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This work focuses on a broad class of nonlinear process systems subject to control
actuator faults and disturbances and proposes a method for data-based fault detection
and isolation that explicitly takes into account the design of the feedback control law.
This method allows isolating specific faults in the closed-loop system; fault detection is
done using a purely data-based approach and fault isolation is achieved using the
structure of the closed-loop system as induced by an appropriately designed controller.
This is achieved through the design of nonlinear model-based state-feedback control
laws that decouple the dependency between certain process state variables in the
closed-loop system. In this sense, the proposed approach constitutes a departure from
the available data-based fault detection and isolation techniques which do not take
advantage of the design of the feedback control law to enforce a closed-loop system
structure that enhances fault isolation. The theoretical results are demonstrated
through simulations of a CSTR and a gas-phase polyethylene reactor. � 2007 American
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Introduction

Handling abnormal situations is a subject of great impor-
tance within the areas of chemical process control and opera-
tions. In chemical plant operations, abnormal situations can
arise from failures in control systems, equipment and chemi-
cal processes. Modern chemical plants that rely on highly
automated processes to maintain precise control and efficient
production are particularly vulnerable to these failures. Loss
of control in a chemical process can lead to the waste of raw
materials and energy resources, as well as downtime and
production losses. More extreme cases of out of control
processes can lead to destruction of process equipment and/
or injury to personnel. As process plants become more

sophisticated, it is increasingly more important to develop
ways of eliminating or mitigating the consequences of such
failures. One way to reduce the risk of problems is through
early and accurate detection of failures and subsequent con-
trol system reconfiguration to achieve optimal plant operation
through fault-tolerant control.

Over the past ten years, fault-tolerant control has become
an active area of research within control engineering. Many
research studies can be found in the field of aerospace con-
trol engineering,1,2,3 as well as within chemical process
control.4,5,6 Fault-tolerant control is based on the assumption
that there exist multiple available control configurations in
which the closed-loop system can operate. Fault-tolerant con-
trol systems utilize this redundancy to reconfigure a failed
control system configuration to one that does not rely on the
faulty actuator, sensor or controller. The success of any
fault-tolerant control method, however, requires the integra-
tion of several key components, including: the detection and
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isolation of faults, multiple available feedback control config-
urations that stabilize the system and a supervisory switching
scheme that controls the transition from the failed configura-
tion to a well-functioning fallback configuration that can
ensure closed-loop stability. In this article, the main focus
will be on fault detection and isolation (FDI), that is, not
only detecting that a control actuator fault or disturbance has
occurred, but also diagnosing the underlying cause of the
faulty behavior (i.e., pointing exactly to the specific control
actuator/sensor that has failed). If a fault is isolated early and
accurately, it is more likely that it can be safely dealt with
through fault-tolerant control systems (see, for example,7,8

for more results in this area).
Methods for fault detection and isolation fall into two

broad categories: model-based methods and data-based meth-
ods. Model-based methods utilize a mathematical model of
the process to build, under appropriate assumptions, dynamic
filters that use process measurements to compute residuals
that relate directly to specific faults; in this way, fault detec-
tion and isolation can be accomplished for specific model
and fault structures (see, for example,9,10). On the other
hand, data-based methods are primarily based on process
measurements. Analyzing measured data gives a picture of
the location and direction of the system in the state-space. It
is then possible to extract information about the fault by
comparing the location and/or direction of the system in the
state-space with past behavior under faulty operation
(e.g.,11,12), or with expected behavior as predicted by the
structure or model of the system. A number of methods ap-
plicable to actuator/sensor faults have been developed that
process the measured data to reduce their dimension and
extract information from the data using principle component
analysis (PCA) or partial-least squares (PLS) techniques
(e.g.,13,14,15,16). These methods reduce the dimensionality of
the data by eliminating directions in the state-space with low
common-cause variance. Many methods use this reduced
space and consequent null space to gain further information
about the process behavior, including techniques, such as
contribution plots (e.g.,17), or multiscale statistical process
control using wavelets (e.g.,18,19,20). One of the main draw-
backs of these data-based methods is that in order to accom-
plish fault isolation, they commonly require fault-specific his-
torical data that may be costly to obtain. Furthermore, due to
the nature of a chemical process, its structure and/or how it
is instrumented, in practice, it is often hard to distinguish
between regions/directions corresponding to operation in the
presence of different faults due to overlap, making fault iso-
lation difficult. For a comprehensive review of model-based
and data-based fault detection and isolation methods, the
reader may refer to.10,21

In most applications, the FDI scheme is designed inde-
pendently from the feedback control law and is then applied
on top of the closed-loop system operating under a feedback
control law that is previously designed without consideration
of the possible faults that might occur. This is shown in Fig-
ure 1a which shows that the independently designed feedback
control law and FDI scheme are combined only in the final
closed-loop system. The focus of this work is to investigate
the possibility of integrating the feedback control design with
the data-based FDI scheme. This paradigm shift is illustrated
in Figure 1b which demonstrates the idea of designing both

the feedback control law and the FDI scheme with the other
in mind. With the controller design taking into account the
FDI scheme, faults may be more easily isolated in the result-
ing closed-loop system.

The aforementioned considerations motivate the develop-
ment of a data-based method for fault detection and isolation
that utilizes the design of the controller to enhance the isol-
ability of the faults in the closed-loop system. Specifically, it
is demonstrated in this work that a data-based FDI scheme is
able to isolate a given set of faults if the nonlinear closed-
loop system satisfies certain isolability conditions in the pres-
ence of common-cause process variation. We explicitly char-
acterize this set of isolability conditions and show that it is
possible, under certain conditions on the system structure, to
design a feedback control law that guarantees that the
closed–loop system satisfies the isolability conditions and
that the origin of the closed-loop system is asymptotically
stable. This is achieved through the use of appropriate non-
linear control laws that effectively decouple the dependency
between certain process state variables. The controller enfor-
ces a specific structure on the system that makes fault detec-
tion and isolation possible without prior knowledge of system

Figure 1. (a) Top: Common methods of fault diagnosis
apply the FDI scheme and feedback control
law to the closed-loop system independently
from each other, and (b) bottom: this work
proposes integrating the feedback control
law design with the FDI scheme in the
closed-loop system.
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behavior under faulty operation. The theoretical results are
applied to a continuously stirred-tank reactor (CSTR) exam-
ple and to a polyethylene reactor example. It should also be
noted that although the examples given in this article are pre-
sented using a specific method for data-based fault diagnosis,
the closed–loop system structure enforced by the proposed
approach can also be exploited to achieve fault isolation
using other data-based fault detection methods.

Preliminaries

Process model

This work focuses on a broad class of nonlinear process
systems subject to actuator faults and disturbances with the
following state-space description

_x ¼ f ðx; u; dÞ (1)

where x [ Rn denotes the vector of process state variables, u
[ Rm denotes the vector of manipulated input variables, and
d [ Rp denotes the vector of p possible actuator faults or dis-
turbances. Normal operating conditions are defined by d 5
0. Each component dk, k 5 1, . . . , p of vector d character-
izes the occurrence of a given fault. When fault k occurs,
variable dk can take any value. Therefore, the model of Eq. 1
can include a broad class of possible faults ranging from ac-
tuator faults to complex process disturbances and failures.
The system under normal operating conditions and zero input
has an equilibrium point at the origin, i.e., f(0,0,0) 5 0.

Before proceeding with the theoretical development, it is
important to state that the proposed FDI method brings to-
gether model-based analysis and controller design techniques
for nonlinear, deterministic ordinary-differential equation sys-
tems and statistical data-based fault-diagnosis techniques.
These together will be applied to the closed-loop system to
diagnose faults that affect the process outside of the region
determined by the common-cause process variation. To this
end, we will first state the isolability conditions for the
closed-loop system that need to be enforced by the appropri-
ate control laws on the basis of the nonlinear deterministic
system of Eq. 1. Subsequently, we will introduce additive
autocorrelated noise in the right-hand side of Eq. 1 and addi-
tive Gaussian noise in the measurements of the vector x to
compute the region of operation of the process variable, x,
under common-cause variance. Finally, we will demonstrate
that the enforcement of an isolable structure in the closed-
loop system by an appropriate feedback law allows isolating
specific faults whose effect on the closed-loop system leads
to sustained process operation outside of the region of
common-cause variance.

Throughout this work, the notation Lfh(x) denotes the
standard Lie derivative of the scalar function h(x), with
respect to the vector function f(x). The notation Lkf h(x)
denotes the k-th order Lie derivative of the scalar function
h(x), with respect to the vector function f(x) and LgL

k�1
f h(x)

denotes the mixed Lie derivative of the scalar function h(x),
with respect to the vector functions f(x) and g(x). Addition-
ally, in order to prove stability of the closed-loop system, it
is necessary to utilize the definition of input-to-state stability
which uses functions of class K and KL. Specifically, a func-
tion c : R�0 ? R�0 is of class K if it is continuous, increas-

ing and zero at zero. A function b : R�0 3 R�0 ? R�0 is
of class KL if, for each fixed t, the function b(�, t) is of class
K and, for each fixed s, the function b (s, �) is non-increasing
and approaches zero at infinity.

Definition 1:22 The system of Eq. 1 with d(t) 5 0 is said
to be input-to-state stable (ISS) with respect to u if there
exist functions b of class KL and c of class K such that for
each x0 [ Rn and for each measurable, bounded input u(t),
the solution to Eq. 1 exists for each t � 0 with x(0) 5 x0
and satisfies

jxðtÞj � bðjxð0Þj; tÞ þ cðjjujjÞ; 8t � 0 (2)

Under the assumptions of single-fault occurrence and
available measurements for all of the process state variables,
a data-based fault detection and isolation technique is pro-
posed based on the structure of the system in closed-loop
with a state feedback controller u(x). The conditions (denoted
as isolability conditions) under which this technique can be
applied are provided. The main objective is to design a state
feedback controller u(x), such that the origin of the system of
Eq. 1 in closed-loop with this controller is asymptotically
stable under normal operating conditions, i.e., d(t) 5 0, and
that the closed-loop system satisfies the isolability conditions
needed to apply the proposed FDI method. It is shown that
for certain systems, the controller can be designed to guaran-
tee that these conditions are satisfied, as well as to stabilize
the closed-loop system.

