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This work explores the implementation of reinforcement learning (RL)-based approaches to replace model
predictive control (MPC) in cases where practical implementations of MPC are infeasible due to excessive
computation times. Specifically, with the use of externally enforced stability guarantees, an RL-based controller
that is trained to optimize the same cost function as the MPC with a long horizon that achieves the desirable
closed-loop performance can serve as a potentially more appealing real-time option as opposed to using the
same MPC with a shorter horizon. A benchmark nonlinear chemical process model is used to demonstrate

the feasibility of this RL-based framework that simultaneously guarantees stability and enables improvements
in computational efficiency and potential control quality of the closed-loop system. To explore the influence
of the RL training method, two RL algorithms are explored, with one imitation learning method used as a

reference.

1. Introduction

Model Predictive Control (MPC) is a broadly applicable framework
that enables finely customizable control policies through the use of
constrained numerical optimization. Due to its core operating principle
involving the construction of trajectories using an internal process
dynamics model, MPC can account for the interactions between process
variables over a horizon, resulting in high-quality control (Qin and
Badgwell, 2003). A necessary consequence of this is poor scalability,
as explicitly calculating these interactions across the various scenar-
ios considered during the optimization process is a computationally
intensive process. Nonlinear constrained MPC problems are NP-hard,
whereas linear convex cases have a polynomial-time complexity of
roughly O (n*) (Pardalos and Vavasis, 1991; Peng et al., 2024). Even for
more efficient methods, such as Sequential Least Squares Programming
(SLSQP), the subproblems alone require O (n?) or O (n?) time (Gill
et al., 1979; Kraft, 1988). Thus, MPC is burdened with poor scalability
due to its polynomial-time complexity scaling laws.

To tackle this issue, research has been focused on a mix of solutions
that can be roughly categorized as either reduction of the problem’s
scale or as optimization of the underlying computational framework.
Reducing the problem scale with minimal performance losses is a
viable and generally useful method to apply if possible; however, this
approach fails to tackle the underlying scalability problem and is best
suited for cases where a system is only barely infeasible, such that

the application will reduce the computation time enough to allow
for real-time application (Tomasetto et al., 2025; Alora et al., 2023;
Zarrouki et al., 2023). Optimization of the framework is an approach
that directly improves these scaling laws. Thus far, some improvements
have been found, but there remain issues in ease of applicability, gen-
eralizability, and quantifying the impact on these scaling laws (Meng
et al., 2024; Yaren and Kizir, 2025; Adabag et al., 2024). The latter
point is particularly important, as the system may perform better by
some roughly constant multiple but can still trend towards a particular
order-of-magnitude scaling law as the model increases in size, which
would mean that the underlying scaling issue is not resolved.

Within this research exists a subcategory of approximate methods
that use neural networks (NN) to approximate MPC behavior or its
model to achieve their goals. Research has demonstrated the validity
of using NNs as a replacement for the system dynamics used inside of
MPC, as the NN is capable of solving the dynamics with significantly
less time and resources while also utilizing its data-driven properties
to match — and in some highly complex cases, surpass - first-principles
models in predictive accuracy (Wu et al., 2019; Gordon et al., 2024;
Patel et al., 2025; Alsmeier et al., 2024; Ren et al., 2022; Macmurray
and Himmelblau, 1995). Unfortunately, as a consequence of being used
inside MPC, the overall polynomial-time complexity issue still exists
due to aforementioned polynomial-time subproblems and the iterative
methodology.

* Corresponding author at: Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA 90095, USA.

E-mail address: pdc@seas.ucla.edu (P.D. Christofides).

https://doi.org/10.1016/j.dche.2025.100277

Received 23 October 2025; Received in revised form 26 November 2025; Accepted 26 November 2025

Available online 3 December 2025

2772-5081/© 2025 The Authors. Published by Elsevier Ltd on behalf of Institution of Chemical Engineers (IChemE). This is an open access article under the CC BY

license (http://creativecommons.org/licenses/by/4.0/).


https://www.elsevier.com/locate/dche
https://www.elsevier.com/locate/dche
mailto:pdc@seas.ucla.edu
https://doi.org/10.1016/j.dche.2025.100277
https://doi.org/10.1016/j.dche.2025.100277
http://creativecommons.org/licenses/by/4.0/

A. Khodaverdian et al.

Thus, research has focused on using NNs as a direct replacement
for MPC, bypassing the iterative process entirely. The research thus far
has been favorable, demonstrating that this idea is feasible for various
processes, but details on scalability and strict constraint satisfaction are
lacking (Lucia and Karg, 2018; Bonzanini et al., 2020; Ahn et al., 2022;
Gonzalez et al., 2024). In our prior works, both issues have been ex-
plored, demonstrating a framework with strict stability guarantees that
worked even for a large-scale, highly nonlinear process (Khodaverdian
et al.,, 2025b, 2026). These works highlighted a core issue with NN-
based control—data: as systems scale, the data required to adequately
represent the operating region also scales.

Motivated by this problem, this work explores the use of Reinforce-
ment Learning (RL) as a lightweight training alternative that does not
require the use of MPC in the data generation process. As opposed
to behavioral cloning methods, such as using gradient descent on the
mean squared error loss between the NN’s control action and the MPC’s
control action (as was done previously), RL methods can either utilize
the first-principles model directly or interact with a physical system
to explore the state-space and learn. The resulting trained controller
is applied to a benchmark chemical process in order to demonstrate
the feasibility of the controller within this stability-guaranteeing frame-
work. Additionally, metrics during and after the training process are
explored to observe the practical benefits of using RL as opposed to
supervised learning. This analysis is explored with two different RL
algorithms in order to assess the impact of the RL algorithm itself on
the framework’s capabilities and practicality.

2. Preliminaries
2.1. Notation

The transpose of a vector x, set of real numbers, set difference,
functions, and piecewise-constant functions with period 4 are denoted
by xT, R, 2,\2,, f(-), and S (4) respectively, where both f and .S are
arbitrary denotations. The initial instance of time (i.e., where ¢ = 0) is
denoted #,, whereas arbitrary reference instances of time are denoted

Iy
2.2. Class of systems

This paper considers systems described by nonlinear first-order
ordinary differential equations (ODEs) of the form:

i=Fxuw=f@+g@u=fx+Y &M@y @

i=1

For these systems, the state vector x = [x|,x,, ... ,x,,]T € R” is the
vector representation of all relevant state variables for the process.
These states are assumed to be measured at fixed sampling intervals of
length 4, as is standard for state feedback control. Similarly, the control
input vector u = [“1’“2» ,u,,,]T € R™ is the vector representation of
all relevant variables that are applied as control actions. Unlike the
system states, the control actions are bounded as a means to account
for physical limits that real actuators would face. The lower (; ,,;,,) and
upper (u; ,,x) bounds on the control actions form the boundary of the
set of valid control actions, defined as:

T
u= [ul,uz,...,um]
_ m m
U:i=queR Uj min < u; < U; max CcR (2)
Vi=1,2,....,m

Additionally, we utilize the deviation variable form of the system as a
means to render the origin of the open-loop system (i.e., a system of the
form shown in Eq. (1) where u; =0V i =1,2,...,m) as a steady state,
thus ensuring f (0) = 0 without loss of generality. In other words, we
treat F (0,0) = 0. We further assume that systems satisfying Eq. (1) have
sufficiently smooth vector functions for f(-)and g;(-) Vi=1,2,...,m.
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2.3. Stabilizability assumption

The core assumptions that ensure stabilizability are collectively
referred to as the stabilizability assumption. The stabilizability assump-
tion consists of two main assumptions. The first is that we assume the
existence of a sufficiently smooth explicit feedback control law that ren-
ders the origin of the system described by Eq. (1) exponentially stable.
This controller is referred to as the reference stabilizing controller, or
reference controller, as a shorthand.

@ R'5U 3
u(x) =@ (x) (C))

The second is the assumption that there exists a sufficiently smooth
Lyapunov function V (x) which, when applied to the closed-loop system
utilizing the reference controller for all x bounded by an open neigh-
borhood near the origin, denoted D, satisfies the following inequalities:

alxP V) <elx? (52)

WD) p () < —es 5P (5b)
ox

|% <l 50

¢ >0Vie (1,234} (5d)

The remaining parts of the stabilizability assumption are derived from
the sufficiently smooth assumption for the system dynamics men-
tioned earlier. This implies Lipschitz continuity for V (x), @ (x), and
F (x,® (x)). Additionally, because @ (x) is bounded and x is implied to
be bounded through the restriction of x € D, we can say that F (x, @ (x))
is bounded. Finally, note that the product of two continuously dif-
ferentiable functions yields a function that is at least continuously
differentiable. Thus, the stabilizability assumption implies the existence
of positive constants M, L,, L' that ensure, forall x,x’ € Dandu € U,
that the following inequalities are satisfied:

|F(x',u)—F(x,u)‘SLx |x = x'| (6a)
[F(x,u)| < Mg (6b)
IV (x) oV (+)

— Fow - ——F (" u)| < L |x=x'| (60)

2.4. Lyapunov-based model predictive control

The stabilizability assumption can be applied to MPC to yield the
Lyapunov-based MPC (LMPC) that solves for optimal control while
ensuring closed-loop stability within D (Mhaskar et al., 2006).

t+NA
J =uénsi&) /k L(x(@),u@) dt (72)
st. X(O)=F@E®@,u®) (7b)
ueU, Vi€l t+NA) (70)
x(t) = x (1) (7d)
VA(E (1) u () <V (% (1) @ (% (1)) (7¢)

In this formulation, the optimization takes place over a horizon of
length N A, with A denoting the controller’s sampling period and N the
horizon’s sampling step count. This formulation uses sample-and-hold
control, as continuous-time control is infeasible for real-world pro-
cesses. For simplicity, the sampling interval for both the controllers and
state measurements is treated as equivalent. Eq. (7a) denotes an arbi-
trary cost as a function of the control actions and estimated states over
the horizon. Eq. (7b) represents the process dynamics, which are used
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for numerical integration during optimization to predict how the states
of the closed-loop system evolve over the horizon. Eq. (7d) enforces
an initialization step where the sensor readings are used as a ground
truth initial state, and Eq. (7c) enforces the control bounds. Eq. (7e)
denotes the stability constraint; the implementation of the stabilizabil-
ity assumption. This constraint ensures that the system is at least as
stabilizing as the reference controller. An alternative form is provided:

V(% (te) . u(ty)) <—aV (2(1;)) 8)

This formulation uses the properties of the Lyapunov function from Sec-
tion 2.3 as opposed to using the reference controller. Using a positive
constant « to control the strength of this constraint, this formulation
allows for stability guarantees without needing to directly apply the
reference controller.

