  
 𝑇𝑠 401.9K 𝑉𝐿 0.1m3  

influence on the system’s heat, but heat is still removed or added to the 
system through a heating/cooling system implemented on the reactor, 
with heat addition or removal occurring at a controllable rate 𝑄̇. These 
assumptions yield the following dynamic model: 
d𝐶𝐴
d𝑡

= 𝐹
𝑉𝐿

(

𝐶𝐴0 − 𝐶𝐴
)

− 𝑘𝐶2
𝐴 (35a)

d𝑇
d𝑡

= 𝐹
𝑉𝐿

(

𝑇0 − 𝑇
)

− 𝛥𝐻
𝜌𝐿𝐶𝑝

𝑘𝐶2
𝐴 + 𝑄̇

𝜌𝐿𝐶𝑝𝑉𝐿
(35b)

𝑘 = 𝑘0 exp
[

− 𝐸
𝑅𝑇

]

(35c)

Here—with the exception of 𝑘0, which denotes the isothermal rate-
constant—the 0 subscript denotes feed values, 𝐶𝐴 denotes concentra-
tion of A, and 𝑇  denotes the temperature of the solution within the 
CSTR. 𝜌𝐿, 𝐶𝑝, 𝛥𝐻,𝐸 and 𝑉𝐿 denote the solution density, specific heat, 
heat of reaction, activation energy, and liquid volume, respectively.

4.2. Control problem

The heating rate 𝑄̇ is selected as the control (manipulated) input, 
and the state variables are chosen to be 𝑇  and 𝐶𝐴. In order to utilize 
the origin as the steady state (denoted by the 𝑠 subscript) without loss 
of generality, the state and control variables are expressed as deviation 
variables. Accordingly, the vectors used in the problem formulation are 
defined as 𝑥⊤ =

[

𝐶𝐴 − 𝐶𝐴𝑠, 𝑇 − 𝑇𝑠
] and 𝑢⊤ =

[

𝑄̇ − 𝑄̇𝑠
] for the state and 

control vectors, respectively. The control input is subject to bounds, 
specifically −4,000 ≤ 𝑄̇ − 𝑄̇𝑠 ≤ 4,000 kJ h−1. Specifics on the various 
constants used in the CSTR dynamic model are provided in Table  1.

The design goal is to create a controller that drives the closed-
loop system from any given initial state bounded by −0.6 ≤ 𝐶𝐴 −
𝐶𝐴𝑠 ≤ 0.6 kmolm−3 and −10 ≤ 𝑇 − 𝑇𝑠 ≤ 10K to the origin. Because 
of the deviation variable notation, this origin represents the desired 
operating (unstable) steady state. To achieve this, a reference controller 
satisfying  Section 2.3 is found to be a proportional (P) controller with 
a weight of 120 for the temperature deviation variable. Similarly, a Lya-
punov function of the form 𝑉 = 𝑥⊤𝑃𝑥 with 𝑃 =

[

2,033 −0.00051
−0.00051 0.00070

]

is used.
The immediate cost of the LMPC and RL at 𝑡 = 𝑡𝑘 is designed as 

follows: 
𝐿
(

𝑇
(

𝑡𝑘
)

, 𝑄̇
(

𝑡𝑘
))

= 𝑎 (𝑇
(

𝑡𝑘
)

− 𝑇𝑠)2 + 𝑏 (𝑄̇
(

𝑡𝑘
)

− 𝑄̇𝑠)2 (36)

where 𝑎 and 𝑏 are the weight coefficients for the state variable (𝑇 (

𝑡𝑘
)

) 
and control input (𝑄̇ (

𝑡𝑘
)

), respectively. In particular, 𝑎 = 1 and 𝑏 =
6×10−7. The consistent cost function is used to ensure a fair comparison 
between all controllers.

4.3. LMPC design

The system operates with a sampling time of 𝛥 = 1 s. Two LMPC 
formulations are utilized: a long-horizon LMPC with horizon length 
𝑁 = 50 and a short-horizon LMPC with horizon length 𝑁 = 5. 
The sole distinction lies in their prediction windows: the long-horizon 
LMPC optimizes trajectories over 50 s, whereas the short-horizon LMPC 
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optimizes over only 5 s. While the long-horizon design achieves better 
cost optimization, making it ideal as a reference for near-optimal con-
trol, its computational demand causes the solution time to exceed the 
sampling period, making it unsuitable for real-time implementation. In 
contrast, the short-horizon LMPC has a smaller computational demand, 
which allows it to solve within the sampling period’s time frame. 
Consequently, the short-horizon LMPC can be deployed for real-time 
closed-loop implementations at the expense of poorer cost optimality.

In this work, the optimization problem of the LMPC is solved with 
two different methods. The LMPC solution used for the HJB-based 
RL network example utilizes the sequential least squares quadratic 
programming (SLSQP) algorithm, a gradient-based method designed for 
constrained nonlinear programs. It approximates the nonlinear problem 
with a quadratic subproblem at each step and updates iteratively. 
After running test simulations to determine optimal parameters, the 
convergence tolerance and finite-difference step size are set as 1×10−10
and 1 × 10−5. The LMPC solution used for the TD3-based RL network 
example utilizes IPOPT with the SPRAL linear solver. This was done 
using the do-MPC Python package with further customizations enabled 
as follows:

• max_iter: 10,000
• tol: 1 × 10−8

• acceptable_tol: 1 × 10−6

• mu_strategy: ‘adaptive’
• warm_start_init_point: ‘yes’
• expect_infeasible_problem: ‘yes’

The do-MPC package also provides options for how the process is 
simulated forward in time (Fiedler et al., 2023). This was designed to be 
a collocation-type integrator using the radau method with 5 degrees 
of collocation over a total step size of 𝛥. 

Remark 15.  Two different implementations of the LMPC framework 
are used in this work. Although the implementations differ on a tech-
nical level, the fundamental formulation and functional difference be-
tween the two methods are negligible. The implementation of the LMPC 
framework does not need to mimic the methods shown in this work, 
as any numerically valid implementation of LMPC that satisfies the 
fundamental formulation is valid. Both methods shown use precise 
enough tolerances and numerical integration to have roughly the same 
solution for a given state, with the exception of cases where SLSQP 
or IPOPT fail to solve, which is a possibility for some regions in the 
state-space.

