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The exponential increase in data produced over the last two decades has revolutionized the way we collect, store, 

process, analyze, model, and interpret information to improve profitability. Manufacturing is no exception. How- 

ever, Smart Manufacturing, the digital practice, organization, workforce, and infrastructure transformation for 

collection and deployment of data and models at scale and at all levels of manufacturing, is a complex, costly, 

and labor-intensive journey that is still seeing slow adoption. The Clean Energy Smart Manufacturing Innovation 

Institute (CESMII), a national Manufacturing USA public-private partnership sponsored by the Department of 

Energy, is addressing this scaled use of data and modeling in manufacturing. CESMII has focused on how to col- 

lect and use operating data for numerous applications that improve productivity, precision, and performance of 

manufacturing operations from factory floor to supply chain using process simulation, predictive analytics, mon- 

itoring and control, and real-time optimization. Because contextualized data are key, CESMII has developed the 

Smart Manufacturing Innovation Platform (SMIP) to lower the barriers to the data that are needed to accelerate 

data-based model building, improve data visualization, and more quickly gain insights. Reusable, standards-based 

ways of doing data collection, ingestion, and contextualization are particularly important for scaling access and 

use of data. The SMIP uses a standards-based definition and construct for reusable information models called 

an SM Profile. When an SM Profile is used in conjunction with the SMIP, the SMIP ensures the availability of 

contextualized, operational data for model building. The present work demonstrates Smart Manufacturing and 

the application of the SMIP for building several data-centered models for the operation and control of an ex- 

perimental electrochemical reactor that reduces carbon dioxide (CO 2 ) gas to valuable liquid and gas chemicals, 

such as alcohols, olefins, and syngas. We describe how the SMIP plays a central role in more effective model 

building and we demonstrate how the electochemical reactor can be controlled and optimized for the desired 

products. Use of the SMIP involves the transmission of real-time sensor measurements to a cloud resource so that 

the operating data are available to all model building experts. The data collection and transmission process is 

fully automated to greatly reduce the need for manual manipulation of the data. Data-driven machine learning 

models are used for advanced real-time state estimation, real-time optimization, and model-based feedback con- 

trol for the reactor. The application models are implemented as a system to monitor the data flow and control the 

electrochemical reactor with a single visualization interface. SM Profiles are used to demonstrate reusability of 

the information models for the reactor and the instrumentation. The application packages, algorithms, and user 

interfaces developed are cast as Docker images in a library to facilitate reusability of the application models. 
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. Introduction 

The 21 st century has witnessed a rapid increase in the amount of

ata produced in industrial sectors as a result of many more sensors and

evices, i.e., IoT (the Internet of Things), and a much greater ability to
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ollect and manage data. The use of operational data to improve man-

facturing operations with advanced sensors, controls, platforms, and

odeling at much greater scale and integration is described as Smart

anufacturing in the U. S. and Industry 4.0 in Europe (e.g., Christofides

t al., 2007; Kang et al., 2016; Yang et al., 2020 ). Smart Manufacturing
(P.D. Christofides) . 
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s the digital transformation that results from embedding digital technol-

gy into nearly every aspect of all manufacturing operations and prac-

ices. Application objectives encompass increasing productivity, prod-

ct quality, and performance, ensuring safety, and reducing energy con-

umption, greenhouse gas (GHG) emissions ( Saudagar et al., 2019 ) and

arbon footprint as integrated Key Perfomance Indicators (KPIs). Smart

anufacturing also involves the seamless integration of advanced sens-

ng with data-centered modeling, modeling that spans first-principles

odeling, digital twin, Artificial Intelligence (AI), and machine learn-

ng, for simulation, diagnosis, real-time optimization, prediction, ad-

anced control, and data-driven decision-making from factory floor to

upply chains. An abundance of the right data allows for the automa-

ion of processes and the development of intelligent systems, which are

rucial to the management of higher level KPIs and complex objectives,

liminating human error, and using human resources in better ways not

nly on the factory floor but throughout supply chains and manufac-

uring ecosystems. Data and modeling also facilitate much broader and

ore timely data availability, acquisition and selection that can accel-

rate insights and research breakthroughs. 

Digital transformation defined by Smart Manufacturing includes

uilding and sustaining data-centered models, collecting, ingesting and

ontextualizing the right data, making data reusable, addressing the in-

ormation technology (IT) infrastructure and scaling the deployment

oftware applications to address the wide diversity of manufacturing

perations. Although the potential benefits of Smart Manufacturing are

nderstood, the needed digital transformation across the industry is dif-

cult in practice due to cost and complexities associated with the current

nfrastructure and business practices and the lack of tools, infrastructure,

tandards, and skills for sustained data management and model build-

ng. The tasks of digital transformation are new and there is a significant

eed for advanced operator training ( Phuyal et al., 2020 ). The ability to

xtract more meaningful relations and greater insights involves working

ith the data in a more integrated fashion with methods for large, more

omplex data sets. Smart manufacturing defines the use of real-time

ata to increase the effectiveness of analyses, and it positions the role

f data for greater understanding from the beginning of a development

rocess. 

Smart Manufacturing also emphasizes the relationships within large

ata sets in an efficient and timely manner for operational modeling

nd troubleshooting. This includes embracing the unique opportunities

o leverage cloud technologies for storing large amounts of data and

aking them accessible anywhere and anytime and for shared compu-

ational requirements to significantly decrease the time needed for the

nalysis, optimization, control, and scale-up. However, cloud technolo-

ies have their challenges. Various cloud vendors still lock data in re-

pective platforms that do not interface easily. Cloud technologies do of-

er the needed services to store large data sets and make them accessible

nywhere and anytime but cross-platform data transfer is challenging.

ybersecurity vulnerabilities increase when integrating multiple cloud

roducts and/or ingesting data from multiple vendor instrumentation.

he data transfer with manufacturing process equipment, sensors, or

ocal processor must be encrypted (HTTPS), and the data stored on

he cloud must be protected. A manufacturing framework must address

he necessary authorizations and authentications to keep the user data

afe. 

In recent years, machine learning algorithms have evolved, offer-

ng greater opportunity for modeling and identifying hidden patterns or

rends in big data sets, but they require working with data in more exten-

ive ways. The spectrum of data-driven modeling options and machine

earning algorithms and their span of application are also expanding. Re-

ression methods, such as artificial neural networks (ANN), support vec-

or machines, and gradient boosting, have been successful in modeling

rocess operational data. Wu et al. (2019) explored the use of recurrent

eural networks (RNNs) for modeling time series data in chemical pro-

esses and demonstrated that RNNs can be effectively used in nonlinear
2 
ontrol schemes, such as model predictive control (MPC). Several studies

ave successfully integrated ML algorithms into chemical engineering

rocesses to develop new robust predictive models for multi-phase flows

nd reactors. Zhu et al. (2022) have summarized recent ML applications

o hydrodynamics, heat and mass transfer, and reactions in single-phase

nd multi-phase flow systems. Machine learning approaches have also

ound use in the realm of quantum calculations to predict chemical prop-

rties and reactivity. For example, a deep neural network (DNN) was

onstructed to estimate reaction rate parameters from an extensive par-

ition function database ( Komp and Valleau, 2020 ). The use of transfer

earning in a DNN for activation energy estimation was also demon-

trated starting from a data set generated from Density Functional The-

ry (DFT) calculations ( Grambow et al., 2020 ). The use of AI and ML

eaches beyond modeling of process data from traditional point sensors.

or instance, Haas et al. (2020) developed a convolutional neural net-

ork model that is used to detect effervescence in a multi-phase flow

ith a high-speed camera that collects images of fluid dynamics and

ounts the number of bubbles. In another study, the pressure drop of a

yclone separator was modeled with a hybrid genetic algorithm, radial

asis function neural network (GA-RBFNN), and was subsequently used

o optimize separation parameters ( Elsayed and Lacor, 2012 ). Collec-

ively, these studies highlight a wide spectrum of applying ML methods

n modern-day processes and the diverse ways in which they can be

ntegrated into Smart Manufacturing practices. 