Remark 1. Referring to Egs. (7e) and (8), we note that they can be
thought of as constraints imposed on the MPC at the sampling time
t, to ensure that the closed-loop state converges towards the origin
and further guarantee that the stability region of the Lyapunov-based
controller (expressed in terms of a level set of ¥ embedded in D)
becomes a stability region of the LMPC. These constraints originate
from properties of Lyapunov functions that satisfy the stabilizability
assumption. Notably, Eq. (7e) is derived from the negative upper bound
of V for the process under stabilizing control as shown in Eq. (5b),
and Eq. (8) is derived from the fact that Lyapunov functions are positive
outside of the origin, where they are 0, which is a general property of
Lyapunov functions.

Remark 2. LMPC does not pose constraints on the form of the cost
function. Although this paper will use a quadratic cost function, other
formulations are supported. Economic MPC is one such modification
that can enable enhanced cost-efficiency of processes in a manner that
supports time-varying economics (Khodaverdian et al., 2025a).

Remark 3. Eq. (7e) is only applied at 7, because this formulation is
a receding horizon LMPC, where only the first control input from the
solution is applied. After applying the first solution for one sampling
interval, the LMPC problem is re-solved. This approach relaxes the con-
straints of the optimization problem, allowing for faster solutions, but
comes at the cost of marginally reduced accuracy of the cost-optimal
trajectory.

Remark 4. Consider an LMPC formulation that satisfies the design
above. We consider two cases of this LMPC: one with a long horizon
and one with a short horizon. The long-horizon case is used purely for
reference of what the truly optimal behavior would be (MPC optimal
control action calculation improves with increased horizon length), as
this case would take longer to calculate than the sampling interval,
thereby making it infeasible for real-time control. The short-horizon
case is a suboptimal solution relative to the long-horizon LMPC that
is, however, faster to solve in real-time. This short-horizon LMPC can
thus be used as a fallback controller as a means to enforce the stability
guarantees for the closed-loop system at the expense of poor cost
optimality.

2.5. Reinforcement learning

Reinforcement learning (RL) is a framework in which an agent
interacts with an environment via a policy—a mapping from states
to actions—to record states (s), actions (a), and rewards (r) to use to
learn how to adapt its policy to maximize cumulative rewards. These
values are typically stored in a replay buffer for use in training as
D = {(si,ai,ri,s;)},.]il. Here, s’ denotes the future state that results
from taking action « at state s. To guide learning, the agent often uses a
value function that estimates long-term returns. There are two common
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forms of the value function, the state-value function denoted V and the
action-value function denoted Q.

The state-value function is a function that quantifies how good the
current state is. In the context of a continuous deterministic system, it
yields the discounted cumulative reward starting at a provided state for
some given policy:

V() =r(s,m(s)+yV”" (s) ©

where 0 < y < 1. This equation is commonly referred to as the Bellman
Equation for the state-value function. The optimal state-value function,
also known as the Bellman optimality equation, is found for the case
where the action used maximizes the state-value function for all states.

V (s) = max [r(s,a)+yV (s’)] (10)

Once this optimal state-value function is known, the optimal policy is
known.

7 (s) = argmax [r(s,a) + yV (5')] an

Thus, there is a relationship between the state-value function and the
policy that allows for the iterative solution of the optimal policy. In fact,
there are two common iterative methods for doing this: value iteration
and policy iteration.

In value iteration, the value function is first fully optimized by
iteratively applying the Bellman optimality equation from Eq. (10)
to the current form of the state-value function for all states. Once
enough sweeps of the state-space are done such that the state-value
function is now optimal, the optimal policy is extracted from it greed-
ily via Eq. (11). In other words, the following equation is applied
iteratively

V,-+1(s)=m§1x [r(s,a)+yV,- (s’)] (12)

where the subscript i denotes the iteration number for the value func-
tion. This method in particular is model-dependent due to the max
operation, which requires an explicit way to determine the reward
function and the solving of s’.

Similarly, policy iteration utilizes the Bellman equation from Eq. (9)
for the current policy guess instead of the optimal equation from
Eq. (10). This enables faster sweeps through the state-space, but re-
quires that after the state-value function converges, the policy must
be updated greedily via Eq. (11). Then, the entire iterative loop must
be done again with this new policy, continuing a cycle of iteratively
improving the state-value function and the policy until both converge.
The benefit of both methods is that they guarantee monotonic con-
vergence to the optimal value function, and thus optimal policy. The
consequence of this is that both methods require the ability to do
a full sweep of the state-space and action-space, neither of which is
feasible for continuous-time systems, resulting in a loss of guarantees.
Additionally, the need for a perfect process model complicates the
applicability to systems whose real-world dynamics may not fit well
with simple models.

An alternative would be to use model-free approaches, which enable
learning the model and extracting optimal results through data and
interaction with the system. To do this, the action-value function Q is
commonly used as opposed to the state-value function V. This is done
because the state-value function inherently assumes a fixed policy and
will thus average the impact of various actions taken for a given state
in the data. On the other hand, the action-value function explicitly uses
state—action pairs, which avoids this issue entirely. Further, the training
can be done in two forms, on-policy or off-policy.

On-policy training utilizes the current policy when updating the O
function, whereas off-policy training works with any source for a given
action. An example of each would be SARSA and Q-learning, as shown
below. The first equation represents the iterative value improvement
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step used in SARSA, which is on-policy, and the second represents
Q-learning, which is off-policy, and can be written as follows:

0(s,a) < Q(s.a)+a[r+7Q(s'.d) -0 (s.a) 13)
O (s,a) < QO(s,a)+a r+yma’1xQ(s/,a/)—Q(s,a) 14

In both cases, the actions are implied to be from some greedily derived
policy, with the exception of the max action used in Q-learning. These
learning methods can be applied in a step-by-step manner to a system
over as many episodes as needed until convergence. Q-learning’s use
of the max operator leads it towards being more sample efficient, but
comes with the consequence of overestimation bias that can lead to
risky actions. Further, both methods rely on a policy that is derived
from the value function itself, which remains a computationally inten-
sive process. This is mitigatable by using an Actor—Critic framework,
where the policy, referred to as the Actor, is isolated from the value
function and is independently iteratively improved.

2.6. Hamilton-Jacobi-bellman-based RL control

Hamilton-Jacobi-Bellman (HJB)-based reinforcement learning con-
trol formulates the control problem as solving the HJB optimality
equation. In this framework, the value function is defined as follows:

V*(x) = m(lg) {/wr(x (7),u(r)) dr} (15)
u(- t

The V* (x) quantifies the best long-term cost achievable starting from
a given state with the following HJB condition:

minH(x,u,V*) =min{r(x,u)+ aﬁF(x,u)}:O ae)
u u ox

Consequently, the optimal policy is the action that minimizes this
Hamiltonian at each state:

7* (x) = argmin H (x,u, V*) a7)
u

To ensure a fair comparison between LMPC and RL, the instant cost r
in the RL formulation is chosen to match the quadratic cost function
used in LMPC:

r(x,u) = L(x,u) = xTWxx+uTVVuu (18)

so that the HJB Hamiltonian becomes

H(x,u,V*) = xTWXx+uTVVuu+ aal(f(xﬂ—g(x)u). (19)
X

Accordingly, the HJB condition (Eq. (16)) can be solved under the
stationarity conditions (Lewis et al., 2012):

T OV*(x)
ox
Since the exact optimal value function V*(x) is not available in
closed form, we introduce a differentiable critic network V,, (x) param-
eterized by neural network weights w. The critic is trained to minimize
the mean squared residual of the HJB equation evaluated at sampled
states {x (ti)}i]il' Specifically, the training objective and the weight

(20)

7 (=3 W, g ()

update are given as follows:

e =5 2 (e i)+ (5) 0 (xo) v (xa)ute) )
(21a)
w—w—a,V, Lw) (21b)

Here, £ (w) denotes the loss function, and «,, is the learning rate that
determines the step size of gradient descent.
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Remark 5. The optimal control policy obtained from the HJB condi-
tion does not explicitly account for stability constraints. To enhance the
accuracy of the approximated optimal value function, the neural net-
work performance could be further improved by incorporating stability
criteria in the training process; however, this aspect is not within the
scope of the present study.

Remark 6. In the practical implementation, the instantaneous cost
(or reward) r used in HJB-RL training is evaluated for a discrete time
representation of the system. In this discrete-time representation, the
LMPC’s integral cost is approximated as a sum over a finite number
of steps of size A where the state term in the cost function is replaced
with the future state (x(¢, + 4)). Likewise, the reward function used in
the HJB-RL training uses the future state (x(r, + 4)) as opposed to the
current state (x(t;)).