Remark 16.  The long-horizon LMPC is primarily used as a reference 
for what is effectively the optimal control logic. Because of this, it 
is used offline to generate data that can then be used for imitation-
learning-based pre-training. The short-horizon LMPC is used as the 
back-up controller during real-time implementation of the various con-
troller designs due to its stability guarantees and improved cost over 
the reference stabilizing controller.

4.4. FNN-based control design

To address the limitations associated with both short-horizon and 
long-horizon LMPC, an FNN-based control framework was recently 
proposed to approximate the functionality of the long-horizon LMPC
while maintaining fast computational performance (Khodaverdian et al.,
2025b, 2026). In this work, the FNN-based control implementation is 
used for relative comparison with the performance of RL-based control. 
Specifically, 10,000 initial state vectors are randomly sampled from 
the feasible domain and treated as the system states at 𝑡 = 0. From 
each initial condition, closed-loop simulations are performed using the 
long-horizon LMPC until 𝑡 = 4min, and the resulting state and control 
trajectories are recorded to form the training dataset for the neural 
network.
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Table 2
Best hyperparameters of FNN obtained from Bayesian optimization.
 Hyperparameter Value Hyperparameter Value 
 Learning rate 0.000148 Batch size 32  
 Epochs 61 Width 410  
 Depth 4 Dropout 0.051  

Fig. 2. Comparison of the trained FNN control actions to the desired long-
horizon LMPC control actions.

During the training process, the network takes the normalized states 
as input and outputs the scaled action 𝑢 through a tanh activation. 
The hidden layers use ReLU nonlinearities, and dropout regularization 
is applied to mitigate overfitting. To select the network architecture 
and training settings, a Bayesian optimization procedure (Gaussian 
process minimization) was carried out over the hyperparameter space, 
including learning rate, batch size, training epochs, hidden width, 
hidden depth, and dropout rate. The search was performed using 30 
evaluations, with validation loss as the objective function. The resulting 
optimal hyperparameters are reported in Table  2.

These values were subsequently employed to train the final actor 
network, which was then evaluated on the test set. Fig.  2 illustrates the 
ability of the FNN model to reproduce the long-horizon LMPC behavior, 
as the data points lie closely along the ideal line 𝑦 = 𝑥.

Remark 17.  Although the long-horizon LMPC is designed with a sam-
pling time of 1 s, its per-step computation time exceeds this duration. 
This is acceptable for offline data generation but problematic in real-
time implementation, where delays between measurements and control 
actions are critical.

Remark 18.  The FNN-based controller primarily functions as a base-
line for comparison between other NN-based controllers. Although it 
can also serve as a valid controller in this framework, the imitation-
learning-based training process limits the design to applications where 
there exists sufficient data from the LMPC.

4.5. HJB-based RL-controller design

The HJB-based RL-controller is designed using the CSTR model. In 
particular, the cost function is 𝐿 = 𝑎 (𝑇 − 𝑇 )2 + 𝑏 (𝑄̇ − 𝑄̇ )2, which is 
𝑠 𝑠
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Table 3
RL training hyperparameters (HJB value-critic).
 Hyperparameter Value Hyperparameter Value  
 Optimizer Adam Learning rate 0.001  
 Batch size 256 Exploration noise 0.10  
 Eval frequency 960 Start steps 960  
 Max steps 10,000 Buffer size 1,000,000 
 Net width (units) 128 Net depth (layers) 2  

the same expression as the LMPC cost function. The associated analytic 
policy derived from Eq. (20) is 

𝛷𝑅𝐿 (𝑥) = clip
(

−
𝜕𝑉𝑤 (𝑥) ∕𝜕𝑇
2𝑏𝑉𝐿𝜌𝐿𝐶𝑝

, 𝛷min, 𝛷max

)

(37)

where the 𝛷min = −4,000 kJ h−1 and 𝛷max = 4,000 kJ h−1. During the 
training process, we first sample the initial condition randomly on 
deviation states within the feasible region. From each sampled initial 
condition, we generate training data by simulating a 4-minute trajec-
tory. This trajectory data is normalized by min–max scaling to [0, 1]
and internally rescaled back to physical units before computing 𝜕𝑉𝑤∕𝜕𝑇
in Eq. (37). The value network 𝑉𝑤 is trained on physical deviation 
states. The value network 𝑉𝑤 is trained by minimizing the squared HJB 
residual (Eq. (16)) optimized with Adam.

Transition data (𝑠, 𝑎, 𝑠′, 𝑟) are stored in a replay buffer with a 
capacity of 1 × 106, where 𝑟 denotes the instant cost calculated based 
on 𝑠′ and 𝑎 (the same as the LMPC cost). HJB updates are done with 
a mini-batch of typical size 256 drawn from a replay buffer that is 
populated by on-policy rollouts with small Gaussian action noise. In 
order to allow the buffer to grow to a sufficient size before sampling, 
for the first 960 steps, we draw samples uniformly from the feasible 
region. Using random Gaussian actions and the corresponding 𝑟 and 𝑠′, 
the replay buffer is initially padded with data that does not involve 
the policy. After this initial random-action phase, on-policy rollouts 
use small Gaussian action noise with standard deviation 0.10 times 
the actuation limit (the maximum magnitude of the respective control 
action) to encourage exploration. Evaluation is performed every 960
steps on fresh episodes, and evaluation scores are logged for subsequent 
visualization.

Evaluation follows the same procedure as the real implementation. 
After computing the control action from RL, if the Lyapunov deriva-
tive under the RL policy is larger than that under the P controller 
(i.e., 𝑉̇ (

𝑥,𝛷RL (𝑥)
)

> 𝑉̇ (𝑥,𝛷 (𝑥))), we solve a short-horizon LMPC 
problem and apply 𝛷LMPC; otherwise, we apply 𝛷RL. To prevent perfor-
mance drift during training, we employ a best-so-far acceptance gate: 
at fixed evaluation intervals, candidate parameters are tested on fresh 
episodes and accepted only if the average return improves; otherwise, 
we revert to the last committed 𝑤 and reset the optimizer state. This 
procedure ensures that the trained RL policy does not degrade relative 
to its previous version under the chosen evaluation protocol. The 
detailed hyperparameters are reported in Table  3.