Referring to the assumption that only a single fault occurs
at any specific time instance, note that this is a reasonable
assumption from a practical point of view. Namely, it is
more likely that a single control actuator (e.g., an automatic
valve) will fail at a particular time instance during the pro-
cess operation than it is for two or more control actuators to
fail at exactly the same time. Referring to the assumption
that measurements of the process state variables are avail-
able, note that this assumption is made to simplify the devel-
opment. In principle, this assumption can be relaxed using
model-based state estimator design techniques for nonlinear
systems (e.g.,23) to construct dynamic systems which yield
estimates of the unmeasured states from the output measure-
ments; however, the detailed development of the more gen-
eral case is outside the scope of this work. Finally, we focus
our attention on general actuator faults and disturbances and
do not explicitly consider sensor faults since there is a pleth-
ora of techniques which address the issue of sensor fault
detection (see, for example,24–29). With the general way in
which the faults dk are modeled, it is possible to represent
virtually any fault because dk is not restricted in any way
and may be any time-varying signal; however, to achieve
data-based detection and isolation of the fault dk in the
closed-loop system in the presence of noise in the
state equations and measurements (noise which is introduced
to model common-cause process variance), dk(t) should
be sufficiently large in a way that is stated precisely in
the section titled ‘‘Data-based isolation based on a fault sig-
nature’’.

In order to present the FDI method, it is necessary to
define the incidence graph of a system and its reduced repre-
sentation. The following definitions are motivated by stand-
ard results in graph theory.30 This kind of graph-theoretic
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analysis has been applied before in the context of feedback
control of nonlinear systems (see, for example,31).

Definition 2: The incidence graph of an autonomous sys-
tem ẋ 5 f(x) with x [ Rn is a directed graph defined by n
nodes, one for each state, xi, of the system. A directed
arc with origin in node xi and destination in node xj exists
if and only if

@fj
@xi

6¼ 0.
The incidence graph of a system shows the dependence of

the time derivatives of its states. Figure 2 shows the inci-
dence graph of the following system

_x1 ¼ �2x1 þ x2 þ d1
_x2 ¼ �2x2 þ x1 þ d2
_x3 ¼ �2x3 þ x1 þ d3

(3)

when d1 5 d2 5 d3 : 0. A path from node xi to node xj is
a sequence of connected arcs that starts at xi and reaches xj.
A path through more than one arc that starts and ends at the
same node is denoted as a loop. States that belong to a loop
have mutually dependent dynamics, and any disturbance
affecting one of them also affects the trajectories of the rest.
The mutual dependence of the dynamics of the states that
belong to a given loop makes data-based isolation of faults
that affect the system a difficult task. The following defini-
tion introduces the reduced incidence graph of an autono-
mous system. In this graph, the nodes of the incidence graph
belonging to a given loop are united in a single node. This
allows identifying which states do not have mutually depend-
ant dynamics.

Definition 3: The reduced incidence graph of an autono-
mous system ẋ 5 f(x) with x [ Rn is the directed graph of
nodes qi, where i 5 1, . . . , N, that has the maximum number
of nodes, N, and satisfies the following conditions:

� To each node qi there corresponds a set of states
Xi ¼ fxjg. These sets of states are a partition of the state
vector of the system, i.e.

[
Xi ¼ fx1; . . . ; xng; Xi

\
Xj ¼ ;; 8i 6¼ j

� A directed arc with origin qi and destination qj exists if
and only if @fl

@xk
6¼ 0 for some xl 2 Xi, xk 2 Xj.

� There are no loops in the graph.
In the reduced incidence graph, states that belong to a

loop in the incidence graph correspond to a single node. In
this way, the states of the system are divided into subsystems
that do not have mutually dependent dynamics; that is, there
are no loops connecting them. The arcs of the graph indicate
if there exists a state corresponding to the origin node that
affects a state corresponding to the destination node. Note
that the reduced incidence graph can be always obtained, but
for strongly coupled systems, it may be defined by a single
node; i.e., in the incidence graph there exists a loop that con-
tains all the states of the system. In this case, data-based
fault detection and isolation cannot be achieved using the
proposed method. In the incidence graph of the system of
Eq. 3 there is a loop that contains states x1 and x2. The
reduced incidence graph of the system of Eq. 3 contains two
nodes. Node q1 corresponds to the states of the loop, that is,
X1 ¼ fx1; x2g. Node q2 corresponds to X2 5 x3. Figure 2
shows the reduced incidence graph of the system of Eq. 3. It
can be seen that in the reduced incidence graph there are no
loops.

Remark 1: In the process model of Eq. 1, process and
sensor noise are not explicitly taken into account. However,
noise is directly accounted for in the FDI method below by
means of appropriate tolerance thresholds in the decision
criteria for fault detection and isolation. The thresholds are
generated on the basis of operating data and take into
account both sensor and process noise, allowing for an
appropriate FDI performance even if the process model and
the measurements are corrupted by noise. To demonstrate
this point, process and sensor noise are included in the two
examples included in this work; see the simulation case stud-
ies section for details.

Remark 2: Due to the complex nature of faults in non-
linear systems, performing fault isolation with data-based
methods alone generally leaves an ambiguous picture. On
the other hand, it is possible to perform data-based fault iso-
lation of simple faults using data-based FDI methods (this is
discussed and demonstrated in32 using contribution plots). In
some cases, historical data from faulty operation will
improve isolation capabilities of data-based methods; how-
ever, even with this information, due to overlap in the state-
space of the regions corresponding to different faults and
incomplete fault libraries, it still may be very difficult to iso-
late faults in nonlinear process systems.

Data-based fault detection

Data-based methods for fault detection in multivariate sys-
tems are well established in statistical process monitoring.
This section reviews a standard data-based method of fault
detection that will be used in the context of the proposed
FDI method.

A common approach to monitoring multivariate process
performance is based upon the T2 statistic introduced by Har-
old Hotelling.33 This approach allows multivariate processes
to be monitored for a shift in the operating mean �X, using a
single test statistic that has a well-defined distribution. The
true operating mean can be estimated from past history or

Figure 2. Incidence graph and reduced incidence graph
for the system of Eq. 3.
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chosen based on the known process. Generally, the true pro-
cess variance is unknown and must be estimated using
sampled data. Hotelling’s T2 statistic tests the hypothesis that
the current operating mean is the same as �X with a certain
degree of confidence a � 100 %. This is the multivariate gen-
eralization of Student’s t-distribution. Consider a vector X [
Rn that is the average of m randomly sampled state measure-
ments. Assuming that X has an n-variate normal distribution
with an unknown variance-covariance matrix S, the T2 statis-
tic can be computed using the operating mean �X, estimated
from historical data, and the estimated covariance matrix S,
estimated from the m measurements contributing to X, as
follows

T2 ¼ mðX � �XÞTS�1ðX � �XÞ: (4)

Based on the assumption that the measurements in X are
normally distributed, the T2 statistic has the following distri-
bution

T2 � mn

ðm� nþ 1ÞFðn;m� nþ 1Þ (5)

where F(n,m 2 n 1 1) is the F statistic with n and m 2 n
1 1 degrees of freedom. An upper control limit (UCL) for
the T2 statistic can be calculated by finding the value T2UCL
on the T2 distribution for which there is probability a of a
greater or equal value occurring, that is, P(T2 � T2UCL) 5 a

T2
UCL ¼ mn

ðm� nþ 1ÞFaðn;m� nþ 1Þ (6)

Note that T2 is a positive quantity and has no lower con-
trol limit. With this definition of the UCL, a is the probabil-
ity of a type I error, or false alarm. This implies that at least
once every 1/a samples there is expected to be a false alarm
or, in other words, the average run length (ARL) is equal to
1/a. Decreasing the value of a will increase the ARL and
thus decrease the likelihood of a Type I error. However, this
decreases the power of the statistical test. Power is measured
as 1 2 b, where b is the probability of a Type II error,
which is that a failure has occurred, but is not detected by
the test. Because the focus of this work is on failures that
cause significant change in the operating point, and assumes
a persistent state of failure before declaring a fault, finding
the balance between the statistical power of the test, and the
likelihood of a false alarm is not considered (see Remark 6
for further discussion on this issue).

In addition to the method presented previously, other
methods using Hotelling’s T2 statistic have been established
which deviate from the strict definition of the test. In particu-
lar, due to the nature of continuous chemical processes, it is
sometimes convenient to estimate S from historical data.
This assumes that data from future observations will have
similar covariance. Methods that use historical data generally
have two phases of operation. Phase 1 is for testing during
fault-free operation to verify that the process is in control.
The following UCL is used for the T2 statistic in Phase 134

T2
UCL ¼ nðh� 1Þðm� 1Þ

hm� h� nþ 1
Faðn; hm� h� nþ 1Þ (7)

where h is the number of m-sized samples used to evaluate
the covariance matrix S from historical data. Phase 2 is for
the normal monitoring of a process for faults with the fol-
lowing control limit

T2
UCL ¼ nðhþ 1Þðm� 1Þ

hm� h� nþ 1
Faðn; hm� h� nþ 1Þ (8)

Note that when h is large, these limits are nearly identical.
In the context of process monitoring, it is often convenient

to use a sample size of m 5 1 where individual observations
are monitored (i.e.,34,35). This is commonly used in data-
based fault detection and isolation methods (see, for exam-
ple,11,14,17,34,35). In this scenario, the UCL becomes

T2
UCL ¼ ðh2 � 1Þn

hðh� nÞ Faðn; h� nÞ (9)

where h is now the total number of historical measurements
used to evaluate the covariance matrix S. In the simulation
section of this work, we use both the traditional method of
Hotelling’s T2 statistic by monitoring sampled data sets of
size m with the corresponding UCL in Eq. 6, where the esti-
mated covariance matrix, S, is evaluated at each step from
the m observations, as well as the single observation
approach using the control limit from Eq. 9 and the appropri-
ate S based on h historical observations.

The T2 statistic is widely used for fault detection purposes
in multivariate processes and can be used for both the full
state vector and the transformed state vector in the reduced
PCA space. The T2 statistic for the full state vector does not
provide additional information that can be used for isolating
the underlying cause of a fault. In some cases, the T2 statis-
tics of certain subgroups of the state vector (or functions of
it) can be monitored in addition to the full vector to assist in
fault isolation. In this situation, the process is decomposed
into subsystems, generally based on function, structure and/
or behavior allowing fault detection and isolation techniques
to be applied to subgroups of sensor measurements. The con-
text of the decomposition itself narrows the detection and
isolation focus allowing the application of the T2 statistic for
localized detection. As the focus of the process decomposi-
tion context narrows, detection approaches isolation. If the
focus is narrowed to a particular process component then
detection and isolation become one and the same. Examples
of work in which decompositions are used for localized FDI
are in36 and37. This idea for data-based isolation using the T2

statistic for each subsystem is also utilized in the context of
the method proposed in the next section.

