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In this work, we introduce a statistical-based model identification scheme that generates

a  high-fidelity model for the outer reforming tube wall temperature (OTWT) distribution

as  a function of the furnace-side feed (FSF) distribution, total FSF flow rate and interac-

tions  among neighboring reforming tubes from reformer data. The proposed scheme is

structured to have two major components, namely, a prediction step and a correction step,

which are designed to be parallelized so that the prediction and correction models of all

reforming tubes are derived simultaneously from the reformer data and independently from

one  another. Initially, a computational fluid dynamics (CFD) model of an industrial-scale

reformer created in our previous work is utilized to facilitate the generation of the training

and  testing data. Then, we propose the development of an algorithm for the prediction step

based on Bayesian variable selection, Bayesian model averaging, sparse nonlinear regres-

sion, reformer geometry and theories of thermal radiation so that for each reforming tube,

the  prediction step can systematically identify predictors for the OTWT and simultaneously

create a corresponding library of sub-prediction models. A collection of prediction models

for  all reforming tubes is defined as a prediction model for the OTWT distribution, which is

expected to capture the dependence of the OTWT distribution on the FSF distribution and

total  FSF flow rate. Next, we propose an algorithm for the correction step designed based on

ordinary Kriging so that for each reforming tube, the correction step creates a spatial model

allowing the OTWT to be estimated from the predicted OTWT of the neighboring reforming

tubes. A collection of correction models for all reforming tubes is defined as a correction

model for the OTWT distribution, which is expected to adjust the predicted OTWT distri-

bution to account for interactions among neighboring reforming tubes. Subsequently, the

combined data-driven model for the OTWT distribution is created using the prediction and

correction models for the OTWT distribution, which allows the combined model to account

for the effect of interactions among neighboring reforming tubes while estimating the OTWT

distribution based on the FSF distribution and total FSF flow rate. The proposed integrated

model identification scheme is executed on the Hoffman2 cluster at UCLA to construct the

data-driven model for the OTWT distribution from the training data, and the results from

the  goodness-of-fit and out-of-sample prediction tests of the data-driven model are used to
demonstrate the effectiveness of the scheme proposed in this work.
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1.  Introduction

Hydrogen is proposed by many  to be the fuel of the future as it
is the key ingredient in a transition from a fossil fuel-based
economy toward a zero carbon emission and sustainable
energy economy. Hydrogen can serve as an efficient energy
carrier for hydrogen-based technologies (e.g., fuel cells) and
lead to substantial reduction of greenhouse gas emissions and
great environmental benefits. Hydrogen can be produced by a
variety of technologies (e.g., steam methane reforming (SMR),
coal gasification, biomass gasification, electrolysis, partial oxi-
dation, solar thermal cracking) from fossil (e.g., natural gas),
non-fossil (e.g., biogas) and non-carbon (e.g., water) sources
(Barreto et al., 2003), which highlights the great potential and
flexibility of a hydrogen-based economy. Additionally, hydro-
gen is a key feedstock for the petroleum refining and fine
chemical manufacturing industries (Tran et al., 2017a).

Among the technologies employed to produce high purity
hydrogen on a commercial scale, SMR  and coal gasification
are the current major technologies. Barreto et al. (2003) con-
ducted a survey of literature and publicly available databases
associated with hydrogen manufacturing technologies and
concluded that SMR  required the least investment for hydro-
gen plants with a capacity above 1,000,000 N m3 per day in
comparison to the amount needed by the competing tech-
nologies. Our literature survey recognizes that SMR  accounts
for the largest share of world hydrogen production (Hydrogen
Production Expert Panel, 2013; Barreto et al., 2003; Ewan and
Allen, 2005); in 2005, for example, approximately 48% of world-
wide hydrogen production was derived from SMR. Barreto
et al. (2003) speculated that SMR  would remain the leading
technology in world hydrogen production in 2050.

SMR  is a catalytic endothermic process, in which natu-
ral gas (i.e., methane) and high pressure superheated steam
react to produce hydrogen and carbon oxides. As methane and
steam are naturally stable compounds, SMR  is typically carried
out at high temperature (e.g., 1023.15–1223.15 K, Pantoleontos
et al., 2012) to ensure that the process is economically viable,
and a desired methane conversion is achieved; hence, SMR is
carried out inside furnaces. A steam methane reforming fur-
nace (which is referred to as a reformer in this manuscript)
has two closed and thermally coupled domains (i.e., the tube
side and furnace side); the tube side is defined by hundreds
of nickel-based catalyst filled reforming reactors (which are
referred to as reforming tubes in this manuscript), and the
furnace side is a combustion chamber. Specifically, heat is gen-
erated in the furnace side by burning fresh natural gas and,
typically, recycled effluent from the purification section (e.g., a
pressure swing adsorption unit) (Kroschwitz and Howe-Grant,
1999) in excess air to create a high temperature environment
facilitating the production of hydrogen in the tube side.

Reformers can be categorized with respect to the location
of burners: top-fired, side-fired, bottom-fired and terrace wall-
fired reformers, which in turn dictates interactions between
the tube side and furnace side, the temperature distribution
characteristics of the furnace-side flow inside the reformer
and the heat flux profile along the reforming tubes, e.g.,
bottom-fired reformers are characterized by a constant heat
flux along the reforming tubes (Ferreira-Aparicio et al., 2005).
In SMR, the reformer configurations that facilitate a high heat
transfer rate to the tube side near the reforming tube inlet
are expected to require the shortest reforming tube length to

achieve a desired set-point of the methane conversion and
are preferable. Therefore, the top-fired reformer is frequently
employed at hydrogen plants using SMR technology and is the
subject of the present work.

The chemical manufacturing plants designed to produce
high purity hydrogen based on SMR  technology typically
consist of two major sections: the synthesis section and purifi-
cation section (Gupta, 2008). In the synthesis section, fresh
natural gas feedstock is treated in a desulfurization unit to
remove thiol compounds preventing catalysts used in down-
stream processes from being poisoned. Then, the effluent
of the desulfurization unit typically undergoes a catalytic
prereforming process to convert higher hydrocarbons in the
treated feedstock into methane and byproducts (i.e., carbon
oxides and hydrogen), preventing these high hydrocarbons
from decomposing inside the reforming tubes, which causes
coke formation and catalyst deactivation. Next, the treated
feedstock (i.e., the effluent of the prereforming process) and
high pressure superheated steam are fed into the reformer to
undergo SMR producing hydrogen. The synthesis gas (i.e., the
effluent of the reformer) is treated in a water-shift reactor to
remove carbon monoxide and to produce a small additional
amount of hydrogen, and the effluent of the water-shift reac-
tor enters the purification section in which the process stream
is stripped of unreacted reactants and byproduct (i.e., carbon
dioxide) to produce high purity product.

Tran et al. (2017a) indicates that an increase in the total
furnace-side feed (FSF) flow rate is expected to result in
increases in both the averaged outer reforming tube wall tem-
peratures (OTWTs) and the methane conversion of SMR  in
the reformer, and hence, it can be inferred that the high-
est reformer efficiency is achieved when the maximum total
FSF flow rate is delivered. In the present work, a collection of
all radially weighted averaged OTWTs of all reforming tubes
at a fixed height is defined as an OTWT distribution, and
an averaged temperature profile among all reforming tubes
along the reforming tube length is defined as an averaged
OTWT profile. In practice, it is difficult to find the FSF distri-
bution to deliver the maximum total FSF flow rate without
damaging the reforming tubes and shortening the reformer
service life (which can occur at temperatures above the design
temperature of the reforming tube wall) because the temper-
ature distribution of the furnace-side flow in the reformer is
spatially nonuniform and is tightly coupled with all OTWT dis-
tributions along the reforming tube length. Specifically, the
temperature distribution of the furnace-side flow governs all
OTWT distributions along the reforming tube length in the
reformer, and therefore, a nonuniform temperature distribu-
tion of the furnace-side flow causes the OTWT distributions
to also be nonuniform (i.e., to be platykurtic or multimodal
with a wide temperature range). In addition, current tech-
nologies (e.g., an infrared camera system positioned around
the reformer) allow the OTWT distributions to be continu-
ously monitored, so OTWT distributions are frequently used
to assess the degree of nonuniformity in the temperature dis-
tribution of the furnace-side flow, which is measured as the
greatest temperature difference in the OTWT distribution at
a fixed height among all reforming tubes. This definition of
the degree of nonuniformity in the temperature distribution
of the furnace-side flow has also been used in the SMR  lit-
erature (Kumar et al., 2015; Tran et al., 2017a; Zheng et al.,
2010); for instance, Kumar et al. (2015) reports that the varia-
tion in OTWT of all reforming tubes at a fixed height fluctuates

between 30 K and 110 K.
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In a reformer with a high degree of nonuniformity in
he temperature distribution of the furnace-side flow (i.e., an
mbalanced reformer) the total FSF flow rate is reduced so
hat the maximum temperature value of the averaged OTWT
rofile is often kept significantly lower than the design tem-
erature of the reforming tube wall to avoid damaging the
eforming tubes, which leads to a lower reformer efficiency. It
s important to note that in the above scenario, although the

aximum temperature value of the averaged OTWT profile is
ignificantly lower than the design temperature of the reform-
ng tube wall, the high degree of nonuniformity in OTWT
istributions suggests that OTWTs of some reforming tubes
ay be near the design temperature. The typical operating

trategy of reformers calibrates the FSF distribution and total
SF flow rate in an attempt to compensate for the nonuni-
orm temperature distribution of the furnace-side flow inside
he reformer to prevent the OTWT of all reforming tubes from
xceeding the design temperature of the reforming tube wall
nd to extend the service life of the reformer at the expense of
he reformer efficiency. The hydrogen manufacturing indus-
ry reasons that this trade-off is necessary because when the
TWT of a reforming tube exceeds the design temperature
f the reforming tube wall, the reformer might have a sig-
ificantly shorter service life, e.g., Pantoleontos et al. (2012)
eports that an increase of 20 K above the design temperature
f the reforming tube wall causes the reformer service life to
e reduced by half, and the reforming tubes are at risk of rup-
uring; if rupture were to occur, it would lead to substantial
roduction and capital losses. For decades, this ad hoc oper-
ting strategy of the reformer, which is designed to retain the
eformer service life by allowing the reformer to be operated
t suboptimal conditions, has been a solution that prevents
ignificant unexpected capital costs as the cost of re-tubing is
stimated to be approximately 10% of the total capital invest-
ent (Latham et al., 2011). Therefore, designing operating

trategies to actively minimize the degree of nonuniformity
n the temperature distribution of the furnace-side flow and

aximize the total FSF flow rate is getting much attention
rom academics and industries. A number of references in
he recent SMR  literature have investigated furnace balanc-
ng methods, which are systematic operating strategies that
earch for an optimal FSF distribution that reduces the degree
f nonuniformity in the OTWT distribution at a fixed height

n the reformer in an attempt to improve the reformer effi-
iency. Therefore, it is apparent that an accurate relationship
etween the OTWT distribution at a fixed height, the FSF dis-
ribution and the total FSF flow rate of the reformer is required
o design a robust furnace balancing method. The dependence
f the OTWT distribution on the FSF distribution and the total
SF flow rate of the reformer can be constructed based on
rst principles modeling (Latham et al., 2011) and computa-
ional fluid dynamics (CFD) modeling (Tran et al., 2017b) of
he reformer. However, models derived from these model-
ng techniques are typically unsuitable for designing a robust
eal-time furnace-balancing scheme (for which the need is
vident as the reformer is constantly subjected to various dis-
urbances, e.g., ambient temperature) (Kumar et al., 2015). In
articular, first principles modeling often uses an overwhelm-

ng number of simplifying assumptions in the development of
eformer models, which causes prediction data generated by
rst principles models often to fall short in terms of accuracy.
hile CFD modeling does not have the same issue (e.g., the
imulation data generated by the reformer CFD model devel-
ped in Tran et al. (2017b) have been shown to be a reasonably
accurate representation of the experimental data recorded
from an on-line unit), the significant computational time
needed to create a single CFD data set makes it unsuitable for
designing a real-time furnace balancing scheme because the
CFD model is required to be repeatedly solved with different
FSF distributions to search for the optimized FSF distribution.
Therefore, data-driven modeling is an appealing alternative as
data-driven models are computationally inexpensive and can
have reasonable accuracy.

