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A B S T R A C T

Steam methane reforming (SMR) is the most common industrial process to produce hydrogen (H2) from
methane and water vapor. The SMR reactions are overall highly endothermic and traditionally, fossil fuels
are burned to provide the necessary heat of reaction. However, it was found that electrifying the tubular SMR
reactors using renewable electrons instead of conventional heating gives the opportunity of producing H2 with
lower carbon emissions, lower reactor volumes, and higher carbon conversion. While current studies in this new
technology focus on improving the catalysts or heating sources, a more efficient process control scheme can also
significantly contribute to the understanding of potential challenges and opportunities of combining renewables
and natural gas in the production of H2 at industrial scales. In order to further develop the electrically-heated
SMR process and the associated control strategies, we have constructed an experimental Joule-heated SMR
system at UCLA. The system contains a tubular reactor with a washcoated Ni/ZrO2 catalyst, two thermocouples
connected to the top and bottom of the reactor, a power supply for providing electrical heating, and an
on-line gas chromatograph (GC) for measuring outlet gas concentrations. The synthesis procedure of the
catalyst, SMR data collection, and thermal considerations for catalyst degradation are described in this paper
and are all accounted for experimentally when using a proportional integral (PI) controller to gradually
increase the reactor temperature without harming the catalyst. Advanced control strategies, such as model
predictive control (MPC), require a process model that uses measurement feedback to make predictions of the
process time-evolution in order to optimize the control actions in real-time. We have previously developed a
lumped-parameter modeling strategy for the SMR process. The MPC objective is to control the H2 production
rate by manipulating the current flowing through the outer reactor shell. However, to use this model in an
MPC, feedback values for all state variables should be provided by the sensors. In our experimental system,
the on-line GC only gives discrete measurements with a long sampling period. To this end, the process
model is incorporated into an extended Luenberger observer (ELO) that uses the reactor temperature and
GC measurements to provide estimates of all the variables needed by the MPC. The ELO-based MPC system is
then experimentally implemented on the process and it is demonstrated to be more efficient in terms of speed
of the closed-loop response than the PI controller using delayed, measurement feedback by the GC.
1. Introduction

Steam methane reforming (SMR) is an industrial process that con-
verts methane and steam into hydrogen and carbon dioxide through
the chemical reactions shown below:

Steam methane reforming ∶ CH4 + H2O ⇌ 3H2 + CO,

𝛥𝐻298 = 206.1 kJ mol−1 (1a)
Water gas shift ∶ CO + H2O ⇌ CO2 + H2, 𝛥𝐻298 = −41.15 kJ mol−1

(1b)
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The highly endothermic reforming reaction and the slightly exothermic
water gas shift reaction occur in series and parallel. Traditionally, these
reactions take place in a packed-bed reactor placed in a fired furnace
that burns fossil fuels. About thirty years ago, Spagnolo et al. (1992)
introduced the idea of an electrically-heated SMR. Recently, Wismann
et al. (2019) conducted a detailed experimental and modeling study
to investigate the process and its potential to replace the conventional
furnace heating with electrical heating, and reported that electrical
heating leads to lower reactor volumes, causes less waste-heat, and
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reduces CO2 emissions if renewable electricity is used. Also, a Joule-
heating energy source provides radially uniform heat distribution, caus-
ing the gas mixture to be at close-to-equilibrium conditions through
a washcoated catalyst. The resistance-heated SMR process is further
expected to reduce carbon formation, thus increasing the carbon con-
version to hydrogen. The adoption of a Joule-heating process has also a
potential to reduce global CO2 emissions (Wismann et al., 2019). While
the transition to a resistance-heated SMR process is still in its infancy,
the current bench scale efforts can offer strategies and explorations to
ease the adoption process.

With respect to previous work on this topic, Wismann et al. (2021)
experimentally examined process dynamics including the effect of the
heating rate on the start-up phase of the reactor, cyclic heating, and
carbon formation at transient and steady-state conditions. Almind et al.
(2020) focused on improving coil geometry and magnetic field fre-
quency of an induction-heating setup and showed that thermal effi-
ciency can be improved up to 12% compared to their initial bench scale
coil geometry. In Zheng et al. (2023), a Rh∕Al2O3 catalyst coated with
silicon carbide (SiC) layer was washcoated across the reactor tube. The
SiC layer increased the resistance for heating, and experimental results
were reported to reach full conversion of methane. To explore further
use of ohmic heating in reforming processes, From et al. (2024) moved
to a pilot plant phase to test a process that uses biogas to produce
syngas.

In addition to endeavors that improve SMR reactor heat flux, pro-
cess design, and catalysts, one key component that can optimize the
electrified SMR process is efficient feedback control to optimize the
speed of transition to different set-points. The SMR reaction, especially
in a fired-heater where the temperature gradients vary significantly
in both axial and radial directions, is very complicated and thus very
difficult to model. The reactions occur in a tubular reactor, and con-
sidering the variation in heat, mass, and momentum transfer coupled
with reaction kinetics and temperature- or pressure-dependent vari-
ables like volumetric flowrates, such modeling requires solving partial
differential equation (PDE) models. Consequently, commercial PDE
solvers (e.g., COMSOL, Ansys Fluent) are widely used to model the SMR
process. Specifically, Wu et al. (2017) simulated the reforming process
in a furnace using a detailed computational fluid dynamics (CFD)
model, linearized the model using the simulation data, and solved
a quadratic programming problem to implement a model predictive
control (MPC) scheme to the CFD model. More recently, Ting et al.
(2023) built an Aspen Dynamic model to generate process data and
carried out state-space identification to employ an MPC scheme in a
computational study. However, efforts to experimentally implement
and evaluate efficient real-time SMR process control are limited. In
particular, and to the best of our knowledge, the advanced control of
a Joule-heated SMR system with a washcoated catalyst has not been
studied.

Our previous work has demonstrated successful single-input-single-
output, multi-input-multi-output, and predictive control of experimen-
tal electrochemical reactors (Çıtmacı et al., 2022a, 2023; Luo et al.,
2023). Furthermore, Çıtmacı et al. (2022b) presented how experimental
setups can be digitalized using appropriate software and tools. Utilizing
our experience in digitalization, modeling, and control, in Çıtmacı
et al. (2024), we proposed a lumped parameter modeling approach
that can be rapidly optimized in real-time. For this lumped parameter
model, mass and energy balance equations were derived for varying
parameters, and in a detailed computational study, this model was used
in an MPC to demonstrate that the H2 concentration can be effectively
driven to the desired H2 set-point. However, this computational work
did not account for the experimental challenges, such as unmeasured
variables like the molar or volumetric flowrates of steam. Thus, in a
recent work (Cui et al., 2024), we developed a model predictive control
method accounting for the issues encountered in the experimental
setup, and in the present work, the MPC scheme proposed in Cui et al.
(2024) and Çıtmacı et al. (2024) is implemented experimentally. Specif-
ically, an extended Luenberger observer (ELO) is used to account for
the missing feedback parameters and the ELO-based MPC closed-loop
470

performance is compared to the one of a PI control system. e
2. Preliminaries

2.1. Nomenclature

Definitions of variables used in the modeling of the reactor:

• 𝐴𝑗 : Pre-exponential factor for adsorption constant 𝐾𝑗 of gas
species 𝑗 [mol (m2 s)−1]

• 𝐴𝑖: Pre-exponential factor for rate coefficient 𝑘𝑖 for reaction
𝑖 [mol Pa0.5 (kg − cat s)−1 for i = 1 (SMR reaction), mol Pa
(kg − cat s)−1 for i = 2 (WGS reaction)]

• 𝐶𝑖: Concentration of species 𝑖 [mol m−3]
• 𝐶𝑝𝑖 : Specific heat capacity of gas species 𝑖 [J (mol K)−1]
• 𝐹 : Total molar flow of gases [mol s−1]
• 𝐹𝑖: Total molar flow of gases of gas species 𝑖 [mol s−1]
• 𝐾𝑗 : Adsorption constant of gas species 𝑗 [m3 mol−1]
• 𝑘𝑖: Reaction rate constant of reaction 𝑗 [mol Pa0.5 (kg − cat s)−1

for i = 1 (SMR reaction), mol Pa (kg − cat s)−1 for i = 2 (WGS
reaction)]

• 𝑃𝑖: Partial pressure of gas species 𝑖 [Pa]
• 𝑞: Outlet volumetric flowrate [m3 s−1]
• 𝑞𝑖: Outlet volumetric flowrate of gas species 𝑖 [m3 s−1]
• 𝑟𝑖: Rate of reaction for reaction 𝑖 [mol (m3 s)−1]
• 𝑅: Universal gas constant [J (mol K)−1]
• 𝑅̄: Cell resistance [Ω]
• 𝑇 : Reactor temperature [K]
• 𝑇𝑝𝑖 : Temperature of inlet gas species 𝑖 [K]
• 𝑇𝑠: Temperature of the surroundings [K]
• 𝑈𝐴: Overall heat transfer coefficient times the heat transfer area

[J (s K)−1]
• 𝑉 : Reactor volume [m3]
• 𝑄: Power [W]
• 𝑊 : Catalyst weight [kg]
• 𝛥𝐻𝑟: Heat of reaction [J mol−1]
• 𝛥𝐻𝑟𝑖 : Heat of reaction 𝑖 [J mol−1]
• 𝑚̇𝑝𝑖 : Mass flow rate of gas species 𝑖 [kg s−1]
• 𝜌𝑖: Density of the gas species 𝑖 in the reactor [kg m−3]

.2. Experimental system and digitalization

At UCLA, we have established an experimental steam methane
eforming setup to investigate the efficiencies of various promising
nd novel hydrogen production methods. Transforming conventional-
eating reformers into Joule-heating reformers is relatively straightfor-
ard, only requiring a modification in the heating source, and this work
egins an investigation into the efficiencies, modeling, and control
trategies of these electrically-heated experimental reforming systems.
n order to minimize axial pressure drop, a Ni/ZrO2 washcoat was
eposited on the inner wall of the tubular reactor. The experimental
nd digitalization overview of the reactor are shown in Fig. 1.

