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Accurate detection and isolation of faults is a critical component of a reliable and efficient plantwide fault-
tolerant control system. In a recent work (Ohran et al. AIChE J. 2008, 54, 223), we demonstrated that using
a nonlinear controller to enforce a specific structure in the closed-loop system allows data-based detection
and isolation of certain faults that would otherwise not be isolable using data-based techniques that do not
impose the necessary closed-loop system structure. In this work, it is demonstrated through a multiunit chemical
process example how this approach can be applied in a plantwide setting. By using nonlinear, model-based
control laws to decouple certain states from faults of interest, unique fault responses in the state trajectories
are obtained in the closed-loop system. On the basis of the unique responses, fault isolation becomes possible
using data-based statistical process monitoring methods. The effectiveness of the method was tested through
an extensive Monte Carlo simulation study of 500 runs for each of four fault scenarios and through comparison
with a conventional (proportional-integral) feedback control law.

1. Introduction

In the chemical process industry, process control system
failures can lead to potentially catastrophic results that may
jeopardize operator health and safety, the environment, and/or
plant productivity. Past estimates of the economic impact of
abnormal situations in the United States are in the range of tens
of billions of dollars.2 The potential consequences of control
system failures are of particular significance in light of increased
plant automation. While automation can increase operating
efficiency, at the same time, reliance on automated systems
increases susceptibility to control system failures. With such
high costs associated with plant failures, it is now more
important than ever that effective methods of failure detection
and abnormal situation management be developed. Fault-tolerant
control (FTC) is one method of dealing with process control
system failures that has received a large amount of attention
recently (see, for example, refs 3–6). FTC relies on redundant
control system configurations that a plant supervisor can switch
between in the presence of a fault.7,8 In addition to redundant
control configurations and a plant supervisor, implementation
of a successful fault-tolerant control structure requires a fault
detection and isolation (FDI) scheme.9 The FDI scheme must
accurately isolate the unit or units affected by the failure and
must do so within a short enough time frame that the system is
still within the controllability region of at least one of the
remaining well-functioning control system configurations. Some
of the major difficulties in performing successful fault detection
and isolation stem from the fact that most chemical plants are
highly nonlinear and often have fully coupled dynamics. This
makes process behavior hard to predict and state responses to
different faults generally indistinguishable.

Methods of fault detection based on process measurements
as developed in the field of statistical process monitoring are
fairly reliable and accurate for detecting the presence of a
fault.10–12 However, fault isolation is a more difficult task.
Generally, fault isolation techniques are divided into two

categories: model-based and data-based. Model-based techniques
rely on a mathematical model of the process to create dynamic
filters and compute residuals that directly relate to specific faults.
Using the model-based approach, fault isolation can be per-
formed for specific model and fault structures.9,13–15 These
methods are usually based on a deterministic process model
that must be fairly accurate to function effectively. On the other
hand, data-based methods of fault detection and isolation rely
exclusively on process measurements. For fault detection, data
are used to create thresholds for normal operation based on
historical measurements under fault-free behavior. In general,
data-based methods of fault isolation require historical data
obtained from the system under faulty behavior in order to
distinguish between faults. This is accomplished by comparing
the current system location in the state space with the known
regions of the state space and/or fault directions during faulty
operation. Other methods have been developed that consider
the contribution of particular states to the overall shift from
normal operation.16 Many data-based methods take advantage
of principle component analysis (PCA) to more effectively
handle large amounts of data or to find relationships within the
data.17,18 It is also common to group data based on process
subsystems or process distinct timescales as in multiblock or
multiscale PCA.19–21 While these methods have had varying
degrees of success, isolation remains a difficult task, particularly
for nonlinear systems when historical data under faulty operation
are hard to obtain or are insufficient to discriminate between
faults. For a comprehensive review of model-based and data-
based fault detection and isolation methods, the reader may refer
to refs 22 and 23. While both model-based and data-based
approaches to fault detection and isolation have received
significant attention by the research community, methods that
use principles from both areas have received little attention.

