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A B S T R A C T

Steam methane reforming (SMR) is one of the most widely used hydrogen (H2) production processes. In
addition to its extensive utilization in industrial sectors, hydrogen is expanding it share as a clean energy
carrier, and more sustainable and efficient H2 production methods are continuously being explored and
developed. One method replaces conventional fossil fuel-based heating with electrical heating through the
flow of electrons across the reformer. At UCLA, an experimental setup was built of an electrically heated
steam methane reforming process. This paper describes the system components, explains the digitalization of
the experimental setup and introduces methods for building a first-principles-based dynamic process model
using parameters estimated via data-driven methods from process experimental data. The modeling approach
uses a lumped parameter approximation and employs algebraic equations to solve for gas-phase variables.
The reaction parameters are calculated from steady-state experimental data, and the temperature change is
modeled with respect to change in electric current using a first-order dynamic model. The overall dynamic
process model is then used in a computational model predictive control (MPC) scheme to drive the process
to a new H2 production set-point under unperturbed and steam flowrate disturbance cases. The performance
and robustness of the proposed MPC scheme are compared to the ones of a classical proportional–integral (PI)
controller and are demonstrated to be superior in terms of closed-loop response, robustness, and constraint
handling.
1. Introduction

Hydrogen (H2) plays a fundamental role in the decarbonization
and electrification of various industrial applications as a versatile and
clean energy carrier (Ramachandran and Menon, 1998; Tarhan and Çil,
2021). It serves as a building block for the synthesis of ammonia (NH3),
methanol (CH3OH), fertilizers and petrochemicals (Green, 1982). In-
dustries are increasingly using H2 as a fuel source for power generation,
reducing greenhouse gas emissions, and promoting environmentally
friendly practices. Hydrogen-powered vehicles, such as fuel cell electric
vehicles, are emerging as an alternative to the battery-based electric
vehicles in the transportation sector (Tanç et al., 2019). Industries
like steel manufacturing utilize hydrogen in the reduction of iron ore,
a process that offers a cleaner alternative to conventional methods,
decreasing carbon emissions. This makes hydrogen an essential element
in the pursuit of more sustainable metal production (Liu et al., 2021).
Furthermore, the refining industry employs hydrogen extensively for
desulfurization and hydrocracking processes (Choudhary and Saraf,
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1975). These applications enhance the quality of fossil fuels and en-
sure compliance with environmental standards, which showcases the
significance of H2 in refining operations.

The industrial sector employs various methods to produce hydro-
gen, each tailored to specific needs and environmental considerations.
Water electrolysis, is a clean and increasingly popular but energy
intensive method that uses electricity to split water into hydrogen
and oxygen. The rise of green hydrogen emphasizes the value of elec-
trolysis powered by renewable energy sources, which also minimizes
carbon emissions (Ursua et al., 2011). Thermochemical water splitting
is also an emerging alternative that leverages high temperatures and
chemical processes to release hydrogen from water or hydrogen-rich
compounds (Safari and Dincer, 2020). The most widespread method for
the production of hydrogen, however, is steam reforming, where a hy-
drocarbon or coal undergoes a chemical reaction with steam to generate
hydrogen and carbon dioxide as schematically shown in Fig. 1(a) (Niko-
laidis and Poullikkas, 2017). Natural gas steam reforming gives the
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highest yield of H2 among hydrocarbons and coal. Methane is the
molecule with the highest H:C molar ratio and the highest theoret-
ical H2 yield. The yields achieved in industrial hydrogen produc-
tion are quite different from the maximum possible theoretical yields
(Fig. 1(b)). This, however, is not due to a low degree of conversion
but it is due to the fact that the large amount of energy needed
to produce hydrogen is usually supplied by the raw material itself.
Burning of natural gas to provide heat to the strongly endothermic
steam reforming reaction, generates excess CO2.

Among the different methods for industrial H2 production, the most
ommon is steam methane reforming (SMR), accounting for 48% of
he total current hydrogen production (Uddin et al., 2020). Projections
ndicate that SMR will still be the most widespread H2 production
echnique in 2050 (Uddin et al., 2020), particularly due to natural gas
vailability and the challenges with scaling up electrolyzer manufactur-
ng to global scales (IEA, 2023). As industries prioritize sustainability,
dvancements in these production methods, coupled with innovations,
re central in shaping a greener and more efficient future for hydrogen
roduction within the industrial sector.

A sustainable enhancement to steam methane reforming involves
ubstituting fossil fuel combustion with electricity to supply the neces-
ary heat for the chemical reactions (Wismann et al., 2019). The use
f renewable, carbon-free electricity to generate heat in an electric
esistance-heated reformer promises to (i) displace natural gas com-
ustion as a source of heat, (ii) deliver more compact, economic and
fficient units for competitive H2 manufacture, and (iii) increase H2
ields per ton of natural gas while reducing its CO2 emission intensity
Fig. 1(b)) (Perkin, 2000).

In an electrically heated SMR process, two electrodes are con-
ected to the top and bottom of the tubular reactor with a washcoated
atalyst, and an electric current is applied, resulting in a flow of
lectrons to generate heat. This flow of electrons results in a more
niform distribution of temperature in the radial direction, as shown
n Fig. 1(a). In addition to electrically heated SMR, a novel method is
ntroduced in Malerød-Fjeld et al. (2017) that leverages electric current
or membrane separation of H2. This process occurs within a proton-
onducting membrane reactor, wherein the generated H2 is extracted
hrough a flow of electrons across a proton-permeable membrane. The
eal-time removal of H2 changes the reaction thermodynamics to shift
he equilibrium reactions towards more production of H2 (Malerød-
jeld et al., 2017). This increases the hydrocarbon conversion to 99%,
hich is around 74%–85% using conventional methods (Nikolaidis and
oullikkas, 2017). At UCLA, we have constructed an experimental setup
or both electrically heated SMR and proton-conducting membrane
eforming processes to further examine the reaction dynamics, and to
evelop modeling and control strategies while comparing these two
echnologies directly.

Model predictive control (MPC) plays a significant role in enhancing
he efficiency and operability of industrial chemical processes, and
ould play a significant role in enhancing the efficiency and operability
f steam methane reforming processes, particularly those connected
o future electricity grids with high penetration of renewables. In
MR, where complex chemical reactions and heat transfer dynamics
re tightly coupled, MPC will serve as a powerful tool for optimizing
ystem performance. By using real-time measurements and predictive
odels, MPC can dynamically adjust operating parameters such as

emperature, pressure, and inlet flow rates, to ensure optimal hydrogen
roduction and minimize energy consumption. Although a great deal of
ork has been carried in the modeling and control of traditional fired
MR systems, significant knowledge gaps remain in the electrification
f SMR reactors. For example, a computational study was conducted
y Wu et al. (2017) using a robust CFD model for proposing an MPC
or a traditional fired SMR process, and the results were compared to
PI controller. In Zecevic and Bolf (2020), a computationally efficient

losed-loop system with a gain-scheduled MPC was introduced for a
2

team methane reformer, using a first-principle model for a fired re-
orming tube reactor to represent process dynamics. The gain-scheduled
PC, considering critical parameters such as outlet methane concentra-

ion and temperature, demonstrated adaptive operation, outperforming
PID controller and offering energy savings of 3%–5% (Zecevic and

olf, 2020). This not only improved the overall process efficiency
ut also enabled better responses to disturbances and variations in
perating conditions. The importance of MPC in SMR lies in its ability
o increase yield and reduce energy costs, thereby contributing to the
ustainability and economic viability of hydrogen production through
team methane reforming. It can be envisioned that MPC has an even
igger role to play in the implementation of future electrified SMR
ystems. In electrified systems, in addition to temperature, pressures,
nd flow rates, there is a need for the dynamic optimization of currents
nd voltages while ensuring the process operation to be within a safe
perating regime. In this work, we present our preliminary efforts
owards the construction, digitalization, modeling and control of an
lectrified steam methane reforming reactor. The key contribution is
he development of a model and of a model predictive controller that
ses the developed model and suitable constraints to achieve optimal
losed-loop responses. The developed model and the controller can be
olved fast and thus can be implemented in a practical setting.