Smart Manufacturing and Industry 4.0 applications have em-

hasized productivity, precision, and performance. For exam-

le, Kumar et al. (2017) developed a Smart Manufacturing approach for

anaging temperature variations in a steam methane reformer (SMR).

he application exploited a reduced-order model (ROM) drawing on

arge data sets from computational fluid dynamics (CFD) simulations,

hich were too computationally time-consuming to use in real-time.

or real-time application, an optimizer used the ROM to determine

he set-points for the fuel flowing to many distributed burners. As

onditions in the SMR changed, the ROM was updated periodically and

utomatically using the CFD simulations. Infrared (IR) cameras were

sed as advanced thermal imaging sensors to measure the temperature

patially throughout the SMR. Similarly, Ren et al. (2021) designed

n Industry 4.0 framework for metal alloy additive manufacturing

hat optimized productivity and precision by employing micro-scale,

eso-scale and part-scale finite element method (FEM) modeling of

he manufactured parts. The operational portion of the framework

omprised a convolutional neural network (CNN) that was trained

or production monitoring and defect detection. It was used to study

he process to continuously update additive manufacturing process

ecipes. Large amounts of image data were stored in the cloud and

loud analytics were used to automatically update the CNN model with

ncoming manufactured part images. This update process included a

trategy for splitting the data into testing and training data sets for

utomatically updating the CNN model. Korambath et al. (2016) and

otcha et al. (2018) presented how a common platform accelerates and

acilitates their research on application model development in discrete

arts manufacturing. 

One of the promising research areas in sustainable energy produc-

ion and chemicals manufacturing is electrochemistry. Electrochemical

O 2 reduction is an attractive and emerging process that can produce

aluable chemicals such as ethylene, ethanol, acetaldehyde, and syn-

as. Due to the complexity of the reaction mechanisms, industrial-scale,

rst-principle models have not yet been developed. Consequently, data-

riven models are an attractive alternative for modeling this process

nd enabling model-based process optimization and control strategies

 Mistry et al., 2021 ). In this research, the objective was to demonstrate

hat the complex electrochemical reactor could be controlled without

he electrochemical reaction being fully understood yet. To proceed,

ata needed to be generated from an experimental electrochemical cell

or which there was already data from many runs at various condi-
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w  
ions. The electrochemical cell was also available for additional runs.

aving access to raw data at various conditions introduced significant

ata acquisition and data modeling challenges but the ability to work

ith the operating data directly provided significant opportunity to un-

erstand the reaction better. Smart Manufacturing and AI/ML methods

ere brought together to study and demonstrate how to control an elec-

rochemical reactor to optimize the desired products. 

For our electrochemical reactor, the Smart Manufacturing digital-

zation process started with the objective of building machine learning

odels from data and demonstrating that the complex catalytic reaction

an be controlled to optimize the conversion of CO 2 to ethylene. In the

resent study, we focus on the Smart Manufacturing methods and infras-

ructure used to accelerate the development of the reaction, optimiza-

ion, and control models. This involved connecting the reactor instru-

entation to the Smart Manufacturing Innovation Platform (SMIP) de-

eloped by the Clean Energy Smart Manufacturing Innovation Institute

CESMII), the national Manufacturing USA Institute sponsored by the

epartment of Energy. The SMIP integrates the necessary tools for data

ollection, connection to historians and standards-based Open Platform

ommunication (OPC) servers, data storage, correlation extraction, and

ata contextualization. The SMIP facilitated flexible access to data and

upported model evaluation, selection, and building. Digitalization of

he experimental system and automation of the data connections, inges-

ion and contextualization, facilitated communications among the do-

ain, modeling, instrumentation, and IT experts. Having ready access

o the contextualized data from the experiments in real-time and histor-

cally across experiments accelerated both the modeling development

fforts and the implementation of the control models to demonstrate

eactor controllability. 

The Smart Manufacturing lens also carries the objective of build-

ng templates for the finished models to save time and effort in reusing

hem in similar applications. These reusable templates are called “SM

rofiles. ” Smart Manufacturing uses industry standards in the SMIP and

he Profile construct to simplify the connection, ingestion, and con-

extualization of the real-time data from the required instrumentation.

hen a data interface is constructed or a particular data contextual-

zation approach is set, these can be captured and reused. This is es-

ecially difficult for legacy equipment and instrumentation and when

ultiple vendor products are involved. In the last decade, many of the

roduct vendors created proprietary software tools for their equipment,

hich are often not compatible with each other and/or difficult to inter-

ace with external software applications. Legacy software applications

hemselves have tended to embed data for a particular function essen-

ially trapping it for other uses. Given the widespread nature of these

ssues, the lack of a standard model or common platform to exchange

ata has limited the opportunities in terms of exploiting available

ata modeling options in the advancement of complex manufacturing

ystems. 

This paper presents how the Smart Manufacturing approach has been

pplied to the digitalization and control of an electrochemical CO 2 re-

uction reactor and its instrumentation with the SMIP. The rest of this

anuscript is organized as follows. In the next section entitled “Smart

anufacturing in Experimental Electrochemical Reactor Setup, ” the ex-

erimental reactor setup and the key Smart Manufacturing hardware

nd software setups are described. In the section, entitled “Advanced

ensors, ” the real-time point sensor measures are described and the

eed for an automated gas chromatography (GC) spectra processing al-

orithm is explained. In the section entitled “The Role of CESMII Smart

anufacturing Innovation Platform (SMIP) in Electrochemical Opera-

ion Research, ” the SMIP involvement with examples and a novel Labo-

atory Instrument Engineering Workbench (LabVIEW) interface are pre-

ented. In the section entitled “Virtualization, ” the advantages of the use

nd implementation of Docker containers are discussed. Finally, the it-

rative evaluation process and resulting advantages of using ML and

ybrid models are addressed in the section entitled “Electrochemical

eactor Modeling Using SMIP ”. 
3 
. Smart manufacturing in experimental electrochemical reactor 

etup 

The primary elements of the Smart Manufacturing setup for UCLA’s

xperimental electrochemical reactor are shown in Fig. 1 . With auto-

ated processes and workflows, data collected from the reactor are used

o extract insights and build operational machine learning models. The

eactor inputs include electrical potential, current, and rotational speed.

hese are data collected by the potentiostat, which is composed of a sen-

or for measuring the electrical current and potential, and an actuator

or tuning the applied potential. Liquid product concentrations are mea-

ured using nuclear magnetic resonance (NMR) after the experiment is

ompleted while gas concentrations are measured on-line with gas chro-

atography (GC) run at 20 min intervals. For real-time control, we fo-

used on the GC analysis for the controlled variables. The required gas

njection and processing of the GC measurements need to be automated

nd modeled to use the gas product analysis for real-time control pur-

oses. Overall, input and output data are processed to extract relation-

hips among the applied potential, electrode rotation speed and tem-

erature, and the gas production rates and concentrations in building

he ML models. There were unique challenges in building models from

ctual experimental data, however. For example, the limited amount of

C data produced per experiment eliminated the use of some ML model-

ng approaches, including recurrent neural networks which require large

ata sets to be effectively trained. There are also important reaction phe-

omena that needed to be captured in the data sets and subsequently

eflected in the data-based model. The most important was being able

o model the quick deactivation of the atomically flat catalyst. Rapid

eactivation causes a change in selectivity that shifts production away

rom the desired products. This phenomenon was overcome by enhanc-

ng statistical ML methods with kinetic constants, which were calculated

y Luo et al. (2022) . The cumulative integral of the current was used

o establish a correlation between the current and catalyst deactivation,

nd feature engineering was used by Çı tmac ı et al. (2022) to increase the

odel performance. This was essential for a feedback control strategy

hat could optimize the products while driving the process to a desired,

nergy-optimal set-point. Our experimental research setup is shown in

ig. 2 . 

