
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright


Author's personal copy

Chemical Engineering Science 64 (2009) 2370 -- 2383

Contents lists available at ScienceDirect

Chemical Engineering Science

journal homepage: www.e lsev ier .com/ locate /ces

Data-based fault detection and isolation using feedback control: Output feedback and
optimality

Benjamin J. Ohrana, Jinfeng Liua, David Muñoz de la Peñac, Panagiotis D. Christofidesa,b,∗, James F. Davisa

aDepartment of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA 90095-1592, USA
bDepartment of Electrical Engineering, University of California, Los Angeles, CA 90095-1592, USA
cDepartamento de Ingeniería de Sistemas y Automática, Universidad de Sevilla, Camino de los Descubrimientos S/N, 41092 Sevilla, Spain

A R T I C L E I N F O A B S T R A C T

Article history:
Received 12 September 2008
Received in revised form 22 January 2009
Accepted 11 February 2009
Available online 21 February 2009

Keywords:
Process control
Process monitoring
State estimation
Model predictive control
Fault detection and isolation
Nonlinear process systems

This work focuses on data-based fault detection and isolation (FDI) of nonlinear process systems. Working
within the framework of controller-enhanced FDI that we recently introduced, we address and solve two
unresolved, practical problems. First, we consider the case where only output measurements are available
and design appropriate state estimator-based output feedback controllers to achieve controller-enhanced
FDI in the closed-loop system. Precise conditions for achieving FDI using output feedback control are
provided. Second, we address the problem of controller-enhanced FDI in an optimal fashion within the
framework of model predictive control (MPC). We propose an MPC formulation that includes appropriate
isolability constraints to achieve FDI in the closed-loop system. Throughout the manuscript, we use a
nonlinear chemical process example to demonstrate the applicability and effectiveness of the proposed
methods.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Advanced automation technology has changed the way the chem-
ical process industry operates in many ways. Over the last few
decades, advancements in plant operations have led to higher effi-
ciency and improved economics through better control and monitor-
ing of process systems. These technological advances have resulted in
process systems becoming increasingly automated, no longer requir-
ing operators to open and close valves in order to manually perform
process control. In general, there is a trend towards such “smart”
plants that are capable of highly automated control with decision
making at the plant level taking into account environmental, health,
safety and economic considerations (Christofides et al., 2007). Along
with the move towards more automated plant operation, improved
methods of fault detection, isolation and handling are necessary due
to the issues raised by automation itself. Despite the many bene-
fits of automatic process control, increased complexity and instru-
mentation can cause automated plants to become more susceptible
to control system failures. Abnormal situations cost U.S. industries
over $20 billion each year (Nimmo, 1995). As part of the continuing
improvements to process monitoring and control, it is important to
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design systems capable of detecting and handling such process or
control system abnormalities. Fault tolerant control (FTC) is a field
that has received a significant amount of attention recently as a
means for avoiding disaster in the case of a fault, see for example
Mhaskar et al. (2006b, 2007, 2008a), El-Farra (2006) and El-Farra
and Ghantasala (2007). FTC attempts to reconfigure a process control
system upon detection of a fault, in order to preserve closed-loop
system stability and performance. We discuss here active methods of
FTC, as opposed to passive methods which rely on robust controller
design rather than control system reconfiguration. Specifically, the
key elements of a successful FTC system include multiple control
configurations with well-defined regions of closed-loop stability, a
supervisor that is able to switch between faulty and well-functioning
control configurations, and perhaps most importantly, a fast, accu-
rate method for detecting faulty process behavior and isolating its
cause. The fault detection and isolation (FDI) problem is the focus of
the present work.

FDI methods can generally be divided into two categories: model-
based and data-based. Model-based FDI methods generally rely on
mathematical models of the process developed either from first
principles or from system identification that can be solved in real
time. The data generated from the model are compared with mea-
sured data from the physical system to create residuals that relate
to specific faults. With an accurate process model and under appro-
priate assumptions, it is possible to accomplish FDI for specific fault
structures (see, for example, Frank, 1990; Hammouri et al., 2002;
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Kabore and Wang, 2001; Mhaskar et al., 2008b). Data-based meth-
ods, on the other hand, rely on process measurements in order to
perform FDI. Analyzing process measurements gives the location and
direction of the system trajectory in the state space. It is then pos-
sible, particularly for linear process systems, to extract information
about the fault by comparing the location and/or direction of the
system trajectory in the state space with past faulty behavior (e.g.,
Romagnoli and Palazoglu, 2006; Yoon and MacGregor, 2001). Several
methods have been developed that manipulate the measured data to
reduce their dimension and extract information from the data with
respect to actuator/sensor faults using principle component analy-
sis (PCA) or partial least squares (PLS) techniques (e.g., MacGregor
and Kourti, 1996; Wise and Gallagher, 1996; Raich and Çinar, 1996;
Negiz and Çinar, 1997). These methods reduce the dimensionality
of the data by eliminating directions in the state space with low
common-cause variance. Other methods have been developed that
consider the contribution of particular states to the overall shift from
normal operation (Kourti and MacGregor, 1996). Some data-based
methods take advantage of PCA to find correlations within the data
(Gertler et al., 1999). Work has also been done to group data based
on process structure or process distinct timescales as in multi-block
or multi-scale PCA (Westerhuis et al., 1998; Bakshi, 1998; Aradhye
et al., 2003). While many of these methods have been successful in
achieving fault detection, fault isolation remains a difficult task, par-
ticularly for nonlinear processes where historical data under faulty
operation are insufficient to discriminate between faults. For a com-
prehensive review of model-based and data-based FDI methods, the
reader may refer to Venkatasubramanian et al. (2003a, b).

In a previous work (Ohran et al., 2008a), we developed an FDI
method that takes advantage of both model-based and data-based
approaches. This method brought together elements of model-based
controller design and statistical process monitoring. In this method,
the controller is designed with the FDI scheme in mind in addition
to stability and performance criteria. By enforcing an isolable struc-
ture in the closed-loop system, it becomes possible to perform FDI
based on statistical evaluation of process measurements. The pur-
pose of the present work is to further develop the approach pro-
posed in Ohran et al. (2008a) by relaxing the requirement of full state
feedback control and developing the use of model predictive control
(MPC) to optimize the manipulated input cost. Specifically, we first
consider the case where only output measurements are available
and design appropriate state estimator-based output feedback con-
trollers to achieve controller-enhanced FDI in the closed-loop sys-
tem. Second, we address the problem of controller-enhanced FDI in
an optimal fashion within the framework of MPC. We propose an
MPC formulation that includes appropriate isolability constraints to
achieve FDI in the closed-loop system. Throughout the manuscript,
we use a nonlinear chemical process example to demonstrate the
applicability and effectiveness of the proposed methods.

