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a b s t r a c t   

With the increase in electricity supply from clean energy sources, electrochemical re-

duction of carbon dioxide (CO2) has received increasing attention as an alternative source 

of carbon-based fuels. As CO2 reduction is becoming a stronger alternative for the clean 

production of chemicals, the need to model, optimize and control the electrochemical 

reduction of the CO2 process becomes inevitable. However, on one hand, a first-principles 

model to represent the electrochemical CO2 reduction has not been fully developed yet 

because of the complexity of its reaction mechanism, which makes it challenging to de-

fine a precise state-space model for the control system. On the other hand, the unavail-

ability of efficient concentration measurement sensors continues to challenge our ability 

to develop feedback control systems. Gas chromatography (GC) is the most common 

equipment for monitoring the gas product composition, but it requires a period of time to 

analyze the sample, which means that GC can provide only delayed measurements during 

the operation. Moreover, the electrochemical CO2 reduction process is catalyzed by a fast- 

deactivating copper catalyst and undergoes a selectivity shift from the product-of-interest 

at the later stages of experiments, which can pose a challenge for conventional control 

methods. To this end, machine learning (ML) techniques provide a potential approach to 

overcome those difficulties due to their demonstrated ability to capture the dynamic 

behavior of a chemical process from data. Motivated by the above considerations, we 

propose a machine learning-based modeling methodology that integrates support vector 

regression and first-principles modeling to capture the dynamic behavior of an experi-

mental electrochemical reactor; this model, together with limited gas chromatography 

measurements, is employed to predict the evolution of gas-phase ethylene concentration. 

The model prediction is directly used in a proportional-integral (PI) controller that ma-

nipulates the applied potential to regulate the gas-phase ethylene concentration at en-

ergy-optimal set-point values computed by a real-time process optimizer (RTO). 

Specifically, the RTO calculates the operation set-point by solving an optimization pro-

blem to maximize the economic benefit of the reactor. Lastly, suitable compensation 

methods are introduced to further account for the experimental uncertainties and handle 

catalyst deactivation. The proposed modeling, optimization, and control approaches are 
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the first demonstration of active control for a CO2 electrolyzer and contribute to the au-

tomation and scale-up efforts for electrified manufacturing of fuels and chemicals starting 

from CO2. 

© 2022 Institution of Chemical Engineers. Published by Elsevier Ltd. All rights reserved.     

1. Introduction 

Over the last decade, a great deal of interest has been elicited 
around the idea of using renewable-based electricity rather 
than fossil fuels as the energy source for large scale manu-
facturing of chemicals (e.g., De Luna et al., 2019). Direct 
electrocatalytic transformation of carbon dioxide (CO2) to 
fuels and chemicals can enable global scale renewable en-
ergy storage and close the anthropogenic chemical carbon 
cycle. However, outside of well-established chloralkali, water 
electrolysis, and aluminum refining processes, most elec-
trified chemical manufacturing processes are limited to 
bench-scale demonstrations. This is particularly the case for 
processes that use gaseous reactants and produce a complex 
mixture of multiple different products, such as the electro-
chemical reduction of CO2 (e.g., CO2 electrolyzers are cur-
rently limited to electrode areas of around 5 cm2 or less) or 
the reduction of nitrogen to ammonia (Jeng et al., 2022; Niu 
et al., 2021). One of the major challenges of industrially im-
plementing electrochemical reduction of CO2 is the absence 
of a well-understood reaction mechanism (Jin et al., 2021). 

To further investigate the fundamentals of electro-
chemical CO2 reduction, a gastight rotating cylinder elec-
trode (RCE) cell was recently developed, which can decouple 
the effects of mass transfer and reaction kinetics as well as 
promote the production of multiple valuable products (Jang 
et al., 2022). This novel electrochemical reactor shown in  
Fig. 1 has demonstrated that mass transport phenomena and 
intrinsic reaction kinetics can independently affect the pro-
ductivity and selectivity of the reactor, which implies the 
potential to control the product distribution of the reactor by 
manipulating certain inputs. The demonstration of control in 
production rates during CO2 electrochemical reduction is 
rare, with only one example by Creel et al. (2019) demon-
strating that it is possible to control the selectivity of CO by 
using light to illuminate the cathode in plasmonic catalyzed 
electrochemical CO2 reduction reactions. 

The development of chemical process models for control 
can be approached from two opposite directions, one using 
first-principles to build up a model and the other using a 
data-driven approach that condenses the input-output rela-
tions in a black-box model. The use of machine learning (ML) 
models in the context of electrochemical reactors has re-
ceived attention over the past ten years due to their de-
monstrated ability to approximate universal linear/non- 
linear relations with little a priori knowledge of the system 
(Corriou, 2004). ML has been used broadly from efforts geared 
towards gaining understanding of the role of adsorbates in 
changing the catalytic properties of copper electrodes to the 
discovery of CO2 electrocatalysts based on a large data set of 
electrolyzer literature. For example, Wu et al. (2021) used a 
four-layer neural network as well as other ML algorithms to 
investigate the influence of different supplementary ad-
sorbates on the performance of electrochemical CO2 reduc-
tion on copper surface, and reported tens of adsorbates that 
have a major impact among other candidates. In another 
work, Malek et al. (2021) tested various ML algorithms, such 
as bagging regressors, regression trees, and gradient 
boosting, to predict the most feasible electrochemical CO2 

reduction catalyst material using an extensive database 
comprising academic and industrial reports. Alternatively, 
classic ML algorithms usually require less training data than 
deep learning techniques and are better suited for the ana-
lysis of electrochemical data sets acquired under more con-
trolled and better defined conditions of transport, such as 
those generated in the RCE cell (Mahesh, 2020). Among ML 
algorithms, support vector machines (SVM) provide a com-
plementary way to perform data-driven modelling with 
lower probability of over fitting (Tan et al., 2018; Ray, 2019). 
Proposed by Vapnik et al. (1996), support vector regression 
(SVR), based on SVM, can be used to perform regression for 
static and dynamic models by defining a margin around a 
proposed hyperplane for data fitting and penalizing data 
points beyond the margin. This method has shown strong 

Fig. 1 – Components of the electrochemical reactor. (a) Electropolished atomically-flat polycrystalline copper cylinder 
electrode, (b) Schematics of gastight rotating cylinder electrode (RCE) cell, and (c) Bench-scale electrochemical reactor setup 
with sensors, actuators, and automation devices. 

88 Chemical Engineering Research and Design 185 (2022) 87–107   



performance in representing time-series data and pattern 
recognition (Basak et al., 2007; Yu and Jiang, 2016; Burges, 
1998). For example, Pascual et al. (2013) developed an SVR 
model to predict the steady-state performance of a reverse 
osmosis desalination plant using 3990 steady-state data 
points and further simulated its dynamic perturbations from 
steady-state operation. Shokry et al. (2015) demonstrated the 
ability of SVR to model a dynamic Photo-Fenton process, a 
photochemical oxidation reaction common in pollutant 
treatment, and the SVR model effectively predicted the pro-
duction of OH radicals with data from a pilot plant. Tan et al. 
(2018) modeled NOX emissions from coal combustion boilers 
based on observations of 73 h of experiment using SVR and 
Artificial Neural Network (ANN), which showed that SVR is a 
more robust option than ANN for this process. 

Motivated by the above considerations, this work pro-
poses an ML-based scheme to implement real-time optimi-
zation (RTO) and feedback control in an experimental 
electrochemical reactor for CO2 reduction. Specifically, an 
SVR model is developed on the basis of existing experimental 
data to estimate the dynamic response of the reactor op-
eration, and to account for inherent disturbances such as 
sensor uncertainties and catalyst degradation. Subsequently, 
the information from the sensors and ML model is integrated 
and used by a Proportional-Integral (PI) controller that ma-
nipulates the input of the reactor. In addition, a real-time 
optimizer (RTO) is developed to compute the optimum set- 
point for the reactor by integrating the steady-state predic-
tion from a neural network model and valid market in-
formation. The proposed control and optimization scheme is 
demonstrated by a series of experiments that control ethy-
lene production of the RCE reactor. 

The rest of this manuscript is organized as follows. In the 
section entitled “Preliminaries”, the experimental reactor 
setup and catalyst deactivation are described. In the next 
section, entitled “Machine-Learning Modeling", the experi-
mental method of extracting, formulating and building the 
SVR model and related model improvements are discussed. 
In the following section entitled “Real-Time Optimization", 
the methodology to calculate the most economically feasible 
set-points is discussed. In the section entitled “Feedback 
Control", the implementation of a PI controller is integrated 
with an estimator for the reactor overhead ethylene con-
centration and real-time GC measurements; then the per-
formance of the model and the controller is evaluated. 

2. Preliminaries 

This section introduces the background of the experimental 
electrochemical reactor employed in this work. Specifically, 
the experimental system and methodology are discussed 
and important variables are explained. An overview of the 
catalyst deactivation is then used to explain the background 
of the control objective. All process equipment mentioned in 
this section, except nuclear magnetic resonance (NMR), is 
connected to a Laboratory Virtual Instrument Engineering 
Workbench (LabVIEW) interface. The operational procedures 
required in the experiment, including but not limited to real- 
time GC data processing, controller activation, and equip-
ment actuation, are fully automated by a computer program 
developed with Python and implemented through a LabVIEW 
interface. Fig. 1 shows UCLA’s RCE system along with the 
array of sensors and actuators in the system. 

