
Available online at www.sciencedirect.com

Chemical Engineering Research and Design 

journa l  homepage :  www.e lsev ier . com/ loca te /cherd

Machine learning-based ethylene and carbon 
monoxide estimation, real-time optimization, and 
multivariable feedback control of an experimental 
electrochemical reactor

Berkay Çıtmacıa, Junwei Luoa, Joon Baek Janga, Carlos G. Morales-Guioa,⁎,  
Panagiotis D. Christofidesa,b,⁎⁎

a Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA 
90095–1592, USA 
b Department of Electrical and Computer Engineering, University of California, Los Angeles, CA 90095–1592, USA 

a r t i c l e  i n f o

Article history: 

Received 19 January 2023 

Received in revised form 2 February 

2023 

Accepted 3 February 2023 

Available online 8 February 2023

Keywords: 

Electrochemical CO2 reduction 

Multi-input multiple-output control 

Experimental data modeling 

Real-time optimization 

Neural network modeling

a b s t r a c t

Electrochemical reduction of CO2 gas is a novel CO2 utilization technique that has the 

potential to mitigate the global climate crisis caused by anthropogenic CO2 emissions, and 

enable the large-scale storage of energy generated from renewable sources in the form of 

carbon-based chemicals and fuels. However, due to the complexity of the electrochemical 

reactions, the explicit first-principles models for CO2 reduction are not available yet, and 

there has been a limited effort to develop process modeling, optimization and control of 

CO2 electrochemical reactors. To this end, a rotating cylinder electrode (RCE) reactor has 

been constructed at UCLA to understand the mass transfer and reaction kinetics effects 

separately on the productivity. In the RCE reactor, the applied potential strongly influ-

ences the reaction energetics and the electrode rotation speed affects the hydrodynamic 

boundary layer and modifies the film mass transfer coefficient, which involves convective 

and diffusive transport. The present work aims to develop a multi-input multi-output 

(MIMO) control scheme for the RCE reactor that integrates techniques from artificial and 

recurrent neural network modeling, nonlinear optimization, and process controller de-

sign. Specifically, production rates of two products from the experimental reactor, ethy-

lene and carbon monoxide, are controlled by manipulating two inputs, applied potential 

and catalyst rotation speed. Process dynamics and controllability are analyzed, a feedback 

control strategy is designed and the controllers are tuned accordingly. The experimental 

electrochemical cell is employed to gather data for process modeling and implement the 

multivariable control system. Finally, the experimental results are presented which de-

monstrate excellent closed-loop performance by the control system and regulation of the 

outputs at three different set-points including an economically-optimal set-point.
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1. Introduction

The percentage of renewable energy in the electricity grid 
has increased as decarbonization efforts have gained mo-
mentum against the detrimental effects of global warming. 
With current advances and the increasing popularity of 
sustainability, falling cost and increasing availability of re-
newable electricity generation, electrochemical methods 
have become an attractive alternative for transforming CO2 

gas into organic chemicals and synthetic fuels (De Luna et al. 
(2019)). However, the overall reaction mechanisms of this 
transformation have not been fully understood and limited 
efforts have been made to build dynamic models to under-
stand and control this electrochemical process. Moreover, 
the applications of CO2 reduction (CO2R) have not gone be-
yond the bench scale (e.g., Jang et al. (2022)). The major 
bottleneck of the industrial implementation of electro-
chemical CO2 reduction technology is the deconvolution of 
intrinsic kinetics from mass, heat, and charge transport ef-
fects, which has prevented the development of accurate re-
action mechanisms (Jin et al., 2021). To further explore the 
fundamentals of electrochemical CO2 reduction, a gastight 
rotating cylinder electrode (RCE) cell was recently developed, 
which can decouple the effects of mass transfer from surface 
reaction kinetics (Jang et al., 2022). This novel electro-
chemical reactor shown in Fig. 1 has demonstrated that mass 
transport phenomena and intrinsic reaction kinetics can in-
dependently affect the productivity and selectivity of elec-
trochemical CO2R, which implies the potential to control the 
product distribution of the reaction by manipulating multiple 
inputs. To understand the hydrodynamics effects on the very 
thin (μm scale) catalyst surface boundary layer, which is ul-
timately crucial, Richard et al. (2023) simulated the gastight 
RCE reactor using computational fluid dynamics (CFD) soft-
ware. Even though there are such endeavors to capture the 
mechanism of CO2R in RCE cells in detail, there is no dy-
namic model available yet.

In the absence of steady state or dynamic process models 
such as first principles-based models that rely on known phy-
sical relations, it is possible to build models using data-driven 
approaches, such as gray box or black box models that give an 
output for a corresponding input without exposing correla-
tions. The involvement of machine learning (ML) models in 
electrolyzers has attracted attention over the last decade due to 
their capability to approximate nonlinearities with no prior 
physical information of the system (Corriou, 2004). The use of 
ML in electrochemistry has recently received attention and has 
been used in predicting the next generation of catalysts 
without earmarking major budgets and time for experiments 
with different material combinations. For instance, 
Timoshenko et al. (2020) used a neural network trained with X- 
ray absorption fine structure spectroscopy data to reproduce 
the rate and time based structural changes of the catalyst 
under CO2 reduction. In another work, Chen et al. (2020) built a 
catalyst database using density functional theory (DTF) simu-
lations and used these data to build an extreme gradient 
boosting (XGBoost) regression model to predict the change in 
Gibbs free energies in CO adsorption to find the most feasible 
CO2 reduction electrocatalyst among more than 1000 combi-
nations of metals and nonmetals. However, there have been 
limited efforts to dynamically model the electrochemical re-
actions and advanced ML methods such as recurrent neural 
networks (RNN) should be used in the electrolyzer context to 
capture time-dependent process relations.

The use of RNNs has been becoming widely common as 
they are very promising for leveraging the process data for 
various applications (Hussain, 1999). RNNs have been used 
successfully in modeling various processes, and they can be 
very efficient in modeling the dynamic behavior of electro-
chemical reactions. The ability of RNNs to learn time de-
pendencies makes this approach an alternative to first- 
principle models, as they can capture the trends in data 
emerging from the behavior of the process with respect to 
variation in inputs. This enables RNNs to be used in process 
control tasks; especially highly nonlinear aspects can be 
learned due to the nonlinear activation functions in the 
hidden layers of the neural network structure (Wu et al. 
(2020)). This would also be extremely valuable to control a 
process that does not have a dynamic first-principle model. 
Cheng et al. (1995) is one of the early examples of using 
neural networks before RNN architectures such as long 
short-term memory (LSTM) became widely popular to model 
dynamic processes with long and variable dead times. The 
study successfully models a pH neutralization process and 
uses internal recurrent neural networks (IRN) with variable 
dead times, which feed back the calculation from the hidden 
node as an input, behaving like a one time step delay. Tian 
et al. (2001) modeled the dynamic behavior of a batch methyl 
methacrylate (MMA) polymerization reactor with a hybrid 
stack of RNN models. Using this model, an effective feedback 
control scheme was implemented to regulate the tempera-
ture, and in turn, key process variables like monomer con-
version. In general, ML models that can represent transient 
behavior can be used for process control system design and 
implementation. In this direction, Ren et al. (2022) summar-
ized how to incorporate various ML models into a model 
predictive controller (MPC). For example, Wu et al. (2021)
introduced Monte-Carlo dropout method to the LSTM 
training case to improve the modeling performance. In ad-
dition to that, the co-teaching method was employed to in-
clude ideal first-principles model data in the training for a 
better performance. Then, these RNN models were in-
corporated into an MPC to simulate the control performance 
of a CSTR. Khalid et al. (1993) used RNNs to create a multi- 
input-multi-output (MIMO) control scheme for a testbed 
furnace temperatures in which the weights of the RNN 
model are adopted as the operation proceeds. This neuro- 
controller was shown to be successful in set-point tracking 
and against disturbances. With the advancements in sensor 
technologies and tools to digitalize experimental systems, 
feedback control with ML models can be implemented in a 
smarter manner.

Our previous work on the CO2 reduction process in-
corporates smart manufacturing techniques into the experi-
mental field to fully automate and digitalize the setup to 
leverage the potential for voluminous data production from 
multiple sensors to accelerate the experimental procedures 
and contribute to the scale-up efforts. Specifically, Çıtmacı 
et al. (2022b) summarized the efforts to connect UCLA’s ex-
perimental RCE reactor to the Clean Energy Smart Manu-
facturing Institute’s (CESMII) Smart Manufacturing Innovation 
Platform (SMIP) to securely store, organize and contextualize 
data generated during the experiments as well as meta in-
formation of the setup components. SMIP can also be used as 
a deployment environment for data-driven models and con-
trol, to monitor real-time data, and to extract correlations 
between experimental parameters. In addition to that, 
Ç ıtmacı et al. (2022b) elaborates on the RCE’s sensors and how 
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these are upgraded to smart sensors using the available data. 
One example is the automated gas chromatogram (GC) code, 
which fully automates a manual procedure by imitating the 
steps followed by the experiment supervisor. Consequently, 
the experimental setup becomes more compact and efficient.

There are previous data modeling and control efforts for 
the RCE setup with a different catalyst electrode, which are 
used as a base for this work. Luo et al. (2022) explains in 
detail how statistical feedforward neural network (FNN) ar-
chitectures can be used to model the steady state operation 
points given the initial experimental input parameters. This 
model is trained with a database of open-loop steady state 
experiments conducted over the past years, accounting for 
the experimental uncertainties. This work also presents a 
method to reciprocally use empirical first-principal models 
with the developed ML models to improve the experimen-
tally extracted correlations. Finally, Çıtmacı et al. (2022a)
used support vector regression (SVR) to model real-time re-
action rates for ethylene and inserted the SVR model into 
dynamic mass balance equations to implement a feedback 
control scheme at economically optimized set-points. This 
work compared multiple ML methods (e.g., polynomial re-
gression, SVR, decision trees, gradient boosting) to model 
reaction rate data used into the mass balance equations and 
concluded that SVR performed the best considering the 
variability in the data. The SVR model constructed in this 
work also accounts for a fast catalyst decay and uses delayed 
feedback concentrations from the GC to update the model. 
Thus, this work has been the first successful single-input- 
single-output (SISO) control instance of the complex elec-
trochemical CO2 reduction process using ML methods.

Motivated by the above considerations, this work proposes 
an ML-based scheme to implement real-time optimization 
(RTO) and multivariable feedback control in an experimental 
electrochemical reactor for CO2 reduction. Specifically, two RNN 
models are developed on the basis of existing experimental 
data to estimate the dynamic response of the reactor operation. 
Subsequently, the information from the sensors and RNN 
models are integrated and used by two Proportional-Integral (PI) 
controllers that manipulate two inputs, applied voltage and 
electrode rotation speed, to the electrochemical cell, con-
structing a MIMO control scheme. In addition, an operational 
steady state model and an RTO are developed to calculate the 
economically optimum set-points for the ethylene and carbon 
monoxide production rates by integrating market information. 
The proposed control and optimization scheme is demon-
strated by a series of experiments that control the production of 
ethylene and carbon monoxide from the RCE cell.

We believe the demonstration of a MIMO feedback control 
and RTO using this bench-scale reactor will be critical for the 
realization and operation of an industrial-scale CO2 electro-
lyzer for the following reasons. First, moving forward from 
SISO to MIMO control and generalizing the approach to ac-
count for different combinations of inputs and outputs is 
essential for reactions involving multiple products such as 
the CO2R. In addition, due to the non-selective nature of the 
reaction, there is a limit to solving this problem solely 
through the development of catalysts or the design of single- 
unit reactors, and efforts should be made to integrate mul-
tiple processes. Such process integration approaches include 
not only the connection of upstream/downstream separation 
or conversion processes, but also the design of a multi-stage 
electrolyzer sequence (Ramdin et al., 2021). Real-time feed-
back control of a single-unit reactor demonstrated in this 

work acts as a building block for constructing a process 
control network where its communication with neighboring 
units is extremely important. Finally, the implementation of 
RTO which optimizes the overall process but can be applied 
to the actuation of individual control units is critical con-
sidering how tightly the control of a single-unit reactor is tied 
to other processes and the electric grid infrastructure.