Remark 3: Note that the fault detection methods pre-
sented in this section will naturally account for process and
sensor noise. Thus, the T2 statistic, which scales the process
data by the inverse of the covariance matrix, will be tolerant
to the normal amount of process and measurement variation
without signalling a fault. However, if the variance of the
system were to change during the course of operation, this
could signal a fault in the system when using a covariance
matrix, S, estimated from historical data. This type of fault
will generally not be declared as this work requires a fault
large enough to cause persistent failure as discussed in
Remark 6.
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Data-based isolation based on a fault signature

Data-based isolation of the underlying cause of a faulty
process behavior is, in general, a difficult problem which
strongly depends on the structure of the closed–loop system.
In systems with multiple possible faults, one-dimensional (1-D)
statistics, such as the T2 statistic presented in the previous
section, cannot be used to perform fault isolation when
applied globally (i.e. to the entire state vector). To under-
stand this point in the context of a specific example, consider
the system of Eq. 3. It can be seen based on the structure of
the system, that a fault in d1, or a fault in d2 will affect the
state trajectories of all three states of the system. In this
case, the fault will be readily detected, but the T2 statistic
and the state trajectories will not provide further information
with which one can reliably determine whether a fault in d1
or d2 had occurred. However, if a failure in d3 were to occur,
it can be seen from the system equations that only the state
trajectory of state 3 would be affected. With this particular
structure, which is that there is no path from the affected
state x3, to x1 or x2, it is possible to isolate the fault d3 by
observing the affected state trajectories at the time of the
failure. Thus, it can be seen that under certain conditions,
isolation is possible.

The example given previously motivates introducing a set
of isolability conditions which guarantee that fault isolation
is possible based on the state trajectories affected by a given
fault. This will also provide guidelines for the design of con-
trol laws that guarantee that these conditions are satisfied. In
order to precisely state these conditions, the isolability graph
of an autonomous system is defined below.

Definition 4: The isolability graph of an autonomous
system _x ¼ f ðx; dÞ with x [ Rn, d [ Rp is a directed graph
made of the N nodes of the reduced incidence graph of the
system _x ¼ f ðx; 0Þ and p additional nodes, one for each pos-
sible fault dk. The graph contains all the arcs of the reduced
incidence graph of the system _x ¼ f ðx; 0Þ. In addition, a
directed arc with origin in fault node dk and destination to a
state node qj exists if and only if @fl

@dk
6¼ 0 for some xi [ Xj.

Figure 3 shows the isolability graph of the system of
Eq. 3. The isolability graph of an autonomous system subject
to p faults shows, in addition to the incidence arcs of the
reduced incidence graph, which loops of the system are
affected by each possible fault. Based on this graph, it is
possible to define the signature of a fault.

Definition 5: The signature of a fault dk of an autono-
mous system subject to p faults _x ¼ f ðx; dÞ with x [ Rn, d [
Rp is a binary vector Wk of dimension N, where N is the
number of nodes of the reduced incidence graph of the sys-
tem. The i – th component of Wk, denoted Wk

i , is one if there

exists a path in the isolability graph from the node corre-
sponding to fault k to the node qi corresponding to the set of
states Xi, or zero otherwise.

The signature of a fault indicates the set of states that are
affected by the fault. If each of the corresponding signatures
of the faults is different, then it is possible to isolate the faults
using a data-based fault-detection method. Faults d1 and d2 in
the system of Eq. 3 have the same signature, W1 ¼ ½1 1�T ,
because d1 and d2 both directly affect q1, and there is a path
from q1 to q2. This implies that both faults affect the same set
of states. Therefore, it is not possible to distinguish between
them based on the signature. On the other hand, the signature
of fault d3 in the same system is W1 ¼ ½0 1�T , because there
is no path to q1 from q2, which is the node directly affected
by d3. This implies that the states corresponding to node q1
are effectively decoupled from fault d3 . This allows distin-
guishing between a fault in d3 and a fault in either d1 or d2
in the system of Eq. 3, based on the profiles of the state
trajectories.

In this work, we propose to design and implement appro-
priate feedback laws in the closed-loop system that induce
distinct signatures for specific faults to allow their isolation.
In the next section, we present methods for the design of
controllers that enforce an isolable structure in the closed-
loop system. In the remainder of this section, we discuss the
issue of determination of the fault signatures for the closed-
loop system in the absence and presence of noise in the dif-
ferential equations and measurements. This determination of
the fault signature from process measurements will also lead
to a characterization of the type of fault signals dk(t), for
which isolation can be achieved when common-cause varia-
tion is considered for the closed-loop system (caused by the
introduction of noise in the differential equations and meas-
urements). Specifically, referring to the deterministic closed-
loop system (i.e., no noise is present in the states or in the
measurements), the signature of the fault Wk, for any time-
varying signal dk(t), can be computed directly from the
isolability graph, and is independent of the type of time-de-
pendence of dk(t). In other words, the signal dk(t) need not
satisfy any conditions for its signature to be computed. Once
the fault signature is computed, then fault isolation is imme-
diate in the deterministic case by checking whether or
not the signature of the system corresponds to a defined fault.
However, in the presence of noise in the states and measure-
ments, dk(t) has to be sufficiently large to have an effect
that leads to operation of the process states outside of the
range expected, due to common-cause variance. Additionally,
this must happen for a sufficiently large period of time to
distinguish the fault, based on its signature, from other
causes that can lead to violations of the upper control limit
for a small period of time. Specifically in the proposed
method, the following statistics based on the state trajectories
of the system of Eq. 1 in closed-loop with a given feedback
controller u(x) in the presence of noise in the states and
measurements are monitored:

� T2 statistic based on the full state x with upper control
limit T2UCL.

� T2i statistic with i 5 1, . . . , N based on the states xj [
Xi, where Xi are the sets of states corresponding to each one
of the nodes of the reduced incidence graph. To each T2i sta-
tistic a corresponding upper control limit T2UCLi is assigned.Figure 3. Isolability graph for the system of Eq. 3.
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The fault detection and isolation procedure then follows
the steps given below:

1. A fault is detected if T2ðtÞ > T2
UCL 8t tf � t � TP, where

TP is chosen so that the window TP – tf is large enough to
allow fault isolation with a desired degree of confidence, and
depends on the process time constants and potentially on
available historical information of the process behavior.

2. A fault that is detected can be isolated if the signature
vector of the fault Wðtf ; TPÞ can be built as follows

T2
i ðtÞ > T2

UCLi 8t tf � t � TP ! Wiðtf ; TPÞ ¼ 1

T2
i ðtÞ 6> T2

UCLi 8t tf � t � TP ! Wiðtf ; TPÞ ¼ 0

In such a case, fault dk is detected at time TP if
Wðtf ; TPÞ ¼ Wk. If two or more faults are defined by the
same signature, isolation between them is not possible on the
basis of the fault signature obtained from the isolability
graph.

The conditions in steps 1 and 2 state that the fault dk(t)
has to be sufficiently large in order to be detected and iso-
lated.

Remark 4: States to which there is not a path from a
given fault node to the corresponding subsystem node in the
isolability graph are not affected by changes in the value of
dk; thus, they are effectively decoupled from the fault dk. The
FDI method can be applied if the signatures of the closed-
loop system faults are different. This is the isolability condi-
tion. Note that the signature of a fault depends on the struc-
ture of the closed-loop system, in particular, on the isolabil-
ity graph. For example, if the reduced incidence graph has
only one node, isolation is not possible. In the following sec-
tion, we propose to design the feedback controller u(x) to
guarantee that the reduced incidence graph of the closed-
loop system has more than one node, that there exist faults
with different signatures and that the origin of the closed-
loop system is asymptotically stable.

Remark 5: The concept of the ‘‘signature of a fault’’
employed in this section can be generalized in the context of
monitoring the evolution of a set of variables defined as
functions of the state. In particular, given any variable
change, the isolability graph can be obtained in the new
state space and the signature defined on the basis of the new
state variables. In the next section, an example of this idea is
provided for input/output linearizable, nonlinear systems
where the signature of a fault is given in a partially linear-
ized state-space.

Remark 6: The upper control limit is chosen taking into
consideration common-cause variance, including process and
sensor noise, in order to avoid false alarms. Thus, small dis-
turbances or failures may go undetected if the magnitude
and effect of the disturbance is similar to that of the inherent
process variance. For this reason, it was stated in the fault
detection and isolation procedure that a fault dk must be
‘‘sufficiently large’’ in order for T2i (t) to exceed the threshold
T2
UCLi 8t tf � t � TP. It is assumed that if a fault dk is not

large enough to cause T2i (t) to exceed the threshold
T2
UCLi 8t tf � t � TP (where tf is the time in which

T2
i ðtf Þ � T2

UCL for the first time) then the fault is not ‘‘suffi-
ciently large’’ and its effect on the closed-loop system, from
the point of view of faulty behavior, is not of major conse-

quence. Therefore, such a dk is not considered to be a fault.
However, it should be noted that a fault dk that is large
enough to cause the T2 derived from the full state vector, x,
to cross the upper control limit signaling a fault may not be
large enough to signal a fault in all of the affected sub-
groups. In this case, it is possible to have a false isolation.
This is investigated in the simulation case studies section.
Finally, the condition T2

i ðtÞ 6> T2
UCLi 8t tf � t � TP allows vio-

lation of the UCL in the full state vector and individual sub-
systems, due to other causes for a short period of time. How-
ever, such violations do not modify the fault signature
Wðtf ; TPÞ if TP is chosen to be sufficiently large.

Remark 7: We would like to point out that the isolability
conditions are not restrictive from the practical point of view
that it is generally possible to induce at least some degree of
decoupling within any given system. For example, any system
with a relative degree r � n can be decoupled using the
method presented in the section on feedback linearization.
Systems, such as this are very common in practice. However,
while the isolability conditions can generally be met for one
or a few faults in almost any system, it can be difficult to iso-
late all faults within any given system using this method
alone.