4.6. TD3-based RL-controller design

The TD3-based RL-controller uses the same CSTR system as the HJB-
based RL-controller; however, the LMPC aims to minimize the cost 
over the horizon, while TD3 aims to maximize the reward function. 
Additionally, the TD3 algorithm uses discrete values while the LMPC is 
defined for continuous-time systems. Since the controller is applied in 
a sample-and-hold fashion and the state is measured in fixed sampling 
time intervals, the LMPC problem can be viewed in discrete intervals 
based on the sampling time. To approximate the cost, the integral cost 
function is replaced with a sum of the quadratic cost terms. Due to 
this discrete form, the control action will be the value calculated for 
the reference time frame 𝑡 , whereas the state will be the approximate 
𝑘

9 
future state at a time 𝑡𝑘+𝛥. In other words, we can represent the reward 
function as 

𝑟
(

𝑠′, 𝑎
)

= −
(

𝑠′⊤𝑊𝑥𝑠
′ + 𝑎𝑊𝑢𝑎

)

(38)

The TD3 algorithm has the benefit of being both model-free and off-
policy, which leads it to use the action-value function instead of the 
state-value function. Additionally, the TD3 method is an Actor–Critic 
method, meaning that the policy is explicitly expressed as a neural 
network that is iteratively improved during training instead of being 
analytically solved using the value function, as is done in the HJB-based 
approach.

While TD3’s strength lies in the various differences mentioned 
above, effectively tuning its hyperparameters requires a method of 
quantifying the Actor and Critic’s quality. This can be somewhat done 
by observing the temporal difference (TD) error and the actor-value 
function itself to ensure that both converge to a stable point; however, 
the algorithm is inherently noisy, which makes it difficult to truly 
determine if these values have converged. As such, the primary mode 
of evaluation was to simulate the closed-loop system using the TD3-
based controller without fallback control over many initial points. The 
cost of the resulting trajectory over a sufficiently long horizon is then 
compared with the cost of the long-horizon LMPC starting at the same 
initial point. The logic behind this evaluation criterion is that the per-
cent error relative to the long-horizon LMPC would be a good indicator 
of model performance if done for enough samples. Additionally, this 
consolidates the convergence criteria to a single parameter.

Furthermore, to mitigate the initial variance and instability of the 
TD3 algorithm, there is a pretraining step for both the Actor and Critic 
networks. Using AdamW as the optimizer and OneCycleLR as the 
scheduler with the max_lr being set equal to the corresponding learn-
ing rate, the Actor and Critic undergo separate pre-training loops. The 
Actor is pretrained with behavior cloning (BC) via mean squared error 
loss relative to pre-generated data from the LMPC system’s trajectories. 
The trajectories are based on randomly sampled initial points within 
the operating region of the system. This dataset is used to pretrain 
the Actor over 10 epochs, each of which covers the entire dataset 
once. The same dataset is used to generate the StandardScaler
with the goal of improving the model’s ability to learn by scaling the 
Actor’s inputs to have zero mean and unit variance. The Critics are 
trained using the same loss function as the TD3 algorithm, as defined 
in steps 14 and 15 in Algorithm 1, but the LMPC data, formatted 
as (𝑠, 𝑎, 𝑟, 𝑠′, 𝑎′, 𝑑), is used. Thus, no policy noise is applied during 
pretraining, and the LMPC’s dataset is treated as the replay buffer with 
the future action being explicitly stored. In other words, the 𝑎′ is no 
longer calculated using the target policy with noise, and is instead 
stored exactly using the LMPC’s dataset. This modified form of the 
replay buffer is referred to as the formatted LMPC dataset. The Critics 
are pre-trained over 5 epochs, each of which covers the entire formatted 
LMPC dataset once. After the Actor and both Critics are pretrained, the 
target networks are finally initialized using the pretrained parameters 
of their corresponding networks.

The TD3 method’s exploration steps are useful for exploring the 
state-space, but excessive exploration is undesirable later in training. 
To account for this, every step of exploration in the environment 
decays the exploration noise by a fixed percent until a minimum is hit. 
Combined with the other modification to the TD3 method described 
above, we define the modified training loop as its own algorithm 
described in Algorithm 2. These modifications, along with the existing 
complexity of the TD3 algorithm, introduce a large amount of hyperpa-
rameters that can be seen as important. As such, the controller must go 
through two distinct training loops. First, the controller will undergo 
hyperparameter tuning using Optuna (Akiba et al., 2019). Then, the 
best performing hyperparameters will be used in an extended training 
loop to allow for further completion  of the modified TD3 tuning. The 
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Algorithm 2 Modified TD3 with BC Pretraining and Exploration Noise Decay
1: Initialize critic networks 𝑄𝜃1 , 𝑄𝜃2 , and actor network 𝜋𝜙 with random parameters 𝜃1, 𝜃2, 𝜙
2: Pretrain Actor via BC: Optimize 𝜋𝜙 on expert states 𝑠𝑗 and actions 𝑎𝑗 from LMPC dataset using MSE loss 𝐵𝐶 = MSE(𝜋𝜙(𝑠𝑗 ), 𝑎𝑗 ) for 10 epochs 
3: Pretrain Critics via BC: Optimize 𝑄𝜃1 , 𝑄𝜃2  on expert transitions 

(

𝑠𝑗 , 𝑎𝑗 , 𝑟𝑗 , 𝑠′𝑗 , 𝑎
′
𝑗 , 𝑑𝑗

)

 using TD targets 𝑦𝑗 = 𝑟𝑗 + 𝛾
(

1 − 𝑑𝑗
)

min
(

𝑄𝜃′1

(

𝑠′𝑗 , 𝑎
′
𝑗

)

, 𝑄𝜃′2

(

𝑠′𝑗 , 𝑎
′
𝑗

))

 for 5 epochs 
4: Initialize target networks 𝜃′1 ← 𝜃1, 𝜃′2 ← 𝜃2, 𝜙′ ← 𝜙 and replay buffer 
5: Initialize environment 
6: while less than max steps taken and not early stopped on instability do 
7: Decay exploration noise 𝜎𝑒𝑥𝑝𝑙 ← max

(

min_expl_noise, 𝜎𝑒𝑥𝑝𝑙 ⋅ expl_decay_rate
)