. Preliminaries

.1. Nomenclature

Definitions of variables used in the modeling of the reactor:

• 𝐴𝑖: Pre-exponential factor for adsorption constant 𝐾𝑖 of gas
species 𝑖 [Pa−1 for 𝑖 = CH4,H2,CO and unitless for 𝑖 = H2O]

• 𝐴𝑗 : Pre-exponential factor for rate coefficient 𝑘𝑖 for reaction 𝑗
[mol Pa0.5 (kg–cat s)−1 for 𝑗 = 1 (SMR reaction),
mol (Pa kg–cat s)−1 for 𝑗 = 2 (WGS reaction)]

• 𝐶𝑖: Concentration of species 𝑖 [mol m−3]
• 𝐶𝑝𝑖 : Specific heat capacity of gas species 𝑖 [J (mol K)−1]
• 𝐸𝑗 : Activation energy for reaction 𝑗 [J mol−1]
• 𝐹 : Total molar flow of gases [mol s−1]
• 𝐹𝑖: Molar flow of gas species 𝑖 [mol s−1]
• 𝐾𝑖: Adsorption constant of gas species 𝑖 [Pa−1 for 𝑖 = CH4,H2,CO

and unitless for 𝑖 = H2O]
• 𝐾𝑗 : Equilibrium constant for reaction 𝑗 [Pa2 for 𝑗 = 1 (SMR

reaction), unitless for 𝑗 = 2 (WGS reaction)]
• 𝑘𝑗 : Reaction rate constant of reaction 𝑗 [mol Pa0.5 (kg–cat s)−1

for 𝑗 = 1 (SMR reaction), mol (Pa kg–cat s)−1 for 𝑗 = 2 (WGS
reaction)]

• 𝑃𝑖: Partial pressure of gas species 𝑖 [Pa]
• 𝑞: Outlet volumetric flowrate [m3 s−1]
• 𝑞𝑖: Outlet volumetric flowrate of gas species 𝑖 [m3 s−1]
• 𝑟𝑗 : Rate of reaction for reaction 𝑗 [mol (kg s)−1]
• 𝑅: Universal gas constant [J (mol K)−1]
• �̄�: Alloy tube resistance [Ohm]
• 𝑇 : Reactor temperature [K]
• 𝑇𝑝𝑖 : Temperature of inlet gas species 𝑖 [K]
• 𝑇𝑠: Temperature of the surroundings [K]
• 𝑈𝐴: Overall heat transfer coefficient times the heat transfer area

[J (s K)−1]
• 𝑉 : Reactor volume [m3]
• 𝑊 : Catalyst weight [kg]
• 𝛥𝐻𝑟𝑗 : Heat of reaction 𝑗 [J mol−1]
• �̇�𝑝𝑖 : Mass flow rate of gas species 𝑖 [kg s−1]

−3
• 𝜌𝑖: Density of the gas species 𝑖 in the reactor [kg m ]
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Fig. 1. (a) Schematic comparison of conventional fired steam methane reforming and electrically heated steam methane reforming. (b) Comparison of hydrogen production from
hydrocarbons and coal for conventional fired and electric resistance-heated steam reformers.
2.2. Process overview

The overall goal of the joule-heating steam methane reforming
process is to convert methane to produce emissions-free hydrogen gas
in an electrically heated steam methane reformer. Instead of utilizing a
conventional fossil fuel-based heating source, electrical heating is used
in our work to heat up the reactor by applying an electric current
directly through the reactor tube. In our experimental setup, methane,
steam, and argon gases are flown into the reactor tube under certain
temperature and pressure to react and produce hydrogen gas. The
overall reaction can be demonstrated by the two independent reactions,

Steam reforming ∶ CH4 + H2O ⇌ 3H2 + CO, 𝛥H298 = 206.1 kJ mol−1

(1a)
Water gas shift ∶ CO + H2O ⇌ CO2 + H2, 𝛥H298 = −41.15 kJ mol−1

(1b)

The first reaction (Eq. (1a)) is the reforming reaction which converts
methane and water to carbon monoxide and hydrogen. The second
reaction (Eq. (1b)) is the water–gas shift reaction, which converts
carbon monoxide and water to carbon dioxide and hydrogen gas. The
overall reaction is endothermic due to the combination of a strongly
endothermic reforming reaction and a slightly exothermic water-gas
shift reaction. In general, the intrinsic reaction kinetics and mass trans-
port phenomena occurring in the reactor need to be considered when
determining the reactor dynamics. In this work, we focus more on the
reaction kinetics since the internal and external diffusion resistances
of catalyst particles does not appear in the intrinsic reaction rates.
Considering the reaction kinetics, the rate determining step is the
activation of methane, since it has a stable structure that demands
higher energy to break the C–H bond (Wei and Iglesia, 2004a,b,c,d,e,f).
In order to catalyze the activation of methane in our experiment, a
highly active Ni-based catalyst is used. Furthermore, the experiment
is also performed under a high temperature to overcome the energy
barrier and increase the reaction rates.

The electrical heating provides a radially near-uniform heat supply
with a very small temperature gradient that helps to prevent carbon
formation by keeping the gas temperature close to the equilibrium
temperature (Wismann et al., 2019). Also, the temperature gradient
between the inner and outer wall of the reactor is very small in contrast
to burner-heated reactors, which helps to reduce the thermal stress
and extends reactor lifetime (Wismann et al., 2019). This also means
that the thermal gradient across the washcoated catalyst is very small,
which improves the catalyst utilization. Wismann et al. (2019) also
suggests that electrically heated SMR reactors can reach the same
3

conversion as industrial burner-heated tubular reformers, but with a
reactor volume up to 100 times smaller.

The reactions shown in Eq. (1) are complex reactions, as they are
parallel in H2O and series in CO. Furthermore, all the reactants and
products are in gas phase. As a result, modeling the reaction kinetics
for this system is inherently challenging since, due to the presence
of complex reactions, the conversion cannot be used for modeling.
In our simulations, the concentrations of hydrogen, methane, water
vapor, carbon dioxide, carbon monoxide, and argon are the outputs that
depend on the current flowing thorough the reactor, and the current
is manipulated to adjust the temperature of the reactor. Prior to the
experiment, pure H2 at high temperature is flown through the tubular
reactor to activate the nickel catalyst. Following the H2 flow, Ar is
flown to remove the excess hydrogen remaining in the system before
CH4 and steam are flown. The experimental process flow diagram is
shown in Fig. 2.

We built an experimental steam methane reforming setup at UCLA,
whose details are presented in Richard (2021). A similar setup was built
by Wismann et al. (2019) and a series of experiments were conducted
to understand the concentration and temperature distribution better
inside the reactor. In our work, we initially focus on the development
of a nonlinear first-principles-based model that incorporates kinetic
rate parameters extracted from experimental data obtained from our
experimental reactor. This model is subsequently used in the present
work for the development and evaluation via numerical simulations
of a model predictive controller. Eventually, we aim to experimentally
implement the model predictive controller to control the joule-heated
SMR reactor. Our longer term goal is to use these models as a starting
point to build controllers for the more complex process of SMR in a
proton membrane reactor setup (where hydrogen production via SMR
and hydrogen removal via a proton membrane occur in the same unit)
in our laboratory.

3. Digitalization of the experimental setup

In this section, we present the digitalization of the experimental
reactor, which is an integral part of measurement sensor data collection
and control action implementation. Specifically, the data collected via
the digitalized experimental setup described below is used to fit the
model parameters for the dynamic model used in MPC.

3.1. Overview

An experimental setup is built at UCLA for two steam methane
reforming reactors. This experimental setup makes it possible to con-
duct experiments with a proton membrane reactor and a joule heating
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Fig. 2. Process flow diagram for experimental joule-heating steam methane reforming process.
steam methane reformer. Both reactor outlets can be quantified using
a gas chromatograph. The inlet flow gases can be directed to either of
the processes by arranging the valve configuration. This study focuses
on electrically heated steam methane reforming. The majority of the
lab equipment for both processes are common. The main difference
between both processes is the source of applied potential. The proton
membrane reactor uses a potentiostat (Metrohm 302N) to adjust the
current flowing through the reactor for separation of hydrogen through
a BaZr0.8-x-yCexYyO3−𝜎 (BCZY) membrane while the joule-heating setup
uses a power supply to flow current to heat up the reactor, replacing
fossil fuel-based heating (Richard, 2023). The experimental setup at
UCLA is shown in Fig. 3.

Both setups are digitalized through a connection to a common Labo-
ratory Virtual Instrument Engineering Workbench (LabVIEW) interface.
Through LabVIEW, it is possible to manipulate actuators and read data
from the sensors in real time. The previous experience with LabVIEW
for the electrochemical CO2 reduction reactor discussed in Çıtmacı
et al. (2022) considerably accelerated the building of the new interface.
It is possible to collect data and perform real-time control with the
experimental steam methane reforming setups through LabVIEW.

3.2. Sensors and actuators

The experimental setup involves constant change of parameters
such as temperature, pressure, current, etc. In order to measure these
changes, multiple sensors, including thermocouples (Omega K-type)
and pressure transducers (Omega PX359 - 1KAI), were installed. There
are three thermocouples in the system. The first is placed in the middle
of the wall on the joule-heated tubular reactor. The second is placed
on the inside the steam box. The third one is placed on the wall of the
gas flow pipe that is right before the inlet to the reactor.

There is one pressure transducer used for the joule-heated steam
methane reforming process, which measures the pressure of the flow
system. This pressure can be adjusted and kept constant through back
pressure regulators (Equilibar) attached to the system. The aforemen-
tioned thermocouples, pressure transducers, and back pressure regu-
lators are digitalized through a National Instruments Compact Rio. A
Compact Rio is a reconfigurable, industrial grade data collection system
that can work with LabVIEW.
4

The gas flowrates are set through MKS mass flow controllers (MFC)
controlled by MKS 946 Vacuum system controller. It is possible to set
flowrates for 5 gases, and the unit is standard cubic centimeters per
minute (sccm). The MFCs are also connected to the LabVIEW interface
and their set-point can be changed in real time.

The SMR system is equipped with two steam generators that supply
steady inlet streams of water vapor to the joule heating and proton
membrane reactors. Each steam box houses a bubbler encased within
fiberglass thermal insulation. Using a K-type thermocouple, an Arcon
temperature actuator, and electrical heating tape, a bubbler is set to
a desired steam-to-carbon (s/c) ratio via temperature control. At a
specific water temperature, the Antoine equation provides the vapor
pressure of steam in the bubbler which is effectively the partial pressure
of steam in the inlet gas mixture. The temperature sensor and Arcon
actuator amount to PI control over the thermodynamic equilibrium of
the inlet gas mixture and liquid water phase in each of the bubblers.