The rest of this manuscript is organized as follows. In the 
section entitled “Preliminaries”, the experimental reactor 
setup and database generation for ML model training are 
described. In the next section, entitled “Modeling and opti-
mization of the experimental electrochemical process”, the 
construction of a steady model using FNNs and the real-time 
optimization of this model are discussed. In the following 
section entitled “Dynamic modeling of the experimental 
electrochemical process”, the methodology for enhancing 
our dataset to train a dynamic RNN model is elucidated. The 
section entitled “MIMO control architecture and controller 
tuning” elaborates on the implementation of the two PI 
controllers, their integration with the RNN models and the 
tuning of the controllers. Finally, the performances of the 
models and the controllers are evaluated.

2. Preliminaries

This section presents the details of the experimental setup 
used in this work. All of the experimental devices apart from 
nuclear magnetic resonance (NMR) are digitized via 
Laboratory Virtual Instrument Engineering Workbench 
(LabVIEW) software. The experimental process employs a 
code for processing GC signals, controllers and actuators, and 
it is fully automated with Python scripts that are integrated 
into a LabVIEW interface, in addition to the ML models that 
predict the concentrations at each second. Fig. 1 shows the 
experimental RCE reactor at UCLA. The specific feedback 
controller parameters are determined in advance. The con-
trol system implementations include closed-loop experi-
ments with arbitrary starting concentrations, which are 
driven to the set-points. The process data flow is connected 
to the database of SMIP provided by CESMII.

2.1. Process overview

Electrochemical CO2 reduction on copper is a complex pro-
cess. There are 17 chemicals produced and their reaction 
pathways are complicated because processes of different 
time scales, including mass and charge transfer, adsorption 

Fig. 1 – UCLA gastight RCE reactor setup. 
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and desorption, and surface reaction, are convoluted invol-
ving multiple reaction intermediates. Mass transport char-
acteristics of an electrochemical system affect the transfer of 
reactant to the catalyst surface as well as the removal of 
intermediates and products away from the surface. The re-
lative time scales of different processes in the overall reac-
tion can be realized and controlled systematically in our RCE 
reactor (Jang et al. (2022)). Among various products generated 
from this electrochemical reactor from CO2R on polycrystal-
line Cu, hydrogen (H2), carbon monoxide (CO), methane 
(CH4), and ethylene (C2H4) are in the gas phase and can be 
detected using GC. The relevant reactions for these products 
are shown below:

+ + +CO H O e C H OH2 8 12 122 2 2 4 (1a) 

+ + +CO H O e CO OH2 22 2 (1b) 

+ + +CO H O e CH OH6 8 82 2 4 (1c) 

+ +H O e H OH2 2 22 2 (1d) 

In our previous works (Çıtmacı et al. (2022a) and Luo et al. 
(2022)), we used electropolished atomically-flat polycrystal-
line copper cylinder electrodes as CO2R catalyst. The smooth 
nature of the exposed electrode surface caused a fast catalyst 
deactivation throughout the experiments, and various mod-
eling and control approaches were applied to handle this 
challenge. In this study, we use the same experimental setup 
with nanoporous copper cylinder electrodes. Nanoporous 
structure directly synthesized on Cu cylinders increases the 
roughness of the surface with higher electrochemically ac-
tive surface area (ECSA) inside the pores (Roberts et al. (2015)) 
and is more resistive to catalyst deactivation. Inside the 
pores, internal pore diffusion is the dominant mode of mass 
transport where all species have a long residence time and 
the electrochemical environment (e.g., concentration, pH, 
and electrical potential) becomes highly localized. The high 
ECSA as well as the longer residence time of intermediates 
due to internal pore diffusion shift the selectivity towards 
producing more multicarbon (C2+) products. To account for 
this change in selectivity, new modeling and control ap-
proaches are applied in this work.

2.2. Experimental setup

The RCE system consists of two electrode chambers divided 
by an anion-exchange membrane, a mass flow controller 
(MFC), a potentiostat, a temperature control block, and a 
modulated speed rotator (MSR). During the experiment, pure 
CO2 gas is fed at a fixed mass flowrate at 20 mL ⋅ min−1 into 
both the cathode chamber, where nanoporous Cu cylindrical 
electrode is rotating in 0.2 M KHCO3 electrolyte solution, and 
the anode (Pt foil) chamber. CO2 and H2O molecules are 
transformed into 12 liquid-phase and 5 gas-phase (H2, CO, 
CH4, C2H4, and C2H6) products. Hydrodynamics and con-
vective mass transport can be regulated systemically 
through the control of electrode rotation speed actuated by 
the MSR. Furthermore, the potentiostat can set the applied 
potential on the working electrode, and measurements are 
taken using Ag/AgCl as a reference electrode. Thus, the re-
action kinetics and diffusion effects can be deconvoluted by 
running experiments at multiple applied potential and 
electrode rotation speeds. Finally, the electrochemical cell is 
hermetic so that gas phase products can be quantified by a 
gas chromatogram (GC) in real time. An automated GC code 

is written for triggering injections, peak detection, base-
lining, and calculation of the areas under the peaks to 
quantify the gas phase concentrations in ppm using avail-
able calibration data, as explained in Çıtmacı et al. (2022b). 
One GC injection takes 14.3 min to complete, and is followed 
by 6 min of cool down before the following GC injection. 
Thus, when a GC measurement is obtained, it is delayed and 
is related to the reactor overhead gas concentrations from 
14.3 min ago. Liquid phase products accumulate in the elec-
trolyte solution and are measured by NMR at the end of the 
experiment.

In this work, the main output of the reactor is the pro-
duction rates, denoted by rC H CO2 4 for C2H4 and CO. The GC 
measures the concentrations in ppm and these concentra-
tions are converted to production rates via the following 
equation.

= ×
×

×r
C V P

RT10 60 10
C H CO

C H CO
ppm

6
CO

62 4
2 4 2

(2) 

where CC H CO
ppm
2 4

is the concentration of C2H4 or CO measured 

by the GC in ppm, VCO2 is the CO2 inlet flowrate in mL ⋅ min−1 

at standard temperature and pressure (STP), P is the standard 
pressure at 1 atm, R is the universal gas constant and T is the 
standard temperature at 0 ∘C. The GC takes a fixed volume of 
gas (for example, 1 mL) at atmospheric pressure. Since all 
the terms except the concentration on the right hand side of 
Eq. (2) are constants, the production rates are proportional to 
the concentration in ppm.

This experimental setup is automated and digitalized as 
explained in detail in our previous work (Çıtmacı et al. 
(2022b)). Before the digitalization and automation efforts 
started, there were already accumulated open-loop steady 
state experimental data obtained under different input 
parameters, which were also sent to the SMIP. These open- 
loop steady state experiments were conducted under a fixed 
applied potential (V vs Ag/AgCl) and catalyst rotation speed 
(RPM) and the setup was operated until the system reached a 
steady state. During the experiments, the gas phase con-
centrations are measured via GC at 15th, 35th, 55th, and 75th 
minute, and the resulting current (A) and a calculated vari-
able surface potential (V vs SHE) is sensed and recorded each 
second. The surface potential is the remaining potential 
across the surface of the catalyst electrode after accounting 
for the Ohmic drop in the electrolyte due to solution re-
sistance and it is the more relevant type of potential para-
meter as it affects the charge transfer on the surface of the 
catalyst electrode. The surface potential (V vs SHE) is calcu-
lated as follows:

= × +E E i R Esurface applied 0 (3) 

where Esurface is the surface potential, Eapplied is the applied 
potential measured against the reference electrode, i is the 
electrical current, and R is the solution resistance between 
the working electrode and the reference electrode measured 
by electrochemical impedance spectroscopy (EIS) (Jang et al. 
(2022)). E0 is the standard reduction potential of the reference 
electrode used (Ag/AgCl/1 M KCl), so Eq. (3) removes the po-
tential drop across the solution due to the resistance to ion 
transport in these systems.
Remark 1. Experimental conditions may cause uncertainty, 
therefore experimental data modeling brings some unique 
challenges compared to well-structured data, such as data 
generated by simulations or obtained from industrial 
facilities. In the RCE setup, despite the electrolyte 
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resistance being kept as steady as possible (6.2  ±  0.2 Ω), the 
resistance values are measured a priori, and may vary for 
each experiment based on stock solution preparation, 
environmental temperature, connectivity of inner electrical 
circuit, etc. Also, the differences in roughness factors that 
emerge from doing cyclic voltammetry during the 
preparation of the porous electrode may affect the catalyst 
activity, especially at lower overpotentials. Consequently, it 
is possible to observe different product concentrations at the 
same input conditions. Therefore, the averages and standard 
deviations from the steady state open-loop experimental 
data are shown in Table 1 and are used in the ML model 
construction. Also, a plot is shown in Fig. 3 for three 
experiments conducted at 100 RPM and in the close vicinity 
of − 1.317 V vs SHE that have nearly overlapping current flows 
but produce C2H4 concentrations within a standard deviation 
of 43.4 ppm.

The existing experimental data were collected under 
various applied potentials at the electrode rotation speed of 
100 and 800 RPMs as shown in Table 1. Also, an empirical 
correlation for estimating the current value at a specific 
surface potential and electrode rotation speed is developed 
using the steady state experiments and is as follows:

=i i ekE
0

0.203 surface (4) 

where i0 and k are constants and Ω is the rotation speed. In 
order to find i0 and k, Eq. (4) is linearized into the fol-
lowing form.

= +i
kE ln iln ( )surface0.203 0 (5) 

Average values of the experimentally measured current and 
surface potential and rotation speeds are linearly fitted into 

Eq. (5) to find the constants. The distribution of the fitted data 
is shown in Fig. 2. The following open- and closed-loop ex-
periments, and data shifts can be explained, and this ex-
perimental system can be simulated using this empirical 
correlation.

2.3. Open-loop step change experiments

The modeling objectives of this study are C2H4 and CO con-
centrations; therefore, it is important to mention the trend 
with respect to the changes in one of the parameters while 
keeping the other one constant, where the parameters are 
the applied potential and the rotation speed of the catalyst. 
C2H4 has a very strong correlation with the surface potential 
and as the applied/or surface potential increases, C2H4 in-
creases strongly. On the other hand, CO concentrations have 
a very strong correlation with the rotation speed, so that 
increasing the rotation speed results in increasing CO con-
centrations. These effects can be seen from our steady state 
machine learning model discussed in the following section 
and the cross effects will be discussed in detail.

In order to control the experimental setup, dynamic data 
must be generated in addition to the steady state data. 
Following the steady state experiments, various applied po-
tential and rotation speed step change experiments were 
conducted separately. The timing of the GC injections is the 
same as the previous open-loop steady state experiments, 
and it started at the 15th minute with a sampling period of 
20.3 min. Based on the steady state experiments, it takes a 
maximum of 5 GC injections (around 80 min) to reach the 
new steady state and stay there. However, to see the shorter- 
term effects, there are a few experiments in which the step 
change is applied at 3 injections time. One example of a step 
change experiment is starting the experiment under a fixed 
applied potential and an initial rotation (e.g., at 100 RPM) and 
changing the rotation speed to 200 RPM after 5 GC injections 
and then changing it to 800 RPM until the new steady state is 
reached. Then, the reverse procedure is applied such that the 
rotation speed is first reduced to 200 RPM from 800 RPM and 
then to 100 RPM. A similar procedure is applied for the sur-
face potential, in which the applied potential is manipulated 
to adjust the surface potential to the desired value. The 
surface potential values are increased/decreased, and the 
changes in gas phase concentrations are recorded. One 

Table 1 – Averages and variations in surface potential, 
current, and C2H4 and CO concentrations in repeated 
open-loop experiments under different operating 
conditions. 