The focus of this work is to demonstrate in a plant-wide
setting a recently introduced method of fault detection and
isolation that integrates model-based controller design with data-
based fault detection in order to perform fault isolation. In ref
1, we demonstrated how a model-based controller could be
designed to enhance the isolability of particular faults in the
closed-loop system. In this approach, specific faults are partially
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decoupled from other states in the system in order to create a
unique response for individual faults in the system. Data-based
process monitoring techniques are used to detect the presence
of a fault and to allow isolation based upon the enforced
structure within the closed-loop system. The method is dem-
onstrated using a multiunit process consisting of a two continu-
ous stirred tank reactor (CSTR) system and a flash tank separator
with recycle. The study demonstrates that the achievement of
fault isolation across multiple coupled units is possible through
feedback control. Additionally, the effects of process and sensor
measurement noise on the ability to detect and accurately isolate
faults are investigated through a Monte Carlo simulation study.
The results from the nonlinear control simulation were compared
with a conventional (proportional-integral) feedback controller
to demonstrate that, without the isolable structure induced by
feedback control, the faults are otherwise indistinguishable
without prior knowledge of fault history.

2. Preliminaries

2.1. Fault Signatures. The objective of this paper is to
demonstrate the method proposed in ref 1 of controller-enhanced
fault detection and isolation in a multiunit setting. Controller
enhanced FDI was introduced in ref 1 as a method of dividing
the state vector into a number of partially decoupled subvectors
that can be monitored for their individual responses to particular
faults in the system using process measurements only. On the
basis of their responses and the system structure imposed by
the model-based controllers, it is possible to discriminate
between individual faults or groups of faults. Dividing the state
vector into partially decoupled subvectors is accomplished by
using model-based control laws to enforce an appropriate
structure. On the basis of this structure, faults affecting the
system produce a unique response as observed in the state
trajectories. The responses of the subvectors are monitored for
out-of-control behavior using standard process monitoring
methods that take into account the acceptable level of variation
under normal operating conditions (i.e., common cause varia-
tion). Thus, this approach brings together model-based controller
design techniques and data-based statistical process monitoring
for diagnosing faults. To better understand the structure that
must be enforced in order to perform fault isolation, we review
the definitions of the incidence graph, the reduced incidence
graph, and the isolability graph1 in the context of nonlinear
deterministic systems.

2.1.1. Definition 1. The incidence graph of an autonomous
system ẋ ) f(x) with x ∈ Rn is a directed graph defined by n
nodes, one for each state, xi, i ) 1, ..., n, of the system. A
directed arc with origin in node xi and destination in node xj

exists if and only if ∂fj/∂xi * 0 .
2.1.2. Definition 2. The reduced incidence graph of an

autonomous system ẋ ) f(x) with x ∈ Rn is the directed graph
of nodes qi, where i ) 1, ..., N, that has the maximum number
of nodes, N, and satisfies the following conditions:

• To each node qi there corresponds a set of states Xi ) {xj}.
These sets of states are a partition of the state vector of the
system, i.e., ∪Xi ) {x1, ..., xn}, Xi ∩ Xj ) Ø, ∀i * j.

• A directed arc with origin qi and destination qj exists if and
only if ∂fl/∂xk * 0 for some xl ∈ Xi, xk ∈ Xj.

• There are no loops in the graph.
The incidence graph of a system shows the time derivative

dependencies between the states. By reducing fully coupled
states to a single node, the reduced incidence graph reveals any
partially decoupled subsystems that may exist. With the structure

of the subsystems revealed, it is beneficial to look at how faults
affect each of the subsystems as shown in an isolability graph.

2.1.3. Definition 3. The isolability graph of an autonomous
system ẋ ) f(x, d) with x ∈ Rn, d ∈ Rp is a directed graph made
of the N nodes of the reduced incidence graph of the system ẋ
) f(x, 0) and p additional nodes, one for each possible fault dk.
The graph contains all the arcs of the reduced incidence graph
of the system ẋ ) f(x, 0). In addition, a directed arc with origin
in fault node dk and destination to a state node qj exists if and
only if ∂fl/∂dk * 0 for some xl ∈ Xj.