Controller Enhanced Isolation

Enforcing an isolable closed-loop system structure
through controller design

In general, control laws are designed without taking into
account the FDI scheme that will be applied to the closed-
loop system. We propose to design an appropriate nonlinear
control law to allow isolation of given faults using the
method proposed in the previous section, by effectively
decoupling the dependency between certain process state var-
iables to enforce the fault isolability conditions in the closed-
loop system. As explained in the previous section, this
requires that the structure of the isolability graph of the
closed-loop system be such that at least one or more faults
be partially decoupled from one or more nodes on the isol-
ability graph. The main idea is to obtain an isolability graph
of the closed-loop system which provides a different signa-
ture for each fault. This key requirement can be accom-
plished using a variety of nonlinear control laws. In general
providing a systematic procedure to design a controller that
guarantees both closed-loop stability and satisfaction of the
isolability conditions for any nonlinear process is not possi-
ble. The specific form of the controller depends on the struc-
ture of the open-loop system and such a controller may not
exist. One general procedure that can be followed, however,
is to decouple a set of states from the rest. Recursively
applying this decoupling technique, appropriate closed-loop
isolability graphs can be obtained in certain cases. As an
example of this design approach, we first provide a controller
that can be applied to nonlinear systems with the following
state space description

_x1 ¼ f11ðx1Þ þ f12ðx1; x2Þ þ g1ðx1; x2Þuþ d1

_x2 ¼ f2ðx1; x2Þ þ d2
(10)

where x1 [ R, x2 [ Rn, u [ R, and g1ðx1; x2Þ 6¼ 0 for all x1 [
R, x2 [ Rn. With a state feedback controller of the form

AIChE Journal January 2008 Vol. 54, No. 1 Published on behalf of the AIChE DOI 10.1002/aic 229



uðx1; x2Þ ¼ � f12ðx1; x2Þ � vðx1Þ
g1ðx1; x2Þ (11)

the closed-loop system takes the form

_x1 ¼ f11ðx1Þ þ vðx1Þ þ d1

_x2 ¼ f2ðx1; x2Þ þ d2
(12)

where v(x1) has to be designed in order to achieve asymp-
totic stability of the origin of the x1 subsystem when d1 5 0.
Note that explicit stabilizing control laws that provide explic-
itly-defined regions of attraction for the closed-loop system
have been developed using Lyapunov techniques for specific
classes of nonlinear systems, particularly input-affine nonlin-
ear systems; the reader may refer to38,39,40,23 for results in
this area. The origin of the closed-loop system is asymptoti-
cally stable if _x2 ¼ f2ðx1; x2Þ is input-to-state stable with
respect to x1. In this case the proposed controller guarantees
asymptotic stability of the closed-loop system, as well as dif-
ferent signatures for faults d1 and d2. Note that the reduced
incidence graph is defined by two nodes corresponding to
both states, and the signatures are given by W1 ¼ ½1 1�T and
W2 ¼ ½0 1�T .

The controller design method discussed previously pro-
vides a basic tool for obtaining control laws that provide
closed-loop stability and satisfy the isolability constraints.
The main idea is to force decoupling in a first controller
design step (in this case u(x)), and then ensure closed-loop
stability in a second (in this case v(x)). Additionally, the next
section provides a systematic controller design for a particu-
lar class of nonlinear systems. This procedure along with the
class of systems under consideration are introduced in the
following subsection.

Input/output linearizable nonlinear systems

In this subsection, we focus on a class of process systems
modeled by single-input single-output nonlinear systems with
multiple possible faults which have the following state-space
description

_x ¼ f ðxÞ þ gðxÞuþ
Xp
k¼1

wkðxÞdk

y ¼ hðxÞ
(13)

where x [ Rn is the state, u [ R is the input, y [ R is the
controlled output, and dk [ R represents a possible fault. It is
assumed that f, g, h and wk are sufficiently smooth functions,
that is, all necessary derivatives exist and are continuous
functions of x, and that a set of p possible faults has been
identified. Each of these faults is characterized by an
unknown input to the system dk that can model actuator fail-
ures and disturbances. As before, this definition of dk is not
restricted by value and may be time-varying, and, thus, it
can model a very broad class of faults. The system has an
equilibrium point at x 5 0 when uðtÞ ¼ dkðtÞ � 0 and h(0) 5
0. Note that in general this equilibrium point may correspond
to a given set-point of the output.

The main control objective is to design a feedback control
law u(x), such that the origin is an asymptotically stable

equilibrium point of the closed-loop system, and, moreover,
the closed-loop system satisfies the isolability conditions.
Feedback linearization is used to accomplish this task. First,
it is necessary to review the definition of the relative degree
of the output y, with respect to the input u, in the system of
Eq. 13.

Definition 6:
41 Referring to the system of Eq. 13, the rel-

ative degree of the output y, with respect to the input u, is
the smallest integer, r [ [1,n], for which

LgL
i
f hðxÞ ¼ 0; i ¼ 0; . . . ; r � 2

LgL
r�1
f hðxÞ 6¼ 0:

A system with an input relative degree r � n is input-out-
put linearizable. If r 5 n the entire input-state dynamics can
be linearized. If r\ n, the feedback controller can be chosen
so that a linear input-output map is obtained from an external
input v, to the output y, even though the state equations are
only partially linearized (see also,41). To be specific, if the
system of Eq. 13 has input relative degree r \ n, then there
exists a coordinate transformation (see41) (f, g) 5 T(x) such
that the representation of the system of Eq. 13 with dk 5 0
for all k 5 1, . . . , p (that is, the system without faults), in
the (f, g) coordinates, takes the form

_f1 ¼ f2

..

.

_fr�1 ¼ fr
_fr ¼ Lrf hðxÞ þ LgL

r�1
f gðxÞu

_g1 ¼ W1ðf; gÞ
..
.

_gn�r ¼ Wn�rðf; gÞ

(14)

where y ¼ f1; x ¼ T�1ðf; gÞ; f ¼ ½f1; . . . fr�T and g ¼
½g1; . . . ; gn�r�T . Choosing u(x) in an appropriate way, the dy-
namics of f can be linearized and controlled properly using
linear control theory. The stability of the closed-loop system,
however, can only be assured if the inverse dynamics
( _g ¼ Wðf; gÞ) satisfy additional stability assumptions. In par-
ticular, the inverse dynamics must be input-to-state stable
with respect to f. If this is the case, then an appropriate con-
trol law can be designed for the input-output subsystem that
guarantees stability of the entire closed-loop system. In the
following theorem, we review one example of an input-out-
put feedback-linearizing controller. The controller presented,
under the assumption of no faults, guarantees asymptotic sta-
bility of the closed-loop system.

Theorem 1:41 Consider the system of Eq. 13 with dk 5
0 for all k 5 1, . . . , p under the feedback law

uðxÞ ¼ 1

LgLr�1
f hðxÞ ½KTfðxÞ � Lrf hðxÞ� (15)

where f 5 Tf(x). Assume K is chosen such that the matrix
A 1 BK has all of its eigenvalues in the lefthand side of the
complex plane where
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A ¼ 0r�1 Ir�1

0 0Tr�1

� �
; B ¼ 0r�1

1

� �
:

Ir21 is the (r 2 1) 3 (r 2 1) identity matrix, and 0r21 is the
(r 2 1) 3 1 zero vector. Then, if the dynamic system
_g ¼ Wðf; gÞ is locally input-to-state stable (ISS), with respect
to f, the origin of the closed-loop system is locally asymptoti-
cally stable.

We prove that under certain assumptions, if the state-feed-
back law given in Eq. 15 is used, then the faults of system
of Eq. 13 can be isolated into two different groups: those
that affect the output and those that do not affect the output.
The main idea is that the isolability graph of the closed-loop
system in the coordinates (f, g) provides different signatures
for the faults depending on their relative degree, which is
defined later (this definition was introduced in42 in the con-
text of feedforward/feedback control of nonlinear systems
with disturbances, but it is employed here to address a com-
pletely different issue).

Definition 7:42 Referring to the system of Eq. 13, the rel-
ative degree, qk [ [1,n], of the output, y, with respect to the
fault dk is the smallest integer for which

Lwk
Lif hðxÞ ¼ 0; i ¼ 0; . . . ; qk � 2

Lwk
L
qk�1
f hðxÞ 6¼ 0:

(16)

The definition of the relative degree of a fault is analogous
to that of the relative degree of the input, but instead of
relating the output to the input, this definition of relative
degree relates the output to a particular fault. If a feedback-
linearizing controller is used, then the faults can be divided
into two different groups: those with a relative degree qk that
is greater than the relative degree r, and those with a relative
degree qk that is less than or equal to r. When a fault occurs,
the faults of the first group will not affect the output y, while
those of the latter will.

To show this point, taking into account Definitions 6 and 7,
there exists (see41) a coordinate transformation (f, g) 5 T(x),
such that the representation of the system of Eq. 13 with dj 5
0 for all dj = dk (that is, the system subject only to fault dk),
in the (f, g) coordinates, takes the form (for qk\ r)

_f1 ¼ f2

..

.

_fr�1 ¼ fr
_fr ¼ Lrf hðxÞ þ LgL

r�1
f hðxÞu

_g1 ¼ W1ðf; g; dkÞ
..
.

_gn�r ¼ Wn�rðf; g; dkÞ

where y ¼ f1; x ¼ T�1ðf; gÞ; f ¼ ½f1; . . . ; fr�T and g ¼
½g1; . . . ; gn�r�T . Following the definition of the state-feedback
law of Eq. 15, the following state-space representation is
obtained for f

_f ¼ ðAþ BKÞf

This dynamical system is independent of dk. Therefore, the
trajectory of the output y is independent of the fault dk. This
result, however, does not hold if the relative degree qk of the
fault dk is equal to or smaller than r. In this case, the coordi-
nate change does not eliminate the dependence of the output
on the fault dk. Applying the same coordinate change (f, g) 5
T(x), the dynamics of the system of Eq. 13 with dj 5 0
for all dj = dk (that is, the system subject to fault dk), in the
(f, g) coordinates, takes the form

_f1 ¼ f2 þ U1ðdkÞ
..
.

_fr�1 ¼ fr þ Ur�1ðdkÞ
_fr ¼ Lrf hðxÞ þ LgL

r�1
f hðxÞuþ UrðdkÞ

_g1 ¼ W1ðf; g; dkÞ
..
.