In this work, data-driven modeling is used to discover the
dependence of the OTWT distribution on the FSF distribution
and the total FSF flow rate of the reformer. A direct approach
is to model the OTWT at a fixed height of each reforming
tube as a function of the FSF distribution and total FSF flow
rate (i.e., the FSF flow rates of all burners), and estimates of
the parameters associated with the regressors in the data-
driven model can be determined by the ordinary least squares
(OLS) regression method in which the sum of squared resid-
uals between the OTWT data and fitted data is minimized.
This naive approach is expected to create an uninterpretable
(in the sense that it is not representing physical relationships
between burners and reforming tubes within the reformer)
data-driven model for the OTWT distribution with high predic-
tion errors due to over fitting. Specifically, Tran et al. (2017b)
notes that in the high temperature reformer, thermal radia-
tion is expected to be the dominant mode of heat transfer,
and Olivieri and Vegliò (2008) shows that 95% of the total heat
transfer rate to the tube side in the reformer of their inves-
tigation is due to thermal radiation. Additionally, the inverse
square law for thermal radiation suggests that the OTWT of
each reforming tube is governed by the FSF flow rates of the
nearby burners. Therefore, a smaller set of important regres-
sors for each reforming tube should be identified and used to
construct a more  computationally efficient data-driven model.

Standard statistical practice employs shrinkage and sub-
set selection techniques (e.g., LASSO, nonnegative garotte and
ridge regression) to search for the set of important regres-
sors and to calculate the estimates of their corresponding
parameters based on some criteria (e.g., minimizing the sum
of squared residuals) to derive a single best data-driven model.
Subsequently, this standard statistical practice assumes this
data-driven model to be the true model for the relationship
between the OTWT of a reforming tube, FSF distribution and
total FSF flow rates, and then utilizes the chosen model exclu-
sively to make predictions. The greatest flaw of the standard
statistical practice is that the approach overlooks the impor-
tance of competing data-driven models. Specifically, Hoeting
et al. (1999) illustrates that two competing models with similar
goodness of fit for given training data can yield substan-
tially different predictions and suggests that predictions made
based on a single data-driven model are unreliable. Bayesian
statistics provides systematic straightforward methods to
identify the set of important regressors for each reforming
tube (i.e., Bayesian variable selection) and to account for model
uncertainty in making predictions based on the observed
database (i.e., Bayesian model averaging). Bayesian statistics
is employed in many  disciplines (e.g., chemistry, genetics,
medicine and finance) and has led to over 587 publications
between 1996 and 2014 (Fragoso and Neto, 2015).

In this work, we combine the Bayesian methods and sparse
nonlinear regression technique (i.e., least absolute shrinkage
and selection operator or LASSO) to derive a collection of

data-driven models, each of which requires the minimum
number of terms for a given basis set of regressors while
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revealing the dependence of the OTWT of each reforming tube
on the FSF distribution and total FSF flow rate with a reason-
able accuracy. Specifically, it is assumed that a data-driven
model for the OTWT of each reforming tube has the form of a
linear combination of nonlinear/linear transformations of the
original regressors (i.e., sparse nonlinear regression) so that
the nonlinear characteristics in the observed data can be ade-
quately described (Brunton et al., 2016; Wilson and Sahinidis,
2017). For instance, Brunton et al. (2016) shows that sparse
nonlinear regression can be used to create data-driven models
that describe the underlying dynamics of nonlinear systems
(e.g., nonlinear oscillators and the chaotic Lorenz system). A
typical library of nonlinear transformations contains mono-
mial, exponential, logarithmic and trigonometric functions.

Lastly, it is recognized that the OTWT of each reforming
tube is spatially correlated to those of the nearby neighbors
because thermal radiation inside the reformer is expected to
occur between the furnace-side flow, reforming tube walls and
refractory wall (Tran et al., 2017b). It is also recognized from the
reformer CFD simulation data reported in Tran et al. (2017a)
that reforming tubes which are in close proximity to one
another tend to have similar OTWTs. Therefore, it is logical
to allow the data-driven model for the OTWT of each reform-
ing tube to also utilize the information (i.e., the locations and
OTWTs) of the neighboring reforming tubes, in addition to the
FSF distribution and total FSF flow rate, to make predictions of
the OTWT. In the geostatistics literature, there exist a variety
of distance-weighted average interpolation algorithms (e.g.,
Kriging, triangulation and the inverse distance method), each
of which can be used to estimate an OTWT of each reform-
ing tube as a weighted average of the neighboring OTWTs
based on a unique weighting function. In this work, Kriging
is selected as it provides a straightforward approach to adjust
the predicted OTWT distribution estimated based on the FSF
distribution and total FSF flow rate to account for the effect
of interactions among neighboring reforming tubes on the
OTWT distribution. Kriging can also be used for clustering
data, which occurs due to the arrangement of the reform-
ing tubes inside the reformer, i.e., the reforming tubes are
arranged in an irregular grid pattern (e.g., seven rows of 48
units), in which reforming tubes are situated close to one
another along a row but are separated by a relatively large
distance between rows. Additionally, the Kriging algorithm
is designed to minimize the mean squared prediction error,
which makes this interpolation algorithm more  suitable for
predicting the OTWT at unexplored operating conditions of
the reformer.

Motivated by this, the present work focuses on developing
a two-step prediction and correction model identification pro-
cedure that utilizes Bayesian methods with an efficient search
algorithm (Occam’s window), sparse nonlinear regression,
Kriging, information on the reformer geometry and theories
of thermal radiative heat transfer to derive a high-fidelity
model from reformer data such that the model can account for
interactions among neighboring reforming tubes in making
predictions about the OTWT distribution based on the FSF dis-
tribution and total FSF flow rate. This manuscript is structured
as followed: in Section 2, physical descriptions, process model-
ing and process simulation of a computational fluid dynamics
(CFD) model of a reformer are briefly discussed to be used
as supporting evidence that the reformer CFD data are ade-
quate representations of the data from an on-line reformer,

which allows us to use the reformer CFD model to facilitate
the creation of the training and testing data. In Section 3,
an overview of the integrated model identification scheme is
presented, and the major components, namely, the predic-
tion step and correction step, are introduced. In Section 4,
a rundown of the prediction step that details the procedure
for deriving the prediction model for the OTWT distribution
from the training data is presented, and in Sections 4.1, 4.2
and 4.3 the integration of Bayesian variable selection, Bayesian
model averaging, sparse nonlinear regression and theories of
thermal radiation into an algorithm for the prediction step is
described. In Section 5, a rundown of the correction step that
details the procedure for creating the correction model for the
OTWT distribution from the training data using ordinary Krig-
ing is presented. In Section 6, the procedure to generate the
combined data-driven model for the OTWT distribution from
the prediction and correction models is detailed. Finally in
Section 7, the goodness of fit and out-of-sample predictive per-
formance of the data-driven model for the OTWT distribution
generated from the integrated model identification scheme
proposed in this work are evaluated using the training and
testing data, respectively, and are discussed to highlight the
potential of this work for being used in developing more  opti-
mal  operating conditions of a reformer in a computationally
efficient manner, e.g., it may be considered for use as the
data-driven model for an on-line robust furnace balancing
optimizer.

2.  Reformer  CFD  database

In the present work, the high-fidelity reformer CFD model
developed from our previous work Tran et al. (2017a,b) is used
to represent an on-line reformer designed by Selas Fluid Pro-
cessing Corporation at a hydrogen plant (Latham et al., 2011).
This is because the geometry of the reformer model is created
to have approximate dimensions of the on-line unit, which
is 16 m wide, 16 m long and 13 m tall. The geometry of the
reformer model also contains important features of its physi-
cal counterpart, which include the major components (i.e., 336
reforming tubes, 72 inner-lane burners, 24 outer-lane burners
and 8 flue-gas tunnels) and the layout inside the reformer as
shown in Fig. 1. Additional details of the reformer geometry
can be found in Tran et al. (2017b). Furthermore, the mesh of
the reformer CFD model has been verified to have acceptable
mesh quality based on the criteria (i.e., min  orthogonal fac-
tor and max  ortho skew) suggested by ANSYS ICEM and to
allow the reformer CFD model to produce mesh-independent
solutions. The generation of the reformer mesh is detailed
in Tran et al. (2017a,b). In addition, the modeling strategies
for the known transport phenomena and chemical reactions
associated with SMR and air combustion processes are used to
create the reformer CFD model. For instance, the reformer CFD
model is implemented with the empirical correlation for the
furnace-side total emissivity (Maximov, 2012), Lambert Beer’s
law, Kirchoff’s law and the discrete ordinate method to sim-
ulate radiative heat transfer between the furnace-side flow,
outer reforming tube walls and refractory walls. Readers who
are interested in the details of the modeling strategies for the
reformer CFD model, efficient step-by-step converging strat-
egy and data collection procedure are recommended to refer
to our previous work (Tran et al., 2017a,b). Moreover, the CFD
simulation data generated by the reformer CFD model have
been shown to be in good agreement with simulation data

generated by a reforming Gibbs reactor model, with typical
plant data in the SMR literature and with plant data provided
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Fig. 1 – The isometric view of an industrial-scale, top-fired,
co-current reformer. The right and back refractory walls
with respect to the flue gas tunnel exits in this figure are
removed to expose the interior of the reformer, which
consists of 336 reforming tubes, which are represented by
336 cylinders, 96 burners, which are represented by 96
frustum cones, and 8 flue-gas tunnels, which are
represented by 8 rectangular intrusions.
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the Kriging weighting factor of the jth reforming tube. Finally,
the estimated OTWT of the ith reforming tube given �Fn and Fn

tot
y a third party collaborator, and therefore, can be considered
s an adequate representation of plant data collected from an
n-line unit.

In the present work, the reformer CFD model is utilized to
acilitate the creation of the reformer database. Specifically,
he reformer CFD model is initially implemented with varying
SF distributions at a fixed typical total FSF flow rate and, sub-
equently, implemented with varying total FSF flow rates at
he optimized FSF distribution reported in Tran et al. (2017a),
hich creates 21 CFD data sets. In this work, 18 CFD data

ets (i.e., the training data), which is approximately 90% of the
eformer database, are randomly chosen and used as inputs
or the integrated model identification scheme to produce a
ata-driven model that adequately describes the dependence
f the OTWT distribution on the FSF distribution and total FSF
ow rate. The remaining 3 CFD data sets (i.e., the testing data),
hich is approximately 10% of the reformer database, are used

o validate the performance on out-of-sample predictions of
he data-driven model.

.  Overview  of  the  prediction  and
orrection  model  identification  scheme

he statistical-based model identification scheme is a two step
i.e., prediction and correction) procedure that is designed to
erive a model for the dependence of the OTWT distribution
t a fixed distance of 6.5 m away from the reformer ceiling
n the FSF distribution and total FSF flow rate from the train-

ng data of the reformer CFD database. In the prediction step,
he model-building process for the ith OTWT as a function
f the FSF distribution and total FSF flow rate from the train-

ng data is executed independently of other reforming tubes
ased on Bayesian methods, i.e., Bayesian variable selection
nd Bayesian model averaging (BMA), with an efficient search
lgorithm and sparse nonlinear regression (which will be fur-
her defined in Sections 4.1, 4.2 and 4.3). The data-driven

odel for the OTWT of the ith reforming tube generated by
the prediction step is referred to as the ith prediction model
and is formulated as follows,

T̂
P,n

i =
Ki∑

k=1

wP
i,kT̃

P,n

i,k ∀n ∈ {1, . . .,  N} (1a)

subject to
Ki∑

k=1

wP
i,k = 1

(1b)

�Fn =
[
Fn

1, Fn
2, . . ., Fn

96

]T
(1c)

||�Fn||1 = Fn
tot (1d)

T̃
P,n

i,k =
G∑

g=1

( �̨kg
i

)
T · fg(�Fn) + ˛k

i (1e)

where n is the index of the nth data set in the training data,

N is the number of data sets in the training data, T̂
P,n

i is the
BMA  predicted estimate of the ith OTWT based on the nth FSF

distribution (�Fn) and nth total FSF flow rate (Fn
tot), T̃

P,n

i,k is the kth
predicted estimate of the ith OTWT based on �Fn, Fn

tot and the
kth sub-prediction model for the ith reforming tube (where
this model denoted by Mi,k is defined and developed in Sec-
tion 4), Ki is the total number of sub-prediction models in the
ith library, wP

i,k
is the BMA  weighting factor of Mi,k (developed

in Section 4.2), fg ( · ) is the gth basis function in the library of
transformation functions (developed in Section 4.3), G is the
number of functions in the library of transformation functions
(developed in Section 4.3), �̨kg

i
is the empirical parameter vec-

tor of Mi,k corresponding to fg ( · ) (defined in Section 4.3) and ˛k
i

represents the estimated ambient temperature of Mi,k (defined
in Section 4.3). The prediction step in the model identification
algorithm is parallelized to simultaneously create 336 predic-
tion models, each of which corresponds to a reforming tube of
the reformer, and subsequently, these prediction models are
combined to create the data-driven model (i.e., the prediction
model) for the OTWT distribution to describe the dependence
of the OTWT distribution on the FSF distribution and total FSF
flow rate. However, the prediction model for the OTWT distri-
bution does not account for the effects of interactions between
neighboring reforming tubes on the OTWT distribution, and
hence, the correction step of the model identification proce-
dure is created. In the correction step, the predicted estimate
of the ith OTWT is adjusted based on information of the neigh-
boring reforming tubes extracted from the reformer geometry
and predicted OTWT distribution. The correction model for
the ith reforming tube developed based on ordinary Kriging
(to be further developed in Section 5) is formulated as follows,

T̂
C,n
i =

336∑
j = 1

j /= i

wC
i,jT̂

P,n
j (2)

where T̂
C,n

i is the corrected estimate of the ith OTWT and wC
i,j

is
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is computed as the weighted sum of the BMA predicted and
corrected estimates as follows,

T̂
n
i = wPT̂

P,n
i +

(
1 − wP

)
T̂

C,n
i (3)

where wP is the weighting factor of the BMA estimates, of
which the optimal value is determined by leave-out-one cross
validation (developed in Section 6). In the remainder of this
manuscript, the development of the prediction and correction
model identification algorithm is elucidated in detail, and the
accompanying assumptions are explicitly stated and demon-
strated to be valid using the training data.