The tubular reactor is the main component of the joule-heated
SMR setup. The tubular reactor is shown in Fig. 4. The reactor tube
(Goodfellow Corporation: 72.8% Fe, 22% Cr, 5% Al, 0.1% Y, and %0.1
Zr alloy) has a length of 500 mm, an outer diameter of 6 mm, an inner
diameter of 5.4 mm, and is wrapped in a fiberglass based insulation
layer to prevent heat losses (not shown in Fig. 4) (Richard, 2021, 2023).
In addition to this layer, there is an insulation furnace (Applied Test
Systems, 321C-75-8-12) around the reactor tube. The furnace has a
ceramic foam material as an extra layer of insulation. The furnace is
used to provide thermal insulation only for these experiments and was
not used to provide heat. Power cables from the power supply are
connected to each end of the reactor tube. Using the power supply a
potential is applied across the axial direction of the reactor driving a
current through the metal tube. In this configuration, heat is uniformly
generated along the length of the tube by the passage of electrons
through the resistive metal reactor tube. The power supply shown in
Fig. 5. A Chroma programmable DC power supply (62012P-40-120)
is the main actuator in the experimental setup. It is connected to the
LabVIEW interface through a driver provided by the manufacturer. It
is possible to set the applied potential through the power cords. It
is also possible to set a current set-point, and the power supply will
accordingly adjust the applied potential to obtain the given current
set-point. To control the joule-heating SMR setup, the power supply
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Fig. 3. Experimental setup for steam methane reforming processes at UCLA.
can adjust the current flowing through the reactor to provide the heat
necessary for the reactions.

Fabrication of the washcoated reactor tubes (procedure with which
catalyst is deposited on the tube walls) began with pretreatment of
the FeCr Alloy tube followed by application of the coating in a multi-
step process. Pretreatment was conducted by running a gentle flow
of air through the tube while being heat treated at 950 ◦C for 10 h.
The purpose of the pretreatment was to form a uniform oxide layer
on the surface of the tube for the washcoat to adhere to. All high
temperature changes including pretreat and calcination used a ramp
rate of 1.4 ◦C to prevent crack formation in the washcoat or oxide layer.
After pretreatment, Zr powder was mixed with 20 mL of deionized
water whose pH was adjusted to 10 by adding a drop of 25% aqueous
ammonium hydroxide. The solution was mixed with a magnetic stir
bar at 300 rpm for 30 min, followed by bath sonication for 20 min.
Immediately after sonication, the slurry was inserted into the tube using
a pipet until the tube was filled. The tube was oriented vertically and
plugged at the bottom with a nipple designed to slowly release the
liquid upon applying a slight pressure inside the tube. Once filled, a
syringe pump was attached to the top of the tube with a Swagelok
fitting. The syringe pump forced a controlled 20 ml min−1 flowrate of
air into the top of the tube, forcing the slurry to drain through the
nipple at a steady rate. A total of 50 ml of air was forced through
the tube in this way to ensure all excess slurry was drained. Coated
tubes were dried at 110 ◦C for 1 h before calcination at 500 ◦C for
1 h. Multiple layers were added to achieve the desired loading by
repeating the process just described. Catalyst addition was done by wet
impregnation of the washcoat using a solution of 10 g of nickel nitrate
hexahydrate dissolved in 15 ml of deionized water. Similar to how the
washcoat was applied, the impregnation solution was added to the tube
and allowed to set for at least 1 min to allow the solution to fill the
pores in the washcoat. The solution was drained, and air was gently
blown through the tube to remove excess solution. After air drying for
1 h, the tube was dried at 110 ◦C for 1 h followed by calcination at
500 ◦C for 1 h. By this technique, a stable washcoat was obtained with
a total washcoat loading of 39.8 mg.
5

An Agilent Technologies 7890B gas chromatogram is used to mea-
sure the gas phase products in real-time. A thermal conductivity detec-
tor (TCD) is used to quantify each gas product. The product gases first
go through a condenser to separate water vapor from the remaining gas
products. After condensing the steam, H2, CO2, CO, and unreacted CH4
flows into the GC. It takes 15 min for each gas sample analysis. Then,
it takes 3 min to cool down the GC for a new injection. Thus, the GC
can take one gas sample every 18 min.

In our setup, the GC measurements are initiated automatically using
an external Python code. The main algorithm behind automated GC
analysis is described in Çıtmacı et al. (2022). After each GC run is
finalized, the results are automatically processed by calculating the
areas underneath each gas species peak and comparing it to previously
calibrated peaks for each gas. An example of GC peaks is shown in
Fig. 6.

Remark 1. The calculation of the concentrations from the GC analysis
are delayed by 15 min. This situation is a challenge for dynamic pro-
cesses. However, the present work only uses steady state experiments
to evaluate the reaction kinetics parameters.

3.3. Smart manufacturing innovation platform connection

The LabVIEW interface is connected to Smart Manufacturing In-
stitute’s (CESMII) Innovation platform (SMIP). All the data generated
from the setup is sent to the platform securely through the query
language GraphQL (Hartig and Pérez, 2018). The profile for the SMR
system is shown in Fig. 7. It is organized and hierarchical; all the
attributes are defined under the equipment and each attribute has
endpoints to store relevant data.

SMIP will also be used to implement a model predictive controller
scheme in the future. Luo et al. (2023) demonstrated the use of SMIP
in real time control by transferring data between the lab computer
operating LabVIEW and another computer with solver licenses. Thus,
SMIP is planned to play a key role in implementing the MPC designed

in this computational paper on the experimental setup.
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Fig. 4. Reactor tube and insulation furnace.
Fig. 5. Power supply connected to the tubular reactor for electrical heating.
4. First-principles modeling

The SMR system is challenging to model due to the complex nature
of the SMR reactions, all species being in gas phase, transfer phenomena
in the reactor, and spatio-temporal variations in the tubular reactor
6

giving rise to partial differential equations. Due to these challenges, the
tubular reactor is generally modeled with CFD simulations, which are
computationally expensive and not practical to use for real-time predic-
tive control (Mokheimer et al., 2015; Lao et al., 2016). Latham et al.
(2011) modeled the SMR process as a burner-heated 1-dimensional
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Fig. 6. Gas chromatogram peaks for quantifying the gas phase products.
ixed-bed tubular reactor surrounded by a large-scale furnace using
irst-principles model equations and industrial data for online deploy-
ent of the model. The radiative heat transfer was modeled using

emperature from various locations on the tube in conjunction with
he Hottel zone method. As the scale of the process setup gets larger,
he effects of the transport phenomena becomes more important. In
his work, we propose a simplified modeling approach that can be
sed for a small scale experimental reactor and can be implemented
n real-time for predictive control. To this end, the modeling options
or approximating the tubular reactor as a continuously stirred tank
eactor (CSTR) are explored.

The first-principles model is based on the mole balance of each
pecies in a CSTR. However, compared to a liquid phase CSTR, the
as phase CSTR is harder to model using first principles because the
olumetric flow rate changes with reactions due to the gas phase
toichiometry change after reactions. The reactor is operated at 1 bar
nd between 600–1000 ◦C. Due to low pressure and high temperature
onditions, the ideal gas law is assumed to hold. As a result, in the
eactor, 𝑃𝑉 = 𝑛𝑅𝑇 must hold at all times, where 𝑃 is the pressure, and
is the total number of moles. Also, since the experimental setup is a

low system, 𝑃𝑞 = 𝐹𝑅𝑇 must also hold for the flow calculations, where
is the volumetric flowrate and 𝐹 is the molar flowrate.

Eq. (2) demonstrates the equations used for the calculation of
the reaction rates. The kinetic parameters and mechanism are taken
from Xu and Froment (1989) and Abbas et al. (2017). Each species has
an adsorption coefficient that is a function of temperature. The reaction
rates are written in terms of partial pressures due to them occurring in
the gas phase.

𝑟1,𝑆𝑀𝑅 =
𝑘1
𝑃 2.5

H2

⋅
𝑃CH4

⋅ 𝑃H2O −
𝑃 3
H2

⋅𝑃CO
𝐾1

(𝐷𝐸𝑁)2
(2a)

2,𝑊 𝐺𝑆 =
𝑘2
𝑃H2

⋅
𝑃CO ⋅ 𝑃H2O −

𝑃H2 ⋅𝑃CO2
𝐾2

(𝐷𝐸𝑁)2
(2b)

𝐷𝐸𝑁 = 1 +𝐾CO ⋅ 𝑃CO +𝐾H2
⋅ 𝑃H2

+𝐾CH4
⋅ 𝑃CH4

+𝐾H2O ⋅
𝑃H2O

𝑃H2

(2c)

𝑘𝑗 = 𝐴𝑗 ⋅ exp
(

−
𝐸𝑗

𝑅 ⋅ 𝑇

)

, 𝑗 = 1, 2 (2d)

𝐾𝑖 = 𝐴𝑖 ⋅ exp
(

−
𝛥𝐻𝑖

)

, 𝑖 = CH4,H2O,CO,H2 (2e)
7

𝑅 ⋅ 𝑇
In order to model the reactor as a lumped parameter system, it is
necessary to write the mass balance equations for each gas. This gen-
erates 6 nonlinear ordinary differential equations, as shown in Eq. (3).
Additionally, since the reaction rates are functions of temperature, it
is necessary to have an energy balance, which will be discussed in
Section 5.2.

d𝐶CH4

d𝑡
= 1

𝑉𝑅

(

𝐹CH4 ,0 − 𝑟1 ⋅𝑊 − 𝑞 ⋅ 𝐶CH4

)

(3a)

d𝐶H2O

d𝑡
= 1

𝑉𝑅

(

𝐹H2O,0 −
(

𝑟1 + 𝑟2
)

⋅𝑊 − 𝑞 ⋅ 𝐶H2O

)

(3b)

d𝐶CO
d𝑡

= 1
𝑉𝑅

((

𝑟1 − 𝑟2
)

⋅𝑊 − 𝑞 ⋅ 𝐶CO
)

(3c)

d𝐶H2

d𝑡
= 1

𝑉𝑅

(

𝐹H2 ,0 +
(

3 ⋅ 𝑟1 + 𝑟2
)

⋅𝑊 − 𝑞 ⋅ 𝐶H2

)

(3d)

d𝐶CO2

d𝑡
= 1

𝑉𝑅

(

𝑟2 ⋅𝑊 − 𝑞 ⋅ 𝐶CO2

)

(3e)

d𝐶Ar
d𝑡

= 1
𝑉𝑅

(

𝐹Ar,0 − 𝑞 ⋅ 𝐶Ar
)

(3f)

where 𝐹𝑖,0 is the inlet molar flowrate of species 𝑖.