Fig. 3 shows a generalized perspective of the Smart Manufacturing

SM) building blocks and how the interactions between the building

locks are addressed with SM Profiles. Below is a summary of how

he different building blocks described by Davis et al. (2020) map

o our modeling objectives and onto our experimental electrochem-

cal reactor setup. Details on the electrochemical reactor mod-

ling, optimization, and control are presented in greater depth

n Luo et al. (2022) and Çı tmac ı et al. (2022) . 

With reference to Fig. 3 , sensing is a fundamental building block of

mart Manufacturing. Contextualization is the process that converts raw

ata into an interpreted form, which includes the data type, name, loca-

ion, purpose, units, processing, and relevant meta information. Collect-

ng and contextualizing the current and applied potential at one second

ntervals from the potentiostat is a straightforward example of convert-

ng data from point sensors directly measuring the quantities of interest.

utomating the contextualization of the raw Gas Chromatograph (GC)

ata for the gas concentrations measurements is much more involved.

pecifically, GC gas concentrations are determined by comparing mea-

urements with calibration files using standard gases and known con-

entrations. The raw GC data are collections of electrical signals from

he GC process in which each measurement run takes just over 14 min in

ur setup. These raw data are contextualized by eliminating irrelevant

ntervals and classifying them with respect to collusion intensity. The

ata are passed to a software application developed in this study called

he GC code, which automates the data interpretation process relative

o known baselines. 

The data for the input settings and the output gas concentrations

ere collected over the time of a reaction across many runs and used



B. Çı tmac ı , J. Luo, J.B. Jang et al. Digital Chemical Engineering 5 (2022) 100050 

Fig. 1. Data flow and automation strategy for the experimental setup. The tasks achieved in our research are highlighted in orange. 
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o determine several correlations needed in model building. The cumu-

ative integral of the current was identified as a proxy measurement

f catalyst degradation ( Çı tmac ı et al., 2022 ) and was used to predict

nd plan catalyst regeneration procedures. Surface potential is a cal-

ulated measurement that uses current, applied potential, and solution

esistance. It proved to be a better representation of the electro-catalytic

riving force compared to only the applied potential. The surface poten-

ial was calculated and recorded with appropriate units for use in the

L model. The wide-ranging input conditions across many runs pro-

ided the data used to build a dynamic model that included nonlinear

elations between surface potential and current ( Çı tmac ı et al., 2022 ). 

Steady-state and dynamic ML models were used to generate new in-

ights on the reaction kinetics. First, we demonstrated that the ML mod-

ls based on GC data can be used to predict reaction rates. This reaction

ate model was then inserted into a first-principles gas-phase dynamic

ass balance model to estimate the gas-phase ethylene (C 2 H 4 ) concen-

ration ( Çı tmac ı et al., 2022 ). The ability to regulate the gas-phase ethy-

ene concentration by manipulating the applied potential was explored

sing the dynamic model. The fast-decaying catalyst activity introduced

dditional non-linearity and uncertainty that was accounted for by mod-

fying the feedback controller parameters in real-time similar to classi-
4 
al controller gain scheduling. Moreover, the reaction was found to go

hrough a selectivity shift from the desired ethylene product to the un-

esirable methane products at potentials that were more negative than

 threshold potential. This led to a control strategy in which the tar-

et set-point needed to be approached slowly with a small proportional

ontroller gain to delay the selectivity shift. Finally, a computational

ethod was developed to include GC sensor feedback data to correct

he gas-phase C 2 H 4 estimation. 

These reaction insights from the modeling process were incorporated

o produce model predictions which in turn were combined with pro-

ess optimization tools to maximize the process economics and energy

avings. The optimization was accomplished using a steady-state neu-

al network model, which determined the most profitable set points

or ethylene production. The Interior Point Optimizer tool (IPOPT; see

emark 1 below for more details) was used along with electricity costs

nd chemical sales prices. Finally, the feedback control of the electro-

hemical reactor was realized using a hybrid (i.e., combining machine

earning with first-principles) model constructed with open-loop data.

n ML estimation-based feedback controller was used to control C 2 H 4 
as-phase concentration by manipulating the applied potential ( Çı tmac ı

t al., 2022 ). 
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Fig. 2. UCLA gas-tight RCE reactor setup. 

Fig. 3. Smart Manufacturing building blocks. 
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emark 1. The development of a first-principles dynamic model in-

olving electrochemical reactions is still in its infancy. Our work demon-

trated the value of data-based modeling for further process exploration,

nderstanding, and scale up. It is important to emphasize that working

ith experimental data presented multiple challenges compared to us-

ng simulated data. Connectivity problems, uncontrollable variations in

xperimental conditions, and shifts that caused anomalies and excur-

ions all needed to be carefully handled during model building. At the

ame time, working with the experimental data was essential in under-

tanding and modeling important reaction phenomena from a control

erspective that had not been previously done. The richness of this study

ould not have been possible without access to the operating data. 

. Advanced sensors 

As process sensors become cheaper and smarter (in the sense of mea-

uring complex process properties), advanced algorithms are needed to

ranslate primary sensor measurements into useful information about

he process that can potentially be used for modeling and control pur-

oses. A thermocouple is a good example of a sensor that is frequently

sed in process industries. The voltage measured by a thermocouple is

onverted to a temperature unit through an algorithm that is simple

nd well-understood for data contextualization. On the other hand, the

astly richer image data from the IR cameras employed in the steam

ethane reformer work previously mentioned ( Kumar et al., 2017 ) was

sed to map the radial and axial temperature distributions of tubular

eforming reactors in a SMR furnace. Cameras were placed around the

utside of the furnace. However, due to the sequence and orientation

f the cameras, some of the tubes were not fully visible. An algorithm

as developed to convert the infrared images into temperature values

nd interpolate the temperature values for the regions that could not be

bserved. These direct and modeled measurements were then used to

etermine the fuel distribution to achieve a much more uniform tem-

erature throughout the furnace. 

The automated GC processing algorithm developed in this study is a

imilar example of smart sensing. As stated, gas chromatography is an

nalytical technique that separates a sampled gas mixture into its com-

onents that are then quantified. A gas chromatography unit contains

 long thin column, where the gases travel until they hit a detector.

eparation occurs inside the column containing materials that serve as

tationary phases while a carrier gas (mobile phase) transfers analytes

oward the detectors. The impact and the quantity of gas molecules on

he detector are represented with peaks in height and breadth over the

ime of the measurement. As the concentration of a gas increases, the

rea of the corresponding peak also increases. The concentrations of

ach gas species analyzed can be quantified by comparing the area un-

er the peaks to that of a calibration file, which contains reference sig-

als generated using a standard gas consisting of known concentrations

f all the gases of interest. The ratio between the area of a peak appear-

ng during electrolysis and the calibration peak gives the concentration

f the produced gas when multiplied by the known calibration concen-

ration. 