These definitions are convenient in presenting the basic
dependencies within a state vector. Although this graphical
approach has the advantage of visualizing the system structure,
it may be noted that it is also possible to understand and express
to some extent the structure of a system and its faults using the
notion of relative degree.24 This approach has been used
previously in other FDI works.1,9

In most complex systems, the states are fully coupled and
the isolability graph contains a single node representing all of
the states in the system. However, in systems with partially
decoupled dynamics, this demonstrates graphically the partially
independent subsets of the state vector. Consider, for example,
the following system:

ẋ1 ) x1 + x2 + u+ d1

ẋ2 )-x2 + x1 + d2

ẋ3 ) x1 - x2 - x3 + d3

(1)

Figure 1 shows the incidence and reduced incidence graphs
for the system of eq 1. Because x1 and x2 are mutually dependent
but are not affected by x3, they form a partially decoupled
subsystem represented by a single node (q1) in the reduced
incidence graph, leaving x3 to form a node by itself (q2). Figure
2 shows the effect of each of the faults in the isolability graph
for the system of eq 1.With the isolability graph of a system, it
is possible to consider fault isolation based upon monitoring of
the subsystems. For this purpose, it is necessary to review the
definition of a fault signature given below.1

2.1.4. Definition 4. The signature of a fault dk of an
autonomous system subject to p faults ẋ ) f(x, d) with x ∈ Rn,
d ∈ Rp is a binary vector Wk of dimension N, where N is the

Figure 1. Incidence and reduced incidence graphs for the system of eq 1.
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number of nodes of the reduced incidence graph of the system.
The ith component of Wk, denoted Wi

k, is equal to 1 if there
exists a path in the isolability graph from the node corresponding
to fault k to the node qi corresponding to the set of states Xi;
Wi

k is equal to 0 otherwise.
Using this definition of a fault signature and the isolability

graph shown in Figure 2, it is possible to identify the fault
signatures for the three faults considered in the system of eq 1.
In this case, because the node q2 ) {x3} does not affect the
node q1 ) {x1, x2}, the fault d3 has the signature W3 ) [0 1]
and the two faults d1 and d2, which affect q1 and q2, have the
signature W1 ) W2 ) [1 1] . On the basis of this, it is expected
that a failure in d1 or d2 will affect all of the states, whereas a
failure in d3 is expected to affect only those in q2 . In this regard,
it is possible to distinguish a failure in d3 from a failure in d1

or d2 based on the system response. However, it is not generally
possible to discriminate between a failure in d1 and d2.

2.1.5. Remark 1. The process model for the system of eq 1
does not explicitly account for process and sensor noise.
Likewise, the isolability graph and the associated fault signatures
are developed for the deterministic case. However, noise is
accounted for in the process monitoring method given in the
next section by means of appropriate tolerance thresholds
(computed using historical process data) in the decision criteria
for fault detection and isolation. The thresholds are based on
historical, fault-free operating data and take into account both
sensor and process noise present under normal operating
conditions. This allows for appropriate FDI performance even
if the process model and the measurements are corrupted by
noise.

2.2. Process Monitoring. The discussion in the previous
subsection focused on deterministic process behavior in which
evaluation of the fault signature based on the isolability graph
is straightforward. On the other hand, in processes subject to
state and measurement noise, it is possible to have false positives
and false negatives in determining the effect of a fault on the
state trajectories. In the Simulation Results section of this paper,
autocorrelated noise is added to the process dynamic equations
and white sensor noise is added to the process measurements.
For this reason, in order to make a comparison between the
fault signature based on the expected response of the system
from the isolability graph and the system signature based on
the actual behavior (computed on the basis of process measure-
ments), it is necessary to use a method of monitoring the state
trajectories that clearly distinguishes normal behavior from faulty
behavior and is tolerant to the normal amount of process
variation (as computed from process historical data). Addition-
ally, it is assumed that faults of interest will be sufficiently large
so that their effect will not be masked by normal process
variation; faults whose influence on the closed-loop system
behavior over a large time window is within the normal
common-cause process variation do not have a significant effect

on the process. These types of faults are generally inconse-
quential and do not need to be handled via fault-tolerant control
schemes.

For the purpose of process monitoring, we use Hotelling’s
T2 statistic, a well-established method in statistical process
control that monitors multivariate data using a single statistic.25

Because of its suitability for continuous, serially correlated
chemical processes, the method of using single observations is
employed.26,27 The T2 statistic is computed using the multivariate
state vector (or subset of the state vector) x ∈ Rn, the expected
or desired mean xj (the normal operating point) and the estimated
covariance matrix S obtained using h historical measurements
of the system under normal operation:

T2 ) (x- x)TS-1(x- x) (2)

The upper control limit for the T2 statistic is obtained from
its distribution and is computed using the following equation:

TUCL
2 )

(h2 - 1)n
h(h- n)

FR(n, h- n) (3)

where FR(n, h - n) is the value from the F distribution with
(n, h - n) degrees of freedom corresponding to a confidence
level R. The T2 statistic is used to both detect that a fault has
occurred as well as provide the system signature that can be
compared with the fault signatures defined by the isolability
graph. In order to perform these tasks, the T2 statistic based on
the full state vector x with upper control limit TUCL

2 is first
used to detect the presence of a fault. Subsequently, the Ti

2

statistic is used to monitor the status of each subset of the state
vector with an upper control limit TUCLi

2 where i ) 1, ..., N
that is based on each of the nodes qi and their corresponding
states xj ∈ Xi .