2. Preliminaries

2.1. Process system structure

We consider nonlinear process systems with the following gen-
eral state-space description:

ẋ = f (x,u,d) (1)

where x ∈ Rn is the vector of process state variables, u ∈ Rm is the
vector of manipulated input variables and d ∈ Rp is the vector of
p possible actuator faults or disturbances. Vector d is equal to zero
when the system is under normal operating conditions. When fault
k, with k = 1, . . . ,p occurs, the kth component of vector d, denoted
dk, can take any time-varying value. This model includes a broad
class of possible faults. The approach of controller-enhanced FDI was

introduced in Ohran et al. (2008a) as a method of dividing the state
vector into a number of partially decoupled subvectors. These sub-
vectors can be monitored using measured process data. Based on
their responses and the system structure enforced by the decoupling
controller, it is possible to discriminate between individual faults or
groups of faults. Decoupling into subvectors can be accomplished by
using model-based control laws to enforce the appropriate structure
(see Section 2.3.1). In order to understand the necessary structure to
perform isolation, we review (Ohran et al., 2008a) the definitions of
the incidence graph, the reduced incidence graph and the isolability
graph.

Definition 1. The incidence graph of the system of equation (1) is a
directed graph defined by n nodes, one for each state, xi, i= 1, . . . ,n,
of the system. A directed arc with origin in node xi and destination
in node xj exists if and only if �fj/�xi �0.

The arcs in the incidence graph illustrate dependencies within the
states of the system. A path through more than one arc that starts
and ends at the same node is denoted as a loop. Nodes connected
by a loop have mutually dependent dynamics, and any disturbance
affecting one of them also affects the rest.

Definition 2. The reduced incidence graph of the system of equation
(1) is the directed graph of N nodes, one for each qi, i = 1, . . . ,N,
where N is the maximum number of nodes that satisfy the following
conditions:

• Each node qi corresponds to a set of states Xi = {xj}. These sets of
states are a partition of the state vector of the system, i.e.,

⋃
Xi = {x1, . . . , xn}, Xi

⋂
Xj = ∅, ∀i� j

• A directed arc with origin qi and destination qj exists if and only
if �fl/�xk �0 for some xl ∈ Xi, xk ∈ Xj.

• There are no loops in the graph.

The reduced incidence graph reveals the partially decoupled sub-
systems within the structure of the states in x.

Definition 3. The isolability graph of the system of equation (1) is a
directed graph made of the N nodes of the reduced incidence graph
and p additional nodes, one for each possible fault dk. In addition, a
directed arc with origin in fault node dk and destination to a state
node qj exists if and only if �fl/�dk �0 for some xl ∈ Xj.

These definitions present the basic dependencies within a state
vector. In most nonlinear process systems, the states are fully cou-
pled and the isolability graph contains a single node representing
all of the states in the system. However, in systems with partially
decoupled dynamics the reduced incidence and isolability graphs
demonstrate graphically the subsets of the state vector. Consider a
simple example of the following system:

ẋ1 = −x1 + x2 + d1
ẋ2 = x1 + 2x2 + d2
ẋ3 = −2x1 + x3 + d3 (2)

Because x1 and x2 are mutually dependent but are not affected by x3,
they form a partially decoupled subsystem represented by a single
node (q1) in the isolability graph leaving x3 to form a node by itself
(q2). Fig. 1 shows the isolability graph for the system of equation (2).

With the isolability graph of a system, it is possible to con-
sider fault isolation based upon monitoring the subsystems. For this
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q1 q2

d1 d3

d2

Fig. 1. Isolability graph of the system of equation (2).

purpose, it is necessary to review the definition of a fault signature
given below (Ohran et al., 2008a):

Definition 4. The signature of a fault dk of the system of equation
(1) is a binary vector Wk of dimension N, where N is the number of
nodes of the reduced incidence graph of the system. The ith compo-
nent of Wk, denoted Wk

i , is equal to 1 if there exists a path in the
isolability graph from the node corresponding to fault dk to the node
qi corresponding to the set of states Xi, or 0 otherwise.

Using this definition of a fault signature and the isolability graph
shown in Fig. 1, it is possible to identify the fault signatures for the
three faults considered in the system of equation (2). In this case,
the fault d3 has the signature W3 = [0 1]T and the two faults d1
and d2 have the signature W1 = W2 = [1 1]T . Thus, based on the
fault signatures, it is possible to distinguish between a failure in d3
from a failure in d1 or d2. However, it is not generally possible to
discriminate between failures in d1and d2.

Remark 1. It should be noted that while dk can model any type of
fault, the present approach does not attempt to distinguish between
types of faults (e.g., disturbances or actuator faults) that would af-
fect the dynamics of the same state. That is, two faults which af-
fect the system dynamics through the same state are isolated as the
same fault in this method (e.g., an inlet temperature disturbance and
heat-jacket actuator failure would both affect the reactor tempera-
ture dynamics and would thus appear identical in the fault detec-
tion scheme). For recent work on discriminating disturbances from
actuator failures, see Ghantasala and El-Farra (2009).

Remark 2. There are other approaches in the literature that examine
the necessary structural conditions in order to perform model-based
fault diagnosis (see, for example, Hammouri et al., 2001; De Persis
and Isidori, 2000, 2001). While these approaches are similar to our
approach in that they take into consideration the system structure
and develop conditions for fault diagnosis, they differ in the fact that
they do not enforce the necessary structure for FDI in the closed-loop
system via feedback control and use model-based fault diagnosis
as opposed to the data-based fault diagnosis approach used in this
work.

2.2. Process monitoring

The discussion in the previous subsection focused on determin-
istic process behavior (i.e., the presence of process/measurement
noise was not included in the computation of the fault signature)
in which evaluation of the fault signature based on the isolability
graph is straightforward and results in a definitive answer. On the
other hand, in processes subject to state and measurement noise, it
is possible to have false positives and false negatives in determining
the effect of a fault on the state trajectories. For this reason, in order
to make a comparison between the fault signature based on the de-
terministic system structure and the process signature based on the
actual behavior (computed on the basis of process measurements),
it is necessary to use a method of monitoring of the state trajectories
that clearly distinguishes normal behavior from faulty behavior and
is tolerant to the normal amount of process variation (as computed
from historical process data). Additionally, it is assumed that faults
of interest will be sufficiently large so that their effect will not be
masked by normal process variation.