8: if not enough policy warmup steps taken then 
9: Select random action 𝑎 ∼  (𝑎𝐿𝑜𝑤𝑒𝑟, 𝑎𝑈𝑝𝑝𝑒𝑟)
10: else 
11: 𝑎 = 𝜋𝜙(𝑠) + 𝜖, 𝜖 ∼  (0, 𝜎𝑒𝑥𝑝𝑙), Clip action 𝑎𝐿𝑜𝑤𝑒𝑟 ≤ 𝑎 ≤ 𝑎𝑈𝑝𝑝𝑒𝑟
12: end if
13: Apply 𝑎 and observe reward 𝑟, new state 𝑠′, and done signals 𝑑∗ (𝑠′ converged or max steps reached), 𝑑 (𝑠′ converged) 
14: Store transition tuple (𝑠, 𝑎, 𝑟, 𝑠′, 𝑑) in  and increment the environment step counter 
15: if 𝑑∗ then 
16: Reset environment and select a new initial state 𝑠
17: end if
18: if replay buffer is sufficiently large and environment steps%steps per critic update then 
19: Sample mini-batch of 𝑁 transitions (𝑠𝑗 , 𝑎𝑗 , 𝑟𝑗 , 𝑠′𝑗 , 𝑑𝑗 )𝑁𝑗=1 ∼ 
20: 𝑎′𝑗 = 𝜋𝜙′ (𝑠′𝑗 ) + 𝜖𝑗 , 𝜖𝑗 ∼ clip( (0,policy_noise),−noise_clip,noise_clip)
21: Clip action 𝑎𝐿𝑜𝑤𝑒𝑟 ≤ 𝑎′ ≤ 𝑎𝑈𝑝𝑝𝑒𝑟
22: Compute 𝑦𝑗 = 𝑟𝑗 + 𝛾(1 − 𝑑𝑗 )min(𝑄𝜃′1

(𝑠′𝑗 , 𝑎̃
′
𝑗 ), 𝑄𝜃′2

(𝑠′𝑗 , 𝑎̃
′
𝑗 ))

23: Compute critic losses: 1 = MSE(𝑄𝜃1 (𝑠𝑗 , 𝑎𝑗 ), 𝑦𝑗 ), 2 = MSE(𝑄𝜃2 (𝑠𝑗 , 𝑎𝑗 ), 𝑦𝑗 )
24: Gradient descent step for 𝜃1 and 𝜃2 with critic learning rate for 𝑐𝑟𝑖𝑡𝑖𝑐 = 1 + 2
25: Increment total step counter 
26: if total steps%steps per policy update then 
27: Gradient descent step for 𝜙 using 𝑎𝑐𝑡𝑜𝑟 = − 1

𝑁
∑

𝑄𝜃1 (𝑠𝑗 , 𝜋𝜙(𝑠𝑗 ))
28: Soft update targets:

𝜃′𝑘 ← 𝜏𝜃𝑘 + (1 − 𝜏)𝜃′𝑘 for 𝑘 = 1, 2
29: 𝜙′ ← 𝜏𝜙 + (1 − 𝜏)𝜙′

30: end if
31: end if
32: if environment steps%steps per evaluation then 
33: Evaluate policy on multiple trajectories, compute %error vs. LMPC 
34: Compute average TD error over entire replay buffer 
35: if std of recent %errors <rel_error_threshold and std of recent TD errors<td_threshold for last 10 evaluations then 
36: Mark as converged, save checkpoint
37: else if no improvement in %error for patience evals or Optuna wishes to prune then 
38: Prune trial
39: end if
40: end if
41: end while
resulting controller is then applied to the process for 100 samples for 
analysis.

The Optuna hyperparameter tuning is set up as a robust sweep of 
possible options for the modified TD3 system. The tuned parameters, 
their ranges, and the scaling type are as shown in Table  4. This Optuna 
study was set to run indefinitely until user termination, with the goal 
of minimizing the percent error of the average trajectory cost of the 
RL-controller vs a long-horizon LMPC-controller baseline. Using the 
training algorithm shown in Algorithm 2, and the constant hyperpa-
rameters displayed in Table  6, the best trial out of 110 samples was 
found to have the hyperparameters displayed in Table  5. This model 
was then run through the full training cycle, which increased the max 
steps to 10 million, patience to 100, maximum steps per episode to 500, 
and evaluation frequency to 25.000 (𝚜𝚝𝚊𝚛𝚝_𝚜𝚝𝚎𝚙𝚜 and 𝚞𝚙𝚍𝚊𝚝𝚎_𝚊𝚏𝚝𝚎𝚛 are 
set equal to this new value). Unlike the HJB-based RL-controller, this 
model did not go through a robust testing process. Instead, the TD3-
based RL-controller was applied in a closed-loop fashion to the system, 
starting at 100 random initial points within a bounded state range.
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Table 4
Optuna tuned parameter ranges and scaling for the TD3-based RL-controller.
 Hyperparameter Lower bound Upper bound Scale/Type 
 Actor Learning Rate 1 × 10−7 1 × 10−2 Log  
 Critic Learning Rate 1 × 10−7 1 × 10−2 Log  
 Actor Pretraining Learning Rate 1 × 10−7 1 × 10−2 Log  
 Soft Update Coefficient 0.0001 0.01 Log  
 Policy Noise 0.001 2 Float  
 Exploration Noise 0.001 0.2 Float  
 Hidden Layer Size 64 1,024 2𝑛  
 Number of Hidden Layers 1 6 Int  
 Steps per Policy Update 1 4 Int  
 Use LayerNorm False True Bool  

4.7. Closed-loop simulation results

4.7.1. HJB-based controller results
The closed-loop setpoint tracking behavior from the initial state 

𝑇 − 𝑇 = 10K and 𝐶 − 𝐶 = 0.6 kmolm−3 is illustrated in Fig.  3. 
𝑠 𝐴 𝐴𝑠
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Fig. 3. Closed-loop trajectories of concentration deviation, temperature deviation, heat input, and Lyapunov function with the initial states at [10K, 0.6 kmolm−3]. 
Results are shown for five controllers: long-horizon LMPC (LH-LMPC), short-horizon LMPC (SH-LMPC), P controller (P), FNN-based approximate LMPC (FNN) 
and Hamilton–Jacobi–Bellman reinforcement learning (HJB-RL).
Compared with the long-horizon LMPC, the short-horizon LMPC applies 
smaller initial control actions due to its emphasis on immediate cost, 
similar to the P controller, whereas the long-horizon LMPC accounts 
for relatively long-term costs, and therefore issues larger initial actions. 
The FNN closely approximates the long-horizon LMPC and thus ex-
hibits nearly identical behavior. In contrast, the RL controller, which 
optimizes an infinite-horizon cost, takes actions different from those 
of the LMPC, particularly in the initial region when the states are far 
from the setpoint. For all controllers, the Lyapunov function decreases 
monotonically over time, validating closed-loop stability.