_gn�r ¼ Wn�rðf; g; dkÞ

where y ¼ f1; x ¼ T�1ðf; gÞ; f ¼ ½f1; . . . fr�T and g ¼
½g1; . . . ; gn�r�T . In this case, when the fault occurs, the output
is affected. In summary, if controller of Eq. 15 is used, the
possible faults of the system of Eq. 13 are divided into two
groups, each with a different signature. When a fault occurs,
taking into account whether the trajectory of the output is
affected or not, one can determine which group the fault
belongs to. Note that if only two faults are defined and q1 �
r and q2 [ r, then the fault is automatically isolated.

Remark 8: The feedback linearizing control laws pre-
sented in this subsection are designed to enforce a linear
input/output structure in the closed-loop system. Although the
external input, v 5 Kf, may be designed to stabilize the result-
ing linear closed-loop system optimally, the total control
action u is not optimal with respect to a closed-loop perform-
ance index (cost) that includes a penalty on the control action.

Simulation Case Studies

In this section, the proposed approach for integrated FDI
and controller design is applied to two chemical process exam-
ples. First, we consider a CSTR and utilize feedback lineariza-
tion to design a nonlinear controller that yields a closed-loop
system for which the isolability conditions hold. Second, we
consider a polyethylene reactor and design a nonlinear control
law, based on the general method of the first subsection under
‘‘Controller enhanced isolation’’, that yields a closed-loop sys-
tem for which the isolability conditions hold. In both cases,
we demonstrate that data-based fault detection and isolation is
achieved under feedback control laws that enforce isolability
in the closed-loop system, an outcome that is not possible, in
general, when other feedback control designs that do not
enforce the required structure are used.

Application to a CSTR example

The first example considered is a well-mixed CSTR in
which a feed component A is converted to an intermediate
species B, and finally to the desired product C, according to
the reaction scheme
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A
1
Ð B

2
Ð C

Both steps are elementary, reversible reactions and are gov-
erned by the following Arrhenius relationships

r1 ¼ k10e
�E1

RT CA; r�1 ¼ k�10e
�E�1

RT CB

r2 ¼ k20e
�E2

RT CB; r�2 ¼ k�20e
�E�2

RT CC

where ki0 is the pre-exponential factor, and Ei is the acti-
vation energy of the ith reaction, where the subscripts 1,
21, 2, 22 refer to the forward and reverse reactions of
steps 1 and 2. R is the gas constant, while CA, CB and CC

are the molar concentrations of species A, B and C, respec-
tively. The feed to the reactor consists of pure A at flow
rate F, concentration CA0 and temperature T0. The state
variables of the system include the concentrations of the
three main components CA, CB, and CC as well as the tem-
perature of the reactor T. Using first principles and stand-
ard modeling assumptions, the following mathematical
model of the process is obtained

_CA ¼ F

V
ðCA0 � CAÞ � r1 þ r�1 þ d1

_CB ¼ � F

V
CB þ r1 � r�1 � r2 þ r�2

_CC ¼ � F

V
CC þ r2 � r�2

_T ¼ F

V
ðT0 � TÞ þ ð�DH1Þ

qcp
ðr1 � r�1Þ

þ ð�DH2Þ
qcp

ðr2 � r�2Þ þ uþ d2 ð17Þ

where V is the reactor volume, DH1 and DH2 are the enthal-
pies of the first and second reactions, respectively, q is the
fluid density, cp is the fluid heat capacity, d1 and d2 denote

faults/disturbances and u 5 Q/qcp is the manipulated input,
where Q is the heat input to the system.

The system of Eq. 17 is modeled with sensor measurement
noise and autoregressive process noise. The sensor measure-
ment noise was generated using a zero-mean normal distribu-
tion with standard deviation rM applied to the measurements
of all the process states. The autoregressive process noise
was generated discretely as wk 5 /wk21 1 nk where k 5 0,
1, . . . is the discrete time step, / is the autoregressive coeffi-
cient and nk is obtained at each sampling step using a zero-
mean normal distribution with standard deviation rp. Table 2
provides the values of the noise parameters for each state of
the system of Eq. 17. Because of the dynamic nature of the
process and the autocorrelated process noise, it is expected
that the state trajectories will be serially correlated. Although
the distribution of the state measurements in open-loop oper-
ation may not be normal (Gaussian), the influence of feed-
back control is such that the measurements under closed-loop
operation are approximately normal (see34). Figure 4 shows
the distribution of the state measurements of the closed-loop
system of Eq. 17 under the feedback-linearizing control law
in fault-free operation over a long period of time compared
with a Gaussian distribution. Note that although the long-
term distribution is approximated well by a normal distribu-
tion, this will not hold true for short-term operation, a point
that will affect the choice of test statistic to be applied.

The controlled output y, of the system is defined as the
concentration of the desired product CC. This particular defi-
nition of the output, while meaningful from the point of view
of regulating the desired product concentration, will be also
useful in the context of fault isolation. We consider only
faults d1 and d2, which represent undesired changes in CA0

(disturbance) and T0/Q (disturbance/actuator fault), respec-
tively. For example, if CA0 changes by DCA0 then
d1 ¼ F

VDCA0. These changes may be the consequence of an
error in external control loops. In this system, the input u
appears in the temperature dynamics, and is of relative
degree 2 with respect to the output y 5 CC. The fault d1
appears only in the dynamics of CA, and is of relative degree
3 with respect to the output y 5 CC. Finally, fault d2 is of
relative degree 2. The values for the parameters of the pro-
cess model are given in Table 1.

The control objective is to regulate the system at the equi-
librium point

CCs ¼ 0:9471
kmol

m3
; Ts ¼ 312:6K; us ¼ 0K=s (18)

where the subscript s refers to the steady state value at equi-
librium. To this end, we consider two different feedback con-

Figure 4. CSTR example.

Distribution of normalized, fault-free operating data com-
pared with a normal distribution of the same mean and
variance. [Color figure can be viewed in the online issue,
which is available at www.interscience.wiley.com.]

Table 1. CSTR Example Process Parameters

F 1 [m3/h] V 1 [m3]
k10 1.0 � 1010 [min21] E1 6.0 � 104 [kJ/kmol]
k210 1.0 � 1010 [min21] E21 7.0 � 104 [kJ/kmol]
k220 1.0 � 1010 [min21] E2 6.0 � 104 [kJ/kmol]
k220 1.0 � 1010 [min21] E22 6.5 � 104 [kJ/kmol]
DH1 21.0 � 104 [kJ/kmol] R 8.314 [kJ/kmol � K]
DH2 20.5 � 104 [kJ/kmol] T0 300 [K]
CA0 4 [kmol/m3] q 1000 [kg/m3]
cp 0.231 [kJ/kg � K]
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trollers: a controller based on feedback linearization and a
proportional controller (it is important to point out that the
conclusions of this simulation study would continue to hold
if the proportional controller is replaced by proportional-
integral-derivative control, model-predictive control or any
other controller that does not achieve decoupling of the con-
trolled output, y 5 CC, from the fault d1, in the closed-loop
system). The feedback-linearizing controller takes the form
of Eq. 15 with

K ¼ ½�1� 1�

Note that the state variables are shifted so that the origin
represents the desired set point. The proportional controller
takes the form

u ¼ ðTs � TÞ

In the closed-loop system operating under the feedback-
linearizing control law, according to the results of the previ-
ous section, faults with a relative degree higher than that of
the input (i.e., qk [ 2) will not affect the output in the event
of a failure. Therefore, because d1 has a relative degree of 3,
it will not affect the behavior of the output. Conversely,
because fault d2 is of relative degree 2, its effect cannot be
decoupled from the output. This result is illustrated in Figure 5.
The nodes in this figure are q1 5 f1, q2 5 f2 and q3 5 {g1,
g2}, where f1 5 CC, f2 5 f1 and {g1, g2} are combinations
of CA, CB and T such that [f;g] 5 T(CA, CB, CC, T) is an in-
vertible transformation. The isolability graph of this system
in the transformed coordinates shows that each of the states
in the f subsystem is a separate node, and that the states in
the g subsystem form a single additional node. Although
there are multiple nodes in the f subsystem, because each is
directly affected by d1, the effect is the same as if they were
a single node. Moreover, since there is no path from the g
subsystem node to any of the f subsystem nodes, and d2 only
affects the g subsystem node directly, the signatures for
faults d1 and d2 will be unique and thus isolable. Addition-
ally, it should be noted that the trajectory of f1 follows that
of the output, CC, and the f subsystem is not affected by the
other states. Thus, monitoring the output CC, as one subsys-
tem, and the remaining states as a second subsystem is
equivalent to monitoring the subsystems formed in the trans-
formed space.

The isolability property stated previously, however, does

not hold for the closed-loop system under proportional con-

trol. In that case, when a fault occurs (whether it be d1 or

d2), the output is affected by the presence of the fault. These

theoretical predictions were tested by simulating the system

of Eq. 17 in closed-loop under both proportional control and

feedback-linearizing control. In both cases, the system was

initially operating at the steady-state of Eq. 18, with a failure

appearing at time t 5 0.5 hr.
Based on the structure of the closed-loop system under

feedback-linearizing control, the state vector was divided

into two subvectors, X1 5 {CC} and X2 5 {CA, CB, T} as

discussed earlier. Hotelling’s statistic (Eq. 4) for the full state

vector (T2), and each of the subvectors (T21 and T22) were

monitored to detect and evaluate the presence of a fault.