Remark 1. The decision to investigate the OTWT distribution
at a fixed distance of 6.5 m away from the reformer ceiling
was originally proposed in Tran et al. (2017a). In particular,
this OTWT distribution has been found to have a high aver-
age OTWT, i.e., ∼99% of the maximum value of the average
OTWT profile (which is a collection of averages of OTWT dis-
tributions along the reforming tube length and is considered
to be invariant at the fixed total FSF flow rate), so that in a
scenario that the hydrogen plant is at risk of suffering sig-
nificant capital and production losses due to a suboptimal FSF
distribution, this OTWT distribution is expected to have a high
degree of nonuniformity (indicated by a wide temperature
range and a high standard deviation), and the maximum value
of the OTWT distribution at a distance of 6.5 m away from the
reformer ceiling may exceed the design temperature of the
reforming tube wall. This rationale suggests that the reformer
can be kept in a safe operating regime by reducing the degree
of nonuniformity in the OTWT distribution and preventing
the maximum value of the OTWT distribution from exceeding
the design temperature, and therefore, a data-driven model
for the OTWT distribution was created in the development of
the furnace-balancing scheme in Tran et al. (2017a) that seeks
to reduce the nonuniformity. In anticipation that an applica-
tion of the modeling method in this work may be to derive
the data-driven model for a furnace-balancing algorithm as
in Tran et al. (2017a), we consider a distance of 6.5 m away for
the ceiling in this work for consistency with Tran et al. (2017a).

4.  Prediction  models

In this work, Bayesian methods are integrated in the algo-
rithm for the prediction step because of the twofold advantage
that these methods offer (Section 1): the Bayesian variable
selection method provides a straightforward approach to iden-
tify the important regressors for each reforming tube, and
BMA allows model-selection uncertainty to be accounted for
in making predictions about the OTWT distribution given
�Fn and Fn

tot (Hoeting et al., 1999). In the prediction step, the
prediction model for the ith OTWT is derived from the train-
ing data independently of the model-building process for the
remaining OTWTs. This approach is expected to effectively
reduce the total computational time devoted for constructing
the prediction model for the OTWT distribution because the
model-building process can be simultaneously executed for
336 reforming tubes. In this section, the important terminolo-
gies used in the description of the algorithm for the prediction
step are explicitly defined, and then, the algorithm for the pre-
diction step is discussed in the context of constructing the ith

prediction model from the training data.

In the jth iteration of the prediction step,
1. Checked predictors are the burners that are in the neigh-
borhood of the ith reforming tube, and a collection of
checked predictors in the jth iteration of the prediction step
is denoted as Sj

iC
. However, checked predictors may or may

not have a significant impact on the ith OTWT.
2. Potential predictors are elements of a subset of Sj

iC
,

which is denoted as Sj

iP
. Potential predictors are candi-

date regressors of the ith reforming tube model and will be
characterized by the regressor classification layer. Potential
predictors that are classified as important regressors by the
regressor classification layer are added to the basis set of
regressors (denoted as SiR).

3. Predictors are important regressors of the ith prediction
model and are elements of SiR.

4. A sub-prediction model library of the ith reforming tube
is a collection of models that allows the ith OTWT to be
estimated based on �Fn and Fn

tot.

In addition, the concept of a multistage affecting zone
is introduced to facilitate the search for and classification
of checked predictors. Specifically, we define the multistage
affecting zone of the ith reforming tube in the jth iteration of
the prediction step as a cylindrical region with a radius that is
denoted R

j

iZ
and is evaluated as follows,

R
j

iZ
= R0

iZ + j�RZ ∀j = 1, 2, 3, . . . (4)

where R0
iZ

=0 m is the initial radius of the multistage affecting
zone of the ith reforming tube and �RZ=1.5 m is the corre-
sponding step increment. The first stage of an affecting zone
of the ith reforming tube is defined as a cylindrical volume
of radius R

j

iZ
centered at the ith reforming tube inside which

burners are considered to be elements of Sj

iC
. The second stage

of an affecting zone of the ith reforming tube is defined as a
hollow cylindrical volume bounded by two concentric cylin-
ders of radii R

j

iZ
and R

j−1
iZ

inside which burners are considered

to be elements of Sj

iP
, which is defined as follows,

Sj

iP
= Sj

iC
\Sj−1

iC
(5)

where Sj

iC
\Sj−1

iC
is defined as all elements that are in Sj

iC
but are

not in Sj−1
iC

.
The algorithm for the prediction step consists of two  lay-

ers, which are referred to as the regressor collection (Fig. 2)
and regressor classification (Fig. 3) layers, respectively. The
regressor collection layer is composed of five processes rep-
resented by five rectangular boxes, i.e., the location identifier,
checked predictor identifier, potential predictor identifier,
sparse nonlinear regression and termination checker. The
layer is structured to have two sequential modes, which aim
to obtain the default SiR and to search for potential predic-
tors to be used as inputs for the regressor classification layer,
respectively. We note that the second mode is proposed to
avoid having to re-look at all the potential predictors that have
already been evaluated. The search algorithm for the regres-
sor collection layer is developed based on the inverse square
law for thermal radiation. It makes use of two fundamental
guidelines, namely, the burners separated from the ith reform-
ing tube by a significant distance should not be considered
as potential predictors, and the nearby burners have greater

influence on the ith OTWT than other burners that are situ-
ated farther away from the ith reforming tube, to reduce the
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Fig. 2 – Flowchart of the regressor

egressor space and define a unique searching path, which
ill be elaborated later in this section. The search algorithm is

he most critical development of the present work and allows
he model identification based on the Bayesian framework to
e computationally efficient. This is because the search algo-
ithm selectively creates a small number of sub-prediction

odels for the ith OTWT to be used by the BMA  in mak-
ng predictions as opposed to 296 (≈7.9 × 1028) sub-prediction

odels, which would be generated by the alternative, i.e., the
xhaustive search algorithm, which if it was implemented
ould make the model identification scheme computation-
lly infeasible. In this work, the distance between the ith
eforming tube and jth burner is denoted as dij and is cal-
ulated as the Euclidean distance between the projections of
heir centroids on a horizontal plane, and we assume that the

efault SiR of the ith reforming tube consists of the four nearest
urners.
ction layer in the prediction step.

In the first iteration of the prediction step, the regressor
collection layer is operated under the first mode to obtain
the default SiR. Initially, it begins with the location identifier,
which calculates the relative distance from the ith reforming
tube to burners inside the reformer, and simultaneously com-
putes the radius of the affecting zone (denoted as R1

iZ
) of the ith

reforming tube according to Eq. (4). Next, the checked predic-
tor identifier uses the information about the relative location
of the ith reforming tube to create a virtual reformer geome-
try, which consists of the ith reforming tube and 96 burners
as shown in Fig 4 , and uses R1

iZ
to create the first stage of

the affecting zone as shown in Fig. 5. The checked predic-
tor identifier, then, uses the virtual reformer geometry and
first-stage affecting zone to generate S1

iC, which contains infor-
mation (i.e., distance to the ith reforming tube, burner IDs and

FSF flow rates) of the checked predictors. In the first itera-
tion, the library of ith sub-prediction models is expected to
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Fig. 3 – Flowchart of the regressor classification layer in the prediction step.

Fig. 4 – A virtual reformer geometry that is created based on the information generated by the location identifier in the
regressor collection layer and consists of the ith reforming tube represented by a cylindrical tube and 96 burners
represented by the frustum cones.
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Fig. 5 – The first stage of the multistage affecting zone that is created based on R1
iZ

and the virtual reformer geometry in the
first iteration of the prediction step. In this figure, the checked predictors in S1

iC are represented by the four shaded frustum
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ones and can be visually identified.

e empty, and therefore, the cardinality of S1
iC is evaluated. If

he cardinality of S1
iC is less than or equal to four, the predic-

ion step is instructed to terminate the first iteration and to
xecute the next iteration. The second iteration of the predic-
ion step begins to recompute the radius of the affecting zone
denoted as R2

iZ
) of the ith reforming tube according to Eq. (4).

s in the first iteration of the prediction step, the checked pre-
ictor identifier in the second iteration uses R2

iZ
to create the

pdated first stage of the affecting zone and, then, uses it and
he virtual reformer geometry created in the first iteration to
enerate S2

iC. Thereafter, the cardinality of S2
iC is also evalu-

ted since the library of ith sub-prediction models is expected
o remain empty, and if its result is still less than or equal to
our, the prediction step is again instructed to terminate the
econd iteration and to execute the next iteration. This proce-
ure is repeated until the number of elements in the checked
redictor set of the ith reforming tube is strictly greater than
our.

This discussion is continued with the assumption that in
he jth iteration of the prediction step, the cardinality of Sj

iC
is

reater than four as shown in Fig. 6. Initially, the four nearest
urners to the ith reforming tube in Sj

iC
are used to create the

efault SiR, which is utilized by the sparse nonlinear regres-
ion algorithm to create the default sub-prediction model for
he ith OTWT. Then, the model is stored in the ith library
f sub-prediction models and is assigned an index of 1. The
emaining elements in Sj

iC
, i.e., Sj

iC
\SiR, are considered to be

otential predictors, which are elements of Sj

iP
, and are used

s inputs for the regressor classification layer, which is the
econdary layer of the prediction step algorithm.

