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ARTICLE INFO ABSTRACT
Keywords: The exponential increase in data produced over the last two decades has revolutionized the way we collect, store,
Electrochemical reactor process, analyze, model, and interpret information to improve profitability. Manufacturing is no exception. How-

CO, reduction
Smart manufacturing innovation platform
Data-driven modeling

ever, Smart Manufacturing, the digital practice, organization, workforce, and infrastructure transformation for
collection and deployment of data and models at scale and at all levels of manufacturing, is a complex, costly,
Machine learning and labor-intensive journey that is still seeing slow adoption. The Clean Energy Smart Manufacturing Innovation
Gas chromatography Institute (CESMII), a national Manufacturing USA public-private partnership sponsored by the Department of
Data connectivity Energy, is addressing this scaled use of data and modeling in manufacturing. CESMII has focused on how to col-
lect and use operating data for numerous applications that improve productivity, precision, and performance of
manufacturing operations from factory floor to supply chain using process simulation, predictive analytics, mon-
itoring and control, and real-time optimization. Because contextualized data are key, CESMII has developed the
Smart Manufacturing Innovation Platform (SMIP) to lower the barriers to the data that are needed to accelerate
data-based model building, improve data visualization, and more quickly gain insights. Reusable, standards-based
ways of doing data collection, ingestion, and contextualization are particularly important for scaling access and
use of data. The SMIP uses a standards-based definition and construct for reusable information models called
an SM Profile. When an SM Profile is used in conjunction with the SMIP, the SMIP ensures the availability of
contextualized, operational data for model building. The present work demonstrates Smart Manufacturing and
the application of the SMIP for building several data-centered models for the operation and control of an ex-
perimental electrochemical reactor that reduces carbon dioxide (CO,) gas to valuable liquid and gas chemicals,
such as alcohols, olefins, and syngas. We describe how the SMIP plays a central role in more effective model
building and we demonstrate how the electochemical reactor can be controlled and optimized for the desired
products. Use of the SMIP involves the transmission of real-time sensor measurements to a cloud resource so that
the operating data are available to all model building experts. The data collection and transmission process is
fully automated to greatly reduce the need for manual manipulation of the data. Data-driven machine learning
models are used for advanced real-time state estimation, real-time optimization, and model-based feedback con-
trol for the reactor. The application models are implemented as a system to monitor the data flow and control the
electrochemical reactor with a single visualization interface. SM Profiles are used to demonstrate reusability of
the information models for the reactor and the instrumentation. The application packages, algorithms, and user
interfaces developed are cast as Docker images in a library to facilitate reusability of the application models.

1. Introduction collect and manage data. The use of operational data to improve man-
ufacturing operations with advanced sensors, controls, platforms, and

The 215t century has witnessed a rapid increase in the amount of modeling at much greater scale and integration is described as Smart
data produced in industrial sectors as a result of many more sensors and Manufacturing in the U. S. and Industry 4.0 in Europe (e.g., Christofides
devices, i.e., IoT (the Internet of Things), and a much greater ability to et al., 2007; Kang et al., 2016; Yang et al., 2020). Smart Manufacturing
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is the digital transformation that results from embedding digital technol-
ogy into nearly every aspect of all manufacturing operations and prac-
tices. Application objectives encompass increasing productivity, prod-
uct quality, and performance, ensuring safety, and reducing energy con-
sumption, greenhouse gas (GHG) emissions (Saudagar et al., 2019) and
carbon footprint as integrated Key Perfomance Indicators (KPIs). Smart
Manufacturing also involves the seamless integration of advanced sens-
ing with data-centered modeling, modeling that spans first-principles
modeling, digital twin, Artificial Intelligence (AI), and machine learn-
ing, for simulation, diagnosis, real-time optimization, prediction, ad-
vanced control, and data-driven decision-making from factory floor to
supply chains. An abundance of the right data allows for the automa-
tion of processes and the development of intelligent systems, which are
crucial to the management of higher level KPIs and complex objectives,
eliminating human error, and using human resources in better ways not
only on the factory floor but throughout supply chains and manufac-
turing ecosystems. Data and modeling also facilitate much broader and
more timely data availability, acquisition and selection that can accel-
erate insights and research breakthroughs.

Digital transformation defined by Smart Manufacturing includes
building and sustaining data-centered models, collecting, ingesting and
contextualizing the right data, making data reusable, addressing the in-
formation technology (IT) infrastructure and scaling the deployment
software applications to address the wide diversity of manufacturing
operations. Although the potential benefits of Smart Manufacturing are
understood, the needed digital transformation across the industry is dif-
ficult in practice due to cost and complexities associated with the current
infrastructure and business practices and the lack of tools, infrastructure,
standards, and skills for sustained data management and model build-
ing. The tasks of digital transformation are new and there is a significant
need for advanced operator training (Phuyal et al., 2020). The ability to
extract more meaningful relations and greater insights involves working
with the data in a more integrated fashion with methods for large, more
complex data sets. Smart manufacturing defines the use of real-time
data to increase the effectiveness of analyses, and it positions the role
of data for greater understanding from the beginning of a development
process.

Smart Manufacturing also emphasizes the relationships within large
data sets in an efficient and timely manner for operational modeling
and troubleshooting. This includes embracing the unique opportunities
to leverage cloud technologies for storing large amounts of data and
making them accessible anywhere and anytime and for shared compu-
tational requirements to significantly decrease the time needed for the
analysis, optimization, control, and scale-up. However, cloud technolo-
gies have their challenges. Various cloud vendors still lock data in re-
spective platforms that do not interface easily. Cloud technologies do of-
fer the needed services to store large data sets and make them accessible
anywhere and anytime but cross-platform data transfer is challenging.
Cybersecurity vulnerabilities increase when integrating multiple cloud
products and/or ingesting data from multiple vendor instrumentation.
The data transfer with manufacturing process equipment, sensors, or
local processor must be encrypted (HTTPS), and the data stored on
the cloud must be protected. A manufacturing framework must address
the necessary authorizations and authentications to keep the user data
safe.

In recent years, machine learning algorithms have evolved, offer-
ing greater opportunity for modeling and identifying hidden patterns or
trends in big data sets, but they require working with data in more exten-
sive ways. The spectrum of data-driven modeling options and machine
learning algorithms and their span of application are also expanding. Re-
gression methods, such as artificial neural networks (ANN), support vec-
tor machines, and gradient boosting, have been successful in modeling
process operational data. Wu et al. (2019) explored the use of recurrent
neural networks (RNNs) for modeling time series data in chemical pro-
cesses and demonstrated that RNNs can be effectively used in nonlinear
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control schemes, such as model predictive control (MPC). Several studies
have successfully integrated ML algorithms into chemical engineering
processes to develop new robust predictive models for multi-phase flows
and reactors. Zhu et al. (2022) have summarized recent ML applications
to hydrodynamics, heat and mass transfer, and reactions in single-phase
and multi-phase flow systems. Machine learning approaches have also
found use in the realm of quantum calculations to predict chemical prop-
erties and reactivity. For example, a deep neural network (DNN) was
constructed to estimate reaction rate parameters from an extensive par-
tition function database (Komp and Valleau, 2020). The use of transfer
learning in a DNN for activation energy estimation was also demon-
strated starting from a data set generated from Density Functional The-
ory (DFT) calculations (Grambow et al., 2020). The use of AI and ML
reaches beyond modeling of process data from traditional point sensors.
For instance, Haas et al. (2020) developed a convolutional neural net-
work model that is used to detect effervescence in a multi-phase flow
with a high-speed camera that collects images of fluid dynamics and
counts the number of bubbles. In another study, the pressure drop of a
cyclone separator was modeled with a hybrid genetic algorithm, radial
basis function neural network (GA-RBFNN), and was subsequently used
to optimize separation parameters (Elsayed and Lacor, 2012). Collec-
tively, these studies highlight a wide spectrum of applying ML methods
in modern-day processes and the diverse ways in which they can be
integrated into Smart Manufacturing practices.