For the purpose of monitoring whether or not a state has devi-
ated from its normal behavior, we use statistical process monitor-
ing methods. In particular, we use Hotelling's T2 statistic (Hotelling,
1947), a well established method in statistical process control that
monitors multivariate normal (Gaussian) data using a single statistic
(Romagnoli and Palazoglu, 2006). Because of its suitability for con-
tinuous, serially correlated chemical processes, the method of using
single observations is employed (Tracy et al., 1992; Montgomery,
1996). Given a multivariate state vector x of dimension n, the T2

statistic can be computed using the mean x̄ and the estimated co-
variance matrix S of process data obtained under normal operating
conditions (see, for example, Romagnoli and Palazoglu, 2006; Kourti
and MacGregor, 1996), as follows:

T2 = (x − x̄)TS−1(x − x̄) (3)

The upper control limit (UCL) for the T2 statistic can be calcu-
lated from its distribution, under the assumption that the data are
multivariate normal, according to the following formula:

T2UCL = (h2 − 1)n
h(h − n)

F�(n,h − n) (4)

where h is the number of historical measurements used in estimat-
ing S, F�(n,h−n) is the value on the F distribution with (n,h−n) de-
grees of freedom for which there is probability � of a greater or equal
value occurring. Thus, � is the probability of a false alarm. This dis-
tribution is based on the assumption that the data are multivariate
normal. This requirement is generally a reasonable assumption since
even process data that may be serially correlated under open-loop
operation are frequently close to normal in the closed-loop system
under feedback control on a large time-scale (Montgomery, 1996).
The validity of this assumption of normal process data in the closed-
loop system has been verified in our previous work (see, for exam-
ple, Ohran et al. (2008a, b). It has also been verified in the context of
the reactor example used in the present paper. Similar results ver-
ifying that the closed-loop system data in the reactor example are
normal are not given in the present paper for brevity and to avoid
redundancy.

The T2 statistic is used to both detect that a fault has occurred
and to provide the system signature that can be compared with the
fault signatures defined by the isolability graph. In order to perform
these tasks, the T2 statistic based on the full state vector x with UCL
T2UCL is first used to detect the presence of a fault. Subsequently, the
T2i statistic is used to monitor the status of each subset of the state
vector with an UCL T2UCLi where i=1, . . . ,N that is based on each of the
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subvectors and their states xj ∈ Xi. The FDI procedure then follows
the steps given below (Ohran et al., 2008a):

1. A fault is detected if T2(t) > T2UCL, ∀t tf � t� tf + TP where tf is the
last time when T2 crossed the UCL (i.e., after time tf , T2 does
not return to any values below T2UCL) and TP is the fault detection
window chosen to be large enough to allow fault isolation with a
desired degree of confidence. Choosing TP depends on the process
time constants and potentially on available historical information
of past process behavior.

2. Fault isolation can be performed by comparing fault signatures
with the process signatureW(tf , TP) which can be built as follows:

T2i (t) > T
2
UCLi, ∀t tf � t� tf + TP → Wi(tf , TP) = 1

T2i (t)�T2UCLi, ∀t tf � t� tf + TP → Wi(tf , TP) = 0

A fault dk is isolated at time tf + TP if W(tf , TP) = Wk. If two or
more faults are defined by the same signature, further isolation
between them is not possible on the basis of the fault signature.

2.3. Controller design for enhanced FDI

2.3.1. Decoupling controller design
The approach to FDI discussed in the previous section can be ap-

plied if the signatures of the faults in the closed-loop system are
distinct. The uniqueness of a fault depends on the structure of the
closed-loop system and the faults considered. In general, complex
nonlinear systems are fully coupled (i.e., cannot be broken down
into partially decoupled subvectors) and faults cannot be isolated us-
ing this method when the controller is designed only to account for
closed-loop stability. However, an isolable structure in the closed-
loop system may still be achieved through the application of ap-
propriately designed nonlinear control laws. Although many control
laws exist that may achieve the desired goal, it is not possible to
apply a systematic procedure to controller design that guarantees
closed-loop stability and an isolable closed-loop system structure for
any nonlinear process. Nonetheless, controller designs can be de-
veloped to decouple a particular set of states from the rest of the
system in a number of applications. As an example, consider a con-
troller that can be applied to nonlinear systems with the following
state-space description:

ẋ1 = f11(x1) + f12(x1, x2) + g1(x1, x2)u + d1
ẋ2 = f2(x1, x2) + d2 (5)

where x1 ∈ R, x2 ∈ Rn, u ∈ R and g1(x1, x2)�0 for all x1 ∈ R, x2 ∈ Rn.
With a nonlinear state feedback controller of the form:

u(x1, x2) = − f12(x1, x2) − v(x1)
g1(x1, x2)

(6)

the closed-loop system takes the form

ẋ1 = f11(x1) + v(x1) + d1
ẋ2 = f2(x1, x2) + d2 (7)

where v(x1) has to be designed in order to achieve asymptotic sta-
bility of the origin of the x1 subsystem when d1 =0. In this case, the
controller of Eq. (6) guarantees asymptotic stability of the closed-
loop system, as well as different signatures for faults d1 and d2. Note
that the closed-loop system in this case can be broken down into two
subvectors, each including one state, and the signatures are given
by W1 = [1 1]T and W2 = [0 1]T . If necessary, using multiple con-
trollers allows for more degrees of freedom in breaking up the full
state vector into subvectors and allowing fault isolation. Note that in
this example, the x2 subsystem must be input-to-state stable with
respect to x1.

2.3.2. Input/output linearizable nonlinear systems
Input/output linearizable nonlinear systems constitute a special

class of nonlinear systems for which it is possible to systemati-
cally design nonlinear controllers to achieve controller-enhanced
FDI. Specifically, we consider processes modeled by single-input
single-output nonlinear systems with multiple possible faults that
have the following state-space description:

ẋ = f (x) + g(x)u +
p∑

k=1

wk(x)dk

y = h(x) (8)

where x ∈ Rn is the state vector, u ∈ R is the input, y ∈ R is
the controlled output and dk ∈ R represents a possible fault. It is
assumed that f , g, h and wk are sufficiently smooth functions and
that a set of p possible faults has been identified. Each of these
faults is characterized by an unknown input to the system dk that
can model actuator failures and process faults and disturbances. The
value of dk is not restricted and may be any time-varying fault. The
system has an equilibrium point at x=0 when u(t) ≡ 0, dk(t) ≡ 0 and
h(0)= 0. Below, we will use the Lie derivative notation: Lf h(x) is the
Lie derivative of the scalar field h(x) with respect to the vector field
f (x), Lrf h(x) is the r-th order Lie derivative and LgLf h(x) is a mixed Lie
derivative.

The main control objective is to design a feedback control law
u = pDC(x) such that the closed-loop system has an asymptotically
stable equilibrium point, and the input/output response is linear.
Moreover, the closed-loop system must satisfy the isolability con-
ditions by having two or more groups of faults with unique sys-
tem signatures. To this end, we review the definition of relative
degree of the output, y, with respect to the input, u, in the system of
equation (8).