The ML model is integrated into LabVIEW and the outputs 
of the ML model are calculated on a per-second basis. The 
parameters of the feedback controllers are assigned a priori 
to take specific values for specific time intervals of operation. 
This includes closed-loop control experiments where the set- 
point is changed between two time intervals. For gas product 
quantification, a Python script was developed to auto-
matically process the raw GC data, detect the gas product 
signals, and calculate the corresponding gas phase con-
centrations utilizing a GC caligration file. This GC script is 
then used to get real-time data to correct the ML model and 
improve the controller performance. The process data is 
synchronized with an online database of the Smart 
Manufacturing Innovation Platform (SMIP) provided by The 
Smart Manufacturing Institute (CESMII). SMIP was used for 
data storage and monitoring and to facilitate data accessi-
bility for all researchers when building models on site. 

2.1. Electrochemical reactor setup 

We have recently described the construction of an RCE re-
actor setup (Jang et al., 2022) which can be used to produce 
over 16 different gas and liquid products during the electro-
chemical reduction of CO2 on a copper electrode. As shown 
in Fig. 1 b, this electrochemical reactor setup consists of six 
major components. These are: the reactor with its two 
chambers containing respectively the working (cathode) and 
counter (anode) electrodes separated by an ion-exchange 
membrane that prevents product cross-over between the 
two chambers, a potentiostat that regulates the potential 
applied to the working electrode, a mass flow controller to 
adjust the mass flowrate of the feed gas (CO2), a modulated 
speed rotator (MSR) to adjust the rotation speed of the elec-
trode, a cooling/heating block to control the temperature of 
the cathode compartment, and a computer. In addition to 
these six major components, a gas chromatograph (GC) and a 
nuclear magnetic resonance (NMR) spectrometer are utilized 
to quantify the chemical species in the gas and liquid-phase 
products, respectively. In the work presented here, the GC 
has been automated for on-line gas product quantification. 

During the experiment, inlet flowrate of feed gas is fixed 
to 20 mL min−1 by the mass flow controller and is bubbled 
directly through a 0.2 M KHCO3 electrolyte solution in the 
cathode chamber. Subsequently, CO2 is reduced to synthetic 
fuel and chemical products which result from proton-elec-
tron transfer processes occurring on the surface of the ro-
tating cylinder electrode, which serves as the cathode and 
working electrode. In addition, the potential applied to the 
working electrode is continuously measured against the re-
ference electrode, while the MSR modulates the rotation 
speed of the RCE through magnetic coupling and the reactor 
temperature is controlled through a bath circulator that 
flows coolant at a specified temperature through the cooling/ 
heating block. Eventually, gas products leave the reactor 
headspace and travel through polytetrafluoroethylene (PTFE) 
tubing to be quantified by the GC once every sampling period. 
The liquid products accumulate in the electrolyte solution 
and are then quantified by NMR after electrolysis (Jang et al., 
2022). Since the concentrations of the liquid products cannot 
be measured while the reactor is operating (NMR sample 
preparation, analysis and quantification take long and are 
infeasible to implement feedback control on this data), only 
the gas products are considered as the outputs of the process 
for the proposed control scheme. 
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Remark 1. In addition to working as an actuator, the 
potentiostat also functions as a sensor that measures and 
records the current density flowing between the working 
electrode and the counter electrode in real-time. Based on 
this measurement, the potential on the surface of the 
electrode, which is known to directly affect the 
electrochemical reaction, can be calculated with reference 
to the standard hydrogen electrode (SHE) by Eq. (1). 

= × +E E i R Esurface applied 0 (1) 

where Esurface is the surface potential, Eapplied is the applied 
potential measured against the reference electrode, i is the 
current density (negative value for reductive currents), and R 
is the resistance of the solution between the working 
electrode and the reference electrode measured using 
electrochemical impedance spectroscopy (EIS) (Jang 
et al., 2022). 

E0 represents the standard electrode potential of the re-
ference electrode (Ag/AgCl/1 M KCl), so that Esurface is refer-
enced against the standard hydrogen electrode (V vs. SHE) 
after correction. 

2.2. Identification and quantification of the process 
output 

Among all products generated by this electrochemical re-
actor, hydrogen (H2), carbon monoxide (CO), methane (CH4), 
and ethylene (C2H4) are in the gas phase and can be detected 
using gas chromatography (GC). The relevant reactions for 
these products are shown below: 

+ + +CO H O e C H OH2 8 12 122 2 2 4 (2a)    

+ + +CO H O e CH OH6 8 82 2 4 (2b)    

+ + +CO H O e CO OH2 22 2 (2c)    

+ +H O e H OH2 2 22 2 (2d)  

The measured production of gas products (C2H4, CH4, CO, 
and H2) by the GC is the target component of the feedback 
control scheme, which is implemented by the following 
procedure. Firstly, the temperature-programmed GC sepa-
rates molecules injected onto the columns, which have dif-
ferent elution times. Subsequently, separated molecules are 
detected using a thermal conductivity detector (TCD) and a 
flame ionization detector (FID) in the GC system. In this 
study, the temperature program runs for 14.33 min after 
which the heated column oven requires 6 min of cooling time 
before the next injection. This means that the GC has a 
sampling period of 20.33 min. The delay in the GC analysis 
limits the possibilities for real-time control, but this can be 
overcome to some extend through the development of a ML- 
based estimator which allows for the calculation of real-time 
gas compositions in the cell overhead. This estimator is de-
scribed in Section 3. 
Remark 2. Because of the strong correlation of the ethylene 
productivity with respect to the surface potential and the 
electric current, it is chosen as the initial component of 
interest for modeling and control. In addition, ethylene has 
numerous industrial applications and is the most produced 
organic molecule worldwide with a current installed 
production capacity of over 200 million metric tons per year. 

2.3. Catalyst deactivation 

Catalysts play a central role in electrochemical reactors. Our 
experimental process uses a smooth, cylindrical, poly-
crystalline copper electrode shown in Fig. 1 a. Copper has 
previously been shown to have the highest selectivity for C2 

products, making it the catalyst of choice in CO2 electrolysis 
(Kim et al., 2014). However, the copper catalyst continuously 
degrades as the reactions proceed, and this causes a drift in 
steady state, even when the input (typically applied potential 
which is the driving force for electrochemical reactions) is 
held constant. The catalyst deactivation is attributed to 
surface restructuring, blocking of sites by reactive carbon 
species, and absorption of impurities from the electrolyte 
(Nitopi et al., 2019). The deactivation is particularly fast on 
flat, non-porous catalysts such as the one used here. Elec-
trodes with a higher porosity have a higher density of active 
sites and can be operated at lower overpotentials, so the 
deactivation processes appear to occur over longer time 
periods (Kas et al., 2015). 

The deactivation mechanism of copper under electro-
chemical CO2 reduction environments is complicated and 
different potential sources of deactivation have been pointed 
out over the last decades. Hori et al. (2005) showed that metal 
impurities, mainly Zn+2 and Fe+2, and trimethylamine ex-
isting in a 0.5 M KHCO3 electrolyte accumulated on the 
copper electrode during testing affecting product selectivity 
and current densities. These authors recommended the uti-
lization of reagents of the highest purity or the use of pre- 
electrolysis using platinum black cathodes as a way to purify 
the electrolyte solution and delay catalyst deactivation (Hori 
et al., 2005). Another source of deactivation that has been 
proposed is formation of graphitic carbon species from de-
composition of reactive intermediates (DeWulf et al., 1989; 
Shiratsuchi et al., 1993; Xie et al., 2014). Such reaction inter-
mediates could block catalytic sites and poison the electrode 
surface. On the other hand, Kim et al. observed surface re-
construction of polycrystalline copper to Cu(100) facet both 
in KOH (Kim et al., 2014) and KHCO3 (Kim et al., 2018) elec-
trolytes under reductive potentials and associated these 
surface restructuring to changes in product distribution. 
Despite the complexity of the deactivation mechanism 
which can be attributed to various factors, anodic pulsing 
could be used to mitigate catalyst deactivation and prevent 
changes in activity and selectivity of copper under operation 
(Shiratsuchi et al., 1993; Engelbrecht et al., 2018). 