Rotation 
Speed

Potential (V 
vs SHE)

Current (A) C2H4 

(ppm)
CO (ppm)

(a) Averages of experimental inputs and outputs in various ranges.

100 RPM − 1.31 − 0.0296 376 157
− 1.28 − 0.0201 217 159
− 1.23 − 0.0131 67 211
− 1.20 − 0.0086 30 255

800 RPM − 1.30 − 0.0359 363 505
− 1.27 − 0.0267 216 500
− 1.24 − 0.0173 86 488
− 1.20 − 0.0129 25 483

Rotation 
Speed

Potential (V 
vs SHE)

Current 
(A)

C2H4 

(ppm)
CO 

(ppm)

(b) Standard deviations of experimental inputs and outputs in 
various ranges.

100 RPM 0.0029 0.0029 35 14
0.0047 0.0032 96 21
0.0041 0.0002 43 42
0.0015 0.0002 11 8

800 RPM 0.0128 0.0030 76 65
0.0019 0.0010 49 56
0.0060 0.0010 31 22
0.00199 0.0010 9 16

Fig. 2 – Empirical correlation of normalized current versus 
surface potential at two different electrode rotation speeds 
(100 RPM and 800 RPM).
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instance of rotation speed step change experiments under a 
constant applied potential for CO concentration is shown in 
Fig. 4. It is important to note that changing the rotation also 
affects the current passed between electrodes and thus af-
fects the surface potential. Consequently, when the rotation 
speed is changed in an open-loop step change experiment, 
the surface potential does not remain constant and is subject 
to small changes. However, this effect is relatively small.

3. Modeling and optimization of the 
experimental electrochemical process

3.1. FNN modeling for steady state set-points

After selecting the controlled outputs and manipulated in-
puts, a process model needs to be developed to capture the 
input-output relationship and used for the design and tuning 
of the control system. Ideally, a mathematical model with an 
explicit form (e.g., first-principles model) is the best modeling 
option because of its explainability and reliability. However, 
in this work, it is challenging to develop such a model due to 
the complexity of the reaction mechanisms and the lack of 
full understanding of the electrochemical reactions. As 
summarized in Nitopi et al. (2019), there are several articles 

proposing respective unique explanations of the reaction 
mechanisms for this reaction. Therefore, there is not a single 
solid conclusion of the reaction chemistry that can be used to 
develop a first-principles model.

To address this challenge, a data-driven model is devel-
oped. Specifically, a feed-forward neural network (FNN) is 
trained based on the experimental data collected from the 
steady state experiments. There are seventeen products 
coming out from the electrochemical reactor. The FNN model 
uses two inputs (i.e., surface potential and catalyst rotation 
speed) to predict the production rate of sixteen product 
species. Hydroxyacetone production rates are not included in 
the modeling phase since its production rates are either 0 or 
very low (under 2 ppm). The inputs are normalized with a 
standard scaling factor. The FNN model has a hidden layer 
with 64 neurons activated by a ReLu function. The Softplus 
function, f(x) = ln(ex + 1), is selected as the activation function 
of the output layer to ensure non-negative prediction since 
the reactor did not consume any of the product such that the 
output of our FNN model can not be negative. Additionally, 
the Softplus function predicts the output with a smoother 
curve which aligns the physical expectation better than other 
candidate activation functions, such as ReLu and Sigmoid. 
The mean squared error (MSE) function is utilized as a cost 

Fig. 3 – Comparison of 3 experimental C2H4 concentrations from open-loop steady state experiments conducted at nearly 
identical surface potentials (bottom plot) and 100 RPM. The top plot shows experimental GC results with fitted curves 
calculated by polynomial regression.

Fig. 4 – Probable experimental trajectory of CO concentration using polynomial fit curves for open-loop rotation speed step 
change experiments while keeping the applied potential constant.
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function to train the FNN model as explained in Luo 
et al. (2022).

Although an FNN model has the potential to provide a 
universal approximation to any nonlinear relation (Scarselli 
and Tsoi, 1998) and has demonstrated reliable performance 
in addressing chemical engineering and process control 
tasks (Kramer and Morgado-Dias, 2018; Mohanty, 2009), it 
nominally treats each training data point equally, and 
therefore, it can lead to relationships that are affected by 
data points that have significant experimental variability. To 
account for this issue, we calculated the coefficient of var-
iance for each data point, based on their respective mean and 
variance, and used it as the weight of the specific data point 
in the training process to account for data uncertainty (Luo 
et al., 2022). Specifically, the loss function used to train the 
weighted-FNN model can be expressed as follows:

=
= =

Loss
d m v

y y
1 1 1

ˆ
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d

j
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i j
i j i j

1 1 ,
2 , ,

2
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where d is the number of training data points, m is the 
number of output states, yi,j is the ith reference data point for 
the jth product, and ŷi j, is the predicted production rate for the 

jth product under the ith input combination. vi,j is the coeffi-
cient of variance of the ith data point for the jth product, which 
can normalize the variability of each data point and provide 
unbiased weight for products having production rates in 
different magnitudes. With the weighted loss function, the 
FNN model is granted more tolerance for prediction error to 
prevent the model from overfitting the data uncertainty 
when a training data point has a higher variance. The vi-
sualization of the FNN model can be seen in Fig. 5.
Remark 2. Although the production rate of the liquid phase 
product cannot be measured in real-time during the 
experiment, it can be calculated based on the result of the 
NMR after the experiment is complete. Therefore the steady 
state neural network model can predict the production rate 
of the liquid-phase product but cannot be implemented in 
real-time with the dynamic model.

Twelve averaged experimental data points representing 
surface potentials, rotation speeds and corresponding 16 
product output concentrations from 36 steady state experi-
ments were used for training and testing of the model. Nine 
of the experiments are earmarked for training and 2 were 
used for testing. There are 4 experimental points for each 100 
RPM and 800 RPM experiments, 2 experimental points for the 

400 RPM experiments, and one experimental point for 200 
and 600 RPM experiments, each. The model is trained for 
3000 epochs based on a mean squared error (mse) loss 
function. The mse values are 0.0055 and 0.0063 for training 
and testing. The results for gas phase products are shown in 
Fig. 6. Ethane is not included in the plots since its con-
centration does not go higher than 3 ppm under our opera-
tion range and thus it is very low. The hydrogen 
concentrations in Fig. 6(a) show a linearly increasing trend 
with increasing surface potential. The rotation speed has a 
small increasing effect on the concentrations. Methane 
concentrations shown in Fig. 6(b) are exponentially in-
creasing with increasing surface potentials at higher over-
potentials, and the effect of rotation speed is more significant 
at higher overpotentials. CO concentrations shown in Fig. 6(c) 
show a very strong proportional correlation with rotation 
speed. However, at lower rotation speeds, an increase in 
surface potential results in a decrease in CO concentrations. 
At higher rotation speeds, the CO concentrations are affected 
very weakly by the surface potentials. Finally, the ethylene 
concentrations shown in Fig. 6(d) exhibit exponentially in-
creasing trends with increasing surface potential. The effect 
of rotation speed on the ethylene concentrations is small, 
and the direction depends on the specific rotation speeds.

3.2. Real-time optimization

The developed FNN model based on weighted data can pre-
dict the reactor performance by mapping combinations of 
control actions with the production rates of each species 
produced by the reactor. The next step is to apply this in-
formation to our multi-variable control scheme. Specifically, 
the prediction from the FNN model is used to solve an opti-
mization problem computing the optimum set-point for the 
multivariable control system. The optimization problem is 
designed to maximize the economic benefit of operating the 
reactor. To simplify the optimization problem for this study, 
electricity consumption is assumed to be the only opera-
tional cost for our reactor and the revenue of the operation is 
the total value of the generated product calculated based on 
the prediction of the FNN model. Thus, the optimum set- 
point is where the reactor profit is maximized. The mathe-
matical expression of this optimization problem is given 
below and a third-party software IPOPT (Wächter and Biegler, 
2006) is utilized to solve this optimization problem. Specifi-
cally, the optimization problem has the form:

Fig. 5 – FNN architecture based on weighted data mapping two inputs (i.e., surface potential and rotation speed) represented 
in green circles to the production rates of sixteen products (outputs) represented in red circles through a densely connected 
hidden layer represented in blue circles. Only 10 of the 64 nodes are shown in the figure as blue circles. The model includes 
54 more hidden nodes. (For interpretation of the references to colour in this figure legend, the reader is referred to the web 
version of this article.)
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In the above equations, functions C(Esurface,I) and R(x̂) cal-
culate the cost and revenue of operating the reactor, where 
Esurface, Ω, I, cj and ce stand for the surface potential, the ro-
tation speed of the catalyst in the unit of rotations per 
minute (RPM), current (A), the market price of the jth product, 
and the electricity price respectively. x̂ is the prediction from 
the FNN model containing production rates for m = 16 pro-
duct species. When solving for the optimum set-point, the 
initial guess for control actions (e.g., Esurface and Ω) is first 
made by the users and provided to the optimization problem 
among the product and electricity prices. Subsequently, the 
IPOPT will alter the control actions, which leads to a change 
in the energy consumption and the production rates pre-
dicted by the FNN model, to maximize the profit of the re-
actor. Once the optimum control actions are found, the 

corresponding production rate of C2H4 and CO, given by the 
FNN model, will be sent as the set-point for the multivariable 
control system. As an example, we assumed that the elec-
tricity price is the only varying price parameter, and by 
picking a value of 0.066 $/kWh, the most economically fea-
sible set-points are found to be 112 ppm for C2H4 and 
490 ppm for CO. For the second case scenario, a 40% price 
decrease for H2 and C1 products (e.g., CO) and a 60% price 
increase in C2 products (e.g., C2H4 or C2H5OH) are assumed. 
The optimization problems are solved and set-points are 
calculated to be 283 and 350 ppm for C2H4 and CO respec-
tively. Finally, one pair of set-points is selected to show that 
selectivity can be adjusted at any desired value such as 1:1. 
Thus, set-points corresponding to 1:1 ratio are calculated to 
be at 200 ppm and this value is selected to be the final set- 
point. This optimization design assumes that all the products 
are sold at market values. However, the extra costs like the 
separation of gas and liquid products must be included in a 
real case scenario.

4. Dynamic modeling of the experimental 
electrochemical process

In order to implement multivariable control of this experi-
mental process, there are two dynamic models needed: one 
for C2H4 and another one for CO. The concentration of the 
gas products in the headspace of the RCE cell can be 

Fig. 6 – FNN predictions for gas-phase products under various input conditions, where (a), (b), and (d) demonstrate that the 
production rates of H2, CH4, and C2H4 are weakly correlated to the rotation speed, and (c) demonstrates that the production 
rate of CO has stronger correlation with the rotation speed. The solid dots represent the experimental data averaged over 
three repetition experiments at the same input conditions, which support the predicted curves calculated from the FNN 
model. The solid dots have the same physical behavior with the associated prediction curves.
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approximated as a mixing volume where the gases produced 
on the catalyst mix and are carried over by the CO2 gas flow 
(Çıtmacı et al., 2022a). This approach can be improved by 
modeling only the dynamic reactor data, which will involve 
all the inherent reactor dynamics without being derived by 
mass balances built for other similar reactor types (e.g., 
CSTR). The traditional ML methods, such as SVR or linear 
regression, do not have a memory component in the under-
lying algorithm, and thus, they cannot model the time de-
pendencies as good as an RNN model. As a result, the RNN 
modeling approach is selected in the present work to model 
the dynamic process evolution. Due to the absence of first 
principle dynamic equations of the RCE reactor for electro-
chemical CO2 reduction, data-driven models can be built to 
model process dynamics.