Remark 2. In the experiment, a relatively short, in terms of axial
length, reactor and good thermal insulation are used. Therefore, a
lumped parameter system behavior is assumed when the first-principles
model is derived, which means there is no spatial variation in temper-
ature and concentration inside the reactor taken into account in the
model development. Furthermore, the reaction is expected to consume
more heat in the inlet section of the tubular reactor (Wismann et al.,
2019), indicating that most of the conversion occurs near the reactor
inlet and, for the remainder of the tube, the temperature and concen-
tration profiles do not vary significantly in the axial direction, thereby
justifying further the use of a lumped parameter modeling approach.

4.1. Constant pressure and temperature case

The constant pressure and temperature case is considered as a
starting point. In this case, the total concentration in the reactor, 𝐶𝑇 ,
is constant according to the ideal gas law,

𝐶 = 𝐶 + 𝐶 + 𝐶 + 𝐶 + 𝐶 + 𝐶 = 𝑃 (4)
𝑇 CH4 H2O CO H2 CO2 Ar 𝑅𝑇
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Fig. 7. The SMR system profile on SMIP.
Due to the species being in gas phase, the outlet volumetric flowrate,
𝑞, is a function of temperature and cannot be assumed constant for
all temperatures. Since 𝑞 appears as a new variable, one new equation
should be introduced, which is Eq. (4). This equation originates from
the ideal gas law since 𝐶𝑇 = 𝐹∕𝑞, where 𝐹 is the total outlet molar
flow rate, and indicates that the total gas concentration in the reactor
is a function of only temperature and pressure. As a result, the total
8

concentration inside the reactor does not change under constant tem-
perature and pressure, and its differential with respect to time can be
set to zero as follows:
d𝐶𝑇
d𝑡

=
d𝐶CH4

d𝑡
+

d𝐶H2O

d𝑡
+

d𝐶CO
d𝑡

+
d𝐶H2

d𝑡
+

d𝐶CO2

d𝑡
+

d𝐶Ar
d𝑡

= 0 (5)

where the differentiation of the total concentration term is written
as the summation of concentration differentials with respect to time
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w

𝐹

4

s

for each of the 6 gas species, which are already written explicitly in
Eq. (3). Substituting the individual species’ mass balances into Eq. (5),
we obtain the relation,
d𝐶𝑇
d𝑡

= 1
𝑉𝑅

(

𝐹CH4 ,0 + 𝐹H2O,0 + 𝐹H2 ,0 + 𝐹Ar,0 + 2𝑟1 𝑊 − 𝑞𝐶𝑇

)

(6)

hose right-hand side can be equated to zero to yield

𝑇 0 + 2𝑟1 𝑊 = 𝑞 𝑃
𝑅𝑇

(7)

from which the final expression for the outlet volumetric flow rate can
be obtained as

𝑞 =
𝐹𝑇 0 + 2𝑟1𝑊

𝑃
𝑅𝑇

(8)

This equation shows that the outlet flowrate is a function of the
reforming reaction rate. After replacing all occurrences of 𝑞 in Eq. (3)
by Eq. (8), the system of differential equations for constant temperature
can be solved with numerical integration and then compared via experi-
mental results. In the experimental setup, the constant temperature and
pressure conditions can be achieved by controlling the power supply to
regulate temperature through current and using pressure regulators.

4.2. Variable temperature case

The SMR reactor can be heated by electricity. Specifically, the
current across the reactor can be manipulated to heat the reactor
tube, which will change the temperature of the reactor. A higher
temperature can produce a higher amount of hydrogen and increase
methane conversion. Hence, it is necessary to derive the dynamic model
of the case with variations in temperature. However, in this case, the
total concentration changes according to the change in temperature.
Therefore, the expression of the volumetric flow rate also changes and
now depends on the derivative of the temperature with respect to
time. The derivation of the expression for the outlet volumetric flow
rate is done for the temperature-varying case using the same steps as
Eqs. (4)–(8) and shown in Eq. (9).

d𝐶𝑇
d𝑡

= − 1
𝑇 2

⋅
𝑃
𝑅

⋅
d𝑇
d𝑡

(9a)

d𝐶𝑇
d𝑡

= 1
𝑉𝑅

⋅
(

𝐹𝑇 ,0 + 2 ⋅ 𝑟1 ⋅𝑊 − 𝑞 ⋅ 𝐶𝑇
)

(9b)

d𝑇
d𝑡

= 𝑇 2 ⋅
𝑅
𝑃

⋅
1
𝑉𝑅

⋅
(

𝑞 ⋅ 𝑃
𝑅 ⋅ 𝑇

− 𝐹𝑇 0 + 2 ⋅ 𝑟1 ⋅𝑊
)

(9c)

𝑞 =
𝐹𝑇 0 + 2 ⋅ 𝑟1 ⋅𝑊

𝑃
𝑅𝑇

+
𝑉𝑅
𝑇

⋅
d𝑇
d𝑡

(9d)

.3. Steady state simulation and comparison with experimental results

The steady state simulation results at different temperatures are
hown in Fig. 9. When the temperature is below approximately 600 ◦C,

the volumetric flows for hydrogen and methane going out of the reactor
remain constant, which means there is nearly no reaction. When the
temperature is higher than 600 ◦C, the hydrogen volumetric flow
rate starts to increase, and the methane volumetric flow rate starts to
decrease. The reason behind this phenomenon is that the reaction rate
increases with the increase of temperature.

Remark 3. In the constant temperature and pressure case, the time to
reach the steady state is below 10 s, indicating extremely fast dynamics.

5. Model parameter estimation using experimental data

5.1. Reaction kinetics estimation

Steam methane reforming reaction mechanisms are taken from Xu
9

and Froment (1989). However, the catalyst used in Xu and Froment
(1989) is different from the catalyst used in our experimental study. As
a result, the reaction parameters presented in Xu and Froment (1989)
are not expected to be the same as those in our experiments. The
preparation of the catalyst will also impact the distribution of the active
sites and the reaction kinetics. Thus, the first step towards modeling the
system is to estimate the parameter values in our specific setup.

As discussed in Section 4, this experimental setup is modeled as a
continuous stirred tank reactor (CSTR; lumped parameter modeling).
Using the concentrations at steady state, the lumped parameter model
is compared to the experimental observations for gases. The activa-
tion energies presented in Xu and Froment (1989) for reforming and
water–gas shift reactions were re-calculated to align closely with our
experimental concentrations. The comparison between the experimen-
tal data and the model calculations after adjusting the activation energy
of the reforming reaction is shown on Fig. 9. An optimization problem
was established to minimize the difference between calculated pre-
exponential factors and activation energies, such that the steady states
of the dynamic model corresponded to experimental measurements.
After solving the optimization problem, the pre-exponential factors
and activation energies for the reforming reaction are found to be
4.22 ⋅1016 mol Pa0.5 (kg–cat s)−1 and 384.5 kJ/mol respectively, and for
the water–gas reaction are found to be 4.22⋅107 mol Pa (kg–cat s)−1 and
128.9 kJ/mol, respectively.

Remark 4. Due to the nonlinearity of the optimization problem, differ-
ent solvers may find different solutions corresponding to different local
optima. In our case, the best fit that gives the closest alignment with the
experimental data among various Python library 𝑆𝑐𝑖𝑃𝑦 solvers is taken
to be the final estimate of the parameters. Following this methodology,
the least-squares sequential quadratic programming method was used
as the final optimization solver.

Remark 5. Wismann et al. (2019) suggests that the temperature
difference between the inlet region and the outlet region of the reactor
may reach up to 300 ◦C. Our approach approximates the tubular reactor
as a lumped parameter system and does not account for the spatial
temperature gradient. This approach will be improved by modeling
with multiple lumped parameter models in series that will use the
temperature values from multiple thermocouple sensors attached to
the tubular reactor. The reaction kinetic parameters will be calculated
accordingly.