The regressor classification layer is structured based on
he Bayesian variable selection framework to systematically
pdate SiR using a given potential predictor set and to selec-
ively create additional sub-prediction models for the ith
TWT. A brute-force Bayesian variable selection would require
ll possible hypothetical basis sets of regressors to be cre-
ted from Sj

iP
and SiR, followed by using the sparse nonlinear

egression to generate all possible hypothetical sub-prediction
odels, from which the important sub-prediction models
ould be selected. This approach is expected to be compu-

ationally intensive and will not be implemented. Instead, the
ayer is designed to exploit Occam’s window (Madigan and

aftery, 1994) and the two fundamental guidelines that are
used in the regressor collection layer to avoid generating all
possible hypothetical basis sets of regressors from Sj

iP
and

SiR in the process of identifying the important sub-prediction
models by assessing the impact of each element in the poten-
tial predictor set on the goodness of fit of the sub-prediction
model in a step-wise fashion. Specifically, in the jth iteration
of the regressor collection layer, the regressor classification
layer starts out with the basis set constructor, which is pro-
grammed to strategically select an element in Sj

iP
followed by

adding it to the existing SiR to create a hypothetical basis set
of regressors (denoted as Sh

iR), which is subsequently used by
the sparse nonlinear regression to generate the corresponding
hypothetical sub-prediction model. If the hypothetical sub-
prediction model can explain the training data significantly
better than the sub-prediction model created with SiR (in a
sense related to Bayes factors to be made clear in Section 4.1),
it is either stored in or used to replace the ith library of sub-
prediction models based on the supporting evidence for the
model, and Sh

iR is used to replace SiR; otherwise, the hypothet-
ical sub-prediction model and Sh

iR are discarded. In this work,

the procedure of selecting an element in Sj

iP
encoded in the

basis set constructor begins by ranking elements in Sj

iP
in the

order of increasing distance to the ith reforming tube such
that the potential predictor separated from the ith reforming
tube by the shortest distance is considered to have the highest
rank (i.e., the 1st rank), and the potential predictors separated
from the ith reforming tube by an equal distance are consid-
ered to have the same rank. Then, the rank of each element in
Sj

iP
is utilized by the basis set constructor as an indicator for

the order that the element is selected to construct Sh
iR. Specif-

ically, the basis set constructor starts with the high-ranking
elements in Sj

iP
because the burners that are situated closer to

the ith reforming tube are expected to have greater influence
on the ith OTWT than other burners that are situated farther
away and are more  likely to be considered as predictors; there-
fore, Sh

iR is more  likely to be accepted. When multiple elements

of Sj

iP
have the same rank, the order that these elements are

selected to construct Sh
iR is trivial because our proposed model

(Eq. (1a)) does not contain any cross term, which suggests that
burners are assumed to independently interact with the ith
reforming tube. In this case, they are iteratively selected one

by one to construct SiR before the potential predictors in the
next lower rank are selected. This procedure is repeated until
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Fig. 6 – The first stage of the multistage affecting zone that is created based on R
j

iZ
and the virtual reformer geometry in the
jth iteration of the prediction step.

all elements in Sj

iP
are considered, then the updated SiR is sent

back to the regressor collection layer.
Subsequently, in the regressor collection layer, the termi-

nation checker reviews R
j

iZ
and the updated SiR created in the

regressor classification layer to decide if the prediction step
should be terminated. Specifically, when R

j

iZ
is less than the

critical radius of the multistage affecting zone (denoted as
Rc

Z), the termination checker always instructs the prediction
step to execute the next iteration. In this work, Rc

Z is cho-
sen to be 3.4 m to prevent the prediction step from exploring
unnecessary regions in the regressor space because Tran et al.
(2017a) shows that the faraway burners, which are defined
as those separated from the ith reforming tube by a distance
greater than 3.4 m,  are expected to have small impact on the
ith OTWT by demonstrating that data-driven models which
include the faraway burners in the basis set of regressors have
similar goodness of fit to that of the data-driven model that
excludes the faraway burners from the basis set of regres-
sors. On the contrary, when R

j

iZ
becomes greater than or equal

Rc
Z, the termination checker only allows the prediction step

to execute the next iteration if at least one potential pre-
dictor in Sj

iP
is added to SiR. This design of the termination

checker is proposed to account for the potential influence of
the furnace-side flow pattern on the OTWT distribution that
allows the faraway burners to have long range effects on the
ith OTWT and to simultaneously prevent the prediction step
from exploring unnecessary regions in the regressor space.

After the jth iteration of the prediction step, the regressor
collection layer is operated under the second mode to exclu-
sively search for potential predictors to be used as inputs for
the regressor classification layer. Initially, it begins to compute
R

j+1
iZ

of the ith reforming tube according to Eq. (4), which is
used by the checked predictor identifier in the (j + 1)th iter-
ation to create the first stage of the affecting zone as done
in the previous iterations of the prediction step. Next, the
checked predictor identifier uses the first stage affecting zone
and virtual reformer geometry created in the first iteration to
generate Sj+1

iC
. In the (j + 1)th iteration of the prediction step,

because the library of ith sub-prediction models is no longer
empty, the potential predictor identifier is executed for the
first time; this step is the key difference between the first and
second modes of the regressor collection layer. Specifically, the
potential predictor identifier uses R

j+1 and R
j to create the sec-
iZ iZ

ond stage of the affecting zone as shown Fig. 7 and, then, uses
it and the virtual reformer geometry to generate Sj+1
iP

, which
contains information of the potential predictors. After that,
Sj+1

iP
is used as an input for the regressor classification layer,

which updates SiR. Finally, the termination checker utilizes
R

j+1
iZ

and the updated SiR in the decision-making process of
concluding the prediction step. This procedure is repeatedly
executed until the radius of the multistage affecting zone is
greater than or equal Rc

Z, and all elements in the potential pre-
dictor set of the ith reforming tube are rejected. Finally, BMA
is utilized to determine the weighting factor for each member
in the ith library of sub-prediction models (see Section 4.2).

4.1.  Bayesian  variable  selection

In the present work, a Bayesian variable selection method with
the search algorithm developed based on Occam’s window and
theories of thermal radiation is used to identify the predictors
for the ith OTWT based on the training data and to simultane-
ously create a collection of sub-prediction models that can be
used to explain the dependence of the ith OTWT on the FSF
distribution and total FSF flow rate. At each step, an element
in the set of potential predictors is added to SiR to create a Sh

iR,
which is subsequently used to create the corresponding hypo-
thetical sub-prediction model as detailed earlier in this section
(the sparse nonlinear regression algorithm used to develop the
hypothetical sub-prediction models will be described in Sec-
tion 4.3). Then, the layer quantitatively assesses the goodness
of fit of two competing data-driven models of the ith reforming
tube, i.e., the sub-prediction model (denoted as Mi,k where k
is the model index in the ith library of sub-prediction models)
created with SiR and the hypothetical sub-prediction model
denoted as Mi,h created with Sh

iR, by using the ratio of posterior
model probabilities as the metric to determine if a potential
predictor of interest can be classified as an important regres-
sor. Specifically, the posterior model probability of Mi,k, which
is denoted as pr(Mi,k|Ti) to represent the probability that Mi,k is
the true model for the dependence of the ith OTWT on the FSF
distribution and total FSF flow rate after observing the training
data, is computed as follows,
pr (Mi,k|Ti) = pr (Ti|Mi,k) pr (Mi,k)∑Ki
l=1pr (Ti|Mi,l) pr (Mi,l)

(6)
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Fig. 7 – The first stage of the multistage affecting zone that is created based on R
j+1
iZ

, R
j

iZ
and the virtual reformer geometry in
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(dh − dk) log(N) (12)
he (j + 1)th iteration of the prediction step.

here Ti =
{

T1
i
, T2

i
, . . .,  TN

i

}
is the collection of all N = 18 train-

ng data sets, T
j

i
is the ith OTWT extracted from the jth training

ata set, Ki is the total number of sub-prediction models in
he ith library, pr(Mi,k) is the prior model probability of Mi,k and
r(Ti|Mi,k) is the model evidence in favor of Mi,k. It is worth
oting that pr(Mi,k) reflects our beliefs that Mi,k is the true
odel for the dependence of the ith OTWT on the FSF dis-

ribution and total FSF flow rate before observing the training
ata. If information about the true model for the ith reform-

ng tube is available (e.g., the number of predictors in the
rue model is known), the prior model probability distribu-
ion could be designed to incorporate such information by
ssigning the sub-prediction models that have the same num-
er of predictors as the true model with a higher prior model
robability. However, this is typically not the case in practice.
herefore, the prior model probability distribution is chosen

o be noninformative, which assigns equal prior probability to
ll sub-prediction models in the ith library and allows conclu-
ions about the true model to be drawn directly from data. The
oninformative prior model probability distribution for the ith
eforming tube is designed as follows,

r(Mi,j) = 1
Ki

∀j = 1, . . ., Ki. (7)

Hence, the ratio of posterior model probabilities between

i,h and Mi,k can be evaluated as follows,

pr (Mi,h|Ti)
pr (Mi,k|Ti)

= pr (Ti|Mi,h) pr (Mi,h)
pr (Ti|Mi,k) pr (Mi,k)

= pr (Ti|Mi,h)
pr (Ti|Mi,k)

= Bi,hk (8)

here Bi,hk is defined as a Bayes factor for Mi,h against Mi,k. Eq.
8) suggests that Bi,hk and the ratio of posterior model prob-
bilities between Mi,h and Mi,k under the assumption of the
oninformative prior model probability distribution (Eq. (7))
re equivalent, and therefore, the value of Bi,hk can be used as
he quantitative evidence in favor of incorporating the poten-
ial predictor into SiR. However, computing Bi,hk is a nontrivial
ask because there is no analytical closed-formed expression
or computing pr(Ti|Mi,k). Specifically, pr(Ti|Mi,k) is computed by
ntegrating over all possible values of the parameters of Mi,k as
ollows,

∫

r (Ti|Mi,k) = pr

(
Ti|Mi,k, �̨k

i

)
pr

(
�̨k

i |Mi,k

)
d�̨k

i (9)
where �̨k
i

= [�̨k1
i

, . . .,  �̨kG
i

, ˛k
i
]
T

is the parameter vector of Mi,k (see
Section 4.3), pr( �̨k

i
|Mi,k) is the prior probability density of �̨k

i
and

pr(Ti|Mi,k, �̨k
i
) is the likelihood function of Ti. It is important to

note that the likelihood function of Ti is defined as the joint
probability density function of T1

i
, T2

i
, . . .,  TN

i
and is dependent

on �̨k
i

of Mi,k as follows,

pr
(
Ti|Mi,k, �̨k

i

)
=

N∏
j=1

pr

(
T

j

i
|Mi,k, �̨k

i

)
(10)

where pr(Tj

i
|Mi,k, �̨k

i
) is the probability density function of T

j

i
. In

addition, the probability density function of T
j

i
is assumed to

be computed as follows,

pr(Tj

i
|Mi,k, �̨k

i ) = 1√
2�(�j

i
)
2

exp(− (Tj

i
− T̂

P,j

i )
2

2(�j

i
)
2

) (11)

where �
j

i
is the standard deviation of the noise in the

ith OTWT in the jth training data set. Due  to challenges
in computing Bi,hk, many  published works in the Bayesian
statistics literature center on proposing methods to com-
pute pr(Ti|Mi,k) numerically, e.g., Markov Chain Monte Carlo,
or to approximate it with an acceptable accuracy, e.g.,
Laplace approximation, Bayesian information criterion (BIC)
approximation and maximum likelihood estimator (MLE)
approximation (Fragoso and Neto, 2015). In this work, the BIC
approximation is favored for two reasons: the BIC approxima-
tion is expected to provide a good approximation of logBi,hk

for linear models (Fragoso and Neto, 2015) and allows us to
avoid making assumptions about the prior probability density
of �̨k

i
, which allows the decision to incorporate the potential

predictor into SiR to be made based entirely on the training
data (Kass and Raftery, 1995). Under the BIC approximation,
logBi,hk is computed as follows,

log Bi,hk = [log(pr(Ti|Mi,h, �̨̂h
i
)) − log(pr(Ti|Mi,k, �̨̂k

i
))]
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where �̨̂k
i

is the MLE  of �̨k
i

and dk is the number of elements in
the basis set of regressors of Mi,k (see Section 4.3). It is impor-
tant to note that the first term in Eq. (12) can be interpreted
as the assessment of the goodness of fit between two sub-
prediction models, and the second term can be interpreted
as the penalty for using a model with higher complexity. The
approximated value of logBi,hk is the evidence in favor of Mi,h

extracted from the training data, and higher values of logBi,hk

imply that the training data provides more  evidence in support
of Mi,h and against Mi,k. Therefore, the value of logBi,hk can be
used in the decision-making process for determining whether
to incorporate a potential predictor into SiR. In the present
work, the task of interpreting the value of logBi,hk is especially
challenging because the improvement in the model goodness
of fit by incorporating an additional term into SiR is expected to
be underestimated when a small number of training data sets
is used. Hence, guidelines for interpreting Bayes factors pro-
posed in the Bayesian statistics literature, namely, twice the
natural logarithm of the Bayes factor suggested by Kass and
Raftery (1995), half unit on the logarithm of the Bayes factor
suggested by Jeffreys (1935), Occam’s window with the lower
bound of 1/20 and upper bound of 20 suggested by Raftery
et al. (1996) and Occam’s window with the lower bound of 1/20
and upper bound of 1 suggested by Madigan et al. (1994), were
reviewed. In this work, Jeffreys’ interpretation of the Bayes fac-
tor (Jeffreys, 1935) is selected and is tailored to account for the
impact of using the small number of training data sets on the
value of logBi,hk as follows: we  reason that when an insignif-
icant regressor is incorporated into SiR to create Sh

iR, the two
competing sub-prediction models are expected to have a sim-
ilar goodness of fit, which causes the first term in Eq. (12) to be
approximately zero, and the dimension of Sh