2.7. Twin delayed DDPG-based RL control

While Actor—Critic methods are traditionally on-policy, there exist
modern forms that maintain the core idea of having a separate Actor
and Critic while enabling off-policy reinforcement learning. Twin De-
layed DDPG, also known as TD3, is an off-policy Actor—Critic method
that is designed for use with deterministic continuous systems. The
algorithm is an evolution of the Deep Deterministic Policy Gradient
(DDPG) algorithm with three modifications that aim to dampen ex-
treme behaviors that are common in DDPG: the addition of clipped
policy noise, the addition of a second Q function, and the addition of
update delays for the policy and target networks. With these changes,
the algorithm lessens the risk of overestimation of the Q function,
which in theory should make the training more stable than DDPG.
These algorithms represent both the Actor and Critic as neural net-
works, where the target networks refer to a set of networks that are
initially identical to the Actor and Critic networks. The target networks
further assist in dampening extreme behaviors by effectively taking
a portion of the weight updates away from the main networks and
applying them to their own weights, thereby dampening the learning
process and smoothing the change in weights. The two Critic networks
are updated by minimizing the mean squared temporal difference (TD)
error loss, while the Actor network is updated by minimizing the nega-
tive mean Q-value under the current policy. Both updates use gradient
descent. The algorithm is roughly provided below in Algorithm 1.

3. Guaranteeing stability for reinforcement learning-based con-
trol

The following section details the closed-loop form of the proposed
RL control architecture alongside a formal derivation of its stability
properties.

3.1. Closed-loop implementation

The closed-loop system operates with two main sources of control
signals: the RL-controller and the fallback controller. The RL-controller
is an NN trained using RL to function as a direct substitute for the
LMPC, so it is capable of taking the sensor readings and providing ap-
proximately optimal control. The fallback controller is a short-horizon
form of the LMPC that is only ever used if the constraint enforcer denies
the RL-controller’s solution. The constraint enforcer is an algorithmic
check of the stability guarantee used in the LMPC design (i.e., ei-
ther Egs. (7e) or (8)). If the RL-controller violates this constraint, the
fallback controller is used instead. Additionally, the constraint enforcer
can enforce the control bounds by simply clipping the control signal
within these bounds. As a final check, if the fallback control violates
the constraint due to the LMPC solution failing, a failsafe controller is
applied in the form of the reference controller used in Section 2.3.
A block diagram representation of this system is shown in Fig. 1,
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Algorithm 1 TD3

1: Initialize critic networks Qy,> Oy, and actor network Ty with random parameters 6, 6,, ¢

2: Initialize target networks 6] « 6, 6) < 6,, ¢' < ¢

3: Initialize replay buffer D

4: while not converged do

5:  Observe the environment’s current state s

6:  Select action with exploration noise a = 7,(s) + ¢, € ~ N(,1)
7:  Clip action within lower and upper bounds a;,,, < a < ay .,
8:  Apply a and observe reward r, new state s’, and done signal d
9 Store transition tuple (s,a,r,s’,d) in D

10: if update_after steps have been taken and step counter%update_every =0 then

11: Sample mini-batch of N transitions (s5,a;,7; s;.,d-)j]_‘]=l ~D

12: a;. = 7z¢/(s;) +ej, €5~ clip(NM(0,policy_noise),—noise_clip,noise_clip)
13: Clip d;, within lower and upper bounds a; ., < @' < ay e,

14: y;=r;+y( —d/-)min(Qgi(s;.,a;),Q%(s;.,a;))

15: Compute critic losses: £, = MSE(QHl (sj2a;),9)), Lo = MSE(ng(sj,a/-), v
16: £critic = £1 + £2

17: Zero gradients for critics

18: Backward pass on L.,;.

19: Gradient descent step for 6, and 6,

20: if iteration counter mod policy_freq =0 then

21: Compute actor loss: L, = —% E le (sj,zz'd,(sj))

22: Zero gradients for actor

23: Backward pass on £,

24: Gradient descent step for ¢

25: Soft update targets:

6, < 70, + (1 —1)0; for k=1,2
¢ —1p+(1-1)¢

26: end if

27:  end if

28: if s’ is in the terminal region then
29: Reset environment

30: Select a new initial state s

31: end if

32: end while

—»| MPC b

Sensor 1 Actuator 1

Sensor 2 Actuator 2 [
Process -
—e © @ o 0«

Sensor N

Fallback ﬁ

Control

Constraint
RL Enforcer

A Control ;

Sensor 1

— O ¢
Sensor N

Actuator 1

Actuator 2
o 0«

Process

Fig. 1. Generalized process control block diagram for Model Predictive Control (Left) and Reinforcement Learning-based control (Right). The fallback control

block contains a failsafe controller.

where all relevant controllers function as explicit feedback control laws,
thereby using an RL-controller of the form:

@p R > R (22)
u(te) = Pgy (x (1)) (23)

Remark 7. The fallback controller does not need to be a short-horizon
form of the LMPC. It can be any such controller that satisfies Egs. (7e)
or (8). A short-horizon LMPC is used as the fallback because it satisfies
these constraints by design and additionally provides some form of cost
optimization that simpler designs, such as P control, do not consider.

Remark 8. In order for a signal to pass through the constraint enforcer,
it must satisfy all required constraints. Consider the case of requiring
both clipping of the control signal to fit within the actuator bounds (the
maximum magnitude of the respective control action) and enforcement
of the Lyapunov stability constraint. It is important to note that in
the constraint enforcer, the Lyapunov stability constraints are only
checked after clipping is done. This is because the Lyapunov stability
constraint is something that must be satisfied for the finalized (the
one to be implemented on the process) control signal, whereas all
control actions need to be clipped within the bounds before they can be
considered finalized. Clipping is necessary to satisfy the control bounds
if the model does not inherently satisfy the bounds by using a tanh
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activation for its output layer. The control bounds exist as physical
limits for a given actuator; therefore, they must be satisfied at all times.
The Lyapunov stability constraint can be satisfied for a range of valid
control actions, some of which may exceed the control bounds. But in
order for a signal to pass the constraint enforcer, it must satisfy both the
control bounds and the Lyapunov stability constraint, so it is possible
for a control action to satisfy the stability constraint prior to clipping,
but fail to satisfy it after clipping, thereby requiring fallback control
that would then guarantee satisfaction of both.

Remark 9. The novelty of this framework is the ability to guaran-
tee closed-loop stability through external constraint enforcement. The
LMPC design, beyond the needed stability constraints, is not important
to the framework’s novelty, but it remains important to the particular
design problems engineers will need to consider for their particular use
cases.

Remark 10. RL is used for the RL-based controllers as a means
of speeding up the training process. Imitation-learning-based methods
face scaling issues in regards to the time it takes to solve the LMPC
optimization problem for sufficiently diverse datasets. This is due to
the increasing computational demands of LMPC for higher-dimensional
problems and due to the increasing difficulty in densely and diversely
sampling the relevant states. RL, through simulated interactions with a
first-principles model of the process (prior to the real-time implemen-
tation of the RL-based controllers on the process), bypasses the scaling
issues of the LMPC optimization problem entirely.

Remark 11. For both of the RL-based controllers and the FNN-based
controller, training is done prior to real-time implementation of the
controller on the process. In other words, all NN training in this work
is done offline. While online training is possible through the use of
transfer learning, this is not explored in the present work. The real-
time implementation of these controllers to the process assumes that
training is complete and that the constraint enforcer is present (to
ensure closed-loop stability).

3.2. Closed-loop stability

For a continuous-time system, Section 2.3 provides assumptions
that would guarantee exponential stability of the origin; however,
continuous-time control is not possible due to the need for computation
of control actions as well as signal transmission delays. To resolve
this, the sample-and-hold control implementation applies a fixed con-
trol action for a fixed interval t € [t,.t, + 4) before updating. The
consequence of this is that the stabilizability assumption guarantees
convergence to a small region around the origin instead of exponential
stability.

3.2.1. Closed-loop stability under LMPC

Theorem 1. Take an LMPC as defined in Eq. (7), which applies ei-
ther Egs. (7e) or (8), and where Eq. (7b) models a system matching Eq. (1).
u(t) denotes the first control input vector from the LMPC’s solution. If a
reference controller and Lyapunov function described by Section 2.3 exists
for x (1) € D :={x | V (x) < p}, then there must exist a pair of constants
€,-@ > 0 such that the closed-loop state is driven to a small area around
the origin (€2, =) by the sample-and-hold implementation of u(t) if the
conditions below hold for any sampling instant t,:

L' MpA-ap, < —e¢, (242)
Pmin i=max {V (x (1, + A) |V (x (1)) < p,)} (24b)
ps <V (x (1)) (240)
Ps < Prin < P (24d)
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Proof.