5.2. Temperature dependence with respect to time

As described in Section 4.2, the system of differential equations
needs to include one equation for the energy balance. This energy
balance can be approximated as follows:
d𝑇
d𝑡

=

𝐼2�̄� +
∑

𝑖 �̇�𝑝𝑖𝐶𝑝𝑖 (𝑇𝑝𝑖 − 𝑇 ) −𝑊 𝑟𝑆𝑀𝑅𝛥H𝑆𝑀𝑅(𝑇 ) −𝑊 𝑟𝑊𝐺𝑆𝛥H𝑊𝐺𝑆 (𝑇 ) + 𝑈𝐴(𝑇𝑠 − 𝑇 )
∑

𝑖 𝜌𝑖𝐶𝑝𝑖𝑉

(10)

The detailed energy balance of Eq. (10) is a modified version of the
energy balance presented in Fogler (2005), adapted for electrically
heated steam methane reforming. The heat input is replaced by 𝐼2�̄�,
which is the power supplied by the flow of electrons. This equation
requires further experiments to estimate the value of the heat transfer
coefficient (𝑈), as well as the coefficients for radiant and convective
heat losses to the environment. Determining these parameters requires
a much larger experimental data set and is not feasible with the current
data set, which is reserved to determine the key model parameters
related to reaction kinetics. The lack of knowledge of these parameters
in Eq. (10) renders it unusable in practice until further experimental
data is available. The temperature change with respect to time is
instead approximated using the available experimental data by fitting
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the data of current and temperature vs time to a first-order dynamic
model. The derivation of such a first-order model is shown in Eq. (11),
starting from the Laplace domain and its transition to time domain.

𝑇 ′(𝑠)
𝐼 ′(𝑠)

= 𝐾
𝜏𝑠 + 1

(11a)

𝑇 ′(𝑠) = 𝐾
𝜏𝑠 + 1

⋅ 𝐼 ′(𝑠) (11b)

′(𝑡) = 𝐼 ′(𝑡) ⋅𝐾 ⋅ (1 − e−𝑡∕𝜏 ) (11c)

𝑇 ′(𝑠) and 𝐼 ′(𝑠) are the deviation form notations for temperature and
current, respectively, while 𝐾 and 𝜏 are the process gain and time
constant, respectively. If the 𝐾 and 𝜏 values can be extracted from
the experimental setup by fitting the temperature dynamics following a
step change in the current, the time-derivative of the temperature can
be written as
d𝑇
d𝑡

= −
𝑇 − 𝑇𝑠

𝜏
+𝐾 ⋅

𝐼 − 𝐼𝑠
𝜏

(12)

where 𝑇𝑠 and 𝐼𝑠 are the initial steady-state values. Eq. (12), though
pproximate, is sufficiently accurate when its parameters are calculated
ia experimental data and, in this work, is used in lieu of Eq. (10). With
his approach, the reaction heat generation, power supply efficiency,
nd heat transfer coefficients are accounted for in the dynamic behavior
pproximation via 𝐾 and 𝜏. In order to estimate the values of 𝐾 and
, it is necessary to apply a step change in current and record the
ynamic behavior of the temperature. Thus, when the current was at
2 A, and the system was at steady state, the current was reduced to
A while the system was active, and the corresponding data shown

n Fig. 10 was collected. In addition to this, steady state temperature
alues are recorded at various currents, and the data is shown in
ig. 11. We note here that, as seen in Figs. 10 and 12, the dynamics
f the SMR are fast, with steady states being reached in under 2000 s,
hich justified the use of only steady-state data for identification of

he kinetic parameters. In particular, since the GC measurements are
nly available every 18 min (1080 s), even if transient data were to be
sed, only a maximum of two extra data points per run could be used
e.g., at times 1 s, 1081 s, 2161 s, with the first two readings being
10

o

additional transient measurements, and the last reading corresponding
to the currently used steady-state measurement). Hence, the transient
data was not used in the kinetic parameter estimation in this work.

The data shown in Eq. 10 is fitted to a first-order model of the form
of Eq. (11c) to get the process gain (𝐾) and process time constant (𝜏)
alues, which were calculated to be 14.54 K/A and 284 s, respectively.
s the temperature change occurs immediately following the change in

he current, no dead time was considered in the first-order model form.
he first-order model fit and experimental variation of the temperature
ith respect to the step change in current are compared in Fig. 12.

emark 6. The step change in current is aimed to be large to capture
broader range of temperature change. However, to avoid harming the

atalyst morphology, the change is made in the cooling direction since
apid, large increases in the temperature are detrimental to the catalyst.

emark 7. Fig. 11 demonstrates that the relation between steady-
tate current and temperature is a second order polynomial and mildly
onlinear. The approach mentioned in this section is for first-order lin-
ar processes, limiting the approach to a specific temperature regime.
owever, since the temperatures in the current simulations remain
lose to the range of 800 ◦C to 900 ◦C, the 𝐾 and 𝜏 values of 14.54
/A and 284 s, respectively, work adequately. If a different temperature
egime is targeted for operation in a future work, the 𝐾 and 𝜏 values can
e re-calculated based on data from the new regime. However, since the
oal is to eventually use Eq. (10) instead of Eq. (12), this limitation will
ikely not be a concern in future works once Eq. (10) can be used. In the
urrent work, this limitation does not manifest due to the results being
btained for the specific temperature range studied. However, in future
orks, the model of the temperature dynamics can be improved with
n incorporation of other first-order models for higher temperature
anges or can be replaced entirely by a data-driven model, such as
recurrent neural network. This would also account for the altered

eaction dynamics at higher temperature regimes.

emark 8. The first-order model will be valid for a specific inlet flow

f CH4. The amount of CH4 in the inlet is pivotal for the reaction
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Fig. 9. Comparison of lumped parameter model steady-state with experimental observations.
Fig. 10. Dynamic change in temperature with respect to a step change in current.
inetics. Thus, the first-order model parameters should be calculated
or various CH4 inlet conditions for a more comprehensive model.
pecifically, the parameters 𝐾 and 𝜏 in the first-order model will be

slightly different for each inlet flow of CH4. Hence, from numerous
experiments at different flow rates of CH4, 𝐾 and 𝜏 can be calculated
and stored in a table. Since, in the experiment, the inlet flow of CH4 is
usually constant throughout the experiment, for a specific experiment,
the corresponding values of 𝐾 and 𝜏 can be determined from the table
and used for the first-order model. If the CH4 flow rate does change
during the experiment, the values of 𝐾 and 𝜏 should be updated based
11
on the table. However, once the unknown parameters for Eq. (10) are
determined, the first-order model will no longer be used, and the full
energy balance of Eq. (10), which accounts for all variables including
inlet flow of CH4, will be used instead; this approach will be pursued
in a future work.

6. Feedback control

Our work aims to build a feedback control architecture for the
experimental SMR setup that is robust to disturbances. It is possible to
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decide the best controlling strategies by accounting for the limitations
of the process, since first-principles and data-driven dynamic tem-
perature variation models are available to simulate the experimental
behavior. For this purpose, a PI control scheme is compared to a model
predictive controller because a PI controller is the classical feedback
controller that would typically be used in the absence of advanced
model-based controllers such as MPC. In the following simulations, the
pressure is assumed to be constant at 1 bar, while the temperature is
varied to regulate the reaction rates to drive the H2 production. The
implementation of the constant pressure in the experimental setup in
future work will be realized by using a back pressure regulator.

6.1. Tuning of proportional–integral controller and model predictive con-
troller

PI controllers are based on feedback sensor data and do not require
a process model. However, the parameters of the PI controller must be
tuned. The PI controller equations are as follows:

𝑢 = 𝐾𝐶 ⋅
[

(

𝑦𝑠𝑝 − 𝑦
)

+ 1
𝜏𝐼

⋅ ∫

𝑡

0

(

𝑦𝑠𝑝 − 𝑦
)

d𝑡′
]

(13a)

= 𝐼 − 𝐼𝑠 (13b)

𝑠𝑝 = 𝐶H2 , 𝑠𝑝 − 𝐶H2,𝑠
(13c)

= 𝐶H2
− 𝐶H2,𝑠

(13d)

A ≤ 𝑢 + 𝐼𝑠 ≤ 70 A (13e)

where 𝑢 is the manipulated input, i.e., the current in deviation form,
𝑦 is the output/state to be controlled, which is the hydrogen concen-
ration in deviation form, 𝑦𝑠𝑝 is the setpoint for the hydrogen concen-

tration that as chosen to be consistent with experimental steady-state
data (although, in general, one can carry out steady-state optimization
to calculate energy optimal set-points), and the subscript ‘‘s’’ denotes
steady-state values. The actions of the PI controller are limited to
be below 70 A of current, since currents higher than 70 A will be
detrimental to the catalyst and cause coking. This limit is enforced by
setting any current value calculated by the PI controller higher than 70
A to 70 A.
12

f

The model predictive controller takes the form of the following
optimization problem:

 = min
𝑢 ∫

𝑡𝑘+𝑁ℎ

𝑡𝑘
𝐿(�̂�(𝑡), 𝑢(𝑡)) d𝑡 (14a)

s.t. �̂�(𝑡) = 𝑂𝐷𝐸(𝑥(𝑡), 𝑢(𝑡)) (14b)

𝐿(�̂�(𝑡), 𝑢(𝑡)) = 𝐴(�̂�(𝑡) − 𝑦𝑠𝑝)2 + 𝐵(𝑢(𝑡) − 𝑢𝑠𝑝)2 (14c)

𝑡 ∈ [𝑡𝑘, 𝑡𝑘+𝑁ℎ
) (14d)

|𝑢(𝑡𝑘) − 𝑢(𝑡𝑘−1)| ≤ 0.1 A (14e)

0 A ≤ 𝑢 + 𝐼𝑠 ≤ 70 A (14f)

here 𝐿 is a cost function to be minimized over a prediction horizon
f length 𝑁ℎ sampling periods using Eq. (14b), where ODE is the
onlinear dynamic process model derived in Section 4. The full state
onsisting of the 6 concentrations and the reactor temperature are rep-
esented by the state vector 𝑥, and �̂�(𝑡) is the full state prediction over
he horizon using the ODE model computed by integrating the coupled
ystem of 7 ODEs, while �̂�(𝑡) is the predicted hydrogen concentration
n deviation form, i.e. �̂� is the 4th column of �̂� and the only state
sed in the cost calculation, but all 7 ODEs have to be integrated
ogether due to their coupled nature. 𝐴 and 𝐵 are tunable weight
arameters, and 𝑥𝑠𝑝 and 𝑢𝑠𝑝 are the set-points for the H2 concentration
nd current, respectively. Similar to the PI controller, the optimization
roblem is aimed to produce outputs within the bounds of 0 and
0 A. However, since an MPC is inclined to drive the process very
ast and hit the input bounds very early for a quick response, an
dditional constraint is placed that bounds consecutive current changes
o a maximum of 0.1 A per second. This is also important for the
atalyst morphology since a slow increase in current will not harm
t.