The experimental setup involves monitoring various parameters
uch as temperature, pressure, and current. Multiple sensors including
hermocouples and pressure transducers are utilized for measurement.
ll sensors and actuators are connected to a Laboratory Virtual In-
trument Engineering Workbench (LabVIEW) interface, a graphical
oding platform that is very convenient for connecting data acquisi-
ion and actuation systems. LabVIEW has built-in drivers for various
rocess equipment components, and many companies develop external
rivers that can be incorporated into LabVIEW for digitalizing their
wn equipment. Three thermocouples (Omega K-type) are positioned
hroughout the system: one on the bottom of the exterior reactor wall
13.5 cm from the reactor outlet), the second one on the top of the

xterior reactor wall (34.5 cm from the reactor outlet), and the third
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Fig. 1. Process flow diagram for experimental Joule-heating steam methane reforming process.
Fig. 2. Picture of experimental setup.
on the upstream gas flow pipe that is heated to 150 ◦C to prevent
steam condensation. A single pressure transducer (Omega PX359 -
1KAI) measures reactor pressure and may be maintained at a constant
value using a back pressure regulator (Equilibar). Thermocouples, back
pressure regulators, and pressure transducers are digitized through a
National Instruments Compact Rio, an industrial grade, reconfigurable
data acquisition system. The experimental setup is shown in Fig. 2.

In addition to the sensors and actuators in connection to the Com-
pact Rio, a Chroma programmable DC power supply connects to Lab-
VIEW as well. The reactor-power supply setup controls the current
supplied to the reactor and measures the corresponding potential in
a closed-loop configuration. The power supply is connected to the
LabVIEW interface through external Chroma drivers. The energy given
to the experimental setup is shown in Eq. (2a) below, where 𝑄 is the
rate of heat supply and the average resistance value (𝑅̄) can be found
as the ratio of potential, 𝐸, to current values, 𝐼 using the entire time
471
series data, as shown in Eq. (2b) below:

𝑄 = 𝐼2𝑅̄ (2a)

𝑅̄ = 𝐸
𝐼

(2b)

The tubular reactor is the central component of the Joule-heated
SMR setup. Constructed with a 72.8% Fe, 22% Cr, 5% Al, 0.1% Y,
and %0.1 Zr alloy procured from Goodfellow Corp., it features dimen-
sions of 500 mm length, 6 mm outer diameter, and 5.4 mm inner
diameter (Çıtmacı et al., 2024). The reactor tube is enveloped by
fiberglass-based insulation to minimize heat losses, while an additional
insulation furnace, equipped with ceramic foam material, provides
further heat retention. In this study, the joule-heated system sits inside
an Ascon Technologic R38S electric furnace that can be used to provide
heat similar to a conventional fired SMR process, but that is turned off
in all the joule-heating experiments presented here, unless otherwise
indicated.
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Gas phase products are analyzed in real-time using an Agilent
Technologies 7890B gas chromatograph equipped with a thermal con-
ductivity detector (TCD). The gas mixture undergoes condensation to
remove water vapor before entering the GC, where components includ-
ing H2, CO2, CO, and unreacted CH4 are quantified. Each analysis cycle
lasts 15 min, followed by a 3-min cool-down period. Consequently, the
GC can process one gas sample every 18 min. Automated GC analysis
is triggered by an external Python code, with results automatically
processed post-measurement to determine peak areas and compare
them to calibrated values for each gas species. The signal processing
algorithm used is discussed in detail in Çıtmacı et al. (2022b). The
gas chromatograph does not directly measure concentration or molar
flowrate, rather it measures the molar percentage of the gases in the
injection volume. This is based on the initial calibration of the GC,
where various known molar ratios of gases were sent to the GC, and
corresponding peak areas were recorded. After multiple gas mixtures
were calibrated, the peak areas and corresponding percentages were
fitted to power functions, which are used in real-time for quantifying
the gas phase products. The sum of all percentages must be equal to
100% for an accurate gas quantification.

The inlet flowrates provided to the system are adjusted by a mass
flow-meter (MKS). The flow-meter unit is standard cubic centimeters
per minute (sccm). Trace amounts of Ar gas is flown through the system
during each experiment to track molar flowrate changes in the outlet
gas mixture. Argon is a noble, inert gas that does not react with other
gases during the SMR process. As a result, the inlet molar Ar flowrate
will be equal to outlet molar Ar flowrate, except for the very brief
period of reactor startup.

The mass flow-meter is calibrated before each experiment. A specific
flowrate input for each inlet gas (e.g., CH4,H2,Ar) that will be used
for the experiment is entered on the flow-meter input panel and the
corresponding GC injection output (in %) is recorded. First, the per-
centage of Ar that comes from the automated GC code is accepted to
be the Ar basis. The sum of inlet gases (in sccm) shown on the mass
flow controller is accepted to be the flow basis (𝑓𝑙𝑜𝑤𝑏𝑎𝑠𝑖𝑠), and this is a
constant value throughout the experiment for a constant inlet flowrate
experiment. With each GC measurement, the Ar basis is divided by
the Ar percentage in the injection volume to estimate the flow factor
(𝑓𝑙𝑜𝑤𝑓𝑎𝑐𝑡𝑜𝑟). In each GC measurement, the Ar peak area (and thus
percentage) might change, however, since the molar flowrate of Ar will
not change, Eq. (3) below can be used to estimate the molar flowrate
of each species:

𝐹𝑖 [sccm] =
𝐺𝐶𝑖[%]
100

× 𝑓𝑙𝑜𝑤𝑏𝑎𝑠𝑖𝑠 [sccm] × 𝑓𝑙𝑜𝑤𝑓𝑎𝑐𝑡𝑜𝑟,

𝑖 = CH4,CO,H2,CO2,Ar (3)

he flow factor is accounting for the change in the entire molar flowrate
ompared to the initial total flowrate by adjusting the molar fraction
f the constant flowrate of Ar in the injection volume. The conversion
or molar flowrate from mol/s to sccm is shown in Eq. (4) below:
[

cm3

min

]

= 1000
[

cm3

L

]

× 22.4
[

L
mol

]

× 𝐹
[

mol
s

]

× 60
[ s

min

]

(4)

The SMR system is equipped with two steam boxes that can supply
steady inlet streams of water vapor to the electrically heated tubular
reactor; however, only one unit is needed for the investigated setup.
Each steam box houses a bubbler encased within fiberglass thermal in-
sulation. Using a K-type thermocouple, an Arcon temperature actuator,
and electrical heating tape, the bubbler is set to a desired steam-
to-carbon (s/c) ratio via temperature control. The Antoine equation,
shown in Eq. (5) below, estimates the vapor pressure of steam in
the bubbler at a specific water temperature. The temperature sensor
and Arcon actuator amount to PI control over the thermodynamic
equilibrium of the inlet gas mixture and liquid water phase in the steam
box. The Antoine equation is of the form,

log (𝑃 ) = 𝐴 − 𝐵 (5)
472

10 𝑇 + 𝐶
where the temperature (𝑇 ) is in ◦C, and pressure is in bar. The cor-
responding 𝐴, 𝐵, and 𝐶 values are 8.14, 1810.9 [◦C], 244.5 [◦C] for
temperatures above 100 ◦C (Roizard, 2016).

All the sensors and actuators mentioned are connected to a LabVIEW
interface shown in Fig. 3. The LabVIEW interface gets real-time data
from the experimental setup, such as pressure, temperatures, potential,
current, standard volumetric flowrates, gas concentrations, and can
send signals to experimental equipment to modify parameters such
as current set-point, the system back pressure, standard volumetric
flowrates and steam box temperature set-point. The Compact Rio is
run through a Field Programmable Gate Array (FPGA) script written
in LabVIEW and the signals read through a 32-bit LabVIEW script. A
Compact Rio cannot run with 64-bit LabVIEW, and a 32-bit LabVIEW
cannot run Python scripts through a Python node. As a result, we
run a 32-bit script to acquire data from the FPGA script connected
to the Compact Rio and record the data to a text file each second.
Simultaneously, the main script reads the text file to transfer the sensor
data so that a Python script embedded into the LabVIEW interface can
process the data. The built-in PI control function is used for all the PI-
based control demonstrations in this research. For a model predictive
control scheme, a code written in Python is incorporated into the
LabVIEW interface.