Case 1 (Eq. (7e) as the Lyapunov constraint). Starting with the definition
of the time derivative of the Lyapunov function, we can manipulate the
expression algebraically by adding and subtracting equivalent terms:

_ V)
ox

V(x®,u(t)) = F(x®,u(t)) (25)

” d
V (0 (1)) = O (), (1)

- 0D k(1) 1) @6)

+ WF(X (1) u (1))

Plugging in Egs. (5b), (6¢) and (7e):

V (e (0)) < L 0= x 1) = s [x 1) @7
Via the integral triangle inequality:

[x@=x(1)] S/tkt‘F(x(r),u(tk)))drSMFA (28)
Plugging into Eq. (27):

V (x.u () < LMpa—es|x (1) 29)

If |x| is small, the L' MpA term may dominate and make the upper
bound of V positive, invalidating any stability guarantee; hence the need
for Eq. (24c). Applying this with Eq. (5a) yields:

V (x@),u(t)) SL;MFA—?pSSL;MFA—apS (30)
2

which simplifies using Eq. (24a):

V(x(t),u(tk)) < —¢, (31)

Thus, with sufficiently small 4, any closed-loop state x (1) € 2,\82, will
decay over time towards 2, , ultimately converging to

Pmin*

Case 2 (Eg. (8) as the Lyapunov constraint). The proof for this cases
follows the same form as above with the exception of using Eq. (8) as
opposed to Eq. (7e), which results in the —c; ‘x (tk)) term being replaced

by —aV (x (1))

vV (x(t),u (tk)) < L; x(t)—x (tk)) —aV (x (tk))
<L MpA—ap,

(32)

Remark 12. The alternate form of the stability constraint from Eq. (8)
does not explicitly use the reference controller, but still requires it
to exist due to the Lyapunov function needing to satisfy Eq. (5). A
consequence of using this form is that « must be defined by the user.
An excessively small « risks being overpowered by the L’ MA term,
whereas an excessively large « risks the solution being infeasible due
to the control bounds.

Remark 13. The proof demonstrates stability guarantees for any such
interval in which the stability constraints are enforced. As presented
in Eq. (7), this implies that stability guarantees do not exist beyond the
first sampling interval; hence, the receding horizon approach would
functionally satisfy the stability guarantees but is not guaranteed to
optimize with respect to a trajectory that satisfies these guarantees for
all points beyond the first sampling interval.

3.2.2. Closed-loop stability under RL-controller with constraint enforcement

As seen in Fig. 1, the framework operates by conditionally se-
lecting which control signal to send to the actuators. Despite the
RL-controller having no stability guarantees, the stability guarantees for
the LMPC shown in Theorem 1 also guarantee stability for the modified
framework via the constraint enforcer.
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Theorem 2. Consider an LMPC as given in Eq. (7), which employs
either Eq. (7€) or Eq. (8) as the stabilizability constraint, and where Eq. (7b)
represents a nonlinear system matching the structure in Eq. (1). Assume a
reference controller and Lyapunov function described by Section 2.3 exists
for x(ty) € D := {x|V (x)<p}, and a reinforcement learning-based
controller with control outputs clipped to meet the constraints in Eq. (7¢)
(®gy (x (1)) € U) exists. For the RL-based process setup illustrated in Fig.
1 whose constraint enforcer is defined as

u(ty) = {‘DRL (x (1)) TV (x (1) Pre (x (1)) < 5
Pivpe (). IV (% (1) . Pre (x (1)) > S (x (1))
(33)

where S (x) denotes the stability threshold—defined as either V (x, ® (x)) or
—aV (x) depending on the chosen form of the constraint—and

W) <8 (x (1))
W) > S (x (1))

_ Jamee () IV (x (40) - uiaape (1
Puare (1) {as(x(rk)), iV (x (1) «uape (1
(34)

such that u,u; prpe. P, Pr1. Prypc € U, then there must exist a pair of
constants €, « > 0 such that the closed-loop state is driven to a small area
around the origin (22, ) by the sample-and-hold implementation of u (t) if
the conditions in Eq. (24a)-(24d) hold for any sampling instant t,

Proof.

Case 1 (V (x (1) .®Pre (x (1)) > S (x (#x))). We consider the remaining
two subcases for the LMPC control action.

Case 1.1 (V (x (1) .urmpe (1)) > S (x())). Here, @pppe (1) is
used and equals @ (x (t;)). The proof follows Theorem 1, but Eq. (26)
is composed of @ (x) instead. Because the Lipschitz continuity expression
from Eq. (6¢) is applicable for any u, and Eq. (5b) is satisfied, the case
simplifies to Case 1 from Theorem 1.

Case 1.2 (V (x () ,upmpc (1)) < S (x (1))). Here, @pprpe (1) s used
and equals uyype (1), the first control action of the LMPC solution.
Theorem 1 details the proof for this controller.

Case 2 (V (x (1), ®gp (x (1)) < S (x (1;))). This case follows the steps
from Theorem 1, but Eq. (26) is composed of @y, (x) terms instead. The
Lipschitz continuity expression from Eq. (6c¢) is applicable for any u, thus
the case simplifies to the form used in Theorem 1 where the respective case
is chosen depending on the form of .S (x).

Remark 14. The RL-controller has no stability guarantees alone, hence
why every case eventually reforms to be in terms of the reference
controller, as the reference controller’s existence and use are solely for
the enforcement and satisfaction of stability guarantees.

4. Application to a chemical process example

In this section, the proposed stable RL framework is implemented on
a chemical process, and the efficacy of the framework is demonstrated
by comparing it with various controllers.

4.1. Process description

The model chemical process of choice for this study is a simulated
continuous stirred-tank reactor (CSTR). The CSTR is assumed to be per-
fectly mixed. Specifically, we consider a singular irreversible reaction
that is exothermic, making the CSTR non-isothermal. The reaction is
treated as an arbitrary liquid-phase reaction (A — B) with second-order
dynamics. The CSTR is insulated in the sense that there is no external
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Table 1
Parameter values of the CSTR model.
Var. Value Var. Value
Cys 1.954kmol m™3 Caos 4.0kmol m™3
c, 0.231kJ kg™ K~ AH ~11,500kJ kmol ™!
E 5.0 x 10* kJ kmol ™ F 10m*h!
ko 8.46 x 10° m* kmol " h~! o, 0.0kJh!
R 8.314kJ kmol ' K~ oL 1.0x 10°kgm™
T, 300.0K Tos 300.0K
T, 401.9K V. 0.1m?

influence on the system’s heat, but heat is still removed or added to the
system through a heating/cooling system implemented on the reactor,
with heat addition or removal occurring at a controllable rate Q. These
assumptions yield the following dynamic model:

dc

- Vi (Cao—C4) —kC2 (352)
L

dT _ F AH |, 0

—~ = (T,-T) - kCE + ——— (35b)

a v (o -7) pC, A PGV

k = kg exp [—%] (35¢)

Here—with the exception of k,, which denotes the isothermal rate-
constant—the 0 subscript denotes feed values, C, denotes concentra-
tion of A, and T denotes the temperature of the solution within the
CSTR. p,C,,AH, E and V; denote the solution density, specific heat,
heat of reaction, activation energy, and liquid volume, respectively.

4.2. Control problem

The heating rate Q is selected as the control (manipulated) input,
and the state variables are chosen to be 7 and C,. In order to utilize
the origin as the steady state (denoted by the s subscript) without loss
of generality, the state and control variables are expressed as deviation
variables. Accordingly, the vectors used in the problem formulation are
defined as x" = [C4, — C4,., T - T,] and u" = [Q — Q] for the state and
control vectors, respectively. The control input is subject to bounds,
specifically —4,000 < Q — Q, < 4,000kJh~!. Specifics on the various
constants used in the CSTR dynamic model are provided in Table 1.

The design goal is to create a controller that drives the closed-
loop system from any given initial state bounded by -0.6 < C, —
C,, < 0.6kmolm™ and —10 < T — T, < 10K to the origin. Because
of the deviation variable notation, this origin represents the desired
operating (unstable) steady state. To achieve this, a reference controller
satisfying Section 2.3 is found to be a proportional (P) controller with
a weight of 120 for the temperature deviation variable. Similarly, a Lya-
2,033 —0.00051

: T ; -
punov function of the form V = x' Px with P = —0.00051  0.00070

is used.
The immediate cost of the LMPC and RL at ¢ = ¢, is designed as
follows:

L(T (t,).,0 (1)) =a(T (1) = T)* + b0 (1) — O, (36)

where a and b are the weight coefficients for the state variable (T’ (tk))
and control input (Q (1)), respectively. In particular, a = 1 and b =
6x107~7. The consistent cost function is used to ensure a fair comparison
between all controllers.

4.3. LMPC design

The system operates with a sampling time of 4 = 1s. Two LMPC
formulations are utilized: a long-horizon LMPC with horizon length
N = 50 and a short-horizon LMPC with horizon length N = 5.
The sole distinction lies in their prediction windows: the long-horizon
LMPC optimizes trajectories over 50 s, whereas the short-horizon LMPC



A. Khodaverdian et al.

optimizes over only 5s. While the long-horizon design achieves better
cost optimization, making it ideal as a reference for near-optimal con-
trol, its computational demand causes the solution time to exceed the
sampling period, making it unsuitable for real-time implementation. In
contrast, the short-horizon LMPC has a smaller computational demand,
which allows it to solve within the sampling period’s time frame.
Consequently, the short-horizon LMPC can be deployed for real-time
closed-loop implementations at the expense of poorer cost optimality.

In this work, the optimization problem of the LMPC is solved with
two different methods. The LMPC solution used for the HJB-based
RL network example utilizes the sequential least squares quadratic
programming (SLSQP) algorithm, a gradient-based method designed for
constrained nonlinear programs. It approximates the nonlinear problem
with a quadratic subproblem at each step and updates iteratively.
After running test simulations to determine optimal parameters, the
convergence tolerance and finite-difference step size are set as 1x 10710
and 1 x 107>, The LMPC solution used for the TD3-based RL network
example utilizes IPOPT with the SPRAL linear solver. This was done
using the do-MPC Python package with further customizations enabled
as follows:

» max_iter: 10,000

+ tol: 1x1078

+ acceptable_tol: 1 x 107

+ mu_strategy: ‘adaptive’

» warm_start_init_point: ‘yes’

» expect_infeasible_problem: ‘yes’

The do-MPC package also provides options for how the process is
simulated forward in time (Fiedler et al., 2023). This was designed to be
a collocation-type integrator using the radau method with 5 degrees
of collocation over a total step size of A.

