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Abstract

In recent years, cyber-security of networked control systems has become crucial, as

these systems are vulnerable to targeted cyberattacks that compromise the stability,

integrity, and safety of these systems. In this work, secure and private communication

links are established between sensor–controller and controller–actuator elements using

semi-homomorphic encryption to ensure cyber-security in model predictive control

(MPC) of nonlinear systems. Specifically, Paillier cryptosystem is implemented for

encryption-decryption operations in the communication links. Cryptosystems, in general,

work on a subset of integers. As a direct consequence of this nature of encryption algo-

rithms, quantization errors arise in the closed-loop MPC of nonlinear systems. Thus, the

closed-loop encrypted MPC is designed with a certain degree of robustness to the quan-

tization errors. Furthermore, the trade-off between the accuracy of the encrypted MPC

and the computational cost is discussed. Finally, two chemical process examples are

employed to demonstrate the implementation of the proposed encrypted MPC design.
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1 | INTRODUCTION

Integration of cyber-secure strategies in physical networked control

systems, to ensure secure and safe operation, has become crucial due

to increased threats of targeted cyberattacks. In these control sys-

tems, cloud computing has been extensively used to manage large

amounts of data and to satisfy high computational power require-

ments. However, these advantages do not come without threats.

Communication via unsecure networks between different compo-

nents of the networked control systems, as well as computations

using sensitive data on outsourced platforms, can lead to the threats

of data manipulation and data interception, which would ultimately

lead to jeopardizing the stability, integrity, and profitability of the

physical process. The severity and the destructive capabilities of these

cyberattacks can be understood from the recent series of attacks on

industrial plants, such as the 2015 BlackEnergy malware attack on the

Ukrainian electric power grid1 and the 2021 cyberattack on the Colo-

nial oil pipeline system that lead to its shutdown, which consequently

lead to a tremendous increase in gasoline prices.2 Another prominent

example is that of the Stuxnet worm, which manipulated the data in

the communication links connected to programmable logic controllers

(PLC).3,4 Clearly, cyberattacks on physical control systems are

extremely dangerous as they can jeopardize physical processes via

digital manipulations5 and, hence, it is important to develop cyber-

secure architectures for control systems.

To combat cyber-security challenges in the context of informa-

tion technology, that is, the software component of the plant,
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chemical and manufacturing have implemented multifactor authenti-

cation, firewall isolation, and elaborate cyber protection protocols

over the last decade. However, in the field of operation technology,

which ensures the uninterrupted operation of robots, industrial con-

trol systems, supervisory control and data acquisition (SCADA) sys-

tems, programmable logic controllers (PLCs), and so forth, efforts to

address cyber-security had started around 2010 but only gained

momentum around 2017 due to the increase in intelligent, targeted

cyberattacks, attracting many industrial process operation and auto-

mation groups. With the increasing convergence of information tech-

nology and operation technology in the Industry 4.0 framework,

cyber-security of the operation technology domain is considered a

central component of the secure and safe operation of the chemical

sector. As a result, standards developing organizations such as the

National Institute of Standards and Technology (NIST)6 have devel-

oped fundamental cybersecurity research road maps, which are

frameworks aimed to detect and mitigate the impact of cyberattacks,

that have influenced the security protocols of several industries. Their

road map designates five areas for cyber-security practitioners and

researchers to focus on, including but not limited to security by

design, such as multitier controllers, and advanced threat detection.

While there has been a growing amount of research in some of the

key areas such as the development of machine learning-based detec-

tors for advanced threat detection,7–10 recovery of the process states

following a cyberattack,11 design of two-tier controllers12 and

cyberattack-resilient controllers for nonlinear systems,13,14 the estab-

lishment of secure remote access protocols in the chemical sector

remains an important, fundamental research issue. While secure

remote access can be ensured in a number of ways, an emerging

example is the use of encrypted control systems, whose primary

objective is to preserve privacy with respect to the confidential sys-

tem states, control inputs, controller parameters and model data.

The earliest examples of encrypted control systems were pro-

posed in 2015 and comprised of linear control laws that were mostly

applied to discrete-time, linear systems. The crux of such encrypted

control systems, where the data was encrypted from the sensor up to

the actuator, was “homomorphism.” Homomorphic encryption indi-

cates a special class of cryptographic algorithms (cryptosystems) that

allows mathematical operations to be carried out on the encrypted

data or “ciphertext.” This allows for the calculations of the control law

to be carried out in the encrypted or ciphertext space, with only the

encrypted control action being sent to the actuator, where it can be

decrypted to yield the “plaintext” data, thereby minimizing exposure of

the plaintext control action to any attackers. A cryptosystem can be

additively homomorphic, which means that addition operations may be

carried out in the ciphertext space, and/or multiplicatively homomorphic,

which allows multiplications in the encrypted space. In addition, a crypto-

system that is both additively and multiplicatively homomorphic is

known as a fully homomorphic encryption, although their applicability in

control systems is limited by their high computational demands and the

power and memory restraints in control system hardware. Hence, the

earliest encrypted control systems used linear control laws and partially

homomorphic cryptosystems, specifically the ElGamal cryptosystem15

and Rivest–Shamir–Adleman (RSA) cryptosystem,16 to demonstrate a

proof of concept for encrypted control. However, linear control laws,

especially based in the cloud, are severely restricted in terms of industrial

applications. Instead, it is far more relevant and motivated to use encryp-

tion and remote servers for computationally expensive optimization-

based control systems such as model predictive control.17

Since its conceptualization, model predictive control (MPC) has

been widely used in chemical industries to ensure closed-loop stabil-

ity, while optimizing yield and other performance metrics. The key

advantages of MPC include its ability to handle multiple inputs, out-

puts, multivariable interactions between them, and state and input

constraints by solving an optimization problem that minimizes a

desired objective function of the inputs and predicted outputs using a

process model and accounting for real-time measurement feedback.

The optimization problem is solved over a finite time horizon at every

sampling period of the MPC to compute the optimal control action,

which guarantees the stability and boundedness of the trajectories of

the system at all times. The development of an encrypted MPC frame-

work is, therefore, highly desirable for the chemical sector, due to the

ubiquitous nature of MPC in this field. In this vein, in reference 18, a

cyber-secure architecture for a linear system was designed by imple-

menting the RSA cryptosystem to encrypt the controller parameters

and the signals, while encrypted control actions were calculated in the

controller using the multiplicative homomorphism property of the

RSA cryptosystem. In references 19–21, encrypted MPC for linear

systems were proposed such that the additive homomorphism prop-

erty of Paillier cryptosystem allowed linear computations in the

encrypted space that were required to calculate encrypted MPC con-

trol actions. The main limitation of the aforementioned advances is

that the property of homomorphism only allows for additive or multi-

plicative operations, which implies we cannot perform the nonlinear

optimization calculations required for MPC in the encrypted space.