Smart Manufacturing and Industry 4.0 applications have em-
phasized productivity, precision, and performance. For exam-
ple, Kumar et al. (2017) developed a Smart Manufacturing approach for
managing temperature variations in a steam methane reformer (SMR).
The application exploited a reduced-order model (ROM) drawing on
large data sets from computational fluid dynamics (CFD) simulations,
which were too computationally time-consuming to use in real-time.
For real-time application, an optimizer used the ROM to determine
the set-points for the fuel flowing to many distributed burners. As
conditions in the SMR changed, the ROM was updated periodically and
automatically using the CFD simulations. Infrared (IR) cameras were
used as advanced thermal imaging sensors to measure the temperature
spatially throughout the SMR. Similarly, Ren et al. (2021) designed
an Industry 4.0 framework for metal alloy additive manufacturing
that optimized productivity and precision by employing micro-scale,
meso-scale and part-scale finite element method (FEM) modeling of
the manufactured parts. The operational portion of the framework
comprised a convolutional neural network (CNN) that was trained
for production monitoring and defect detection. It was used to study
the process to continuously update additive manufacturing process
recipes. Large amounts of image data were stored in the cloud and
cloud analytics were used to automatically update the CNN model with
incoming manufactured part images. This update process included a
strategy for splitting the data into testing and training data sets for
automatically updating the CNN model. Korambath et al. (2016) and
Botcha et al. (2018) presented how a common platform accelerates and
facilitates their research on application model development in discrete
parts manufacturing.

One of the promising research areas in sustainable energy produc-
tion and chemicals manufacturing is electrochemistry. Electrochemical
CO, reduction is an attractive and emerging process that can produce
valuable chemicals such as ethylene, ethanol, acetaldehyde, and syn-
gas. Due to the complexity of the reaction mechanisms, industrial-scale,
first-principle models have not yet been developed. Consequently, data-
driven models are an attractive alternative for modeling this process
and enabling model-based process optimization and control strategies
(Mistry et al., 2021). In this research, the objective was to demonstrate
that the complex electrochemical reactor could be controlled without
the electrochemical reaction being fully understood yet. To proceed,
data needed to be generated from an experimental electrochemical cell
for which there was already data from many runs at various condi-
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tions. The electrochemical cell was also available for additional runs.
Having access to raw data at various conditions introduced significant
data acquisition and data modeling challenges but the ability to work
with the operating data directly provided significant opportunity to un-
derstand the reaction better. Smart Manufacturing and AI/ML methods
were brought together to study and demonstrate how to control an elec-
trochemical reactor to optimize the desired products.

For our electrochemical reactor, the Smart Manufacturing digital-
ization process started with the objective of building machine learning
models from data and demonstrating that the complex catalytic reaction
can be controlled to optimize the conversion of CO, to ethylene. In the
present study, we focus on the Smart Manufacturing methods and infras-
tructure used to accelerate the development of the reaction, optimiza-
tion, and control models. This involved connecting the reactor instru-
mentation to the Smart Manufacturing Innovation Platform (SMIP) de-
veloped by the Clean Energy Smart Manufacturing Innovation Institute
(CESMII), the national Manufacturing USA Institute sponsored by the
Department of Energy. The SMIP integrates the necessary tools for data
collection, connection to historians and standards-based Open Platform
Communication (OPC) servers, data storage, correlation extraction, and
data contextualization. The SMIP facilitated flexible access to data and
supported model evaluation, selection, and building. Digitalization of
the experimental system and automation of the data connections, inges-
tion and contextualization, facilitated communications among the do-
main, modeling, instrumentation, and IT experts. Having ready access
to the contextualized data from the experiments in real-time and histor-
ically across experiments accelerated both the modeling development
efforts and the implementation of the control models to demonstrate
reactor controllability.

The Smart Manufacturing lens also carries the objective of build-
ing templates for the finished models to save time and effort in reusing
them in similar applications. These reusable templates are called “SM
Profiles.” Smart Manufacturing uses industry standards in the SMIP and
the Profile construct to simplify the connection, ingestion, and con-
textualization of the real-time data from the required instrumentation.
When a data interface is constructed or a particular data contextual-
ization approach is set, these can be captured and reused. This is es-
pecially difficult for legacy equipment and instrumentation and when
multiple vendor products are involved. In the last decade, many of the
product vendors created proprietary software tools for their equipment,
which are often not compatible with each other and/or difficult to inter-
face with external software applications. Legacy software applications
themselves have tended to embed data for a particular function essen-
tially trapping it for other uses. Given the widespread nature of these
issues, the lack of a standard model or common platform to exchange
data has limited the opportunities in terms of exploiting available
data modeling options in the advancement of complex manufacturing
systems.

This paper presents how the Smart Manufacturing approach has been
applied to the digitalization and control of an electrochemical CO, re-
duction reactor and its instrumentation with the SMIP. The rest of this
manuscript is organized as follows. In the next section entitled “Smart
Manufacturing in Experimental Electrochemical Reactor Setup,” the ex-
perimental reactor setup and the key Smart Manufacturing hardware
and software setups are described. In the section, entitled “Advanced
Sensors,” the real-time point sensor measures are described and the
need for an automated gas chromatography (GC) spectra processing al-
gorithm is explained. In the section entitled “The Role of CESMII Smart
Manufacturing Innovation Platform (SMIP) in Electrochemical Opera-
tion Research,” the SMIP involvement with examples and a novel Labo-
ratory Instrument Engineering Workbench (LabVIEW) interface are pre-
sented. In the section entitled “Virtualization,” the advantages of the use
and implementation of Docker containers are discussed. Finally, the it-
erative evaluation process and resulting advantages of using ML and
hybrid models are addressed in the section entitled “Electrochemical
Reactor Modeling Using SMIP”.
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2. Smart manufacturing in experimental electrochemical reactor
setup