Detection was performed based on the T2 statistic violating

the upper control limit T2UCL defined in Eq. 6 using m 5 10

randomly sampled measurements at intervals of Dt 5
2ln(n)/Ws where n is a uniformly distributed random variable

from 0 to 1, and Ws is the sample rate of one sample per

minute. Similarly, isolation was done based on the detection

of a violation of the UCL in T21 and T22, and the known fault

signatures computed from the isolability graph W1 5 [0 1]

and W2 5 [1 1]. Additionally, the same data was tested with

a sample size m 5 1, and the upper control limits as defined

in Eq. 9. In this case a much higher sampling rate was used

(20 samples per minute), because there was no need to cap-

ture a larger time scale (see Remark 9). As described in the

section on data-based fault detection, the method of single

observations relies on the covariance matrix S calculated

from historical data under common-cause variation only, and

the method of m 5 10 observations uses a covariance matrix

S obtained from the new observations being analyzed in each

sample.
The closed-loop system was simulated under proportional

and feedback-linearizing control. Noise in the states and

measurements was included as discussed earlier. A fault in d1
was introduced as a step change of magnitude 1 kmol/m3 s.
Figure 6 shows the state trajectories for the closed-loop sys-

tem under the proportional and the feedback-linearizing con-

troller. Figure 7 shows the T2 statistics for the system under

feedback-linearizing control, calculated from m 5 10 ran-

domly sampled state measurements using the T2UCL from Eq. 6

with confidence level a 5 0.001, and degrees of freedom (3,

8) for T21, (1,10) for T22 and (4,7) for T2. Also, the data is

prone to greater false alarms, because over the short window

of 10 observations the trajectories are much more serially cor-

related, and can be susceptible to almost singular covariance

matrices, leading to large T2 values for small deviations from

the mean. Figure 8 shows the T2 statistic for the same results,

calculated instead from individual observations (m 5 1) using

the UCL from Eq. 9 with confidence level a 5 0.01 and

degrees of freedom (3,2997), (1,2999) and (4,2996) for T21, T
2
2

and T2, respectively. Observe that the moving average of m 5
10 observations causes a delay in the fault detection time

compared to the case where m 5 1.
In both methods, the T2 statistic exceeds the upper control

limit T2UCL, signaling a failure, around t 5 0.5 hr. The T21
value remained below its threshold, while the T22 value

Figure 5. Isolability graph for the system of Eq. 17.
q1 5 {f1}, q2 5 {f2} and q3 5 {g}.
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exceeded T2UCL2. This shows that the output (subvector 1)
was not affected by the failure. In the case of proportional
control with a failure in d1 the T2 statistic accurately shows
that the failure occurred around time t 5 0.5 hr. Figures 9
and 10 show the results m 5 10 and m 5 1, respectively.
However, in this simulation, all of the state trajectories were
affected by the failure resulting in values of T21 and T22 that
exceeded the upper control limits. In the case of a failure in
d2, introduced as a step change of magnitude 1 K/s both pro-
portional control and feedback-linearizing control show fail-
ures in T2 at t 5 0.5 hr, as well as in both subsystems T21
and T22 see Figures 11 and 12. Looking at T21 and T22 in Fig-
ures 9 and 11, it is clear that fault d1 did not affect the out-
put, whereas d2 did. In this situation, where only one fault in
each group is considered, it is possible to successfully iden-

tify the failure in Figure 9 as d1. However, for proportional
control, all of the states were affected by each failure (see
Figures 10 and 12) leaving an unclear picture as to the cause
of the fault.

A Monte Carlo simulation study was performed by ran-
domly varying the fault sizes, and the amount of variance in
the process and measurement noise in order to verify that the
method performs as expected in a broad range circumstances.
In total, 500 simulations were run, each with uniformly dis-
tributed random values of fault size, process noise variance
and sensor noise variance. Only a fault in d1 was considered
with values ranging from 0 to 3 kmol/m3 s. The standard
deviation of the process noise rp, and the sensor noise rm
ranged from 0 to twice the values reported in Table 2. A sin-
gle observation T2 statistic was used with the associated

Figure 6. CSTR example.

State trajectories of the closed-loop system under feedback-
linearizing (^) and P (3) control with a fault d1 at t 5
0.5 hr. [Color figure can be viewed in the online issue,
which is available at www.interscience.wiley.com.]

Figure 7. CSTR example.

Closed-loop system under feedback-linearizing control with
sample size m 5 10. Statistics T2, T21 and T22 (solid) with
TUCL (dashed) with a failure in d1 at t 5 0.5 hr. [Color fig-
ure can be viewed in the online issue, which is available at
www.interscience.wiley.com.]

Figure 9. CSTR example.

Closed-loop system under feedback-linearizing control with
sample size m 5 1. Statistics T2, T21 and T22 (solid) with
TUCL (dashed) with a failure in d1 at t 5 0.5 hr. [Color fig-
ure can be viewed in the online issue, which is available at
www.interscience.wiley.com.]

Figure 8. CSTR example.

Closed-loop system under proportional control with sample
size m 5 10. Statistics T2, T21 and T22 (solid) with TUCL
(dashed) with a failure in d1 at t 5 0.5 hr. [Color figure can
be viewed in the online issue, which is available at www.
interscience.wiley.com.]
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UCL. The results of these simulations were that from 500
runs, faults were detected when d1 [ 0.21, with an average
initial detection time of 30.7 min. Out of the 500 runs, a sin-
gle run was detected by the T2 statistic but showed no failure
in either T21 or T22.

Finally, to follow-up on the point of Remark 8, while the
feedback-linearizing controller is not an optimal controller,
Figure 13 shows that the control action requested by the
feedback-linearizing controller is not excessive and is compa-
rable to that of the control action requested by the propor-
tional controller.

Remark 9: The simulation results showed that the tradi-
tional setting for Hotelling’s T2 statistic which calls for using
m randomly sampled observations, and a covariance matrix
based on the sampled data was less accurate than the

method of individual observations. This is due to the fact
that the data is not normally distributed on a short time
scale. A small number of observations in a sample can lead
to an almost singular S, while the predicted distribution for
a large number of observations per sample becomes increas-
ingly narrow. This reveals the fact that the data over a short
period are in fact serially correlated. While this could be
remedied by using a larger sample time scale, this may
become inappropriate due to the need to quickly identify
faults. However, the single observation method is a reasona-
ble approach because the individual observations hold to the
normal distribution over a long period of time. The probabil-
ity of exceeding the UCL predicted by Eq. 9 using S esti-
mated from historical data is accurate on a large time-scale
and potentially conservative otherwise.

Application to a polyethylene reactor

In this subsection, the proposed method will be demon-
strated using a model of an industrial gas phase polyethylene
reactor. The feed to the reactor consists of ethylene, comono-
mer, hydrogen, inerts and catalyst. A recycle stream of
unreacted gases flows from the top of the reactor, and is
cooled by passing through a water-cooled heat exchanger.
Cooling rates in the heat exchanger are adjusted by mixing
cold and warm water streams while maintaining a constant
total cooling water flow rate through the heat exchanger.
Mass balances on hydrogen and comonomer have not been
considered in this study because hydrogen and comonomer

Figure 10. CSTR example.

Closed-loop system under proportional control with sam-
ple size m 5 1. Statistics T2, T21 and T22 (solid) with TUCL
(dashed) with a failure in d1 at t 5 0.5 hr. [Color figure
can be viewed in the online issue, which is available at
www.interscience.wiley.com.]

Figure 11. CSTR example.

Closed-loop system under feedback-linearizing control
with sample size m 5 1. Statistics T2, T21 and T22 (solid)
with TUCL (dashed) with a failure in d2 at t 5 0.5 hr.
[Color figure can be viewed in the online issue, which is
available at www.interscience.wiley.com.]

Figure 12. CSTR example.

Closed-loop system under proportional control with sam-
ple size m 5 1. Statistics T2, T21 and T22 (solid) with TUCL
(dashed) with a failure in d2 at t 5 0.5 hr. [Color figure
can be viewed in the online issue, which is available at
www.interscience.wiley.com.]

Table 2. CSTR Example Noise Parameters

rm rp /

CA 1E-2 1E-2 0.9
CB 1E-2 1E-2 0.9
CC 1E-2 1E-2 0.9
T 1E-1 1E-1 0.9
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have only mild effects on the reactor dynamics44. A mathe-
matical model for this reactor has the following form (44)

d½In�
dt

¼ 1

Vg
FIn � ½In�

½M1� þ ½In� bt
� �

d½M1�
dt

¼ 1

Vg
FM1

� ½M1�
½M1� þ ½In� bt � RM1

� �

dY1
dt

¼ Fcac � kd1Y1 �
RM1MW1

Y1
Bw

þ d2

dY2
dt

¼ Fcac � kd2Y2 �
RM1MW1

Y2
Bw

þ d2

dT

dt
¼ Hf þ Hg1 � Hg0 � Hr � Hpol

MrCpr þ BwCppol
þ d1

dTw1

dt
¼ Fw

Mw
ðTwi � Tw1

Þ � UA

MwCpw
ðTw1

� Tg1Þ
dTg1
dt

¼ Fg

Mg
ðT � Tg1Þ þ

UA

MgCpg
ðTw1

� Tg1Þ þ d3

(19)

where

bt ¼ VpCv

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð½M1� þ ½In�ÞRRT � Pv

p

RM1 ¼ ½M1�kp0e
�Ea

R
1
T�

1
Tf

� �
ðY1 þ Y2Þ

Cpg ¼ ½M1�
½M1� þ ½In�Cpm1 þ ½In�

½M1� þ ½In�CpIn

Hf ¼ ðFM1
Cpm1 þ FInCpInÞðTfeed � Tf Þ

Hg1 ¼ FgðTg1 � Tf ÞCpg

Hg0 ¼ ðFg þ btÞðT � Tf ÞCpg

Hr ¼ HreacMW1
RM1

Hpol ¼ CppolðT � Tf ÞRM1MW1

(20)

The definitions for all the variables used in Eqs. 19–20 are
given in Table 3, and their values can be found in Table 444

(see also45). Under normal operating conditions, the open-
loop system behaves in an oscillatory fashion (i.e., the sys-

tem possesses an open-loop unstable steady-state surrounded
by a stable limit cycle). The open-loop unstable steady-state
around which the system will be controlled is

½In�ss ¼ 439:7
mol

m3
½M1�ss ¼ 326:7

mol

m3

Y1ss; Y2ss ¼ 3:835mol Tss ¼ 356:2K

Tg1ss ¼ 290:4K Tw1ss ¼ 294:4K:

Note that with the given parameters, the dynamics of Y1,
Y2 are identical and will be reported in the results as a single
combined state. In this example, we consider three possible
faults d1, d2, and d3 which represent a change in the feed
temperature, catalyst deactivation and a change in the recycle
gas flow rate, respectively. The manipulated inputs are the
feed temperature Tfeed, and the inlet flow rate of ethylene
FM1. The control objective is to stabilize the system at the
open-loop unstable steady-state. In addition, in order to apply
the proposed FDI scheme, the controller must guarantee that
the closed-loop system satisfies the isolability conditions.
The open-loop system is highly coupled. If the controller
does not impose a specific structure, all the states have mutu-
ally dependent dynamics (i.e., they consist of one node in the
isolability graph as stated in Definition 5). In this work, we
propose to design a nonlinear controller to decouple [In],
[M1] and T from (Y1, Y2) and from Tw1 and Tg1. In this way,
the resulting closed-loop system consists of three subsystems
(i.e., three nodes in the isolability graph) that do not have
mutually dependent dynamics. In addition, the signature of

Figure 13. CSTR example.