4.1. Automatic data fitting to GC measurements

The experimental concentration data from the GC are few 
and discrete; therefore, it is challenging to apply the deep- 
learning method (e.g., neural network modeling) to the raw 
experimental data. To tackle this, the GC results are com-
bined using polynomial best fits to approximate a probable 
experimental trajectory, which significantly increases the 
number of data points, and enables building a recurrent 
neural network model. In order to connect the respective GC 
points, 3rd order polynomials are used for 3 data points. 
From the experimental side, three GC measurements re-
present 40 min of the experimental time span. For each 3 
respective GC measurements, 2 polynomial curves are fitted. 
For example, the first polynomial fit is between 2nd, 3rd, and 
4th GC measurements. The second polynomial curve fitting 
is between 3rd, 4th, and 5th GC measurements. However, 
with this method, there are two polynomial trajectories for 
the interval between each respective GC point. The most 
convenient polynomial fit between these two trajectories can 
be chosen intuitively. To automate this procedure, an algo-
rithm is used to select the lower trajectory for an increasing 
concentration of more than 5% and the upper trajectory for a 
decreasing concentration of more than 5%. This assumes 
that the aforementioned increase or decrease is in an ex-
ponential trend. If the concentrations that decrease or in-
crease are less than 5%, then opposite trajectories are 
selected, implying that the experimental trajectory evolved 
into a logarithmic change phase. Due to the combination of 
different polynomial fits with this method, the trajectory 

obtained might not be smooth. To resolve this issue, a 
Savitsky-Golay filter with a time window of 500 s is applied 
and the obtained trajectory is adjusted to the correct timing 
to compensate for the time dislocation due to the filter 
window length. Fig. 7 demonstrates an example of using the 
proposed method to enhance the experimental data from 
one experiment. In this example, sixteen data points, re-
presented in red circles, are collected using the GC during 
over five hours of experiment. This raw data provides very 
limited information to train a neural network model. After 
the data fitting, the available concentration estimations in-
creased to 18000 for this one experiment, which is shown as 
the black curve in Fig. 4.
Remark 3. This data fitting is not claimed to be the actual 
experimental trajectory or the best data interpolation 
method. Changing the order of polynomials or the number 
of fitting data points in the intermediate trajectory may 
result in different interpolated trajectories. Other functions 
(e.g., linear interpolation, sigmoid function, etc.) can be 
considered as additional candidates for this fitting method.

Remark 4. It can be concluded from the experimental results 
that the process exhibits a slow dynamic response to an 
input change, with a dead time close to or greater than 
20 min. Thus, connecting the GC points via polynomial fits 
would not be influenced by unexpected fluctuations in the 
GC concentration evolution trends. However, for a process 
with faster dynamics and smaller time constants, the GC 
measurements should be more frequent or perhaps replaced 
by faster analytical tools such as optical gas spectrometers. 
The selection of the response time window for a sensor is 
thus dictated by the relative timescales for the process 
dynamics, and in all cases, an automated data fitting 
algorithm should be applied if the sensor time resolution is 
not fast enough relative to the process dynamics.

4.2. Recurrent neural networks and LSTMs

RNN models are proven to be effective in capturing trends 
from time series data, and thus, are used in this work to 
model the dynamic behaviors of the electrochemical reactor 
for feedback control purposes. The increased amount of 
probable trajectory time series data is used to train this RNN 
model. Specifically, the RNN model can learn the time series 
from a defined time window and the correlations between 

Fig. 7 – Visualization of auto data fitting algorithm for change in CO concentration in an open-loop step rotation speed 
change experiment. The best-fitted trajectory is demonstrated as the black solid curve in Fig. 4 generated by the second step 
of the algorithm that automatically picked the best fit from the candidate trajectories between every two points and 
smoothed the overall trajectory with Savitzky-Golay filter.

666 Chemical Engineering Research and Design 191 (2023) 658–681  



the respective data points Wu et al. (2019). The RNN archi-
tecture is depicted in Fig. 8(a). Input parameter vectors in 
time series are fed into the RNN and each time series vector 
is subject to recurrent calculations in the hidden layers. 
RNNs learn the time dependencies and provide results to the 
output layer, which is usually a fully connected dense layer 
to better map the hidden states into meaningful time series 
outputs.

One of the most powerful RNN architectures for time 
series is the Long-Short-Term-Memory (LSTM) model. 
LSTMs are different from simple RNNs due to their re-
sistance to exploding/vanishing gradients exhibited in other 
neural network models thanks to the forget, input and 
output gates in each recurrent unit (Wu et al. (2019)). Each 
gate and the LSTM recurrent unit are shown in Fig. 8(b). 
Here, cell state is used to transfer useful information and 
past relations from the previous recurrent units to the next 
recurrent units, and thus, it can be considered as the 
memory of this sequence (Yu et al. (2019)). Cell state is able 
to keep all the information from the initial time step re-
current unit until the final time step recurrent unit. The 
more relevant relationships are kept in long-term memory, 
whereas the less relevant information is removed at each 
time step. On the other side, there is the hidden state used 
to keep the output from each recurrent unit and transfer it 
to the following LSTM layer. These hidden-state outputs are 
formulated in a way that ultimately needs to be fed into a 

dense layer outside the LSTM, as mentioned in the previous 
paragraph. At each recurrent LSTM unit, the previous 
hidden state vector is combined with the new time step 
input vector and fed into the gates.

Additionally, there are three gates in an LSTM layer: 
forget, input, and output gates. Each gate contains trainable 
sigmoid activated neural networks as shown in Fig. 8(b). The 
combined vector of previous hidden state and new input 
vector is fed to the forget gate. Due to the sigmoid activation 
function, the output is between 0 and 1. If the forget gate 
yields 0, then the previous cell state will be forgotten. Con-
versely, if the output is close to 1, the previous information 
from the cell state is retained between the forget and input 
gates. Next, there is the input gate, which also has a sigmoid 
activated trainable neural network that decides to what de-
gree the new input vector should be remembered. The output 
of the input gate is pointwise multiplied with the tanh acti-
vated neural network outputs which is trained to learn the 
effect of the new input vector for the current time step 
output. Tanh activation function yields results between 
[ − 1,1], where a negative value signifies that the new input 
vector might have a decreasing effect. The input gate yield is 
added pointwise to the cell state value. Finally, the output 
gate, again, filters the previous hidden state and input vector 
with a sigmoid activated neural network and this output is 
pointwise multiplied by the tanh activated neural network 
output of the hidden state. This gives the timestep output in 

Fig. 8 – Overall structure of recurrent neural network (RNN) and long short-term memory (LSTM) network unit. The LSTM 
unit fits into the empty circles of the recurrent layer in the top plot.
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the hidden state (Yu et al. (2019)). The LSTM structure can be 
represented mathematically as follows:
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where k is the time step, i is the output from the input gate, h 
is the hidden state, c is the cell state, f is the forget gate, and o 
is the output gate. Furthermore, wh,x is the weight matrix to 
the hidden state vector h and input vector x, bi, bf, bc, bo, by 

represents biases and the subscript y indicates relationship 
to the output (Wu et al. (2020)).

4.3. LSTM based RNN model architecture

Two LSTM models are trained using the data calculated 
through the polynomial best fits between GC measurements. 
The inputs for the first LSTM model are surface potential, 
rotation speed, and current, and the output is C2H4 produc-
tion rate converted to ppm using Eq. (2). For the second 
LSTM, the inputs are surface potential and rotation speed, 
and the output is CO production rate in ppm. Based on the 
experimental observations, this process has dead times of 
600–1500 s for step changes on different input parameters. It 
can be seen in Fig. 7 that it takes around 1 injection for the 
rotation speed change to show its effect on concentration. 
Also, it was seen from the experimental data that it might 
take more than 1500 s after the dead time for the process 
output to reach the new steady state. Consequently, the past 
time window is very important for the dynamic behavior of 
the process and this time window should be around one 
hour. From this point, the models are trained with various 
time windows. The best model performances are obtained 
for 3600 s of time window for C2H4 and 3800 s for CO.

If one time window consists of 3600 × 3 (3 is the number of 
inputs parameters for the C2H4 estimator) data points, the 
model would be too big, computationally expensive, and 
perform poorly due to high number of training parameters. 
In addition to that, the predictions would be very noisy. 
Thus, the time window can be discretized in a way that still 
represents the last one hour without violating the correla-
tions between consecutive data points. For example, the last 
one hour can be represented with data points at each 100 s. 
As a result, the (3600 × 3) time window is reduced to the 
(36 × 3) time window without losing relevant information. 
The same approach is applicable for reducing the model size 
for the CO estimator, which would have (3800 × 2) input 
parameters for a per second base estimation and has (38 × 2) 
input parameters after 100 s of discretization. The model will 
make a prediction every 100 s. Also, the model is trained to 
predict the next 800 and 600 s of the production rates for C2H4 

and CO respectively, with 100 s of discretization, having the 
output shape (8 × 1) and (6 × 1) in each LSTM. This way, LSTM 
is seen to learn the delay behavior better compared to an 
output shape of (1 × 1). Finally, both models are built with 200 
hidden nodes in one hidden recurrent layer. It was seen that 

the prediction accuracy decreases if we decrease the number 
of hidden nodes. Also, the computation time increases and 
erroneous nonlinear trends are predicted by the model if we 
increase the number of hidden nodes.

Furthermore, regularization methods, such as recurrent 
dropout and L2 kernel regularizer, are performed to increase 
the generalization performance of the models to unseen 
data. Specifically, the following regularization methods are 
tuned to the best performance at 30% for recurrent dropout 
and 0.08 L2 kernel regularization. Increasing or decreasing 
those tuned parameters may lead to divergent predictions. 
The recurrent layer is connected to a dense layer of 8 nodes 
for C2H4 and 6 nodes for CO, which correlates the informa-
tion from the recurrent node with the production rate values. 
A sigmoid function is used in the dense (FNN) output node to 
limit the predictions by the highest and lowest values in our 
training set. Multiple experiments from constant applied 
potential and rotation and two long step change experiments 
were selected for the test set. The remaining experiments 
were used to train the models. The predictions of the LSTM 
models are evaluated with an unseen testing set, and one set 
of the testing examples is demonstrated in Fig. 9.
Remark 5. Electrochemical CO2 reduction in RCE cell is seen 
to have long process delays of more than 1000 s. The models 
take around 1 h time window to model those delays. 
However, 3600 s of time window is a very long sequence. 
Thus, training those models only with open-loop 
experiments might cause poorer performance in a closed- 
loop context. These models perform very successfully when 
only one of the manipulated input parameters varies sharply 
while the other one is constant. On the other hand, when two 
manipulated input variables vary at the same time gradually, 
the large time window of the LSTMs might not catch the 
dynamic trends as necessary. In order to enhance the LSTMs 
trained with the open-loop experiments, two preliminary 
controlled experiments were conducted, using the initial 
RNN models trained only with open-loop experiments. The 
dynamic data obtained from this experiment are used to 
train both estimators, which also leveraged the models to 
improve themselves to adapt their weights to the dynamic 
changes of the feedback control context.