Definition 5 (Isidori, 1989). Referring to the system of equation (8),
the relative degree of the output, y, with respect to the input, u, is
the smallest integer, r ∈ [1,n], for which

LgLif h(x) = 0, i = 0, . . . , r − 2

LgLr−1
f h(x)�0

If the system of equation (8) has input relative degree r < n, then
there exists a coordinate transformation (see Isidori, 1989) (�,�) =
�(x) such that the representation of the system of equation (8) with
dk = 0 for all k = 1, . . . ,p, in the (�,�) coordinates, takes the form

�̇1 = �2
...

�̇r−1 = �r
�̇r = Lrf h(x) + LgLr−1

f g(x)u

�̇1 = �1(�,�)
...

�̇n−r = �n−r(�,�) (9)

where y = �1, x = �−1(�,�), � = [�1, . . . , �r]
T and � = [�1, . . . ,�n−r]

T .
Choosing u = pDC(x) in an appropriate way, the dynamics of � can
be linearized and controlled. The stability of the closed-loop system,
however, can only be guaranteed if the inverse dynamics (�̇=�(�,�))
are input-to-state stable with respect to �. The feedback-linearizing
control law takes the following general form:

u(x) = 1

LgLr−1
f h(x)

[v(x) − Lrf h(x)] (10)
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where v(x) is an external controller for the purpose of stabilizing the
system.

If the state-feedback law given in Eq. (10) is used, it can be shown
that the faults of the system of equation (8) can be isolated into two
different groups: those that affect the output and those that do not
affect the output. It is important to note here that the output func-
tion, h(x), can be appropriately chosen as a nonlinear combination of
the states, x, to aid the task of FDI using a feedback linearizing con-
troller design. The induced structure of the closed-loop system in the
transformed coordinates (�,�) provides different signatures for the
faults depending on their relative degree which is defined below:

Definition 6 (Daoutidis and Kravaris, 1989). Referring to the system
of equation (8), the relative degree, �k ∈ [1,n], of the output, y, with
respect to the fault dk is the smallest integer for which

LwkL
i
f h(x) = 0, i = 0, . . . ,�k − 2

LwkL
�k−1
f h(x)�0 (11)

Analogous to the relative degree of the output with respect to
the input, this definition of relative degree relates the output to a
particular fault. If a feedback-linearizing controller is used, then the
faults can be divided into two different groups: those with a relative
degree �k that is greater than the relative degree r and those with a
relative degree �k that is less than or equal to r. When a fault occurs,
the faults of the first group will not affect the output, y, while those
of the latter will. Thus, using the control law in Eq. (10), the possible
faults of the system of equation (8) are divided into two groups, each
with a different signature. When a fault occurs, taking into account
whether the trajectory of the output has deviated from the normal
case or not, it is possible to isolate to which group the fault belongs.

Remark 3. Note that in order for the feedback linearizing controller
of Eq. (10) to decouple the output from the specific group of faults
described above, the first-principles model must match that of the
actual process. In a practical application, there is tolerance for some
degree of plant-model mismatch that can be accounted for by the
fault detection thresholds. In this case, there is not perfect decoupling
but the enforcement of near-decoupling in the closed-loop system
by the controller that still allows for FDI. On the other hand, large
discrepancies between the plant and the model would not allow
enforcing the desired structure.

3. Controller-enhanced FDI using output feedback control

In this section, we address the problem of controller-enhanced
FDI using output feedback control. Specifically, we discuss the lim-
itations imposed by the availability of measurements of only few
state variables and design state estimator-based output feedback
control laws that enhance fault isolation in the closed-loop system.
We demonstrate an application of our analysis and controller design
to a chemical reactor example.

3.1. State estimation

In order to perform controller-enhanced FDI using output feed-
back control, any unknown process state variable must be quickly
and accurately estimated from the available output measurements
so that the decoupling state feedback controller designs of Sections
2.3.1 and 2.3.2 can be implemented. The state estimation is per-
formed for the state vector x (or a subset thereof) with the outputs,
or measured states, defined as y=Cx. In this work, we consider only
outputs of the form yi=xi, i=1, . . . , q <n. In other words, C is a matrix
with one and only one non-zero entry in each row and that entry is

equal to unity. This set-up is appropriate in chemical process control
applications where measurements of a few states like temperature
and concentrations of a few species, like key products, are available,
but concentrations of some species are not measured. This set-up
also allows obtaining a clear picture of the use of output feedback
instead of full state feedback in controller-enhanced FDI. The theory
for the state estimator design is based upon a linear system, but can
also be applied to nonlinear systems, using a local stability analysis
around the operating point (origin). Specifically, the linearizedmodel
of the nonlinear system of equation (1) takes the following form:

ẋ = Ax + Bu + Wd

y = Cx (12)

where A is the Jacobian matrix of the nonlinear system at the op-
erating point, u is the manipulated input vector and d is the fault
vector. The matrices B and W can be computed from the lineariza-
tion of Eq. (1) around the origin. Under the assumption that (A,C)
forms an observable pair, each state variable x can be estimated by
the following dynamic equation:

˙̂x = Ax̂ + Bu + L(y − Cx̂) (13)

where x̂ is the state estimate and L is the estimator gain that can be
chosen so that all the eigenvalues of the matrix (A−LC) are placed at
appropriate locations in the left-half of the complex plane to guar-
antee a desirable rate of convergence of the estimation error to zero.
The computation of L can be done using standard pole placement
techniques or via a Kalman filtering framework by adding process
and measurement noise in the linearized model of Eq. (12). In ei-
ther case, the linearized state estimation error equation with d(t)=0
takes the form:

ė = (A − LC)e (14)

where e=x− x̂ is the estimation error. While it is possible to perform
state estimation using the full state vector in the state estimator of
Eq. (13) when d(t) ≡ 0, it becomes necessary to use a reduced-order
process model when designing a state estimator-based output feed-
back controller to enhance FDI. This need for a reduced-order model
arises due to faults that affect the state estimator and introduce er-
ror into the estimate (i.e., the full state estimation scheme of Eq. (13)
works when d(t)= 0, but not when d(t)�0). Specifically, if the error
vector d on the right-hand side of Eq. (12) is nonzero, the new equa-
tion for the estimator error becomes ė= (A− LC)e+Wd. Thus, in the
presence of a fault, the state estimates no longer converge to their
actual values, and the isolable structure attained in the closed-loop
system under state feedback control cannot bemaintained. However,
it is possible in some process systems to perform the state estima-
tion task using a subset of the states that are not directly affected by
the expected faults, i.e., effectively eliminating d in the estimation
error system. The general structure of the model in Eqs. (12)–(14)
remains the same for the reduced-order system, but it is based on a
subset of the full state vector, xr ⊂ x. To mathematically realize this
notion, consider a system with the following structure, where time
derivatives of the states xr are not functions of d and include all un-
known states to be estimated along with some measured states, and
xd includes the remaining measured states, whose dynamic equa-
tions may be functions of d. Specifically, we consider the following
decomposition of the vectors and matrices of the linearized system
of equation (12)

x =
[
xr
xd

]
, A =

[
Ar Ard
Adr Ad

]
, W =

[
0
Wd

]