Manipulated input profiles for both the proportional con-
troller (^) and the feedback-linearizing controller (3)
with a failure in d1 at time t 5 0.5 hr.

Table 3. Polyethylene Reactor Example Process Variables

ac active site concentration of catalyst
bt overhead gas bleed
Bw mass of polymer in the fluidized bed
Cpml specific heat capacity of ethylene
Cv vent flow coefficient
Cpw, CpIn,

Cppol

specific heat capacity of water, inert gas and
polymer

Ea activation energy
Fc, Fg flow rate of catalyst and recycle gas
FIn, FM1

, Fw flow rate of inert, ethylene and cooling water
Hf, Hg0 enthalpy of fresh feed stream, total gas outflow

stream from reactor
Hg1 enthalpy of cooled recycle gas stream to reactor
Hpol enthalpy of polymer
Hr heat liberated by polymerization reaction
Hreac heat of reaction
[In] molar concentration of inerts in the gas phase
kd1, kd2 deactivation rate constant for catalyst site 1, 2
kp0 pre-exponential factor for polymer propagation rate
[M1] molar concentration of ethylene in the gas phase
Mg mass holdup of gas stream in heat exchanger
MrCpr product of mass and heat capacity of reactor walls
Mw mass holdup of cooling water in heat exchanger
MW1 molecular weight of monomer
Pv pressure downstream of bleed vent
R, RR ideal gas constant, unit of J

mol � K ;
m3 � atm
mol � K

T, Tf, Tfeed reactor, reference, feed temperature
Tg1, Tw1 temperature of recycle gas, cooling water stream

from exchanger
Twi inlet cooling water temperature to heat exchanger
UA product of heat exchanger coefficient with area
Vg volume of gas phase in the reactor
Vp bleed stream valve position
y1, Y2 moles of active site type 1, 2
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each of the three faults is different, and, thus, the fault isol-
ability conditions are satisfied. In order to accomplish this
objective, we define the following control laws

FM1 ¼ u2Vg þ FM1ss

Tfeed ¼ u1ðMrCpr þ BWCppolÞ þ Hfss

FM1Cpm1 þ FInCpIn
þ Tf

(21)

with

u1 ¼ Hr � Hrss þ Hpol � Hpolss � Hg1 þ Hg1ss

MrCpr þ BwCppol
þ v1

u2 ¼ RM1 � RM1ss

Vg
þ v2

(22)

where terms with the subscript ss are constants evaluated at
the steady state and v1, v2 are the external inputs that will
allow stabilizing the resulting closed-loop system (see
Eq. 23). Under the control law of Eq. 22, the dynamics of
the states T and [M1], take the following form in the closed-
loop system

d½M1�
dt

¼ FM1
� ½M1�
½M1� þ ½In� bt � RM1ss

� �
1

Vg
þ v2

dT

dt
¼ Hf þ Hg1ss � Hg0 � Hrss � Hpolss

MrCpr þ BwCppol
þ v1 þ d1

(23)

It can be seen that these states only depend on [In], [M1]
and T. The closed-loop system under the controller of Eq. 23
has a reduced incidence graph with three nodes q1, q2 and q3
corresponding to the three partially decoupled subsystems
X1 5 {[In], [M1],T}, X2 5 {Y1, Y2} and X3 5 {Tg1, Tw1},
respectively. The resulting isolability graph for the closed-
loop system is shown in Figure 14. This structure leads to
each of the three faults d1, d2 and d3 having unique signa-
tures W1 5 [1 1 1]T, W2 5 [0 1 0]T and W3 5 [0 0 1]T, and
allows fault detection and isolation in the closed-loop system
using the proposed data-based FDI scheme.

In open-loop operation, the system has an unstable steady-
state surrounded by a stable limit-cycle as shown by45. In
order to understand the stability properties of the entire

closed-loop system, the stability of each subsystem around
its equilibrium point was investigated assuming that the
remaining states were at their equilibrium points. It can be
seen that both of the uncontrolled subsystems X2 5 {Y1, Y2}
and X3 5 {Tg1, Tw1} are stable. This implies that to obtain a
stable closed-loop system, the control inputs v1, v2 have to
be designed to stabilize the subsystem X1 5 {[In], [M1], T}.
In the present example, two PI controllers are implemented
that determine v1 and v2 to regulate each state independently.
By simulation, the PI controllers have been tuned to stabilize
the equilibrium of the closed-loop system and achieve a rea-
sonable closed-loop response with regard to requested control
action and response time. Note that any controller that stabil-
izes subsystem X1 can be used. The main objective is to
demonstrate the proposed data-based FDI method. The PI
controllers are defined as follows

v1ðtÞ ¼ K1 Tss � T þ 1

s1

Z t

0

ðTss � TÞdt
� �

v2ðtÞ ¼ K2ð½M1�ss � ½M1� þ 1

s2

Z t

0

ð½M1�ss � ½M1�ÞdtÞ
(24)

with K1 5 0.005, K1 5 0.0075, s2 5 1,000, s1 5 500. We
will refer to the controller defined by Eqs. 21, 22 and 24 as
the ‘‘decoupling’’ controller. Additionally, for comparison
purposes, a controller is used that stabilizes the closed-loop
system, but does not take into account the isolability condi-
tions of the proposed FDI method. Specifically, two PI con-
trollers will be used to regulate T and M1. This will be
denoted as the ‘‘PI-only’’ control law. The inputs FM1 and
Tfeed are defined by Eq. 21, but in this case, u1 and u2 are
evaluated by applying the PI controllers of Eq. 24, with the
same tuning parameters to the states T and M1.

The PI-only controller stabilizes the equilibrium point
under normal operating conditions, however, all the states
are mutually dependent, or in other words the reduced inci-
dence graph consists of only one node. This implies that ev-
ery fault affects all the state trajectories, making isolation of
the fault a difficult task. The proposed FDI scheme cannot be
applied because the closed-loop system does not satisfy the
isolability conditions, i.e., all the system faults have the same
signature.

Simulations have been carried out for several scenarios to
demonstrate the effectiveness of the proposed FDI scheme in
detecting and isolating the three faults d1, d2 and d3. In all
the simulations, sensor measurement and process noise were
included. The sensor measurement noise trajectory was gen-
erated using a sample time of ten seconds, and a zero-mean
normal distribution with standard deviation rM. The autore-
gressive process noise was generated discretely as wk 5
/wk21 1 nk, where k 5 0, 1, . . . is the discrete time step,
with a sample time of ten seconds, / is the autoregressive
coefficient, and nk is obtained at each sampling step using a
zero-mean normal distribution with standard deviation rp.
The autoregressive process noise is added to the right-hand
side of the differential equations for each state and the sensor
measurement noise is added to the measurements of each
state. Sensor measurement noise and process noise are eval-
uated independently for each state variable. The process and
sensor measurement noise for Y1 and Y2 are taken to beFigure 14. Isolability graph for the system of Eq. 19.
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equal. Table 5 provides the values of the noise parameters
for each state of the system of Eq. 19. The same assumptions
regarding the multivariate normal distribution of the meas-
ured process data under closed-loop operation for the CSTR
example apply to this example. Figure 15 shows that the dis-
tribution of the state measurements over a long period of
fault-free operation is approximately Gaussian.

For each failure dk, two simulations have been carried out.
One using the decoupling controller and another using the
PI-only controller. Both simulations have been carried out
using the same sensor measurement and process noise trajec-
tories. Starting from steady-state, the three different failures
with values d1 ¼ 10 K

s ; d2 ¼ �0:002 mol
s , and d3 ¼ 300 K

s
were introduced at time t 5 0.5 hr. These failures are distur-
bances in the dynamics of T, Y and Tg1, and represent
changes in the feed temperature, catalyst deactivation and
changes in the recycle gas flow rate, respectively. Figures 16,
18 and 20 show the state trajectories of the closed-loop sys-

tem under the decoupling controller (solid line), and the PI-
only controller (dashed line) for each of the three possible
faults. It can be seen that for the PI-only controller, each
time a fault occurs, all states deviate from the normal operat-
ing region around the equilibrium point. This makes isolation
a difficult task. However, the closed-loop state trajectories
under the decoupling controller demonstrate that when a
given fault occurs, not all state trajectories are affected. The
decoupling of some states from given faults allows for the
isolation of the faults based on the Ti

2 statistics. Specifically,
the state trajectories of the closed-loop system under the
decoupling controller were monitored using the T2 statistic
based on all the states of the system of Eq. 19 and the Ti

2

statistic corresponding to each one of the three subsystems
X1, X2, and X3. All statistics were monitored using the sin-
gle-observation method (m 5 1) with the upper control limit

Figure 15. Polyethylene reactor example.

Distribution of normalized, fault-free operating data com-
pared with a normal distribution of the same mean and co-
variance. [Color figure can be viewed in the online issue,
which is available at www.interscience.wiley.com.]

Table 4. Polyethylene Reactor Example
Parameters and Units

Vg 5 500 m3

Vp 5 0.5
Pv 5 17 atm

Bw 5 7 � 104 kg

kp0 5 85 � 1023 m3

mol � s
Ea 5 (9000)(4.1868) J

Kg

Cpw 5 (103)(4.1868) J
Kg � K

Cv 5 7.5 mol
atm0:5 � s

Cpm1, CpIn 5 (11)(4.1868), (6.9)(4.1868) J
mol � K

Cppol 5 (0.85 � 103)(4.1868) J
kg � K

kd1 5 0.0001 s21

kd2 5 0.0001 s21

MW1 5 28.05 � 1023 kg
mol

Mw 5 3.314 � 104 kg

Mg 5 6060.5 mol

MrCpr 5 (1.4 � 107)(4.1868) J
K

Hreac 5 (2894.103)(4.1868) J
kg

U A 5 (1.14 � 106)(4.1868) J
K � s

FIn, FM1, Fg 5 5, 190, 8500 mol
s

Fw 5 (3.11 � 105)(18 � 1023) kg
s

Fs
c 5 5:8

3600
kg
s

Tf, T
s
feed , Twi 5 360, 293, 289.56 K

RR 5 8.20575 � 1025 m3 � atm
mol � K

R 5 8.314 J
mol � K

ac 5 0.548 mol
kg

umax1 , umax2 5 5.78 � 1024, 3.04 � 1024 K
s ,

mol
s

[In]s 5 439.68 mol
m3

[M1]s 5 326.72 mol
m3

Y1s, Y2s 5 3.835, 3.835 mol
Ts, Tw1s, Tg1s 5 356.21, 290.37, 294.36 K

Table 5. Polyethylene Reactor Noise Parameters

rp rm /

[In] 1E-3 5E-2 0
[M1] 1E-3 5E-2 0.7
Y 1E-3 1E-2 0.7
T 5E-3 5E-2 0.7
Tg1 5E-3 5E-2 0.7
Tw1 5E-3 5E-2 0.7

Figure 16. Polyethylene reactor example.