Catalyst reactivation procedures such as anodic pulsing or 
potential sweeping could be programmed and integrated 
eventually into the control system of future CO2 electrolyzers. 
However, catalyst oxidation procedures can also lead to ex-
cessive surface roughening, loss of electric conductivity and 
catalyst dissolution and must be further investigated. In this 
work, we have introduced an additional parameter of the 
cumulative integral of current to address the deactivation 
issue. As a general trend, either the energy required for mo-
lecules to pass the activation energy barrier increases or the 
number of active sites decreases as the catalyst continues to 
deactivate. One way to compensate for the loss of activity is to 
increase the applied electric potential to ensure that a similar 
number of reactant molecules can continue to be transformed 
despite the deactivation. This is accomplished by interpreting 
general trends of deactivation and introducing the integral of 
current parameter. Integration of the current passed in an 
electrolyzer is a simple, yet effective, way to track the degree 

90 Chemical Engineering Research and Design 185 (2022) 87–107   



of use of a catalyst within an electrochemical system with 
broad applications beyond CO2 electrolyzers and will be dis-
cussed in detail in Section 3.4. 
Remark 3. A different catalyst morphology may considerably 
delay the deactivation. Specifically, for electrochemical CO2 

reduction reactions, another available catalyst morphology is 
copper cubes that have pores on the electrode surface, 
allowing both internal and external mass transfer to play a 
role (Roberts et al., 2015). However, this study is only focused 
on the reactions with flat copper and compensation of the 
catalyst deactivation via introduction of the cumulative 
integral of current parameter and feedback control. Future 
work will investigate control with the copper cube catalyst. 

3. Machine learning modeling 

One of the main objectives of this research is to control the 
experimental electrochemical reactor. In the absence of a 
first-principles model for the electrochemical system, a 
simple PI controller could be implemented and tuned on the 
basis of direct measurement feedback without the use of any 
model. However, this scenario exhibits many limitations in 
terms of control performance. To construct a closed-loop 
control system, the frequency of feedback from GC mea-
surements (20.33 min) would be inadequate to provide ac-
curate and reliable control of the reactor. An effective PI 
control in the presence of catalyst deactivation would benefit 
from feedback on a per-second basis rather than once every 
20.33 min from the GC. The use of a Fourier Transform 
Infrared Spectrometer (FTIR), a device that can detect the 
concentration of gas products every second with high relia-
bility, was considered as an alternative method of measuring 
and providing feedback to the control system (Ke et al., 2022). 
However, because of the higher volume flowrate required for 
FTIR, the product concentrations from the reactor would 
have been reduced by an order of magnitude. This reduction 
in concentration would have placed the product concentra-
tions near the limit of detection, making FTIR inadequate for 
the reactor used in this investigation. Due to this limitation, 
building a dynamic machine-learning model is deemed to be 
a necessary step in controlling the electrochemical system. 

3.1. Data collection and pre-processing 

The data used to develop the ML model is collected from 
open-loop experiments performed by the following procedure. 
Mass flow controllers are arranged to maintain 20 mL min−1 of 
CO2 gas flow to the reactor. Specifically, before each experi-
ment, the resistance of the buffer solution is measured, and 
the applied potential is adjusted to compensate for the mea-
sured solution resistance. This is done automatically by the 
potentiostat during the experiment. A steady rotation speed is 
set for the cylinder electrode so that the hydrodynamics are 
well developed in the cell, and then the applied potential (V 
vs. Ag/AgCl) is set to a desired value. Both rotation speed and 
applied potential are kept constant throughout the experi-
ment. The experiment takes approximately 80 min, and 4 GC 
measurements are taken during the experiment at 15, 35, 55 
and 75 min mark. The corresponding real-time current and 
applied potential values are recorded simultaneously. It is 
known that concentration of the gases in the reactor overhead 
is not equilibrated by the first GC injection, so this data point 
is ignored for the purposes of modeling reactor performance. 

As a result, each experiment produces 3 data points of con-
centrations for each gas product. The corresponding current 
densities and surface potentials for relevant GC runs are 
averaged in a time frame to represent the gas equilibrium in 
the reactor overhead. It is assumed that the average residence 
time of this electrochemical reactor is around 5–8 min under 
conditions operating close to steady state. Therefore, the 
surface potential and current values are averaged in a 3- 
minute time window, from 8 to 5 min prior to the GC injection 
to best represent the current density and surface potential 
corresponding to each GC result. 

The experiments with GC measurements below the de-
tection limit or with unusual increases in the electrolyte re-
sistance were marked as outliers. After these data points 
have been eliminated, the results of 48 experiments are 
considered for modeling. The resulting database includes 144 
data points of surface potential, current, rotation, and gas 
product concentrations. 
Remark 4. Using small-scale experimental data to develop an 
ML model raises additional unique challenges in comparison 
to using simulation or well-structured industrial data, since 
it contains more experimental uncertainty. The measured 
resistance of the KHCO3 solution can vary for each trial 
depending on the preparation of stock solution, 
temperature, conductivity of the inner electrical circuit, 
etc., although the values were kept as consistent as 
possible (7  ±  0.2 Ω). Similarly, the electrodes are both 
mechanically and electrochemically polished prior to each 
experiments, but even the standardized polishing process 
can lead to different catalyst activities at low overpotentials. 
Furthermore, data measurements are limited by the 
detection range of the sensors, since the production scale is 
small with this experimental setup. As a result, it is possible 
to obtain different observations from the same input 
conditions. Thus, averages and standard deviations of some 
of the data from open-loop experiments, presented in  
Table 1, are utilized in the ML modeling. 

3.2. Model selection and evaluation 

Luo et al. (2022) have modeled the reactor setup for the esti-
mation of the steady-state production rate using an ANN. 
However, this ANN model only gives the average estimation of 
what the reactor would produce throughout the 80-minute 
experiment and cannot be used for dynamic data modelling. A 
very effective method of constructing a dynamic data driven 
model involves using Recurrent Neural Networks (RNN) as 
this architecture accounts for the history of the process. Wu 
et al. (2019) examined in detail the use of RNNs in process 
control. One of the dynamic ML modeling techniques is Long 
Short Term Memory (LSTM) RNNs. LSTM networks have an 
underlying architecture that processes a time window and 
keeps the necessary information at specific time steps. 
Therefore, the use of LSTM to store these dependencies is 
justified. However, neural network architectures are very 
data-dependent, and 3 data points with 20-min intervals per 
experiment is insufficient to capture the general behavior of 
an 80-minute experiment. Another example is using ML 
techniques for parameter-based modeling (such as reaction 
rate at specific temperatures) and combining this ML model 
with first-principle time-dependent equations. 

Based on the work of Luo et al. (2022), the applied po-
tential and rotation speed are two important inputs for 
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characterizing the reactor operation. However, these two 
inputs are held constant throughout the experiment. To 
create a dynamic state estimator, the model must be trained 
with inputs that vary during the experiment. Thus, the state 
estimator model should also incorporate other inputs, such 
as the current and surface potential, which vary throughout 
the experiment with the catalyst degradation. 

The available data is separated into training and testing 
sets. 80% of the data is destined for training and used to train 
various machine learning methods, including linear, ridge, 
lasso, polynomial regressions, support vector regression, and 
gradient-boosted decision tree algorithms. Five-fold cross- 
validation (CV) and mean square error (MSE) were used for 
model selection. The MSE of the different models are plotted 
against each other in Fig. 2. 

Among the tested regression methods, two of them had 
remarkably higher training and testing performance, which 
were gradient boosting and support vector regression (SVR) 
with a polynomial kernel. Since decision tree-based algo-
rithms, such as gradient boosting, do not produce a smooth 
output (Guelman, 2012), they present challenges when 
combined with control. Boosting methods are very successful 
at predicting the GC measurement points but can be very 
misleading for the areas in-between two consecutive GC 
points. In contrast, SVR predictions are more realistic, as they 
yield predictions for the operating conditions between GC 
points that align closely with the expected behavior of the 
system. Thus, the polynomial kernel SVR is chosen because 
of its smooth, continuous properties and ability to predict 
intermediate points more accurately. 
Remark 5. It is important to note that the SVR model is 
trained only from GC measurements as described in Section 
3.1, so the SVR model cannot capture the gas concentration 
prior to the GC measurement at 35 min. This requires the gas 
production to reach a pseudosteady state such that the 
production rate at the catalyst surface is equal to that of 

the gas products entering the GC. In the beginning of the 
experiment, the electrolyte is not saturated with the product 
gases such as hydrogen, ethylene, methane and carbon 
monoxide. As a result, the initial gases produced must 
dissolve in the electrolyte until the electrolyte is saturated. 
Then, the gases begin to accumulate in the reactor overhead 
and become detectable by the GC. Therefore, until 
equilibrium is reached, the SVR predictions are different 
from the actual GC readings. After the time necessary for 
equilibrium passes, the SVR predictions and GC 
measurements start to converge. 

3.3. Support Vector Regression (SVR) 

Support Vector Machine algorithms are similar to least- 
squares-based regression methods. However, instead of 
minimizing the residuals, SVR aims to optimize the gen-
eralization error bound; thus, it tries to come up with a 
generalized regression equation (Basak et al., 2007). SVR as-
sumes that the support vectors have at most a deviation of ε 
from the proposed function and idealy intends to keep all 
data points within this margin. The SVR algorithm only pe-
nalizes points that are outside the support vectors (Basak 
et al., 2007). A visualization of non-linear regression para-
meters of SVR is shown in Fig. 3. 

We note that ξ, ξ* are slack variables for opposite sides of 
the support vectors and represent the distance between the 
outside points and the support vectors. For a linear SVR, the 
optimization problem is as follows (Basak et al., 2007): 
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where 〈 ⋅ , ⋅ 〉 is the inner product, w is the weight matrix, C is 
a parameter that decides the tolerance limit for divergences 
greater than ε, and l is the number of data points beyond the 
support vectors. The first two optimization constraints re-
present the support vectors. Solving the above convex opti-
mization problem yields the linear regression function. The 
same procedure can be applied to a kernel function such as a 
polynomial. The degree of the polynomial is selected prior to 
the optimization. 