Remark 15. Two different implementations of the LMPC framework
are used in this work. Although the implementations differ on a tech-
nical level, the fundamental formulation and functional difference be-
tween the two methods are negligible. The implementation of the LMPC
framework does not need to mimic the methods shown in this work,
as any numerically valid implementation of LMPC that satisfies the
fundamental formulation is valid. Both methods shown use precise
enough tolerances and numerical integration to have roughly the same
solution for a given state, with the exception of cases where SLSQP
or IPOPT fail to solve, which is a possibility for some regions in the
state-space.

Remark 16. The long-horizon LMPC is primarily used as a reference
for what is effectively the optimal control logic. Because of this, it
is used offline to generate data that can then be used for imitation-
learning-based pre-training. The short-horizon LMPC is used as the
back-up controller during real-time implementation of the various con-
troller designs due to its stability guarantees and improved cost over
the reference stabilizing controller.

4.4. FNN-based control design

To address the limitations associated with both short-horizon and
long-horizon LMPC, an FNN-based control framework was recently
proposed to approximate the functionality of the long-horizon LMPC
while maintaining fast computational performance (Khodaverdian et al.,
2025b, 2026). In this work, the FNN-based control implementation is
used for relative comparison with the performance of RL-based control.
Specifically, 10,000 initial state vectors are randomly sampled from
the feasible domain and treated as the system states at + = 0. From
each initial condition, closed-loop simulations are performed using the
long-horizon LMPC until t = 4 min, and the resulting state and control
trajectories are recorded to form the training dataset for the neural
network.
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Table 2
Best hyperparameters of FNN obtained from Bayesian optimization.

Hyperparameter Value Hyperparameter Value

Batch size 32
Width 410
Dropout 0.051

Learning rate 0.000148
Epochs 61
Depth 4

40001 --- Ideal ,

3000 -

2000 -

1000

OA

—1000 4

—2000 -

FNN Predicted Control Action

—3000 A

—4000 A

—4000-3000-2000-1000 0 1000 2000 3000 4000
Long-Horizon LMPC Control Action

Fig. 2. Comparison of the trained FNN control actions to the desired long-
horizon LMPC control actions.

During the training process, the network takes the normalized states
as input and outputs the scaled action u through a tanh activation.
The hidden layers use ReLU nonlinearities, and dropout regularization
is applied to mitigate overfitting. To select the network architecture
and training settings, a Bayesian optimization procedure (Gaussian
process minimization) was carried out over the hyperparameter space,
including learning rate, batch size, training epochs, hidden width,
hidden depth, and dropout rate. The search was performed using 30
evaluations, with validation loss as the objective function. The resulting
optimal hyperparameters are reported in Table 2.

These values were subsequently employed to train the final actor
network, which was then evaluated on the test set. Fig. 2 illustrates the
ability of the FNN model to reproduce the long-horizon LMPC behavior,
as the data points lie closely along the ideal line y = x.

Remark 17. Although the long-horizon LMPC is designed with a sam-
pling time of 1s, its per-step computation time exceeds this duration.
This is acceptable for offline data generation but problematic in real-
time implementation, where delays between measurements and control
actions are critical.

Remark 18. The FNN-based controller primarily functions as a base-
line for comparison between other NN-based controllers. Although it
can also serve as a valid controller in this framework, the imitation-
learning-based training process limits the design to applications where
there exists sufficient data from the LMPC.

4.5. HJB-based RL-controller design

The HJB-based RL-controller is designed using the CSTR model. In
particular, the cost function is L = a(T - T,)* + b(Q — Q,)?, which is
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Table 3

RL training hyperparameters (HJB value-critic).
Hyperparameter Value Hyperparameter Value
Optimizer Adam Learning rate 0.001
Batch size 256 Exploration noise 0.10
Eval frequency 960 Start steps 960
Max steps 10,000 Buffer size 1,000,000
Net width (units) 128 Net depth (layers) 2

the same expression as the LMPC cost function. The associated analytic
policy derived from Eq. (20) is

v, (x) /oT

LD . D 37
e 0 ) @7

Dpy (x) = clip <—
where the @, = —4,000kJh~! and @, = 4,000kJh~!. During the
training process, we first sample the initial condition randomly on
deviation states within the feasible region. From each sampled initial
condition, we generate training data by simulating a 4-minute trajec-
tory. This trajectory data is normalized by min-max scaling to [0, 1]
and internally rescaled back to physical units before computing oV, /0T
in Eq. (37). The value network V,, is trained on physical deviation
states. The value network V,, is trained by minimizing the squared HJB
residual (Eq. (16)) optimized with Adam.

Transition data (s,a, s’ ,r) are stored in a replay buffer with a
capacity of 1 x 10%, where r denotes the instant cost calculated based
on s’ and a (the same as the LMPC cost). HJB updates are done with
a mini-batch of typical size 256 drawn from a replay buffer that is
populated by on-policy rollouts with small Gaussian action noise. In
order to allow the buffer to grow to a sufficient size before sampling,
for the first 960 steps, we draw samples uniformly from the feasible
region. Using random Gaussian actions and the corresponding r and s’,
the replay buffer is initially padded with data that does not involve
the policy. After this initial random-action phase, on-policy rollouts
use small Gaussian action noise with standard deviation 0.10 times
the actuation limit (the maximum magnitude of the respective control
action) to encourage exploration. Evaluation is performed every 960
steps on fresh episodes, and evaluation scores are logged for subsequent
visualization.

Evaluation follows the same procedure as the real implementation.
After computing the control action from RL, if the Lyapunov deriva-
tive under the RL policy is larger than that under the P controller
(e, V (x,@g (x)) > V (x,®@(x)), we solve a short-horizon LMPC
problem and apply @, y;pc; otherwise, we apply @y, . To prevent perfor-
mance drift during training, we employ a best-so-far acceptance gate:
at fixed evaluation intervals, candidate parameters are tested on fresh
episodes and accepted only if the average return improves; otherwise,
we revert to the last committed w and reset the optimizer state. This
procedure ensures that the trained RL policy does not degrade relative
to its previous version under the chosen evaluation protocol. The
detailed hyperparameters are reported in Table 3.

4.6. TD3-based RL-controller design

The TD3-based RL-controller uses the same CSTR system as the HJB-
based RL-controller; however, the LMPC aims to minimize the cost
over the horizon, while TD3 aims to maximize the reward function.
Additionally, the TD3 algorithm uses discrete values while the LMPC is
defined for continuous-time systems. Since the controller is applied in
a sample-and-hold fashion and the state is measured in fixed sampling
time intervals, the LMPC problem can be viewed in discrete intervals
based on the sampling time. To approximate the cost, the integral cost
function is replaced with a sum of the quadratic cost terms. Due to
this discrete form, the control action will be the value calculated for
the reference time frame 7, whereas the state will be the approximate
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future state at a time 7, +A. In other words, we can represent the reward
function as

r(s',a) == (sTW,s' +aW,a) (38)

The TD3 algorithm has the benefit of being both model-free and off-
policy, which leads it to use the action-value function instead of the
state-value function. Additionally, the TD3 method is an Actor—Critic
method, meaning that the policy is explicitly expressed as a neural
network that is iteratively improved during training instead of being
analytically solved using the value function, as is done in the HJB-based
approach.

While TD3’s strength lies in the various differences mentioned
above, effectively tuning its hyperparameters requires a method of
quantifying the Actor and Critic’s quality. This can be somewhat done
by observing the temporal difference (TD) error and the actor-value
function itself to ensure that both converge to a stable point; however,
the algorithm is inherently noisy, which makes it difficult to truly
determine if these values have converged. As such, the primary mode
of evaluation was to simulate the closed-loop system using the TD3-
based controller without fallback control over many initial points. The
cost of the resulting trajectory over a sufficiently long horizon is then
compared with the cost of the long-horizon LMPC starting at the same
initial point. The logic behind this evaluation criterion is that the per-
cent error relative to the long-horizon LMPC would be a good indicator
of model performance if done for enough samples. Additionally, this
consolidates the convergence criteria to a single parameter.

Furthermore, to mitigate the initial variance and instability of the
TD3 algorithm, there is a pretraining step for both the Actor and Critic
networks. Using AdamW as the optimizer and OneCycleLR as the
scheduler with the max_1r being set equal to the corresponding learn-
ing rate, the Actor and Critic undergo separate pre-training loops. The
Actor is pretrained with behavior cloning (BC) via mean squared error
loss relative to pre-generated data from the LMPC system’s trajectories.
The trajectories are based on randomly sampled initial points within
the operating region of the system. This dataset is used to pretrain
the Actor over 10 epochs, each of which covers the entire dataset
once. The same dataset is used to generate the StandardScaler
with the goal of improving the model’s ability to learn by scaling the
Actor’s inputs to have zero mean and unit variance. The Critics are
trained using the same loss function as the TD3 algorithm, as defined
in steps 14 and 15 in Algorithm 1, but the LMPC data, formatted
as (s,a,r,s’,d',d), is used. Thus, no policy noise is applied during
pretraining, and the LMPC’s dataset is treated as the replay buffer with
the future action being explicitly stored. In other words, the &’ is no
longer calculated using the target policy with noise, and is instead
stored exactly using the LMPC’s dataset. This modified form of the
replay buffer is referred to as the formatted LMPC dataset. The Critics
are pre-trained over 5 epochs, each of which covers the entire formatted
LMPC dataset once. After the Actor and both Critics are pretrained, the
target networks are finally initialized using the pretrained parameters
of their corresponding networks.