State trajectories of the closed-loop system under decou-
pling (solid) and PI-only (dashed) controllers with a fault
d2 at t 5 0.5 hr. [Color figure can be viewed in the online
issue, which is available at www.interscience.wiley.com.]
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defined in Eq. 9, and the covariance matrix S, obtained from
historical observations. As in the CSTR example, simulations
were also run using a multiple observation test statistic (m 5
10). This method showed similar results in terms of fault
detection and isolation to the ones of the single observation
statistic and these results are not presented here for brevity.

Figures 17, 19 and 21 show the trajectories of T2, T21, T
2
2

and T23 for each different scenario along with the correspond-
ing upper control limits. Each failure is defined by a unique
signature that can be isolated based on the monitored statis-
tics. Figure 17 shows the statistics corresponding to the simu-
lation with a failure in d2. The signature of d2 is W2 5 [0 1
0]T, because the dynamics of the states corresponding to X1

and X3 are not affected by fault d2; that is, there is no path
from the node corresponding to d2 to the nodes correspond-
ing to X1 and X2 in the isolability graph of the closed-loop

system. Figure 17 clearly shows the fault occurring at time
t 5 0.5 hr, and the signature that we would expect; that is,
only T22 violates the upper control limit. The state trajectories
of this faulty scenario of Figure 16 demonstrates that there is
a failure affecting Y starting at t 5 0.5 hr. The failure affects
all the state trajectories under PI-only control but affects
only Y for the closed-loop system under nonlinear decoupling
control. Similarly, a failure in Tg1 affects only subsystem X3.
The state trajectories of Figure 18 shows that under PI-only
control, all of the states are affected, whereas under decou-
pling control, only the subsystem X3 5 {Tg1, Tw1} is
affected. The statistics in Figure 19 show that the signature
of the faultis [0 0 1]T 5 W3. The signature of fault d1 is
W1 5 [1 1 1]T, meaning that this fault affects all the states
in the closed-loop system. The state trajectories and the cor-
responding statistics are shown in Figures 20 and 21. The

Figure 18. Polyethylene reactor example.

State trajectories of the closed-loop system under the
decoupling (solid), and PI-only (dashed) controllers with a
fault d3 at t 5 0.5 hr. [Color figure can be viewed in the
online issue, which is available at www.interscience.
wiley.com.]

Figure 20. Polyethylene reactor example.

State trajectories of the closed-loop system under the
decoupling (solid) and PI-only (dashed) controllers with a
fault d1 at t 5 0.5 hr. [Color figure can be viewed in the
online issue, which is available at www.interscience.
wiley.com.]

Figure 17. Polyethylene reactor example.

Statistics T2, T21, T
2
3, and T23 (solid) with TUCL (dashed) of

the closed-loop system under the decoupling controller
with a failure in d2 at t 5 0.5 hr. [Color figure can be
viewed in the online issue, which is available at www.
interscience.wiley.com.]

Figure 19. Polyethylene reactor example.

Statistics T2, T21, T
2
2, and T23 (solid) with TUCL (dashed) of

the closed-loop system under the decoupling controller
with a failure in d3 at t 5 0.5 hr. [Color figure can be
viewed in the online issue, which is available at www.
interscience.wiley.com.]
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control action required under the decoupling control law is
of comparable magnitude to that of the PI-only controller.
Figure 22 shows the manipulated input trajectories for both
controllers in the scenario with fault d2 occurring.

Remark 10: Although the method of determining faults
by monitoring Ti

2 values was used in this example, other FDI
methods could benefit from the fact that the enforced struc-
ture separates regions of faulty operation. In the case where
the desired structure is only partially achieved due to plant-
model mismatch or other uncertainties, it may be necessary
to utilize more sophisticated methods of fault detection and
isolation (e.g., contribution plots or clustering). It should be
noted that even an incomplete decoupling will benefit many
of these methods as the regions of faulty operation are still
at least partially separated.

Conclusions

This work has proposed a method for integrating the
design of the feedback control law with the fault detection
and isolation scheme. This approach strengthens existing FDI
techniques by enforcing an appropriate structure on the
closed-loop system that may separate regions of faulty opera-
tion in the state space, such that fault isolation may become
possible. This was illustrated through two chemical process
examples, a CSTR and a polyethylene reactor. By carefully
designing the feedback controller, it was demonstrated that it
is possible to enhance the isolability of particular faults. In
the CSTR example, feedback linearization was used to
achieve the required closed-loop system structure in order to
perform fault detection and isolation, whereas in the polyeth-
ylene reactor example, a more general approach to nonlinear
controller design was used in meeting the required conditions
for isolability. Additionally, it was demonstrated that using a
data-based method of monitoring the T2i values of the result-
ing subsystems, it was possible to isolate certain faults due
to the enforced closed-loop system structure.
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16. Negiz A, Çinar A. Statistical monitoring of multivariable dynamic
processes with state-space models. AIChE J. 1997;43:2002–2020.

17. Kourti T, MacGregor JF. Multivariate SPC methods for process and
product monitoring. J of Quality Technol. 1996;28:409–428.

18. Bakshi BR. Multiscale PCA with application to multivariate statisti-
cal process monitoring. AIChE J. 1998;44:1596–1610.

19. Aradhye HB, Bakshi BR, Strauss RA, Davis JF. Multiscale SPC
using wavelets: Theoretical analysis and properties. AIChE J. 2003;
49:939–958.

20. Aradhye HB, Bakshi BR, Davis JF, Ahalt SC. Clustering in wavelet
domain: A multiresolution ART network for anomaly detection.
AIChE J. 2004;50:2455–2466.

21. Venkatasubramanian V, Rengaswamy R, Kavuri SN, Yin K. A
review of process fault detection and diagnosis Part III: Process his-
tory based methods. Comp and Chem Eng. 2003;27:327–346.

22. Khalil HK. Nonlinear Systems. Macmillan Publishing Company;
1992.

23. Christofides PD, El-Farra NH. Control of Nonlinear and Hybrid Pro-
cess Systems: Designs for Uncertainty, Constraints and Time-Delays.
New York: Springer; 2005.

24. Whiteley JR, Davis JF. Knowledge-based interpretation of sensor
patterns. Comp & Chem Eng. 1992;16:329–346.

25. Mehranbod N, Soroush M, Panjapornpon C. A method of sensor
fault detection and identification. J of Process Control. 2005;15:
321–339.

26. Whiteley JR, Davis JF. Qualitative interpretation of sensor patterns.
IEEE Expert. 1992;8:54–63.

27. Rollins DR, Davis JF. Unbiased estimation of gross errors when the
covariance matrix is unknown. AIChE J. 1993;39:1335–1341.

28. Mehranbod N, Soroush M, Piovoso M, Ogunnaike BA. Probabilistic
model for sensor fault detection and identification. AIChE J.
2003;49:1787–1802.

29. Dunia R, Qin SJ, Edgar TF, McAvoy TJ. Identification of faulty sen-
sors using principal component analysis. AIChE J. 1996;42:2797–
2812.

30. Harary F. Graph Theory. Perseus Books Publishing, 1969.
31. Daoutidis P, Kravaris C. Structural evaluation of control confiura-

tions for multivariable nonlinear processes. Chem Eng Sci. 1991;47:
1091–1107.

32. Yoon S, MacGregor JF. Statistical and causal model-based
approaches to fault detection and isolation. AIChE J. 2000;46:1813–
1824.

33. Hotelling H. Multivariate Quality Control. In: Eisenhart O. Techni-
ques of Statistical Analysis. McGraw-Hill; 1947:113–184.

34. Montgomery DC. Introduction to statistical quality control. John
Wiley & Sons; 1996.

35. Tracy ND, Young JC, Mason RL. Multivariate control charts for
individual observations. J of Quality Technol. 1992;24:88–95.

36. Prasad PR, Davis JF, Jirapinyo Y, Bhalodia M, Josephson JR. Struc-
turing diagnostic knowledge for large-scale process systems. Comp
and Chem Eng. 1999;22:1897–1905.

37. MacGregor JF, Jaeckle C, Kiparissides C, Koutoudi M. Process
monitoring and diagnosis by multiblock PLS method. AIChE J.
1994;40:826–838.

38. El-Farra NH, Christofides PD. Integrating robustness, optimality, and
constraints in control of nonlinear processes. Chem Eng Sci.
2001;56:1841–1868.

39. El-Farra NH, Christofides PD. Bounded robust control of constrained
multivariable nonlinear processes. Chem Eng Sci. 2003;58:3025–
3047.

40. Kokotovic P, Arcak M. Constructive nonlinear control: a historical
perspective. Automatica. 2001:637–662.

41. Isidori A. Nonlinear Control Systems: An Introduction. Berlin-Hei-
delberg: Springer-Verlag; 1989.

42. Daoutidis P, Kravaris C. Synthesis of feedforward state feedback
controllers for nonlinear processes. AIChE J. 1989;35:1602–1616.

43. McAuley KB, Macdonald DA, McLellan PJ. Effects of operating
conditions on stability of gas-phase polyethylene reactors. AIChE J.
1995;41:868–879.

44. Dadebo SA, Bell ML, McLellan PJ, McAuley KB. Temperature con-
trol of industrial gas phase polyethylene reactors. J of Process Con-
trol. 1997;7:83–95.

45. Gani A, Mhaskar P, Christofides PD. Fault-tolerant control of a
polyethylene reactor. J of Process Control. 2007;17:439–451.

Manuscript received Apr. 20, 2007, and revision received Aug. 17, 2007.

AIChE Journal January 2008 Vol. 54, No. 1 Published on behalf of the AIChE DOI 10.1002/aic 241