The MPC will try to minimize the quadratic cost function over a
orizon of 10 s. The estimated current set-point value (𝑢𝑠𝑝) is calculated
y using the steady-state equations, which are obtained by equalizing
he mass balance equations shown in Eq. (3) to 0. Here, the hydrogen
oncentration set-point is fixed, and the other gas concentrations and
emperature are calculated using the process operating conditions. The
urrent value corresponding to the calculated temperature is estimated

rom the correlation shown on Fig. 11. The weight parameters 𝐴 and 𝐵
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Fig. 12. Comparison of first order dynamic model with experimental observations.
for the quadratic cost function are tuned based on preliminary closed-
loop simulations to get the most optimal responses based on the orders
of magnitudes of inputs and outputs and finally taken to be 100 and
0.01, respectively. Qualitatively, the state penalty (𝐴) was high, while
the input penalty (𝐵) was low, in order to speed up convergence to the
setpoint and also to account for differences in magnitudes between the
H2 concentration and the current. The MPC problem will be solved in
real time in the future work on the experimental setup, thus requiring
the MPC problem to be solvable within the sampling period of 1 s.
To ensure this, the MPC optimization problem will be solved every
second using a sequential quadratic programming (SQP) solver, which
is a computationally-efficient solver (Boggs and Tolle, 1995). In the
experimental implementation of the developed controllers, both MPC
and PI, a sampling measurement frequency of 1 s for the process
temperature, which is the key output variable that is controlled in this
present work, may be used since every MPC calculation in the current
work was completed in well under one second. This is consistent with
the overall input–output process dynamics which are on the order of
minutes.

All closed-loop simulations start from the same steady state that is
described in Fig. 8 under constant temperature at 800 ◦C, constant
current at 40 A and constant pressure at 1 bar. After the process
reaches the steady state, it will remain there until the control action
starts at the 100th second. The initial H2 steady-state concentration
will be 2.54 mol/m3, and the controller is expected to drive the H2
concentration to 4.5 mol/m3. This number is 3 times the initial steady-
state concentration and is a sufficiently large change to show that the
controller is successful.

The MPC simulation results are shown in Fig. 13. After the set-
point change is introduced at the 100th second, the controller starts
to increase the temperature at 0.1 A per second to quickly drive the
process towards the set-point. Around 300 s, the controller reaches its
peak value at 60 A, and it can be seen that the process is very close to
the set-point. After this point, the controller starts to reduce the current
slowly to finalize the process evolution to the set-point, and the process
settles at a steady state after around 600 s, where the temperature and
current reach their respective steady states of 890 ◦C and 46 A. The
MPC is solved quickly, drives the process output to the desired set-point
without offset, and all the input constraints are respected.
13
Remark 9. The reaction reaches the initial steady state under 10 s.
However, even with an MPC, it takes more than 220 s to reach a
new steady state. The reason for this is that the temperature increase
caused by the power supply has slower dynamic evolution compared
to reaction dynamics.

In order to verify that the proposed MPC scheme is highly effective,
it is compared with a PI controller. The PI controller is tuned to have no
overshoot or oscillations. The parameters for the PI controller are taken
to be 𝐾𝑐 = 0.12, and 𝜏𝑖 = 20. The comparison between the proposed
PI controller and MPC is presented in Fig. 14. Both controllers succeed
in driving the process to the set-point. It takes around 1300 s for the
PI controller, while this duration was around 220 s for the MPC. The
effectiveness of the MPC is due to the initial increase in the current
input. Thus, the MPC is proven to be fast and efficient.

6.2. Disturbance rejection

In order to prove further effectiveness of the proposed MPC, it is
necessary to demonstrate a robust performance against disturbances.
One of the possible disturbances in the experimental setup is the steam
flowrate. As explained in Section 3, there is a temperature control
box that regulates the temperature of the bubblers. If the control box
provides more heat, the steam flowrate going into the SMR reactor
increases. Under normal circumstances, the steam-to-carbon ratio is
arranged to flow 33 sccm of water vapor into the reactor. In case of a
malfunction in the temperature control box, the amount of steam sent
to the reactor might increase. In the presence of such a disturbance, the
behavior of both the PI controller and MPC are examined.

The MPC performance against a 10% increase in steam feed flowrate
is shown in Fig. 15. Compared to Fig. 13, it can be seen that the initial
water steady state concentration is higher. Similar to the disturbance-
free case, the controller gradually increases the current and then slowly
decreases it to the set-point value as the concentration of H2 gets
closer to the set-point. However, in the +10% disturbance case, it
is seen that the current is increased up to 61.93 A, which is also
higher than the maximum current for the no-disturbance run. To quan-
tify the differences in the dynamic responses with and without the
disturbance in the steam box, we calculate the production of H2 in

terms of (standard) volumetric flow rate at the end of the run. For
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Fig. 13. Closed-loop response under MPC is fast and without offset while input constraints are respected.
Fig. 14. Closed-loop response under MPC is superior to the one under PI control.
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he case without disturbance, shown in Fig. 13, the final volumetric
low rate is 32.85 sccm, corresponding to a temperature of 893.38 ◦C
nd concentration of 4.5 mol/m3. Under the disturbance, if the same
emperature of 893.38 ◦C is maintained, the higher water vapor content
n the inlet causes the steady-state concentration of H2 to be reduced
o 4.2 mol/m3, yielding a reduced H2 production rate of 31.57 sccm.
owever, under the MPC, using a higher peak current of 61.93 A,

he final steady-state temperature is now adjusted to 913.56 ◦C to
ompensate for the excess water vapor in the feed. As a result, the
ydrogen concentration once again reaches its setpoint of 4.5 mol/m3,
nd the H2 production increases to 35.59 sccm. This may be due to the
xtra water vapor in the feed stream decreasing the partial pressure
14

t

f CH4 and, consequently, the rate of the reforming reaction as per
q. (2a). Thus, in order to reach the same level of H2 production as
he disturbance-free case, the controller needs to increase the heat
rovided to the system to boost the reaction rate of the reforming
eaction.

The behavior of the PI controller is demonstrated in Fig. 16 against
he 10% increase in the steam flowrate case. The same PI controller
arameters are used as in Fig. 14. Although the PI controller manages
o drive the process to the set-point, it takes longer than the MPC. The
ncrease of steam flowrate requires more heat input, thus increasing the
ime to reach the set-point from 1300 s to 1900 s. On the other hand,
he time required for the MPC to drive the process to the set-point under
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Fig. 15. Closed-loop response of the MPC under +10% disturbance in vapor feed flow rate.
Fig. 16. Closed-loop response of the PI controller under +10% disturbance in vapor feed flow rate.
he disturbance had increased from 220 s to 370 s, showing that MPC
s faster than the PI controller, and robust, in the disturbance case.

emark 10. With respect to the essence of the comparison between
he PI controller and the MPC, while the lower weight assigned to the
ontrol action contributes to the initial aggressiveness of the MPC, as
ong as all the constraints are satisfied and the state trajectory itself
s satisfactory, the low input penalty is not a drawback of the MPC.
he primary distinction in this comparison is that the PI controller,

f it were tuned to be initially as aggressive as the MPC, would lead
o overshoot and/or oscillations in the state, which the MPC avoids
ue to its predictive capabilities owing to the explicit use of a pro-
ess model. The PI controller used was tuned extensively primarily
15
to avoid overshoot and oscillations. Therefore, even if the MPC were
to be compared to a PI controller that uses more aggressive control
actions initially, the MPC would still outperform the PI controller in
terms of the state trajectories due to the elimination of overshoot and
oscillations. Therefore, the MPC is superior whether the PI controller is
tuned to avoid overshoot/oscillations or it is tuned to be aggressive to
match the speed of the MPC.

7. Conclusion

Steam methane reforming is the most common H2 production
method and can be made more sustainable through replacing fossil fuel
based heating with electricity, and being able to control this process is
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the key to maximizing the energy efficiency. The experimental setup
for a joule heating SMR was modeled with first-principle nonlinear
dynamic equations with parameters calculated using experimental data.
Set-point tracking control was simulated under PI control and MPC. It
was demonstrated that MPC leads to an optimal closed-loop response
and is robust to disturbances. The MPC architecture built in this work
will be implemented on the experimental electrified steam methane
reforming reactor in a future work.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

We would like to gratefully acknowledge financial support from
the U.S. Department of Energy, United States, through the Office of
Energy Efficiency and Renewable Energy (EERE), under the Advanced
Manufacturing Office Award Number DE-EE0007613. Financial support
from the National Science Foundation, United States is also gratefully
acknowledged.