In automating the GC analysis so the results can be used on-line,

t is necessary to process the measurements with a baseline correction

o obtain accurate results. This is because the areas under the various

eaks need to be calculated via numerical integration and the peaks that

o not have consistent baselines on the 𝑋 axis yield misleading areas.

utomating this baseline process is therefore a vital part of the on-line

pproach. Most of the proprietary GC software programs create an au-

omatic baseline. However, in most cases, the baseline fails to bring the

ase of each peak to the 𝑋 axis since the algorithms calculate a best fit

ccounting for the entire measurement rather than calculating individ-

al regions. Automation requires analyzing the baseline for each peak

nd then arranging the needed baseline for the components of inter-

st. When this peak and baseline process is done manually, it is subject
6 
o substantial human error from run to run. The automated approach

esulted in a much more consistent interpretation. 

Fig. 4 illustrates the PeakSimple GC analysis software interface. One

f the products of interest here is ethylene shown with a peak high-

ighted in yellow. The peak has a baseline higher than the 𝑋 axis which

eeds to be corrected manually for an accurate composition calculation.

.1. Automated GC code 

The stability of the black line shown in Fig. 4 indicates that the qual-

ty of data coming from the GC detector is high. However, this is not

ecessarily the case. The example shows how an increase in column

emperature and an injection of water from a saturated gas can cause

he baseline to drift and the signal curve (black line) to be much higher

r inclined with respect to the 𝑋 axis. This situation with the raw GC

ensor data is described in this article as noisy data. To create an au-

onomous intelligent system, the GC code needs to run reliably without

uman intervention and must be robust with making corrections to this

oisy data. Accordingly, an autonomous GC data contextualization al-

orithm was developed in Python with the following workflow: 

• Start a GC run at the desired times. 

• Extract the raw GC data file in American Standard Code for Infor-

mation Interchange (ASCII) format. 

• Baseline the raw GC data. 

• Detect when the overall baseline is not accurate enough. 

• Calculate various baselines for each peak and recalculate the optimal

baseline. 

• Calculate the area from raw data if the optimal baseline still has

bases above the 𝑋 axis. 

• Calculate the areas from the calibration files and determine mea-

sured concentrations using calibration area. 

• Send concentration data to a database. 

A plot generated by the automated GC code is displayed in Fig. 5 . The

urple line is the raw data coming from the GC sensor. Compared to the

lack line in Fig. 4 , the raw data is much more inclined and higher. How-

ver, the automated GC code can deal with the noisy data and calculate

he areas under the curves. The different colors around the peaks rep-

esent more peak-specific techniques to improve accuracy, which will

e discussed in detail in the following subsection. Fig. 6 (a) shows noisy

aw data for a H 2 measurement and how the baseline is corrected. 

.2. Automated GC working mechanism 

There are four gas products coming from our electrochemical CO 2 
eduction reactor that must be measured by GC. The products are CH 4 ,

O, C 2 H 4 , which are detected via a Flame Ionization Detector (FID)

quipped with a methanizer, and H 2 , which is detected via a Thermal

onductivity Detector (TCD). Two separate signal channels for the FID

nd TCD detectors are needed and there is a plot generated for each of

hem. Fig. 6 compares manual and automated baseline plots for the TCD

hannel and the raw H 2 data. TCD senses changes in filament temper-

ture and resistance due to thermal conductivity differences between

he analytes and the reference carrier gas, while FID detects ions gen-

rated from the pyrolysis of organic analytes for the other gases. When

quipped with a methanizer, the FID unit can detect CO and CO 2 with

reat sensitivity. 

Raw data in the form of signal intensities from these detectors are

ransmitted to the SMIP where the contextualization process occurs. The

C code itself is tuned using GC results from 43 open-loop experiments.

his tuning process accounts for extreme cases and creates a hierar-

hy for peak detection and integration. Baselining is implemented us-

ng asymmetric least squares smoothing as proposed by Eilers and Boe-

ens (2005) . This method generates the optimal baseline by solving the
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Fig. 4. Manually corrected C 2 H 4 peak baseline. The black line is the raw data coming from the detector, the blue line is the baseline, and the red circles are the 

peaks identified by the software. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 5. Automated GC peak and area calculation example. 
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ollowing optimization problem: 

 = 

∑

𝑖 

𝑤 𝑖 

(
𝑦 𝑖 − 𝑧 𝑖 

)2 + 𝜆
∑

𝑖 

(
Δ2 𝑧 𝑖 

)2 
(1)

here 𝑆 is the regression cost function, 𝑦 𝑖 is the signal to be baselined,

 𝑖 is the smooth baseline, and Δ2 𝑧 is equal to 𝑧 𝑖 − 2 𝑧 𝑖 −1 + 𝑧 𝑖 −2 . The first

ummation describes the performance of the fit and the second sum-

ation describes the smoothness of the fit. 𝑤 𝑖 is a factor related to the

symmetry and 𝜆 is related to smoothness. In our code, the asymmetry

arameter is set to a pre-determined value and 𝜆 is varied over a range

o find the ideal baseline fit. When 𝑆 is minimized, the corresponding

 is the baseline. This is a function of raw data and 𝜆, which is a fac-

or that is observed to work well in the range of [10 4 , 10 9 ] ( Eilers and

oelens, 2005 ). 

The pink baseline shown in Fig. 5 was created with a fixed asym-

etry parameter. Various values for 𝜆 were tested for the calibration

eaks and the best performing lambda value was selected as the default
7 
alue. However, this process does not always give accurate results for

ur peaks, especially when the sensor data is noisy. When this happens,

he code isolates the peak location and tries various 𝜆 values in these

articular excluded regions and selects the baseline closer to zero. This

dditional tuning in the methodology also contributes to the reusabil-

ty of the code and more generally ensures that the most optimal base-

ine can be selected for the peaks. The peaks are found with a user-

efined function, that checks for the increasing and decreasing sides of

he time-series peaks. The peak bases are selected mathematically using

he “peak-prominences ” function in the Python library. A Python script

etermines the horizontal line marking when it intersects the sides of the

eak. This is repeated at lower and lower positions on a peak. The two

owest signal values determine the base length for a peak ( Scipy, 2022 ).

When the set of peak detection analyses are applied to the methane

eak in Fig. 7 , the pink baseline is replaced by the lime peak. As shown,

he CH 4 raw data is inclined and could be confused for 2 peaks. The

C code initially considers the red circle to be the pinnacle of the peak.
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Fig. 6. Automated GC and manually corrected raw data comparison from TCD channel hydrogen data. 

Fig. 7. Methane peak corrected by a supervisor algorithm. The first found peak 

is shown with the red circle, however, the corrected peak is shown in lime. 

(For interpretation of the references to color in this figure legend, the reader is 

referred to the web version of this article.) 
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owever, the code recognizes this is incorrect. The green marks on the

axis are the initial predictions for the baseline that corresponds to the

igh values on the pink line. The code, therefore, understands that this

eak is questionable. The GC code initiates the additional tuning process

y adjusting the baseline to find the best alignment with the level of

nclination. Ultimately the code determines an optimal representation

f the actual peak for the CH 4 component, which is shown as the lime-

olored peak. 

It is notable that all remaining peaks have an inherent hierarchy

with respect to the height of each peak) despite the base code being

he same. Thus, this code can be adapted for any peak of any gas prod-

ct if special cases are accurately identified in the peak detection hier-

rchy. In principle, the peak detection hierarchy does not need to be

lways applied. For example, in Fig. 5 , the CO area is highlighted in

ellow indicating that the GC code was able to provide a more robust

stimation by simply manipulating the raw data and was able to find

he base of the raw data peak to calculate the peak area under the curve

hat is subtracted by the area under the green line. This direct and sim-

le approach, typically also found in commercial software for GC data
8 
nalysis, gives better results only for CO compared to the more complex

aseline-corrected area calculation needed to also extract accurate data

or other gas products. The corrected peaks are shown in lime for CH 4 ,

ellow for CO, and blue for C 2 H 4 . In our system, it is especially diffi-

ult to correctly baseline the C 2 H 4 peak, since it appears on a line that

verlaps with a CO 2 peak, which is the reactant itself. Indeed, in the

ajority of cases, the more complex correction algorithm was used in

he calculation of the C 2 H 4 signal area. 