The primary elements of the Smart Manufacturing setup for UCLA’s
experimental electrochemical reactor are shown in Fig. 1. With auto-
mated processes and workflows, data collected from the reactor are used
to extract insights and build operational machine learning models. The
reactor inputs include electrical potential, current, and rotational speed.
These are data collected by the potentiostat, which is composed of a sen-
sor for measuring the electrical current and potential, and an actuator
for tuning the applied potential. Liquid product concentrations are mea-
sured using nuclear magnetic resonance (NMR) after the experiment is
completed while gas concentrations are measured on-line with gas chro-
matography (GC) run at 20 min intervals. For real-time control, we fo-
cused on the GC analysis for the controlled variables. The required gas
injection and processing of the GC measurements need to be automated
and modeled to use the gas product analysis for real-time control pur-
poses. Overall, input and output data are processed to extract relation-
ships among the applied potential, electrode rotation speed and tem-
perature, and the gas production rates and concentrations in building
the ML models. There were unique challenges in building models from
actual experimental data, however. For example, the limited amount of
GC data produced per experiment eliminated the use of some ML model-
ing approaches, including recurrent neural networks which require large
data sets to be effectively trained. There are also important reaction phe-
nomena that needed to be captured in the data sets and subsequently
reflected in the data-based model. The most important was being able
to model the quick deactivation of the atomically flat catalyst. Rapid
deactivation causes a change in selectivity that shifts production away
from the desired products. This phenomenon was overcome by enhanc-
ing statistical ML methods with kinetic constants, which were calculated
by Luo et al. (2022). The cumulative integral of the current was used
to establish a correlation between the current and catalyst deactivation,
and feature engineering was used by Citmaci et al. (2022) to increase the
model performance. This was essential for a feedback control strategy
that could optimize the products while driving the process to a desired,
energy-optimal set-point. Our experimental research setup is shown in
Fig. 2.

Fig. 3 shows a generalized perspective of the Smart Manufacturing
(SM) building blocks and how the interactions between the building
blocks are addressed with SM Profiles. Below is a summary of how
the different building blocks described by Davis et al. (2020) map
to our modeling objectives and onto our experimental electrochem-
ical reactor setup. Details on the electrochemical reactor mod-
eling, optimization, and control are presented in greater depth
in Luo et al. (2022) and Citmaci et al. (2022).

With reference to Fig. 3, sensing is a fundamental building block of
Smart Manufacturing. Contextualization is the process that converts raw
data into an interpreted form, which includes the data type, name, loca-
tion, purpose, units, processing, and relevant meta information. Collect-
ing and contextualizing the current and applied potential at one second
intervals from the potentiostat is a straightforward example of convert-
ing data from point sensors directly measuring the quantities of interest.
Automating the contextualization of the raw Gas Chromatograph (GC)
data for the gas concentrations measurements is much more involved.
Specifically, GC gas concentrations are determined by comparing mea-
surements with calibration files using standard gases and known con-
centrations. The raw GC data are collections of electrical signals from
the GC process in which each measurement run takes just over 14 min in
our setup. These raw data are contextualized by eliminating irrelevant
intervals and classifying them with respect to collusion intensity. The
data are passed to a software application developed in this study called
the GC code, which automates the data interpretation process relative
to known baselines.

The data for the input settings and the output gas concentrations
were collected over the time of a reaction across many runs and used
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Fig. 1. Data flow and automation strategy for the experimental setup. The tasks achieved in our research are highlighted in orange.

to determine several correlations needed in model building. The cumu-
lative integral of the current was identified as a proxy measurement
of catalyst degradation (Citmaci et al., 2022) and was used to predict
and plan catalyst regeneration procedures. Surface potential is a cal-
culated measurement that uses current, applied potential, and solution
resistance. It proved to be a better representation of the electro-catalytic
driving force compared to only the applied potential. The surface poten-
tial was calculated and recorded with appropriate units for use in the
ML model. The wide-ranging input conditions across many runs pro-
vided the data used to build a dynamic model that included nonlinear
relations between surface potential and current (Citmaci et al., 2022).
Steady-state and dynamic ML models were used to generate new in-
sights on the reaction kinetics. First, we demonstrated that the ML mod-
els based on GC data can be used to predict reaction rates. This reaction
rate model was then inserted into a first-principles gas-phase dynamic
mass balance model to estimate the gas-phase ethylene (C,H,) concen-
tration (Citmaci et al., 2022). The ability to regulate the gas-phase ethy-
lene concentration by manipulating the applied potential was explored
using the dynamic model. The fast-decaying catalyst activity introduced
additional non-linearity and uncertainty that was accounted for by mod-
ifying the feedback controller parameters in real-time similar to classi-

cal controller gain scheduling. Moreover, the reaction was found to go
through a selectivity shift from the desired ethylene product to the un-
desirable methane products at potentials that were more negative than
a threshold potential. This led to a control strategy in which the tar-
get set-point needed to be approached slowly with a small proportional
controller gain to delay the selectivity shift. Finally, a computational
method was developed to include GC sensor feedback data to correct
the gas-phase C,H, estimation.

These reaction insights from the modeling process were incorporated
to produce model predictions which in turn were combined with pro-
cess optimization tools to maximize the process economics and energy
savings. The optimization was accomplished using a steady-state neu-
ral network model, which determined the most profitable set points
for ethylene production. The Interior Point Optimizer tool (IPOPT; see
Remark 1 below for more details) was used along with electricity costs
and chemical sales prices. Finally, the feedback control of the electro-
chemical reactor was realized using a hybrid (i.e., combining machine
learning with first-principles) model constructed with open-loop data.
An ML estimation-based feedback controller was used to control C,H,
gas-phase concentration by manipulating the applied potential (Citmact
et al., 2022).
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Remark 1. The development of a first-principles dynamic model in-
volving electrochemical reactions is still in its infancy. Our work demon-
strated the value of data-based modeling for further process exploration,
understanding, and scale up. It is important to emphasize that working
with experimental data presented multiple challenges compared to us-
ing simulated data. Connectivity problems, uncontrollable variations in
experimental conditions, and shifts that caused anomalies and excur-
sions all needed to be carefully handled during model building. At the
same time, working with the experimental data was essential in under-
standing and modeling important reaction phenomena from a control
perspective that had not been previously done. The richness of this study
would not have been possible without access to the operating data.

3. Advanced sensors

As process sensors become cheaper and smarter (in the sense of mea-
suring complex process properties), advanced algorithms are needed to
translate primary sensor measurements into useful information about
the process that can potentially be used for modeling and control pur-
poses. A thermocouple is a good example of a sensor that is frequently
used in process industries. The voltage measured by a thermocouple is
converted to a temperature unit through an algorithm that is simple
and well-understood for data contextualization. On the other hand, the
vastly richer image data from the IR cameras employed in the steam
methane reformer work previously mentioned (Kumar et al., 2017) was
used to map the radial and axial temperature distributions of tubular
reforming reactors in a SMR furnace. Cameras were placed around the
outside of the furnace. However, due to the sequence and orientation
of the cameras, some of the tubes were not fully visible. An algorithm
was developed to convert the infrared images into temperature values
and interpolate the temperature values for the regions that could not be
observed. These direct and modeled measurements were then used to
determine the fuel distribution to achieve a much more uniform tem-
perature throughout the furnace.

The automated GC processing algorithm developed in this study is a
similar example of smart sensing. As stated, gas chromatography is an
analytical technique that separates a sampled gas mixture into its com-
ponents that are then quantified. A gas chromatography unit contains
a long thin column, where the gases travel until they hit a detector.
Separation occurs inside the column containing materials that serve as
stationary phases while a carrier gas (mobile phase) transfers analytes
toward the detectors. The impact and the quantity of gas molecules on
the detector are represented with peaks in height and breadth over the
time of the measurement. As the concentration of a gas increases, the
area of the corresponding peak also increases. The concentrations of
each gas species analyzed can be quantified by comparing the area un-
der the peaks to that of a calibration file, which contains reference sig-
nals generated using a standard gas consisting of known concentrations
of all the gases of interest. The ratio between the area of a peak appear-
ing during electrolysis and the calibration peak gives the concentration
of the produced gas when multiplied by the known calibration concen-
tration.