The TD3 method’s exploration steps are useful for exploring the
state-space, but excessive exploration is undesirable later in training.
To account for this, every step of exploration in the environment
decays the exploration noise by a fixed percent until a minimum is hit.
Combined with the other modification to the TD3 method described
above, we define the modified training loop as its own algorithm
described in Algorithm 2. These modifications, along with the existing
complexity of the TD3 algorithm, introduce a large amount of hyperpa-
rameters that can be seen as important. As such, the controller must go
through two distinct training loops. First, the controller will undergo
hyperparameter tuning using Optuna (Akiba et al., 2019). Then, the
best performing hyperparameters will be used in an extended training
loop to allow for further completion of the modified TD3 tuning. The
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Algorithm 2 Modified TD3 with BC Pretraining and Exploration Noise Decay

1: Initialize critic networks Qy,> Oy, and actor network Ty with random parameters 6, 6,, ¢
2: Pretrain Actor via BC: Optimize 7, on expert states s; and actions a; from LMPC dataset using MSE loss £ pc = MSE(z,(s;), a;) for 10 epochs

3: Pretrain Critics via BC: Optimize Qy,, Qy, on expert transitions <s-

(Qgi (“;"1;) eré (s:a;)) for 5 epochs

! / H —
J,aj,rj,sj,aj,dj) using TD targets vy, = 1

: Initialize target networks 6] « 6, 8} < 6,, ¢' < ¢ and replay buffer D

: Initialize environment

: while less than max steps taken and not early stopped on instability do

expl *
if not enough policy warmup steps taken then

4
5
6
7:  Decay exploration noise o,,, < max (min_expl_noise,o,
8
9 Select random action a ~ U'(apyer» Ay pper)

10:  else
11: a=rmy(s)+e, €~ N©,0,,,), Clip action ay,,,, < a < ag .,
12:  end if

expl_decay_rate)

13:  Apply a and observe reward r, new state s’, and done signals d* (s’ converged or max steps reached), d (s’ converged)
14:  Store transition tuple (s,a,r,s’,d) in D and increment the environment step counter

15: if d* then

+ y(l —dj)min

16: Reset environment and select a new initial state s
17:  end if
18:  if replay buffer is sufficiently large and environment steps%steps per critic update then
19: Sample mini-batch of N transitions (s;,a;.r;,s'.d j)/.’i ,~D
20: a;. = 7c¢/(s;) +¢;, €; ~clip(N'(0,policy_noise),—noise_clip,noise_clip)
21: Clip action ay ., < @' < aypper
22: Compute y; =r; +y(1 - dj)min(Qgg (s;., 5;.), Qeé (s;,, &;.))
23: Compute critic losses: £| = MSE(QQ1 (sj5a;),9)), £ = MSE(Qez(sj,aj), v
24: Gradient descent step for 6, and 6, with critic learning rate for L,,,;. = £, + £,
25: Increment total step counter
26: if total steps%steps per policy update then
27: Gradient descent step for ¢ using L., = —% 2 0o, (5j,my(5)))
28: Soft update targets:
0;( — 10, +(1 - 1)61’c for k=1,2
29: ¢ —1p+(1—1)¢
30: end if
31: end if
32:  if environment steps%steps per evaluation then
33: Evaluate policy on multiple trajectories, compute %error vs. LMPC
34: Compute average TD error over entire replay buffer
35: if std of recent %errors <rel_error_threshold and std of recent TD errors<td_threshold for last 10 evaluations then
36: Mark as converged, save checkpoint
37: else if no improvement in %error for patience evals or Optuna wishes to prune then
38: Prune trial
39: end if
40: end if
41: end while
resulting controller is then applied to the process for 100 samples for Table 4
analysis. Optuna tuned parameter ranges and scaling for the TD3-based RL-controller.
The Optuna hyperparameter tuning is set up as a robust sweep of Hyperparameter Lower bound  Upper bound  Scale/Type
possible options for the modified TD3 system. The tuned parameters, éc_t:r team%ﬂg Eate 1>< 131 ix 18:2 1L~0g
their ranges, and the scaling type are as shown in Table 4. This Optuna Ailt;: Pi:tr:;;ginga;aming rate 1 i 107 X i o Lzz
study was set to run indefinitely until user termination, with the goal Soft Update Coefficient 0.0001 001 Log
of minimizing the percent error of the average trajectory cost of the Policy Noise 0.001 2 Float
RL-controller vs a long-horizon LMPC-controller baseline. Using the Exploration Noise 0.001 02 Float
training algorithm shown in Algorithm 2, and the constant hyperpa- Eﬁgf’:r]“:fy (:i;:jz; Layers ?4 (1)’024 Izr:t
rameters displayed in Table 6, the best trial out of 110 samples was Steps per Policy Update 1 4 Int
found to have the hyperparameters displayed in Table 5. This model Use LayerNorm False True Bool

was then run through the full training cycle, which increased the max
steps to 10 million, patience to 100, maximum steps per episode to 500,
and evaluation frequency to 25.000 (start_steps and update_after are
set equal to this new value). Unlike the HJB-based RL-controller, this
model did not go through a robust testing process. Instead, the TD3-
based RL-controller was applied in a closed-loop fashion to the system,
starting at 100 random initial points within a bounded state range.

10

4.7. Closed-loop simulation results

4.7.1. HJB-based controller results

The closed-loop setpoint tracking behavior from the initial state
T-T, = 10K and C4, — C4, = 0.6kmolm~3 is illustrated in Fig. 3.
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Fig. 3. Closed-loop trajectories of concentration deviation, temperature deviation, heat input, and Lyapunov function with the initial states at [10K, 0.6 kmol m~].
Results are shown for five controllers: long-horizon LMPC (LH-LMPC), short-horizon LMPC (SH-LMPC), P controller (P), FNN-based approximate LMPC (FNN)

and Hamilton-Jacobi-Bellman reinforcement learning (HJB-RL).

Compared with the long-horizon LMPC, the short-horizon LMPC applies
smaller initial control actions due to its emphasis on immediate cost,
similar to the P controller, whereas the long-horizon LMPC accounts
for relatively long-term costs, and therefore issues larger initial actions.
The FNN closely approximates the long-horizon LMPC and thus ex-
hibits nearly identical behavior. In contrast, the RL controller, which
optimizes an infinite-horizon cost, takes actions different from those
of the LMPC, particularly in the initial region when the states are far
from the setpoint. For all controllers, the Lyapunov function decreases
monotonically over time, validating closed-loop stability.

To evaluate the controllers, a total of 500 initial states were gener-
ated using a stratified sampling strategy. The state-space was divided
into 50 rectangular regions defined by evenly spaced intervals of the
domain (C4, — C4;, € [-0.6,0.6] and T — T, € [-10, 10]). From
each region, 10 initial states were uniformly sampled, resulting in 500
distinct starting points. Each sampled state was then controlled by ev-
ery controller under identical simulation conditions, with a maximum
simulation horizon of 4 min. The simulation was terminated early if
the system entered a small neighborhood of the steady state (i.e., |C4 —
Cyl < 0.006 and |T — T,| < 0.1), ensuring that the performance

11

Table 5
Best performing hyperparameters for the TD3-based RL-controller
after Optuna tuning for 110 trials.

Variable (Hyperparameter) Value

1r 1.775275759804681 x 107
critic_1r 0.0005089627893036739
hidden_dim 128
num_hidden_layers 5

expl_noise_std 0.13951586331641103

tau 0.007988601140325966
policy_freq 2

bc_1r 4.8579319207288955 x 10~

False
0.10712953866806144

use_layernorm
policy_noise

metrics reflected the actual stabilization time. As summarized in Table
7 and Fig. 4, we take long-horizon LMPC as the 0.0% baseline—
delivering strong setpoint tracking but at huge computational cost
(mean 2,181 ms, max 11,520 ms). Relative to this baseline, the proposed
RL controller attains a slightly lower cost (-0.1%) while reducing
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Table 6

Constant hyperparameters for the TD3-based RL-controller during Optuna tuning.
Variable Value Description
buffer size 2,000,000 Size of the replay buffer
batch_size 512 Mini-batch size for replay buffer sampling
gamma 0.99 Discount for future rewards
max_episode_steps 400 Max steps per episode
total_steps 100,000 Max environment interactions
start_steps 10,000 Initial random actions before policy use
update_after 512 Steps before starting updates

update_every 1

weight_decay 1073
be_pretrain_epochs 10
be_weight_decay 1073
expl_decay_rate 0.99975
min_expl_noise 1073
eval_freq 5000
eval_episodes 10
converge_eps 0.01
rel_error_threshold 5.0
td_threshold 0.01
patience 10
stability_ window 10
num_trials 50
critic_pretrain_epochs 5
noise_clip 2.5x policy_noise

Update frequency after warm-up

L2 regularization for optimizers

Epochs for actor BC pretraining

Weight decay for BC optimizer
Per-environment step decay for exploration noise
Floor for exploration noise std

Steps between evaluations

Trajectories simulated per evaluation

State norm threshold for convergence

Std threshold for actor stability (%error)
Std threshold for critic TD error stability
Epochs of no improvement before early stop
Recent evals for stability checks

Optuna trials for tuning

Epochs for critic warm-up pretraining
Derived clip for target policy noise

Table 7

Relative costs of the proposed HJB-RL-based controller versus other con-
trollers. Relative costs are normalized to LH-LMPC (0.0 %), with negative values
indicating improvement.