However, in a chemical plant setting, the nonlinear MPC computa-

tions may be carried out in an edge computer in a secure control

room, which can be remotely accessed by the sensors and actuators

via the network. As such, the goal is to use encryption to establish

secure links from the sensors and actuators to the physically secure

control room. The importance of the sensor–controller and the

controller–actuator links have been highlighted in several recent

works. Reference 22 investigated the effect of the control system

parameters on the closed-loop stability and detectability of a multipli-

cative sensor–controller communication link attack with respect to a

type of residual-based detection schemes, finally proposing a mecha-

nism of parameter switching of the control system to retain attack

detectability without deteriorating closed-loop performance too

aggressively. To balance the above trade-off, in reference 23, a frame-

work for active attack detection using the controller parameter

switching of reference 22 was developed, where one set of controller

parameters corresponds to conventional controller design criteria,

while the other set of controller parameters maximizes cyberattack

detectability. Due to the possibility of controller parameter switching

leading to excitement of the process, leading to false alarms, reference

24 proposed a switching condition to reduce the triggering of false
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alarms. Based on our review of the literature on encrypted MPC, to

the best of our knowledge, the use of encryption in nonlinear MPC

has not been addressed in the systems engineering literature, which

warrants the construction of such a framework.

In this work, we develop a Lyapunov-based encrypted MPC

scheme for nonlinear systems in which secure communication chan-

nels are established between the sensor–controller and the

controller–actuator links under the assumption that we have a secure

controller. The rest of this manuscript is organized as follows: in

Section 2, the class of nonlinear systems considered and details of the

Paillier cryptosystem and the quantization process are provided. In

Section 3, MPC design, the proposed encrypted MPC scheme is

described, and its closed-loop stability results are derived. In Sec-

tions 4 and 5, the proposed encrypted MPC is applied to a reactor

with recycle and a reactor operating at an unstable point, respectively,

in order to investigate the effectiveness, closed-loop stability results,

the robustness of the designed controller to quantization errors, and

the computational cost associated with different quantization parame-

ters. Finally, the conclusions are summarized in Section 6.

2 | PRELIMINARIES

2.1 | Notation

The notation j � j is used to denote the Euclidean norm of a vector. xT

denotes the transpose of x. The notation LfV xð Þ denotes the standard

Lie derivative LfV xð Þ≔ ∂V xð Þ
∂x f xð Þ. Set subtraction is denoted by “\” that

is, AnB≔ x�ℝn j x�A,x =2Bf g. ℝ,ℕ, and ℤ denote the set of real num-

bers, natural numbers, and integers, respectively. In addition, ℤM and

ℤ�
M denote the additive and multiplicative group of integers modulo

M, respectively. The function f �ð Þ is of class C1 if it is continuously dif-

ferentiable in its domain. A continuous function α : 0,a½ Þ! 0,∞½ Þ is

said to belong to class K if it is strictly increasing and is zero only

when evaluated at zero.

2.2 | Class of systems

In this work, we focus on continuous-time nonlinear systems of non-

linear first-order ordinary differential equations (ODEs) with inputs,

which is of the form,

_x¼ F x,uð Þ¼ f xð Þþg xð Þu, ð1Þ

where x¼ x1,x2,…,xn½ ��ℝn is the state vector and u�ℝm is the

manipulated input vector. The inputs to the process are bounded, that

is, u�U where the set U�ℝm is defined as

U≔ u�U j umin,i ≤ ui ≤ umax,i , 8 i¼1,2, � � �,mf g. umin,i and umax,i are

physical bounds and define the minimum and maximum value that

each manipulated input can attain. f �ð Þ is a sufficiently smooth vector

function and g �ð Þ is a sufficiently smooth matrix function. Without

loss of generality, it is assumed f 0ð Þ¼0 and, hence, the origin is a

steady state of the nonlinear system of Equation (1). Throughout this

article, the initial time is assumed to be zero (i.e., t0 ¼0). Furthermore,

we will use the following notation: the space of continuous functions

mapping the interval a,b½ � to the space ℝn is given by C a,b½ �,ℝnð Þ. The
norm of a continuous function ϕ�C a,b½ �,ℝnð Þ is given by k � k which

is defined as kϕ k¼ max
a≤ s ≤ b

jϕ sð Þ j. Set subtraction is denoted as:

AnB≔ x�ℝn j x�A,x =2Bf g. C1 denotes the class of continuously dif-

ferentiable functions. The set of piecewise constant functions with a

period Δ is denoted by S Δð Þ.

2.3 | Stabilization via Lyapunov-based feedback
control

We assume that there exists a feedback controller u¼Φ xð Þ�U which

can render the origin of the system of Equation (1) exponentially sta-

ble in the sense that there exists a continuously differentiable control

Lyapunov function V xð Þ such that the following inequalities hold for

all x�D, where D is an open neighborhood around the origin25,26:

c1jxj2 ≤V xð Þ≤ c2jxj2, ð2aÞ

∂V xð Þ
∂x

F x,Φ xð Þð Þ≤ �c3jxj2, ð2bÞ

∂V xð Þ
∂x

���� ����≤ c4 j x j , ð2cÞ

where c1,c2,c3, and c4 are positive constants. The approach in refer-

ence 27 can be used to construct one such stabilizing controller. Addi-

tionally, on the basis of the Lipschitz property of F x,uð Þ and the

bounded nature of u, there exist positive constants MF , Lx, and L
0
x such

that the following inequalities hold for all x,x0 �D and u�U:

j F x,uð Þ j ≤MF , ð3aÞ

j F x,uð Þ�F x0 ,uð Þ j ≤ Lx j x�x0 j , ð3bÞ

∂V xð Þ
∂x

F x,uð Þ� ∂V x0ð Þ
∂x

F x0 ,uð Þ
���� ����≤ L0

x j x�x0 j : ð3cÞ

For the nonlinear system of Equation (1), the closed loop stability

region is characterized as a level set of the Lyapunov function V. This

stability region Ωρ is defined as Ωρ ≔ x�DjV xð Þ≤ ρf g, where ρ>0.