iR is greater than
that of SiR, which causes the second term in Eq. (12) to be
negative due to the increased model complexity. Therefore,
a negative logBi,hk can be viewed as a strong evidence against
Mi,h, which implies that the ith OTWT is independent of the
potential predictor. In this case, the regressor classification
layer is instructed to discard Mi,h and to dismiss the attempt
to incorporate the potential predictor into SiR. On the contrary,
when logBi,hk is nonnegative and greater than 2.0, it can be
viewed as a strong evidence against Mi,k, which indicates that
the training data provides significant evidence in support of
Mi,h and against Mi,k because Mi,h has a significantly higher
goodness of fit than Mi,k. In this case, the layer is instructed to
discard Mi,k along with its nested sub-prediction models (i.e.,
the sub-prediction models created and stored throughout the
prediction step in the process of generating Mi,k) in the ith sub-
prediction model library followed by accepting the attempt to
incorporate the potential predictor into SiR and storing Mi,h in
the ith library as the first sub-prediction model. It is worth not-
ing that this action is inspired by the two principles of Occam’s
window, which suggests that when a sub-prediction model
has a significantly lower goodness of fit than its competitor, it
should be discredited (Fragoso and Neto, 2015). Furthermore,
in the remaining case, i.e., when logBi,hk is nonnegative and
less than or equal to 2.0, it can be viewed as a weak evidence
against Mi,k, which indicates that the training data suggests
there is weak evidence in support of Mi,h and against Mi,k

because Mi,h has a slightly higher goodness of fit than Mi,k;
however, this evidence is insufficient to discredit Mi,k. In this
case, the layer is instructed to accept the attempt to incorpo-

rate the potential predictor into SiR and store Mi,h in the ith
library as the (k + 1)th sub-prediction model.
Remark 2. Although the reformer data (i.e., the train-
ing data and testing data) is generated by simulating the
high-fidelity reformer CFD model, it is expected to exhibit
some stochastic behavior because in all simulations of the
reformer CFD model, the final global normalized residuals
have small nonzero values which suggests that the reformer
data fluctuates around the true steady-state. Furthermore,
even though the training data and testing data are expected to
exhibit some stochastic behavior, each reformer data set only
has one realization, which prevents the magnitude of the noise
from being estimated from the reformer data. In this work, the
noise in OTWTs of all reforming tubes in the jth training data
set is assumed to be normal, independent and identically dis-
tributed with a mean of zero and a standard deviation of �j,
which is assumed to be 5–10% of the corresponding OTWT
range and is approximated as follows,

�
j

i
= �j = ��

(
max(�Tj) − min(�Tj)

)
∀i = 1, . . ., 336 (13)

where max(�Tj) and min(�Tj) represent the maximum and min-
imum OTWT in the jth training data set, respectively, and ��

is a hyperparameter, which has a random value between 0.05
and 0.1 generated by our in-house uniform random number
generator.

4.2.  Bayesian  model  averaging

In the present work, Bayesian model averaging is used to
account for model uncertainty in making predictions about
the ith OTWT based on the FSF distributions and total FSF
flow rates. In this section, it is assumed that Ki sub-prediction
models for the ith reforming tube, that capture the depen-
dence of the ith OTWT on the FSF distribution and total FSF
flow rate reasonably well, are derived from the training data
based on the Bayesian variable selection approach, and T∗

i
is

to be estimated given �F∗ and F∗
tot, which are the unexplored

FSF distribution and total FSF flow rate, respectively, of the
reformer. Therefore, the posterior mean of T∗

i
, which repre-

sents the most likely value of T∗
i

that is expected to be observed
based on the training data, can be computed as follows,

E
(

T∗
i |Ti, �F∗, F∗

tot

)
=

Ki∑
k=1

pr (Mi,k|Ti) E
(

T∗
i |Ti, �F∗, F∗

tot, Mi,k

)
(14)

where E(T∗
i
|Ti, �F∗, F∗

tot, Mi,k) represents the posterior mean of T∗
i

when Mi,k is assumed to be the true model for the ith reform-
ing tube. It is recognized that Eqs. (1a) and (14) resemble one
another, and therefore, it can be inferred that pr(Mi,k|Ti) is the
BMA weighting factor of Mi,k,

pr (Mi,k|Ti) = wP
i,k. (15)

In addition, pr(Mi,k|Ti) can be expressed in terms of Bayes
factors by dividing the numerator and denominator of Eq. (6)
by the posterior probability of an arbitrary model (e.g., Mi,1)
chosen from the ith sub-prediction model library,

pr (Mi,k|Ti) = Bi,k1∑Ki
l=1Bi,l1

. (16)

Therefore, the BMA  weighting factor of Mi,k can be approx-

imated by the BIC approximation (Eq. (12)) using the training

data, which allows T̂
P,∗
i to be computed as a weighted average
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P,∗
i,k generated by sub-prediction models of the ith reform-

ng tube (where the superscript star in place of n signifies that
he predictions are associated with the unexplored operating
ondition).

.3.  Sparse  nonlinear  regression

n the present work, sparse nonlinear regression with max-
mum likelihood estimation (MLE) is used to construct
ata-driven models of the ith reforming tube that can be
sed to explain nonlinearities in the dependence of the ith
TWT on the FSF distribution and total FSF flow rate. The

dea is inspired by the work in Brunton et al. (2016) which
ses sparse nonlinear regression to extract governing equa-
ions of nonlinear systems from observed data. Additionally,
runton et al. (2016) notes that governing equations of many
ystems typically consist of a few nonzero terms, which makes
parse nonlinear regression an especially appealing approach.
o derive sub-prediction models that can be used to describe
he dependence of the ith OTWT on the FSF distribution and
otal FSF flow rate from the reformer data, a library of linear
nd nonlinear transformations is designed based on expected
nteractions between the ith OTWT and its predictors. For
nstance, if the jth burner is a predictor of the ith OTWT, any
onzero value of the jth burner FSF flow rate is expected to
ause the ith OTWT to rise above the ambient temperature,
nd when the FSF flow rate of the burner is increased, the ith
TWT is also expected to increase. Therefore, the transforma-

ions are restricted to nonnegative, monotonically increasing
nd continuously differentiable classes of functions. In this
ork, the library of transformation functions is proposed to

onsist of monomial, root and exponential functions as fol-
ows,

1
(�Fn

)
=

[
Fn

1, Fn
2, . . .,  Fn

96

]T
(17a)

2
(�Fn

)
=

[
(Fn

1)2, (Fn
2)2, . . ., (Fn

96)2
]T

(17b)

3
(�Fn

)
=

[
(Fn

1)3, (Fn
2)3, . . ., (Fn

96)3
]T

(17c)

4
(�Fn

)
=

[
2
√

Fn
1, 2

√
Fn

2, . . ., 2
√

Fn
96

]T

(17d)

5
(�Fn

)
=

[
3
√

Fn
1, 3

√
Fn

2, . . ., 3
√

Fn
96

]T

(17e)

6
(�Fn

)
=

[
4
√

Fn
1, 4

√
Fn

2, . . ., 4
√

Fn
96

]T

(17f)

7
(�Fn

)
=

[
5
√

Fn
1, 5

√
Fn

2, . . ., 5
√

Fn
96

]T

(17g)

8
(�Fn

)
=

[
exp (Fn

1) , exp (Fn
2) , . . .,  exp (Fn

96)
]T

(17h)

here Fn
j

is the FSF flow rate of the jth burner from the nth
ata set. Next, the library of transformations is used to formu-

ate the generalized sub-prediction model for the ith reforming
ube, which is assumed to be dependent on all 96 burners and
n that case is denoted by T̃P,n

i
, as follows,

P,n
8∑

T
˜
i =

g=1

( �̨g
i
) · fg(�Fn) + ˛i (18)
where �̨g
i

∈ IR96×1 is the generalized parameter vector asso-
ciated with the gth transformation function, where g = 1, . . .,
8 (Eq. (17)), and ˛i ∈ IR represents ambient air temperature.
Then, a basis set of regressors (i.e., SiR) of the ith reform-
ing tube created by the Bayesian variable selection method
developed in the regressor classification layer is utilized in the
model-building process which integrates information about
the reformer layout and the knowledge that thermal radiation
is expected to be the dominant mode of heat transfer in the
reformer into the sub-prediction model (i.e., Mi,k) to set param-
eters associated with the burners that are not contained in SiR

to zero, effectively reducing the number of terms in Eq. (18) by
a factor of 96/NiR, where NiR is the cardinality of SiR, leading
to significant reduction in the computational cost. Therefore,
Mi,k can be written as follows,

T̃
P,n

i,k =
8∑

g=1

(
�̨kg

i

)T

· fg(�Fn|SiR
) + ˛k

i (19)

where �Fn|SiR
∈ IRNiR×1 is a vector in the design matrix of Mi,k.

The nonlinear sparse regression with MLE is formulated as a
constrained optimization problem that is structured based on
the L1 regularization technique (i.e., LASSO) because LASSO
is known to shrink parameters associated with the irrelevant
transformations to zero which further reduces the number
of terms in the sub-prediction model (Eq. (18)) of the ith
reforming tube. In addition, theories of thermal radiation dis-
cussed in Section 1 are integrated into the sub-prediction
model by means of equality and inequality constraints (Eqs.
(21a)–(21c)) in the optimization problem. The formulation for
the sparse nonlinear regression with MLE  is proposed as
follows,

min

˛k
i

∈ [298.15,  348.15]

˛
kg
ij

∈ [0, ∞)

N∑
n=1

(
Tn

i
− T̃

P,n

i,k

)2

2
(

�n
i

)2
+ �i

8∑
g=1

||�̨kg
i

||1 (20)

subject to
8∑

g=1

˛
kg
il

fg

(
F̄0

)
=

8∑
g=1

˛
kg
ij

fg

(
F̄0

)
if dil = dij

(21a)

8∑
g=1

˛
kg
il

fg

(
F̄0

)
≥

(
dij

dil

)ˇl 8∑
g=1

˛
kg
ij

fg

(
F̄0

)
if dil < dij (21b)

8∑
g=1

˛
kg
il

fg

(
F̄0

)
≤

(
dij

dil

)ˇu 8∑
g=1

˛
kg
ij

fg

(
F̄0

)
(21c)

F̄0 = F
typ
tot

96
(21d)

where l and j are indices of burners that are elements in SiR,
˛

kg
ij

is the parameter in Mi,k associated with the gth trans-

formed FSF flow rate of the jth burner, ˛k
i

∈ [298.15, 348.15]
represents an ambient temperature parameter in Mi,k and its
typical range, �i is the tuning parameter in LASSO of the ith
reforming tube, dij and dil are distances from the ith reforming
tube to the jth and lth burners, respectively, ˇu = 6.0 and ˇl = 1.0

are hyperparameters of the constraints and are chosen by trial
and error, and F

typ
tot is the total FSF flow rate typically reported
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Fig. 8 – The scatter plot of OTWTs of all reforming tubes in
six training data sets versus the corresponding distance to
the 77th reforming tube, which is referred to as the 77th
lag. It is noted that not all reformer CFD data sets in the
training data are shown in this figure to avoid cluttering.
in the SMR  literature (Tran et al., 2017b). The constraints of Eqs.
(21a)–(21c) are formulated in an effort to integrate the inverse
square law of thermal radiation into Mi,k. Specifically, burn-
ers, which are separated from the ith reforming tube by an
equal distance and are supplied with the same FSF flow rate,
are expected to have the same impact on the ith OTWT as
shown in the equality constraint (Eq. (21a)), whereas burners
which are separated from the ith reforming tube by differ-
ent distances but are supplied with the same FSF flow rate
are expected to have different impacts on the ith OTWT as
shown in the inequality constraint (Eq. (21b)). In this particu-
lar case, a burner that is situated closer to the ith reforming
tube is expected to have a higher impact on the ith OTWT
than those that are further away. It is noted that an additional
inequality constraint (Eq. (21c)) is added to the optimization
problem to prevent sparse nonlinear regression in an attempt
to reduce the number of terms in Eq. (19) from falsely pre-
suming that the impact due to a closer burner is indefinitely
higher than that due to a further burner given the premise
that the two are separated from the ith reforming tube by
different distances and are supplied with the same FSF flow
rate. It is noted that in the constrained optimization problem
(Eqs. (20) and (21)), �i directly controls the degree of shrink-
age for the parameter vector in Mi,k. Specifically, large values
of �i result in a high degree of shrinkage and favor underfit-
ting data-driven models with low levels of complexity. On the
contrary, small values of �i result in a low degree of shrinkage
and favor overfitting data-driven models with high goodness
of fit. Therefore, it is desired to use the optimal value of �i to
balance between the degree of complexity and goodness of fit
in data-driven models. In this work, leave-out-one (LOO) cross
validation is used to search for the optimal value of �i among
the proposed values, S� = {0.1, 0.2, . . ., 1.0, 1.2, . . .,  2.0, 5.0, 10},
because the fitting error (i.e., the mean-square error) might
not be an adequate representation for the out-of-sample pre-
diction error. In LOO cross validation, the training data (Ti) is
split into sub-training and sub-testing data in such a way that
a reformer data set in the training data is assigned to the sub-
testing data, and the remaining data sets are assigned to the
sub-training data. This procedure generates N different pairs
of sub-training and sub-testing data from the training data
(where N is the cardinality of the training data), and then, each
pair of the sub-training and sub-testing data is used to derive a
sub-prediction model library for the ith reforming tube and to
evaluate a corresponding out-of-sample prediction error for
each value of �i in S�. It is recognized that LOO cross vali-
dation is computationally intensive, e.g., the total CPU time
is expected to be ∼N times more  than that required by an
approach that uses the complete training data and the fitting
error as the metric to select �i, but LOO cross validation pro-
vides evidence (i.e., the unbiased estimate of the prediction
error) based on which the optimal �i can be identified. Specifi-
cally, the value of �i in S� that yields the least prediction error
for out-of-sample predictions is considered to be the optimal
�i.