In automating the GC analysis so the results can be used on-line,
it is necessary to process the measurements with a baseline correction
to obtain accurate results. This is because the areas under the various
peaks need to be calculated via numerical integration and the peaks that
do not have consistent baselines on the X axis yield misleading areas.
Automating this baseline process is therefore a vital part of the on-line
approach. Most of the proprietary GC software programs create an au-
tomatic baseline. However, in most cases, the baseline fails to bring the
base of each peak to the X axis since the algorithms calculate a best fit
accounting for the entire measurement rather than calculating individ-
ual regions. Automation requires analyzing the baseline for each peak
and then arranging the needed baseline for the components of inter-
est. When this peak and baseline process is done manually, it is subject
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to substantial human error from run to run. The automated approach
resulted in a much more consistent interpretation.

Fig. 4 illustrates the PeakSimple GC analysis software interface. One
of the products of interest here is ethylene shown with a peak high-
lighted in yellow. The peak has a baseline higher than the X axis which
needs to be corrected manually for an accurate composition calculation.

3.1. Automated GC code

The stability of the black line shown in Fig. 4 indicates that the qual-
ity of data coming from the GC detector is high. However, this is not
necessarily the case. The example shows how an increase in column
temperature and an injection of water from a saturated gas can cause
the baseline to drift and the signal curve (black line) to be much higher
or inclined with respect to the X axis. This situation with the raw GC
sensor data is described in this article as noisy data. To create an au-
tonomous intelligent system, the GC code needs to run reliably without
human intervention and must be robust with making corrections to this
noisy data. Accordingly, an autonomous GC data contextualization al-
gorithm was developed in Python with the following workflow:

Start a GC run at the desired times.

Extract the raw GC data file in American Standard Code for Infor-
mation Interchange (ASCII) format.

Baseline the raw GC data.

Detect when the overall baseline is not accurate enough.

Calculate various baselines for each peak and recalculate the optimal
baseline.

Calculate the area from raw data if the optimal baseline still has
bases above the X axis.

Calculate the areas from the calibration files and determine mea-
sured concentrations using calibration area.

Send concentration data to a database.

.

A plot generated by the automated GC code is displayed in Fig. 5. The
purple line is the raw data coming from the GC sensor. Compared to the
black line in Fig. 4, the raw data is much more inclined and higher. How-
ever, the automated GC code can deal with the noisy data and calculate
the areas under the curves. The different colors around the peaks rep-
resent more peak-specific techniques to improve accuracy, which will
be discussed in detail in the following subsection. Fig. 6(a) shows noisy
raw data for a H, measurement and how the baseline is corrected.

3.2. Automated GC working mechanism

There are four gas products coming from our electrochemical CO,
reduction reactor that must be measured by GC. The products are CH,,
CO, C,H,, which are detected via a Flame Ionization Detector (FID)
equipped with a methanizer, and H,, which is detected via a Thermal
Conductivity Detector (TCD). Two separate signal channels for the FID
and TCD detectors are needed and there is a plot generated for each of
them. Fig. 6 compares manual and automated baseline plots for the TCD
channel and the raw H, data. TCD senses changes in filament temper-
ature and resistance due to thermal conductivity differences between
the analytes and the reference carrier gas, while FID detects ions gen-
erated from the pyrolysis of organic analytes for the other gases. When
equipped with a methanizer, the FID unit can detect CO and CO, with
great sensitivity.

Raw data in the form of signal intensities from these detectors are
transmitted to the SMIP where the contextualization process occurs. The
GC code itself is tuned using GC results from 43 open-loop experiments.
This tuning process accounts for extreme cases and creates a hierar-
chy for peak detection and integration. Baselining is implemented us-
ing asymmetric least squares smoothing as proposed by Eilers and Boe-
lens (2005). This method generates the optimal baseline by solving the
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Fig. 5. Automated GC peak and area calculation example.

following optimization problem:
S=Yw(y-z)+1Y (%) )
i i

where S is the regression cost function, y; is the signal to be baselined,
z; is the smooth baseline, and A%z is equal to z; — 2z;_; + z;_,. The first
summation describes the performance of the fit and the second sum-
mation describes the smoothness of the fit. w; is a factor related to the
asymmetry and A is related to smoothness. In our code, the asymmetry
parameter is set to a pre-determined value and 4 is varied over a range
to find the ideal baseline fit. When S is minimized, the corresponding
z is the baseline. This is a function of raw data and A, which is a fac-
tor that is observed to work well in the range of [10%,10°] (Eilers and
Boelens, 2005).

The pink baseline shown in Fig. 5 was created with a fixed asym-
metry parameter. Various values for A were tested for the calibration
peaks and the best performing lambda value was selected as the default

value. However, this process does not always give accurate results for
our peaks, especially when the sensor data is noisy. When this happens,
the code isolates the peak location and tries various A values in these
particular excluded regions and selects the baseline closer to zero. This
additional tuning in the methodology also contributes to the reusabil-
ity of the code and more generally ensures that the most optimal base-
line can be selected for the peaks. The peaks are found with a user-
defined function, that checks for the increasing and decreasing sides of
the time-series peaks. The peak bases are selected mathematically using
the “peak-prominences” function in the Python library. A Python script
determines the horizontal line marking when it intersects the sides of the
peak. This is repeated at lower and lower positions on a peak. The two
lowest signal values determine the base length for a peak (Scipy, 2022).

When the set of peak detection analyses are applied to the methane
peak in Fig. 7, the pink baseline is replaced by the lime peak. As shown,
the CH, raw data is inclined and could be confused for 2 peaks. The
GC code initially considers the red circle to be the pinnacle of the peak.
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However, the code recognizes this is incorrect. The green marks on the
X axis are the initial predictions for the baseline that corresponds to the
high values on the pink line. The code, therefore, understands that this
peak is questionable. The GC code initiates the additional tuning process
by adjusting the baseline to find the best alignment with the level of
inclination. Ultimately the code determines an optimal representation
of the actual peak for the CH, component, which is shown as the lime-
colored peak.

It is notable that all remaining peaks have an inherent hierarchy
(with respect to the height of each peak) despite the base code being
the same. Thus, this code can be adapted for any peak of any gas prod-
uct if special cases are accurately identified in the peak detection hier-
archy. In principle, the peak detection hierarchy does not need to be
always applied. For example, in Fig. 5, the CO area is highlighted in
yellow indicating that the GC code was able to provide a more robust
estimation by simply manipulating the raw data and was able to find
the base of the raw data peak to calculate the peak area under the curve
that is subtracted by the area under the green line. This direct and sim-
ple approach, typically also found in commercial software for GC data

analysis, gives better results only for CO compared to the more complex
baseline-corrected area calculation needed to also extract accurate data
for other gas products. The corrected peaks are shown in lime for CH,,
yellow for CO, and blue for C,H,. In our system, it is especially diffi-
cult to correctly baseline the C,H, peak, since it appears on a line that
overlaps with a CO, peak, which is the reactant itself. Indeed, in the
majority of cases, the more complex correction algorithm was used in
the calculation of the C,H, signal area.