2.4 | Paillier cryptosystem

In this article, we use the Paillier cryptosystem28 for encryption and

decryption of both process measurements, x, that are sent to the con-

trol system and of the control actions, u, that are calculated by the

control system and sent to the control actuators. Paillier cryptosystem

is a partially homomorphic encryption scheme that allows addition

SURYAVANSHI ET AL. 3 of 21
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operations in the encrypted message space. The security guarantees

of Paillier encryption rely on a standard cryptographic assumption

called Decisional Composity Residuocity (DCR).18,19,28,29 Paillier

encryption has been widely used, especially in the context of linear

MPC, due to its additive homomorphism property greatly reducing

the communication load and number of decryptions required in linear

MPC, as compared to, for example, a multiplicative homomorphic

algorithm such as the ElGamal cryptosystem.29 Paillier cryptosystem

encrypts plaintext messages from a subset of ℕ, and the public key of

encryption decides the cardinality of such a subset. The first step in

the encryption process is the generation of public and private keys. A

public key is used to encrypt integer messages into ciphertexts. A pri-

vate key is used to decrypt ciphertexts and obtain the original integer

message. The public and private keys of the Paillier cryptosystem are

generated as follows:

1. Randomly choose two large random prime integers p and q such

that gcd pq, p�1ð Þ q�1ð Þð Þ¼1 where gcd i, jð Þ is a function that

returns the greatest common divisor of i, j�ℕ.

2. Compute M¼ pq and λ¼ lcm q�1,p�1ð Þ, where lcm i, jð Þ refers to

the least common multiple of the integers i, j.

3. Choose a random integer g such that, g�ℤ�
M2 where ℤ�

M2 is the

multiplicative group of integers modulo M2.

4. Define L xð Þ¼ x�1ð Þ=M.

5. Check the existence of the following modular multiplicative

inverse: u¼ L gλmodM2
� �� ��1

mod M.

6. If the inverse does not exist, go back to step 4 and choose a differ-

ent value of g.

7. If the inverse exists, we have the public key M,gð Þ and the private

key λ,uð Þ.

Once the keys are obtained, the data m�ℤM, which can either be

quantized states or quantized inputs, is encrypted as follows:

EM m, rð Þ¼ c¼ gmrM mod M2, ð4Þ

where r�ℤM is a random integer and c is the ciphertext obtained after

encryption of m. To decrypt a ciphertext c�ℤM2 , it is required to

calculate:

DM cð Þ¼m¼ L cλ mod M2
� �

u mod M: ð5Þ

Remark 1. In this study, as the data is decrypted before

being used in the MPC calculation, the advantage of the

homomorphic property of Paillier cryptosystem is not

retained. However, we use Paillier cryptosystem not

due to its homomorphism but rather to avoid the com-

putational burden of more advanced encryption algo-

rithms such as AES, whose applicabililty is limited by

power and memory constraints on process control

hardware.

2.5 | Quantization

Paillier cryptosystem encrypts numbers from a subset of ℕ. This sub-

set is given by the set ℤM. Hence, it is important to map real number

data (state measurements from the process, and inputs calculated by

the controller), which are in the form of floating point numbers, to

the set ℤM in order to encrypt and decrypt signals in the sensor–

controller and controller–actuator links. Quantization functions

are used to map this real number data to the set ℤM.
19 For this pur-

pose, we consider signed fixed-point numbers in the base 2. The

quantization parameter l1 denotes the number of total bits and d

denotes the number of fractional bits. Based on these quantization

parameters, a set Ql1 ,d is constructed which contains rational numbers

from �2l1�d�1 to 2l1�d�1�2�d with the rational numbers separated

from each other by a resolution of 2�d. A rational number q in the set

Ql1 ,d can be represented as: q�Ql1,d such that, 9β� 0,1f gl1 and

q¼�2l1�d�1βl1 þ
P l1�1

i¼1 2i�d�1βi. Given a real number data point a, the

function gl1,d that maps a to the set Ql1,d is given by the equation,

gl1,d :ℝ!Ql1,d,

gl1,d að Þ≔ arg min
q � Ql1 ,d

ja�qj, ð6Þ

which finds the quantized rational number closest to the real number

data point. Subsequently, using a bijective mapping fl2,d,
19 we map the

quantized data to a set of integers that is a subset of the message

space ℤM. The bijective mapping is defined as:

fl2,d :Ql1,d !ℤ2l2 ,

fl2,d qð Þ≔2dq mod 2l2 :
ð7Þ

Encryption of integer plaintext messages is carried over the set

Z2l2 and the ciphertexts are decrypted into the same set Z2l2 . The

ciphertexts are decrypted at the controller and at the actuator to

obtain the integer plaintext messages corresponding to the quantized

states and quantized inputs, respectively. Hence, it is important to

map the decrypted plaintext messages to the set Ql1,d. The inverse

mapping f�1
l2,d

is defined as:

f�1
l2 ,d

:ℤ2l2 !Ql1,d, ð8Þ

f�1
l2,d

mð Þ≔ 1

2d

m�2l2 if m≥2l2�1

m otherwise

(
: ð9Þ

3 | ENCRYPTED MPC DESIGN

In the proposed closed-loop design of Figure 1, signals x tð Þ from the

sensor are encrypted and sent to the model predictive controller

(MPC). Before nonlinear computations are performed, the encrypted

data is decrypted to obtain quantized states bx tð Þ. At time t, the plant

4 of 21 SURYAVANSHI ET AL.
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model in the MPC is initialized using the quantized states bx tð Þ. The
MPC calculates the optimized inputs u tð Þ, and these inputs are

encrypted before being sent to the actuator. These encrypted inputs

are further decrypted and the quantized inputs bu tð Þ are applied to the

process.

Two sources of errors are identified in the above closed loop

design. There is a state quantization error in the sensor–controller

communication link, and there is also an input quantization error in

the controller–actuator communication link. These quantization errors

arise as a direct consequence of mapping the state and input data

from ℝ to Ql1,d. Based on the mapping of Equation (6), these quantiza-

tion errors are bounded such that:

j x tð Þ�bx tð Þ j ≤ η12�d, ð10aÞ

j u tð Þ�bu tð Þ j ≤ η22�d, ð10bÞ

where η1,η2 > 0, and d is the quantization parameter of the mapping

of Equation (6). Given the quantization error in the input applied to

the process, the nonlinear system of Equation (1) in the closed-loop

design of Figure 1 takes the form,

_x¼ F x,buð Þ¼ f xð Þþg xð Þbu
¼ f xð Þþg xð Þ uþe2ð Þ, ð11Þ

where e2 ¼bu tð Þ�u tð Þ and

j e2 j ≤ η22�d: ð12Þ

Second, there is an error in the computed control action, as the

controller receives the quantized state bx instead of the actual state x.