P Controller SH-LMPC LH-LMPC FNN HJB-RL

Cost (%) 4.8 4.8 0.0 0.0 0.1

average computational time to 0.644 ms and worst-case time cost to
67.5ms, comfortably within the 1 s sampling budget. A plain FNN
policy matches the baseline cost (0.0%) with modest computational
burden (mean 2.32ms, max 12.5ms), but HIJB-RL delivers the best
setpoint performance with sub-millisecond average time. By contrast,
short-horizon LMPC and P control both exhibit markedly higher costs
(4.8 %); short-horizon LMPC also shows nontrivial computation (mean
15.247 ms, max 112.516 ms), whereas P control is computationally light
but performance-limited. Overall, the proposed RL method provides
the most balanced controller—combining the best closed-loop cost
among all methods with practical real-time implementation under the
one-second sampling period. That said, it is important to clarify that
during HJB-RL or FNN implementation, the closed-loop stability en-
forcer checks at each sampling time, the Lyapunov function-based
closed-loop stability constraint, and if this constraint is violated by
the control action calculated by the HJB-RL or FNN, then the back-up
stabilizing controller calculated control action is implemented. There-
fore, no rigorous statement can be made that the improved closed-loop
performance observed under HJB-RL is the result of implementing the
HJB-RL most of the sampling times during this closed-loop simulation
run. The expectation is that the HJB-RL would provide improved
closed-loop performance over a back-up stabilizing controller but no
a priori guarantee can be made about such an outcome.

A further comparison of controller performance is shown in Fig. 5,
where the relative closed-loop cost and the relative number of steps to
reach the setpoint for HJB-RL and NN controllers are evaluated across
50 stratified regions of initial states, each referenced to the LH-LMPC
baseline (0%). Negative values in both metrics indicate performance
improvement over the baseline, with lower cost corresponding to better
control efficiency and fewer control moves indicating reduced actuation
effort. As shown in Fig. 5, the HJB-RL controller achieves lower closed-
loop costs than the LH-LMPC baseline across all regions of the initial
state-space, with the average relative cost remaining negative for each
of the 50 stratified regions. This indicates that the HJB-RL policy not
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only stabilizes the system effectively but also does so with improved
control efficiency. Moreover, the HIB-RL controller generally requires
fewer control moves than the baseline, reflecting reduced actuation
effort. In contrast, the NN controller exhibits higher relative costs and a
larger number of control moves across most regions, suggesting that it
is less efficient in both control performance and actuation usage. These
results demonstrate that the HJB-RL framework can achieve better
overall closed-loop performance while maintaining fast control action
decisions.

Remark 19. Proportional, FNN, and RL controllers have a nonzero
per-step computation time because each must execute specific compu-
tations to produce the control input. A proportional controller still has
to read the measurement, compute the error, and apply the gain, so
its execution time is not strictly zero even though it is very small. A
neural network controller must perform a forward pass, which consists
of matrix-vector multiplications and activation function evaluations,
and this introduces additional computation time that scales with the
network’s size. Similarly, an RL controller also performs a forward pass
to generate the control action and may include extra steps such as critic
evaluation or safety projection, which further contribute to the overall
computation time.

Remark 20. The computation times shown in Fig. 4 are not GPU-
accelerated or parallelized. This is mostly negligible for the LMPC and
P-based controllers due to the small system scale, but the lack of tensor-
accelerated optimizations is a significant handicap to the FNN and
RL-based methods. Thus, the computation times shown are conserva-
tive estimates, and real-world use cases may see significantly better
improvements with the proper hardware and software optimizations.

4.7.2. TD3-based controller results

To demonstrate the TD3-based controller’s quality, we apply this
controller to the closed-loop system using 100 randomly generated ini-
tial points within the same intervals used in the HJB-based controller’s
trials. The TD3-based controller is applied for 500 steps, where each
step corresponds to a time interval equal to A. In other words, the
TD3-based controller is used to control the system starting from the
initial state until the trajectory spans 500s worth of control. For each
of these trajectories, the cumulative cost is calculated. For each of the
initial states, the long-horizon LMPC is simulated to give a reference
cost. Using the long-horizon LMPC’s cumulative cost, we calculate
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Fig. 5. Controller performance relative to LH-LMPC across stratified initial conditions: (a) cost and (b) control-step counts for HJB-RL and NN.

the relative percent error of the TD3-based controller with respect to
this cost. This percent error is averaged over the 100 samples in this
evaluation run, which yielded an average percent error of —0.91% +
9.87 %. At first glance, this result appears good, but the standard de-
viation is quite large. Upon analysis of the individual percent error
values, it was found that this high standard deviation is due to poor
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performance of the model for initial states that are already near the
origin. The source of this issue is that the TD3-based controller’s control
action converges to an offset when near the origin, as can be seen
in Fig. 6. Additionally, the controller seemingly struggles to behave
in a smooth fashion for more complex control trajectories as seen
in Fig. 7, which contributes to this variability. Beyond these outliers,
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Fig. 6. Closed-loop trajectory for sample #5 of the 100 trajectories used in
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the calculation of the average MSE for the TD3-based RL-controller. This sample

demonstrates the near-origin offset of the TD3-based RL-controller in the absence of fallback control. Steps refer to time intervals of size A. C,, T, and Q are in
deviation variable form with respect to the steady-states defined in Table 1 and have units of kmolm~3, K, and kJh~' respectively.

the results are seemingly significantly better than the HJB-based RL-
controller, but this is misleading. Recall that this closed-loop evaluation
run used a TD3-based RL-controller that used the best performing
hyperparameters from the Optuna trial shown in Table 5. Further,
the training cycle was modified to allow for extended training with
the goal of further fine-tuning the model. In reality, the Optuna trial
had an average percent error of —4.5 %, meaning the full-training loop
seemingly decreased the model’s quality. Thus, the hyperparameters for
the full training run were reverted to the Optuna trial hyperparameters,
and the same parameters from Table 5 were used for a training run that
aimed to replicate what the Optuna trial found. Instead, this yielded a
100 closed-loop average percent error of 2.07 %+8.12 % with a variance
of 66.01 %. Not only did the value change, but it went from significantly
better than the long-horizon controller to worse while still retaining the
flawed fitting demonstrated in Figs. 6 and 7. Since closed-loop error
predominantly comes from trials near the origin, the IQR method is
applied to filter out outliers, which yielded an 84 closed-loop average
percent error of 0.41 % + 0.4 % with a variance of 0.17 %. Even ignoring
the outliers, the resulting RL-controller not only struggles to maintain
consistent performance relative to the long-horizon LMPC, but also fails
to perform better for most trials.

Remark 21. Figs. 6 and 7 include plots of the long-horizon LMPC
and the fallback Proportional controller as a point of reference. These
figures demonstrate desirable properties (smooth transitions between
control actions and no offset near the origin) that are satisfied by the
controllers that we aim to mimic with the RL-based control design. The
HJB-based controller, FNN-based controller, and short-horizon LMPC
are not included as they are unnecessary to demonstrate this point and
would only clutter the figures with excess information.

Remark 22. Figs. 6 and 7 do not demonstrate real-time implemen-
tation of the TD3-based controller to the process due to the lack
of the constraint enforcer. Behavior such as the offset demonstrate
how, in the absence of the constraint enforcer, closed-loop stability is
not guaranteed. Real-time implementation of the TD3-based controller
would require the constraint enforcer to correct this behavior.

4.7.3. TD3-based controller hyperparameter tuning analysis

The training of this RL-controller requires that both the Actor and
Critic converge before being considered complete; however, the prac-
tical implementation of the resulting controller depends on the quality
of the Actor. The Critic only serves as a means to assist in the training

of the Actor, but in practice, the method struggles to train an Actor
so that it can handle higher levels of complexity in the closed-loop
trajectories as shown in Fig. 7. One can see that, despite the state
trajectories only deviating slightly, the control action trajectory lacks
the smoothness found in either the reference Proportional controller
or the long-horizon LMPC. The result of this is a cumulative cost over
the trajectory that exceeds the long-horizon LMPC. A consequence of
this variance is that not all sampled initial states will explore regions
in the state-space that require intricate control action patterns, nor
will they all be near the origin. Thus, even with 100 samples, the
evaluation portion of the training loop would fail to properly quantify
the model’s performance, leading to training results that are overly
optimistic. TD3’s reliance on several forms of inherent randomness
further distorts the consistency of the results, although this is not as
a significant contributing factor compared to the high step count and
the use of soft updating steps which dampen the influence of rapid
changes. This result is the primary reason why the following analysis
will now focus on if the Optuna study can provide insights into how to
overcome this variability, instead of a robust closed-loop performance
assessment as was done for the HJB-based controller; the TD3-based
method is too noisy for consistent results and too difficult to assess the
quality of during training.