4. The role of the CESMII smart manufacturing innovation
platform

4.1. SMIP overview

As the use of data has proven to increase the profitability and ef-
ficiency of process operations, more effort has been put into devel-
oping model-based software solutions. One interesting framework is
the Parametric Optimization and Control (PAROC) Platform developed
by Pistikopoulos et al. (2015) for creating high-fidelity models for con-
trol and optimization purposes. Simeone et al. (2019) have built a plat-
form service that uses an optimization and compatibility engine for sales
support of metal cutting machines based on material and energy con-
sumption options.

The Smart Manufacturing Innovation Platform is a standards-based
software platform for connection, ingestion and contextualization of
data to be used for building applications. The SMIP uses standardized
information models and ensures the availability of contextualized data
from machines and process components for broader application. It is a
software infrastructure that integrates the information and operational
technologies (OT) needed for building and deploying data and model
applications in operations. Consistent OT and IT integration are facili-
tated when data are exchanged and models are shared across operations,
factories, and companies (Davis et al., 2020; Edgar and Pistikopoulos,
2018). The accessibility of data and applications from various sources
also creates interoperability requirements across vendor software and
hardware products. The SMIP is designed for the OT and IT integration
while simplifying connection, ingestion, contextualization, reusability,
and availability of operating data for operational applications. It makes
use of a standardized information model called the SM Profile.

For our electrochemical reactor, LabVIEW hardware is used to in-
terface with the physical reactor and the instrumentation. LabVIEW is
interfaced with the SMIP. This configuration of the operational SMIP
supports three major services:
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1. An edge data management device associated with the physical de-
vices that can collect, contextualize, and transmit the data to the
core SMIP services, i.e., LabVIEW.

2. The SMIP core services that receive, store, and make data available.

3. Application models that integrate or interoperate with the SMIP to
consume data and support actions for improving manufacturing op-
erations.

The Hypertext Transfer Protocol Secure (HTTPS) transfer of real-
time operational data from the reactor to the SMIP core services is per-
formed through GraphQL. GraphQL commands are similar to commands
in Structured Query Languages (SQL) except that they are initiated over
an HTTPS connection using a web-based Application Programming In-
terface (API). GraphQL can perform typical CRUD (Create, Read, Up-
date, Delete) queries similar to a Representational State Transfer (REST)
command except that the program is constrained to the transmission of
necessary data due to the limit of the network bandwidth (Hartig and
Pérez, 2018). Surveys have found GraphQL to be superior to REST be-
cause of its user-friendly Application Programming Interface (API) to
query data (Brito and Valente (2020)). Data storage in the SMIP is pro-
vided by a PostgreSQL database in which the data are archived using
the time-stamp at which the data is transmitted. Data that require no
time-stamps such as model numbers are stored as configuration data
in the SM Profiles, which also contain the information model configu-
rations for equipment items in various operation services. SM Profiles
can be any abstraction of importance, e.g., a machine, sensor, a Key
Performance Indicator, process, etc. Configuration information in SM
Profiles about measurements are stored as attributes that include data
name, data type (e.g., float, int, string, etc.), and units (e.g., seconds,
volts, etc.). The idea is that all users (human or machine) of the data
from that same type of equipment can expect to receive the same con-
sistently contextualized data defined by the agreed upon information
model captured in the SM profile. The SM Profile is a direct extension of
the Open Process Communications Unified Architecture (OPC UA) infor-
mation model that specifies the interoperability standards for structured
data communication among producers and consumers of data.

Since GraphQL commands for changing the data in the database can
overwrite the existing data on SMIP, role-based authorization for chang-
ing data is enforced. The SMIP has an Integrated Development Environ-
ment (IDE) that accommodates Python, PHP, and SQL in developing
data-driven models using the data stored in the SMIP. Additionally, the
SMIP offers ready-to-use data visualization applications, such as a trend
analyzer, to visualize time series data or to compute data correlations.
In addition to GraphQL interfacing, the SMIP also offers custom gate-
way connectors that facilitate the high-speed ingestion of data into the
SMIP. Currently, operational databases and historians, such as OSI PI
and Wonderware are supported as well as live data sources that are
OPC DA (Data Access) and OPC UA (Unified Architecture) compatible.

4.2. Using the SMIP for the CO, reduction reactor

The SMIP architecture used in our electrochemical reactor research
is shown in Fig. 8. Sensors collect data from the reactor through a Lab-
VIEW edge interface. The data are transmitted securely to the SMIP at
1 s intervals with the GraphQL commands. The time-stamp and the data
value together ensure that data are not overwritten. The time-stamp is
also essential in selecting data from particular operating time periods
including within a single run. GraphQL API commands can be issued in
several programming languages such as Python, JavaScript, Curl, etc.
We have chosen Python for easy implementation with LabVIEW (see
also Section 4.4) and because we have been using the Python IDE lo-
cally. The current version of the SMIP allows any authorized user to
use the GraphQL query commands to select and download data to a
local computer environment to more easily evaluate different model-
ing approaches as well as different data sets. Once a satisfactory mod-
eling approach is worked out locally, the model can be implemented
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and run in the SMIP or run locally while interfacing with the SMIP.
The choice to download the data for local use or to use the SMIP di-
rectly is dependent on the network bandwidth and the computational
resources needed. Computation resources on the SMIP are currently lim-
ited with no co-processors or GPU to accelerate model building. Our
project made use of the additional SMIP tools for monitoring the real-
time data flow through trend charts, building process layouts of the re-
actor system and instrumentation, and displaying data values for system
components.

4.3. Reusable profiles for electrochemical reactors

Every day, engineers are building models to improve the efficiency
of manufacturing, but the lack of commonly acceptable formats is a ma-
jor impediment when reusing existing models and applications, reusing
contextualized data, sharing or combining data, and collaborating with
other model builders. The implementation of the SMIP resolves and uses
broad agreements on formats, making it possible for data producers and
consumers to easily exchange information in a common format. Through
the use of SM Profiles described by Davis et al. (2020), the SMIP uses a
common information model for commonly used equipment based on ex-
isting agreements on standards (i.e., OPC UA, VDMA, MT Connect, etc.)
that producers of data can use to deliver data to consumers to build
and run data-driven models. SM profiles can be constructed and made
available not only for particular equipment items but also for sensors,
actuators, groupings of equipment items, and operational abstractions
like KPI calculations. A research project like ours contributes to new SM
Profiles that can be consumed by the SMIP users. In our research team,
those responsible for the operation of the reactor acted as producers
of the data and those responsible for modeling acted as consumers to
test the use of the SMIP. The developers of the SMIP observed how the
various features worked and were used.