For the stabilizing control law u¼Φ xð Þ�U, this error in the control

action is bounded as:

jΦ bxð Þ�Φ xð Þj≤ L1 jbx�x j ≤ L012�d : ð13Þ

Taking into account the above errors, we perform a closed-loop

stability analysis for the proposed encrypted control system using first

the Lyapunov-based controller and then the MPC.

3.1 | Closed-loop stability of encrypted control

The presence of quantization errors in the sensor–controller

and controller–actuator communication links requires us to

characterize a new closed-loop stability region Ωbρ embedded in

Ωρ (i.e., bρ< ρ). The following result establishes that the controller

Φ xð Þ�U can stabilize, in a sense to be made precise below, the origin

of the nonlinear system of Equation (11) under an encrypted

controller.

Theorem 1. Consider the nonlinear system of Equation

(11) under encrypted control, with the initial state

x0 �Ωbρ and with the stabilizing control law u¼Φ xð Þ�U.

Then, the origin of the closed-loop system of Equation

(11) under encrypted control is rendered practically sta-

ble for all x0 �Ωbρ in the sense that the closed-loop state

x tð Þ remains in Ωρ for all times and that the following

inequalities hold:

_V ≤ �c5jxj2 8 j x j ≥ c42
�d γ1þ γ2ð Þ
c3θ

¼ μ, ð14aÞ

limsup
t!∞

j x j ≤ b, ð14bÞ

where d is the quantization parameter, c3,c4,γ1,γ2,b>0,

0< θ <1, and c5 ¼ 1�θð Þc3.

Proof. Based on the nonlinear system of Equation (11),

the time derivative of V can be written as:

_V¼ ∂V
∂x

F x,buð Þ

¼ ∂V
∂x

F x,uþe2ð Þ

¼ ∂V
∂x

F x,Φ bxð Þþe2ð Þ

¼ ∂V
∂x

f xð Þþg xð Þ Φ bxð Þþe2ð Þ½ �

¼ ∂V
∂x

f xð Þþg xð Þ Φ bxð Þ�Φ xð ÞþΦ xð Þþe2ð Þ½ �

¼ ∂V
∂x

f xð Þþg xð ÞΦ xð Þþg xð Þ Φ bxð Þ�Φ xð Þð Þþg xð Þe2½ �

¼ ∂V
∂x

f xð Þþg xð ÞΦ xð Þð Þþ ∂V
∂x

g xð Þ Φ bxð Þ�Φ xð Þð Þþ ∂V
∂x

g xð Þe2:

ð15Þ

Based on Equation (2b), it follows that

_V ≤ �c3jxj2þ ∂V
∂x

g xð Þ Φ bxð Þ�Φ xð Þð Þþ ∂V
∂x

g xð Þe2 : ð16Þ

Applying the inequalities of Equation (2c),

Equation (12) and Equation (13), it follows that

F IGURE 1 Schematic of closed-loop system
under encrypted MPC. MPC, model predictive
controller.
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_V ≤ �c3jxj2þc4γ1jxj2�dþc4γ2jxj2�d

≤ �c3jxj2þc4jxj2�d γ1þ γ2ð Þ
≤ � 1�θð Þc3jxj2�θc3jxj2þc42

�d γ1þ γ2ð Þ j x j :
ð17Þ

Therefore, if the condition of Equation (14a) on j x j
is satisfied that is, j x j ≥ c42

�d γ1þγ2ð Þ
c3θ

¼ μ, it follows that

_V ≤ � 1�θð Þc3jxj2
≤ � c5jxj2,

ð18Þ

where c5 ¼ 1�θð Þc3. Thus, based on Equation (18), we

have that _V is negative for all x�Ωbρ that satisfy the con-

dition of Equation (14a).

Based on the fact that Ωbρ is a level set of V and that
_V is negative for all x�Ωbρ, we have that the state of the

closed-loop system x tð Þ stays in Ωbρ for all times. Further-

more, using theorem 4.18 in reference 30, it follows that

lim sup
t!∞

jx tð Þj≤ b , ð19Þ

where b is a positive constant (which can be expressed

as a class K function of μ). Hence, as the quantization

parameter d!∞, following the definition of μ from

Equation (14a), μ!0 and, therefore, the ultimate bound

approaches zero, proving that larger values of the quan-

tization parameter d results in a smaller error between

the state and input trajectories of the encrypted control

system and the nonencrypted control system. This

proves that the closed-loop states of the nonlinear sys-

tem of Equation (11) are uniformly ultimately bounded

under the stabilizing controller u¼Φ xð Þ�U for suffi-

ciently large d.

3.2 | Encrypted Lyapunov-based MPC

In this section, a feedback MPC is formulated for the closed-loop

design of the nonlinear system of Equation (1) with secure sensor–

controller and controller–actuator communication links. Control

actions will be implemented on the nonlinear system in a sample-and-

hold fashion with a sampling period of Δ.31,32 The proposed MPC for-

mulation is as follows:

J ¼ min
u � S Δð Þ

ðtkþN

tk

L ex tð Þ,u tð Þð Þdt, ð20aÞ

s:t: _ex tð Þ¼ F ex tð Þ,u tð Þð Þ¼ f exð Þþg exð Þu, ð20bÞ

u tð Þ�U,8t� tk ,tkþN½ Þ, ð20cÞ

ex tkð Þ¼bx tkð Þ, ð20dÞ

_V bx tkð Þ,uð Þ≤ _V bx tkð Þ,Φ bx tkð Þð ÞÞ, ifbx tkð Þ�ΩbρnΩρmin
,

�
ð20eÞ

V ex tð Þð Þ≤ ρmin ,8t� tk ,tkþN½ Þ, ifbx tkð Þ�Ωρmin
, ð20fÞ

where the predicted state trajectory is denoted by ex, the set of

piecewise constant functions with period Δ is denoted by S Δð Þ and

the number of sampling periods in the prediction horizon is denoted

by N. The Lyapunov-based MPC calculates the optimal input

sequence u� tjtkð Þ over the entire prediction horizon t� tk ,tkþN½ Þ, and
the first input of this sequence is sent to the actuator to be applied to

the system for all t� tk ,tkþ1½ Þ. Note that, in the MPC optimization

problem of Equation (20), the first-principles process model imple-

mented in the MPC uses the quantized states bx to predict the state

trajectory.