. The role of the CESMII smart manufacturing innovation 

latform 

.1. SMIP overview 

As the use of data has proven to increase the profitability and ef-

ciency of process operations, more effort has been put into devel-

ping model-based software solutions. One interesting framework is

he Parametric Optimization and Control (PAROC) Platform developed

y Pistikopoulos et al. (2015) for creating high-fidelity models for con-

rol and optimization purposes. Simeone et al. (2019) have built a plat-

orm service that uses an optimization and compatibility engine for sales

upport of metal cutting machines based on material and energy con-

umption options. 

The Smart Manufacturing Innovation Platform is a standards-based

oftware platform for connection, ingestion and contextualization of

ata to be used for building applications. The SMIP uses standardized

nformation models and ensures the availability of contextualized data

rom machines and process components for broader application. It is a

oftware infrastructure that integrates the information and operational

echnologies (OT) needed for building and deploying data and model

pplications in operations. Consistent OT and IT integration are facili-

ated when data are exchanged and models are shared across operations,

actories, and companies ( Davis et al., 2020; Edgar and Pistikopoulos,

018 ). The accessibility of data and applications from various sources

lso creates interoperability requirements across vendor software and

ardware products. The SMIP is designed for the OT and IT integration

hile simplifying connection, ingestion, contextualization, reusability,

nd availability of operating data for operational applications. It makes

se of a standardized information model called the SM Profile. 

For our electrochemical reactor, LabVIEW hardware is used to in-

erface with the physical reactor and the instrumentation. LabVIEW is

nterfaced with the SMIP. This configuration of the operational SMIP

upports three major services: 
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1. An edge data management device associated with the physical de-

vices that can collect, contextualize, and transmit the data to the

core SMIP services, i.e., LabVIEW. 

2. The SMIP core services that receive, store, and make data available.

3. Application models that integrate or interoperate with the SMIP to

consume data and support actions for improving manufacturing op-

erations. 

The Hypertext Transfer Protocol Secure (HTTPS) transfer of real-

ime operational data from the reactor to the SMIP core services is per-

ormed through GraphQL. GraphQL commands are similar to commands

n Structured Query Languages (SQL) except that they are initiated over

n HTTPS connection using a web-based Application Programming In-

erface (API). GraphQL can perform typical CRUD (Create, Read, Up-

ate, Delete) queries similar to a Representational State Transfer (REST)

ommand except that the program is constrained to the transmission of

ecessary data due to the limit of the network bandwidth ( Hartig and

érez, 2018 ). Surveys have found GraphQL to be superior to REST be-

ause of its user-friendly Application Programming Interface (API) to

uery data ( Brito and Valente (2020) ). Data storage in the SMIP is pro-

ided by a PostgreSQL database in which the data are archived using

he time-stamp at which the data is transmitted. Data that require no

ime-stamps such as model numbers are stored as configuration data

n the SM Profiles, which also contain the information model configu-

ations for equipment items in various operation services. SM Profiles

an be any abstraction of importance, e.g., a machine, sensor, a Key

erformance Indicator, process, etc. Configuration information in SM

rofiles about measurements are stored as attributes that include data

ame, data type (e.g., float, int, string, etc.), and units (e.g., seconds,

olts, etc.). The idea is that all users (human or machine) of the data

rom that same type of equipment can expect to receive the same con-

istently contextualized data defined by the agreed upon information

odel captured in the SM profile. The SM Profile is a direct extension of

he Open Process Communications Unified Architecture (OPC UA) infor-

ation model that specifies the interoperability standards for structured

ata communication among producers and consumers of data. 

Since GraphQL commands for changing the data in the database can

verwrite the existing data on SMIP, role-based authorization for chang-

ng data is enforced. The SMIP has an Integrated Development Environ-

ent (IDE) that accommodates Python, PHP, and SQL in developing

ata-driven models using the data stored in the SMIP. Additionally, the

MIP offers ready-to-use data visualization applications, such as a trend

nalyzer, to visualize time series data or to compute data correlations.

n addition to GraphQL interfacing, the SMIP also offers custom gate-

ay connectors that facilitate the high-speed ingestion of data into the

MIP. Currently, operational databases and historians, such as OSI PI

nd Wonderware are supported as well as live data sources that are

PC DA (Data Access) and OPC UA (Unified Architecture) compatible. 

.2. Using the SMIP for the CO 2 reduction reactor 

The SMIP architecture used in our electrochemical reactor research

s shown in Fig. 8 . Sensors collect data from the reactor through a Lab-

IEW edge interface. The data are transmitted securely to the SMIP at

 s intervals with the GraphQL commands. The time-stamp and the data

alue together ensure that data are not overwritten. The time-stamp is

lso essential in selecting data from particular operating time periods

ncluding within a single run. GraphQL API commands can be issued in

everal programming languages such as Python, JavaScript, Curl, etc.

e have chosen Python for easy implementation with LabVIEW (see

lso Section 4.4 ) and because we have been using the Python IDE lo-

ally. The current version of the SMIP allows any authorized user to

se the GraphQL query commands to select and download data to a

ocal computer environment to more easily evaluate different model-

ng approaches as well as different data sets. Once a satisfactory mod-

ling approach is worked out locally, the model can be implemented
9 
nd run in the SMIP or run locally while interfacing with the SMIP.

he choice to download the data for local use or to use the SMIP di-

ectly is dependent on the network bandwidth and the computational

esources needed. Computation resources on the SMIP are currently lim-

ted with no co-processors or GPU to accelerate model building. Our

roject made use of the additional SMIP tools for monitoring the real-

ime data flow through trend charts, building process layouts of the re-

ctor system and instrumentation, and displaying data values for system

omponents. 

.3. Reusable profiles for electrochemical reactors 

Every day, engineers are building models to improve the efficiency

f manufacturing, but the lack of commonly acceptable formats is a ma-

or impediment when reusing existing models and applications, reusing

ontextualized data, sharing or combining data, and collaborating with

ther model builders. The implementation of the SMIP resolves and uses

road agreements on formats, making it possible for data producers and

onsumers to easily exchange information in a common format. Through

he use of SM Profiles described by Davis et al. (2020) , the SMIP uses a

ommon information model for commonly used equipment based on ex-

sting agreements on standards (i.e., OPC UA, VDMA, MT Connect, etc.)

hat producers of data can use to deliver data to consumers to build

nd run data-driven models. SM profiles can be constructed and made

vailable not only for particular equipment items but also for sensors,

ctuators, groupings of equipment items, and operational abstractions

ike KPI calculations. A research project like ours contributes to new SM

rofiles that can be consumed by the SMIP users. In our research team,

hose responsible for the operation of the reactor acted as producers

f the data and those responsible for modeling acted as consumers to

est the use of the SMIP. The developers of the SMIP observed how the

arious features worked and were used. 