The fault detection and isolation procedure then follows the
steps given below:1

(1) A fault is detected if T2(t) > TUCL
2 ∀t, tf e t e TP where

tf is the first time T2 crosses the UCL and TP is chosen so that
the window TP - tf is large enough to allow fault isolation with
a desired degree of confidence. Choosing TP depends on the
process time constants and potentially on available historical
information on the process behavior.

(2) A fault that is detected can be isolated if the signature
vector of the fault W(tf, TP) can be built as follows:

Ti
2(t) > TUCLi

2 ∀ t tfe te TPfWi(tf, TP)) 1

Ti
2(t) not greater than TUCLi

2 ∀ t tfe te TPfWi(tf, TP)) 0

In such a case, fault dk is detected at time TP if W(tf, TP) ) Wk.
If two or more faults are defined by the same signature, isolation
between them is not possible on the basis of the fault signature
obtained from the isolability graph.

It should be noted that the method of fault detection discussed
here makes no assumption regarding the time variation of the
fault. In general, both abrupt and slowly developing faults will
be detected and isolated. However, slowly developing faults are
more likely to be subject to false isolation if the fault is
diagnosed before becoming sufficiently large, as discussed in
Remark 2. To minimize such effects, it is important to adjust
the detection window TP, based on the individual system
dynamics. The reader may refer to refs 28–30 for more
discussion on this issue. Additionally, it should be noted that
the detection and isolation method discussed here requires no
significant real-time computation other than computing the T2

statistics, which require only minimal computation time.

Figure 2. Isolability graph of the system of eq 1.
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2.2.1. Remark 2. In the data-based fault detection and
isolation method presented above, the upper control limit is
chosen based on common-cause variance, including process
and sensor noise, in order to minimize false alarms. Ad-
ditionally, to further avoid false alarms, a period of persistent
failure is required, TP - tf . For these reasons, small
disturbances or failures are likely to go undetected if the
magnitude and effect of the disturbance is on the same level
as that of the inherent process variance. Specifically, in order
to declare a fault, dk must be sufficiently large in order for
Ti

2(t) to exceed the threshold TUCLi
2 ∀t, tf e t e TP . Clearly,

faults that do not meet the criteria for declaring a fault are,
from the point of view of faulty behavior, not of major
consequence. However, it should be noted that there is the
probability (albeit low) that there is a fault dk that is large
enough to signal a fault in the full-state vector, x, but is not
large enough to signal a fault in all of the affected subgroups.
In this case, it is possible to have a false isolation. This is
investigated in the results section by simulating the closed-
loop system a large number of times with randomly varying
fault sizes in a Monte Carlo type simulation.

2.3. Controller Design. The approach to fault detection and
isolation discussed in the previous two sections can be applied
if the signatures of the faults in the closed-loop system are
distinct. The uniqueness of a fault depends on the structure of
the closed-loop system as shown in the isolability graph. In
general, complex nonlinear systems are fully coupled and faults
cannot be isolated using this method when the controller is
designed only with closed-loop stability in mind. Despite this
being the case for most open-loop systems, an isolable structure
in the closed-loop system can still be achieved through the
application of appropriately designed nonlinear control laws.
Although many control laws exist that will achieve the desired
goal, it is not possible to apply a systematic procedure to
controller design that guarantees closed-loop stability and an
isolable closed-loop system structure for any nonlinear process.
The specific form of the controller depends on the structure of
the open-loop system and it is possible that such a controller
may not exist. Nonetheless, a general approach can be applied
to decouple a particular set of states from the rest of the system
in a number of applications. As an example, consider a controller
that can be applied to nonlinear systems with the following state-
space description:

ẋ1 ) f11(x1)+ f12(x1, x2)+ g1(x1, x2)u+ d1

ẋ2 ) f2(x1, x2)+ d2
(4)

where x1 ∈ R, x2 ∈ Rn, u ∈ R, and g1(x1, x2) * 0 for all x1 ∈ R,
x2 ∈ Rn. With a nonlinear state feedback controller of the form

u(x1, x2))-
f12(x1, x2)-V(x1)

g1(x1, x2)
(5)

the closed-loop system takes the form

ẋ1 ) f11(x1)+V(x1)+ d1

ẋ2 ) f2(x1, x2)+ d2
(6)

where V(x1) has to be designed in order to achieve asymptotic
stability of the origin of the x1 subsystem when d1 ) 0. In this
case, the proposed controller guarantees asymptotic stability of
the closed-loop system, as well as different signatures for faults
d1 and d2 . Note that the reduced incidence graph is defined by
two nodes corresponding to both states and the signatures are
given by W1 ) [1 1]T and W2 ) [0 1]T. If necessary, using
multiple controllers allows for more degrees of freedom in
breaking up the full-state vector into subvectors.

As an example, this is demonstrated with the system of eq 1.
Consider a controller added to the right-hand side of the dynamic
equation for the state x1 of the form:

u)-x2 + υ

where V is an external controller that may be used for stabilizing
the system. With this controller, the closed-loop system takes
the following form:

ẋ1 ) x1 + d1 +V
ẋ2 )-x2 + x1 + d2

ẋ3 ) x1 - x2 - x3 + d3

(7)

Since there are no longer loops in the system, the reduced
incidence graph is now equivalent to the incidence graph having
three nodes (one for each state). Consequently, it becomes
possible to distinguish between faults d1 and d2 in addition to
d3 using the method described above. This method will be
applied to the reactor-separator system described in the next
section. Note that the controller design outlined above does not
take into consideration optimality criteria beyond the tuning of
the external controller V . It is likely that the nonlinear feedback
control law that enforces an isolable structure will incur
additional cost compared with a control law designed for
optimality. In the Simulation Results section, this issue is
addressed by comparing the nonlinear feedback controller with
a conventional proportional-integral (PI) controller to show that
the cost incurred for enabling fault isolation in the closed-loop
system is not excessive.

2.3.1. Remark 3. It is important to note that it is possible to
extend the state feedback controller design to an output feedback
controller design, which uses a high-gain observer operating at
a fast time-scale to achieve state estimation, to enforce a near-
isolable structure in the closed-loop system. The reader may
refer to refs 31–33 for results on high-gain observer-based output
feedback control. However, the detailed development of this
approach is outside of the scope of the present work.

3. Reactor-Separator Process

3.1. Process Description and Modeling. The process con-
sidered in this study is a three-vessel, reactor-separator system
consisting of two continuously stirred tank reactors (CSTRs)
and a flash tank separator (see Figure 3). A feed stream to the
first CSTR contains reactant A, which is converted into the
desired product B . The desired product can then further react
into an undesired side-product C . The effluent of the first CSTR
along with additional fresh feed makes up the inlet to the second
CSTR. The reactions A f B and B f C (referred to as 1 and
2, respectively) take place in the two CSTRs in series before
the effluent from CSTR 2 is fed to a flash tank. The overhead

Figure 3. Reactor-separator system with recycle.
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vapor from the flash tank is condensed and recycled to the first
CSTR, and the bottom product stream is removed. A small
portion of the overhead is purged before being recycled to the
first CSTR. All three vessels are assumed to have static holdup.
The dynamic equations describing the behavior of the system,
obtained through material and energy balances under standard
modeling assumptions, are given below.

dxA1

dt
)

F10

V1
(xA10 - xA1) +

Fr

V1
(xAr - xA1) - k1 e

-E1

RT1 xA1

dxB1

dt
)

F10

V1
(xB10 - xB1) +

Fr

V1
(xBr - xB1) + k1 e

-E1

RT1 xA1 -

k2 e
-E2

RT1 xB1

dT1

dt
)

F10

V1
(T10 - T1) +

Fr

V1
(T3 - T1) +

Q1

FCpV1
+

-ΔH1

Cp
k1 e

-E1

RT1 xA1 +
-ΔH2

Cp
k2 e

-E2

RT1 xB1 + u1

dxA2

dt
)

F1

V2
(xA1 - xA2) +

F20

V2
(xA20 - xA2) - k1 e

-E1

RT2 xA2

dxB2

dt
)

F1

V2
(xB1 - xB2) +

F20

V2
(xB20 - xB2) + k1 e

-E1

RT2 xA2 -

k2 e
-E2

RT2 xB2

dT2

dt
)