In Çıtmacı et al. (2024), we have proposed a modeling approach
and computationally demonstrated that this modeling approach can
be used in a model predictive controller to operate the SMR system
in an optimized way. In the present study, the modeling and control
approaches are demonstrated to be experimentally effective. Still, there
remains experimental challenges that prevent the application of the
unmodified computational approach presented in Çıtmacı et al. (2024).
Firstly, the gas products coming out of the reactor need to be cooled
down to be processed by the GC. Water must also be removed from
the GC feed since the peaks associated with water overlap with Ar
and H2 in the gas products signal. To this end, the outlet stream is
exposed to a condenser that is cooled with a cold water stream and
brings the gas mixture temperature to room temperature. This means
that the unreacted steam in the tubular reactor is condensed and is not
quantified by the GC. Any first-principle based model would need the
steam flowrate to initialize the model or correct the model with respect
to sensor measurements. Thus, in an experimental implementation,
we need to account for the missing steam flowrate. Another difficulty
is that the volumetric flowrate is needed to convert molar flowrates
into concentrations through Eq. (6) for reaction rate calculations. The
volumetric flowrate can be measured by flow sensors, such as a bubble
meter; however, the experimental flow-meters do not operate at tem-
peratures higher than 100 ◦C, and the outlet temperature of the SMR
setup is expected to vary between 500 and 900 ◦C.

𝐶𝑖 =
𝐹𝑖
𝑞

(6)

A final challenge is that the GC measurements are delayed by 18 min
(15 min for gas separation, elution, quantification, and peak processing,
and an additional 3 min for cooling of the GC). This makes it difficult
to correct the model in real time and requires a solution to incorporate
past measurements into the real-time modeling scheme. All of the afore-
mentioned complications required a creative methodology, discussed
in the following sections, to successfully implement model predictive
control.

3. Catalyst synthesis

3.1. FeCrAl tubing pretreatment

All procedures for the Ni/ZrO2 synthesis process and washcoat
application were adopted from Richard (2021). Prior to the application
of the ZrO2 support and Ni catalyst, a Goodfellow FeCrAlloy © tube was

washed with acetone and rinsed with deionized water to remove any
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Fig. 3. Labview interface that connects sensors and actuators to the computer.
Fig. 4. FeCrAl alloy tube after first oxidation procedure at 950 ◦C for 10 h.
debris or other contaminants. The tube was heated to 950 ◦C in the
furnace at a ramp rate of 1.4 ◦C∕min where it was kept at the set-point
for 10 h to calcinate the tube in air before being cooled to 30 ◦C at
the previously mentioned ramp rate. During the heating process, slow
dry air flowed through the system. The oxidation of FeCrAl reformer
tubing is known to produce an adhesion-enhancing alumina layer on
the inner and outer wall surface above 900 ◦C (He et al., 2020). The
color change caused by the oxidation process was evident on the outer
wall of the tubing in Fig. 4.

3.2. Washcoat slurry preparation and application

With respect to the washcoat slurry preparation, 15 ml of deionized
water (Milli-Q IQ7000, Milliporesigma) was added to a 50 mL beaker
housing a magnetic stir bar. The pH of the water was adjusted between
9–10 with ammonium hydroxide, (25% NH3, 99.99% metal basis,
liquid, Alfaesar) added dropwise. The pH-adjusted DI water was used to
473
prepare a 21 wt % solution of zirconium (IV) oxide (powder, 5 um, 99%
trace metals basis, Sigma Aldrich). The magnetic stirrer (FisherbrandTM

Ultra Thin Magnetic Stirrer) was set at 500 rpm and 4 g of ZrO2 powder
was added to the beaker and allowed to stir for 30 min. After stirring,
the slurry was sonicated in a Tuttnauer Clean and Simple Ulrasonic
60 kHz sonicator for 20 min.

The tube was removed from the furnace and mounted vertically
using clamps. A tee valve was installed at the top of the tube and a
drain nipple was secured at the tube’s bottom. The slurry was then
poured down the inside of the tube and allowed to drain. After the
slurry application, a PTFE tube was secured to the top of the tee and air
was flown with a syringe pump at a rate of 1 ml/min for an hour. The
tube was then inserted into the furnace and heated to 100 ◦C at a ramp
rate of 1.4 ◦C∕min. The tube was heated at this temperature for 1 h,
then the temperature was ramped up to 500 ◦C (1.4 ◦C∕min) and the
tube was calcinated for 1 h. The temperature was ramped down to 30
◦C at the same ramp rate. Five washcoats were prepared following the
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Fig. 5. Slurry application setup.
steps mentioned above. A final layer of the ZrO2 support was added to
the tube by leaving the slurry inside the tube for 10 h before drainage,
followed by air drying and calcination (see Figs. 5 and 6).

3.3. Catalyst preparation

After calcination of the fifth ZrO2 monolith, a 40 wt% nickel (II)
nitrate hexahydrate (99.999% trace metals basis, Sigma Aldrich) was
prepared and stirred in a 25 mL deionized aqueous solution for 5 min
at 400 rpm. The solution was dropped into the vertical FeCrAl alloy
tube via pipette and was allowed to sit for 1 min before being drained,
dropwise, into a 100 mL beaker. Once the first nickel monolith was ap-
plied, the tube was air-dried for 30 min before undergoing calcination
at 110 ◦C for 1 h, then at 500 ◦C for 1 h (1.4 ◦C∕min). A second nickel
monolith was added to the reactor tube and remained in the tube for
12 h. Following the draining of any residual nickel nitrate, calcination
was performed once more with the previous procedure. The estimated
loading of Ni on ZrO2 is 50–80 mg.

3.4. Catalyst reduction

A proper reduction technique was developed to initialize the cat-
alytic activity of Ni/ZrO2 before each experiment. For reforming, re-
duction of the Ni surface sites with high temperature H2 reverts any
metal oxides into their original metallic forms, thereby regenerating
the catalyst. For this reason, the reduction procedure was performed
12 h prior to every steady-state, PI-control, and MPC experiment.

An ATS cylindrical heating element, coupled with a PI temperature
controller, served as the heating element for the reduction procedure.
The first step of the procedure increased the temperature of the reactor
tube to 110 ◦C (at a rate of 5 ◦C/min). After 1 h at 110 ◦C, the PI
controller ramped up the reactor temperature to 850 ◦C (at a rate
of 5 ◦C/min) where it remained for 4 h. Subsequent cooling to 20
◦C occurred at the previous ramp rates. Constant flows of N2 and H2
(96 sccm and 64 sccm, respectively) were maintained throughout the
474
temperature schedule. After reduction, and prior to the start of any
experiment, the catalyst was preserved with low-flowing N2 and H2
(30 sccm and 17.7 sccm, respectively).

4. Feedback control for experimental data collection

The experimental SMR system requires a controlled increase of the
temperature to prevent harming the catalyst. At the same time, it
offers an opportunity for controlling gas phase concentrations with a
PI controller since the GC measurements are needed to generate data
that can be used for model development.

4.1. Temperature control for data collection

As discussed in Çıtmacı et al. (2024), the temperature increase
should be limited to 6 ◦C∕min to prevent catalyst degradation. If the
reformer temperature rapidly increases or decreases, a change in the
crystal structure of the catalytic monolith may occur by sintering and
bring about changes to the Ni/ZrO2 surface and bulk morphologies. The
suggested constraint is around 6 ◦C∕min and the temperature ramping
trend should be linear. Since the temperature and current relationship
is not linear (explained in detail in Section 6), a constant increment
in current would cause more than 6 ◦C∕min at the higher temperature
range. Thus, PI control can manipulate the power supply current to
increase/decrease the reformer temperature in gradual increments.

An additional constraint is used to limit the gain of the current-
controller in order to generate a linear increase in the reformer tem-
perature when approaching the temperature set-points. If the current-
controller is too aggressive, a 6 ◦C∕min temperature set-point increase
may result in a significant initial jump in current, and 60%–80% of the
final set-point value is achieved in the first few seconds of controller
action. In this case, the controller continues to slowly decrease the
current over the next few minutes to remain at the temperature set-
point. Even though the average ramp rate may be within the ◦C∕min
constraint, the release of large amounts of electrons during the initial
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Fig. 6. Wet ZrO2 washcoat monolith at the end of FeCrAlloy reformer tube prior to calcination and Ni catalyst embedment.
Fig. 7. Linear temperature increase under control and corresponding current manipulation.
time steps of controller action leads to a sharp increase in the tempera-
ture derivative, violating the temperature rate of change constraint, and
possibly inhibiting Ni surface sites by promoting sintering processes.
Thus, to keep the temperature derivative constant at 6 ◦C∕min, the
current should not change more than 2 𝐴 in one time-step. As it is
explained in Section 6.2, 1 𝐴 increase in the current can lead to an
increase of up to 39 ◦C (if a final steady-state is reached). However, the
way that the controller works is that it first causes a sharp increase in
the current within 1 to 2 𝐴, after which the current gradually decreases
to preserve a linear change in temperature (see Fig. 7).
475
4.2. Steady-state data collection