The models need 3600 and 3800 input data points to make 
predictions for C2H4 and CO, respectively. Thus, the first 
prediction is obtained at the 3600th second for the C2H4 es-
timator and at the 3800th second for the CO model. The RNN 
architecture could have been built in such a way that the 
concentration output from the previous time step is fed to 
the LSTM model to guess the next time step concentration. 
This approach could have been useful to model the experi-
ment starting from the beginning of the experiment rather 
than 3600th second. However, before each experiment, pre- 
experiment measurements are performed including EIS to 
measure the solution resistance and cyclic voltammetry (CV) 
to check catalytic activity which already generates some 
products while cycling through a potential window. Thus, 
depending on the time span after this CV procedure, the 
development of gas products in the early stage may vary. 
This can be seen from the brown experimental curve 
(Experiment 3) in Fig. 3, in which there was a longer waiting 
time between pre-experiment measurements and the actual 
open-loop experiment compared to the other two experi-
ments. This caused the delayed development of gas con-
centration trajectory at the early stage with a slower 
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accumulation of gas products in the reactor headspace. Thus, 
feeding back the previous time step concentration estima-
tion to the LSTM model causes confusion for the training set. 
As a result, the LSTM estimators wait about an hour until the 
system reaches equilibrium and are not affected by previous 
experimental development.
Remark 6. Initially, both of the estimators were trained with 
three inputs: Surface potential (V vs SHE), electrode rotation 
speed, and current. The current is a significant indicator for 
the C2H4 concentration and it is very important to include the 
current for training. However, the CO concentration is more 
dependent on the rotation speed and the surface potential. 
When the models were trained with open-loop step-change 
experiments, it was seen that the LSTM model for CO has a 
stronger correlation with current rather than surface 
potential. On the other hand, increasing current under a 
fixed applied potential decreases the surface potential, as 
can be seen from Eq. (3). Conversely, if the applied potential 
is not constant, the surface potential will increase with 
increasing applied potential. Thus, increasing the rotation 
speed will have an increasing effect on the CO concentration, 
whereas it will also increase the current and decrease the 
surface potential. Consequently, the LSTM model trained 
with open-loop experiments will learn that increasing 
current means increasing CO. This provides a great training 
accuracy in the testing set performance of open-loop 
experiments. However, the model should also learn the 

competition between the surface potential and the rotation 
speed for dynamic experiments. When this model was 
tested, it was found that the model yields incorrect trends 
when the ethylene concentration is increased by adding 
more surface potential (thus increased current) and the 
rotation is decreased. From the known correlations and GC 
results, the CO concentrations should have decreased, 
whereas the estimator predicted increasing concentrations 
due to increasing current. After seeing this deficiency with 
the dynamic model prediction based on model involving 
three inputs, the CO estimator was retrained using two 
inputs, surface potential and rotation speed, and the 
aforementioned problem was resolved. A diagram that 
explains how the model training and verification were 
carried out using both open-loop and closed-loop 
experiments is shown in Fig. 10.

The C2H4 and CO estimators are trained with 83393 and 
112789 data points obtained through probable experimental 
trajectories. The difference between the training test sizes is 
due to using different experiments for training both models. 
Also, the CO model is trained with 2 preliminary dynamic 
controlled experiments whereas the C2H4 model is trained 
with only one. The training and testing mean absolute error 
performances are 0.62 ppm and 3.15 ppm for C2H4 model and 
0.63 ppm and 11.1 ppm for CO. This indicates that the models 
fit to the training data quite well, but it generalizes to the 

(a) (b)

Fig. 9 – C2H4 and CO RNN predictions for open-loop experiments from the testing set. (a) C2H4 concentration prediction 
model with surface potential (V vs SHE), rotation speed, and current as inputs for a time window of 3600 s (b) CO 
concentration prediction model with surface potential (V vs SHE) and rotation speed as inputs for a time window of 3800 s. 
This experiment was conducted under constant applied potential and the change in surface potential is due to the change in 
current caused by the electrode rotation speed variation.

Fig. 10 – Procedure to optimize the LSTM model using open- and closed-loop experiments. 
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new data satisfactorily well within the experimental stan-
dard deviations.

4.4. Regularization effects on experimental data modeling

In 2014, Srivastava et al. (2014) proposed the dropout method 
that randomly eliminates a percentage of hidden units 
during the training to eliminate/alleviate the overfitting ef-
fects in neural networks. When a unit is randomly excluded 
for an epoch, it prevents the rest of the neurons from ex-
cessively co-adapting. The dropout method is also used in 
our neural network architecture between the LSTM output 
and dense output layers. The addition of dropout in between 
these two layers has shown considerable overfitting mitiga-
tion. Specifically, the recurrent dropout in our model trained 
with Tensorflow/Keras uses the approach proposed by 
Semeniuta et al. (2016) and handles the connection between 
pointwise multiplication and pointwise summation in the 
input gate shown in Fig. 8(b).

Although dropout is a very strong regularizer, adding 
other regularization methods to our model training can fur-
ther improve the generalization performance of the model. 
L1 and L2 regularizers can be used as a part of the model 
training loss function. L1 regularizer is used to keep the 
specified model parameter close to 0 whereas L2 regularizer 
is used to prevent the model parameter from having too high 
values (Cortes et al. (2012)). The regularizers can be applied 
on model weights, biases or to the output. In our model 
training, an L2 kernel regularizer is used on the weights. The 
L2 kernel regularizer in the loss function is shown in Eq. (9).

= +J w X y J w X y w wˆ ( ; , ) ( ; , )
1
2

T
(9) 

where Ĵ is the modified loss function, J is the loss function 
(e.g., mean squared error), w is the weight matrix that will be 
optimized, λ is the user-defined L2 regularization parameter 
that determines the intensity of the regularization.

Fig. 11 illustrates the enhancement in the model predic-
tions with the addition of L2 regularization and dropout. The 
experiment shown here is used to test run the LabVIEW script 
with the experimental setup under a closed-loop trial. The 
slateblue curve is the fitted data with the method mentioned 
in Section 4.1 and the model predictions are supposed to 
converge to this curve. Orange prediction is the model 
trained without any regularization method and it can be seen 
that the predictions have large deviations from the fitted 
curve. Then, a slight L2 regularization with the λ = 0.04 is 
shown with the dashed blue curve. Between the 7500th and 
10000th seconds, there is a slight improvement; however, the 
latter stages of the experiment still have significant error 
margins on the order of 300 ppm. Then, the L2 regularization 
value is increased to λ = 0.08 (dashdotted blue curve), and 
even though the noise in the predictions decreases and the 
trends are better represented, the model overshoots the 
probable experimental trajectory. Then, the regularization 
value was increased to a relatively high value at λ = 0.15 
(dotted blue curve), and this resulted in a drift and increased 
noise in predictions at the later stages of the experiment. 
This demonstrates that the low and high values of L2 reg-
ularization parameter λ do not improve the model, whereas a 
suitable fine-tuned λ value boosts the model performance. 
Finally, the best model with λ = 0.08 is further improved with 
an appropriate percentage of recurrent dropout (red curve) 
and the dynamic trends are captured as well as the error 

predictions are greatly reduced. Thus, it is shown that the 
application of proper regularization parameters significantly 
augments the model generalization to unseen data. The 
regularization values presented in this section also gen-
eralize well to the other experimental operations (open- and 
closed-loop experiments).
Remark 7. The test case in Fig. 11 is a closed-loop experiment 
in which both surface potential and rotation are 
manipulated. Thus, this case is harder to generalize than 
open-loop experiments for the dynamic behavior.

4.5. Implementation of the LSTM model in real-time 
operation

The estimators are built to give a prediction each 100 s. 
However, for efficient control, we are expecting a per-second 
model feedback. Also, if the models were able to yield a per- 
second prediction, which would require a much larger model 
than a time window of 36 or 38 data points every 100 s, it 
would be computationally expensive for the LabVIEW pro-
gram and might cause a time shift for 1 s intervals since 
there are many calculations being made at the same time 
and more data being kept in the memory. Therefore, to tackle 
this problem, a linear regression extrapolation approach is 
used to estimate 99 time steps between two consecutive 
LSTM predictions. In this approach, the recent LSTM pre-
diction and the previous one are kept in memory and fitted to 
a line via linear regression for the previous 100 points. For the 
next 99 s, this linear regression formula is used to extrapolate 
between 101th to 199th following predictions. With this 
method, there is a very small loss of accuracy, but a gain of 
interconnecting points estimation and computational effi-
ciency. Since the 100-second interval is quite small in the 
development time of the experimental trajectory, the linear 
nature of this guess does not disturb the modeling of the 
setup. With this approach, long time window processes can 
be modeled more accurately using smaller models for many 
time steps without losing important information.

5. MIMO control architecture and controller 
tuning

This study aims for the multivariable feedback control using 
two PI controllers for C2H4 and CO concentration by manip-
ulating applied potential and rotation speed.

5.1. Using data for process parameter extraction

The first-order plus time delay (FOPTD) model, as shown in 
Eq. (10) is used to extract the process parameters for the 
transfer function. Various open-loop experiments were 
conducted by applying separate step changes to applied po-
tential and rotation speed. After applying the step change, 
the changes in C2H4 and CO concentrations are fitted to a 
sigmoid function and normalized between 0 and 1 for easy 
comparison between various step changes. From those plots, 
a tangent line from the inflection point is drawn to intersect 
the X axis. The intersection value on the X axis is defined as 
the dead time, indicated by θ, and the time required to reach 
63% of the final steady state is defined as τ. These parameters 
are used to extract the FOPTD model shown in Eq. (10), where 
K is the steady state gain and s in the Laplace domain vari-
able of the form:
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However, electrochemical CO2 reduction is a highly non-
linear process; therefore, one FOPTD model will not be suf-
ficient to model the entire operating range. Thus, various 
FOPTD models should be extracted for different surface po-
tential and rotation speed ranges. Our open-loop experiment 
range might not include an instance of a change between the 
limits of the designated ranges; thus, we should check gen-
eral correlations for the dead time and τ for different step 
changes. If there is a general correlation for the time para-
meters, it is possible to extract steady state gains from the 
FNN model. The graphs presented in Fig. 12 are used to dis-
play the dynamic responses of C2H4 ((a),(b)) and CO ((c),(d)) 
under various rotation speeds and rotation speed changes.

Fig. 12(a) clearly shows that the concentration change 
exhibits the same dynamic behavior under applied potential 
step regulations and constant rotation, which means that we 
can assume the same dead time and τ for the tuning process. 
After analyzing the second plot, it was seen that similar dead 
times and τ values are obtained for rotation speeds less than 
200 RPM. These values are used in the FOPTD model for C2H4. 
A similar procedure is followed for the extraction of the CO 
FOPTD model parameters.

Fig. 12 shows the dynamic concentration evolutions for 
C2H4 and CO under a step change in one input parameter 
(applied potential or rotation speed) while keeping the other 
input parameter constant. For example, in Fig. 12(a), the 
normalized dynamic data fittings for applied potential 
change under a constant rotation speed overlap with each 

other for each experiment and they have the same dead 
time. In Fig. 12(b) and (d), the dynamic data for the change in 
C2H4 and CO concentrations with respect to a variation in 
electrode rotation speed under a constant applied potential 
is demonstrated. For C2H4, it was seen that for the rotation 
speed changes under 200 RPM, the dead times are around the 
same value, and this is shown in Fig. 13. For CO, the varia-
tions in τ values for different rotation speed changes are il-
lustrated in Fig. 13(b). For each step change experiment, θ and 
τ values are extracted from the data and they are averaged 
for a more generalized results. These values will be used to 
extract FOPTD models for operational regions. The extracted 
θ and τ values can be seen in the multivariable control array 
shown below in Eq. (11).