SM Profiles ensure a clear understanding of the expected data struc-
ture and its content. They can be created with a Profile designer and
placed in an SM Library. Since the SM Library and the SM Profiles are
fully compatible with the SMIP, SM Profiles can be selected and used for
specific applications. A key objective is much greater standardization
and reusability of these information models for similar equipment and
operational types. Once an SM Profile is built, consumers, e.g., manufac-
turers, researchers, etc., can use the previously used profiles by extend-
ing them as needed to more easily start data collection and modeling for
another application. SM Profiles allow for reusability at different levels
of description detail, e.g., equipment types, vendor types, service types,
and particular applications by taking advantage of object-oriented pro-
gramming concepts. The greater the match in specificity, the greater a
direct profile match and the fewer extensions that need to be made. SM
Profiles are therefore structured drawing upon objective-oriented pro-
gramming structures for the item or process concept of interest so that
extensions can be built at the level of description determined by the
match between the Profile and the new application. It is also possible
for a Profile to use another Profile. Profiles also do not need to be di-
rectly equipment centered. An example of this is the automated GC anal-
ysis. As a Profile, the automated GC analytics developed in this research
are available for extension to other on-line GC applications. The SMIP
makes sharing and implementing operational applications user-friendly
and much faster. Like the GC code application in this research, if no
SM Profile exists, a new Profile needs to be built, but it now becomes
available for a next similar application.

The SM Profile constructed for the Electrochemical Reduction Re-
actor is shown in Fig. 9. The “CO, Reduction Reactor” is the top level
profile constructed with the “Gas Chromatograph,” “Potentiostat,” and
“Modeling” as subprofiles. Operational data are collected and transmit-
ted to the SMIP where each raw data item is stored in the context of a
corresponding data expectation called an attribute in the profile. Each
attribute has the relevant datatype information and the associated mea-
surement units. Each data item is also time-stamped. For example, a
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Fig. 9. Hierarchical equipment profile interface on SMIP for the electrochemical reactor.

single temperature measurement from a particular sensor at a certain
point in time is collected, ingested, and stored as a number (but with
expected units for that particular sensor device defined from the Pro-
file) and time-stamped with the time the data item was collected. Every
attribute in a Profile is also assigned a tag ID number automatically to
define the data storage location. The tag ID and time-stamp are the two
required attribute parameters which are needed to store or retrieve the
data from the SMIP. Consumers of the data can use GraphQL queries
to identify equipment and tag IDs for attributes and access data for any
desired time interval.

With respect to reusability, if a new user sets up a similar electro-
chemical CO, reactor system like that used in this research, that user
can now start with the SM Profile constructed by us. The Profile speci-
fies the information models for system as sub-equipment, i.e., the poten-
tiostat, the GC, and the rotation unit. If Fourier transform infrared spec-
troscopy (FTIR) was used instead of the GC to measure the gas products,
a standards-based Profile for the FTIR would need to either be found in
the SM Library and extended or developed as a first Profile. The new
FTIR profile would replace the GC sub-profile while the other two sub-
equipment Profiles would remain the same. Data transfer to the plat-
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form is facilitated since rebuilding information models and interfaces
for two of the components is avoided. What changes is that a new tag
ID is generated for the attributes associated with the new FTIR measure-
ment equipment. Any equipment specific data, like vendor name, model
number, etc., would also need to be updated.

Another example of reusability is the infrared (IR) camera infor-
mation model used in Kumar et al. (2017), which was mentioned in
Section 3. When the specific IR camera operating data from the partic-
ular steam methane reformer in the study are removed, what remains
is the SM Profile that can be used in other IR thermo-imaging applica-
tions requiring spatial temperature measurements. This is analogous to
the automated GC code mentioned above and in Section 3.1. While the
GC code in this study was developed to quantify H,, CO, CH,, and C,H,
gases at ppm levels, this code can be reused when, for example, specific
C,H, inputs are replaced with other gas products and there is a need to
quantify the peaks. Reusability also extends into the IT function. The GC
code processes input data in an ASCII format, making it easy to change
to other GC instrumentation data file formats. Similarly, the automated
GC code triggers PeakSimple software to start the GC run, which can be
adjusted for other GC vendor software.
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Fig. 10. Trend visualization tool on SMIP demonstrated on real-time electric current data.

Another advantage of SM Profiles and the SMIP is that they offer
easy real-time/offline monitoring of the process data with process re-
port and trend analysis. For example, one of the key parameters in the
electrochemical reactor operation is the real-time current to the elec-
trode. Fig. 10 displays this with the trend analyzer. It is possible to se-
lect multiple attributes associated with an equipment for display at the
same time on the same trend analyzer interface.

4.4. Data management

As information technologies are increasingly used for data and mod-
eling applications, the importance of cloud-based cyberinfrastructure,
resources, and services has increased. The SMIP is currently hosted as
a set of cloud services on the Microsoft Azure cloud platform and uses
the PostgreSQL database on Azure to store the data. The SMIP’s cloud-
hosted database takes advantage of the cybersecurity tools provided by
the Azure platform. Additionally, all data transactions are encrypted.
It is easy to change (create, update, delete) or query (read) the data
in real-time using GraphQL. Sensor data are transferred through auto-
mated GraphQL commands from a local machine (edge device) to the
SMIP. Data are stored according to the attributes in SM Profiles as de-
scribed previously. To provide a specific example, the potentiostat has
an SM Profile (see Fig. 9) with several measurement attributes of which
one is “electric current”. Data from the amperage sensor on the potentio-
stat are collected and transmitted via LabVIEW and stored in the SMIP
PostgreSQL database as floating point numbers assigned the Tag ID as-
sociated with the “current” attribute and the time-stamp when the data
were collected. At any time, the database can be accessed using this Tag
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ID and the time-stamp can be used to locate data that are being or have
been streamed. This data storage structure is more useful than, for ex-
ample, a sequence of numbers. For this sort of real-time data transfer, a
time-stamp reflects the point in time that a data item is collected, which
also corresponds to the time at which the data was observed. Authenti-
cation for adding data to the database (which is interpreted as changing
the data) relies on required security tokens obtained from the SMIP us-
ing login credentials.

Traditional databases typically require users to generate data con-
tainers or tables before starting collection. Additionally, these data ta-
bles need to be configured and connected to specified servers. For exam-
ple, there would be the need to compose a database schema that defines
how the data items are to be structured, and how they relate to one an-
other. This upfront structuring also includes the security keys to store
and retrieve the data. For these “structured” data tables to be queried
by an external application such as Python, an administrator must make
the relevant table settings available. Although this approach has been
shown to be useful in many industrial applications, it requires domain
specific knowledge to predict the table configurations. The use of the
SMIP eliminates the need for this configuration process because the data
are not stored in tables, but are stored only with time-stamps and Tag
IDs identified with the SM Profile. Data contributors only need to have
the SMIP endpoint URL and the security credentials to store data asso-
ciated with previously created attributes and their Tag IDs. Consumers
of the data also just need to have the SMIP endpoint URL and secu-
rity credentials to download the data using GraphQL queries. Another
advantage is that it is easy to store attribute data (i.e., measurements)
that have different sampling periods. For example, the electric current
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columns/rows within the spreadsheet to upload to the platform.

from the potentiostat is recorded on a per second basis, while the GC
measurements are recorded at every 20 min. To aid the user who has
no knowledge of Python or GraphQL, we have developed a script and
a Django-based web interface to select the relevant columns from data
tables, i.e., data captured in a spreadsheet, and transmit them to the
platform. The interface is shown in Fig. 11. This tool has been partic-
ularly useful in our project for uploading earlier (legacy) experimental
data stored in an Excel spreadsheet.