F1

V2
(T1 - T2) +

F20

V2
(T20 - T2) +

Q2

FCpV2
+

-ΔH1

Cp
k1 e

-E1

RT2 xA2 +
-ΔH2

Cp
k2 e

-E2

RT2 xB2 + u2

dxA3

dt
)

F2

V3
(xA2 - xA3) -

Fr + Fp

V3
(xAr - xA3)

dxB3

dt
)

F2

V3
(xB2 - xB3) -

Fr + Fp

V3
(xBr - xB3)

dT3

dt
)

F2

V3
(T2 - T3) +

Q3

FCpV3
(8)

The definitions for the variables used in eq 8 can be found
in Table 1, with the parameter values given in Table 2. Each
of the tanks has an external heat input. In both CSTRs, the
heat input is a manipulated variable for controlling the
reactors at the appropriate operating temperature. These are
the only control actuators considered in the system. The mo-
del of the flash tank separator operates under the assumption
that the relative volatility for each of the species remains
constant within the operating temperature range of the flash

tank. This assumption allows for calculating the mass
fractions in the overhead based upon the mass fractions in
the liquid portion of the vessel. It has also been assumed
that there is a negligible amount of reaction taking place in
the separator. The following algebraic equations model the
composition of the overhead stream relative to the composi-
tion of the liquid holdup in the flash tank:

xAr )
RAxA3

RAxA3 +RBxB3 +RCxC3

xBr )
RAxB3

RAxA3 +RBxB3 +RCxC3

xCr )
RAxC3

RAxA3 +RBxB3 +RCxC3
(9)

The open-loop system of eq 8 is fully coupled and is
represented by a single node in the reduced incidence graph.
However, by using appropriately designed model-based non-
linear state feedback control laws for the manipulated inputs u1

and u2, it is possible to separate the closed-loop system into
four nodes in the isolability graph. Consider the following
nonlinear control laws that decouple the full-state vector into
four subvectors,33

u1 )
Fr

V1
(T3ss - T3)-

-ΔH1

Cp
k1 e

-E1

RT1 (xA1 - xA1ss)-

-ΔH2

Cp
k2 e

-E2

RT1 (xB1 - xB1ss)+V1

u2 )-
-ΔH1

Cp
k1 e

-E1

RT2 (xA2 - xA2ss)-
-ΔH2

Cp
k2 e

-E2

RT2 (xB2 -

xB2ss)+V2 (10)

where the subscript ss refers to values at the steady state, or set
point. The terms V1 and V2 are external controllers used to
stabilize the system and achieve offset-free output tracking and
are defined, according to standard proportional-integral control
formulas, as follows:

υ1(t))K1(T1ss - T1 +
1

τI1
∫0

t
(T1ss - T1) dt)

υ2(t))K2(T2ss - T2 +
1

τI2
∫0

t
(T2ss - T2) dt) (11)

where K1 and K2 are the proportional controller gains and τI1

and τI2 are the integral time constants. The closed-loop system
operating under the control laws defined in eqs 10 and 11
decouples T1 from xA1, xB1 and T3 and T2 from xA2, xB2 . The
four subgroups created by the controller of eqs 10 and 11 are
q1 ) {T1}, q2 ) {T2}, q3 ) {T3} and q4 )
{xA1, xA2, xA3, xB1, xB2, xB3}. The resulting isolability graph is
shown in Figure 4. From the isolability graph, the fault
signatures can be defined as follows:

Table 1. Process Variables

xA1, xA2, xA3 mass fractions of A in vessels 1, 2, and 3
xB1, xB2, xB3 mass fractions of B in vessels 1, 2, and 3
xC1, xC2, xC3 mass fractions of C in vessels 1, 2, and 3
xAr, xBr, xCr mass fractions of A, B, and C in the recycle
T1, T2, T3 temperatures in vessels 1, 2, and 3
T10, T20 feed stream temperature to vessels 1 and 2
F1, F2, F3 effluent flow rate from vessels 1, 2, and 3
F10, F20 feed stream flow rate to vessels 1 and 2
Fr, Fp flow rates of the recycle and purge
V1, V2, V3 volume of vessels 1, 2, and 3
u1, u2 manipulated inputs
E1, E2 activation energy for reactions 1 and 2
k1, k2 pre-exponential values for reactions 1 and 2
ΔH1, ΔH2 heats of reaction for reactions 1 and 2
RA, RB, RC relative volatilities of A, B, and C
Q1, Q2, Q3 heat input into vessels 1, 2, and 3
Cp, R heat capacity and gas constant