In the encrypted Lyapunov-based MPC (LMPC) formulation,

Equation (20a) integrates the cost function over the entire pre-

diction horizon, and Equation (20b) describes the plant-model

being used in LMPC. The constraint of Equation (20c) denotes

the constraints on the control inputs. The constraint of

Equation (20d) initializes the plant model of Equation (20b)

with quantized states. If x tkð Þ�ΩbρnΩρmin
, where ρmin corresponds

to a level set of V that is considered sufficiently close to the

origin, then the Lyapunov constraint of Equation (20e) drives

the closed-loop state, x tkð Þ, of the nonlinear system of

Equation (11) towards the origin. Once the closed-loop state

x tkð Þ enters the region Ωρmin
, then the constraint of Equation (20f)

ensures that this state remains in Ωρmin
over the entire prediction

horizon.

The following theorem addresses the closed-loop stability

of the nonlinear system of Equation (11) under the

encrypted LMPC.

Theorem 2. Consider the system of Equation (11),

under the closed-loop encrypted LMPC design of Equa-

tion (20) based on the stabilizing controller,

u¼Φ xð Þ�U, satisfying the inequalities in Equation

(2) and assume that the initial state x0 �Ωbρ. Let

Δ> 0,εw >0 and bρ> ρmin > ρs satisfy,

�c3
c2

ρsþL0xMFΔþL0wδ≤ �εw

ρmin ¼ max V x tþΔð Þð ÞjV x tð Þð Þ≤ ρsf g:
ð21Þ

Then, the state of the closed-loop system x tð Þ is

always bounded in Ωbρ and is ultimately bounded

in Ωρmin
.

Proof. Consider the state x tkð Þ�ΩbρnΩρs . The time-

derivative of V under the control inputs calculated by

the LMPC of Equation (20) for the nonlinear system of

Equation (11) at tk can be written as:

6 of 21 SURYAVANSHI ET AL.
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_V¼ ∂V x tð Þð Þ
∂x

F x tð Þ,u tkð Þ,e2ð Þ,

_V¼ ∂V x tkð Þð Þ
∂x

F x tkð Þ,u tkð Þð Þ

þ ∂V x tð Þð Þ
∂x

F x tð Þ,u tkð Þ,e2ð Þ

� ∂V x tkð Þð Þ
∂x

F x tkð Þ,u tkð Þð Þ,

ð22Þ

for all t� tk ,tkþ1½ �.
In the encrypted LMPC, the constraint of

Equation (20e) ensures that, if x tkð Þ�ΩbρnΩρmin
, then the

closed-loop state is driven towards the origin at tkþ1 (to

a lower level set of V). Based on the inequality of

Equation (2b), it follows from Equation (22) that:

_V ≤ �c3jx tkð Þj2þ ∂V x tð Þð Þ
∂x

F x tð Þ,u tkð Þ,e2ð Þ

� ∂V x tkð Þð Þ
∂x

F x tkð Þ,u tkð Þð Þ:
ð23Þ

Based on the fact that the error, j e2 j ≤ η22�d ¼ δ is

bounded, the Lipschitz conditions of Equation (3), and

the inequality of Equation (2a), it follows from

Equation (23) that:

_V ≤ � c3
c2

ρsþL0x j x tð Þ�x tkð Þ j þL0wδ, ð24Þ

where L0w >0. Due to the continuity of x tð Þ8t� tk ,tkþ1½ Þ,
we can write that j x tð Þ�x tkð Þ j ≤MFΔ8t� tk ,tkþ1½ Þ.
Using this bound, it follows from Equation (24) that:

_V ≤ �c3
c2

ρsþL0xMFΔþL0wδ: ð25Þ

Thus, if � c3
c2
ρsþL0xMFΔþL0wδ≤ �εw , then _V ≤ �εw

for any x tkð Þ�ΩbρnΩρs . This establishes that the state of

the closed-loop system is always bounded in Ωbρ, and it

ultimately converges to Ωρs ⊆Ωρmin
and then remains

there.

Remark 2. It is important to note that the focus of this

work is on the cyber-security of the sensor–controller and

controller–actuator communication links in a nonlinear

MPC scheme. Other studies such as reference 29 use

semi-homomorphic encryption schemes to avoid decrypt-

ing/encrypting the process states and inputs before and

after the MPC block in Figure 1, that is, the data is

encrypted from the sensor block to the actuator block,

which provides protection against eavesdropping by a

cloud provider or neighboring agents. However, such

results are restricted to linear controllers with a feedback

gain since the complex, numerous computations required

in MPC, particularly nonlinear MPC, are not possible to

carry out in the encrypted space where only either addition

or multiplication may be performed. The proposed

encrypted MPC architecture is most valuable in a chemical

plant setting, where encryption is required to have secure

links from the sensors and actuators to the control room,

where the nonlinearMPC calculations are carried out, since

the control room itself is physically secure and only com-

municates with the sensors and actuators via the network.

4 | APPLICATION TO A CHEMICAL
REACTOR WITH RECYCLE

4.1 | Process description

In this section, we apply the above methodology to a chemical reactor

example, specifically the system from reference 33 without input or

state delays in the process as shown in Figure 2. We demonstrate the

encrypted MPC approach on a well-mixed nonisothermal continuous

stirred tank reactor (CSTR) with a recycle stream and analyze the
F IGURE 2 Process flow diagram of the CSTR with recycle. CSTR,

continuous stirred tank reactor.

F IGURE 3 Demonstration of the effect of

varying d on the quantization error for the sine
function.

SURYAVANSHI ET AL. 7 of 21
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,
,
,
,
,
,
,

F IGURE 4 State and input
profiles of closed-loop simulations
under LMPC with encryption (red line)
and without encryption (green line),
where d¼1, for the stable steady
state. LMPC, Lyapunov-based model
predictive controller.

,
,
,
,
,
,
,

F IGURE 5 State and input
profiles of closed-loop simulations
under LMPC with encryption (red line)
and without encryption (green line),
where d¼2, for the stable steady
state. LMPC, Lyapunov-based model
predictive controller.
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,
,
,
,
,
,
,

F IGURE 6 State and input profiles
of closed-loop simulations under
LMPC with encryption (red line) and
without encryption (green line), where
d¼3, for the stable steady state.
LMPC, Lyapunov-based model
predictive controller.

,
,
,
,
,
,
,

F IGURE 7 State and input profiles
of closed-loop simulations under
LMPC with encryption (red line) and
without encryption (green line), where
d¼4, for the stable steady state.
LMPC, Lyapunov-based model
predictive controller.
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,
,
,
,
,
,
,

F IGURE 8 State and input profiles
of closed-loop simulations under
LMPC with encryption (red line) and
without encryption (green line), where
d¼5, for the stable steady state.
LMPC, Lyapunov-based model
predictive controller.