4.5. Process equipment and data connectivity

The ability to display all trending and point data measurements col-
lected on an operation, regardless of source or vendor, is a first step in
Smart Manufacturing. This task can be difficult when different sensors
and local machines use different connection protocols. This often hap-
pens when different vendor products are used. The SMIP addresses this
by offering a wide variety of connectors that connect the SMIP to equip-
ment, instrumentation, sensors, and a full range of control and manage-
ment hardware and software for transferring data via GraphQL. Con-
nectors are like translators, enabling digital communication between,
for example, a sensor and the platform. For our experimental reactor,
LabVIEW was already in use as the digital environment for digitizing
data and displaying results. The SMIP did not have a LabVIEW driver,
but LabVIEW had numerous drivers that are compatible with commonly
used experimental or industrial equipment. In addition, several software
development kits (SDKs) were available for building novel and complex
data connections to instrumentation that were compatible with Lab-
VIEW. Lastly, LabVIEW can communicate with external programming
scripts such as those written in Python or Matlab. Our decision was to
continue with LabVIEW and make use of the software development kits
to build a LabVIEW connector to the SMIP. There are plans to add this
LabVIEW connector into the SMIP’s connector list so it is available to
the many experimentalists already using LabVIEW.

In our project, the potentiostat, a Metrohm Autolab Model 302N,
was connected to LabVIEW using the Autolab Software Development Kit
1.10 (Autolab, 2013). The Development Kit made it possible to build an
interface connection that we could manage instead of using the more
restrictive Autolab NOVA software provided by the vendor. Our inter-
face made it possible not only to collect data from the potentiostat but
to also change the input for controlling the experiment making it pos-
sible to close the control loop. Since the gas chromatograph (GC) did
not have a LabVIEW driver, we developed a Python script that automat-
ically triggered the GC measurements at predefined times by opening
the PeakSimple software and initiating a run. When the GC run was
completed, another script transmitted the raw data to the SMIP to be
processed and quantified as described previously. With the contextual-
ized data in the SMIP, the LabVIEW interface could query the data and
bring the GC data together with the other data. The LabVIEW interface
was also set up to display a plot of the processed GC data and the relevant
peaks. The rotation unit also did not have a LabVIEW driver but it was
connected via a Compact Reconfigurable Input Output (CompactRIO)
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system, a National Instruments product that enables engineers to con-
nect input/output modules without drivers. Even though the rotation
speed was kept constant throughout the experiments for this paper, the
CompactRio can adjust the rotation speed in real time should we decide
to use it. Finally, the mass-flow controllers (MFCs) are connected to the
LabVIEW interface via a function provided by the vendor for sending
priority commands specified in the user manuals. This made it possible
to set an MFC to a specific flowrate and either hold or change it. An
example portion of the LabVIEW interface is shown in Fig. 12.

The LabVIEW interface can both send control signals and acquire
real-time data from the potentiostat and the gas chromatograph, and it
can communicate with the platform for real-time data storage and query
through GraphQL. LabVIEW has a feedback control feature which is used
for the control of the gas-phase ethylene product concentration by ma-
nipulating the applied potential. A real-time change of applied potential
is made by the potentiostat based on the feedback value calculated by
an estimator-based proportional-integral (PI) feedback controller (other
control methods can also be used in this framework as discussed in Re-
mark 3 below) on LabVIEW.

For LabVIEW to be able to send data to the SMIP, the LabVIEW script
shown in Fig. 13 was developed. The script on the right side is writ-
ten in JSON to query https://uc.cesmii.net/graphql, the University of
California SMIP domain. To execute a query, the JSON script needs the
time-stamp, Tag ID, start, and end times. Time-stamps are obtained from
LabVIEW in real time and the middle functions convert the time-stamps
to the required string format. The LabVIEW code, shown in Fig. 13,
uses the “ReplaceTimeSeriesRange” command to write data to the SMIP
database through GraphQL. This command replaces the data assigned
to the time-stamp within a time interval with a specific start time and
end time. If there is no existing data in this range, new data is written
to the database without any replacement. The time interval for replace-
ment must contain the assigned time-stamp. In our example code, this
time range is defined between the time-stamp (now) and a distant future
end time. This way, the start time is always renewed at each request to
change the data and the end time is kept the same to prevent any tim-
ing conflict. "HTTPS client nodes” are used from the Data Communica-
tion - Protocols section in the LabVIEW functions palette to specify the
destination link. This is similar to the Python “Requests” library. User
authentication into LabVIEW is required before the experiment starts.
The “open handle” function defines the SMIP username and password.
This script then sends data to the SMIP on a per second basis.

Remark 2. The optimizer uses Interior Point OPTimizer (IPOPT) which
is an open-source software package for nonlinear optimization pro-
vided by the COIN-OR Foundation (Wachter, 2009; Wachter and Biegler,
2003; 2005). A Python library, Pyipopt, developed by Eric Xu is used
to connect python scripts to IPOPT. Instructions for installing IPOPT
and PyIPOPT can be found on the official website of IPOPT and in the
following Github page (https://github.com/xuy/pyipopt), respectively.

Remark 3. The electrochemical reactor in this study produces multiple
products and has multiple process inputs. Thus, it is possible to control
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Fig. 12. LabVIEW interface and representative real-time data plots.

this reactor with multivariable control methods, such as MPC. LabVIEW
has a “Predictive Control” function palette, which can be used to im-
plement an MPC scheme. Since we use ML-based models and the open-
source optimizer IPOPT as the optimizer, the calculation of the control
action by the MPC can be done using a Python script within a Docker
container (see below, a self-contained executable script). This script can
get the data from the platform, make calculations, and send the output
signals to the actuators in LabVIEW through the SMIP.

5. Virtualization

We have been emphasizing the advantages of the SMIP, but there
are two limitations in its current version. First, the SMIP is not set up to
provide enough computational power for large data computations (e.g.,
training ML models and/or solving complicated optimization problems)
particularly those arising with real-time model predictive control with
nonlinear models. We needed to download the data from the SMIP and
do the computations outside of the SMIP and then return the results to
it. Secondly, the client interface to the SMIP needs to be simplified and
there needs to be the ability to more easily reuse models and software
functionality. This section introduces the application of Docker technol-
ogy to communicate with the SMIP and address these limitations.

5.1. Docker overview

Docker technology is an open-source application for virtualizing an
executable image with all the run-time library, tools, and codes in a

container that can be quickly deployed on multiple operating systems.
The Docker application is composed by four main components: Docker
Client and Server, Docker Images, Docker Registries, and Docker Con-
tainers (Rad et al., 2017). When using Docker, users give command lines
to the Docker Client, which then converts those commands into a re-
quest form and sends it to the Docker Server. The Docker Server can be
understood as the background script that is running behind the screen.
Usually, the Docker Client and Server are installed on the same machine,
but they can also be installed separately. Specifically, a Docker image
is a read-only file that contains the OS (e.g., Ubuntu for Linux-based
application), libraries (e.g., TensorFlow, Numpy, Pandas for machine
learning programs) and tools (e.g., Jupyter Notebook), which can be
shared by different containers. Containers can be understood as writable
layers built on top of images so that users can make changes and run ap-
plications similarly to developing a new program or generating data by
running applications built in the images. In short, by using Docker, users
can create and run isolated applications with various virtual operating
systems on the same machine.