The polynomial kernel k(xj, xk) can be defined as follows: 

= +k x x x x( , ) (1 )j k j
T

k
n

(4) 

where xj and xk are instances of input vectors, xj
T is the 

transpose of xj, and n is the order of the polynomial. 

=k x x x x( , ) ( ), ( )j k j k (5) 

where φ(x) is a non-linear kernel function and 〈 ⋅ , ⋅ 〉 denotes 
the inner dot product between the values. While our training 
data has 4 features, for simplicity, Eq. (6e) below only illus-
trates 2 features with a 2nd degree polynomials for the two 
instances of the input vectors x1 and x2. Each feature con-
tains the current, ii, and surface potential, ei, data of two 
experiments as shown in the following example: 

=x e i[ , ]1 1 1 (6a)    

=x e i[ , ]2 2 2 (6b)  

Table 1 – Variations in surface potential, current, and 
C2H4 concentrations in repeated open-loop experiments 
at certain operating conditions.     

(a) Averages of experimental inputs and outputs in various ranges 
Average 

Potential  
(V vs SHE) 

Total Current 
Density (mA∕cm2) 

C2H4 

Concentration (ppm) 

-1.447 11.25 140.61 
-1.426 9.6 150.71 
-1.407 6.09 139.01 
-1.365 3.87 47.81 
-1.318 1.7 9.62 
-1.262 1.19 1.28 

(b) Standard deviations of experimental inputs and outputs in 
various ranges 

Standard Deviation 

Potential  
(V vs SHE) 

Total Current 
Density (mA∕cm2) 

C2H4 

Concentration (ppm) 

0.010 2.360 64.38 
0.001 1.687 42.40 
0.005 0.960 23.397 
0.013 1.059 13.93 
0.010 0.214 2.64 
0.003 0.082 1.82   
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where e1 and e2 are surface potentials, and i1 and i2 are the 
current values of input the vectors x1 and x2, respectively. 

The objective function would then take the fol-
lowing form: 

= +
=

f x k x x b( ) ( * ) ( , )
j

N

j j j
1

(7) 

where αj* and αj are the Lagrange multipliers of the optimi-
zation problem. The convex optimization problem is solved 

to find the coefficients of the polynomial kernel (Basak 
et al., 2007). 

3.4. Model training and feature engineering 

The Python package Scikit-Learn is used to fit the data to a 
support vector regression model. Grid search is implemented 
to find the best hyperparameters, by training the proposed 
model with all combinations of predefined sets of hy-
perparameters. The hyperparameters yielding the highest 
cross validation performance are selected to fit the final 
model. After grid search, the data are fit to a polynomial 
kernel of 5th order consisting of the surface potential, rota-
tion speed and current as input parameters and ethylene 
concentration as an output. Since this model has a relatively 
small training set, feature engineering is applied to improve 
the model performance. Fig. 4 is useful for interpreting gen-
eral trends in the data. Throughout the open-loop experi-
ments, although the manipulated input variables (e.g., 
applied potential and rotation speed) are fixed, the ethylene 
concentration in the product is continuously decreasing. As 
shown in Fig. 4, the current density generally decreases over 
the duration of the experiments, and therefore, it increases 
the surface potential according to the relationship described 
by Eq. (1) (since the sign in current and potential signifies the 
direction, increasing or decreasing remarks are made with 
respect to absolute values). The general decreasing trend of 
current is due to catalyst deactivation which will be re-
presented better in the model by the integral of the current 
as explained in the following paragraphs. The model is first 
fit to the data set and some preliminary fitting results are 
presented in Fig. 5. 

Fig. 2 – Box plots for five cross-validation mean squared errors on a normalized scale for multiple candidate ML models.  

Fig. 3 – The proposed hyperplane f(x) and the margins 
f(x)  ±  ε. 
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Despite having a satisfactory approximation to the GC 
results and rational predictions in between two consecutive 
GC points, the model fails to catch some behaviors in the 
current and surface potential. In the experimental data, 
there exists a natural deviation in ethylene production rates 
measured under the same operating conditions. Also, the 
SVR model predictions have a strong correlation with the 
current input. However, mimicking the trend in the current 
could result in missing some inherent behaviour in ethylene 
concentration, particularly when the experiment is run for 
longer than the 80 min used for the collection of the open- 
loop data used in the initial SVR model training. This moti-
vates the pursuit of an additional input that can represent 
the catalyst degradation and account for the historical effect 
of the inputs throughout the experiment. Since the catalyst 
deactivates continuously, the ethylene concentration is ex-
pected to decrease monotonically over time under a constant 
applied potential and rotation as shown in Fig. 5. Thus, the 
new input must be increasing or decreasing monotonically 
and must be derived from the available system parameters. 

A parameter that is compatible with these prerequisites is 
the cumulative integral of the current. The current is always 
negative, as defined by the convention, since a cathodic 

potential is applied. Therefore, the cumulative area under 
the current is increasing at each time step even if the current 
is decreasing in magnitude. Thus, a very high integrated 
value of the current hints that the degradation has reached a 
very high level and the reaction is slowing down accordingly. 
This is consistent with the experimental trend that experi-
ments at higher potentials show a more significant overall 
catalyst deactivation, because a higher applied potential 
leads to a larger flow of current. Additionally, the historical 
effect of the current in the experiment is taken into account 
through integration. The integral of the current can be de-
fined as follows: 

=P t i d( ) ( )
t

av
0

(8) 

where P(t) represents the integral of the current term, t is the 
time, and iav(t) is the averaged current values that the GC 
measurements are based on. The integral is calculated nu-
merically with the trapezoidal rule based on per-second 
current data. The impact that the integral of the current 
parameter makes is shown on Fig. 6. In the concentration 
plot of Fig. 6, the large fluctuation in SVR predictions between 
the second and third GC points is due to fluctuations in the 
surface potential, but this is reduced to a more rational trend 
and the third GC point is captured after the integral of the 
current is introduced. 

Since the data set is relatively small for dynamic model-
ling, auxiliary performance boosting methods are explored to 
increase the model accuracy. One of the beneficial methods 
is feature engineering (Heaton, 2016). The input parameters 
can be augmented by applying some mathematical trans-
formations to the existing inputs. Some of the common 
feature engineering methods are polynomial, logarithmic 
and reciprocal transformations (Heaton, 2016). Since first- 
principles models are in the development phase, the math-
ematical forms of all parameters are not exactly known. For 
example, in the case of a polynomial transformation, x x1

2
2

might be a more efficient parameter than just x2, where xi is 
an arbitrary input. Similarly, feeding the transformation log 
(x1) might be a better input than x1 if there is a possible 
logarithmic correlation in the nature of the phenomenon. 
Feature engineering can increase the number of inputs in the 
model, and this causes a trade-off between computation 
time and accuracy. The performance of the feature en-
gineered models is tested under polynomial degrees 2, 3, and 
4, logarithmic, and reciprocal transforms, in addition to re-
gression tree and lasso transformations. The mathematical 
backgrounds for decision tree and lasso can be found in 
(Myles et al., 2004) and (Park and Casella, 2008). The results 
are presented in Table 2. 

Feature engineering has the potency to improve the R2 of 
the model by 8% and reduce the absolute error in the test set. 
The best-performing feature transformation is polynomial, 
and the R2 metric continues to improve as its degree in-
creases. The best polynomial is the fourth degree poly-
nomial, but this transformation greatly increases the number 
of inputs. The third degree polynomial also appears to have a 
good performance, and it achieves this performance with 
fewer inputs. This is expected as the third degree polynomial 
captures both the exponential increase in partial current 
density as a function of the applied potential and the fact 
that ethylene production becomes limited by mass transport 
at the highest overpotentials. Thus, a third degree 

Fig. 4 – The trends in ethylene concentrations with 
increasing current and surface potential illustrated with 
results from various experiments. Same colors show 3 GC 
results from the same experiment. Ethylene concentrations 
are normalized between 0 and 1. 

94 Chemical Engineering Research and Design 185 (2022) 87–107   



polynomial feature transformation was selected to retrain 
the model. 

Training and testing performance of the improved SVR 
model, after including the integral of the current as a new 
parameter and implementing the feature engineering, is 
shown in Fig. 7. The mean absolute error is 11.3 ppm and the 
R2 score is 0.92. 

4. Real-time optimization 

This section demonstrates a real-time optimization strategy 
for the electrochemical reactor. Specifically, we first ap-
proximate the cost and revenue of the reactor at various set- 
points (i.e., ethylene concentration). Subsequently, the opti-
mization process is developed based on the economic 

evaluation result of the reactor. Lastly, open source software 
is introduced to perform the real-time optimization for 
this work. 