As the time constants and delays for the FOPTD model are 
obtained, there is now a need to obtain steady state gains. 
Electrochemical CO2 reduction process is inherently highly 
nonlinear. This can also be seen from the exponential in-
crease in operational steady states in C2H4 concentrations 
with increasing surface potentials shown in Fig. 6(d) and 
different behaviors of CO concentrations at different rotation 
speeds in Fig. 6(c). Thus, we divide the operation range into 9 
regions as the following: . 

• Potential ranges = ( − 1.19, − 1.26 V), ( − 1.26, − 1.30 V), 
( − 1.30, − 1.32 V);

• Rotation ranges = (100–200 RPM), (200–400 RPM), 
(400–800 RPM).

The multivariable control array and relative gain array 
shown below have the following structure.

Fig. 11 – The effect of regularization in improving the model predictions. Multiple parameters for L2 regularization are 
compared to the addition of recurrent dropout and no regularization case.
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These ranges are expected to satisfactorily linearize the 
process. The steady state gains are calculated from the FNN 
model. Using the FOPTD models and different operating 
windows, we can obtain the multivariable control arrays 
such as shown below in Eq. (11) for the [ − 1.19, − 1.26 V] and 
[100, 200 RPM] region.
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(11) 

This array is represented in the Laplace domain and four 
distinct FOPTD models are used to represent the dynamic 
process behavior. The first element of the FOPTD matrix in 
the first row represents the influence of Esurface and the 
second element in the same row represents the dynamic 
effects of rotation change on the C2H4 concentration. The 

second row represents the same impact on CO concentration 
for the respective inputs. The transfer function matrices in 
different regions are given below:
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5.2. Relative gain array

There are two general approaches for the MIMO control 
system design of the RCE reactor based on the manipulated 
inputs and controlled output relationships: employing two 
proportional-integral (PI) controllers or a model predictive 
controller (MPC). If there are specific input-output couplings 
that are strong (i.e., multivariable interactions are relatively 
weak), then it is appropriate to use two PI controllers. In the 
opposite case where multivariable interactions are strong, an 
MPC should be used to regulate the process accounting ex-
plicitly for these interactions. To evaluate the strength of the 
multivariable interactions, a relative gain array (RGA) 

Fig. 12 – The evolution of C2H4 and CO concentrations for step changes in the input parameters, fitted to a sigmoid function 
and normalized between 0 and 1. (a) C2H4 concentration evolution for potential change under constant rotation speed. (b) 
C2H4 concentration evolution for rotation speed change under constant applied potential. (c) CO concentration evolution for 
applied potential change under constant rotation speed. (d) CO concentration evolution for rotation speed change under 
constant applied potential.
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approach is used. Initially introduced by Bristol (1966), RGA is 
the ratio between the open-loop steady-state process gain, 
while the remaining loops are open, and the closed-loop 
steady-state process gain, while the other loops are closed. In 
our work, an RGA analysis is conducted for a 2-input 2- 
output process. An extension of 2 × 2 RGA to n × n can be 
found in Chen and Seborg (2002). In this work, from the ex-
perimental results, we have observed that the electrode ro-
tation speed has a strong effect on the CO concentration, 
while the surface potential has a very strong effect on the 
C2H4 concentration. RGA is used to quantify these impacts 
and is calculated as follows (Bequette (2003)):

= =
k k

k k k k
k k

k k k k

k k
k k k k

k k
k k k k

11 12

21 22

11 22

11 22 12 21

12 21

11 22 12 21

21 12

11 22 12 21

11 22

11 22 12 21

where kij, i = 1, 2 and j = 1, 2, are the steady-state gains in the 
matrix transfer function models; for example, referring to Eq. 
(11), k11 = − 1427, k12 = − 0.030, k21 = − 919 and k22 = − 0.64. The 
RGA only needs the steady state gains. If the diagonals of 
RGA are close to 1, then it means that the surface potential 
can be used to control the C2H4 production and the rotation 
speed can be used to control the production of CO using two 
single-loop proportional-integral controllers. The RGAs of the 
different regions are presented below:

0.9704 0.0296
0.0296 0.9704

0.9706 0.0294
0.0294 0.9706

1.0181 0.018
0.018 1.018

0.9444 0.0556
0.0556 0.9444

0.9610 0.0390
0.0390 0.9610

0.9977 0.0023
0.0023 0.9977

0.9693 0.0307
0.0307 0.9693

0.9669 0.0331
0.0331 0.9669

0.9908 0.0092
0.0092 0.9908

Since the RGA diagonal elements for each region have 
values very close to 1, we can infer that two PI controllers are 
sufficient to control this process, where one of the PI con-
trollers will manipulate the applied potential to control C2H4 

while the other PI controller will manipulate the rotation 
speed to control CO production rate. These RGA conclusions 
hold true for a broad set of steady state values of the inputs 
in the operating region of interest; this analysis was carried 
out in Canuso (2022) for a similar experimental reactor setup 

and will not be repeated here. Overall, it is noteworthy that 
the RGA results based on our lab-scale experimental reactor 
provide a quantitative basis for the strength of these inter-
actions in a scaled-up reactor based on the design employed 
in our current process.
Remark 8. The RGA analysis in this work yields very clearly 
what input-output pairings are appropriate since the 
diagonal elements are very close to 1. However, in case the 
RGA analysis is not satisfactory, new algorithms such as 
relative sensitivity array (RSA) (Yin and Liu (2017)) and 
relative time averaged gain array (RTAGA) (Tang et al. 
(2018)) can be considered as an alternative to RGA.

5.3. Controller tuning

Two PI controllers are used for the feedback control of the 
experimental RCE reactor. Since the FOPTD transfer function 
array is obtained, the controller tuning parameters can be 
calculated for both PI controllers using the Cohen-Coon 
technique. Specifically, the FOPTD models are initially used 
to extract 9 pairs of controller parameters with the Cohen- 
Coon tuning method. The details of Cohen-Coon tuning 
method can be found in (Hambali et al. (2014)). However, 
employing 9 pairs of controller parameters might be com-
plicated, thus, proportional gain values that are in the vici-
nity of each other are averaged to reduce the number of 
controller parameters. After having the preliminary propor-
tional gains and integral time constants, MATLAB is used to 
simulate a set-point change to fine-tune the proportional 
gains taking the Cohen-Coon estimations as starting points. 
The fine-tuned control parameters are presented in Table 2
and the simulation results for different regions are presented 
in Fig. 14. The integral time constants (τi) from Cohen-Coon 
are 1250 and 1000 s, respectively.

However, there is a unit matrix decoupler defined in the 
MATLAB tuning procedure, meaning that the simulator does 
not take the cross-coupling effects into account (e.g., rotation 
effects on C2H4 concentration). At some specific operation 
ranges, the cross-coupling effects might affect the perfor-
mance of the closed-loop system. For example, as discussed 
in Section 3.1, the effect of surface potential change affects 

Fig. 13 – Process dead time (θ) and time constant (τ) distribution extracted from experimental data for dynamic changes. (a) 
Extracted dead time values for various rotation speed changes in open-loop step change experiments for fitted C2H4 

dynamic data depicted in Fig. 12(b). (b) Extracted τ values for various rotation speed changes in open-loop step change 
experiments for fitted CO dynamic data depicted in Fig. 12(d).
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the CO concentration at lower rotation speeds. When the 
MATLAB-tuned parameters are tested in the experimental 
setup, it was seen that both of the parameters have huge 
fluctuations around the steady state set-points. This means 
the controller proportional gains are not tuned to handle the 
cross-parameter effects, and they should be further im-
proved.

It is very time-consuming and costly to fine-tune the 
controllers on the experimental setup by trial and error, 
especially when multiple pairs of control parameters are 
involved. To address this problem, the dynamic RNN models 
trained for C2H4 and CO dynamic evolution modeling are 
used as the digital model of the experimental reactor to in-
vestigate the controller performance under numerous pairs 
of controller parameters in different regions. To enable this 
simulation, the instance current is required as the input for 
the estimation of C2H4. Thus, the correlation presented in Eq. 
(4) is used to approximate the current at a specific surface 
potential. However, this case is idealized compared to the 
real system because the current magnitude is largely affected 
by the resistance of the electrolyte solution and experimental 
conditions might also affect the concentration outputs.

Two PI controllers are added to the simulation. The first 
controller manipulates the surface potential to control C2H4 

production rates while the second controller manipulates the 
rotation speed to regulate the CO concentration in the re-
actor overhead. It was seen that if both controllers are tuned 
with values in the vicinity of MATLAB-tuned proportional 
gains, both of the set-points suffer from big fluctuations due 
to cross-coupling effects and it would take a very long time 
for both fluctuations to subside. Thus, the case that worked 
best and fastest to reach the steady state is having one of the 
controllers with a high proportional gain and the other con-
troller with a low proportional gain. Specifically, the C2H4 

controller is selected to be the more aggressive one while the 
CO controller is adjusted to drive the process to the set-point 
slowly. Therefore, the MIMO control scheme aims to drive 
the C2H4 concentration to the set-point quickly; and after it is 
reached, the second PI controller drives the CO to the set- 
point slowly. While C2H4 is going to the set-point, CO could 
even go in the opposite direction with respect to its set-point 
because big changes in the surface potential could negatively 
affect CO, especially at low rotation speeds. However, once 
the surface potential is stabilized at the new set-point, the 
rotation speed is adjusted slowly, while the small cross ro-
tation effects on C2H4 are compensated by the aggressive 
potential controller. A control case simulation scenario with 
the new control parameters is shown in Fig. 15. The final 
proportional gains obtained from this simulation are pre-
sented in Table 3.

5.4. Estimator design using GC measurements

In Section 2.2, the standard deviation in the experimental 
results is discussed under nearly-identical surface potential 
and rotation speed for relatively short duration experiments 
of less than 2 h. The experimental conditions mentioned in 
Remark 1 also affect the variability in the experimental per-
formance observed for individual experiments. Therefore, 
the LSTM models built using the experimental training data 
are expected to give a prediction that is compatible with the 
averaged experimental output and within the standard de-
viations, however, this prediction still needs to be improved 
for feedback control purposes. To accomplish this fine- 

tuning of the control of the reactor, the GC sensor feedback is 
incorporated into the prediction model and the control 
scheme.

In our previous work Çıtmacı et al. (2022a), we offered an 
approach to introduce the GC measurements incurring a 
14.3 min delay into the concentration estimation and feed-
back control scheme. However, that approach took ad-
vantage of a hybrid model and mass balance equations, 
calculated the error in machine learning-based reaction rate 
estimation and corrected the estimator predictions ac-
counting for the possible corrections in past time instants of 
the experiment. That approach is not applicable here due to 
LSTMs being black box models. Instead, taking advantage of 
the ability of RNNs to learn time series and trends in complex 
data series, we can scale the RNN predictions with respect to 
the recent GC measurement and adopt our RNN model to the 
real experimental trajectory without violating the trends. 
This is a suitable solution built on the understanding that the 
catalyst activity may vary from experiment to experiment, 
while the fundamental mechanism for the transformation of 
CO2 on the copper electrodes is unchanged. The RNN model 
predicts the concentrations within a standard deviation, and 
captures the dynamic timing (e.g., dead time and τ) sa-
tisfactorily well. Thus, scaling the model does not affect the 
dynamic trends. To scale the RNN outputs, the prediction 
from 14.3 min ago is kept in the control loop, and it is com-
pared to the GC measurement when the injection is com-
pleted. As soon as the GC results are obtained, the GC result 
is proportioned to the RNN prediction from 14.3 min ago and 
a scaling factor α is obtained. Then, the current RNN pre-
dictions are multiplied by the scaling factor until a new 
scaling function is obtained. This is described as follows:

= GC
F t min( 14.3 )

i
i

RNN
0 (12a) 

= ×F t F t( ) ( )RNN
i

RNN
0 (12b) 

where i is the number of GC injections, GCi is the con-
centration from ith GC injection, FRNN

0 is the prediction of the 
unscaled RNN model and FRNN is the prediction of the scaled 
RNN model.