,
,
,
,
,
,
,

F IGURE 9 State and input profiles
of closed-loop simulations under
LMPC with encryption (red line) and
without encryption (green line), where
d¼6, for the stable steady state.
LMPC, Lyapunov-based model
predictive controller.
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,
,
,
,
,
,
,

F IGURE 10 State and input
profiles of closed-loop simulations
under LMPC with encryption (red line)
and without encryption (green line),
where d¼7, for the stable steady
state. LMPC, Lyapunov-based model
predictive controller.

,
,
,
,
,
,
,

F IGURE 11 State and input
profiles of closed-loop simulations
under LMPC with encryption (red line)
and without encryption (green line),
where d¼8, for the stable steady
state. LMPC, Lyapunov-based model
predictive controller.
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effects of encryption on the trajectories and closed loop stability. In the

CSTR, an irreversible, second-order, elementary, exothermic reaction

occurs, which is given as A!B. The CSTR is equipped with a jacket to

remove/supply thermal energy at a rate of Q. A first-principles model

can be constructed based on the material and energy balances across

the CSTR. Using these balances, we can write the differential equa-

tions describing the nonlinear dynamics of the process as:

dCA

dt
¼ 1�λð ÞF

V
CAþ λF

V
CA0� F

V
CA�k0e

�E
RTC2

A, ð26aÞ

dT
dt

¼ 1�λð ÞF
V

TþλF
V
T0� ΔH

ρLCp
k0e

�E
RTC2

Aþ
Q

ρLCpV
, ð26bÞ

where CA is the concentration of reactant A, and T is the temperature

in the reactor. The inlet feed has a volumetric flow rate of λF, where λ

is the fraction with which the outlet stream is split—the fraction λ of

the outlet stream being the product stream, whereas the fraction

1� λð Þ of the outlet stream is recycled back to the reactor (recycle

stream). The feed temperature is T0, and the inlet feed containing only

A has a concentration of CA0. V is the volume of the reactor, and Q is

the rate of heat removal from the reactor. The values and definitions

of all the other parameters are reported in reference 33. For the

above process, the reactant concentration CA and the temperature of

the reactor T, in deviation terms, are the state variables

(xT ¼ CA�CAs T�Ts½ �). The inlet feed concentration CA0 and the rate

of heat removal Q are the manipulated inputs to our process, which

are bounded to be in the closed sets: Q� �80:0,80:0½ � MJ=h and

CA0 � 0:5,7:5½ � kmol=m3. We investigate the stable steady state of the

CSTR system of Equation (26), which is achieved at the point

CAs Ts½ � ¼ 2:96 kmol=m3 320 K
� �

under manipulated input values of

Qs ¼12:2 MJ=h and CA0s ¼4 kmol=m3.

In the encrypted network, secure communications are established

between the sensor–controller and controller–actuator links. Before

we encrypt the states and inputs, it is important to quantize the data.

Using the first quantization function, gl1,d að Þ, we map state and input

data in real numbers to the set Ql1,d. The largest value in the set Ql1,d

is given as 2l1�d�1�2�d, which should always be greater than or equal

,

F IGURE 12 State and input profiles of closed-loop simulations under LMPC with encryption (red line) and without encryption (green line),
where d¼1, for the unstable steady state. LMPC, Lyapunov-based model predictive controller.

12 of 21 SURYAVANSHI ET AL.
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to the maximum value of permissible inputs and the maximum possi-

ble values of the states in the operating region. Similarly, the lowest

value in the set Ql1,d is given as �2l1�d�1 and, hence, this value should

be smaller than the minimum value of permissible inputs and minimum

possible values of the states in the operating region. Based on this, we

get the minimum value of l1�d as 18, and we have to choose the

value of l1 and d accordingly. The rational numbers in the set Ql1,d are

separated by a resolution of 2�d, which means that the higher the

value of d, the lesser is the quantization error and the higher is the

computational cost. This relation between the error and the value of d

is demonstrated in Figure 3, where the function sinx, for x� 0,π½ � is
quantized with d¼2 and d¼4, resulting in resolutions of 0.25 and

0.0625, respectively. For the purpose of simulations, we vary the

values of d from 1 to 8 in increments of 1 and thus, the value of l1 var-

ies from 19 to 26 in increments of 1. For the second quantization, it is

required to have l2 > l1. Hence, we select the value l2 ¼29. Once we

have identified values of all the quantization parameters, we quantize

the states and inputs, and encrypt them according to the Paillier

Encryption algorithm. For the implementation of Paillier Encryption,

the “phe” module in Python is used.34 The first-principles model of

Equation (26) is used as the process model in the MPC, and the opti-

mization problem is solved using the Python module of the IPOPT

software.35 The dynamic model of Equation (26) is simulated numeri-

cally using the explicit Euler method with an integration time step of

hc ¼10�4 hr. The sampling period is Δ¼10�2 h. The control Lyapu-

nov function V¼ xTPx is constructed using the positive definite

matrix,

P¼ 500 20

20 1

� �

obtained from extensive simulations. A stabilizing proportional con-

troller is designed to be the lower bound for the LMPC, and the pre-

diction horizon for the LMPC is chosen as N¼2. Through extensive

simulations, we determine ρmin ¼0:1. The LMPC cost function of

Equation 20a is chosen to be L x,uð Þ¼ xTQ1xþuTQ2u, which achieves

its minimum value at the origin. Q1 and Q2 are the MPC weight matri-

ces that, after carefully tuning, are taken as Q1 ¼
10 0

0 1

� �
and

Q2 ¼
0:03 0

0 8�10�7

� �
, respectively.

,

F IGURE 13 State and input profiles of closed-loop simulations under LMPC with encryption (red line) and without encryption (green line),
where d¼2, for the unstable steady state. LMPC, Lyapunov-based model predictive controller.
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4.2 | Simulation results

We apply the encrypted LMPC to the CSTR initialized from the point,

x0 ¼ �1:7 kmol=m3 50 K
� �

, and observe the closed-loop simulation

results for values of d between 1 and 8, inclusive. The state and input

profiles are shown in Figures 4–11. In Figures 4–6, it can be observed

that the state x1 as well as the input u1 experience large oscillations

when using the encrypted MPC, rendering the encrypted MPC unable

to practically stabilize the closed-loop system in the sense of trapping

the states in a small neighborhood Ωρmin
around the origin. This can be

attributed to the large quantization error at values of d≤3. For d¼1,

with the quantizated states being separated by a resolution of 2�1 or

0.5, it is observed that the dithering in Figure 4 begins when the state

x1 first crosses the threshold of �0:25, causing any values above this

to be mapped to zero. A similar behavior is seen in Figure 5 for d¼2,

where the resolution is higher and the dithering begins when x1

reaches a value greater than �0:125, implying that d¼2 is still smaller

than necessary for this system. At d¼4, as seen in Figure 7, the states

under the MPC with and without encryption almost overlap, with the

oscillations/dithering in x1 and u1 mostly mitigated. At values of d≥5,

the quantization error is sufficiently small, leading to the closed-loop

states and manipulated input profiles under MPC with and without

encryption being nearly identical, as seen in Figures 8–11. Since the

closed-loop states are driven by the encrypted MPC to a neighbor-

hood Ωρmin
around the origin, the system is considered to be rendered

stable for d≥5. At increasing values of d, the quantized states and

inputs are allowed to assume values from a larger set Ql1,d, letting the

error in Equation (6) be reduced further. This leads to the improved

closed-loop performance for larger d.