5.  Correction  models

In the present work, an algorithm for the correction step is
designed based on ordinary Kriging, which is superior to other
common interpolation techniques and can yield estimates

with minimum variance (Holdaway, 1996), to improve the
predicted OTWT distribution, which is generated from the pre-
diction model for the OTWT distribution using �Fn and Fn
tot, by

accounting for the effect of interactions between neighboring
reforming tubes on the OTWT distribution. The correction step
is also designed to be a distributed algorithm, which derives
the correction model for the ith reforming tube from the train-
ing data independently of other reforming tubes allowing the
correction models for the 336 reforming tubes to be simultane-
ously created, which expedites the model-building process of
the correction model for the OTWT distribution. In the remain-
der of this section, the underlying process that leads to the
temperature variation in the OTWT distribution is discussed to
elucidate the use of ordinary Kriging in an attempt to account
for the impact of interactions among neighboring reforming
tubes on the OTWT distribution, and then, assumptions and
equations associated with ordinary Kriging will be explicitly
presented.

As noted in Section 1, the degree of nonuniformity in
the OTWT distributions along the reforming tube length is
controlled by the temperature distribution of the furnace-
side flow, which is a product of many  complex interacting
transport phenomena and chemical reactions taking place
simultaneously inside the reformer. The analytical determin-
istic solution for the OTWT distribution modeled as a function
of the reformer inputs (e.g., the FSF distribution and FSF flow
rate) cannot be easily obtained, and therefore, variations in
the OTWT distribution observed in the training data appear
to be as though they are the result of a random process. Fig. 8
displays the OTWT of each reforming tube as a function of
the ith lag (i=77 for the 77th reforming tube is chosen in this
figure for demonstration purposes), where the lag is defined
as the Euclidean distance between the jth and ith reforming
tubes where j is different from i. The figure suggests that the
mean of the OTWT distribution in each reformer CFD data
set in the training data is constant. This realization justifies
the assumption that in a sufficiently small neighborhood the
underlying process that governs the variations in the OTWT
distribution is intrinsically stationary. Therefore, the spatial
correlation of the OTWT among reforming tubes in a suffi-
ciently small neighborhood can be summarized in a spatial
variance function (i.e., semivariograms). Under the intrinsic
stationarity assumption, the variance function only depends
on lag (which is defined as a Euclidean distance between a pair
of reforming tubes and is denoted as h) and is calculated using
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Fig. 9 – The isometric view of the ordinary Kriging
neighborhood of the ith reforming tube that is denoted as
SK

i and is defined as an 8 m by 8 m region centered at the
ith tube, inside which the underlying process that gives rise
to the variations in the OTWT distribution is assumed to be
intrinsically stationary.

Fig. 10 – Omnidirectional sample semivariograms for SK
77

computed by the classical estimator as shown in Eq. (22)
using the training data. It is noted that not all results
generated using reformer CFD data sets in the training data
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Fig. 11 – Omnidirectional average sample semivariograms
for SK

77 computed by Eqs. (22) and (23) using information of
K

re displayed in this figure to avoid cluttering.

he classical estimator (i.e., the method of moments) from the
raining data as follows,

ˆ
n

i (h) = 1
2qi(h)

∑
qi(h)

(Tn
j − Tn

k )2 (22)

here �̂
n

i (h) is the sample semivariogram capturing the spa-
ial correlation of the OTWTs among reforming tubes that are
eparated by h ± 0.15 m and in the neighborhood of the ith
eforming tube (denoted as SK

i ) created from using the nth
eformer CFD data set in the training data, Tn

j
and Tn

k
are the

TWTs of the reforming tubes that are separated by h ± 0.15 m
nd in SK

i , and qi(h) is the number of pairs of reforming tubes
hat are separated by h ± 0.15 m and in SK

i . In this work, SK
i is

efined to be an 8 m by 8 m region centered at the ith reforming
ube as shown in Fig. 9 so that there are a sufficient number of
eforming tubes in SK

i , which allows relatively stable regional
ample semivariograms to be created for each training data
et. The sample semivariograms for SK

77 (the neighborhood of

he 77th reforming tube) calculated based on Eq. (22) using
he training data are shown in Fig. 10. It is recognized that
all reforming tube pairs in S77 from the training data.

the sample semivariograms in SK
77 at a given lag are similar

across all training data, which suggests that the spatial corre-
lation among refoming tubes separated by a distance of h m
can be modeled to be independent of the FSF distribution and
the total FSF flow rate. Therefore, all individual sample semi-
variograms can be pooled together to create average sample
semivariograms as follows,

�̂
∗
i (h) =

∑N

n=1�̂
n

i (h)qi(h)∑N

n=1qi(h)
. (23)

The average sample semivariograms shown in Fig. 11 are
expected to be a reasonable representation of the spatial cor-
relation among reforming tubes in SK

i (Bilonick, 1983).
It is noted from Fig. 11 that the average sample semivari-

ograms typically increase with increasing lag, which indicates
that the OTWTs of reforming tubes that are closely situ-
ated are more  highly correlated than the OTWTs of those
that are farther apart, with the exception at the lag of
approximately 2 m.  A detailed analysis of the reformer geome-
try shown in Fig. 1 reveals that the spatial correlation between
reforming tubes might also be dependent on directionality in
which the reforming tubes are separated. Two new terminolo-
gies are introduced to facilitate the discussion of anisotropic
sample semivariograms: pairs of reforming tubes within a
row are considered to be in the North-South direction and
are referred to as North-South pairs, while pairs of reform-
ing tubes in two adjacent rows are considered to be in the
East-West direction and are referred to as East-West pairs. It
is noted that the adjacent rows of reforming tubes are sepa-
rated by a distance of approximately 2 m which is the smallest
lag between any East-West pair. In addition, the East-West
pairs in which reforming tubes are separated by approxi-
mately 2 m are expected to be under the influence of a number
of common burners, specifically, under the assumption that
the four nearest burners to the ith reforming tube are the
ith default predictors, the regressor collection layer deter-
mines that their sets of regressors always have two common
predictors. On the contrary, the North-South pairs in which
reforming tubes are separated by approximately 2 m may or
may not be under the influence of any common burner. This

analysis suggests that at the lag of approximately 2 m,  the
OTWTs of the East-West pairs are expected to be more  sim-
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Fig. 12 – East-West anisotropic average sample
semivariograms for SK

77 computed by Eqs. (22) and (23)
using information of the East-West pairs in SK

77 from the
training data.

Fig. 13 – North-South anisotropic average sample
semivariograms for SK

77 computed by Eqs. (22) and (23)
using information of the North-South pairs in SK

77 from the

training data.

ilar than those of the North-South pairs. Furthermore, the
number of East-West pairs at the lag of approximately 2 m
is significantly larger than the number of the North-South
pairs separated by the same distance due to the reformer
layout as shown in Fig. 1. Therefore, the average omnidirec-
tional sample semivariograms at the lag of approximately
2 m as shown in Fig. 11 might not be used to represent the
spatial correlation between the North-South pairs. In this
work, North-South and East-West average anisotropic sample
semivariograms are evaluated according to Eq. (23) using infor-
mation of the North-South pairs and East-West pairs in SK

i ,
respectively, and are shown in Figs. 12−13 . It is recognized that
with the exception at the lag of approximately 2 m at which
the East-West pairs exhibit a strong spatial correlation, the
scatter plot of East-West average anisotropic sample semivar-
iograms shown in Fig. 12 indicates that when the lag is greater
than or equal to 2.4 m,  East-West pairs appear to be spatially
uncorrelated. Therefore, information of the East-West average

anisotropic sample semivariograms will not be utilized in the
model-building process of the spatial model (i.e., the correc-
tion model) for the ith OTWT. Additionally, it is noted from
Fig. 13 that when the lag is less than 4 m,  North-South pairs
are spatially correlated, and North-South average anisotropic
sample semivariograms exhibit the expected trend in which
semivariance increases with increasing lag; however, when
the lag becomes greater than or equal to 4 m,  North-South
pairs suddenly appear to be spatially uncorrelated. The analy-
sis of the average anisotropic sample semivariograms suggests
that the OTWTs of reforming tubes separated by a distance
greater than or equal to 4 m are spatially uncorrelated so that
this information should not be utilized in the model-building
process of the correction model for the ith reforming tube.
Therefore, the present work only uses information of reform-
ing tubes in SK

i and separated by a distance that is strictly
less than 4 m to construct the omnidirectional and isotropic
average sample semivariograms.

Next, the omnidirectional and anisotropic average sam-
ple semivariograms are fitted with linear and exponential
functions to generate 4 different theoretical semivariograms,
namely, linear omnidirectional, exponential omnidirectional,
linear anisotropic and exponential anisotropic theoretical
semivariogram models. Then, LOO cross validation is used to
identify the most suitable theoretical semivariogram model,
which most accurately describes the spatial correlation among
neighboring reforming tubes in SK

i , to be used in the model-
building process of the ith reforming tube. The linear (Eq. (24a))
and exponential (Eq. (24b)) functions (Cressie, 1985) are given
as follows,

for h > 0

�̃ l (h) = �1,l + �2,lh

0 ≤ �1,l, �2,l < +∞
(24a)

�̃e (h) = �1,e + �2,e

[
1 − exp

(
h

�3,e

)]

0 ≤ �1,e, �2,e < +∞ & 0 ≤ �3,e < 4

(24b)

for h = 0

�̃ l (h) = �̃e (h) = 0 (24c)

where �1,l and �2,l are parameters of the linear theoretical
semivariogram model, and �1,e, �2,e and �3,e are parameters of
the exponential theoretical semivariogram model. It is noted
that �3,e in Eq. (24b) is related to the range in which varia-
tions of the OTWTs are spatially correlated and, therefore, it
is reasonable to assume that �3,e is less than 4 m.  Parameters
of theoretical semivariograms are estimated using the method
of weighted least squares developed in Cressie (1985).

Finally, the correction model for the ith reforming tube is
formulated as a weighted average OTWT of the neighbors in
WK

i as follows,

T̂
C,n

i =
WK

i∑
j

wC
i,jT

n
j (25)

where j is an index of a reforming tube in WK
i , which is a

subset of SK
i , and wC

i,j
is the correction weighting factor of

the jth reforming tube. In this work, WK
i is defined to con-

sist of the three nearest northward, three nearest southward,

one nearest eastward and one nearest westward neighbors of
the ith reforming tube. In the event that the ith reforming
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ube is missing any of the aforementioned neighbors, WK
i is

hrunk down accordingly, and the ith OTWT is estimated only
sing the existing neighbors. For instance, as the 1st reforming
ube has neither three nearest northward neighbors nor one
earest eastward neighbor as shown in Fig. 1, the cardinality of

K
1 is reduced to four, and the 1st OTWT is directly computed

s the weighted average OTWT of the three nearest southward
nd one nearest westward neighbors.