Table 2. Parameter Values

T10 ) 300, T20 ) 300 K
F10 ) 1.4 × 10-3, F20 ) 1.4 × 10-3 m3/s
Fr ) 1.4 × 10-2, Fp ) 1.4 × 10-3 m3/s
V1 ) 1.0, V2 ) 0.5, V3 ) 1.0 m3

E1 ) 5 × 104, E2 ) 6 × 104 J/mol
k1 ) 2.77 × 103, k2 ) 2.5 × 103 1/s
ΔH1 ) -6 × 104, ΔH2 ) -7 × 104 J/mol
Cp ) 4.2 × 103 J/kg K
R ) 8.314 J/mol K
F ) 1000 kg/m3

Q1 ) 3.5 × 105, Q2 ) 4.5 × 105, Q3 ) 3.5 × 105 J/s
RA ) 3.5, RB ) 1, RC ) 0.5 unitless
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W1 ) [1; 1; 1; 1]

W2 ) [0; 1; 1; 1]

W3 ) [0; 0; 1; 0]

W4 ) [0; 0; 0; 1] (12)

The four faults shown in Figure 4 are those that will be
considered in this example. They represent failures in the heat
inputs to each of the tanks (faults d1, d2, and d3) and a feed
stream concentration disturbance in species A in the inlet to
CSTR 1 (d4). These are added to the right-hand side of the
dynamic equations for T1, T2, T3, and xA1 . Note that the FDI
approach used places no restrictions on the fault di, which can
represent any time-varying signal. Thus, faults may be additive
or parametric and can represent any fault (e.g., time-varying
biases, actuator failures, disturbances, process parameter fail-
ures). When a fault in the control actuator occurs that makes
the actuator unusable (i.e., where d ) -u), then the imposed
feedback closed-loop system structure breaks down, resulting
in a fault signature of the closed-loop system that is different
from the one under fault-free operation, and thus making the
isolation of such a fault possible.

For comparison purposes, in the simulation results, a PI
controller with the form given in eq 11 is used. This control
law is used for comparing the isolability of faults, using process
measurements only, in the closed-loop system under PI-only
control and in the closed-loop system under the nonlinear
feedback control which enforces the isolable structure. Although
a PI controller is used for comparison in this work, any controller
that does not enforce an isolable structure in the closed-loop
system would yield similarly indistinguishable faults. Addition-
ally, the PI-only controller will be used to evaluate the additional
cost incurred by the nonlinear feedback controller in order to
enforce an isolable structure in the closed-loop system.

3.2. Simulation Results. The model presented in Section 3.1
was numerically simulated using a standard Runge-Kutta
integration method. The system was modeled with both process
and sensor noise. The sensor measurement noise was generated
as Gaussian distributed random noise with standard deviation
σm and was added to the state measurement at a sample rate of
0.1 sample/s. Noisy measurements were used in updating the
feedback control law described in eqs 10 and 11 on the same
interval. Process noise was added to the right-hand side of each
equation in the system of ordinary differential equations (ODEs)
found in eq 8. Process noise was generated as autocorrelated

noise of the form wk ) �wk-1 + �k, where k ) 0, 1, etc. is the
discrete time step of 1 s, wk is a normally distributed random
variable with standard deviation σp, and � is the autocorrelation
factor. Table 3 contains the parameters used in generating the
noise. The sensor measurement and process noise were gener-
ated independently for each state in the system. For purposes
of fault detection, a window of 30 s was used in declaring a
fault (i.e., TP - tf ) 30 s).

The controllers were designed as shown in eqs 10 and 11
using control parameters K1 ) K2 ) 0.01 s-1 and τI1 ) τI2 )
300 s . The PI controllers shown for comparison used the same
parameters. The system was controlled at the set-point values
of T1ss ) 436.8 K and T2ss ) 433.9 K . In all cases, the system
was initially at steady state and was simulated for 30 min fault-
free and for 30 min after the occurrence of the fault. The four
faults were introduced as added terms on the right-hand side of
the ODEs in eq 8; only a single fault was applied in each
simulation. The values d1 ) 1 K/s, d2 ) 2 K/s, d3 ) 1 K/s, and
d4 ) -2 × 10-3 s-1 were added to the dynamic equations for
T1, T2, T3, and xA1, respectively. These represent changes in
the heat input (actuator/valve failures) for faults d1, d2, and d3

and an inlet concentration disturbance in species A for fault d4.
However, these faults could also be thought of as any general
faults because the development of this method does not limit
the values that d can take.