B =
[
Br
Bd

]
, C =

[
Cr 0
0 Cd

]
, y =

[
yr
yd

]
(15)
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Provided that the pair (Ar ,Cr) is observable, the state estimator
based on the reduced-order system then takes the form:

˙̂xr = Arx̂r + Ardxd + Bru + Lr(yr − Crx̂r) (16)

Eq. (16) uses the actual measured values for all of the states in xd.
We can break xr down further into measured states and unmeasured
states, xr = [xTrm xTru]

T . Note that xrm must include enough measured
states independent of d for the system to be observable. Given the
restrictions on C, this implies that yr=Crxr=xrm and Cd=I (i.e., yd=xd).
Finally, we define a vector with full state information by combining
the measured and estimated data, x̂= [xTrm x̂Tru xTd]

T . Note that x̂rm is
only used as the driving force for convergence of the state estimator.
With these definitions, the reduced-order state estimator of Eq. (16)
is not a direct function of d and the dynamics of the estimation error,
er = xr − x̂r , take the form ėr = (Ar − LrCr)er which implies that er(t)
will converge to zero even in the presence of a change in d.

The key requirement is that the states of the reduced-order sys-
tem must be independent from the faults, or in other words, �fr/�d=
0. This requires that any unknown states must be independent from
the faults as well as that there be enoughmeasured states that can be
chosen such that the reduced-order matrices (Ar ,Cr) form an observ-
able pair. Although this requirement may seem restrictive, a CSTR
example below demonstrates a practical system where the neces-
sary structural requirements to accomplish controller-enhanced FDI
using output feedback control are met. It should be noted that while
this work uses state observers based upon a pole-placement or a
Kalman filtering framework, it may be possible to use other state es-
timation techniques, such as high-gain observers. The critical point
is that the estimators must maintain specific conditions that allow
sufficient convergence of the estimation error to zero while in the
presence of a fault in order to perform fault isolation. This is demon-
strated in the approach laid out above.

Once the estimator gain obtained from the linearized model of
the system is calculated, it can then be used to estimate the states of
the process using the nonlinear model dynamics. Once again, for the
nonlinear system, the state vector, x, decomposes into the one of the
reduced-order system (independent of d) and the remaining states,
i.e., x=[xTr xTd]

T and f ([xTr xTd]
T ,u,d)=[fr(xr , xd,u)

T fd(xr , xd,u,d)
T ]T . The

nonlinear dynamic equations for the reduced-order system are then
combined with the estimator gain and the output error to create a
nonlinear state estimator as follows:

˙̂xr = fr(x̂r , xd,u) + Lr(yr − hr(x̂r)) (17)

where the measured values are used for the states in xd, i.e., by
assumption yd = xd. Note that following the previous assumption,
hr(xr) = Crxr . Combining the nonlinear state estimator of Eq. (17)
with a nonlinear state feedback controller, u = pDC(x), that enforces
an isolable structure in the closed-loop system and can be designed
following the approaches presented in Sections 2.3.1 and 2.3.2, we
obtain the following dynamic nonlinear output feedback controller:

˙̂xr = fr(x̂r , xd, pDC(x̂)) + Lr(yr − Crx̂r)

u = pDC(x̂) (18)

Due to the effect of estimation error, it is not possible to achieve
complete decoupling. However, it is possible to achieve a near
isolable structure that is sufficient for practical purposes. In this
sense, we consider a near isolable structure to be one where the
closed-loop system under output feedback control can be seen
as an O(er) regular perturbation of the closed-loop system un-
der state feedback control which is locally exponentially stable
and has an isolable structure. Thus, the estimation error can be
viewed as a small perturbation error that will be accounted for by
the FDI thresholds designed to filter out normal process variation.

Theorem1 summarizes themain analysis and controller design result
of this section as well as the closed-loop FDI properties.

Theorem 1. Consider the closed-loop system of equation (1) under
the nonlinear output feedback controller of Eq. (18) and assume that
the pair (Ar ,Cr) is observable and Lr is designed such that the matrix
(Ar −LrCr) has all of its eigenvalues in the left-half of the complex plane.
Then, there exist �, 	 and Ty such that if f is continuously differentiable
on D = {x ∈ Rn|‖x‖2 <�}, the Jacobian of f is bounded and Lipschitz on
D and max{‖x(t0)‖2, ‖x̂r(t0)‖2} <� then ‖xr(t) − x̂r(t)‖2 < 	,∀t > t0 + Ty,
and a near isolable structure is enforced in the closed-loop system.

Proof. Under the control law of Eq. (18), the closed-loop system of
Eq. (1) takes the form,

ẋ = f (x,pDC(x̂), d), y = h(x)
˙̂xr = fr(x̂r , xd, pDC(x̂)) + Lr(yr − hr(x̂r)) (19)

Linearizing the closed-loop system of equation (19) around the equi-
librium point (origin) yields,

ẋ = Ax + BpDC(x̂), y = Cx (20)

˙̂xr = Arx̂r + Ardxd + BrpDC(x̂) + Lr(yr − Crx̂r) (21)

The error between the actual and estimated states of the reduced-
order, linearized system is then er = xr − x̂r with the dynamics ėr =
(Ar−LrCr)er . Assuming that the pair (Ar ,Cr) is observable and that Lr is
chosen such that the matrix Ar −LrCr has eigenvalues in the left-half
of the complex plane, the estimation error, er , in the linearized sys-
tem has exponentially stable dynamics. If the vector field of the non-
linear system, f (x,pDC(x̂), d), is continuously differentiable and the
Jacobian matrix is bounded and Lipschitz on D = {x ∈ Rn|‖x‖2 <�},
then the nonlinear system dynamics are also locally, exponentially
stable within some region around the equilibrium point (Khalil,
1992). For some initial condition max{‖x0‖2, ‖xr0‖2} <�, the state es-
timation error, er , will be bounded such that ‖xr − x̂r‖ < 	, ∀t > t0 +Ty,
where Ty is a time interval of O(	). Thus, the output feedback con-
trol approaches state feedback control with error of order 	, i.e.,
xr = x̂r +O(	), ∀t > t0 + Ty. For sufficiently small 	, this leads to a near
isolable structure in the closed-loop system for almost all times since
the state feedback controller pDC(x) enforces an isolable structure in
the closed-loop system. �

Remark 4. Theorem 1 provides sufficient conditions on the process
structure, location of faults and/or disturbances and measurement
vector such that controller-enhanced isolation of the type made pos-
sible under state feedback control is also possible under output feed-
back control. The achievement of a near isolable structure refers
to the fact that with a sufficiently small 	, the effect of the state
estimator error will become increasingly negligible relative to the
common-cause variance and the detection threshold for FDI. Thus,
even though the state estimate will retain some small amount of er-
ror, it will be sufficiently small as to be masked by the normal sensor
measurement and process noise which is accounted for in the FDI
detection thresholds.