Two different approaches for obtaining wC
i,j

associated with

lements in WK
i are proposed to account for the choice of

ncorporating directionality into the correction model for the
th reforming tube. Specifically, when an omnidirectional the-
retical semivariogram model is used to represent the spatial
orrelation between reforming tubes in WK

i , it is assumed that
he ith reforming tube is spatially correlated to all neighbors
n WK

i , and all wC
i,j

in the correction model (Eq. (25)) are the
riging weights and can be calculated as follows,

i �wC
i = ��i (26a)

subject to

	i ∈ IRNi,K+1×Ni,K+1 such that,

	i,kl = 0; k = l where k, l ∈
[
1, Ni,K + 1

]
	i,kl = 	i,lk = �̃

∗
i

(
ĥkl

)
where k, l ∈

[
1, Ni,K

]
	i,(Ni,K+1)l = 	i,l(Ni,K+1)where l ∈

[
1, Ni,K

]
(26b)

� C
i =

[
wC

i,j, . . .,  �C
i

]T∀j ∈ WK
i (26c)

�i =
[

�̃
∗
i

(
hij

)
, . . ., 1

]T

∀j ∈ WK
i (26d)

here 	i represents the matrix of semivariances between the
eighbors in WK

i , ��i represents the vector of semivariances

etween the ith reforming tube and its neighbors in WK
i , �̃

∗
i

s the best omnidirectional theoretical semivariogram model,
hich is identified by LOO cross validation, to describe the spa-

ial correlation of reforming tubes in WK
i , Ni,K is the number

f Kriging weights in the correction model for the ith reform-
ng tube, �C

i
is the Lagrangian multiplier, hij is the lag between

he ith and jth reforming tubes and ĥkl is the lag between the
th and lth neighbors in WK

i . It is noted that the subscripts

n ĥkl represent the order in which neighbors are arranged in
K
i instead of indices of reforming tubes, and in this study,

he neighbors in WK
i are arranged in an increasing order of

heir reforming tube indices. When an anisotropic theoretical
emivariogram model is used to represent the spatial cor-
elation between reforming tubes in WK

i , it is assumed that
he ith reforming tube is spatially correlated to the North-
outh neighbors but is spatially uncorrelated to the East-West
eighbors in WK

i . In this scenario, the ith corrected OTWT
s defined as an average of two distinct estimates calculated
sing information of the North-South neighbors and of the
ast-West neighbors, respectively. It is noted that, as the spa-
ial correlation between the North-South neighbors and the
th reforming tube is captured in the anisotropic theoretical
emivariogram model, the estimate calculated using informa-
ion of the North-South neighbors can be obtained after all wC

i,j

ssociated with the North-South neighbors are calculated as

hown in Eq. (26). On the other hand, because the ith reforming
ube is spatially uncorrelated to the East-West neighbors, the
estimate calculated using information of the East-West neigh-
bors is simplified to an average OTWT among the East-West
neighbors.

6.  Combined  model  uniting  prediction  and
correction  models

Upon the simultaneous creation of prediction models as dis-
cussed in Section 4 and correction models as discussed in
Section 5 for 336 reforming tubes from the training data, the
data-driven model for the OTWT distribution, which is a func-
tion of the FSF distribution and total FSF flow rate and is also
able to account for interactions among neighboring reforming
tubes, can be assembled. Initially, the prediction models for
336 reforming tubes are pooled to create the prediction model
for the OTWT distribution, by which the predicted OTWT dis-
tribution can be estimated based on a given FSF distribution
and total FSF flow rate, as follows,

⎛
⎜⎜⎜⎜⎜⎜⎜⎝
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. (27)

Then, the correction models for 336 reforming tubes are
also pooled to create the correction model for the OTWT dis-
tribution, by which the corrected OTWT distribution can be
estimated based on the predicted OTWT distribution, as fol-
lows,
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. (28)

Next, the data-driven model for the OTWT distribution is
formulated as a weighted average of the prediction and cor-
rection models for the OTWT distribution as follows,
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(29)

where the optimal value of wP denoted by ŵ
P

is selected among

the proposed values, Sw = {0.0, 0.1, . . .,  1.0} by LOO cross val-
idation, which can be carried out in the same manner as
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Fig. 14 – Summary of LOO cross validation for selecting the
optimal value of �77 from S� in which the mean squared
prediction errors are denoted by the empty red circles and
the mean squared fitting errors are denoted by the filled
black squares. (For interpretation of the references to color
in this figure legend, the reader is referred to the web

version of the article.)

discussed in Section 4.3. Specifically, the value of wP in Sw that
yields the least prediction error for out-of-sample predictions
is considered to be the optimal wP.

7.  Results

The statistical-based model identification approach developed
in this work is structured to be entirely parallelized; specifi-
cally, the prediction and correction models of the ith reforming
tube can be derived simultaneously from the training data and
independently of the model-building process of other reform-
ing tubes. This feature allows the optimal LASSO parameter
and theoretical semivariogram model for the ith reforming
tube and the optimal weighting factor of the BMA predicted
estimates to be determined using leave-out-one cross valida-
tion, which is expected to improve the prediction accuracy of
the OTWT distribution model for out-of-sample predictions.
We note that the model-building process for the OTWT of
each reforming tube is identically, independently and simul-
taneously executed on the shared computing cluster at UCLA,
and therefore, the effectiveness of the proposed model identi-
fication scheme can be demonstrated using results generated
from the model-building process of any reforming tube. In
the remainder of this section, the 77th reforming tube is
chosen as a representative example because the number of
sub-prediction models with high goodness of fit (i.e., 4) and the
number of predictors (i.e., 9) for the 77th OTWT make it pos-
sible to illustrate the effectiveness of the proposed approach
to identify the important burners and to allow the prediction
model for the 77th OTWT to account for model uncertainty
while forecasting in a concise manner.

The results from LOO cross validation to select the opti-

mal  value of �77 (denoted as �̂77) from S� are summarized in
Fig. 14. Specifically, the value of �77 controls the model com-
plexity and goodness of fit as discussed in Section 4.3 when the
sparse nonlinear regression is formulated as an L1 penalized
optimization problem, which is illustrated as shown in Fig. 14.
It is recognized from Fig. 14 that the mean square fitting error
increases with increasing values of �77, and specifically, the fit-

ting error is the largest at the highest values of �77 considered
in this work as low-complexity models are favored, while the
fitting error is the smallest at the lowest value of �77 as mod-
els with high goodness of fit are favored. In addition, Fig. 14
reveals that the fitting error is over-optimistic because it is
lower than the mean squared prediction error for all values of
�77, and the fitting error should not be used as the metric for

selecting �̂77 from S� because the prediction error is not nec-
essarily minimized at the value of �77 which minimizes the
fitting error. Specifically, Fig. 14 indicates that at �77=0.4, the
prediction error is minimized, which suggests that the optimal
value of �77 is 0.4, i.e.,

�̂77 = 0.4. (30)

Thereafter, �̂77 is used as the LASSO parameter of the sparse
nonlinear regression (Eq. (20)) in the prediction step algorithm,
by which the prediction model for the dependence of the 77th
OTWT on the FSF distribution and total FSF flow rate is derived
from the complete training data. It is found that this pro-
cedure generates four nested sub-prediction models of the
77th reforming tube, which together represent the prediction
model for the 77th reforming tube. The four sub-prediction
models of the 77th reforming tube, each of which can be used
to estimate the 77th OTWT based on a given FSF distribution
and total FSF flow rate, are as follows,
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√
Fn

19 + 141.73 5
√

Fn
30 + 234.28 5

√
Fn

31

+2.54 exp (Fn
18) +  3.17 exp

(
Fn

19

)
+ 14.45 exp

(
Fn

32

)
+ 348.15

(31a)

T̃
P,n

77,2 = 51.80 5
√

Fn
17 + 131.61 5

√
Fn

18 + 177.63 5
√

Fn
19 + 134.87 5

√
Fn

30

+179.40 5
√

Fn
31 + 66.49 5

√
Fn

32 + 10.94 exp
(

Fn
17

)
+ 1.17 exp

(
Fn

18

)
+0.64 exp

(
Fn

19

)
+ 6.22 exp

(
Fn

32

)
+ 348.15

(31b)

T̃
P,n

77,3 = 61.26 5
√

Fn
17 + 125.22 5

√
Fn

18 + 166.56 5
√

Fn
19 + 125.22 5

√
Fn

30

+166.56 5
√

Fn
31 + 60.01 5

√
Fn

32 + 37.83 5
√

Fn
43 + 5.40 exp

(
Fn

17

)
+6.39 exp

(
Fn

32

)
+ 6.63 exp

(
Fn

43

)
+ 348.15

(31c)

T̃
P,n

77,4 = 61.48 5
√

Fn
17 + 120.02 5

√
Fn

18 + 175.72 5
√

Fn
19 + 120.02 5

√
Fn

30

+175.72 5
√

Fn
31 + 69.04 5

√
Fn

32 + 21.96 5
√

Fn
43 + 10.00 exp

(
Fn

15

)
+8.43 exp

(
Fn

43

)
+ 348.15.

(31d)

At a glance, the four sub-prediction models successfully
account for the reformer geometry (i.e., the reforming tube
and burner arrangement) as only the parameters associated
with burners that are situated nearby the 77th reforming tube
are nonzero and also obey the inverse square law for ther-
mal  radiation as the parameters associated with burners that
are closer to the 77th reforming tube are larger. The dis-

tance between each predictor of the 77th OTWT and the 77th
reforming tube is detailed in Table 1. On closer inspection, it
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Table 1 – Distance from burners in S77R to the 77th
reforming tube.

Burner ID Distance (m)

19th 1.08
31st 1.08
18th 1.44
30th 1.44
32nd 2.32
17th 2.36
43rd 3.21
15th 5.24

Fig. 15 – Comparison of the 77th OTWT between reformer
CFD data from the training data and BMA  predicted
estimates generated from the prediction model for the 77th
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Fig. 16 – Residuals between reformer CFD data from the
training data and BMA  predicted estimates generated from
the prediction model for the 77th reforming tube.

Fig. 17 – Reformer CFD data from the training data versus
BMA predicted estimates generated from the prediction
eforming tube.

s recognized that out of the eight transformation functions
Eq. (17)) proposed in the development of the sparse nonlin-
ar regression, only the parameters associated with the quint
oot and exponential functions are nonzero, and the param-
ters associated with the quint root function are noticeably
arger than those associated with the exponential function
Eq. (31)). We speculate that the use of the exponential function
n the sub-prediction models by the sparse nonlinear regres-
ion is because the training data might have suggested that the
redictors located further away from the 77th reforming tube
ave higher impacts on the 77th OTWT than we previously
xpect (Eq. (21b)). This analysis reveals the underlying func-
ion that governs the relationship between the 77th OTWT
nd FSF flow rates of its predictors. Next, the prediction model
s created as the weighted average of the four sub-prediction

odels of the 77th reforming tube using Bayesian model aver-
ging as follows,

ˆ
P,n

77 = 0.01T̃
P,n

77,1 + 0.23T̃
P,n

77,2 + 0.29T̃
P,n

77,3 + 0.47T̃
P,n

77,4 (32)

here the weighting factor associated with each sub-
rediction model indicates the level of supporting evidence
iven by the training data. Then, the training data are used
o evaluate the resubstitution accuracy of the prediction

odel for the 77th reforming tube. The comparison between
eformer data from the training data and BMA predicted
stimates generated from the prediction model (Eq. (32)) is
hown in Figs. 15 and Fig. 17, and the corresponding residual
lot is shown in Fig. 16. Specifically, Fig. 16 shows that the
aximum and average residuals are 2.54 K and −0.01 K,
espectively, and Fig. 17 shows that all plotted points are close
o the diagonal line with the slope of 1 and y-intercept of zero.
model for the 77th reforming tube scatter plots.

Therefore, Figs. 15, 16 and Fig. 17 show that the prediction
model for the 77th reforming tube has a high goodness of fit
and provides an excellent description for the dependence of
the 77th OTWT on the FSF distribution and total FSF flow rate.

Next, the results from LOO cross validation, which allow
the best theoretical semivariogram model (denoted as �̂

∗
77)

to be selected among the linear omnidirectional, linear
anisotropic, exponential omnidirectional, and exponential
anisotropic theoretical semivariogram models so that the
spatial correlation among neighboring reforming tubes in
SK

77 can be described with adequate accuracy, are sum-
marized in Fig. 18. It is noted from Fig. 18 that the
correction models for the 77th reforming tube created in LOO
cross validation using the linear omnidirectional theoreti-
cal semivariogram model yield the smallest mean squared
prediction error for out-of-sample predictions, and therefore,

�̂
∗
77 is assumed to be the linear omnidirectional theoret-

ical semivariogram model. Thereafter, �̂
∗
77 is used as the

predetermined theoretical semivariogram model in the cor-
rection step algorithm, by which the correction model for
the 77th reforming tube is derived from the complete train-
ing data as shown in Table 2. Table 2 shows the expected
trend in spatial modeling, i.e., as the distance between
a neighbor and the 77th reforming tube increases, their
OTWT values becomes less correlated. Then, the training

data are used to evaluate the resubstitution accuracy of the
correction model for the 77th reforming tube. The comparison
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Fig. 18 – A plot of the mean squared prediction error
associated with each of the four theoretical semivariogram
models considered in the LOO cross validation to select the
best theoretical semivariogram to model the spatial
correlation among reforming tubes in the SK

77. The values
on the horizontal axis, i.e., 0, 1, 2, and 3, correspond to the
linear omnidirectional, linear anisotropic, exponential
omnidirectional, and exponential anisotropic theoretical
semivariogram models, respectively. This figure indicates
that the linear omnidirectional model has the least mean
squared prediction error and is considered the best model.