This GC feedback correction is not applied after each in-
jection. Applying a scaling factor during a big set-point 
change might interfere with the model dynamics, thus we 
scale the RNN predictions when the consecutive GC variation 
is small (e.g., at steady state). When the difference between 

Table 2 – Controller gains (Kp) resulting from MATLAB- 
based tuning. 

674 Chemical Engineering Research and Design 191 (2023) 658–681  



the GC measurement and RNN prediction is substantial, the 
scaling factor is applied when the concentrations are near a 
steady state, the model predictions and GC measurements 
are scaled to be coherent, and the system is driven to the set- 
point after the scaling. This correction is applied if the con-
secutive GC measurements are within 8% or 10 ppm vicinity 
of each other. The application of the scaling factor is auto-
mated on the LabVIEW interface. The final control diagram of 
the process is shown in Fig. 16.

6. Closed-loop experimental results and 
discussion

Three scenarios are considered for the demonstration of 
MIMO control in this study. The first scenario aims to drive 
the process to the most profitable set-point under the base 
case, which has a selectivity of 1:4 for the C2H4:CO con-
centration ratio. The second scenario drives the selectivity 
ratio to 1:1 to show the flexibility of the control system by 
increasing the C2H4:CO ratio by 4-fold. This versatility could 
be advantageous considering a potential integration of a 

downstream process such as the copolymerization of ethy-
lene and carbon monoxide, where the ratio of the two 
monomers impacts the structural and thermophysical 
characteristics of the synthesized polyketone (Brubaker et al. 
(1952) and Soomro et al. (2014)). The third scenario simulates 
a case based on sensitivity analysis in which the prices of C2 

and C2+ products increase by 60% while other chemical prices 
decrease by 40%. The third scenario drives the C2H4:CO 
concentration ratio to 4:5 which is very close to the 1:1 ratio 
and thus serves to challenge the accuracy of the control 
system for close but different concentration ratios over a 
broad range of concentrations. The three scenarios demon-
strate the ability of controllers to implement large increases 
and decreases in selectivity ratios, as well as precise control 
of product concentrations. In each experiment, the closed- 
loop controller is activated at 4500th second and the same 
control parameters are used for all scenarios. Each case 
starts from the same initial applied potential and electrode 
rotation speed of − 1.67 V vs Ag/AgCl and 300 RPM, usually 
yielding a surface potential of around − 1.27 V vs SHE. This 
initial point is chosen to have both the rotation and potential 

Fig. 14 – MATLAB-based tuning of the PI controllers using a decoupler. 
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values close to the region where the controller parameters 
change to observe the effects of changes in controller gains.

The use of feedback control ensures robustness with re-
spect to small disturbances, such as the uncertainties in the 
experimental setup. Unlike the flat catalyst electrode setup 
used in our previous work reported in Çıtmacı et al. (2022a), 
the porous catalyst employed in the present experimental 
work does not suffer from significant catalyst deactivation. 
The higher stability of the high roughness catalyst compared 
to the flat surface catalyst arises from the larger number of 
active sites per geometric area and the use of smaller over-
potentials to accomplish nearly the same reaction rates. 
Lower overpotentials slow down electrode deactivation pro-
cesses. Yet, the control system works to provide set-point 

regulation in the presence of such small catalyst deactivation 
even after prolonged testing of the catalyst.

6.1. Experimental results

Set-points for C2H4 and CO under the first scenario are cal-
culated from the real-time optimizer to be 112 and 490 ppm. 
The experimental results for the first case scenario are 
shown in Fig. 17. It is noteworthy to compare these experi-
mental results to those obtained in the simulated closed-loop 
experiments shown in Fig. 15 that utilized identical set- 
points. Due to the control strategy mentioned in Section 5.3, 
the controller first drives C2H4 to the set-point while the 
electrode rotation speed increases gradually, which slowly 
drives CO to its set-point. As shown previously in Fig. 15, this 
strategy can effectively compensate for the rotation-driven 
deviation in C2H4 concentrations. In this case, to decrease the 
ethylene concentration, the applied potential is decreased. 
This also has the effect of increasing slightly the CO con-
centration at low rotation speeds (see Fig. 6(c)). Thus, cross- 
coupling effects on the input-output relationship in this 
specific set-point are helpful in achieving the control objec-
tive. The initial increase in CO is mostly due to the decrease 
in surface potential. In this region, until the rotation reaches 
400 RPM, the effect of rotation speed is kept minimal with the 
CO controller using a small proportional gain. Once the 
ethylene concentration reaches its set-point, the rotation 
speed is increased more aggressively to eventually drive the 
CO concentration to its set-point.

The experimental trajectory in Fig. 17 is very similar to the 
simulated result in Fig. 15. The main two differences are that 
in the simulation, the set-points are reached earlier than in 

Fig. 15 – Closed-loop simulation using the dynamic RNN models and the empirical surface potential-current correlation 
used to determine the final PI controller parameters.

Table 3 – Final controller gains (Kp) resulting from closed- 
loop system simulation. 
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the actual experiment and the estimation of a set-point 
overshoot for the CO concentration, which is not observed in 
the experiment. These differences are naturally due to the 
fact that experimental observations are different from model 
prediction and feedback corrections, and highlight the im-
portance of coupling simulations with experiments. The si-
mulation also assumes that the current is well-described by 
Eq. (4). However, experimentally, the current might deviate 
from this correlation extracted from open-loop experiments 
for catalysts operated over relatively short durations, causing 
slightly different product concentrations. Likewise, when a 

scaling factor is applied as a part of the feedback correction, 
the error between the model prediction and the set-point 
change must be recalculated and results in some delays 
which do not exist in the simulation and could have an effect 
on the experimental observations. The pure model predic-
tions might be very close to the set-point, which would re-
duce the actuation. However, when the scaling factor is 
applied, the model receives feedback when the predictions 
were off (e.g., at 10 ppm) and the controller drives the cor-
responding input at higher values to reach the set-point. 
Thus, this causes a delay in the set-point tracking, which can 

Fig. 16 – Closed-loop system structure using multi-input multi-output control system with ML estimators. 

Fig. 17 – Closed-loop experimental results for the economically optimal set-points for which the C2H4:CO selectivity ratio 
is 1:4.
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also explain the timing difference between the experiment 
and the simulation. It is noted that these timing differences 
are still minor, and the system is still driven to the desired 
multiple set-points in a short period of time of just a few 
hours.

The objective of the second scenario is to adjust the se-
lectivity ratio to 1:1 for a concentration of 200 ppm for each 
product. The experimental results for this scenario are 
shown in Fig. 18. Here, the initial ethylene concentration is 
closer to 200 ppm, and it requires only a small increase in 
applied potential to reach the set-point. On the other hand, 
CO starts from a relatively high concentration compared to 
the set-point at 200 ppm. The initial surface potential acti-
vates the higher Kp and the controller starts increasing the 
surface potential further. At the same time, the error be-
tween CO concentration and its set-point is high, thus the 
electrode rotation speed continuously decreases resulting in 
a monotonic decrease in the CO concentration. As the rota-
tion speed further decreases below 200 RPM, the potential 
effects become more important for CO. When C2H4 reaches 
its set-point and the controller starts to decrease the surface 
potential, the decrease in CO concentration loses momentum 
as the potential effects kick in, increasing the production of 
CO. To account for this, the MIMO controller reduces the 
rotation speed more strongly after around 13000 s to over-
come the effects of fluctuating surface potential until both 
set-points are eventually reached after around 20000 s of the 
start of the experiment.

In the third scenario, the system is driven to a se-
lectivity ratio of around 4:5 as shown in Fig. 19, where the  

set-points for C2H4 and CO concentrations are 283 and 
350 ppm, respectively. In this experiment, the initial CO 
concentration is already close to its set-point, whereas the 
C2H4 concentration is less than half that of its set-point. 
Here, the C2H4 controller steadily increases the surface 
potential to decrease the error between the set-point and 
the estimator model predictions. Although the CO con-
troller slowly increases the rotation speed to raise the CO 
concentration, the strong increase in surface potential 
decreases the CO concentration. Because this surface po-
tential increase occurs while the rotation speed is still at 
relatively slow rates, the surface potential effect is influ-
ential on the CO concentration. The fast increase of the 
surface potential causes a small overshoot in the C2H4 

concentration but this is then corrected by slowly de-
creasing the applied potential and driving C2H4 slowly to 
its set-point. After this task is achieved, the rotation is 
increased to drive CO to its desired set-point.

In all 3 experiments, different set-points are reached for 
both C2H4 and CO, thus experimentally demonstrating that 
the developed control scheme is efficient. It must not be lost 
in the technical description of this paper the fact that this is 
the first time that this level of control is achieved for multiple 
products in a CO2 electrochemical RCE reactor. The MIMO 
controller demonstrated here delivers on the promise of 
RNN-based modeling frameworks for the control of advanced 
reactors driven purely by electricity. This should motivate 
further integration of RNN-based modeling in the research 
and development of electrified chemical and fuels manu-
facturing technologies.

Fig. 18 – Closed-loop experimental results for the C2H4:CO selectivity ratio of 1:1 which results in a higher selectivity towards 
ethylene compared to the economically optimal case.
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6.2. Experimental errors in closed-loop experiments and 
outlook

Each closed-loop experiment started from the same initial 
conditions of applied potential and rotation and yielded 189, 
172 and 132 ppm for C2H4 and 346, 328 and 335 ppm for CO after 
reaching the first steady state at around 5000 s from the start of 
the experiment. This highlights the experimental difference in 
each of the catalysts freshly prepared, and demonstrates the 
need for a feedback corrector to adjust the model predictions to 
the GC points for each individual experiment.

Furthermore, there are shifts in current. For example, if 
the system generates less current in a new experiment at the 
same surface potential compared to the base case steady 
state experiments, it is very probable to obtain less ethylene. 
These dynamics are captured by the RNN model as many 
case scenarios are fed to the model during the training. One 
of the reasons for this current shift might be the lack of 
Ohmic drop compensation feature on the LabVIEW interface. 
As mentioned in Remark 1, the electrolyte solution is mea-
sured in the beginning of the experiment. However, the re-
sistance of the electrolyte solution might increase or 
decrease as the experiment proceeds, and the surface po-
tential calculations are affected by these resistance shifts. It 
would be necessary to program into the potentiostat con-
troller an algorithm that, without changing the applied po-
tential, performs electrochemical impedance spectroscopy or 
a current interrupt analysis during a few seconds to measure 
the evolving solution resistance. This will be the focus of 
future works as we expand the MIMO controller to account 
for more operation variables and products.

7. Conclusion

In summary, this work presented the development and im-
plementation of a recurrent neural network-based modeling 
framework on an experimental electrochemical reactor. The 
RNN-based modeling framework was used to represent re-
lationships between process variables and gas product con-
centrations at the outlet of the reactor. The proposed 
approach combined the output of LSTM model-based gas- 
phase ethylene and carbon monoxide concentration esti-
mators with GC measurements to implement multivariable 
control of the production rate of these two products in the 
reactor. Steady state data was used to construct a feedfor-
ward neural network for the calculation of feasible operating 
points. Using this model and an optimization model, eco-
nomically-optimal, energy-efficient set-points were com-
puted. In the absence of first-principle modeling descriptions 
needed to implement an efficient control system for the re-
actor, experimental GC measurements and data regression 
techniques were used to construct probable experimental 
trajectories for experiments run over lengths of 7 h while the 
GC data available is discrete in nature, and only collected 
every 20 min. The enhanced trajectory dataset was used to 
train the LSTM model, which is the basis for the gas con-
centration estimator. In the implementation of the esti-
mator-based multi-input multi-output control system, the 
real-time GC measurements are fed back to the controller for 
which the controller parameters have been tuned in different 
operating regions in order to better respond to the nonlinear 
nature of the electrochemical process. The estimator-based 
multi-input multi-output control system was successfully 

Fig. 19 – Closed-loop experimental results corresponding to set-points with C2H4:CO selectivity ratio of 4:5. 
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demonstrated to be capable of driving the process outputs to 
a variety of optimal set-points for C2H4 and CO.