Remark 3. Following the results of Theorem 1, it is

known that the states of the nonlinear system of

Equation (1) will be bounded in a ball of radius b, which

is a class K function of μ¼ f dð Þ, which is an exponen-

tially decreasing function of d provided the modeling

errors γ1 and γ2 remain the same (i.e., model remains

the same). In the reactor system of Equation (26), when

d<5, it can be inferred that the small value of d causes

μ and, hence, b to be large. Specifically, b> ρmin ¼0:01 is

too large for the states to be maintained in the invariant

,

F IGURE 14 State and input profiles of closed-loop simulations under LMPC with encryption (red line) and without encryption (green line),
where d¼3, for the unstable steady state. LMPC, Lyapunov-based model predictive controller.

14 of 21 SURYAVANSHI ET AL.

 15475905, 2023, 8, D
ow

nloaded from
 https://aiche.onlinelibrary.w

iley.com
/doi/10.1002/aic.18104 by U

niversity of C
alifornia - L

os A
nge, W

iley O
nline L

ibrary on [17/07/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



set Ωρmin
as t!∞. If the stability criterion is less strict and

a larger ρmin is selected, the system can be considered

stable under the MPC for d<5. However, this is a process

design criterion that must be chosen by domain experts, and

our results remain valid for arbitrary values of d and ρmin .

5 | APPLICATION TO A CHEMICAL
REACTOR OPERATING AT AN UNSTABLE
STEADY-STATE

5.1 | Process description

We implement the proposed encrypted LMPC to the chemical

process studied in reference 26 that is, a jacketed, perfectly mixed

CSTR in which the irreversible, second-order, elementary,

exothermic reaction A!B takes place. The following mass and

energy balances describe the transient operation of the nonisother-

mal CSTR:

dCA

dt
¼ F
V

CA0�CAð Þ�k0e
�E
RTC2

A, ð27aÞ

dT
dt

¼ F
V

T0�Tð Þþ�ΔH
ρLCp

k0e
�E
RTC2

Aþ
Q

ρLCpV
, ð27bÞ

where the symbols carry the same denotations as Section 4. Parame-

ter values are enlisted in reference 26. The state variables are the con-

centration of A and reactor temperature, CA and T, respectively, in

deviation terms that is, xT ¼ CA�CAs T�Ts½ �. The inlet feed concen-

tration CA0 and the rate of heat removal Q are the manipulated inputs

to our process, which are bounded to be in the closed sets:

Q� �80:0,80:0½ � MJ=h and CA0 � 0:5,7:5½ � kmol=m3. We are inter-

ested in operating the CSTR at its unstable steady state,

CAs Ts½ � ¼ 1:95 kmol=m3 402 K
� �

, corresponding to inputs of

Qs ¼0 MJ=h and CA0s ¼4 kmol=m3.

The control objective is to maintain the operation of the CSTR at its

unstable steady state under the encrypted LMPC using the quantized

states and inputs in computations and actuation. For the Pallier encryp-

tion algorithm, we choose l1�d and l2 to be 20 and 31, respectively.

,

F IGURE 15 State and input profiles of closed-loop simulations under LMPC with encryption (red line) and without encryption (green line),
where d¼4, for the unstable steady state. LMPC, Lyapunov-based model predictive controller.
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The sampling time Δ and integration time step hc are chosen to be

10�2 and 10�4 h, respectively. The positive definite matrix P in the

control Lyapunov function V¼ xTPx for this system is taken as

P¼ 1060 22

22 0:52

� �
based on extensive simulations. A prediction horizon of N¼2 is used in

the LMPC. With respect to stability under the LMPC, we choose

ρmin ¼2 as the criterion for the states having reached stability and use

a contractive constraint of the form _V ≤ �kV for Equation (20e), where

k¼0:15. The weight matrices Q1 and Q2 in the LMPC cost function

are chosen as Q1 ¼
10,000 0

0 1

� �
and Q2 ¼ 3�10�7 0

0 1

" #
, respectively.

5.2 | Simulation results

The proposed encrypted LMPC is applied to the nonisothermal CSTR

operating near its unstable steady state. Specifically, the initial

condition is x0 ¼ �1:69 kmol=m3 73 K
� �

, and values of d between 1

and 7, inclusive, are studied. The state and input profiles are shown in

Figures 12–18. From the results of closed-loop encrypted MPC simu-

lations, it can be observed that, for some small value of the quantiza-

tion parameter, d, the encrypted MPC is not able to stabilize the

nonlinear system around a small neighborhood around the origin.

Instead, we observe the oscillations of states around a point other

than the unstable steady state. Based on Figure 12, this may be attrib-

uted to the large quantization error in the input applied to the system.

While the MPC calculates an exact fixed-point value, the quantization

with a low resolution withholds the systems from applying this input.

In particular, since d¼1, the manipulated CA0 that can be applied to

the system oscillates between the values of 2:0 and 2:5kmol=m3.

Thus, for systems being operated at an unstable equilibrium, it is pos-

sible that the encrypted MPC cannot practically stabilize the system

for d≤ dcritical, and it is important to identify this critical value of the

quantization parameter. For the nonlinear system of Equation (27), we

have dcritical ¼1, as evidenced by the removal of oscillations and

approach to the steady state once d is increased from 1 to 2 in Fig-

ure 13. Additionally, for d> dcritical, as the value of the quantization

,

F IGURE 16 State and input profiles of closed-loop simulations under LMPC with encryption (red line) and without encryption (green line),
where d¼5, for the unstable steady state. LMPC, Lyapunov-based model predictive controller.
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parameter d increases, we see improvement in MPC performance in

the sense that we achieve faster convergence of states to a small

neighborhood, Ωρmin
, around the origin and also less controller effort is

required to reach the steady state. The MPC performance improved

because the quantization error significantly decreases with the

increase in d. However, this improvement in performance comes at a

computational cost, which is discussed in the subsequent section. It is

important to note that, if the computational resources are limited, the

MPC performance that can be achieved is also limited but one must

ensure that the chosen value of quantization parameter d is larger

than the critical value, dcritical.