4.1. Set-point optimization 

Set-point optimization is critical for process operation; 
however, the location of the optimum varies with different 
practical considerations. In this work, we develop a frame-
work to decide the optimum operating conditions for the 
electrochemical reactor automatically, by considering the 
result from the economic evaluation based on the opera-
tional neural network model from Luo et al. (2022). Specifi-
cally, we approximate the energy consumption to maintain 

Fig. 5 – Performance of the SVR model in open-loop experiments. The concentration and surface potential plots do not start 
from time zero because those values are averaged over a 3 min time window in open-loop experiments. 

Fig. 6 – Improvement of the predictions after adding the integral of the current parameter as input. The concentration and 
surface potential plots do not start from time zero because those values are averaged over a 3 min time window in open-loop 
experiments. 
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each ethylene concentration set-point at steady-state by 
using the following equations: 

=
=

I P e AF
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(9a)    
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(9b)    

=E IVt (9c)  

where Eq. (9a) approximates the current density of the 
reactive surface by calculating the amount of transferring 
electrons, which is proportional to the overall production 
rate of the reactor. A is the area of the reactive surface, F is 
the Faraday constant, Vg is the standard molar volume of 
gases, F0 is the feed flow rate of the CO2 gas and ei is the 
number of electrons transferred to form a molecule of the ith 
product. The values of these parameters are listed in Table 3. 
Additionally, Pi, i = 1, …, m is the molar production rate of the 
ith product, which is predicted by a statistical feed-forward 
neural network (FNN) model described in Luo et al. (2022). 
The FNN model is developed to take the surface potential (V) 
and rotation speed (r) of the electrode, which was fixed at 
100 rpm for the control experiments in this study, as inputs 
to predict the production rates for all products. Fig. 8 shows 
the comprehensive profile of the ethylene production rate 
predicted by the FNN model, which implies a proportional 
relationship between the surface potential and the ethylene 

production rate, and an inversely proportional relationship 
with respect to the proportional speed. The reduction of 
ethylene production at higher rotations speeds was de-
termined to be caused by the decrease in the residence time 
of carbon monoxide at the electrode/electrolyte interface by  
Jang et al. (2022). Furthermore, according to the balance- 
based equation for this reactor (Eq. (9b)), a unique con-
centration (Mi) for each product can be found from the cor-
responding production rate Pi. Therefore, the energy 
consumption (E) to operate the reactor at a specific set-point 
of ethylene concentration is calculated by adopting the 
equation of electric energy (Eq. (9c)). 

We assume the electric energy consumption is the only 
type of cost to operate this reactor, and we approximate the 
revenue of the reactor on the basis of the sale price and 
production rate of each product. Therefore, the optimum 
ethylene concentration set-point to operate the electro-
chemical reactor can be determined by solving the following 
optimization problem: 

J = R x V C I V
argmax
x̂ D

( ( ˆ , ) ( , )) (10a)    

s t F V r x. . ( , )nn (10b)    
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(10d)    

=r 100 (10e)    

V1.5 1.27 (10 f)  

where D m is the bounded state space of the produc-
tion rates, and the boundary of the space D is determined 
from the training data set used to develop the FNN model 
(Luo et al., 2022). The vector x = [P1, P2, …, Pm] contains the 
actual steady-state production rate of each product during 
the real-time reaction, and x̂ denotes the predicted produc-
tion rates given by the FNN model. ce and ci, (i = 1, …, m) are 
the price of electricity and the sale price for the ith product 
listed in the Table. 4. In this study, the rotation speed of the 
working electrode is set to be constant at 100 revolutions per 
minute (rpm), and the surface potential is bounded from 
− 1.5V to − 1.27V vs SHE shown in Eq. (10e) and Eq. (10f). The 
FNN prediction is used in Eq. (10c) and (10d) to approximate 
the revenue and cost of operating this reactor and the con-
straint shown in Eq. (10b) ensures the FNN prediction is ac-
curate and reliable. It is noted that the bench-scale reactor 
used here is 8–10 orders of magnitude smaller in ethylene 
production rates compared to existing commercial ethylene 
plants. Thus the set-point optimization is an interesting 
conceptual experiment as it includes operating constraints 

Table 2 – Performance of the model using various 
feature engineering methods.     

Feature Engineering Method R2 Mean Abs. Error  

No Feature Engineering 0.842 13.24 
Polynomial degree 2 0.894 10.39 
Polynomial degree 3 0.922 11.31 
Polynomial degree 4 0.924 10.31 
Logarithmic + Reciprocal 0.853 14.59 
Regression Tree 0.847 11.70 
Lasso 0.841 13.24   

Fig. 7 – Testing and training performance of improved SVR 
model. 

Table 3 – Parameters of economic evaluation.     

Notations Value Unit  

A 3 cm2 

F 96,485.3 C mol−1 

Vg 22.4 L mol−1 

F0 0.02 L min−1 

V Variable Voltage 
I Variable Amp 
E Variable Watt 
M Variable Ppm   
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but it does not capture the complexity of future electrified 
large scale production systems. This approach remains va-
luable as it is based on experimental data and should be 
translatable to increasingly larger systems. 

Open-source software for large-scale optimization pro-
blems, Ipopt, is utilized to address the set-point optimization 
problem. In this work, we use the forward finite difference 
method by adding small steps Δu on the optimized variables 
(i.e., potential and rotation speed), to approximate the first- 
order derivatives of the optimization problems. Additionally, 
second-order derivatives are approximated with the Quasi- 
Newton method to provide information for the calculation of 
search directions (Wächter and Biegler, 2006). The deriva-
tives and constant parameters (e.g., products and electricity 
prices) are provided to Ipopt to optimize the operating con-
ditions in terms of surface potential and rotation speed. Fi-
nally, the results are converted to the corresponding 

ethylene concentration set-point (c) by using Eqs. (10b) and  
(11), where Fo and a are the gas inlet flow rate (0.2 L min−1) and 
a constant (1,000,000) for the unit conversion, as follows: 

=
aP AV

F
c i g

o
(11)  

The optimization is performed for various electricity costs 
ranging from 0.023 to 0.03 dollars per kWh to provide opti-
mized results over this range (Guerra et al., 2019). As shown 
in Fig. 9, subfigures a and b demonstrate the approximate 
daily profit to operate the electrochemical reactor and the 
ethylene concentration profile at a rotation speed of 100 rpm. 
In the plot, the optimal set-point shifts to a lower con-
centration of ethylene with increasing electricity price, im-
plying that the optimizer is capable of making intelligent 
decisions to reduce the production rate as operating costs 
increase. As a result, the optimum operating conditions for 
electricity price at 0.023 and 0.03 dollars per kWh are utilized 
for dynamic control experiments to demonstrate the con-
troller performance in a cost changing scenario, such as the 
electricity Time-of-Use (TOU) rate plan in actual operation. 
Remark 6. The model is based on FNN calculations built 
using a statistical ML model, which generates averaged 
steady-state calculations taking catalyst deactivation into 
account. Since the catalyst deactivation cannot be defined 
with first-principle models in this study, the representation 
of deactivation is embedded into the FNN model with the 
statistical ML method. The FNN model is trained based on 
open-loop experiments and 3 data points were taken with 
equal intervals of 20 min, which shows the concentration 
decrease due to the catalyst decay. These results are 
averaged to give the pseudo steady-state concentration 
under a fixed applied potential and rotation speed. This 
model is optimized in our study to find economically 
optimal set-points while accounting for the catalyst 
deactivation (Luo et al., 2022). 

Fig. 8 – The map of FNN prediction for C2H4 production rates.  

Table 4 – Chemical information of products.      

Index Products Number of 
Transferred 
Electrons 

Chemical 
Formula  

1 methane 8 CH4 

2 ethylene 12 C2H4 

3 methanol 6 CH3OH 
4 ethanol 12 C2H5OH 
5 acetate 8 CH3COO− 

6 ethylene glycol 10 CH OH( )2 2

7 glycolaldehyde 8 HOCH2CHO 
8 acetaldehyde 10 CH3CHO 
9 n-propanol 18 C3H7OH 
10 allyl alcohol 16 C3H5OH 
11 acetone 16 CH3COCH3 

12 propionaldehyde 16 C2H5CHO 
13 carbon monoxide 2 CO   
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Remark 7. The catalyst needs to be regenerated once the 
selectivity shift happens. Catalyst regeneration is the only 
way to reverse the selectivity shift. However, this study does 
not explore catalyst regeneration. A future process operation 
and control study for this reactor will be based on a more 
stable catalyst, which does not exhibit severe deactivation. 

5. Feedback control 

This section demonstrates the application of the experi-
mental control schemes to the electrochemical reactor. 
Driven by the motivation mentioned in Section 2.2, the 
control objective is to regulate the ethylene production to 
energy-optimal set-point values by manipulating the input 
variable. Therefore, a proportional-integral (PI) control algo-
rithm is adopted to calculate the control actions for this 
study, where the manipulated input is the potential applied 
to the working electrode and the controlled output is the 
ethylene concentration measured from the reactor head- 
space gas phase product. The PI control algorithm in dis-
crete-time form is expressed by the following formulas 
(Mhaskar et al., 2004): 

=e t y y( )k sp (12a)    

=u t K e t( ) ( )p k C k (12b)    

= + +
u t u t
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(12c)    

= +u t u t u t( ) ( ) ( )k p k I k (12d)  

where ysp is the desired set-point and y is the estimate of 
the controlled variable at time tk. The controller error e(tk) is 
defined as Eq. (12a). Eq. (12b) and (12c) demonstrated the 
controller outputs from the proportional (up(tk)) and integral 
(uI(tk)) terms, respectively, where KC denotes the controller 
gain, τI represents the integral time constant, and Δt is the 
controller sampling time. The final control action (u(tk)) cal-
culated by the PI controller is shown as Eq. (12d), which is the 
potential on the surface of the catalyst. 