To evaluate the controllers, a total of 500 initial states were gener-
ated using a stratified sampling strategy. The state-space was divided 
into 50 rectangular regions defined by evenly spaced intervals of the 
domain (𝐶𝐴 − 𝐶𝐴𝑠 ∈ [−0.6, 0.6] and 𝑇 − 𝑇𝑠 ∈ [−10, 10]). From 
each region, 10 initial states were uniformly sampled, resulting in 500 
distinct starting points. Each sampled state was then controlled by ev-
ery controller under identical simulation conditions, with a maximum 
simulation horizon of 4 min. The simulation was terminated early if 
the system entered a small neighborhood of the steady state (i.e., |𝐶𝐴−
𝐶 | < 0.006 and |𝑇 − 𝑇 | < 0.1), ensuring that the performance 
𝐴𝑠 𝑠
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Table 5
Best performing hyperparameters for the TD3-based RL-controller 
after Optuna tuning for 110 trials.
 Variable (Hyperparameter) Value  
 lr 1.775275759804681 × 10−7  
 critic_lr 0.0005089627893036739  
 hidden_dim 128  
 num_hidden_layers 5  
 expl_noise_std 0.13951586331641103  
 tau 0.007988601140325966  
 policy_freq 2  
 bc_lr 4.8579319207288955 × 10−5 
 use_layernorm False  
 policy_noise 0.10712953866806144  

metrics reflected the actual stabilization time. As summarized in Table 
7 and Fig.  4, we take long-horizon LMPC as the 0.0% baseline—
delivering strong setpoint tracking but at huge computational cost 
(mean 2,181ms, max 11,520ms). Relative to this baseline, the proposed 
RL controller attains a slightly lower cost (−0.1%) while reducing 
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Table 6
Constant hyperparameters for the TD3-based RL-controller during Optuna tuning.
 Variable Value Description  
 buffer_size 2,000,000 Size of the replay buffer  
 batch_size 512 Mini-batch size for replay buffer sampling  
 gamma 0.99 Discount for future rewards  
 max_episode_steps 400 Max steps per episode  
 total_steps 100,000 Max environment interactions  
 start_steps 10,000 Initial random actions before policy use  
 update_after 512 Steps before starting updates  
 update_every 1 Update frequency after warm-up  
 weight_decay 10−5 L2 regularization for optimizers  
 bc_pretrain_epochs 10 Epochs for actor BC pretraining  
 bc_weight_decay 10−5 Weight decay for BC optimizer  
 expl_decay_rate 0.99975 Per-environment step decay for exploration noise 
 min_expl_noise 10−3 Floor for exploration noise std  
 eval_freq 5000 Steps between evaluations  
 eval_episodes 10 Trajectories simulated per evaluation  
 converge_eps 0.01 State norm threshold for convergence  
 rel_error_threshold 5.0 Std threshold for actor stability (%error)  
 td_threshold 0.01 Std threshold for critic TD error stability  
 patience 10 Epochs of no improvement before early stop  
 stability_window 10 Recent evals for stability checks  
 num_trials 50 Optuna trials for tuning  
 critic_pretrain_epochs 5 Epochs for critic warm-up pretraining  
 noise_clip 2.5× policy_noise Derived clip for target policy noise  
Table 7
Relative costs of the proposed HJB-RL-based controller versus other con-
trollers. Relative costs are normalized to LH-LMPC (0.0%), with negative values 
indicating improvement.
 P Controller SH-LMPC LH-LMPC FNN HJB-RL 
 Cost (%) 4.8 4.8 0.0 0.0 −0.1  

average computational time to 0.644ms and worst-case time cost to 
67.5ms, comfortably within the 1 s sampling budget. A plain FNN 
policy matches the baseline cost (0.0%) with modest computational 
burden (mean 2.32ms, max 12.5ms), but HJB-RL delivers the best 
setpoint performance with sub-millisecond average time. By contrast, 
short-horizon LMPC and P control both exhibit markedly higher costs 
(4.8%); short-horizon LMPC also shows nontrivial computation (mean 
15.247ms, max 112.516ms), whereas P control is computationally light 
but performance-limited. Overall, the proposed RL method provides 
the most balanced controller—combining the best closed-loop cost 
among all methods with practical real-time implementation under the 
one-second sampling period. That said, it is important to clarify that 
during HJB-RL or FNN implementation, the closed-loop stability en-
forcer checks at each sampling time, the Lyapunov function-based 
closed-loop stability constraint, and if this constraint is violated by 
the control action calculated by the HJB-RL or FNN, then the back-up 
stabilizing controller calculated control action is implemented. There-
fore, no rigorous statement can be made that the improved closed-loop 
performance observed under HJB-RL is the result of implementing the 
HJB-RL most of the sampling times during this closed-loop simulation 
run. The expectation is that the HJB-RL would provide improved 
closed-loop performance over a back-up stabilizing controller but no 
a priori guarantee can be made about such an outcome.

A further comparison of controller performance is shown in Fig.  5, 
where the relative closed-loop cost and the relative number of steps to 
reach the setpoint for HJB-RL and NN controllers are evaluated across 
50 stratified regions of initial states, each referenced to the LH-LMPC 
baseline (0%). Negative values in both metrics indicate performance 
improvement over the baseline, with lower cost corresponding to better 
control efficiency and fewer control moves indicating reduced actuation 
effort. As shown in Fig.  5, the HJB-RL controller achieves lower closed-
loop costs than the LH-LMPC baseline across all regions of the initial 
state-space, with the average relative cost remaining negative for each 
of the 50 stratified regions. This indicates that the HJB-RL policy not 
12 
only stabilizes the system effectively but also does so with improved 
control efficiency. Moreover, the HJB-RL controller generally requires 
fewer control moves than the baseline, reflecting reduced actuation 
effort. In contrast, the NN controller exhibits higher relative costs and a 
larger number of control moves across most regions, suggesting that it 
is less efficient in both control performance and actuation usage. These 
results demonstrate that the HJB-RL framework can achieve better 
overall closed-loop performance while maintaining fast control action 
decisions.