Following the tuning of a controller to linearly increase the re-
actor temperature, experimental data at specified temperatures were
collected to determine the SMR reaction kinetics and to quantify ra-
dial heat transfer. A range of thermal conditions were designated as
steady-state set-points. The temperature was slowly increased to those
temperatures and multiple GC injections were made at a steady-state
temperature, and subsequently, the PI controller drove the process
to the new temperature target. To limit the deactivation of Ni/ZrO
2
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Fig. 8. Steady-state data collection with a Joule-heated energy source for experimental parameter calculations. Temperatures range from 650 ◦C to 800 ◦C for the outlet
thermocouple. Each steady-state condition was maintained for 110 min.
i
catalyst, the PI controller was used to drive the outlet temperature of
the reactor from 550 to 800 ◦C in increments of 50 ◦C gradually over

certain time window. The corresponding current ranges between 23
to 34 A depending on the heat transfer coefficient. However, Fig. 8

emonstrates that, after the controller drives the reactor temperature
o a new set-point temperature, the current is gradually decreased to
eep the temperature at the set-point. This would suggest that the
ystem is not at a thermal equilibrium as long as the current keeps
ecreasing. The main reason for this is the fiberglass insulation that
urrounds the tubular reactor. The heat conduction from the surface
f the reactor to the fiberglass is very slow since fiberglass has a
ery low heat conduction coefficient. As a result, the increase on the
iberglass surface temperature is not as fast as the temperature increase
n the reactor outer wall. When the reactor wall is driven to a steady-
tate temperature, the insulation is at a lower temperature due to slow
eat conduction. As the controller keeps the reactor wall temperature
onstant, the fiberglass slowly continues increasing in temperature,
esulting in lower heat loses as time progresses. Hence, the controller
educes the current input to the reactor to keep it at a steady temper-
ture. This is an indication that the heat transfer coefficient for the
eat lost to the surroundings is not constant. Also, a large temperature
ifference in excess of 50 ◦C was seen between the reformer’s inlet and
utlet after the start of the endothermic SMR reactions that consume
eat at the inlet section.

A feed mixture of CH4, H2O, H2, and Ar (39.47/119.5/17.7/6.47
ccm) was sent to the reactor at 1 atm for all steady-state and dynamic
ontrol experiments. Each steady-state temperature was maintained for
10 min, giving ample time for kinetic equilibrium to occur and for the
inimization of thermal gradients in the reactor insulation. The high

emperature data collection experiment is shown in Fig. 8. Six flowrate
amples from the GC were averaged at each temperature to determine
he steady-state effluent flowrates. When the outlet temperature of
he reformer tube was 500 ◦C, the conversion of methane was 7%,
ompared to 99% at 800 ◦C. Above 650 ◦C, the reverse WGS reaction
476
s favored, leading to greater CO selectivity over CO2. Fig. 10 confirms
this activity and the maximum selectivity towards CO2 production
occurs at 650 ◦C when the ratio of CO2:CO is 1.31 (Fig. 9(b)). The
average hydrogen production rate at 800 ◦C was 149.6 sccm, and the
average absolute errors between the computational model of Çıtmacı
et al. (2024) and laboratory results in Fig. 10 were 1.59, 3.43, 1.45,
and 2.47 sccm for CH4, H2, CO, and CO2, respectively. Most of the
variability in H2 measurements occurred at the 650 ◦C and 700 ◦C
steady-states. The high error is attributed to increasing catalyst deac-
tivation coupled with axial and radial thermal gradients introduced
by catalytic inhibition. Experimental errors in the GC total mixture
percentage also peaked around the 650 ◦C and 700 ◦C steady-states,
leading to additional variability in the measurements of all gas species
at these temperatures. The GC total mixture percentage should equal
100% for a perfectly calibrated system. In practice, it is found that the
total mixture percentage is somewhere between 101%–105%, as shown
in Fig. 12.

The thermodynamic efficiencies for steady-state conversion of CH4
at 650, 700, 750, and 800 ◦C outlet temperatures are given in Table 1.
CH4 is initially an energy carrier and the efficiency of transforming
CH4 into H2 is an essential metric for the overall SMR process. Heats of
reaction for steam methane reforming were calculated using the heat
capacities (𝐶P) for all reactants and products of the first SMR reaction.
Similarly, the enthalpy required to heat the inlet gases to the average
reformer temperature was calculated by integrating their respective
𝐶P values over the temperature differential between the laboratory
conditions and the inside of the reformer. The efficiency calculation
is given by the following equation (see the Eq. (7) in Box I): where the
thermodynamic efficiency of CH4 conversion is equal to the ratio of
the heat of reaction for the first SMR reaction at a given steady-state
temperature times the molar flowrate of converted CH4 plus the energy
requirement to heat the inlet gasses to the steady-state temperature
over the average power input. An optimal thermodynamic efficiency

◦
of 10.69% was achieved for the electrified SMR system at the 730 C
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Table 1
Thermodynamic reaction efficiency for steady-state CH4 conversion rates.

Average reformer temperature (◦C)

632 681 730 776

𝛥HT, SMR (kJ/mol) 232.46 235.5 239.01 242.81
CH4 conversion energy requirement (W) 4.79 5.98 6.82 7.09
𝛥H for inlet gases (W) 2.74 2.96 3.21 3.43
Average power input (W) 84.51 86.58 93.81 103.39
CH4 thermodynamic reaction efficiency (%) 8.91 10.33 10.69 10.18
𝑒𝑓𝑓 =
𝛥𝐻T, SMR × (CH4, Molar flowrate In − CH4, Molar flowrate Out) + 𝛥𝐻 Inlet Gasses

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑃 𝑜𝑤𝑒𝑟 𝐼𝑛𝑝𝑢𝑡
× 100% (7)

Box I.
teady-state condition. This corresponds to an outlet temperature of
50 ◦C, an average CH4 conversion of 94.1%, and a CO2:CO ratio of

0.396. The 681 and 776 ◦C steady-states generated efficiencies over
0% as well, signifying the relative optimality of the 700 to 800 ◦C
utlet temperature range.

The experimental electrified SMR system includes an ATS split-tube
lectric furnace. To confirm the proper workings of the Joule-heated
eformer, the electric furnace was used as a standard for comparison.
he heating profile of the electric furnace is axially parabolic, with
he center of the furnace holding the peak temperature set by the

atlow PI controller using an Omega K-type heavy duty thermocouple
or temperature sensing. As a result, the heat profile was at a minimum
t the inlet and outlet of the reformer. Except for the ATS specification
imits of 1100 W, 115 V, and 9.6 A, the real-time power output of the
lectric furnace was not known during steady-state data collection. In
pite of this, it was expected that the steady-state CH4 conversion and
O2:CO selectivity should be comparable to the Joule-heated energy
ource given that the average temperatures of the two heating elements
ere within 20 ◦C. The CH4 conversion for both heating elements
as 100% at 800 ◦C and 94% at 750 ◦C, indicating identical catalytic
erformance at the upper operational limits of the reformer. At 650
nd 700 ◦C, the electric furnace converted 5% and 3% more CH4 than
he Joule-heated furnace which was within the range of experimental
rror (Fig. 9(a)). Thus, the Joule-heated reformer adequately supplied
nergy to the outer reactor shell in the form of heat. Additionally,
he CO2:CO selectivity for the heating elements was comparable for
ll steady-state measurements (Fig. 9(b)), except for 650 ◦C which

produced selectivities of 1.35 and 1.04 for the Joule-heating system and
the electric furnace system, respectively. A difference in shape of the
heating profiles of the heating elements may have caused the deviation
in CO2 products between the two experiments. It is also possible
that catalyst deactivation may have influenced the SMR reaction rates
during the electric furnace experiment.

5. Modeling

5.1. Lumped parameter model

Real-time MPC of the SMR system requires a model that can be
solved sufficiently fast in real-time on the order of seconds. SMR
reactions occur in a tubular flow reactor, which would require solving
partial differential equations (PDEs) to account for spatio-temporal
evolution of variables such as species concentrations and temperature.
Solving PDEs require commercial CFD software (e.g., Ansys Fluent,
Comsol, etc.) and the solution time may be on the order of hours to
days depending on the model detail. Thus, building an MPC based on
a CFD model is not appropriate for real-time control purposes. In order
477

to efficiently solve the mass and energy balance equations in real-time,
Fig. 9. Steady-state data collection from two energy sources: Joule-heated setup and
electric furnace setup.

the flow reactor is approximated as a continuously stirred tank reactor
(CSTR) modeled by a lumped parameter ordinary differential equation
(ODE) system, which is much faster to solve with methods like Runge–
Kutta or Explicit/Implicit Euler. This brings a trade-off between the

accuracy of the ODE model solution and numerical simulation speed. A
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lumped parameter approach sacrifices some accuracy in the resulting
model as it does not account for spatial variations of the process state
variables but it enables real-time solution calculations with a sufficient
accuracy. Below, the lumped parameter model equations are given; the
derivation of the lumped model can be found in Çıtmacı et al. (2024).