Specifically, the surface potential (Esurface) required to 
reach or maintain the desired set-point is computed by the PI 
controller, and then the corresponding applied potential 
(Eapplied) is back-calculated by the actuator based on Eq. (1), 
since the Esurface compensates for the Ohmic drop from the 
electrolyte solution resistance. The surface potential is more 
relevant than the applied potential (Eapplied) in describing the 
Tafel kinetics of electrochemical reactions involving electron 
transfer. It is noted that the primary and secondary current 
distributions in the RCE geometry are uniform, which is not 
the case for most existing CO2 electrolyzers using H-type or 
compression cells. To further explain the control of the 
production rate, it is important to demonstrate how a change 
in Eapplied affects the current and Esurface. Intuitively, in-
creasing the potential applied to the electrode can increase 

Fig. 9 – Approximated daily profit to operate the electrochemical reactor under various ethylene set-points with changing 
electricity price. (a) The approximated daily profit profile to operate the reactor under different electricity cost. The open 
black points are the maximum profits that can be obtained by operating the reactor under the respective electricity prices. (b) 
The ethylene concentration profile under various surface potential conditions. The solid colored points emphasize the 
optimum ethylene set-points that give the maximum profit. 
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the potential on the reacting surface. However, the current 
density also has a positive correlation with the applied po-
tential, and it is competing with the potential distributed to 
the reacting surface. Thus, the actuator needs to adjust the 
applied potential with respect to the output of the PI con-
troller and the real-time measurement of the current 
density. 
Remark 8. The reactor may be controlled in real-time by 
manipulating two input variables: applied potential and 
rotation speed. The present study examines the control of a 
single gas phase product concentration (ethylene) by using a 
single-loop feedback controller that manipulates the applied 
potential. In addition to the applied potential, the rotation 
speed can be effectively used to control the outlet 
concentration of another gas product. The CO 
concentration is a good candidate as a second output given 
its strong dependence on rotation speed. Thus, multivariable 
control of the electrochemical reactor is a feasible task and 
will be discussed in a future work. 

On the other hand, the controller output should be 
bounded by the highest and lowest surface potential values 
in the training set of the SVR model. The applied potential 
does not have a strict upper bound due to the variable elec-
trolyte resistance which ranges between 6.8 and 7.2 ohms, 
but the surface potential is strictly bounded by the Esurface 

range in the SVR training data set. In order to stay within the 
model confidence, an instant conversion from surface po-
tential to applied potential is made during the control. 

Due to the presence of a mixing volume in the gas phase 
of the reactor, it was previously determined that the GC 
concentrations during open-loop experiments were actually 
representative of the conditions in the reactor 5–8 min before 
the GC injection was taken, as discussed in Section 3.1. Thus, 
current and potential values were averaged over this 3- 
minute window for open-loop experiments used to train the 
SVR model. Because of the dynamics of the reactor, this 
method provided the best means of accurately correlating 
the production rate of ethylene with the conditions in the 
reactor. However, in the case of closed-loop experiments, the 
SVR model is used to predict the instantaneous production 
rate in real time, and the gas phase ethylene concentration 
model discussed in Section 5.1 accounts for the dynamic 
time delay in the response of the GC to the instantaneous 
change on the catalyst surface under a fixed rotation speed at 
100 RPM. Thus, a sampling time of two seconds was used for 
averaging by the SVR during closed-loop control to provide 
real-time estimates. The real-time production rates pre-
dicted by the SVR model were then used as inputs for the 
gas-phase ethylene concentration model to control the re-
actor with a PI controller. 

5.1. Ethylene concentration estimator 

As mentioned in Remark 5, the SVR model is constructed to 
represent the product concentration on the catalyst surface. 
However, this does not represent what is measured by the 
GC. To have efficient control, it is necessary to estimate the 
gas-phase ethylene concentration in real time. 

It is experimentally known that the GC and reactor over-
head need a certain amount of time to reach equilibrium. 
This equilibrium volume is not exactly known and cannot be 
assumed to be equal to the reactor overhead volume, since 

gas bubbles adhere to the inner walls of the reactor and the 
surface of the rotating electrode depending on the rotation 
speed. To address this issue, the GC and reactor overhead are 
approximated as a continuously stirred tank reactor (CSTR), 
and the equilibrium volume and residence time are calcu-
lated using the first-principle CSTR equations, as shown in 
Eq. 14. It is mentioned in the previous sections that rA(t) re-
present the reaction rate and is calculated by the SVR model. 
The GC results are equalized to Eq. 14d, rA(t) is calculated by 
the SVR model and the τ and V parameters are varied to find 
the best fit. τ and V are correlated by the following equation: 
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where V is the equilibrium volume in L and VCO2 is the 
volumetric flow of CO2 into the reactor in mL min−1. Since CO2 

flowrate is known to be 20 mL min−1, the fitting is made by 
varying only the residence time τ for multiple reaction rate 
calculations and corresponding GC measurements. 

This set of differential equations can be solved analyti-
cally to estimate the gas-phase ethylene concentration and 
can be modelled as follows: 

= + ×dN
dt

F F r t s( )A
A A A0 (14a)    

=F 0A0 (14b)    

= + ×dC
dt

C
r t s

V
1 ( )A

A
A

(14c)    

= +C t e e
r

V
d C e( )

( )
A

t t A t

0
0 (14d)    

= ×r t r t s
mol

s
( ) ( )A A (14e)  

where NA is the number of moles, FA is the molar flowrate, 
τ is the residence time, rA(t) is SVR model calculation for in-
stant reaction rate for ethylene production, s is the surface 
area of the catalyst, V is the volume of the proposed reactor 
and C0 = 0 ppm. Several experimental data fittings with 
varying residence times and volumes were tested to fit the 
data with the model predictions. As a result, the suitable 
residence time and volume are selected to be 1800 s and 0.6 
liters, respectively, as shown in Fig. 10. A CSTR model as-
sumes perfect mixing; however, this reactor is neither a 
CSTR nor perfectly mixed. In addition, the initially produced 
gases dissolve into the electrolyte, so the liquid must be sa-
turated before the gases diffuse into the vapor phase at a 
constant rate. The reactor headspace concentration model 
cannot fully capture those details, and thus it fails to capture 
the first GC point. However, it is seen experimentally that an 
ideal CSTR can satisfactorily represent the reactor overhead 
for the remaining GC injections. 
Remark 9. A higher order model, such as multiple CSTRs in 
series, can be used to model the imperfect mixing better than 
a single CSTR. However, the development of a residence-time 
distribution model for this reactor is beyond the scope of this 
first work. Furthermore, this makes it mathematically more 
complex to introduce the sensor feedback data discussed in  
Section 5.3. 
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5.2. System constraints 

Experimental systems are inherently vulnerable to varying 
conditions. In this electrochemical setup, the initial catalyst 
activity can vary each trial within some error range. That is, 
with the same initial fixed potential, two experiments might 
give different product concentrations as illustrated by the 
average rates and standard deviations summarized in  
Table 1. Although the catalysts were cleaned with the same 
procedure each time, the exact catalyst activity was not 
known prior to the experiment. 

Hori proposed that methane and ethylene may share the 
same surface-bound CH2 intermediate (Hori et al., 1997) with 
the dimerization rates of these fragments determining se-
lectivity. In our extended feedback control experiments, after 
a certain surface potential threshold, it is seen that no matter 
how much potential is applied, there is no increase in the 
ethylene concentration, whereas the methane concentration 
keeps increasing. To prevent a selectivity shift to methane, it 
is crucial that the controller does not increase the surface 
potential to very high values. This non-linear feature of the 
electrochemical reactor makes this control problem different 
from traditional reactors. A rule of thumb would suggest 
increasing the manipulated variable to the limit to reach the 
set-point faster. However, in this electrochemical reaction 
case, this action would only deactivate the catalyst at such a 
rate that the output would never reach close to the set-point. 
Thus, the controller parameters must be selected attentively, 
so that the set-point is reached slowly without shifting the 
reaction selectivity away from ethylene and towards me-
thane. The anticipated selectivity shift is seen to start from 
the − 1.45 V surface potential. The experimental outcomes 
are illustrated and discussed in Section 5.5. 

The total concentration of carbon atoms going into me-
thane or ethylene is seen to be constant when multiple dy-
namic experiments are compared in terms of carbon 
conversion to hydrocarbon gas products. The formula for this 
comparison is given in Eq. (15), and the experimental justi-
fication is shown in Fig. 11: 

= + ×C C C2C CH C H4 2 4 (15)  

where Cx is the concentration of the relevant carbonac-
eous gas product. The ethylene concentration is multiplied 
by 2 because one molecule of ethylene contains 2 carbon 
atoms. The repetition of the experiments demonstrated a 

constant concentration of carbon atoms at each GC mea-
surement, regardless of the catalyst activity, when the sur-
face potentials are constant before and after the set-points. 
Although some experiments have the same potential, rota-
tion speed, and current, this demonstrates that the differ-
ence in catalyst activity can dictate the ethylene 
concentration and selectivity and bring support to Hori’s idea 
that methane and ethylene share a common surface-bound 
intermediate. 