Table 2 – Lags, Kriging weights, and directionality of
reforming tubes used in the weighted average correction
step in calculating the 77th OTWT.

Reforming tube ID Lag (m) Kriging weight Directionality

29 2.13 0.03 Eastward
74 0.84 0.06 Northward
75 0.56 0.13 Northward
76 0.28 0.29 Northward
78 0.28 0.30 Southward
79 0.56 0.15 Southward
80 1.60 0.03 Southward
125 2.13 0.03 Westward

Fig. 19 – Comparison of the 77th OTWT between reformer
CFD data from the training data and corrected estimates
generated from the correction model for the 77th reforming

Fig. 21 – Reformer CFD data from the training data versus
corrected estimates generated from the correction model
for the 77th reforming tube scatter plots.

Fig. 20 – Residuals between reformer CFD data from the
training data and corrected estimates generated from the

the prediction error is minimized at wP=0.9, which suggests
tube.

between reformer data from the training data and corrected
estimates generated from the corrected model (Table 2) is
shown in Figs. 19 and 21 ; the corresponding residual plot is

shown in Fig. 20. Specifically, Fig. 20 shows that the maximum
correction model of the 77th reforming tube.

and average residuals are 1.63 K and −0.74 K, respectively, and
Fig. 21 shows that all plotted points are close to the diago-
nal line with the slope of 1 and y-intercept of zero. Therefore,
Figs. 19, 20 and 21 show that the correction model for the 77th
reforming tube has a high goodness of fit and provides an
excellent description of the 77th OTWT by using information
of the neighbors.

The results from LOO cross validation to select the optimal
weighting factor for the BMA predicted estimates from Sw are
summarized in Fig. 22. It is noted from Fig. 22 that the fitting
error decreases with increasing values of wP, and specifically,
the fitting error is at its smallest when the value of wP becomes
1, which implies that estimates of the OTWT distribution are
based entirely on the prediction model for the OTWT distri-
bution, while the fitting error is the largest when the value
of wP becomes 0, which implies that estimates of the OTWT
distribution are based entirely on the correction model for the
OTWT distribution. This observation is expected because the
correction model for the OTWT distribution is derived from
the training data instead of from the predicted OTWT distribu-
tions, which allows it to have realistic knowledge about spatial
correlation among neighboring reforming tubes so that the
overall predictability performance of the data-driven model
for the OTWT distribution for out-of-sample predictions can
be improved. Fig. 22 demonstrates the necessity of using the
correction model for the OTWT distribution, and specifically,
that the correction model for the OTWT distribution improves
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Fig. 22 – Summary of LOO cross validation for selecting the
optimal value of wP from Sw in which the mean squared
prediction errors are denoted by the empty red circles and
the mean squared fitting errors are denoted by the filled
black squares. (For interpretation of the references to color
in this figure legend, the reader is referred to the web
version of the article.)

Fig. 23 – Comparison of the maximum (Tmax), average (Tave)
and minimum (Tmin) OTWTs in each pair of data sets
between reformer CFD data in the training data, which are
represented by the filled black symbols, and estimates
generated from the data-driven model for the OTWT
distribution, which are represented by the empty red
symbols. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version
of the article.)
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Fig. 24 – Comparison of the OTWT distributions between
the 7th data set in the training data (a) and its
corresponding estimate generated from the data-driven
model for the OTWT distribution (b). In this figure, the
layout of 336 reforming tubes in the reformer is represented
by a table consisting of 336 rectangular cells, in which each
cell corresponds to a unique reforming tube in the reformer,
i.e., a cell at the bottom right corner of the table represents
the 48th reforming tube in the reformer as shown in Fig. 1.

Table 3 – Analysis of the deviations between reformer
CFD data in the training data and estimates generated
from the data-driven model for the OTWT distribution.

Index of data set (�T)max K (�T)ave K ��T K

1 8.9 2.1 2.5
2 8.1 1.8 1.9
3 18.5 2.2 7.2
4 7.3 1.5 1.9
5 6.7 1.1 1.1
6 6.9 1.1 1.1
7 5.6 1.4 1.1
8 8.1 1.6 2.2
9 7.3 0.9 0.9
10 7.3 1.1 1.0
11 7.5 2.0 2.7
12 7.2 1.3 2.0
13 8.5 1.9 1.6
14 7.7 1.4 1.1
15 2.6 0.7 0.3
16 12.7 2.2 6.1
17 7.2 1.3 1.2
18 8.2 1.0 1.6

of the estimated OTWT distribution are adequately close to
he out-of-sample predictive performance of the data-driven
odel for the OTWT distribution. Subsequently, the prediction
odels and correction models for 336 reforming tubes derived

rom the complete training data and the optimal value of wP

re used to formulate the data-driven model for the OTWT dis-
ribution. We note that the model for the OTWT distribution
epicts a multiple-input multiple-output (MIMO) system and

s composed of 336 algebraic equations, which can be solved
nstantaneously on a standard compute node on a shared
omputing cluster at UCLA (i.e., the Hoffman2 cluster). Then,
he training data are used to evaluate the resubstitution accu-
acy of the data-driven model for the OTWT distribution. The
omparison between reformer data from the training data and
stimates generated from the data-driven model for the OTWT
istribution is shown in Figs. 23−24 and Table 3. Fig. 23 pro-
ides a descriptive comparison of the maximum, average and

inimum OTWT in each pair of data sets between reformer
CFD data in the training data and estimates generated from
the data-driven model for the OTWT distribution, Fig. 24 pro-
vides a visual comparison of the OTWT distribution contour
map  between the 7th data set in the training data and its cor-
responding estimate generated from the data-driven model
for the OTWT distribution, and Table 3 provides an analysis
of the deviations between reformer CFD data in the train-
ing data and estimates generated from the data-driven model
for the OTWT distribution. It is noted that the contour maps
shown in Fig. 24 created from the 7th data set in the train-
ing data and its corresponding estimate generated from the
data-driven model for the OTWT distribution are nearly iden-
tical. Specifically, the maximum, minimum and average OTWT
those in the reformer CFD data as shown in Fig. 23, and the
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Fig. 25 – Comparison of the maximum (Tmax), average (Tave)
and minimum (Tmin) OTWTs in each pair of data sets
between reformer CFD data in the testing data, which are
represented by the filled black symbols, and estimates
generated from the data-driven model for the OTWT
distribution, which are represented by the empty red
symbols. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version
of the article.)

Table 4 – Analysis of the deviations between reformer
CFD data in the testing data and estimates generated
from the data-driven model for the OTWT distribution.

Index of data set (�T)max K (�T)ave K ��T K

19 8.2 1.6 2.3
20 5.7 0.7 0.6
21 4.3 1.4 1.0
maximum and average deviations between the pair as shown
in Table 3 are 5.6 K and 1.4 K, respectively, with the standard
deviation of 1.1 K which is approximately 0.1% of the average
OTWT in this reformer data. This evidence indicates that the
7th OTWT distribution generated by the data-driven model is
an accurate representation of the corresponding reformer CFD
data. In addition, similar conclusions can be drawn from Fig. 23
and Table 3 for other data sets in the training data. Therefore,
it can be concluded that the data-driven model for the OTWT
distribution has a high goodness of fit and provides an excel-
lent description for the dependence of the OTWT distribution
on the FSF distribution, total FSF flow rate and interactions
among neighboring reforming tubes.

Finally, the unbiased testing data are used to evaluate
the out-of-sample predictive performance of the data-driven
model for the OTWT distribution generated from the proposed
integrated model identification scheme. The comparison
between reformer data from the testing data and estimates
generated from the data-driven model for the OTWT distri-
bution is shown in Fig. 25 and Table 4. Fig. 25 provides a
descriptive comparison of the maximum, average and min-
imum OTWTs in each pair of data sets between reformer
CFD data in the testing data and estimates generated from
the data-driven model for the OTWT distribution, and Table 4
provides an analysis of the deviations between reformer CFD
data in the testing data and estimates generated from the
data-driven model for the OTWT distribution. Specifically, the
maximum, minimum and average OTWT of the estimated
OTWT distributions are consistent with those in the reformer

CFD data as shown in Fig. 25 and the maximum, average and
standard deviation of the differences between the pairs as
shown in Table 3 are nearly negligible compared to the corre-
sponding average OTWT in each data set. It is noted that the
maximum, average and standard deviation of the differences
in the OTWT distributions between the reformer CFD data and
estimates generated from the data-driven model for the OTWT
distribution in Table 3 and Table 4 are similar. Therefore, it can
be concluded that the data-driven model for the OTWT distri-
bution also has a high out-of-sample prediction performance
and provides an excellent description for the dependence of
the OTWT distribution on the FSF distribution, total FSF flow
rate and interactions among neighboring reforming tubes.

8.  Conclusion

The present work developed an integrated model identifica-
tion scheme that was able to derive a high-fidelity model for
the dependence of the OTWT distribution on the FSF distribu-
tion, total FSF flow rate and interactions among neighboring
reforming tubes from the reformer data. To this end, a high-
fidelity reformer CFD model that had been developed and
rigorously validated by typical plant data from the SMR  liter-
ature and actual plant data from our third-party collaborator
in our previous work was utilized to facilitate the generation
of the reformer database, which was split into the training
and testing data. Then, we used Bayesian variable selection,
Bayesian model averaging, the BIC approximation, sparse non-
linear regression and theories of thermal radiation to develop
the prediction step algorithm in the integrated model iden-
tification, from which the prediction model for the OTWT
distribution that estimated a predicted OTWT distribution
based on a FSF distribution and total FSF flow rate was gener-
ated using the training data. Next, we used ordinary Kriging
to develop the correction step algorithm in the integrated
model identification, from which the correction model for the
OTWT distribution that estimated a corrected OTWT distri-
bution based on a predicted OTWT distribution was derived
using the training data. Thereafter, we  created the data-driven
model for the OTWT distribution as a weighted average of
the prediction and correction models previously derived from
data.

One of our primary interests regarding this work is inte-
grating it in the development of an on-line robust furnace
balancing optimizer, which searches for the optimized valve
distribution to deliver an optimized FSF distribution and total
FSF flow rate to improve the reformer thermal efficiency and
compensate for impacts of disturbances on the reformer effi-
ciency. Therefore, it was important that the integrated model
identification scheme is computationally efficient so that the
optimized FSF distribution and total FSF flow rate can be
promptly generated to prevent disturbances from damaging
reforming tubes and reducing the reformer service life. In
this effort, the prediction and correction steps were struc-
tured to be entirely parallelized; specifically, the prediction
and correction models of 336 reforming tubes could be derived
simultaneously from the training data and independently of
one another. This feature allowed the optimal LASSO param-
eter and the most suited theoretical semivariogram model for
each reforming tube, and the optimal weighting factor of the
prediction estimates to be determined using leave-out-one
cross validation, which was demonstrated to improve the pre-
diction performance of the data-driven model for the OTWT

distribution. Finally, the results from the goodness-of-fit and
out-of-sample prediction tests of the data-driven model for



Chemical Engineering Research and Design 1 3 1 ( 2 0 1 8 ) 465–487 487

t
i
t
g
a
o
fl
i
w
r
r
i
p
o

A

F
a

R

B

B

B

C

E

F

F

G

H

H

he OTWT distribution generated from the integrated model
dentification scheme demonstrated the high effectiveness of
he method proposed in this work. In future work, the inte-
rated model identification scheme can be used to develop
n advanced furnace balancing scheme that simultaneously
ptimizes the FSF distribution and maximizes the total FSF
ow rate to decrease the degree of temperature nonuniformity

nside the reformer and to increase the reformer efficiency
ithout damaging the reforming tubes and reducing the

eformer service life. The ability to adjust the total mass flow
ate for the advanced furnace balancing scheme is of special
nterest for the hydrogen manufacturing industry as it can
otentially lead to substantial savings in the re-tubing cost
f a reformer.
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