SM Profiles ensure a clear understanding of the expected data struc-

ure and its content. They can be created with a Profile designer and

laced in an SM Library. Since the SM Library and the SM Profiles are

ully compatible with the SMIP, SM Profiles can be selected and used for

pecific applications. A key objective is much greater standardization

nd reusability of these information models for similar equipment and

perational types. Once an SM Profile is built, consumers, e.g., manufac-

urers, researchers, etc., can use the previously used profiles by extend-

ng them as needed to more easily start data collection and modeling for

nother application. SM Profiles allow for reusability at different levels

f description detail, e.g., equipment types, vendor types, service types,

nd particular applications by taking advantage of object-oriented pro-

ramming concepts. The greater the match in specificity, the greater a

irect profile match and the fewer extensions that need to be made. SM

rofiles are therefore structured drawing upon objective-oriented pro-

ramming structures for the item or process concept of interest so that

xtensions can be built at the level of description determined by the

atch between the Profile and the new application. It is also possible

or a Profile to use another Profile. Profiles also do not need to be di-

ectly equipment centered. An example of this is the automated GC anal-

sis. As a Profile, the automated GC analytics developed in this research

re available for extension to other on-line GC applications. The SMIP

akes sharing and implementing operational applications user-friendly

nd much faster. Like the GC code application in this research, if no

M Profile exists, a new Profile needs to be built, but it now becomes

vailable for a next similar application. 

The SM Profile constructed for the Electrochemical Reduction Re-

ctor is shown in Fig. 9 . The “CO 2 Reduction Reactor ” is the top level

rofile constructed with the “Gas Chromatograph, ” “Potentiostat, ” and

Modeling ” as subprofiles. Operational data are collected and transmit-

ed to the SMIP where each raw data item is stored in the context of a

orresponding data expectation called an attribute in the profile. Each

ttribute has the relevant datatype information and the associated mea-

urement units. Each data item is also time-stamped. For example, a
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Fig. 8. SMIP architecture. 

Fig. 9. Hierarchical equipment profile interface on SMIP for the electrochemical reactor. 
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ingle temperature measurement from a particular sensor at a certain

oint in time is collected, ingested, and stored as a number (but with

xpected units for that particular sensor device defined from the Pro-

le) and time-stamped with the time the data item was collected. Every

ttribute in a Profile is also assigned a tag ID number automatically to

efine the data storage location. The tag ID and time-stamp are the two

equired attribute parameters which are needed to store or retrieve the

ata from the SMIP. Consumers of the data can use GraphQL queries

o identify equipment and tag IDs for attributes and access data for any

esired time interval. 

With respect to reusability, if a new user sets up a similar electro-

hemical CO 2 reactor system like that used in this research, that user

an now start with the SM Profile constructed by us. The Profile speci-

es the information models for system as sub-equipment, i.e., the poten-

iostat, the GC, and the rotation unit. If Fourier transform infrared spec-

roscopy (FTIR) was used instead of the GC to measure the gas products,

 standards-based Profile for the FTIR would need to either be found in

he SM Library and extended or developed as a first Profile. The new

TIR profile would replace the GC sub-profile while the other two sub-

quipment Profiles would remain the same. Data transfer to the plat-
10 
orm is facilitated since rebuilding information models and interfaces

or two of the components is avoided. What changes is that a new tag

D is generated for the attributes associated with the new FTIR measure-

ent equipment. Any equipment specific data, like vendor name, model

umber, etc., would also need to be updated. 

Another example of reusability is the infrared (IR) camera infor-

ation model used in Kumar et al. (2017) , which was mentioned in

ection 3 . When the specific IR camera operating data from the partic-

lar steam methane reformer in the study are removed, what remains

s the SM Profile that can be used in other IR thermo-imaging applica-

ions requiring spatial temperature measurements. This is analogous to

he automated GC code mentioned above and in Section 3.1 . While the

C code in this study was developed to quantify H 2 , CO, CH 4 , and C 2 H 4 
ases at ppm levels, this code can be reused when, for example, specific

 2 H 4 inputs are replaced with other gas products and there is a need to

uantify the peaks. Reusability also extends into the IT function. The GC

ode processes input data in an ASCII format, making it easy to change

o other GC instrumentation data file formats. Similarly, the automated

C code triggers PeakSimple software to start the GC run, which can be

djusted for other GC vendor software. 
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Fig. 10. Trend visualization tool on SMIP demonstrated on real-time electric current data. 
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Another advantage of SM Profiles and the SMIP is that they offer

asy real-time/offline monitoring of the process data with process re-

ort and trend analysis. For example, one of the key parameters in the

lectrochemical reactor operation is the real-time current to the elec-

rode. Fig. 10 displays this with the trend analyzer. It is possible to se-

ect multiple attributes associated with an equipment for display at the

ame time on the same trend analyzer interface. 

.4. Data management 

As information technologies are increasingly used for data and mod-

ling applications, the importance of cloud-based cyberinfrastructure,

esources, and services has increased. The SMIP is currently hosted as

 set of cloud services on the Microsoft Azure cloud platform and uses

he PostgreSQL database on Azure to store the data. The SMIP’s cloud-

osted database takes advantage of the cybersecurity tools provided by

he Azure platform. Additionally, all data transactions are encrypted.

t is easy to change (create, update, delete) or query (read) the data

n real-time using GraphQL. Sensor data are transferred through auto-

ated GraphQL commands from a local machine (edge device) to the

MIP. Data are stored according to the attributes in SM Profiles as de-

cribed previously. To provide a specific example, the potentiostat has

n SM Profile (see Fig. 9 ) with several measurement attributes of which

ne is “electric current ”. Data from the amperage sensor on the potentio-

tat are collected and transmitted via LabVIEW and stored in the SMIP

ostgreSQL database as floating point numbers assigned the Tag ID as-

ociated with the “current ” attribute and the time-stamp when the data

ere collected. At any time, the database can be accessed using this Tag
11 
D and the time-stamp can be used to locate data that are being or have

een streamed. This data storage structure is more useful than, for ex-

mple, a sequence of numbers. For this sort of real-time data transfer, a

ime-stamp reflects the point in time that a data item is collected, which

lso corresponds to the time at which the data was observed. Authenti-

ation for adding data to the database (which is interpreted as changing

he data) relies on required security tokens obtained from the SMIP us-

ng login credentials. 

Traditional databases typically require users to generate data con-

ainers or tables before starting collection. Additionally, these data ta-

les need to be configured and connected to specified servers. For exam-

le, there would be the need to compose a database schema that defines

ow the data items are to be structured, and how they relate to one an-

ther. This upfront structuring also includes the security keys to store

nd retrieve the data. For these “structured ” data tables to be queried

y an external application such as Python, an administrator must make

he relevant table settings available. Although this approach has been

hown to be useful in many industrial applications, it requires domain

pecific knowledge to predict the table configurations. The use of the

MIP eliminates the need for this configuration process because the data

re not stored in tables, but are stored only with time-stamps and Tag

Ds identified with the SM Profile. Data contributors only need to have

he SMIP endpoint URL and the security credentials to store data asso-

iated with previously created attributes and their Tag IDs. Consumers

f the data also just need to have the SMIP endpoint URL and secu-

ity credentials to download the data using GraphQL queries. Another

dvantage is that it is easy to store attribute data (i.e., measurements)

hat have different sampling periods. For example, the electric current
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Fig. 11. The interface of data upload tool. The user needs to enter SMIP credentials, the path to the spreadsheet file that will be uploaded to the platform, and the 

columns/rows within the spreadsheet to upload to the platform. 

f  

m  

n  

a  

t  

p  

u  

d

4

 

l  

S  

a  

p  

b  

m  

m  

n  

f  

L  

d  

b  

u  

d  

d  

V  

s  

c  

t  

L  

t

 

w  

1  

i  

r  

f  

t  

s  

n  

i  

t  

c  

p  

i  

b  

w  

p  

c  

s  

n  

s  

C  

t  

L  

p  

t  

e

 

r  

c  

t  

f  

n  

i  

a  

c  

m

 

s  

t  

C  

t  

L  

t  

u  

d  

t  

e  

t  

m  

t  

e  

c  

i  

t  

d  

a  

T  

T

R  

i  

v  

2  

t  

a  

f  

R  

p  
rom the potentiostat is recorded on a per second basis, while the GC

easurements are recorded at every 20 min. To aid the user who has

o knowledge of Python or GraphQL, we have developed a script and

 Django-based web interface to select the relevant columns from data

ables, i.e., data captured in a spreadsheet, and transmit them to the

latform. The interface is shown in Fig. 11 . This tool has been partic-

larly useful in our project for uploading earlier (legacy) experimental

ata stored in an Excel spreadsheet. 