Remark 19.  Proportional, FNN, and RL controllers have a nonzero 
per-step computation time because each must execute specific compu-
tations to produce the control input. A proportional controller still has 
to read the measurement, compute the error, and apply the gain, so 
its execution time is not strictly zero even though it is very small. A 
neural network controller must perform a forward pass, which consists 
of matrix–vector multiplications and activation function evaluations, 
and this introduces additional computation time that scales with the 
network’s size. Similarly, an RL controller also performs a forward pass 
to generate the control action and may include extra steps such as critic 
evaluation or safety projection, which further contribute to the overall 
computation time.

Remark 20.  The computation times shown in Fig.  4 are not GPU-
accelerated or parallelized. This is mostly negligible for the LMPC and 
P-based controllers due to the small system scale, but the lack of tensor-
accelerated optimizations is a significant handicap to the FNN and 
RL-based methods. Thus, the computation times shown are conserva-
tive estimates, and real-world use cases may see significantly better 
improvements with the proper hardware and software optimizations.

4.7.2. TD3-based controller results
To demonstrate the TD3-based controller’s quality, we apply this 

controller to the closed-loop system using 100 randomly generated ini-
tial points within the same intervals used in the HJB-based controller’s 
trials. The TD3-based controller is applied for 500 steps, where each 
step corresponds to a time interval equal to 𝛥. In other words, the 
TD3-based controller is used to control the system starting from the 
initial state until the trajectory spans 500 s worth of control. For each 
of these trajectories, the cumulative cost is calculated. For each of the 
initial states, the long-horizon LMPC is simulated to give a reference 
cost. Using the long-horizon LMPC’s cumulative cost, we calculate 
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Fig. 4. Per-step computation time of each controller. Blue/orange bars show average and maximum time, respectively, for the P controller, short-horizon LMPC, 
long-horizon LMPC, FNN, and HJB-RL. The dashed horizontal line denotes the sampling time (1 s = 1000ms); real-time feasibility requires controller times below 
this line.
(a) Relative closed-loop cost across 50 stratified rings of initial states for HJB-RL and NN, 
referenced to the LH-LMPC baseline (0%). Negative values indicate improvement over the 
baseline.

(b) Relative number of control moves across the same 50 rings for HJB-RL and NN, referenced 
to the LH-LMPC baseline (0%). Lower values indicate fewer moves than the baseline.

Fig. 5. Controller performance relative to LH-LMPC across stratified initial conditions: (a) cost and (b) control-step counts for HJB-RL and NN.
the relative percent error of the TD3-based controller with respect to 
this cost. This percent error is averaged over the 100 samples in this 
evaluation run, which yielded an average percent error of −0.91% ±
9.87%. At first glance, this result appears good, but the standard de-
viation is quite large. Upon analysis of the individual percent error 
values, it was found that this high standard deviation is due to poor 
13 
performance of the model for initial states that are already near the 
origin. The source of this issue is that the TD3-based controller’s control 
action converges to an offset when near the origin, as can be seen 
in Fig.  6. Additionally, the controller seemingly struggles to behave 
in a smooth fashion for more complex control trajectories as seen 
in Fig.  7, which contributes to this variability. Beyond these outliers, 
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Fig. 6. Closed-loop trajectory for sample #5 of the 100 trajectories used in the calculation of the average MSE for the TD3-based RL-controller. This sample 
demonstrates the near-origin offset of the TD3-based RL-controller in the absence of fallback control. Steps refer to time intervals of size 𝛥. 𝐶𝐴, 𝑇 , and 𝑄̇ are in 
deviation variable form with respect to the steady-states defined in Table  1 and have units of kmolm−3, K, and kJ h−1 respectively.
the results are seemingly significantly better than the HJB-based RL-
controller, but this is misleading. Recall that this closed-loop evaluation 
run used a TD3-based RL-controller that used the best performing 
hyperparameters from the Optuna trial shown in Table  5. Further, 
the training cycle was modified to allow for extended training with 
the goal of further fine-tuning the model. In reality, the Optuna trial 
had an average percent error of −4.5%, meaning the full-training loop 
seemingly decreased the model’s quality. Thus, the hyperparameters for 
the full training run were reverted to the Optuna trial hyperparameters, 
and the same parameters from Table  5 were used for a training run that 
aimed to replicate what the Optuna trial found. Instead, this yielded a 
100 closed-loop average percent error of 2.07%±8.12% with a variance 
of 66.01%. Not only did the value change, but it went from significantly 
better than the long-horizon controller to worse while still retaining the 
flawed fitting demonstrated in Figs.  6 and 7. Since closed-loop error 
predominantly comes from trials near the origin, the IQR method is 
applied to filter out outliers, which yielded an 84 closed-loop average 
percent error of 0.41% ± 0.4% with a variance of 0.17%. Even ignoring 
the outliers, the resulting RL-controller not only struggles to maintain 
consistent performance relative to the long-horizon LMPC, but also fails 
to perform better for most trials.

Remark 21. Figs.  6 and 7 include plots of the long-horizon LMPC 
and the fallback Proportional controller as a point of reference. These 
figures demonstrate desirable properties (smooth transitions between 
control actions and no offset near the origin) that are satisfied by the 
controllers that we aim to mimic with the RL-based control design. The 
HJB-based controller, FNN-based controller, and short-horizon LMPC 
are not included as they are unnecessary to demonstrate this point and 
would only clutter the figures with excess information.

Remark 22. Figs.  6 and 7 do not demonstrate real-time implemen-
tation of the TD3-based controller to the process due to the lack 
of the constraint enforcer. Behavior such as the offset demonstrate 
how, in the absence of the constraint enforcer, closed-loop stability is 
not guaranteed. Real-time implementation of the TD3-based controller 
would require the constraint enforcer to correct this behavior.