Declaration of Competing Interest

The authors declare that they have no known competing fi-
nancial interests or personal relationships that could have 
appeared to influence the work reported in this paper.

Acknowledgements

This material is based upon work supported by the U.S. 
Department of Energy’s Office of Energy Efficiency and 
Renewable Energy (EERE) under the Advanced Manufacturing 
Office Award Number DE-EE0007613. The authors would like 
to thank Derek Richard for valuable comments on the 
manuscript preparation.

Disclaimer

This report was prepared as an account of a work sponsored 
by an agency of the United States Government. Neither the 
United States Government nor any agency thereof, nor any of 
their employees, makes any warranty, express, or implied, or 
assumes any legal liability or responsibility for the accuracy, 
completeness, or usefulness of any information, apparatus, 
product, or process disclosed, or represents that its use 
would not infringe privately owned rights. Reference herein 
to any specific commercial product, process, or service by 
trade name, trademark, manufacturer, or otherwise does not 
necessarily constitute or imply its endorsement, re-
commendation, or favoring by the United States Government 
or any agency thereof. The views and opinions of the authors 
expressed herein do not necessarily state or reflect those of 
the United States Government or any agency thereof.

References 

Bequette, B.W., 2003. Process control: Modeling, design, and si-
mulation. Prentice Hall Professional.

Bristol, E., 1966. On a new measure of interaction for multi-
variable process control. IEEE Trans. Autom. Control 11, 
133–134.

Brubaker, M.M., Coffman, D.D., Hoehn, H.H., 1952. Synthesis and 
characterization of ethylene/carbon monoxide copolymers, a 
new class of polyketones. J. Am. Chem. Soc. 74, 1509–1515.

Canuso, V., 2022.Machine Learning-Based Operational Modeling 
of an Electrochemical Reactor: Handling Data Variability for 
Experimental Data. Master’s thesis. University of California, 
Los Angeles.

Chen, A., Zhang, X., Chen, L., Yao, S., Zhou, Z., 2020. A machine 
learning model on simple features for CO2 reduction electro-
catalysts. J. Phys. Chem. C. 124, 22471–22478.

Chen, D., Seborg, D.E., 2002. Relative gain array analysis for un-
certain process models. AIChE J. 48, 302–310.

Cheng, Y., Karjala, T.W., Himmelblau, D.M., 1995. Identification of 
nonlinear dynamic processes with unknown and variable 
dead time using an internal recurrent neural network. Ind. 
Eng. Chem. Res. 34, 1735–1742.

Çıtmacı, B., Luo, J., Jang, J.B., Canuso, V., Richard, D., Ren, Y.M., 
Morales-Guio, C.G., Christofides, P.D., 2022a. Machine 
learning-based ethylene concentration estimation, real-time 
optimization and feedback control of an experimental elec-
trochemical reactor. Chem. Eng. Res. Des. 185, 87–107.

Çıtmacı, B., Luo, J., Jang, J.B., Korambath, P., Morales-Guio, C.G., 
Davis, J.F., Christofides, P.D., 2022b. Digitalization of an 

experimental electrochemical reactor via the smart manu-
facturing innovation platform. Digit. Chem. Eng. 5, 100050.

Corriou, J.-P., 2004. Process Control: Theory and Applications, 
Second ed..,. Springer,.

Cortes, C., Mohri, M., Rostamizadeh, A., 2012.L2 regularization for 
learning kernels. arXiv preprint arXiv:1205.2653.

De Luna, P., Hahn, C., Higgins, D., Jaffer, S.A., Jaramillo, T.F., 
Sargent, E.H., 2019. What would it take for renewably powered 
electrosynthesis to displace petrochemical processes? Science 
364, 3506.

Hambali, N., Masngut, A., Ishak, A.A., Janin, Z., 2014.Process 
controllability for flow control system using Ziegler-Nichols 
(ZN), Cohen-Coon (CC) and Chien-Hrones-Reswick (CHR) 
tuning methods, in: Proceedings of the International 
Conference on Smart Instrumentation, Measurement and 
Applications, Kuala Lumpur, Malaysia.

Hussain, M.A., 1999. Review of the applications of neural net-
works in chemical process control—simulation and online 
implementation. Artif. Intell. Eng. 13, 55–68.

Jang, J., Rüscher, M., Winzely, M., Morales-Guio, C.G., 2022. 
Gastight rotating cylinder electrode: towards decoupling mass 
transport and intrinsic kinetics in electrocatalysis. AIChE J. 65, 
e17605.

Jin, S., Hao, Z., Zhang, K., Yan, Z., Chen, J., 2021. Advances and 
challenges for the electrochemical reduction of CO2 to CO: 
From fundamentals to industrialization. Angew. Chem. Int. 
Ed. 60, 20627–20648.

Khalid, M., Omatu, S., Yusof, R., 1993. Mimo furnace control  
with neural networks. IEEE Trans. Control Syst. Technol. 1, 
238–245.

Kramer, A., Morgado-Dias, F., 2018.Applications of artificial 
neural networks in process control applications: A review, in: 
Proceedings of International Conference on Biomedical 
Engineering and Applications, Funchal, Portugal.

Luo, J., Canuso, V., Jang, J.B., Wu, Z., Morales-Guio, C.G., 
Christofides, P.D., 2022. Machine learning-based operational 
modeling of an electrochemical reactor: handling data varia-
bility and improving empirical models. Ind. Eng. Chem. Res. 
61, 8399–8410.

Mohanty, S., 2009. Artificial neural network based system iden-
tification and model predictive control of a flotation column. J. 
Process Control 19, 991–999.

Nitopi, S., Bertheussen, E., Scott, S., Liu, X., Engstfeld, A., Horch, 
S., Seger, B., Stephens, I., Chan, K., Hahn, C., et al., 2019. 
Progress and perspectives of electrochemical CO2 reduction on 
copper in aqueous electrolyte. Chem. Rev. 119, 7610–7672.

Ramdin, M., De Mot, B., Morrison, A.R.T., Breugelmans, T., van 
den Broeke, L.J.P., Trusler, J.P.M., Kortlever, R., de Jong, W., 
Moultos, O.A., Xiao, P., Webley, P.A., Vlugt, T.J.H., 2021. 
Electroreduction of CO2/CO to C2 products: process modeling, 
downstream separation, system integration, and economic 
analysis. Ind. Eng. Chem. Res. 60, 17862–17880.

Ren, Y.M., Alhajeri, M.S., Luo, J., Chen, S., Abdullah, F., Wu, Z., 
Christofides, P.D., 2022. A tutorial review of neural network 
modeling approaches for model predictive control. Comput. 
Chem. Eng. 165, 107956.

Richard, D., Tom, M., Jang, J., Yun, S., Christofides, P.D., Morales- 
Guio, C.G., 2023. Quantifying transport and electrocatalytic 
reaction processes in a gastight rotating cylinder electrode 
reactor via integration of computational fluid dynamics 
modeling and experiments. Electrochim. Acta 440, 141698.

Roberts, F.S., Kuhl, K.P., Nilsson, A., 2015. High selectivity for 
ethylene from carbon dioxide reduction over copper nano-
cube electrocatalysts. Angew. Chem. 127, 5268–5271.

Scarselli, F., Tsoi, A.C., 1998. Universal approximation using 
feedforward neural networks: a survey of some existing 
methods, and some new results. Neural Netw. 11, 15–37.

Semeniuta, S., Severyn, A., Barth, E., 2016.Recurrent dropout 
without memory loss, in: Proceedings of COLING 2016, the 
26th International Conference on Computational Linguistics: 
Technical Papers, Osaka, Japan.

Soomro, S.S., Cozzula, D., Leitner, W., Vogt, H., Müller, T.E., 2014. 
The microstructure and melt properties of CO-ethylene 

680 Chemical Engineering Research and Design 191 (2023) 658–681  



copolymers with remarkably low CO content. Polym. Chem. 5, 
3831–3837.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., 
Salakhutdinov, R., 2014. Dropout: a simple way to prevent 
neural networks from overfitting. J. Mach. Learn. Res. 15, 
1929–1958.

Tang, W., Babaei Pourkargar, D., Daoutidis, P., 2018. Relative 
time-averaged gain array (RTAGA) for distributed control-or-
iented network decomposition. AIChE J. 64, 1682–1690.

Tian, Y., Zhang, J., Morris, J., 2001. Modeling and optimal control 
of a batch polymerization reactor using a hybrid stacked re-
current neural network model. Ind. Eng. Chem. Res. 40, 
4525–4535.

Timoshenko, J., Jeon, H.S., Sinev, I., Haase, F.T., Herzog, A., 
Roldan Cuenya, B., 2020. Linking the evolution of catalytic 
properties and structural changes in copper–zinc nanocata-
lysts using operando EXAFS and neural-networks. Chem. Sci. 
11, 3727–3736.

Wächter, A., Biegler, L.T., 2006. On the implementation of an 
interior-point filter line-search algorithm for large-scale non-
linear programming. Math. Program. 106, 25–57.

Wu, Z., Rincon, D., Christofides, P.D., 2020. Process structure- 
based recurrent neural network modeling for model pre-
dictive control of nonlinear processes. J. Process Control 89, 
74–84.

Wu, Z., Rincon, D., Luo, J., Christofides, P.D., 2021. Machine 
learning modeling and predictive control of nonlinear pro-
cesses using noisy data. AIChE J. 67, e17164.

Wu, Z., Tran, A., Rincon, D., Christofides, P.D., 2019. Machine 
learning-based predictive control of nonlinear processes Part 
I: theory. AIChE J. 65, e16729.

Yin, X., Liu, J., 2017. Input–output pairing accounting for both 
structure and strength in coupling. AIChE J. 63, 1226–1235.

Yu, Y., Si, X., Hu, C., Zhang, J., 2019. A review of recurrent neural 
networks: LSTM cells and network architectures. Neural 
Comput. 31, 1235–1270.

681 Chemical Engineering Research and Design 191 (2023) 658–681  


	Machine learning-based ethylene and carbon monoxide estimation, real-time optimization, and multivariable feedback control o...
	1. Introduction
	2. Preliminaries
	2.1. Process overview
	2.2. Experimental setup
	2.3. Open-loop step change experiments

	3. Modeling and optimization of the experimental electrochemical process
	3.1. FNN modeling for steady state set-points
	3.2. Real-time optimization

	4. Dynamic modeling of the experimental electrochemical process
	4.1. Automatic data fitting to GC measurements
	4.2. Recurrent neural networks and LSTMs
	4.3. LSTM based RNN model architecture
	4.4. Regularization effects on experimental data modeling
	4.5. Implementation of the LSTM model in real-time operation

	5. MIMO control architecture and controller tuning
	5.1. Using data for process parameter extraction
	5.2. Relative gain array
	5.3. Controller tuning
	5.4. Estimator design using GC measurements

	6. Closed-loop experimental results and discussion
	6.1. Experimental results
	6.2. Experimental errors in closed-loop experiments and outlook

	7. Conclusion
	Acknowledgements