.5. Process equipment and data connectivity 

The ability to display all trending and point data measurements col-

ected on an operation, regardless of source or vendor, is a first step in

mart Manufacturing. This task can be difficult when different sensors

nd local machines use different connection protocols. This often hap-

ens when different vendor products are used. The SMIP addresses this

y offering a wide variety of connectors that connect the SMIP to equip-

ent, instrumentation, sensors, and a full range of control and manage-

ent hardware and software for transferring data via GraphQL. Con-

ectors are like translators, enabling digital communication between,

or example, a sensor and the platform. For our experimental reactor,

abVIEW was already in use as the digital environment for digitizing

ata and displaying results. The SMIP did not have a LabVIEW driver,

ut LabVIEW had numerous drivers that are compatible with commonly

sed experimental or industrial equipment. In addition, several software

evelopment kits (SDKs) were available for building novel and complex

ata connections to instrumentation that were compatible with Lab-

IEW. Lastly, LabVIEW can communicate with external programming

cripts such as those written in Python or Matlab. Our decision was to

ontinue with LabVIEW and make use of the software development kits

o build a LabVIEW connector to the SMIP. There are plans to add this

abVIEW connector into the SMIP’s connector list so it is available to

he many experimentalists already using LabVIEW. 

In our project, the potentiostat, a Metrohm Autolab Model 302N,

as connected to LabVIEW using the Autolab Software Development Kit

.10 ( Autolab, 2013 ). The Development Kit made it possible to build an

nterface connection that we could manage instead of using the more

estrictive Autolab NOVA software provided by the vendor. Our inter-

ace made it possible not only to collect data from the potentiostat but

o also change the input for controlling the experiment making it pos-

ible to close the control loop. Since the gas chromatograph (GC) did

ot have a LabVIEW driver, we developed a Python script that automat-

cally triggered the GC measurements at predefined times by opening

he PeakSimple software and initiating a run. When the GC run was

ompleted, another script transmitted the raw data to the SMIP to be

rocessed and quantified as described previously. With the contextual-

zed data in the SMIP, the LabVIEW interface could query the data and

ring the GC data together with the other data. The LabVIEW interface

as also set up to display a plot of the processed GC data and the relevant

eaks. The rotation unit also did not have a LabVIEW driver but it was

onnected via a Compact Reconfigurable Input Output (CompactRIO)
12 
ystem, a National Instruments product that enables engineers to con-

ect input/output modules without drivers. Even though the rotation

peed was kept constant throughout the experiments for this paper, the

ompactRio can adjust the rotation speed in real time should we decide

o use it. Finally, the mass-flow controllers (MFCs) are connected to the

abVIEW interface via a function provided by the vendor for sending

riority commands specified in the user manuals. This made it possible

o set an MFC to a specific flowrate and either hold or change it. An

xample portion of the LabVIEW interface is shown in Fig. 12 . 

The LabVIEW interface can both send control signals and acquire

eal-time data from the potentiostat and the gas chromatograph, and it

an communicate with the platform for real-time data storage and query

hrough GraphQL. LabVIEW has a feedback control feature which is used

or the control of the gas-phase ethylene product concentration by ma-

ipulating the applied potential. A real-time change of applied potential

s made by the potentiostat based on the feedback value calculated by

n estimator-based proportional-integral (PI) feedback controller (other

ontrol methods can also be used in this framework as discussed in Re-

ark 3 below) on LabVIEW. 

For LabVIEW to be able to send data to the SMIP, the LabVIEW script

hown in Fig. 13 was developed. The script on the right side is writ-

en in JSON to query https://uc.cesmii.net/graphql , the University of

alifornia SMIP domain. To execute a query, the JSON script needs the

ime-stamp, Tag ID, start, and end times. Time-stamps are obtained from

abVIEW in real time and the middle functions convert the time-stamps

o the required string format. The LabVIEW code, shown in Fig. 13 ,

ses the “ReplaceTimeSeriesRange ” command to write data to the SMIP

atabase through GraphQL. This command replaces the data assigned

o the time-stamp within a time interval with a specific start time and

nd time. If there is no existing data in this range, new data is written

o the database without any replacement. The time interval for replace-

ent must contain the assigned time-stamp. In our example code, this

ime range is defined between the time-stamp (now) and a distant future

nd time. This way, the start time is always renewed at each request to

hange the data and the end time is kept the same to prevent any tim-

ng conflict. ”HTTPS client nodes ” are used from the Data Communica-

ion - Protocols section in the LabVIEW functions palette to specify the

estination link. This is similar to the Python “Requests ” library. User

uthentication into LabVIEW is required before the experiment starts.

he “open handle ” function defines the SMIP username and password.

his script then sends data to the SMIP on a per second basis. 

emark 2. The optimizer uses Interior Point OPTimizer (IPOPT) which

s an open-source software package for nonlinear optimization pro-

ided by the COIN-OR Foundation ( Wächter, 2009; Wächter and Biegler,

003; 2005 ). A Python library, Pyipopt, developed by Eric Xu is used

o connect python scripts to IPOPT. Instructions for installing IPOPT

nd PyIPOPT can be found on the official website of IPOPT and in the

ollowing Github page ( https://github.com/xuy/pyipopt ), respectively.

emark 3. The electrochemical reactor in this study produces multiple

roducts and has multiple process inputs. Thus, it is possible to control

https://uc.cesmii.net/graphql
https://github.com/xuy/pyipopt
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Fig. 12. LabVIEW interface and representative real-time data plots. 
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his reactor with multivariable control methods, such as MPC. LabVIEW

as a “Predictive Control ” function palette, which can be used to im-

lement an MPC scheme. Since we use ML-based models and the open-

ource optimizer IPOPT as the optimizer, the calculation of the control

ction by the MPC can be done using a Python script within a Docker

ontainer (see below, a self-contained executable script). This script can

et the data from the platform, make calculations, and send the output

ignals to the actuators in LabVIEW through the SMIP. 

. Virtualization 

We have been emphasizing the advantages of the SMIP, but there

re two limitations in its current version. First, the SMIP is not set up to

rovide enough computational power for large data computations (e.g.,

raining ML models and/or solving complicated optimization problems)

articularly those arising with real-time model predictive control with

onlinear models. We needed to download the data from the SMIP and

o the computations outside of the SMIP and then return the results to

t. Secondly, the client interface to the SMIP needs to be simplified and

here needs to be the ability to more easily reuse models and software

unctionality. This section introduces the application of Docker technol-

gy to communicate with the SMIP and address these limitations. 

.1. Docker overview 

Docker technology is an open-source application for virtualizing an

xecutable image with all the run-time library, tools, and codes in a
13 
ontainer that can be quickly deployed on multiple operating systems.

he Docker application is composed by four main components: Docker

lient and Server, Docker Images, Docker Registries, and Docker Con-

ainers ( Rad et al., 2017 ). When using Docker, users give command lines

o the Docker Client, which then converts those commands into a re-

uest form and sends it to the Docker Server. The Docker Server can be

nderstood as the background script that is running behind the screen.

sually, the Docker Client and Server are installed on the same machine,

ut they can also be installed separately. Specifically, a Docker image

s a read-only file that contains the OS (e.g., Ubuntu for Linux-based

pplication), libraries (e.g., TensorFlow, Numpy, Pandas for machine

earning programs) and tools (e.g., Jupyter Notebook), which can be

hared by different containers. Containers can be understood as writable

ayers built on top of images so that users can make changes and run ap-

lications similarly to developing a new program or generating data by

unning applications built in the images. In short, by using Docker, users

an create and run isolated applications with various virtual operating

ystems on the same machine. 