References

Abbas, S.Z., Dupont, V., Mahmud, T., 2017. Kinetics study and modelling of steam
methane reforming process over a NiO/𝐴𝑙2𝑂3 catalyst in an adiabatic packed bed
reactor. Int. J. Hydrogen Energy 42 (5), 2889–2903.

oggs, P.T., Tolle, J.W., 1995. Sequential quadratic programming. Acta Numer. 4, 1–51.
houdhary, N., Saraf, D., 1975. Hydrocracking: A review. Ind. Eng. Chem. Prod. Res.

Dev. 14, 74–83.
ıtmacı, B., Luo, J., Jang, J.B., Korambath, P., Morales-Guio, C.G., Davis, J.F.,

Christofides, P.D., 2022. Digitalization of an experimental electrochemical reactor
via the smart manufacturing innovation platform. Digit. Chem. Eng. 5, 100050.

ogler, H.S., 2005. Elements of Chemical Reaction Engineering (4th Edition), fourth
ed. Prentice Hall.

reen, Jr., L., 1982. An ammonia energy vector for the hydrogen economy. Int. J.
Hydrogen Energy 7, 355–359.

artig, O., Pérez, J., 2018. Semantics and complexity of GraphQL. In: Proceedings of
the 2018 World Wide Web Conference. pp. 1155–1164.

EA, 2023. Tracking Clean Energy Progress 2023. IEA Paris, France.
ao, L., Aguirre, A., Tran, A., Wu, Z., Durand, H., Christofides, P.D., 2016. CFD

modeling and control of a steam methane reforming reactor. Chem. Eng. Sci. 148,
78–92.

atham, D.A., McAuley, K.B., Peppley, B.A., Raybold, T.M., 2011. Mathematical
modeling of an industrial steam-methane reformer for on-line deployment. Fuel
Process. Technol. 92, 1574–1586.

iu, W., Zuo, H., Wang, J., Xue, Q., Ren, B., Yang, F., 2021. The production
and application of hydrogen in steel industry. Int. J. Hydrogen Energy 46,
10548–10569.

uo, J., Çıtmacı, B., Jang, J.B., Abdullah, F., Morales-Guio, C.G., Christofides, P.D.,
2023. Machine learning-based predictive control using on-line model linearization:
Application to an experimental electrochemical reactor. Chem. Eng. Res. Des. 197,
721–737.
16
Malerød-Fjeld, H., Clark, D., Yuste-Tirados, I., Zanón, R., Catalán-Martinez, D.,
Beeaff, D., Morejudo, S.H., Vestre, P.K., Norby, T., Haugsrud, R., et al., 2017.
Thermo-electrochemical production of compressed hydrogen from methane with
near-zero energy loss. Nat. Energy 2 (12), 923–931.

Mokheimer, E.M., Ibrar Hussain, M., Ahmed, S., Habib, M.A., Al-Qutub, A.A., 2015.
On the modeling of steam methane reforming. J. Energy Resour. Technol. 137,
012001.

Nikolaidis, P., Poullikkas, A., 2017. A comparative overview of hydrogen production
processes. Renew. Sustain. Energy Rev. 67, 597–611.

Perkin, R.M., 2000. Electrically generated heat. In: Ullmann’s Encyclopedia of Industrial
Chemistry. Wiley Online Library.

Ramachandran, R., Menon, R.K., 1998. An overview of industrial uses of hydrogen. Int.
J. Hydrogen Energy 23 (7), 593–598.

Richard, D.M., 2021. Development and Testing of Two Lab-Scale Reactors for Electrified
Steam Methane Reforming (M.Sc. thesis). UCLA.

Richard, D.M., 2023. A Smart Manufacturing Inspired Approach to Research in
Electrochemistry Applied to Electrochemical Carbon Dioxide Reduction and Steam
Methane Reforming (Ph.D. thesis). UCLA.

Safari, F., Dincer, I., 2020. A review and comparative evaluation of thermochemical
water splitting cycles for hydrogen production. Energy Convers. Manage. 205,
112182.

Tanç, B., Arat, H.T., Baltacıoğlu, E., Aydın, K., 2019. Overview of the next quarter
century vision of hydrogen fuel cell electric vehicles. Int. J. Hydrogen Energy 44,
10120–10128.

Tarhan, C., Çil, M.A., 2021. A study on hydrogen, the clean energy of the future:
Hydrogen storage methods. J. Energy Storage 40, 102676.

Uddin, M.N., Nageshkar, V.V., Asmatulu, R., 2020. Improving water-splitting efficiency
of water electrolysis process via highly conductive nanomaterials at lower voltages.
Energy Ecol. Environ. 5, 108–117.

Ursua, A., Gandia, L.M., Sanchis, P., 2011. Hydrogen production from water electrolysis:
Current status and future trends. Proc. IEEE 100 (2), 410–426.

Wei, J., Iglesia, E., 2004a. Isotopic and kinetic assessment of the mechanism of methane
reforming and decomposition reactions on supported iridium catalysts. Phys. Chem.
Chem. Phys. 6, 3754–3759.

Wei, J., Iglesia, E., 2004b. Isotopic and kinetic assessment of the mechanism of reactions
of CH4 with CO2 or H2O to form synthesis gas and carbon on nickel catalysts. J.
Catal. 224, 370–383.

ei, J., Iglesia, E., 2004c. Mechanism and site requirements for activation and chemical
conversion of methane on supported Pt clusters and turnover rate comparisons
among noble metals. J. Phys. Chem. B 108, 4094–4103.

ei, J., Iglesia, E., 2004d. Reaction pathways and site requirements for the activation
and chemical conversion of methane on Ru- based catalysts. J. Phys. Chem. B 108,
7253–7262.

ei, J., Iglesia, E., 2004e. Structural and mechanistic requirements for methane
activation and chemical conversion on supported iridium clusters. Angew. Chem.
Int. Ed. 43, 3685–3688.

ei, J., Iglesia, E., 2004f. Structural requirements and reaction pathways in methane
activation and chemical conversion catalyzed by rhodium. J. Catal. 225, 116–127.

ismann, S.T., Engbæk, J.S., Vendelbo, S.B., Bendixen, F.B., Eriksen, W.L., Aasberg-
Petersen, K., Frandsen, C., Chorkendorff, I., Mortensen, P.M., 2019. Electrified
methane reforming: A compact approach to greener industrial hydrogen production.
Science 364 (6442), 756–759.

u, Z., Aguirre, A., Tran, A., Durand, H., Ni, D., Christofides, P.D., 2017. Model pre-
dictive control of a steam methane reforming reactor described by a computational
fluid dynamics model. Ind. Eng. Chem. Res. 56, 6002–6011.

u, J., Froment, G.F., 1989. Methane steam reforming, methanation and water-gas shift:
I. intrinsic kinetics. AIChE J. 35, 88–96.

ecevic, N., Bolf, N., 2020. Advanced operation of the steam methane reformer by using
gain-scheduled model predictive control. Ind. Eng. Chem. Res. 59, 3458–3474.