3.2. Application to a CSTR example

The example considered is a well-mixed CSTR in which a feed
component A is converted to an intermediate species B and finally
to the desired product C, according to the reaction scheme

A
1
��B

2
��C
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Table 1
CSTR example process parameters.

F 1 (m3/h)
k10 1.0 × 1010 (min−1)
k−10 1.0 × 1010 (min−1)
k20 1.0 × 1010 (min−1)
k−20 1.0 × 1010 (min−1)
�H1 −1.0 × 104 (kJ/kmol)
�H2 −0.5 × 104 (kJ/kmol)
CA0 4 (kmol/m3)
cp 0.231 (kJ/kgK)
V 1 (m3)
E1 6.0 × 104 (kJ/kmol)
E−1 7.0 × 104 (kJ/kmol)
E2 6.0 × 104 (kJ/kmol)
E−2 6.5 × 104 (kJ/kmol)
R 8.314 (kJ/kmolK)
T0 300 (K)
� 1000 (kg/m3)

Both steps are elementary, reversible reactions and are governed by
the following Arrhenius relationships:

r1 = k10e−E1/RTCA, r−1 = k−10e−E−1/RTCB (22)

r2 = k20e−E2/RTCB, r−2 = k−20e−E−2/RTCC (23)

where ki0 is the pre-exponential factor and Ei is the activation en-
ergy of the ith reaction where the subscripts 1,−1, 2,−2 refer to the
forward and reverse reactions of steps 1 and 2. R is the gas constant,
while CA, CB and CC are the molar concentrations of species A, B and
C, respectively. The feed to the reactor consists of pure A at flow rate
F, concentration CA0 and temperature T0. The state variables of the
system include the concentrations of the three main components CA,
CB, and CC as well as the temperature of the reactor, T. Using first
principles and standard modeling assumptions, the following math-
ematical model of the process is obtained:

ĊA = F
V
(CA0 − CA) − r1 + r−1 + d1

ĊB = − F
V
CB + r1 − r−1 − r2 + r−2

ĊC = − F
V
CC + r2 − r−2

Ṫ = F
V
(T0 − T)+ (−�H1)

�cp
(r1−r−1)+

(−�H2)
�cp

(r2−r−2)+u+d2 (24)

where V is the reactor volume, �H1 and �H2 are the enthalpies of
the first and second reactions, respectively, � is the fluid density, cp
is the fluid heat capacity, u=Q/�cp is the manipulated input, where
Q is the heat input to the system, d1 denotes a disturbance in the
inlet concentration and d2 denotes a fault in the control actuator. The
values for the parameters of the process model are given in Table 1.

The system of equation (24) is modeled with sensor measure-
ment noise and autoregressive process noise. The sensor measure-
ment noise was generated using a Gaussian distribution with stan-
dard deviation 
M applied to the measurements of all the process
states. The autoregressive process noise was generated discretely as
wk = �wk−1 + �k where k = 0, 1, . . . is the discrete time step, � is
the autoregressive coefficient and �k is obtained at each sampling
step using a zero-mean normal distribution with standard deviation

p. Table 2 provides the values of the noise parameters for each
state of the system of equation (24). The sampling time interval is
�ts = 0.1 min and the fixed numerical integration time interval is
�ti = 0.001 min. In this example, the state, CB, is considered to be
unmeasured and is subject to process noise. It should be noted that
the open-loop system of equation (24) has fully coupled dynamics.
This means that the two faults d1 and d2 will be indistinguishable

Table 2
CSTR example noise parameters.


m 
p �

CA 1E − 2 1E − 2 0.9
CB 1E − 2 1E − 2 0.9
CC 1E − 2 1E − 2 0.9
T 1E − 1 1E − 1 0.9

from a data-based perspective because either fault will affect all
of the states. Thus, purely data-based FDI is not possible without
enforcing an isolable structure in the closed-loop system.

In order to obtain the estimated trajectory for CB, a state estimator
as in Eq. (17) was implemented using the reduced-order system
x̂r = [ĈB ĈC]

T . The process measurements for CA and T were used in
computing the dynamics of x̂r . Note that although CC is measured,
it is used in the reduced-order state estimator so that the reduced-
order system is observable. The control input was updated at each
sampling interval with the measured values for CA, T and CC and the
estimated value of ĈB. As discussed in Section 3.1, CA and T should
not be modeled as dynamic states in the estimator since they are
directly affected by the faults d1 and d2. Therefore, the measured
process data of CA and T must be used in modeling the estimator.
Thus, the final form of the state estimator based on the reduced
subsystem x̂r = [ĈBĈC]

T is as given below:

˙̂CB = − F
V
ĈB + r1 − r−1 − r2 + r−2 + L1(CC − ĈC)

˙̂CC = − F
V
ĈC + r2 − r−2 + L2(CC − ĈC) (25)

with

r1 = k10e−E1/RTCA, r−1 = k−10e−E−1/RT ĈB

r2 = k20e−E2/RT ĈB, r−2 = k−20e−E−2/RT ĈC

where L is the filter gain obtained using Kalman-filtering the-
ory based on the reduced-order system for the sensor and
process noise given in Table 2. The resulting value for Lr is
[Lr1 Lr2]

T = [0.0081 0.0559]T .
The controlled output of the system, for the purpose of feedback

linearization, is defined as the concentration of the desired prod-
uct y = h(x) = CC (although, the measured output vector is ym =
[CA T CC]

T ). We consider only faults d1 and d2, which represent un-
desired changes in CA0 (disturbance) and Q (actuator fault), respec-
tively. In this process, the manipulated input u appears in the tem-
perature dynamics and the output, y=CC , has relative degree 2 with
respect to u. The fault d1 appears only in the dynamics of CA and
the output, y = CC , has relative degree 3 with respect to d1. Finally,
the output, y=CC , has relative degree 2 with respect to d2. Based on
the relative degrees of the output with respect to the input and with
respect to the faults, under feedback linearizing control the system
structure will be such that the state vector can be separated into
two subsets: X1 = {CA, ĈB, T} and X2 = {CC}. Thus, the fault signature
for d1 = [1 0]T and for d2 = [1 1]T . During the simulation, the T2 for
the full state vector is monitored in order to perform fault detec-
tion (substituting the estimate ĈB for the unknown state CB). Each of
the subsystems is monitored to compute the system signature upon
detection of a fault. Based on observation of the system dynamic
behavior, a fault detection window, TP , of 1 min is used.