.2. Docker-SMIP synchronization 

Docker makes sense as a way to interface applications with the SMIP

ecause it is analogous to interfacing to an external computer that is pro-

rammed accordingly. Docker offers advantages because the execution

mages are lightweight files that can be easily packed and distributed

hrough standard uploading and downloading processes. Docker con-

ainers were therefore ideal for the generalized tools developed in this
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Fig. 13. Data query script on LabVIEW. 

Fig. 14. Docker-SMIP synchronization. 
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esearch that required external processing power, while still interfacing

ith the SMIP. Docker images can be stored on the SMIP, easily down-

oaded to a local machine and used. When on the local machine, the

ools and programs can be modified and saved as Docker images on the

MIP. In this way, Docker application images are to modeling applica-

ions as Profiles are to information models from a reusability standpoint.

he SMIP, Profiles and Docker applications are SMIP and execution com-

atible. When executed, the Docker applications whether they are run

n the SMIP or an external processor, still use the data on the SMIP

 data that are defined by the Profiles. This workflow is illustrated in

ig. 14 . In this work, we built Docker application images to simplify

nd automate the ability to upload existing data from other files and to

un a computationally intensive optimizer that used a neural network

achine learning model to process experimental data. We note that, in

ddition to creating tools for the SMIP, Docker can also be used for other

anagement tasks. For example, code and program dependencies can

e packed by a researcher into Docker images, which can then be used

o reproduce their working environment effectively. Docker images can

e easily shared between team members and can be used for version

anagement. 
14 
. Electrochemical reactor modeling using the SMIP 

Dynamic models, whether first-principles or data-centered, are cen-

ral to process control applications. First-principles models are useful

n providing insights and describing process behaviors ( Yang et al.,

020 ). However, there are situations where it is difficult to develop first-

rinciples models with sufficient completeness, fidelity, or range for an

bjective. Examples include phenomena that are difficult to model, such

s wear, deterioration, or deactivation, complexities that may not be

ully known such as reaction kinetics (like, for example, in this study),

r fidelity requirements involving more computational power and/or

ime to be useful. Data-centered modeling can be a feasible alternative if

nough data are available over the range of interest since data-centered

odels do not generalize well. There are advantages to hybrid models in

hich data-centered and first-principles modeling are integrated into a

ybrid approach like in the early work of Doyle et al. (2003) on particle

ize distribution modeling in polymerization. 

The present research embraced a similar hybrid modeling approach

or the electrochemical process because the reduction of CO 2 on a flat

opper catalyst is subject to unpredictable variations in catalyst activ-

ty and deactivation. Reaction rates were modeled with a polynomial

ernel support vector regression (SVR) model using GC data from many

uns. For our real-time control objective, this reaction rate model was in-

erted into a first-principles, dynamic gas-phase concentration model to

redict the time-evolution of the product concentrations ( Çı tmac ı et al.,

022 ). The SVR model takes surface potential, rotation speed, current,

nd the cumulative integral of the current as inputs. These inputs are

ransformed into polynomial powers and the corresponding outputs are

ormalized between 0 and 1, depending on the minimum and maxi-

um values in the training data sets for each input. Because of catalyst

ctivity uncertainties across runs, standard deviations of the data were

sed to build the data-based models by integrating most-likelihood esti-

ation methods into an artificial neural network for production rate

stimation. This model was then used to calculate the most energy-

fficient set-points with IPOPT ( Çı tmac ı et al., 2022; Luo et al., 2022 ).

he SMIP greatly facilitated the data transmission and management of

ata across many runs for this kind of control and optimization mod-

ling development effort. It was significant to have flexible and ready

ccess to operating data from the beginning of the development effort

o facilitate model evaluation and development with easy data selection

nd the management of training and testing sets. It cannot be under-

tated how access to operating data facilitated the synergistic process

f developing further insights and the understanding of the reaction
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hat went into building a better model of the physical phenomena and

rocess. 

emark 4. Process and measurement noise is an important aspect that

s addressed best with operational data that reflects the noise expe-

ienced. A particularly important source of noise in our experimental

etup occurred because the current to the cylindrical electrode continu-

usly fluctuated within a small range due to the adhesion of gas bubbles

n the surface of the electrode. The rotation of the electrode created fur-

her complications with fluctuations in the mixing of the liquid that not

nly affected the gas phase at the surface of the electrode but also the

ass transfer at the gas-liquid interface. This noise in the current and

urface potential calculations (since the surface potential is a function

f the current) was addressed using the average of every two consecu-

ive current values as input to the ML model. Additionally, the output

rom the SVR model was input into the gas-phase dynamic mass balance

i.e., the output of the SVR model was entered the right-hand-side of an

rdinary differential equation) further reducing the impact of the noise

n the gas-phase ethylene concentration estimation (the dependent vari-

ble of the differential equation). 

emark 5. The overall model development effort was conducted off-

ine with open-loop experimental data collected over a year. As a po-

ential future work, it is possible to set up an auto-ML model update

ycle using the SMIP as data from new experiments are generated. This,

owever, requires being able to identify runs that proceeded without

ny abnormal situations or conditions. It also requires a mechanism to

etermine if the new data are appropriate for updating the model. Fi-

ally, there will need to be a methodology to separating data in training,

esting and validation data sets. We can see that the SMIP provides the

nfrastructure and services needed to develop an automated ML-model

pdate cycle. 

. Conclusion 

This paper addresses our experience with the digitalization of the

CLA experimental electrochemical reactor using the Smart Manufac-

uring Innovation Platform (SMIP). Smart Manufacturing fundamentals

nd concepts were explained and relevant examples to demonstrate the

alue were presented. Specifically, Smart Manufacturing building block

ools and infrastructure were applied to exploit operational data from

he experimental electrochemical reactor to overcome a lack of funda-

ental understanding and to demonstrate that the reactor could be con-

rolled. The development of a hybrid, first-principles and data-centered

odel, leveraged the operational data. It was in turn used to develop

nd demonstrate process optimization and real-time estimation-based

ontrol. A key Smart Manufacturing development was the automation

f gas chromatography composition measurements that could be used

s on-line, real-time measurements for feedback control. In addition to

ddressing operational technology modeling and application require-

ents, the paper also explained the integrated IT capabilities including

onnectivity, data transfer, use of SM Profiles, and the use of Docker

ontainers. The value of integrated Operational and Information tech-

ologies is uniquely explained with examples. The OT and IT features

ffered by the SMIP significantly accelerated data acquisition and anal-

sis, as well as machine learning modeling efforts, while keeping the

roprietary data safe. The access to and use of operating data at the on-

et of the effort facilitated the understanding of the reaction kinetics and

he phenomenological and operational noise while building the models.

his resulted in a better model for control and a robust demonstration of

hat is needed to control an electrochemical reactor. Lastly, the project

emonstrated reusability of data and models using Smart Manufactur-

ng concepts of Profiles and Docker Application Containers. The overall

pproach implemented on the UCLA electrochemical reactor is applica-

le to other experimental and industrial reactors as well as other unit

peration processes. Once the sensor, actuator and reactor Profiles are

eveloped, the automation, connectivity, and contextualization can be
15 
dopted by other experimental groups working on other processes with

inimal training and effort. The automated modeling tools are available

s Docker Containers. 
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