Optuna provides tools to analyze the parameter importance and
the overall sensitivity of the method to hyperparameter optimality. To
start, recall that the objective function of this study is the average
percent error of the RL-controllers’ trajectory cost relative to the long-
horizon LMPC baseline over all evaluated trials. Although this term
would give a good estimate for performance for a given initial point,
it varies significantly depending on the complexity of the dynamics
encountered along the closed-loop trajectory for any given starting
point. Additionally, the non-zero risk of the LMPC system failing to
solve, any potential inaccuracies in our reference controller design, and
any regional inaccuracies of the RL-controller can result in a percent
error value that can also vary significantly between evaluations. To
attempt to mitigate this issue for any given trial, the mean percent
error is averaged across the 3 most recent evaluation runs. A key
exception to this is that trials that fully complete the training run
without being pruned will report the percent error value from the
final set of closed-loop runs only instead of using a moving average
approach. This was done with the intent of isolating good-quality runs,
but had the unintended consequence of reintroducing the variability
issue as well as including trials whose convergence was slow but
progressive enough to not trigger any early stopping or pruning. As

14
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Fig. 7. Closed-loop trajectory for sample #22 of the 100 trajectories used in the calculation of the average MSE for the TD3-based RL-controller. This sample
demonstrates the coarseness of the TD3-based RL-controller in the absence of fallback control for regions of the state-space where the dynamics are more
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Hyperparameter Optimization History for TD3 in CSTR Control
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Fig. 8. Evolution of the best objective values under Optuna trials.

a result, the Optuna trial demonstrated a steady rate of improvement
over time for the best final objective value, as shown in Fig. 8. It is
important to point out that while TD3 aimed to reduce the issue of
exploitation, this steady improvement indicates that the Optuna study
may have exploited the variability of the evaluation loop itself. To
determine if the study truly failed due to exploitation of the evalua-
tion noise, we must observe the hyperparameter interconnectivity and
compare the results to what is known in RL theory. Most importantly,
the behaviors should demonstrate that the bias/variance balance and
exploration/exploitation balance are being considered.

Optuna provides several tools for further analysis of the results as
a means to aid in any extra fine-tuning that may be done. A key tool
is the “importance” of the tuned hyperparameters. Like the LMPC, the
hyperparameter tuning process suffers from the curse of dimensionality,
and so it is a good practice to narrow the number of parameters to
tune and the range of these parameters. Unfortunately, this is difficult
for the TD3 method, as there are a large number of hyperparameters
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that need to be considered. With a robust enough study, one can use
the importance metrics to determine for future cases which parameters
are worth optimizing. Table 4 demonstrates how the Optuna study
that was carried out for the TD3-based system is sufficiently broad to
encompass the key hyperparameters for the TD3 method. By modifying
the study, it becomes possible to extract Optuna’s native importance
analysis methodology and apply it to the top quartile of trials in the
study independently. Fig. 9 demonstrates the resulting importance
values of the hyperparameters for the global scope of the study and
for the top quartile of the study. This is beneficial as it allows for an
understanding of parameters that should be tuned initially for broader
performance (overall, global scope) as well as parameters that should
be further fine-tuned to truly maximize the performance of the method
(top quartile scope).

The results of this chart demonstrate the importance, or lack thereof,
of the modifications that TD3 introduces over the standard DDPG
algorithm at the global scale. Of the three modifications, there is an
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was of higher quality.

implied significance from the dual-Q design via the importance of the
Critic learning rate, and there is notable significance from the policy
noise term. Most surprisingly, the policy update delay is found to

have negligible influence. Thus, on a global

tions do not necessarily dictate the model’s performance. Instead, this

scale, the TD3 modifica-
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demonstrates that the baseline performance is heavily influenced by the
degree to which exploration is allowed, and the corresponding degree
to which the results are exploited by the Critic.

On the top quartile scale, these results change. Instead of a focus
on the exploration vs exploitation dilemma as is common for RL tasks,
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Fig. 11. Histogram (Left) and box plot (Right) of hyperparameters from the top-quartile of trials sorted by their global importance from Fig. 9.

the factors that influence the fine-tuned performance of the model
emphasize regularization, model complexity, and the learning rates.
This too is an understandable trend, as the balance between these
three behaviors is what enables finer fitting to more complex behaviors;
however, the importance of these terms tells an incomplete story. To
better understand the meaning of these results, the distribution of these
hyperparameters needs to be further analyzed. Figs. 10-12 aim to
visualize this information.

Fig. 10 demonstrates that a moderate to high Critic learning rate,
higher exploration noise, and large soft update coefficients lead to
better objective values. Fig. 11 validates these findings. Due to the
use of the OneCycleLR scheduler, all learning rates represent the max-
imum learning rate, where the true learning rate begins at 1/25 of
this value before rapidly reaching the max and gradually decaying to
1 x 10~* times the max. Thus, it is understandable that moderate to
high learning rates are preferred over lower values, as this enables the
use of a broader range of learning rates. The model will aggressively
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search in the beginning, followed by incrementally slowing the learning
process near the end of the trial to allow for refinement. Similarly, the
exploration noise term is designed to decay as the process proceeds. The
rationalization of the soft-update coefficient behavior is less clear. It is
possible that less dampening via the target models better complements
the slow exploration and learning of later steps, or perhaps the need
for such aggressive dampening is a hindrance to the model’s learning
process after proper pretraining. The figure further demonstrates that
moderate to high policy noise and Critic learning rates improve the
objective values. While the Critic’s learning rate behavior matches the
explanation regarding the scheduler above, the policy noise does not
decay like the exploration noise. Such high policy noise might explain
the trend with the soft update coefficient; in order to compensate for
the loss of dampening via soft weight updates, the policy noise, the
other mode of countering exploitation in the TD3 algorithm, becomes
higher. Finally, the Actor pre-training learning rates lack an obvious
trend. This term is important for ensuring good pretraining, but this
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Fig. 12. Histogram (Left) and box plot (Right) of the remaining hyperparameters from the top-quartile of trials, sorted by their global importance from

can be achieved with a separate Optuna study, so further analysis of
this term is not of meaningful value.

Fig. 12 contains all the parameters that are of low importance
globally. The key takeaway from this plot is that LayerNorm worsens
the training, and that the single-step delay and lower Actor learning
rates are helpful. Of these, the Actor learning rate is the most important
for the top quartile of runs, and the trend of favoring low values
leads to a smoother training process for the Critic, as higher learning
rates would compound with the policy noise. Fig. 13 gives insights
into how these terms appear to influence one another as well as how
they influence the objective value. Of the various takeaways from
this figure, the high correlation between the hidden layer size and
the bulk of the hyperparameters is an interesting result. In the top
quartile of runs, higher complexity in the networks was correlated with
both higher exploitation via high learning rates and less dampening,
as done in TD3/DDPG, and higher regularization via LayerNorm. It is
also correlated to worse results, which aligns with the prior plots that
show model complexity is important up to a certain point, at which
point further complexity hinders the algorithm’s performance. These
results further demonstrate that higher policy noise, which hinders
exploitation, is matched with less Actor learning, but more exploration
and more Critic learning. The higher risk of exploitation from the low
policy noise is compensated by simultaneously increasing exploration
and lowering regularization for the critic. In a sense, this demonstrates
that for the provided set-up, the benefits of the TD3 algorithm are
minimal at the global scale but critical for getting the best objective.
Only the twin-Q aspect remains inconclusive, as this was not tested.

While the results may roughly agree with RL theory, it is important
to note that extracting trends from the limited samples of this study
is inconclusive with respect to the true trends; however, the current
evidence does not support the assertion that the Optuna study suffered
from exploitation of the noisy evaluations. Thus, the poor behavior
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Fig. 13. Heatmap of hyperparameters and objective value from the top
quartile of trials. Large magnitude values indicate high correlations between
the terms on the respective row and column.

stems from either an insufficient number of trials in the Optuna study
or from problems stemming from the TD3 training loop itself. Note
that the training loop uses early stopping via closed-loop evaluation,
thereby preventing full convergence of the temporal difference loss
term as well as the actor’s loss, which prevents true convergence of
the system. The lack of full convergence is of particular concern with
regard to the actors in these trials, which tended to have low learning
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rates on top of the existing scheduler decay and soft update dampening.
Thus, despite the tuning process roughly following the trends of RL
theory, the scope of hyperparameters that have high significance and
need to be finely tuned, paired with the lengthy convergence process
of the TD3 algorithm, leads this to be an ill-suited approach for those
looking for an easy conversion to RL-based process control. There is,
however, promise in using this methodology to derive an RL-based
controller that exceeds the performance of long horizon LMPC, as
some trials yielded a better average than the HJB-based controller,
which trends towards the LMPC’s behavior. Thus, even if the near-
origin inaccuracies of the TD3-based controller are not solved with
finer tuning, the controller can potentially serve as the controller for
values far from the origin, with the HJB-based controller handling the
values near the origin. As a model-free off-policy method, TD3 has the
potential to find performance gains, but reaching this point consistently
may be a challenge.

5. Conclusion

In this work, we proposed a stabilizing reinforcement learning (RL)-
based control framework. Specifically, we enforce stability online via a
per-step Lyapunov decrease test that compares between control actions
from the RL-based controller (@, (x)) and a reference stabilizing con-
troller. When @y, (x) is less contractive (with respect to the decay rate
of a Lyapunov function for the closed-loop system) than the reference
controller for a given state, a short-horizon model predictive controller
with a contractive Lyapunov constraint (LMPC) is applied. This frame-
work is applied to two forms of RL, one using a modified TD3 algorithm
and the other using an HJB-based method. When the HJB-based RL-
controller is applied to a simulated continuous stirred tank reactor case
study, the proposed RL-based controller demonstrates stable setpoint
tracking with superior performance. In comparison with long-horizon
LMPC, short-horizon LMPC, a reference stabilizing Proportional con-
troller, and an FNN-based approximate LMPC, the RL-based controller
achieved better setpoint-tracking performance than the long-horizon
LMPC while maintaining fast computation comparable to FNN-based
approximate LMPC, thereby enabling real-time control with poten-
tially improved control quality and reduced computational burden. In
contrast, the TD3-based RL-controller demonstrated that the method
could yield notably better results than the long horizon LMPC with the
exception of poor fitting to points near the origin; however, the tuning
of such a controller is not only more important for the final closed-loop
performance, but it is also more difficult to tune effectively due to the
high sensitivity and interdependencies of the method’s extensive list of
hyperparameters.
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