The control objective is to regulate the system at the equilibrium
point

CAs = 2.06kmol/m3, CBs = 1.00kmol/m3, CCs = 0.937kmol/m3,

Ts = 312.6K, us = 0K/s. (26)
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Fig. 2. Plot of measured state values for the CSTR under output feedback decoupling control with fault d1. CB shows both actual (solid) and estimated (dotted) values.

where the subscript s refers to the steady state values of the variables.
It should be noted that the CSTR system of equation (24) belongs to
the class of systems of equation (1) with x = [CA − CAs, T − Ts,CB −
CBs,CC −CCs]

T where CB is replaced with ĈB in the definition of x̂. This
implies that we can apply the output feedback scheme presented
using the controlled output y = CC . Using Eq. (10), the feedback-
linearizing controller takes the following form:

u =
v − L2f h(x̂)

LgLf h(x̂)
(27)

with

v = [−2�1 − 2�2]

where

�1 = CC

�2 = − F
V
CC + r2 − r−2

r2 = k20e−E2/RT ĈB, r−2 = k−20e−E−2/RTCC

Note that the state variables are in the transformed space and are
shifted so that the origin represents the desired set point.

The closed-loop system was simulated for each of the two faults
considered. Each simulation was run for a process time of 1h with
the fault occurring at t=40 min. The values for the faults were each
zero prior to the fault occurring and took constant values of d1 =
1kmol/m3 min and d2 = 10K/min at t= 40 min. The state estimator
was initialized far from the operating point at ĈB(0) = 1.5 kmol/m3

and ĈC(0) = CC(0) = CCs in order to demonstrate convergence.

Fig. 2 shows the trajectories for each of the states in the simulation
with a failure in d1. The fault is apparent at approximately t=40 min
(0.667h). We can readily see from the state trajectories that the
decoupling scheme was effective as evidenced by the fact that the
output, CC , is unaffected by the fault. Also, we see that the state
estimator converged relatively quickly at around t = 3 min.

For the system with a failure in d1, Fig. 3 shows the Hotelling's T2

statistic for the two subvectors X1 and X2 as well as for the full state
vector. From the graph, we can see that a fault is clearly detected
at the expected time t = 40 min as shown in the plot of the T2

statistic for the full state vector (T23 ). Although there were a few
single incidents of data breaching the UCL, none of them represented
sustained departures for the length of the fault detection window,
TP . Also note that values above the UCL before t = 0.1h were due
to the state estimator not having converged. Upon detection of the
fault, the system signature can be computed asW=[1 0]T due to the
fact that the T2 statistic for the subvector X1 exceeded the UCL for a
sustained period and the T2 for the subvector X2 remained within the
bounds of normal operation. Because the system signature matches
that of the fault signature for d1, a fault in d1 is declared at time
t ≈ 41 min.

In Fig. 4, we see the simulation results for the same system with a
failure in d2. Again, the failure is evident around t=40 min. However,
in this case we see that all state trajectories are affected. The process
signature obtained from the T2 statistics in Fig. 5 shows that both
subvectors were affected and this process signature matches the
fault signature of d2.

The control action required to decouple and stabilize the system
is shown in Fig. 6.
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Fig. 3. T2 statistics for the CSTR under output feedback decoupling control with fault d1 for the subsystem X1 (T2
1 ), the subsystem X2 (T2

2 ) and the full system x (T2
3 ).
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Fig. 4. Plot of measured state values for the CSTR under output feedback decoupling control with fault d2. CB shows both actual (solid) and estimated (dotted) values.
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Fig. 6. Manipulated input profile under output feedback decoupling control with
fault d2.

Remark 5. It is important to point out that in the output feedback
control formulation presented above, the output measurements are
assumed to be continuously available. The reader may refer to McFall

et al. (2008) for recent results on model-based FDI using a combina-
tion of synchronous and asynchronous measurements.

4. Controller-enhanced FDI using MPC

In addition to addressing the problem of controller-enhanced
isolation using output feedback control, we also consider achieving
controller-enhanced isolation in an optimal fashion using MPC. We
will consider this problem under the assumption that measurements
of the full state vector are available, but the extension to the out-
put feedback case is conceptually straightforward by combining the
results of the present and previous sections. We will start with the
presentation of a general MPC formulation with an appropriate de-
coupling constraint and continue with an application to the case of
input/output linearizable nonlinear systems.

4.1. MPC with isolability constraints

MPC is a popular control strategy that is based on using a process
model to optimize controller performance. MPC predicts the future
evolution of the system from an initial state at discrete sampling
times for a given prediction horizon. These predictions are used to
minimize a given cost function by solving a suitable optimization
problem. MPC optimizes over the set of discrete manipulated input
trajectories with a fixed sampling time and within a fixed prediction
horizon (number of sampling time steps). The optimization problem
is solved based on a cost function, accounting for input constraints,
resulting in a set of optimal control inputs for the given horizon
length. To present the proposed MPC formulation, we consider the
nonlinear system of equation (1) and assume that we can construct
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Fig. 7. Plot of measured state values for the CSTR under feedback linearizing MPC with fault d1.

a nonlinear state feedback control law u = pDC(x,v), using the ap-
proaches presented in Sections 2.3.1 and 2.3.2, such that the result-
ing system

ẋ = f (x,pDC(x,v), d) = f̃ (x,v,d) (28)

has an isolable structure. For the formulation of the MPC optimiza-
tion problem, we consider the controller u = pDC(x,v) to be applied
continuously. This requirement can be relaxed with minimal effect
and this issue will be discussed below.

We consider the application of MPC to the system of equation
(28). It is important to note that the decoupling controller u=pDC(x,v)
should be applied prior to the MPC optimization of the external in-
put, v, and thus, the MPC optimization is performed independently
from and does not affect the decoupling controller. In order to define
a finite dimensional optimization problem, v is constrained to be-
long to the family of piece-wise constant functions S(
), with sam-
pling period 
. The MPC framework can now be used to compute
the auxiliary input vk. Specifically, we consider the following MPC
formulation:

J = arg min
vk∈S(
)

∫ tk+Th

tk
(x̃T (�)Rx̃(�) + vTk (�)Qvk(�))d�

˙̃x(t) = f̃ (x̃,vk(t)), x̃(tk) = x(tk) (29)

where x̃ is the simulated system to be optimized, R and Q are positive
definite matrices that penalize the state and manipulated input cost
and Th is the prediction horizon.