The reaction mechanisms of SMR on Nickel-based catalyst were
investigated by Xu and Froment (1989), from which the reaction rate
equations were as follows:

𝑟1,𝑆𝑀𝑅 =
𝑘1
𝑃 2.5
H2

⋅
𝑃CH4

⋅ 𝑃H2O −
𝑃 3
H2

⋅𝑃CO
𝐾1

(𝐷𝐸𝑁)2
(8a)

2,𝑊 𝐺𝑆 =
𝑘2
𝑃H2

⋅
𝑃CO ⋅ 𝑃H2O −

𝑃H2 ⋅𝑃CO2
𝐾2

(𝐷𝐸𝑁)2
(8b)

𝐷𝐸𝑁 = 1 +𝐾CO ⋅ 𝑃CO +𝐾H2
⋅ 𝑃H2

+𝐾CH4
⋅ 𝑃CH4

+𝐾H2O ⋅
𝑃H2O

𝑃H2

(8c)

𝑘𝑗 = 𝐴𝑗 ⋅ exp
(

−
𝐸𝑗

𝑅 ⋅ 𝑇

)

, 𝑗 = 1, 2 (8d)

𝐾𝑖 = 𝐴𝑖 ⋅ exp
(

−
𝛥𝐻𝑖
𝑅 ⋅ 𝑇

)

, 𝑖 = CH4,H2O,CO,H2 (8e)

and the mass balances for our electrified SMR system are as follows:
d𝐶CH4

d𝑡
= 1

𝑉𝑅

(

𝐹CH4 ,0 − 𝑟1 ⋅𝑊 − 𝑞 ⋅ 𝐶CH4

)

(9a)

d𝐶H2O

d𝑡
= 1

𝑉𝑅

(

𝐹H2O,0 −
(

𝑟1 + 𝑟2
)

⋅𝑊 − 𝑞 ⋅ 𝐶H2O

)

(9b)

d𝐶CO
d𝑡

= 1
𝑉𝑅

((

𝑟1 − 𝑟2
)

⋅𝑊 − 𝑞 ⋅ 𝐶CO
)

(9c)

d𝐶H2

d𝑡
= 1

𝑉𝑅

(

𝐹H2 ,0 +
(

3 ⋅ 𝑟1 + 𝑟2
)

⋅𝑊 − 𝑞 ⋅ 𝐶H2

)

(9d)

d𝐶CO2

d𝑡
= 1

𝑉𝑅

(

𝑟2 ⋅𝑊 − 𝑞 ⋅ 𝐶CO2

)

(9e)

d𝐶Ar
d𝑡

= 1
𝑉𝑅

(

𝐹Ar,0 − 𝑞 ⋅ 𝐶Ar
)

(9f)

The solution of the above equations require to express the molar
flowrate (𝐹𝑖) in terms of concentration (𝐶𝑖) and volumetric flowrate (𝑞).
Specifically, the volumetric flowrate will vary based on temperature as
in Eq. (10) (Çıtmacı et al., 2024) below:

𝑞 =
𝐹𝑇 0 + 2 ⋅ 𝑟1 ⋅𝑊

𝑃
𝑅𝑇

+
𝑉𝑅
𝑇

⋅
d𝑇
d𝑡

(10)

5.2. Model initialization

Molar and volumetric flowrates for steam are not measured via
measurement sensors. Still, using the available flow equations, the
following equations can be solved simultaneously with a good initial
guess for the steam molar flowrate:

0 = 𝑞 − 𝐹𝑅𝑇
𝑃

(11a)

0 = 𝑞 −
𝐹𝑇 0 + 2 ⋅ 𝑟1 ⋅𝑊

𝑃
𝑅𝑇

−
𝑉𝑅
𝑇

⋅
d𝑇
d𝑡

(11b)

here 𝐹 is the total flow rate, Eq. (11a) is the ideal gas law and
q. (11b) is the expression of the volumetric flowrate. The first reaction
ate (𝑟1) is a function of gas species partial pressures including steam,
hich is shown in Eq. (8a). Eq. (12) below can be utilized to calculate

he partial pressure of each species required in the rate equation:

𝑖 =
𝐹𝑖
𝐹𝑇

𝑃 (12)

here 𝐹𝑖 and 𝑃𝑖 are molar flowrate and partial pressure of each
as species, respectively. These equations can be used to initialize
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t

Fig. 10. Steady-state experimental data and model predictions over the 400 ◦C to 800
◦C temperature range. For the experimental dataset, average steady-state temperatures
are reported. Error bars represent the standard deviations of volumetric flowrates.

the ODE solver of the process dynamic model at a steady-state. The
molar flowrates are obtained from the GC-based calculations, while
temperature values are measured by the two thermocouples. Once the
system reaches steady-state, the total volumetric flowrate (𝑞) and the
steam flowrate (𝐹H2O) are calculated, and the ODE solver is initialized
to calculate the rest of the process variables.

5.3. Parameter estimation using experimental data

Our previous computational study in Çıtmacı et al. (2024) sug-
gested an approach for using a lumped parameter model in a model
predictive controller that does not use the thermodynamic energy
balance for temperature estimation, rather it uses a data-driven first-
order dynamical model that relates the applied current to the reactor
temperature. However, due to the nonlinear nature of heat transfer in
steam methane reforming, first-order linear dynamic models can only
capture the reactor temperature behavior within the region where the
linear model is valid. To create a more accurate model over the entire
operational temperature range, a comprehensive energy balance is used
in the present work. Using a lumped parameter assumption, the energy
balance takes the following form:
d𝑇
d𝑡

=

𝐼2𝑅̄ +
∑

𝑖 𝑚̇𝑝𝑖𝐶𝑝𝑖 (𝑇𝑝𝑖 − 𝑇 ) −𝑊 𝑟𝑆𝑀𝑅𝛥𝐻𝑆𝑀𝑅(𝑇 ) −𝑊 𝑟𝑊𝐺𝑆𝛥𝐻𝑊𝐺𝑆 (𝑇 ) + 𝑈𝐴(𝑇𝑠 − 𝑇 )
∑

𝑖 𝜌𝑖𝐶𝑝𝑖𝑉

(13)

here the 𝐼2𝑅̄ term represents the heat given to the system by the
ower supply and can be read from the sensors. The reaction enthalpies
t specific temperatures can be calculated mathematically using the
homate equation (Shomate, 1954) which accounts for the heat ca-
acity and formation enthalpies at standard state (298 K, 1 atm). The
eactor is cooled by the surrounding ambient temperature, which is
ccounted for in the 𝑈𝐴(𝑇𝑠 − 𝑇 ) term. Thus, the only unknown in
he energy balance is the 𝑈𝐴 term, which is the overall heat transfer
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Fig. 11. Model predictions for outlet CH4 and H2 molar flowrates when experimental current is provided.
coefficient times the heat transfer area. In a perfectly insulated system,
the 𝑈 term would be zero and the system would not lose any heat to
the surroundings. In that case, there must be a cooling stream, such as
a jacket, around the reactor to reduce the reactor temperature when
necessary. Furthermore, experimental systems are not ideal systems,
and despite the use of an insulation layer in our reactor, there are heat
losses to the surroundings. The 𝑈𝐴 term can be estimated by fitting ex-
perimental temperature data to the mass and energy balances, Eqs. (9)
and (13), respectively. To fit the data, steady-state operating data, such
as the experimental data shown in Fig. 8, can be used directly without
de-noising. Fig. 8 illustrates the conditions for four steady-states at 650
◦C, 700 ◦C, 750 ◦C, and 800 ◦C. Thus, this data is fitted to nonlinear

ass and energy steady-state balances to estimate the UA value (Cui
t al., 2024). As a result of the data fitting procedure explained in Cui
t al. (2024), the 𝑈𝐴 term is estimated to be 0.116 J (s K)−1. Finally, in
ur previous work (Cui et al., 2024), we demonstrated the fitting of the
xperimental data to the reaction kinetics equation described by Xu and
roment (1989) to estimate the pre-exponential factor and activation
nergy, and the results showed very close correspondence (see Fig. 10).

.4. Model evaluation

The model predictive controller will use the lumped model de-
cribed in Section 5.1. This model assumes that the mixing is perfect
nd the temperature and concentration profiles are uniform everywhere
n the reactor. Note, in a tubular reactor, the reactions occur in the
xial direction and neither the temperature nor the concentrations
re uniform. The gas mixture starts reacting in the inlet section of
he reactor where the highest heat consumption occurs due to the
ndothermic SMR reaction. This causes a significant temperature drop
t the inlet section of the reactor which is evident when analyzing
hermocouple values over the axial length of the reactor. The maximum
emperature difference over this length is around 100 ◦C. This brings
bout the question of which temperature to use in the lumped model.
ne effective approach is taking a weighted average of top and bottom

hermocouples to be the lumped model temperature.
To find meaningful weights for averaging the reactor temperature,

vailable data from flowrate feedback control were used. In this in-
tance, various weights were used to find the best matching outlet
479
Fig. 12. Average carbon balance and GC errors for the steady-state data collection
experiments shown in Fig. 10.

flowrate and temperature prediction. Since the heat transfer coeffi-
cient term (𝑈𝐴) was known, providing the experimentally recorded
current values to the energy balance equation (Eq. (13)) was sufficient
to estimate the reactor temperature. The estimated temperature was
subsequently compared to the weighted average of experimentally
recorded inlet and outlet thermocouple values.

To compare the model predictions with recorded thermocouple
temperatures and GC concentrations, the numerical ODE solver that
integrates the mass and energy balances (Eqs. (9), (13)) is provided
with an initial condition. However, the gas chromatogram provides
only molar flowrates of CH4, H2, CO, CO2, and Ar. Steam concentration
is not measured in the reactor effluent as steam is condensed before
the GC feed. As a consequence, initializing the ODE solver requires
estimates for the outlet steam molar and volumetric flowrates. The two
equations shown in Eq. (11) were solved simultaneously for a given



Chemical Engineering Research and Design 206 (2024) 469–488B. Çıtmacı et al.

m

s
f
i

s
p
G
s
i
r
o
a
b
e
t
b
a
m
w
v
i
i
a
t
G

R
w
p
𝑈
t

5

o
i
t
t

C

2

Fig. 13. Model predictions for CO and CO2 when experimental current is provided. The CO2 flowrate estimations demonstrate some deviation from the experimental results, which
ight be due to coke formation at higher temperatures.
teady-state to get an estimate of outlet steam molar and volumetric
lowrates. Once 𝐹H2O and 𝑞 values are estimated, the solver can be
nitialized.