5.3. Feedback control with delayed GC measurements 

In previous sections, the modeling challenges that arose 
from the nature of the experimental data were emphasized. 
As a result of the uncertainty in experiments, the model is 
expected to give results within the standard deviation of 
repeated open-loop experiments. Implementing the control 
solely based on the reactor overhead estimator is expected to 
give close estimations to the GC results; however, this would 
exclude important measurement-feedback information that 
could be used to improve the control. Utilizing feedback from 
the GC measurements is a way to account for the experi-
mental uncertainty, and this gives an opportunity for de-
signing a complete closed-loop control, wherein the real- 
time sensor measurements directly impact the calculations 
of the manipulated inputs. Thus, the GC results obtained 
every 20 min are also used to improve the estimator. The 
control diagrams of the open-loop configuration and model- 
based, GC-incorporated, closed-loop configuration are shown 
in Fig. 12. 

The purpose of the components of the control system is as 
follows: The PI controller node in LabVIEW calculates the 
control signal based on the PI control algorithm. The input to 
the control algorithm is the headspace ethylene concentra-
tion estimation (in ppm) and its output is the calculated 
surface potential. The potentiostat is both a sensor and an 
actuator. It senses the real-time current and can manipulate 
the applied potential. It changes the applied potential based 
on the control signal sent by the PI controller. The reactions 
occur in the electrochemical reactor. The electrodes and 
sensors are connected to the reactor. The applied potential 
sensed in the reactor is converted to surface potential, the 
current values are measured, the rotation speed and the 
calculated variable of cumulative integral of the current are 
fed to the SVR model for reaction rate estimation, which is 

Fig. 10 – Data fitting of gas phase ethylene concentration on experimental data.  

100 Chemical Engineering Research and Design 185 (2022) 87–107   



then used in first-principle calculations to estimate the 
headspace gas-phase ethylene concentration. The gases 
products accumulate in the reactor overhead. After the pro-
duct gases equilibriate in the headspace, they travel to the 
GC sensor to be quantified in each 20 min. The quantification 
is processed automatically via an automated GC code and the 
concentration measurements (in ppm) are considered for 
feedback correction on the estimators. After the GC feedback 
correction, the error is calculated and sent to the PI controller 
for a new control signal. 

In the closed-loop control, the feedback data from the 
sensors is introduced to the ethylene concentration 

estimator to realize real-time adoption of the process control 
curve. However, the GC provides the concentration mea-
surement results with a 14.33 min delay from the time of the 
reactor overhead sampling. Thus, a correction method was 
developed to estimate a probable past trajectory for the 
process control curve. The proposed correction is activated 
once the GC feedback data are received. The algorithm ex-
amines the past data and calculates the cumulative correc-
tion changes in the previous 20.33 min of the predictions (the 
time between 2 consecutive GC injections) to better align the 
predicted gas concentration with the most recent GC mea-
surement. This correction affects both the SVR model and 

Fig. 11 – Comparison of methane and ethylene production from several experiments. Each color represents a different 
experiment where the set-point for ethylene was increased to 2.7-fold at the 75th minute after being kept steady for 48 min. 

Fig. 12 – Process control diagram for both open-loop process, and closed-loop control that incorporates the SVR model and 
GC feedback in the loop. 
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the gas-phase ethylene concentration estimation model. rA(t) 
term is the reaction rate with units mol s−1. This correction 
scheme is divided into two parts. The first correction is be-
tween t = 0 and t = t2. The second correction is for after the 
second injection. The important abbreviations are presented 
below.  

• n: the number of injections.  

• ti: i
th injection start time, i = 1…n.  

• ti
end: ith injection end time.  

• GCi: i
th GC measurement result in ppm.  

• GCi: The GCi converted to mol L−1.  

• xi−1: The correction applied to the SVR model (in ppm) after 
ti

end, which should have been present during the previous 
injection time.  

• xi 1: The xi−1 converted to rate in mol s−1 using Eq. (16). 

• P t( )C H i2 4 : Prediction of the gas phase ethylene concentra-
tion at ti in mol L−1.  

• rA: Prediction of SVR model (in ppm) converted to mol s−1 

using Eq. (16).  

• rA c, : The cumulatively corrected SVR prediction converted 
to mol s−1 using Eq. (16). 

The equation for converting the concentration to rate is as 
follows: 

= ×
×

×r
C V P

RT10 60 10
C H

C H
ppm

6
CO2

62 4
2 4 (16)  

where rC H2 4 is the production rate in mol ⋅ s−1, CC H
ppm
2 4

is the 

ethylene concentration in ppm, VCO2 is the volumetric flow of 
CO2 into the reactor in mL min−1, P is the pressure in Pa, R is 
the universal gas constant equal to 8.314 J

mol K
, and T is the 

ambient temperature in K. 
Given in Section 5.1, Eq. (14d) shows the analytical solu-

tion for this reactor that is used to explain the mathematical 
background of the GC feedback correction. When the linear 
correction of the second GC injection x1 is applied to the 
prediction of the reaction rate, the analytical solution takes 
the form shown in (17a) and is equal to the result of the GC 
measurement. Eqs. (17b), (17c), (17d) are the solution steps 
for (17a). The corrections between t = 0 and t2 and the detailed 
solution are calculated as follows to find the linear correction 
term x1: 
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where x1 is converted to concentration by rearranging the Eq.  
(16). The correction after t2 is calculated as follows: 
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where =T e d
t

t r

V

( )

i

i A c

1

, is calculated numerically using the 

trapezoidal integration rule on LabVIEW. We note that in Eq.  
(18a), the rA,c term accounts for all corrections. Eq. (18b) di-
vides the calculations into two. The first integral term as-
sumes that the previous correction was adjusted with the 
linear correction so that the relevant prediction overlaps 
with the previous GC measurement. The second integral 
term in Eq. (18b) is structured to find the next correction that 
should have been applied between t = ti-1 and t = ti. 

It is important to note that this calculation assumes the 
equalities shown in Eq. (19) below: 

=P t e e
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The difference between the two terms is the correction in rA. 
The objective of the calculations so far is to calculate the 

SVR correction term x. Following this, the correction made on 
the surface production rate should be cumulatively reflected 
in the headspace ethylene predictions. This requires a com-
pensating factor for the ethylene production on the basis of 
the previously assumed surface production difference. Since 
GC corrections begin at ti

end, the integral time interval is cal-
culated between t = ti−1 and =t ti

end. This requires recalcula-
tion of P t( )C H i

end
2 4 with the corresponding linear correction 

and would correspond to step changes in the headspace 
ethylene concentration prediction curve at =t ti

end. The ap-
plication of this correction to the reactor overhead ethylene 
prediction control curve and the relevant analytical solution 
are shown in Eq. (20) below: 
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From Eq. (20c), it can be seen that the concentration cor-
rection that should be made to the reactor headspace con-
centration estimator is proportional to 

× × e ex
V

ti
end ti 1i 1 term. This is easy to implement when 

integrated in LabVIEW as it is added to the integration term of 
the analytical solution in the real-time concentration calcu-
lations as shown in Eq. (20c). 

The integral of time from t = 0 to t in the analytical solu-
tion of this headspace ethylene concentration model ac-
counts for the past of the reaction rate. With each feedback 
from the GC measurement, to adjust the GC to instant 
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production, it is assumed that the past of the experiment can 
be accounted for more accurately. For time interval 

< +t t0 i
end

1, the SVR is also adjusted cumulatively as follows: 

= +
=

r r t x( )A c A
k

i

k,
1

(21) 

and an example of this for <t t0 end
5 is like the following: 

= +

< = + +

< = + + +
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}

A c A

A c A

A c A

end
A c A

2 , 1

2 3 , 1 2

3 4 , 1 2 3

4 5 , 1 2 3 4

Corrections begin at ti
end and assume that this correction 

was applied between ti−1 and ti, as shown in Fig. 13. This 
methodology assumes a linear correction for a non-linear 
process. Thus, the correction is most effective when Kc is not 
high and when the concentration change between two con-
secutive GC measurements is not very large. 

5.4. Simulation and tuning 

It is not practical to run experiments for several hours to 
determine the control parameters. Instead, a reactor simu-
lator is built to find the controller tuning parameters. The 
simulator uses the data-driven SVR estimator, calculations of 
the first-principles modeling of the gas phase ethylene con-
centration, and a data-based correlation between the surface 
potential and current shown in Eq. (22). Using the available 
data, the optimal values i0 and k are found from the data 
shown in Fig. 14a using the following equations: 

= ×i i ek E
0

( )Surface (22)    

= × × +i i ek E i R E
0

( )Applied Ag AgCl (23)  

Fig. 13 – The cumulative corrections based on past data and its adjustment to real-time trajectories.  