We note the case of input/output linearizable nonlinear systems
with two faults/disturbances, (i.e., d= [d1 d2]

T ) implies that Eq. (28)
can be written as

�̇ = f̂ (�,v,d1)

�̇ = �̂(�,�) + d2 (30)

where x = �(�,�) and �(�,�) is, in general, a nonlinear coordinate
change, and f̂ (�,v,d1), �̂(�,�) are nonlinear vector functions of appro-
priate dimensions. The generalization to the case of havingmore than
two faults is conceptually straightforward, yet notationally more in-
volved. With the input/output linearizing control, Eq. (29) can be
reduced to

J = arg min
vk∈S(
)

∫ tk+Th

tk
(�̃

T
(�)R�̃(�) + vTk (�)Qvk(�))d�

˙̃�(t) = vk(t), �̃(tk) = �(tk) (31)

where �̃ is the simulated state in the transformed space and the
resulting nonlinear controller has the form

u(x(t),vk) =
vk − Lrf h(x(t))

LgLr−1
f h(x(t))

(32)

Using the input/output linearizing controller to induce the neces-
sary structure for fault isolation, MPC is used to compute the external
controller in order to maintain stability and optimal performance.
Specifically, the external input, vk, is optimized with respect to the
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Fig. 8. T2 statistics for the CSTR under feedback linearizing MPC with fault d1 for the subsystem X1 (T2
1 ), the subsystem X2 (T2

2 ) and the full system x (T2
3 ).

cost function as a set of discrete control inputs over a sequence of
sampling times for a given horizon length. This results in a overall
control input that is not optimal with respect to the total cost due to
the input/output linearizing component, but is optimal with respect
to the extra controller cost needed to stabilize and control the system
at the steady state.

Remark 6. It should be noted that the MPC formulation given in
equation (31) assumes that the decoupling controller, u = pDC(x,v),
is applied continuously. In a practical situation, the decoupling con-
troller will be implemented via sample and hold. Although this in-
troduces error into closed-loop system dynamics, the closed-loop
system has a near isolable structure as the hold time, 
, goes to
zero. This is sufficient for near decoupling due to the thresholds im-
plemented for FDI which account for normal process variation (for
further results on practical closed-loop stability subject to sample
and hold control, see Mhaskar et al., 2005, 2006a). Error introduced
by sample-and-hold implementation of the decoupling control law
leads, subsequently, to error in the MPC optimization due to plant-
model mismatch. Again, this error becomes increasingly small as the
hold time, 
, goes to zero and can be adequately accounted for by
the FDI thresholds used.

Remark 7. Referring to the incorporation of stability constraints
in MPC, we note that in order to guarantee robust stability of the
closed-loop system, MPC controllers generally include a set of stabil-
ity constraints. This can be accomplished through Lyapunov-based
MPC (LMPC) (Mhaskar et al., 2005, 2006a; Muñoz de la Peña and
Christofides, 2008) or through terminal constraints in the cost func-
tion. Different schemes can be found in the literature, see Mayne
et al. (2000) for a review on MPC stability results.

4.2. Application to a CSTR example

The input/output linearizing control law with MPC as the ex-
ternal control input was applied to the chemical reactor example
of Section 3. All parameters were the same as in Section 3 in-
cluding sensor noise and process noise characteristics, faults sizes,
fault incident times, system parameters, set points and fault detec-
tion time. However, in this simulation, full state feedback is used
(i.e., CA, CB, CC and T are measured). The sample and hold time for
the MPC controller is the same as the discrete sampling time in
Section 3, �ts = 0.1 min, and the numerical integration time step is
�ti = 0.001 min. The controller cost function over which the system
was optimized used weights of R = [100 0; 0 1] and Q = 10. The
horizon length was 10 time steps (1 min). Because of the inherently
stable nature of the CSTR dynamics, more robust methods of stabi-
lization were not used as penalizing the state was sufficient in this
case.

In Fig. 7, we see the state trajectories for the system under de-
coupling control with MPC as the external input to optimize system
performance. A failure in d1 with the same magnitude as in Section
3 is introduced at t = 40 min. As before, we see that the decou-
pling control was effective as evidenced by the fact that CC appears
to be unaffected by the fault. Fig. 8 shows the T2 statistic for the
closed-loop system. We note that fault detection occurred based on
the statistic for the full state vector, T23 , at t ≈ 41 min. The system
signature based on T21 and T22 matches the fault signature for d1,
W = W1 = [1 0]T .

The process simulated with a failure in d2 and its T2 statistics are
shown in Fig. 9. Again, we see that the closed-loop system signature
based on the monitored subsystems matches what is expected based
on the isolability graph (i.e., W =W2 = [1 1]T ). In this plot, we again
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see temporary violations of the UCL, but none that are sustained for
longer than the fault detection window, TP .

In Fig. 10, we see the control action requested by the feedback
linearizing MPC. Based on the cost function used to perform MPC,

the costs of two approaches (feedback linearizing control with pro-
portional control and feedback linearizing MPC) were compared.
Both controllers were implemented via state feedback. The process
was initialized at x(0)= [CA(0)=2.06kmol/m3 T(0)=312.6K CB(0)=
1.00kmol/m3 CC = 1.44kmol/m3]T and was allowed to run for an
hour without faults. The total costs of converging to the steady-state
for the closed-loop system under feedback linearizing control with
proportional control was 19.96 and for the closed-loop system un-
der feedback linearizing MPC was 11.97; as expected, the use of MPC
leads to improved overall performance.

5. Conclusions

Building upon our previous work on controller-enhanced FDI
(Ohran et al., 2008a), the present work has addressed two previ-
ously unresolved, practical problems. Specifically, it was demon-
strated that the method of controller-enhanced FDI can be applied
to processes where only output measurements are available under
appropriate assumptions in the process system structure. We devel-
oped an approach where systems with incomplete state measure-
ments can be dealt with using state estimator-based output feedback
control. This approach maintains the necessary isolable structure in
the closed-loop system in order to perform controller-enhanced FDI.
Additionally, we addressed the problem of controller-enhanced FDI
in an optimal fashion within the framework of MPC. We proposed
an MPC formulation that includes appropriate isolability constraints
to achieve FDI in the closed-loop system. The effectiveness of these
methods was demonstrated through application to a nonlinear CSTR
example.
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