In each experiment, multiple GC injections are taken at each steady-
tate (5–6 injections per steady-state temperature). If the experiment
erforms flowrate control, the controller is initialized after multiple
C injections at the outlet section temperature of 550 ◦C steady-

tate. To find the top and bottom thermocouple weights, the model
s initialized at the steady-states and integrated with respect to the
ecorded experimental current values. After trying many combinations
f weights for the top and bottom thermocouples, the optimal weights
re estimated to be 60% of the top thermocouple value and 40% of the
ottom thermocouple value. This also corresponds to the vicinity of the
xperimental steady-state H2 flowrate value at the weighted tempera-
ure. The overall temperature of the reactor for model calculations is
ased on these weights. Since the majority of CH4 conversion occurs
t the inlet section of the reactor, giving more weight to the top ther-
ocouple provides a better representation of the reactor heat profile
hen compared to taking the arithmetic mean of the two thermocouple
alues. The model predictions with the respective weights are shown
n Fig. 11, for one of the feedback control experiments later explained
n Section 6.1. This model takes only recorded experimental current as
n input, calculates temperature values, gives continuous predictions of
he gas specie concentrations. The predictions are compared to discrete
C measurements in Fig. 11.

emark 1. The 𝑈𝐴 term must be calculated with respect to the
eighted average temperature. Thus, each weight tested with the ex-
erimental data must calculate a unique 𝑈𝐴 value. The data fitting of
𝐴 term shown in Section 5.2 is calculated for the weights obtained in

his section.

.4.1. Carbon formation effect
In any SMR system, a common disturbance process is the formation

f carbon (coke) on the catalyst throughout the reactor. A carbon layer
s formed on the catalyst and blocks available surface sites, decreasing
he catalytic performance (Meloni et al., 2020). The side reactions that
ake place in Eq. (14) cause coke formation.

H4 ⇌ 2H2 + C, 𝛥𝐻298 = 75 kJ mol−1 (14a)

CO ⇌ CO2 + C, 𝛥𝐻298 = −172 kJ mol−1 (14b)

This initially formed carbon, 𝐶𝛼 , is very active and some carbon atoms
are transformed to 𝐶𝛽 . For 𝐶𝛽 , atoms may be vaporized and the re-
maining portion can diffuse within the catalyst. This diffusion can make
the carbon nucleate and precipitate at the back of the catalyst, causing
the catalyst to lift, triggering fragmentation of nickel crystallite (Zhang
et al., 2021). Coke formation is therefore detrimental to the catalyst and
hard to avoid. When the carbon atoms are counted in the inlet stream
480

(from CH4) and outlet stream (from CO, CO2, and unreacted CH4).
Fig. 12 demonstrates the difference for the steady-state data collection
experiment in Fig. 8.

The carbon deposition effect can be reduced using methods like
the gasification of the carbon layer to refresh the catalyst. As a part
of the SMR system experimental procedure, H2 and steam are used
to gasify the carbon layer on the reactor catalyst for 5 min at the
beginning and end of each experiment. However, coke formation may
have caused deviations in modeling results due to carbon losses in the
carbon mass balance for experimental data. Also, this phenomenon is
very challenging to quantitatively model, and furthermore, it is difficult
to eliminate coke while the SMR process is already running. Ginsburg
et al. (2005) and Ashik et al. (2017) worked towards measuring the rate
of carbon formation and proposed the rate equations shown in Eq. (14),
which were developed under certain assumptions. For example, Gins-
burg et al. (2005) assumed the decomposition of CO (Eq. (14b)) to
carbon was dominant. However, both our steady-state and dynamic
data do not support this assumption. If the coke formation is mainly
caused by CO according to Eq. (14b), CO2 flowrate estimation from the
model should be smaller. However, CO2 has larger estimated flowrate
values when compared to the experimental data shown in Fig. 13,
implying that this assumption may not be valid for our process.

6. Feedback control of hydrogen molar flowrate

6.1. Experimental PI control

In order to evaluate the efficiency of a model predictive controller
in terms of speed of response, a control study with only sensor feedback
is first conducted. In this control scheme, the controlled variable is the
outlet H2 flowrate and the manipulated variable is the current. As the
SMR is an overall endothermic process, the equilibrium constant will
increase as temperature increases, and the process will produce more
H2. The temperature controller drives the process from room tempera-
ture to the first steady-state at 550 ◦C in the bottom temperature, which
corresponds to 500 ◦C in terms of the weighted average temperature.
Then, the H2 flowrate controller takes over and drives the process
to the 120 sccm set-point decided in Cui et al. (2024). Theoretically,
it requires 102.3 sccm of H2 produced from the reaction (given that
17.7 sccm of H2 is in the inlet flow rate to the reactor). According to
the stoichiometric ratio of CH4 and H2 in Eq. (8), the minimum CH4
consumption is 25.575 sccm if 4 moles of H2 is produced from 1 mole
of CH4 (64.8% conversion), and maximum is 34.1 (86.4% conversion)
sccm if 3 moles of H2 is produced from 1 mole of CH4 (excluding
WGS reaction), respectively. However, it is important to note that this
theoretical conversion range is calculated without considering the coke
formation.

The inlet flowrates of CH4, H2O, H2, and Ar remained unchanged
from the steady-state experiments to maintain a gas hourly space
velocity (GHSV) of 1000. Finally, after the set-point is reached and GC

injections are taken for at least 324 min, the temperature controller
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Fig. 14. First experiment under PI control based on GC feedback only.
takes over the process once more upon re-initialization in order to
decrease the reactor temperature to ambient conditions. The GC data
points are delayed by 15 min and updated every 18 min. Thus, the state
seen by the controller is constant at the GC output for 18 min. However,
the integral term in the controller keeps integrating the error, causing a
continuous increase in the controller’s current output being sent to the
power supply on a per second basis. The controller was tuned in Cui
et al. (2024) using a computational process model. The final parameters
found from this simulation were 𝐾 = 0.0012 A/sccm, and 𝜏𝐼 = 79 s
and have been adopted by the concentration PI controller. The results
from the first PI control experiment are shown in Fig. 14. The control
behavior is very consistent with the proposed control strategy in Cui
et al. (2024). The controller drives the process to its 120 sccm set-
point without violating the current ramp rate and keeps the process at
said set-point with only slight fluctuations around the target hydrogen
production value. The H2 flowrate control experiment is repeated three
times to show that this PI control scheme can drive the process at the
desired set-point. The second experiment (Fig. 15) confirms the ability
of the PI controller to drive the process to the desired set-point.

Fig. 17 demonstrates the error between the three PI control experi-
ments and the closed-loop model under PI control prediction. This is an
indication that the model would perform fairly well. The slight dynamic
mismatch between 0 and 200 min might be due to the lumped param-
eter modeling. However, the mismatch at steady conditions between
300 and 400 min after the control starts might also indicate some other
phenomena, especially for the third PI experiment.

While interpreting the result, it is crucial to note that the reverse
water gas shift reaction is favored around the set-point. WGS reaction
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is slightly exothermic, and as the temperature increases the equilibrium
shifts towards producing more CO and less CO2 and H2. Thus, at
this point, the H2 production is mainly maintained by the reform-
ing reactions. At lower temperatures, 1 mole of methane produces
roughly 4 moles of H2, and as the reverse WGS takes over, 1 mole
of methane produces 3 moles of H2. However, as the temperature
increases, the reforming reactions become faster and still produce more
H2 compared to lower temperatures. This phenomenon can be seen
in Fig. 10. Around 650 ◦C, the CO2 flowrate is decreasing while the
CO flowrate is increasing. Also, after 650 ◦C, the slope of the H2
flowrate production decreases as temperature increases. Thus, in the PI
experiments, the set-point of 120 sccm is usually at a transition area for
WGS and reverse WGS. Hence, after this point, the controller increases
the reactor temperature to produce more H2, converting more methane.

It is also very important to keep in mind that the scatter plots for
each gas specie demonstrates when the GC measurement was taken
and not when this measurement value was received by the controller.
Thus, the controller keeps driving the process based on the previous
GC result, and the integral term integrates the previous error. If the GC
measurement is very close to the set-point, the controller tends to keep
constant. However, as mentioned in Section 4.2, the constant current
increases the temperature due to delayed heating of the fiberglass.
Thus, while the controller thinks that the process is at steady-state,
the gradual heating of the fiberglass is causing a temperature increase
in the reactor, thus a surge in the H2 concentration, even though
the current seems to be constant. Moreover, the controller can start
decreasing the current only after the GC measurement is obtained,

meaning that the current was used for further increase of the H2
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Fig. 15. Second experiment under PI control based on GC feedback only.
oncentration when it should have decreased. One clear example of
his is the H2 flowrate increase in Fig. 16 at 420th and 450th minutes.
o compensate for this increase, the controller quickly decreases the
urrent, and this delayed control brings the process to a state before
he reverse watergas shift reaction is favored. The further increase of
he current triggers the reverse water gas shift and slows down the H2
ncrease. This can be seen from the CO2 concentration trend change at
65th minute, where the reverse WGS is triggered for the first time,
nd the 420th minute when the WGS reaction trend changes one more
ime.