5.2. Docker-SMIP synchronization

Docker makes sense as a way to interface applications with the SMIP
because it is analogous to interfacing to an external computer that is pro-
grammed accordingly. Docker offers advantages because the execution
images are lightweight files that can be easily packed and distributed
through standard uploading and downloading processes. Docker con-
tainers were therefore ideal for the generalized tools developed in this
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Fig. 14. Docker-SMIP synchronization.

research that required external processing power, while still interfacing
with the SMIP. Docker images can be stored on the SMIP, easily down-
loaded to a local machine and used. When on the local machine, the
tools and programs can be modified and saved as Docker images on the
SMIP. In this way, Docker application images are to modeling applica-
tions as Profiles are to information models from a reusability standpoint.
The SMIP, Profiles and Docker applications are SMIP and execution com-
patible. When executed, the Docker applications whether they are run
on the SMIP or an external processor, still use the data on the SMIP
- data that are defined by the Profiles. This workflow is illustrated in
Fig. 14. In this work, we built Docker application images to simplify
and automate the ability to upload existing data from other files and to
run a computationally intensive optimizer that used a neural network
machine learning model to process experimental data. We note that, in
addition to creating tools for the SMIP, Docker can also be used for other
management tasks. For example, code and program dependencies can
be packed by a researcher into Docker images, which can then be used
to reproduce their working environment effectively. Docker images can
be easily shared between team members and can be used for version
management.
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6. Electrochemical reactor modeling using the SMIP

Dynamic models, whether first-principles or data-centered, are cen-
tral to process control applications. First-principles models are useful
in providing insights and describing process behaviors (Yang et al.,
2020). However, there are situations where it is difficult to develop first-
principles models with sufficient completeness, fidelity, or range for an
objective. Examples include phenomena that are difficult to model, such
as wear, deterioration, or deactivation, complexities that may not be
fully known such as reaction kinetics (like, for example, in this study),
or fidelity requirements involving more computational power and/or
time to be useful. Data-centered modeling can be a feasible alternative if
enough data are available over the range of interest since data-centered
models do not generalize well. There are advantages to hybrid models in
which data-centered and first-principles modeling are integrated into a
hybrid approach like in the early work of Doyle et al. (2003) on particle
size distribution modeling in polymerization.

The present research embraced a similar hybrid modeling approach
for the electrochemical process because the reduction of CO, on a flat
copper catalyst is subject to unpredictable variations in catalyst activ-
ity and deactivation. Reaction rates were modeled with a polynomial
kernel support vector regression (SVR) model using GC data from many
runs. For our real-time control objective, this reaction rate model was in-
serted into a first-principles, dynamic gas-phase concentration model to
predict the time-evolution of the product concentrations (Citmaci et al.,
2022). The SVR model takes surface potential, rotation speed, current,
and the cumulative integral of the current as inputs. These inputs are
transformed into polynomial powers and the corresponding outputs are
normalized between 0 and 1, depending on the minimum and maxi-
mum values in the training data sets for each input. Because of catalyst
activity uncertainties across runs, standard deviations of the data were
used to build the data-based models by integrating most-likelihood esti-
mation methods into an artificial neural network for production rate
estimation. This model was then used to calculate the most energy-
efficient set-points with IPOPT (Citmaci et al., 2022; Luo et al., 2022).
The SMIP greatly facilitated the data transmission and management of
data across many runs for this kind of control and optimization mod-
eling development effort. It was significant to have flexible and ready
access to operating data from the beginning of the development effort
to facilitate model evaluation and development with easy data selection
and the management of training and testing sets. It cannot be under-
stated how access to operating data facilitated the synergistic process
of developing further insights and the understanding of the reaction
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that went into building a better model of the physical phenomena and
process.

Remark 4. Process and measurement noise is an important aspect that
is addressed best with operational data that reflects the noise expe-
rienced. A particularly important source of noise in our experimental
setup occurred because the current to the cylindrical electrode continu-
ously fluctuated within a small range due to the adhesion of gas bubbles
on the surface of the electrode. The rotation of the electrode created fur-
ther complications with fluctuations in the mixing of the liquid that not
only affected the gas phase at the surface of the electrode but also the
mass transfer at the gas-liquid interface. This noise in the current and
surface potential calculations (since the surface potential is a function
of the current) was addressed using the average of every two consecu-
tive current values as input to the ML model. Additionally, the output
from the SVR model was input into the gas-phase dynamic mass balance
(i.e., the output of the SVR model was entered the right-hand-side of an
ordinary differential equation) further reducing the impact of the noise
on the gas-phase ethylene concentration estimation (the dependent vari-
able of the differential equation).

Remark 5. The overall model development effort was conducted off-
line with open-loop experimental data collected over a year. As a po-
tential future work, it is possible to set up an auto-ML model update
cycle using the SMIP as data from new experiments are generated. This,
however, requires being able to identify runs that proceeded without
any abnormal situations or conditions. It also requires a mechanism to
determine if the new data are appropriate for updating the model. Fi-
nally, there will need to be a methodology to separating data in training,
testing and validation data sets. We can see that the SMIP provides the
infrastructure and services needed to develop an automated ML-model
update cycle.

7. Conclusion

This paper addresses our experience with the digitalization of the
UCLA experimental electrochemical reactor using the Smart Manufac-
turing Innovation Platform (SMIP). Smart Manufacturing fundamentals
and concepts were explained and relevant examples to demonstrate the
value were presented. Specifically, Smart Manufacturing building block
tools and infrastructure were applied to exploit operational data from
the experimental electrochemical reactor to overcome a lack of funda-
mental understanding and to demonstrate that the reactor could be con-
trolled. The development of a hybrid, first-principles and data-centered
model, leveraged the operational data. It was in turn used to develop
and demonstrate process optimization and real-time estimation-based
control. A key Smart Manufacturing development was the automation
of gas chromatography composition measurements that could be used
as on-line, real-time measurements for feedback control. In addition to
addressing operational technology modeling and application require-
ments, the paper also explained the integrated IT capabilities including
connectivity, data transfer, use of SM Profiles, and the use of Docker
containers. The value of integrated Operational and Information tech-
nologies is uniquely explained with examples. The OT and IT features
offered by the SMIP significantly accelerated data acquisition and anal-
ysis, as well as machine learning modeling efforts, while keeping the
proprietary data safe. The access to and use of operating data at the on-
set of the effort facilitated the understanding of the reaction kinetics and
the phenomenological and operational noise while building the models.
This resulted in a better model for control and a robust demonstration of
what is needed to control an electrochemical reactor. Lastly, the project
demonstrated reusability of data and models using Smart Manufactur-
ing concepts of Profiles and Docker Application Containers. The overall
approach implemented on the UCLA electrochemical reactor is applica-
ble to other experimental and industrial reactors as well as other unit
operation processes. Once the sensor, actuator and reactor Profiles are
developed, the automation, connectivity, and contextualization can be
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adopted by other experimental groups working on other processes with
minimal training and effort. The automated modeling tools are available
as Docker Containers.
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