5.3 | Effect of the quantization parameter d and
the MPC optimization on computational cost

From Figure 19, it is clear that the computational cost increases with

an increase in the value of the quantization parameter d. The increase

in computational cost with the increase in the magnitude of d is pri-

marily attributed to two reasons. The resolution between the

elements of the set Ql1,d is equal to 2�d. As the magnitude of d

increases, the resolution of the set decreases and, hence, the number

of elements in the set increases. First, as a direct consequence of the

increase in the number of elements, the computational cost required

to construct such a set also increases. Second, as the number of ele-

ments in the set Ql1,d increases, the number of search operations

required to map a real number to the set Ql1,d increases and, hence,

the computational cost associated with it also increases. For the pur-

pose of simulation of the CSTR with a stable steady-state, a normal-

ized computational cost, associated with the quantization parameter

d, was calculated for all the cases. This computational cost was a

weighted sum of the number of operations required to construct the

set Ql1,d and the number of search operations required to map real

number states and inputs to the set Ql1,d. The weights depend on the

computational time required for the above two kinds of operations.

Finally, the computational cost is normalized using the maximum com-

putational cost out of all the cases, which corresponds to the compu-

tational cost associated with the case when d¼8. It is clear from

Figure 19 that, if the computational resources are limited, the highest

degree of accuracy (with respect to performance in comparison to

,

F IGURE 17 State and input profiles of closed-loop simulations under LMPC with encryption (red line) and without encryption (green line),
where d¼6, for the unstable steady state. LMPC, Lyapunov-based model predictive controller.
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MPC without encryption) that can be achieved by the encrypted MPC

scheme is also limited.

Relative to the MPC problem, the encryption/decryption algo-

rithm requires a significantly larger computational load. Figure 20

shows, for d¼1, the ratio of the time it takes to perform all the

encryption/decryption operations to the time required to solve the

MPC optimization problem for every sampling period over the simula-

tion duration. It is observed that the time taken for encryption/

decryption is an order of magnitude higher than the time required to

solve the MPC for most sampling periods. The ratio is equal to

approximately 10 in the first half of the simulation and varies between

approximately 6 and 18 for the second half. As the value of d

,

F IGURE 18 State and input profiles of closed-loop simulations under LMPC with encryption (red line) and without encryption (green line),
where d¼7, for the unstable steady state. LMPC, Lyapunov-based model predictive controller.

F IGURE 19 Normalized computational cost
associated with different values of the
quantization parameter d.
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increases, a larger portion of the computational load will be shifted to

the encryption/decryption operations because a higher number of

binary search operations will be required for encryption/decryption,

while the MPC problem remains the same in terms of complexity,

leading to even higher ratios in Figure 20.

Remark 4. As discussed, a larger value of d improves

the accuracy at the cost of increasing the computational

burden of both generating the set Ql1,d (which is a one-

time offline computation carried out before implement-

ing the MPC) and the binary search operations to map

floating point numbers to the set (which is an online cal-

culation carried out several times in each sampling

period of the MPC). Between these two components of

the computational cost, however, the generation of the

set Ql1,d represents an order of magnitude higher num-

ber of computations than the binary search operations

required to encrypt/decrypt states and inputs within

the simulation duration considered. Since the cost of

generating Ql1,d increases exponentially with d, it is

desirable to use a value of d reasonably above dcritical

but not excessively large in order to balance robustness

and computational costs. Since a value of d¼8 was suf-

ficient for the applications considered in this work, this

was the maximum value of d studied. However, d can

be increased as necessary to represent a greater range

of floating point numbers for more complex applications

or when operating in a wider region. An appropriate

starting point may be to use the standard 32-bit repre-

sentation of floating or fixed point numbers, which cor-

responds to d¼14 in our framework. This requires the

generation of the set Q32,14, which contains

4,294,967,296 numbers in the set. The generation of

this set, which is an offline calculation before the online

MPC implementation, required 1087 s on an Intel

i7-10700K 3.80GHz computer with 64GB of RAM,

which was the machine used for all the simulations in

this work. Hence, a local machine is sufficient for end-

to-end implementation of the proposed encrypted MPC

up to at least d¼14, corresponding to 32-bit floating or

fixed point numbers. If a higher d is required, for which

the generation of the set Ql1,d is not computationally

tractable in a local machine, only the generation of Ql1,d

may be carried out offline in a high-performance cluster

and saved. Subsequently, the generated Ql1,d can be

loaded and the encrypted MPC can still be implemented

in a local machine due to the much lower processing

power required for the binary search operations for

encryption/decryption within the MPC, which also scale

approximately linearly rather than exponentially with d.

Remark 5. While the quantization errors in this work

were not compared to other common sources of

errors such as sensor noise and plant-model mis-

match, as demonstrated above, for values of d below

a certain threshold dcritical, the quantization error can be

significant enough to cause the process to oscillate

without stabilizing within the level set Ωρmin
, causing the

closed-loop system to not be practically stabilizable as

per the definition in our work. This effect was seen

more strongly in the case of operating a reactor at the

unstable steady-state. Therefore, irrespective of the

plant-model mismatch or sensor noise levels in a chemi-

cal process, the quantization errors in an encrypted

MPC cannot be neglected in the controller design stage.

6 | CONCLUSION

In this work, we developed a closed-loop encrypted MPC scheme

using Paillier cryptosystem for encryption-decryption operations in

F IGURE 20 Ratio of time required for
encryption/decryption operations to the time
required for solving the MPC optimization
problem, for each sampling period throughout the
simulation of the CSTR with the stable steady
state when d¼1. CSTR, continuous stirred tank
reactor; MPC, model predictive controller.
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the sensor–controller and controller–actuator communication links.

Quantization errors in the secure communication links were identified,

based on which closed-loop stability criteria were derived. The designed

Lyapunov-based model predictive control scheme was robust to these

quantization errors and ultimately drove the states to a small a neighbor-

hood around the steady state of the nonlinear system. Further, the pro-

posed encrypted MPC scheme was implemented on a continuous stirred

tank reactor system with recycle and another reactor operating at an

unstable equilibrium point. Specifically, closed-loop simulations were car-

ried out for different values of the quantization parameter d. The state

and input profiles were plotted against the case of the unencrypted

MPC. Larger values of the quantization parameter d resulted in lesser

error between the state and input profiles of the encrypted MPC and

of the unencrypted MPC; however, a higher computational cost was

associated with larger values of the quantization parameter d.
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