The third experiment (Fig. 17) shows more variation as quantified
n Table 2 in H2 molar flowrate around the set-point. When CH4

conversion is checked in Fig. 18, the H2 flowrate is below the set-point,
and yet, methane conversion approaches 100%. At this point, side
reactions such as carbon formation (which is explained in Section 5.4.1)
or catalyst deactivation might be happening in addition to reverse WGS
shift reaction becoming more dominant. However, the PI controller
still boosts the current to bring the H2 concentration to the target
value. These phenomena are not as severe in the first two PI con-
trol experiments, mainly because of the experimental conditions. The
lumped parameter steady-state model suggests that the process settles
at 120 sccm H2 production rate around 650 ◦C (temperature weighted
average). However, depending on the experimental variability of pa-
rameters (e.g., catalyst activity, coke formation, etc.), the steady-state
temperature and reverse WGS triggering varies. The first PI control
settles at the steady-state around 630 ◦C, and these temperatures are
715 ◦C and 695 ◦C for the second and third PI control experiments,
espectively.
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The difference between the inlet carbon flowrate (coming from CH4)
and the outlet GC measurements’ carbon flowrate (coming from CO,
CO2, and unreacted CH4) is shown in Fig. 19 with respect to time
and temperature. Overall, an increase in reactor temperature causes a
greater consumption of methane, and increases coke formation. At simi-
lar high temperatures, the third PI control experiment produced slightly
higher amounts of carbon, which might indicate that the catalyst was
more deactivated compared to the first two experiments. Instead of pro-
ducing more H2, the catalyst favors more carbon formation. Hence, a
higher conversion does not mean higher H2 production, since methane
might be consumed for coke production.

The temperature increment is targeted to be kept under 6 ◦C per
minute to preserve the catalyst activity. Thus, the PI controller was
tuned to keep the catalyst under this constraint at all times. Fig. 20
displays the change in temperature each minute during the control
experiments. The temperature change each minute is around 2.5 ◦C.
A more aggressive controller gain could have been used for the PI
for a faster response. However, even with the current parameters,
the PI controller causes an oscillation in each experiment. Thus, a
higher 𝐾𝑐 value would lead to higher-amplitude oscillations which are
undesired. Furthermore, these oscillations would become more severe
as the deactivation and coke formation effects become more significant.

The PI control experiments demonstrate that a PI controller with
delayed measurements requires between 120 to 200 min to drive the
process to the set-point. Section 6 below focuses on the improve-
ments on the response time using an estimation-based model predictive
controller.
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Fig. 16. Third experiment under PI control based on GC feedback only.
Fig. 17. Absolute error of H2 (sccm) production with respect to simulated closed-loop response under PI control.
.2. Model predictive control

The reaction kinetics are very fast for SMR reactions. The compu-
ational work done by Cui et al. (2024) demonstrates that the process
s expected to settle at a steady-state within 1 s at 1000 GHSV. Thus,
ven for a slight temperature change, the time required for reaching a
483
steady-state is very short. However, the allowed current increase rate
prevents controllers from going to higher target temperatures to reach
the desired production rates faster than the ramp rate limits. PI con-
trollers might not provide the most optimal current input to the power
supply at each time step. Instead, an MPC would ensure that the most
optimal input value is calculated at each time step without violating
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Table 2
Average absolute errors for hydrogen production (sccm) under PI control for different time intervals (min).

Time (min) Experiment 1 Experiment 2 Experiment 3

Avg. Error (sccm) St. Dev. Avg. Error (sccm) St. Dev. Avg. Error (sccm) St. Dev.

0–99 31.29 11.67 36.57 15.57 41.96 14.14
100–199 5.99 6.02 9.59 6.14 11.31 7.52
200–299 4.25 2.07 4.62 2.78 10.29 12.19
300–399 2.18 0.79 2.54 2.39 11.64 3.48
𝑥

Fig. 18. CH4 conversion for the 3 PI control experiments.

the constraints. Thus, we examine the behavior of an MPC to make
sure that this process is driven to the desired H2 production rate in the
most efficient way possible. The model estimation and optimization are
computationally inexpensive, such that all the calculations can be made
on LabVIEW in one second. However, the LabVIEW script runs many
calculations in one loop. Consequently, if a model solution calculation
takes more than one second, there are delays on the code execution. To
prevent these time delays in computing the control actions, the MPC is
designed to make one calculation every 5 s.

The most important constraint given to the MPC is the 6 ◦C∕min
temperature change rate. This constraint is therefore embedded into
the MPC optimization problem. To do this, the behavior of the temper-
ature against current was examined experimentally. Using the process
model explained in the previous section, a current against expected
temperature graph is generated and fitted to a 2nd order polynomial.
The resulting polynomial is 𝑇 (𝐼) = 0.7𝐼2 + 2.64𝐼 + 290.7 with an 𝑅2

value of 0.99, and the data fit is shown in Fig. 21(a). The MPC operates
between 700–1100 K, and thus, when zoomed into this operational
region, it is possible to check if a linear constraint can be given. The
data points in this region were fit to a linear function via regression,
and the resulting function was found to be 𝑇 (𝐼) = 39.4𝐼 − 186.2,
which is illustrated in Fig. 21(b). The data points show close alignment
with the linear model. Thus, within this operation region, it is safe to
assume that a 1 A increase in current causes a 39.4 ◦C increase in
temperature. Since the MPC is designed to make a calculation every
5 s, the maximum allowed increase in current corresponds to 0.13 A to
satisfy the 6 ◦C∕min temperature rate of change constraint used in the
MPC optimization problem.

6.2.1. Extended Luenberger observer
In the MPC architecture, the model predictions are updated with

feedback obtained from real-time process measurement data. However,
the measurement sensors do not yield volumetric and steam molar
flowrates. In this type of a feedback control problem, methods like
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Kalman Filter (Kalman, 1960) or Luenberger observer (Luenberger,
1964) help to combine the process model and sensor feedback values
to obtain an estimate of the state of a system. Specifically, an extended
Luenberger observer can be developed for a dynamic system of the
form:

𝑥̇ = 𝑓 (𝑥, 𝑢) (15a)

𝑦 = ℎ(𝑥) (15b)

where 𝑥 is the state vector, 𝑢 is the control input vector, 𝑓 (𝑥, 𝑢) is
a nonlinear vector function, 𝑦 is the measurement vector, and ℎ(𝑥) is
the transformation vector function that transfers the state value to the
measurable physical information. Specifically, the extended Luenberger
observer has the following form:

̇̂ = 𝑓 (𝑥̂, 𝑢) +𝐾𝐸𝐿𝑂(𝑦 − ℎ(𝑥̂)) (16)

where 𝑥̂ is the estimated state vector, 𝑦 is the measured output, and
𝐾𝐸𝐿𝑂 is the observer gain matrix designed to ensure the convergence
of the estimated states 𝑥̂ to the true states 𝑥.

In the implementation of the ELO to the experimental setup, the
model predictions are corrected by adding the difference between
estimated values and sensor values, all multiplied by a tuned gain
value. In our work, tests on model predictions were performed to see if
the model’s predictions could be updated using only temperature values
(sampled each second) and H2 flowrate values from a GC analysis
(sampled every 18 min). In this way, the missing values are estimated
from the model and the correction terms bring all the estimations closer
to their real values. The ELO state estimates are subsequently sent to the
MPC to optimize the current input for the next sampling time (5 s). It is
also important to note that the process model in MPC is not corrected
by an estimation error term as future measurements are not available;
rather, the ELO is used to calculate the process state variables needed
to initialize the process model used in the MPC. The detailed derivation
of the equations for ELO using the process model and the observer gain
matrix is presented in Cui et al. (2024). The experimentally tuned gain
matrix (𝐾𝐸𝐿𝑂) used in this work is as follows:

𝐾𝐸𝐿𝑂 =
[

−0.01 0.05 −0.1 0.7 0.01 0.04 100
0.8 −0.60 0.2 2 0.005 0 0

]

(17)

where the first row corresponds to the correction tuning values for
the difference in temperature and its effect on each of the species and
the temperature. Each column shows the tuned values that influence
CH4, H2O, CO, H2, CO, Ar and temperature. The difference in H2 does
not affect the temperature ODE, since the first row of 𝐾𝐸𝐿𝑂 mainly
accounts for the temperature correction. The second row represents
the correction that is implemented for the difference between H2
production estimation and GC value that corresponds to 15 min prior.
This 15-minute delay causes jumps in the ELO predictions. Also, since
the H2 values correspond to those from 15 min before, the ELO gain
matrix should not have large gain to correct for the gas species at the
current time step. Finally, since the H2 concentration is controlled and
the only sensor feedback for H2 is obtained from the GC, the ELO output
for H2 is tuned to be very close to the last GC measurement. Using the
ELO, the MPC optimization problem implemented on our experimental
setup is of the form:

 = min
𝑡𝑘+𝑁ℎ

𝐿(𝑥̄(𝑡), 𝐼(𝑡)) d𝑡 (18a)