4.7.3. TD3-based controller hyperparameter tuning analysis
The training of this RL-controller requires that both the Actor and 

Critic converge before being considered complete; however, the prac-
tical implementation of the resulting controller depends on the quality 
of the Actor. The Critic only serves as a means to assist in the training 
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of the Actor, but in practice, the method struggles to train an Actor 
so that it can handle higher levels of complexity in the closed-loop 
trajectories as shown in Fig.  7. One can see that, despite the state 
trajectories only deviating slightly, the control action trajectory lacks 
the smoothness found in either the reference Proportional controller 
or the long-horizon LMPC. The result of this is a cumulative cost over 
the trajectory that exceeds the long-horizon LMPC. A consequence of 
this variance is that not all sampled initial states will explore regions 
in the state-space that require intricate control action patterns, nor 
will they all be near the origin. Thus, even with 100 samples, the 
evaluation portion of the training loop would fail to properly quantify 
the model’s performance, leading to training results that are overly 
optimistic. TD3’s reliance on several forms of inherent randomness 
further distorts the consistency of the results, although this is not as 
a significant contributing factor compared to the high step count and 
the use of soft updating steps which dampen the influence of rapid 
changes. This result is the primary reason why the following analysis 
will now focus on if the Optuna study can provide insights into how to 
overcome this variability, instead of a robust closed-loop performance 
assessment as was done for the HJB-based controller; the TD3-based 
method is too noisy for consistent results and too difficult to assess the 
quality of during training.

Optuna provides tools to analyze the parameter importance and 
the overall sensitivity of the method to hyperparameter optimality. To 
start, recall that the objective function of this study is the average 
percent error of the RL-controllers’ trajectory cost relative to the long-
horizon LMPC baseline over all evaluated trials. Although this term 
would give a good estimate for performance for a given initial point, 
it varies significantly depending on the complexity of the dynamics 
encountered along the closed-loop trajectory for any given starting 
point. Additionally, the non-zero risk of the LMPC system failing to 
solve, any potential inaccuracies in our reference controller design, and 
any regional inaccuracies of the RL-controller can result in a percent 
error value that can also vary significantly between evaluations. To 
attempt to mitigate this issue for any given trial, the mean percent 
error is averaged across the 3 most recent evaluation runs. A key 
exception to this is that trials that fully complete the training run 
without being pruned will report the percent error value from the 
final set of closed-loop runs only instead of using a moving average 
approach. This was done with the intent of isolating good-quality runs, 
but had the unintended consequence of reintroducing the variability 
issue as well as including trials whose convergence was slow but 
progressive enough to not trigger any early stopping or pruning. As 
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Fig. 7. Closed-loop trajectory for sample #22 of the 100 trajectories used in the calculation of the average MSE for the TD3-based RL-controller. This sample 
demonstrates the coarseness of the TD3-based RL-controller in the absence of fallback control for regions of the state-space where the dynamics are more 
complicated. Steps refer to time intervals of size 𝛥. 𝐶𝐴, 𝑇 , and 𝑄̇ are in deviation variable form with respect to the steady-states defined in Table  1 and have 
units of kmolm−3, K, and kJ h−1 respectively.
Fig. 8. Evolution of the best objective values under Optuna trials.
 

a result, the Optuna trial demonstrated a steady rate of improvement 
over time for the best final objective value, as shown in Fig.  8. It is 
important to point out that while TD3 aimed to reduce the issue of 
exploitation, this steady improvement indicates that the Optuna study 
may have exploited the variability of the evaluation loop itself. To 
determine if the study truly failed due to exploitation of the evalua-
tion noise, we must observe the hyperparameter interconnectivity and 
compare the results to what is known in RL theory. Most importantly, 
the behaviors should demonstrate that the bias/variance balance and 
exploration/exploitation balance are being considered.

Optuna provides several tools for further analysis of the results as 
a means to aid in any extra fine-tuning that may be done. A key tool 
is the ‘‘importance’’ of the tuned hyperparameters. Like the LMPC, the 
hyperparameter tuning process suffers from the curse of dimensionality, 
and so it is a good practice to narrow the number of parameters to 
tune and the range of these parameters. Unfortunately, this is difficult 
for the TD3 method, as there are a large number of hyperparameters 
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that need to be considered. With a robust enough study, one can use 
the importance metrics to determine for future cases which parameters 
are worth optimizing. Table  4 demonstrates how the Optuna study 
that was carried out for the TD3-based system is sufficiently broad to 
encompass the key hyperparameters for the TD3 method. By modifying 
the study, it becomes possible to extract Optuna’s native importance 
analysis methodology and apply it to the top quartile of trials in the 
study independently. Fig.  9 demonstrates the resulting importance 
values of the hyperparameters for the global scope of the study and 
for the top quartile of the study. This is beneficial as it allows for an 
understanding of parameters that should be tuned initially for broader 
performance (overall, global scope) as well as parameters that should 
be further fine-tuned to truly maximize the performance of the method 
(top quartile scope).

The results of this chart demonstrate the importance, or lack thereof,
of the modifications that TD3 introduces over the standard DDPG 
algorithm at the global scale. Of the three modifications, there is an 
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Fig. 9. Organized chart of the hyperparameter importance values. Optuna uses a random forest regression model to estimate the objective based on hyperparameter 
values. A fANOVA algorithm is then used to derive an ‘importance’ metric. This metric roughly describes how the hyperparameter influences the variance of the 
objective, thereby making it ‘important’ to tune.
Fig. 10. Parallel coordinate plot of the hyperparameters across all trials. Darker blue lines signify that the objective value for the corresponding hyperparameters 
was of higher quality.
implied significance from the dual-Q design via the importance of the 
Critic learning rate, and there is notable significance from the policy 
noise term. Most surprisingly, the policy update delay is found to 
have negligible influence. Thus, on a global scale, the TD3 modifica-
tions do not necessarily dictate the model’s performance. Instead, this 
16 
demonstrates that the baseline performance is heavily influenced by the 
degree to which exploration is allowed, and the corresponding degree 
to which the results are exploited by the Critic.

On the top quartile scale, these results change. Instead of a focus 
on the exploration vs exploitation dilemma as is common for RL tasks, 
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Fig. 11. Histogram (Left) and box plot (Right) of hyperparameters from the top-quartile of trials sorted by their global importance from Fig.  9.
the factors that influence the fine-tuned performance of the model 
emphasize regularization, model complexity, and the learning rates. 
This too is an understandable trend, as the balance between these 
three behaviors is what enables finer fitting to more complex behaviors; 
however, the importance of these terms tells an incomplete story. To 
better understand the meaning of these results, the distribution of these 
hyperparameters needs to be further analyzed. Figs.  10–12 aim to 
visualize this information.