http://refhub.elsevier.com/S2772-5081(23)00056-X/sb1
http://refhub.elsevier.com/S2772-5081(23)00056-X/sb1
http://refhub.elsevier.com/S2772-5081(23)00056-X/sb1
http://refhub.elsevier.com/S2772-5081(23)00056-X/sb1
http://refhub.elsevier.com/S2772-5081(23)00056-X/sb1
http://refhub.elsevier.com/S2772-5081(23)00056-X/sb2
http://refhub.elsevier.com/S2772-5081(23)00056-X/sb3
http://refhub.elsevier.com/S2772-5081(23)00056-X/sb3
http://refhub.elsevier.com/S2772-5081(23)00056-X/sb3
http://refhub.elsevier.com/S2772-5081(23)00056-X/sb4
http://refhub.elsevier.com/S2772-5081(23)00056-X/sb4
http://refhub.elsevier.com/S2772-5081(23)00056-X/sb4
http://refhub.elsevier.com/S2772-5081(23)00056-X/sb4
http://refhub.elsevier.com/S2772-5081(23)00056-X/sb4
http://refhub.elsevier.com/S2772-5081(23)00056-X/sb5
http://refhub.elsevier.com/S2772-5081(23)00056-X/sb5
http://refhub.elsevier.com/S2772-5081(23)00056-X/sb5
http://refhub.elsevier.com/S2772-5081(23)00056-X/sb6
http://refhub.elsevier.com/S2772-5081(23)00056-X/sb6
http://refhub.elsevier.com/S2772-5081(23)00056-X/sb6
http://refhub.elsevier.com/S2772-5081(23)00056-X/sb7
http://refhub.elsevier.com/S2772-5081(23)00056-X/sb7
http://refhub.elsevier.com/S2772-5081(23)00056-X/sb7
http://refhub.elsevier.com/S2772-5081(23)00056-X/sb8
http://refhub.elsevier.com/S2772-5081(23)00056-X/sb9
http://refhub.elsevier.com/S2772-5081(23)00056-X/sb9
http://refhub.elsevier.com/S2772-5081(23)00056-X/sb9
http://refhub.elsevier.com/S2772-5081(23)00056-X/sb9
http://refhub.elsevier.com/S2772-5081(23)00056-X/sb9
http://refhub.elsevier.com/S2772-5081(23)00056-X/sb10
http://refhub.elsevier.com/S2772-5081(23)00056-X/sb10
http://refhub.elsevier.com/S2772-5081(23)00056-X/sb10
http://refhub.elsevier.com/S2772-5081(23)00056-X/sb10
http://refhub.elsevier.com/S2772-5081(23)00056-X/sb10
http://refhub.elsevier.com/S2772-5081(23)00056-X/sb11
http://refhub.elsevier.com/S2772-5081(23)00056-X/sb11
http://refhub.elsevier.com/S2772-5081(23)00056-X/sb11
http://refhub.elsevier.com/S2772-5081(23)00056-X/sb11
http://refhub.elsevier.com/S2772-5081(23)00056-X/sb11
http://refhub.elsevier.com/S2772-5081(23)00056-X/sb12
http://refhub.elsevier.com/S2772-5081(23)00056-X/sb12
http://refhub.elsevier.com/S2772-5081(23)00056-X/sb12
http://refhub.elsevier.com/S2772-5081(23)00056-X/sb12
http://refhub.elsevier.com/S2772-5081(23)00056-X/sb12
http://refhub.elsevier.com/S2772-5081(23)00056-X/sb12
http://refhub.elsevier.com/S2772-5081(23)00056-X/sb12
http://refhub.elsevier.com/S2772-5081(23)00056-X/sb13
http://refhub.elsevier.com/S2772-5081(23)00056-X/sb13
http://refhub.elsevier.com/S2772-5081(23)00056-X/sb13
http://refhub.elsevier.com/S2772-5081(23)00056-X/sb13
http://refhub.elsevier.com/S2772-5081(23)00056-X/sb13
http://refhub.elsevier.com/S2772-5081(23)00056-X/sb13
http://refhub.elsevier.com/S2772-5081(23)00056-X/sb13
http://refhub.elsevier.com/S2772-5081(23)00056-X/sb14
http://refhub.elsevier.com/S2772-5081(23)00056-X/sb14
http://refhub.elsevier.com/S2772-5081(23)00056-X/sb14
http://refhub.elsevier.com/S2772-5081(23)00056-X/sb14
http://refhub.elsevier.com/S2772-5081(23)00056-X/sb14
http://refhub.elsevier.com/S2772-5081(23)00056-X/sb15
http://refhub.elsevier.com/S2772-5081(23)00056-X/sb15
http://refhub.elsevier.com/S2772-5081(23)00056-X/sb15
http://refhub.elsevier.com/S2772-5081(23)00056-X/sb16
http://refhub.elsevier.com/S2772-5081(23)00056-X/sb16
http://refhub.elsevier.com/S2772-5081(23)00056-X/sb16
http://refhub.elsevier.com/S2772-5081(23)00056-X/sb17
http://refhub.elsevier.com/S2772-5081(23)00056-X/sb17
http://refhub.elsevier.com/S2772-5081(23)00056-X/sb17
http://refhub.elsevier.com/S2772-5081(23)00056-X/sb18
http://refhub.elsevier.com/S2772-5081(23)00056-X/sb18
http://refhub.elsevier.com/S2772-5081(23)00056-X/sb18
http://refhub.elsevier.com/S2772-5081(23)00056-X/sb19
http://refhub.elsevier.com/S2772-5081(23)00056-X/sb19
http://refhub.elsevier.com/S2772-5081(23)00056-X/sb19
http://refhub.elsevier.com/S2772-5081(23)00056-X/sb19
http://refhub.elsevier.com/S2772-5081(23)00056-X/sb19
http://refhub.elsevier.com/S2772-5081(23)00056-X/sb20
http://refhub.elsevier.com/S2772-5081(23)00056-X/sb20
http://refhub.elsevier.com/S2772-5081(23)00056-X/sb20
http://refhub.elsevier.com/S2772-5081(23)00056-X/sb20
http://refhub.elsevier.com/S2772-5081(23)00056-X/sb20
http://refhub.elsevier.com/S2772-5081(23)00056-X/sb21
http://refhub.elsevier.com/S2772-5081(23)00056-X/sb21
http://refhub.elsevier.com/S2772-5081(23)00056-X/sb21
http://refhub.elsevier.com/S2772-5081(23)00056-X/sb21
http://refhub.elsevier.com/S2772-5081(23)00056-X/sb21
http://refhub.elsevier.com/S2772-5081(23)00056-X/sb22
http://refhub.elsevier.com/S2772-5081(23)00056-X/sb22
http://refhub.elsevier.com/S2772-5081(23)00056-X/sb22
http://refhub.elsevier.com/S2772-5081(23)00056-X/sb23
http://refhub.elsevier.com/S2772-5081(23)00056-X/sb23
http://refhub.elsevier.com/S2772-5081(23)00056-X/sb23
http://refhub.elsevier.com/S2772-5081(23)00056-X/sb23
http://refhub.elsevier.com/S2772-5081(23)00056-X/sb23
http://refhub.elsevier.com/S2772-5081(23)00056-X/sb24
http://refhub.elsevier.com/S2772-5081(23)00056-X/sb24
http://refhub.elsevier.com/S2772-5081(23)00056-X/sb24
http://refhub.elsevier.com/S2772-5081(23)00056-X/sb25
http://refhub.elsevier.com/S2772-5081(23)00056-X/sb25
http://refhub.elsevier.com/S2772-5081(23)00056-X/sb25
http://refhub.elsevier.com/S2772-5081(23)00056-X/sb25
http://refhub.elsevier.com/S2772-5081(23)00056-X/sb25
http://refhub.elsevier.com/S2772-5081(23)00056-X/sb26
http://refhub.elsevier.com/S2772-5081(23)00056-X/sb26
http://refhub.elsevier.com/S2772-5081(23)00056-X/sb26
http://refhub.elsevier.com/S2772-5081(23)00056-X/sb26
http://refhub.elsevier.com/S2772-5081(23)00056-X/sb26
http://refhub.elsevier.com/S2772-5081(23)00056-X/sb27
http://refhub.elsevier.com/S2772-5081(23)00056-X/sb27
http://refhub.elsevier.com/S2772-5081(23)00056-X/sb27
http://refhub.elsevier.com/S2772-5081(23)00056-X/sb27
http://refhub.elsevier.com/S2772-5081(23)00056-X/sb27
http://refhub.elsevier.com/S2772-5081(23)00056-X/sb28
http://refhub.elsevier.com/S2772-5081(23)00056-X/sb28
http://refhub.elsevier.com/S2772-5081(23)00056-X/sb28
http://refhub.elsevier.com/S2772-5081(23)00056-X/sb28
http://refhub.elsevier.com/S2772-5081(23)00056-X/sb28
http://refhub.elsevier.com/S2772-5081(23)00056-X/sb29
http://refhub.elsevier.com/S2772-5081(23)00056-X/sb29
http://refhub.elsevier.com/S2772-5081(23)00056-X/sb29
http://refhub.elsevier.com/S2772-5081(23)00056-X/sb29
http://refhub.elsevier.com/S2772-5081(23)00056-X/sb29
http://refhub.elsevier.com/S2772-5081(23)00056-X/sb30
http://refhub.elsevier.com/S2772-5081(23)00056-X/sb30
http://refhub.elsevier.com/S2772-5081(23)00056-X/sb30
http://refhub.elsevier.com/S2772-5081(23)00056-X/sb31
http://refhub.elsevier.com/S2772-5081(23)00056-X/sb31
http://refhub.elsevier.com/S2772-5081(23)00056-X/sb31
http://refhub.elsevier.com/S2772-5081(23)00056-X/sb31
http://refhub.elsevier.com/S2772-5081(23)00056-X/sb31
http://refhub.elsevier.com/S2772-5081(23)00056-X/sb31
http://refhub.elsevier.com/S2772-5081(23)00056-X/sb31
http://refhub.elsevier.com/S2772-5081(23)00056-X/sb32
http://refhub.elsevier.com/S2772-5081(23)00056-X/sb32
http://refhub.elsevier.com/S2772-5081(23)00056-X/sb32
http://refhub.elsevier.com/S2772-5081(23)00056-X/sb32
http://refhub.elsevier.com/S2772-5081(23)00056-X/sb32
http://refhub.elsevier.com/S2772-5081(23)00056-X/sb33
http://refhub.elsevier.com/S2772-5081(23)00056-X/sb33
http://refhub.elsevier.com/S2772-5081(23)00056-X/sb33
http://refhub.elsevier.com/S2772-5081(23)00056-X/sb34
http://refhub.elsevier.com/S2772-5081(23)00056-X/sb34
http://refhub.elsevier.com/S2772-5081(23)00056-X/sb34

	Model predictive control of an electrically-heated steam methane reformer
	Introduction
	Preliminaries
	Nomenclature
	Process Overview

	Digitalization of the Experimental Setup
	Overview
	Sensors and Actuators
	Smart Manufacturing Innovation Platform Connection

	First-Principles Modeling
	Constant Pressure and Temperature Case
	Variable Temperature Case
	Steady State Simulation and comparison with experimental results

	Model Parameter Estimation Using Experimental Data
	Reaction Kinetics Estimation
	Temperature Dependence with Respect to Time

	Feedback Control
	Tuning of Proportional–Integral Controller and Model Predictive Controller
	Disturbance Rejection

	Conclusion
	Declaration of competing interest
	Acknowledgments
	References