Fig. 14 – Regression based on averaged experimental data 
to find current-potential correlation parameters. 
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The starting fixed potential and rotation speed are defined 
at − 1.65 V and 100 RPMs respectively and the corresponding 
current is calculated by solving Eq. (23). Then, the PI con-
troller code calculates the necessary surface potential, and 
this value is fed to the SVR model. The current at this surface 
potential is found using Eq. (22). 

In addition to the current prediction at a specific surface 
reaction, an approximate relation for the catalyst deactiva-
tion is extracted using the available open-loop experiments. 
Specifically, open-loop experiments are conducted at a fixed 
surface potential, and catalyst deactivation manifests itself 
as a reduction in current throughout the experiment. The 
rate of reduction in current in open-loop experiments was 
found to be approximately linear with time at a given po-
tential, and a correlation between applied potential and the 
rate of current loss was approximated as shown in Fig. 14b by 
a power relation of the form: 

= ×di
dt

E3.17 10 9
applied

10.82 (24)  

It is important to note that the developed simulator does 
not perfectly represent the reactor. Firstly, the activity of the 
catalyst is variable, and the simulator uses a model derived 
from the open-loop experiments. Due to this, experimental 
proof is needed to show that the controller parameters are 
suitable to compensate for the inherent decrease in the 
current. However, the simulator is expected to produce a 
good estimate of the controller parameters, Kc and τi. Second, 
the SVR model does not properly represent the selectivity 
shift that occurs at high surface potentials because it is not 
trained on experiments that are long enough for the se-
lectivity shift to occur. As a result, the controller has no 
knowledge as to whether the selectivity shift has occurred or 
not, and it assumes that increasing the potential will in-
crease the ethylene concentration. This issue should be 
considered when selecting control parameters. Finally, the 
simulator does not use feedback data from the GC. Thus, the 
feedback correction mechanism for the GC discussed in  
Section 5.3 cannot be used during the simulation. 

Before the simulator was built, an initial experiment was 
conducted using the control parameters, Kc = −2.45 × 10−5 and 
τi = 40 s. However, it was seen that the catalyst deactivates 
faster than the controller compensates for it. After the si-
mulator was coded, the simulation and the experimental 

trajectories were compared, and they are shown in Fig. 15. 
The experimental trajectory shown in Fig. 15 is compatible 
with the GC results. Both the simulation and the experiment 
show that this proportional controller gain is not strong en-
ough to compensate for the catalyst decay. As a result of 
more simulations, after the second set-point change, a single 
pair of controller parameters were found not to be appro-
priate to control the process. This is an indication of the high 
non-linearity of the process and should be tackled by gain 
scheduling. As a result, two different gains were used for two 
different set-points considered in our experiments. 

Multiple combinations of controller parameters were 
tested with the simulator. The desired parameters should 
not drive the process output to the controller surface po-
tential limits to avoid an early selectivity shift to methane. 
Also, the controller parameters should not lead to a very 
sluggish response where the catalyst deactivation over-
powers the system before the set-point is reached. The de-
sired parameters in the simulation should allow some 
overshoot since in reality the expected concentrations are 
lower. Fig. 16 shows the controller simulation for two set- 
points, 34 and 60 ppm, respectively. The control parameters 
are Kc1 = −0.00011025, Kc2 = −5.39 × 10−5 and τi = 40 s 

5.5. Closed-loop performance of set-point tracking 

In an effective control system, the controller should be able 
to drive the system to a new set-point in case of a set-point 
change. In a hypothetical scenario, the electricity price can 
change (due to TOU pricing, etc.), and the controller must 
adapt to keep the most economical or energy efficient pro-
duction. In order to prove the efficacy of the estimator-based 
PI controller on this setup, a set-point change is introduced 
between two economically optimal points. The set-points are 
chosen to reflect a sufficiently high change in production 
over a reasonable period of time. Thus, the PI controller is 
tested for set-points of 34 and 60 ppm. 

In an open-loop setting, while the catalyst degradation 
decreases the number of available catalyst sites, the activa-
tion energy reduction caused by the catalyst slowly subsides 
and molecules need more energy to overcome the activation 
energy barrier. As a result, when the applied potential is kept 
constant, the number of molecules that can pass the 

Fig. 15 – Comparison of simulated and experimental data for the set-point of 34 ppm.  
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activation energy barrier decreases as more reactive sites 
become unavailable. In a controlled experiment, the closed- 
loop potential is driven to more negative values by the PI 
controller to keep the energy of the molecules high enough to 
sustain production. The trends in current for the open-loop 
and closed-loop experiments are the opposite. In the open- 
loop experiment, the decreasing current is an indication that 
the ethylene concentration is decreasing as the catalyst de-
activates over time. In the closed-loop experiment, the in-
crease in the applied potential drives the current in the 
opposite direction with respect to the open-loop current, 
indicating that the manipulated input compensates for cat-
alyst degradation. 

The experiment is run for 9 injections, and it is expected 
that the PI controller keeps the concentration at each set- 
point. The controller starts at the 27th minute, and the set- 
point change is introduced at the 76th minute, after obtaining 
2 GC measurements. The experimental results are presented 
in Fig. 17. The process succeeds in driving the gas-phase 
ethylene concentration to the first set-point by the third in-
jection. Then, after the second set-point change, the 

controller drives the output close to 60 ppm at about 52 ppm. 
This experiment was repeated several times, with higher and 
lower feasible proportional controller gains, and with dif-
ferent catalysts. In each of the experiments, the final con-
centration was recorded to be between 52 and 54 ppm. One of 
the potential reasons that this system does not fully reach 
the higher set-point is that the dynamics of the system cause 
the process to approach the second set-point after 2 h. By this 
time, the catalyst has largely deactivated. The surface po-
tential needed to increase the concentration of this system 
causes a selectivity shift. Fig. 18 shows this selectivity shift to 
methane more clearly. Especially, between injections 7–11, 
the methane concentration increases as the ethylene con-
centration remains constant under increasing potentials and 
current. This is an experimental justification that the energy 
given to the process was being used to produce more me-
thane instead of producing ethylene. Thus, if the system has 
not reached the set-point by the time the selectivity shifts to 
favor methane, it is not possible to increase the concentra-
tion of ethylene to the set-point by increasing the potential. It 
takes around the time of 3 GC measurements to reach the 

Fig. 16 – The simulation that was used to find the control parameters that were used in the closed-loop experiment.  

Fig. 17 – Closed-loop experiment with set-point changes.  
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neighborhood of a new set-point. The results show that the 
controller can drive the system to the neighborhood of the 
set-points within the error margins of 10–12%. 
Remark 10. The set-point change would not be possible 
without the integral of the current input. The current and 
surface potential values at 100 RPM recorded through the end 
of the repetition experiments were seen to yield much higher 
concentrations in the early GC measurements of related 
open-loop experiments. However, the cumulative integral 
of the current brings the concentration closer to the GC 
results by capturing appropriately the catalyst deactivation 
over time. 

6. Conclusion and overlook 

This work presented the implementation of support vector 
regression in an electrochemical reactor to represent process 
variables and concentration relationships and proposed an 
approach to combine the output of the SVR model-based gas- 
phase C2H4 concentration estimator with GC measurements 
to control the concentration of ethylene in the reactor. As the 
electrochemical CO2 reduction and the reaction pathways 
are not fully known, current first-principal approximations 
are inadequate to set up an efficient control scheme. 
Furthermore, catalyst deactivation in the reactor was an in-
herent disturbance that increased process variability. To 
address this issue, the SVR model was built to model the 
experimental concentration and catalyst deactivation over 
an extensive window of operating conditions and was com-
bined with first-principles modeling to predict the gas-phase 
ethylene concentration. The integral of the current was in-
troduced as an input to contribute to the representation of 
the degradation of the catalyst, and the overall accuracy of 
the model was increased with feature engineering. In addi-
tion, the GC measurements were introduced to the controller 
to achieve a fully-closed-loop control scheme. Lastly, the 
economically-optimized energy-efficient set-points were 
calculated, and the controller was shown to be successful, as 
it could drive the process in the neighborhood of two energy- 
optimal set-points. 

The approach shown in this report for the automation of 
the UCLA electrochemical reactor could be broadly 

applicable. For simpler electrochemical reactions involving a 
single reaction pathway, there is no challenge in selectivity 
and such systems require only the collection of electrical 
current data which is generated every second from the po-
tentiostat. When the system produces more than one pro-
duct, other analytical tools to quantify products should be 
implemented and automated. In this work, we have de-
monstrated the online data processing of GC that auto-
matically quantifies gases, which could be readily translated 
to other electrochemical reactions involving gas products. 
This approach could be expanded to other analytical and 
spectroscopic tools such as high-performance liquid chro-
matography (HPLC), ultraviolet-visible (UV-Vis) spectroscopy, 
and FTIR. Although the overall implementation process 
would be similar, it is important to note the intrinsic differ-
ences of analytical sensors. Understanding the intrinsic 
nature (e.g., detection limit, sampling, and response times) of 
sensors as detailed in this work will be the key to success-
fully apply the developed automation and control approach 
to other electrochemical reactor systems. 
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