Fig.  10 demonstrates that a moderate to high Critic learning rate, 
higher exploration noise, and large soft update coefficients lead to 
better objective values. Fig.  11 validates these findings. Due to the 
use of the OneCycleLR scheduler, all learning rates represent the max-
imum learning rate, where the true learning rate begins at 1∕25 of 
this value before rapidly reaching the max and gradually decaying to 
1 × 10−4 times the max. Thus, it is understandable that moderate to 
high learning rates are preferred over lower values, as this enables the 
use of a broader range of learning rates. The model will aggressively 
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search in the beginning, followed by incrementally slowing the learning 
process near the end of the trial to allow for refinement. Similarly, the 
exploration noise term is designed to decay as the process proceeds. The 
rationalization of the soft-update coefficient behavior is less clear. It is 
possible that less dampening via the target models better complements 
the slow exploration and learning of later steps, or perhaps the need 
for such aggressive dampening is a hindrance to the model’s learning 
process after proper pretraining. The figure further demonstrates that 
moderate to high policy noise and Critic learning rates improve the 
objective values. While the Critic’s learning rate behavior matches the 
explanation regarding the scheduler above, the policy noise does not 
decay like the exploration noise. Such high policy noise might explain 
the trend with the soft update coefficient; in order to compensate for 
the loss of dampening via soft weight updates, the policy noise, the 
other mode of countering exploitation in the TD3 algorithm, becomes 
higher. Finally, the Actor pre-training learning rates lack an obvious 
trend. This term is important for ensuring good pretraining, but this 
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Fig. 12. Histogram (Left) and box plot (Right) of the remaining hyperparameters from the top-quartile of trials, sorted by their global importance from Fig.  9.
can be achieved with a separate Optuna study, so further analysis of 
this term is not of meaningful value.

Fig.  12 contains all the parameters that are of low importance 
globally. The key takeaway from this plot is that LayerNorm worsens 
the training, and that the single-step delay and lower Actor learning 
rates are helpful. Of these, the Actor learning rate is the most important 
for the top quartile of runs, and the trend of favoring low values 
leads to a smoother training process for the Critic, as higher learning 
rates would compound with the policy noise. Fig.  13 gives insights 
into how these terms appear to influence one another as well as how 
they influence the objective value. Of the various takeaways from 
this figure, the high correlation between the hidden layer size and 
the bulk of the hyperparameters is an interesting result. In the top 
quartile of runs, higher complexity in the networks was correlated with 
both higher exploitation via high learning rates and less dampening, 
as done in TD3/DDPG, and higher regularization via LayerNorm. It is 
also correlated to worse results, which aligns with the prior plots that 
show model complexity is important up to a certain point, at which 
point further complexity hinders the algorithm’s performance. These 
results further demonstrate that higher policy noise, which hinders 
exploitation, is matched with less Actor learning, but more exploration 
and more Critic learning. The higher risk of exploitation from the low 
policy noise is compensated by simultaneously increasing exploration 
and lowering regularization for the critic. In a sense, this demonstrates 
that for the provided set-up, the benefits of the TD3 algorithm are 
minimal at the global scale but critical for getting the best objective. 
Only the twin-Q aspect remains inconclusive, as this was not tested.

While the results may roughly agree with RL theory, it is important 
to note that extracting trends from the limited samples of this study 
is inconclusive with respect to the true trends; however, the current 
evidence does not support the assertion that the Optuna study suffered 
from exploitation of the noisy evaluations. Thus, the poor behavior 
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Fig. 13. Heatmap of hyperparameters and objective value from the top 
quartile of trials. Large magnitude values indicate high correlations between 
the terms on the respective row and column.

stems from either an insufficient number of trials in the Optuna study 
or from problems stemming from the TD3 training loop itself. Note 
that the training loop uses early stopping via closed-loop evaluation, 
thereby preventing full convergence of the temporal difference loss 
term as well as the actor’s loss, which prevents true convergence of 
the system. The lack of full convergence is of particular concern with 
regard to the actors in these trials, which tended to have low learning 



A. Khodaverdian et al. Digital Chemical Engineering 17 (2025) 100277 
rates on top of the existing scheduler decay and soft update dampening. 
Thus, despite the tuning process roughly following the trends of RL 
theory, the scope of hyperparameters that have high significance and 
need to be finely tuned, paired with the lengthy convergence process 
of the TD3 algorithm, leads this to be an ill-suited approach for those 
looking for an easy conversion to RL-based process control. There is, 
however, promise in using this methodology to derive an RL-based 
controller that exceeds the performance of long horizon LMPC, as 
some trials yielded a better average than the HJB-based controller, 
which trends towards the LMPC’s behavior. Thus, even if the near-
origin inaccuracies of the TD3-based controller are not solved with 
finer tuning, the controller can potentially serve as the controller for 
values far from the origin, with the HJB-based controller handling the 
values near the origin. As a model-free off-policy method, TD3 has the 
potential to find performance gains, but reaching this point consistently 
may be a challenge.

5. Conclusion

In this work, we proposed a stabilizing reinforcement learning (RL)-
based control framework. Specifically, we enforce stability online via a 
per-step Lyapunov decrease test that compares between control actions 
from the RL-based controller (𝛷RL (𝑥)) and a reference stabilizing con-
troller. When 𝛷RL (𝑥) is less contractive (with respect to the decay rate 
of a Lyapunov function for the closed-loop system) than the reference 
controller for a given state, a short-horizon model predictive controller 
with a contractive Lyapunov constraint (LMPC) is applied. This frame-
work is applied to two forms of RL, one using a modified TD3 algorithm 
and the other using an HJB-based method. When the HJB-based RL-
controller is applied to a simulated continuous stirred tank reactor case 
study, the proposed RL-based controller demonstrates stable setpoint 
tracking with superior performance. In comparison with long-horizon 
LMPC, short-horizon LMPC, a reference stabilizing Proportional con-
troller, and an FNN-based approximate LMPC, the RL-based controller 
achieved better setpoint-tracking performance than the long-horizon 
LMPC while maintaining fast computation comparable to FNN-based 
approximate LMPC, thereby enabling real-time control with poten-
tially improved control quality and reduced computational burden. In 
contrast, the TD3-based RL-controller demonstrated that the method 
could yield notably better results than the long horizon LMPC with the 
exception of poor fitting to points near the origin; however, the tuning 
of such a controller is not only more important for the final closed-loop 
performance, but it is also more difficult to tune effectively due to the 
high sensitivity and interdependencies of the method’s extensive list of 
hyperparameters.
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