𝐼 ∫𝑡𝑘
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Fig. 19. Difference between the inlet and outlet carbon atom flowrates.
Fig. 20. Change in the reactor outlet temperature over time for all PI experiments.
Fig. 21. Current and temperature relation fitted for MPC current constraints.
s.t. ̇̄𝑥(𝑡) = 𝑂𝐷𝐸(𝑥̄(𝑡), 𝐼(𝑡)), 𝑥̄(𝑡𝑘) = 𝑥̂(𝑡𝑘) (18b)

𝐹H2
(𝑡) = ℎ(𝑥̄(𝑡)) (18c)

𝐿(𝑥̄(𝑡), 𝐼(𝑡)) = 𝐴(𝐹H2
(𝑡) − 𝐹H2 ,𝑠𝑝)

2 + 𝐵(𝐼(𝑡) − 𝐼𝑠𝑝)2 (18d)

𝑡 ∈ [𝑡𝑘, 𝑡𝑘+2) (18e)

|𝐼(𝑡𝑘) − 𝐼(𝑡𝑘−1)| ≤ 0.013 (18f)
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0 A < 𝐼 < 40 A (18g)

where the allowed current change is limited to 0.013 A per 5 s, the
current range is bounded between 0 and 40 A, 𝑁ℎ = 2 is the prediction
horizon length, ℎ(𝑥̄(𝑡)) is the transformation needed to calculate the
hydrogen outlet flow rate from the dynamic model states, the process
model is the ODE solver and the optimized cost function is the weighted
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ummation of quadratic errors between the H2 molar flowrate and
the current state estimated by the model, and the current value and
the steady-state current estimation at the desired set-point. The 𝐴 and
𝐵 values in Eq. (18d) are taken to be 1 and 0.01, respectively. The
constraint on the rate of change of the current is imposed so that the
temperature in the reactor does not change so fast that the catalyst
activity is compromised.

Remark 2. The sensor feedback for other gas outlet flowrates could
be incorporated in the ELO to improve the accuracy of the predictions.
However, this would require tuning of more parameters in the gain
matrix and was not needed in the present experimental implementation
due to the achieved closed-loop performance.

6.2.2. Adjustments to experimental conditions
We calculated in the beginning of Section 6.2 that the maximum

amount of current increase is 0.013 A from the energy balance equa-
tion. However, the experimental setup is vulnerable to phenomena
that can cause discrepancies between the model and experimental
outputs, such as carbon formation, catalyst deactivation, change in
catalyst activity, and delayed heating of insulation layer. Thus, in the
experimental setup, the same H2 production rate can be reached at
slightly different temperatures. As a result, if the process control system
relies entirely on the model, it may end up not reaching the set-point
experimentally even though the model calculates that the process is
at steady-state. In order to handle this type of situation, an integral
486

term was added to the MPC output to help the controller drive the s
process output to the set-point. Considering that the integral term will
further increase the MPC output current, the maximum allowed current
increment in the MPC formulation was limited to a lesser amount than
0.013. In this case, the current input at each time step was calculated
using the following equation:

𝐼(𝑡) = 𝐼𝑖𝑛𝑖𝑡𝑖𝑎𝑙 +
𝑡

∑

𝑡=𝑡0

𝛥𝐼𝑀𝑃𝐶 + 1
𝜏𝐼 ∫

𝑡

𝑡0
𝑒(𝑡) 𝑑𝑡 (19)

here 𝑡 is the current time step, 𝐼𝑖𝑛𝑖𝑡𝑖𝑎𝑙 is the current recorded when the
PC starts, 𝐼𝑀𝑃𝐶 is the current calculated by the MPC only, and 𝑒(𝑡)

s the error term between the set-point and the ELO H2 output. In this
ase, a 𝜏𝐼 value is selected, and the maximum amount of the current in-
rement provided by the MPC is limited to 0.008 A, which would mod-
fy the constraint in Eq. (18f). The integral error term is integrated with
espect to the ELO output at each time step. The 𝜏𝐼 value is chosen to be
34 086 s, which is very high, to make sure that the impact of the inte-
ral term is small. The main reason for this is that the ELO is tuned such
hat the H2 estimation is very close to the previous GC measurement.
ence, until the GC is updated, the H2 prediction does not increase,
ausing a significant accumulation of error. Also, it is not desirable for
he integral term to take a huge step and violate the current increase
onstraint. Finally, it is important to point out that an alternative to
he addition of an integral term in the MPC control action would be to
dopt an offset-free MPC scheme. In the present case, the impact of the
ntegral term is really small (owing to the choice of the gain parameter
f this term) and only has an effect as the process output approaches the

teady-state; please see the experimental results in the next subsection.
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Fig. 23. Second closed-loop experiment under MPC.
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In Section 4.2, it was discussed that the insulation layer undergoes
delayed increase in temperature change. This implies that the heat

rom the reactor wall is conducted through the insulation layer, and
hen heat is dissipated to the surroundings at 25 ◦C through convective
eat transfer. In the energy balance equation (Eq. (13)), the heat loss
s represented with the 𝑈𝐴(𝑇𝑠 − 𝑇 ) term, which only accounts for the
onvection, and is a linear expression. Since the nonlinear conduction
eat transfer across the insulation layer is not represented here, it
hould be represented by a different method for accurate MPC calcula-
ions. In order to do that, the heat transfer coefficient times the surface
rea term in the process model is recalculated every 500 s using the
ecorded reactor temperature data. This helps to lump convection and
onduction into the energy equation and improve MPC predictions. To
pdate the 𝑈𝐴 term, temperature derivatives are calculated from data
istory using a centered finite-difference method. Following this, the
orresponding temperatures, currents, potentials and ELO predictions
re evaluated. These parameters are used to minimize the distance
etween the experimental heat differential and Eq. (13) to find the most
ptimal 𝑈𝐴 term through an SQP (sequential quadratic programming)
olver. As the 𝑈𝐴 term changes, the 𝐼𝑠𝑝 term in the MPC formulation
Eq. (18d)) that corresponds to the set-point temperature changes as
ell. Thus, when the 𝑈𝐴 is recalculated, the procedure mentioned in
ection 6.2 is repeated with the new 𝑈𝐴 value used in the process
odel to update the current set-point.

Experimental data that the sensors are collecting are very noisy
ompared to simulation data. For example, the resistance changes often
487
uring the experiment, due to oxidation of the current collectors. The
emperature signals obtained from the setup are not smooth due to
nvironmental factors and sensor noise. In order to mitigate the effects
f the noise, a Savitzky–Golay filter was applied with a polynomial
rder of 2 and window length of 40 s on current, temperature, and
esistance values. Savitzky–Golay filter fits a second order polynomial
o the last 40 s of data and uses the fitted polynomial data coefficients
o estimate weights for smoothing the data (Savitzky and Golay, 1964).
he process model takes data points on a per-second basis, and the
oise from the sensors causes noisy predictions. In addition to that,
he ELO correction term might cause an amplification of the noise
hat would be reflected to the output predictions. Thus, de-noising the
forementioned signals will cause less fluctuating predictions in the
ubsequent gas flowrate estimations.

.2.3. Experimental implementation of MPC
The experimental real-time implementation of the proposed MPC

ontrol scheme is conducted with the same initial condition and set-
oint as the PI control experiments for a fair comparison. We carried
ut two experiments under MPC using the same operating conditions
nd MPC tuning parameters. The MPC sampling time is 5 s in the
xperimental implementation and the MPC was always solved within
his time constraint. The first MPC experimental result is presented in
ig. 22 and the second one is presented in Fig. 23. From these two
igures, it can be seen that the MPC successfully drives the process to
he set-point in both experiments, establishing the reproducibility of
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this experimental MPC implementation. Furthermore, it can be seen
that it takes around 4 GC measurements for the output to reach the
set-point, which corresponds to around 72 min of process operation
time, which is a significantly shorter approach to the set-point than
all the PI control experiments. Upon regulation at the set-point, the
GC results exhibit less variability around the set-point compared to the
output under PI control. With respect to the behavior of the control
system, the current values calculated by the MPC change smoothly with
time, leading to a smooth change of the temperature evolution in the
reactor. Finally, we note that the chattering in the power signal is due
to the noisy behavior of the voltage and current measurement of the
heating system and it is best to view the power consumption in terms
of a sufficiently long moving average that would yield the average value
over time. We decided to present the instantaneous power consumption
in the plots, as it is the primary data, and one can easily determine the
average power from these results.

7. Conclusion

Steam methane reforming is a widely used endothermic H2 produc-
ion process that can transition to a more sustainable heating provided
y electricity. As the amount of academic research focusing on electri-
ied SMR technology development is increasing, the automatic feedback
ontrolled operation of this process has not been adequately explored.
dvanced model-based control schemes have not been investigated,
ostly due to computational models that take long times to solve

n real-time. In this work, we used steady-state experimental data to
evelop a lumped parameter model for this process that was used in
model predictive control system. During the experimental procedure,

he temperature rate of change increase was kept within a 6 ◦C∕min
limit to prevent thermal damage to the catalyst. The model was in-
corporated into an MPC scheme used to drive the SMR process to
a new H2 production set-point. To prove the efficiency of the MPC,
PI control experiments were also conducted. While the PI controller
successfully drove the H2 production to the set-point under conditions
like catalyst deactivation and coke formation, the MPC was found to
be more efficient with a significantly faster approach to the set-point
while respecting control action constraints.
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