Four simulation scenarios were carried out, one for each fault,
to demonstrate the method of detecting and isolating faults in
the closed-loop system. In order to apply the method of fault
detection and isolation presented in Section 2, the data should
be multivariate normal and fit the T2 distribution under closed-
loop operation. Figure 5 demonstrates that the measurements
from each of the states closely approximates a Gaussian
distribution. The distribution for the measured T2 values is

Figure 4. Isolability graph for the reactor-separator system.

Table 3. Noise Parameters

σm σp �

xA1 1 × 10-3 1 × 10-3 0.7
xB1 1 × 10-3 1 × 10-3 0.7
T1 1 × 10-3 1 × 10-2 0.7
xA2 1 × 10-3 1 × 10-3 0.7
xB2 1 × 10-3 1 × 10-3 0.7
T2 1 × 10-3 1 × 10-2 0.7
xA3 1 × 10-3 1 × 10-3 0.7
xB3 1 × 10-3 1 × 10-3 0.7
T3 1 × 10-3 1 × 10-2 0.7

Figure 5. Normalized histogram plots of each of the system states compared
with a normal distribution (dashed) for a large number of measurements
during fault-free operation under nonlinear feedback control.
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shown in Figure 6. Again we see that the measured statistic
closely approximates the predicted distribution; however, in this
case, the fit is less exact because of correlation between states.
Nonetheless, the distribution is reasonably close. If necessary,
the upper control limit can be adjusted upward to provide a
more conservative limit if false alarms are a problem.

Figure 7 shows the trajectories of the mass fractions in each
of the tanks and the recycle stream for the simulation in closed-
loop operation under the nonlinear feedback controller with a
failure in d1. The effects of the failure at time t ) 0.5 h are
visible in the plot. The temperature trajectories for each of the
tanks are shown in Figure 8 along with the control action
requested. Once the failure is detected at t ) 0.5 h, the Ti

2 plots
are used to determine the fault signature for the system. Figure
9 shows the T2 statistic results for the four subsets of the state
vector as well as for the full-state vector. The fault is detected
at time t ) 0.5 h by the full T2 and is isolated based on the four
Ti

2 corresponding to the subsets. On the basis of the Ti
2 plots,

the signature of the system in this case is W ) [1; 1; 1; 1] ≡
W1 . Thus, the fault is correctly isolated as one affecting the
states in q1 ) T1 or d1 . Note that, although the process data are
serially correlated on a short time scale, this was compensated
for by using a large amount of historical data for estimating S.
Additionally, it has been found that feedback control makes the
closed-loop system data more normally distributed (see ref 27).

Thus, the assumption that the data are multivariate normal for
applying the T2 statistic is reasonable. This was also confirmed
in Figures 5 and 6. The simulation with a failure in d1 was

Figure 6. Histogram of T2 statistic for the full-state vector compared with
the expected T2 distribution (dashed) for a large number of measurements
during fault-free operation under nonlinear feedback control.

Figure 7. Plots of the mass fractions xA (solid), xB (dashed), and xC (dotted)
for the system under nonlinear feedback control with a failure in d1 at t )
0.5 h.

Figure 8. (top) Temperature trajectories for T1 (solid), T2 (dashed), and T3

(dotted) for the system under nonlinear feedback control with a failure in
d1 at t ) 0.5 h. (bottom) Control action requested for the same system for
u1 (solid) and u2 (dashed).

Figure 9. Plots of the T2 statistic (solid) with the corresponding TUCL
2

(dashed) for each of the subsystems and for the full-state vector under
nonlinear feedback control with a failure in d1 at t ) 0.5 h.

Figure 10. Plots of the mass fractions xA (solid), xB (dashed), and xC (dotted)
for the system under PI control with a failure in d1 at t ) 0.5 h.

4226 Ind. Eng. Chem. Res., Vol. 47, No. 12, 2008



repeated using only a PI controller for comparison. The states
were similarly all affected by fault d1 (see Figure 10), and the
control action requested was of comparable magnitude with that
of the nonlinear feedback controller (see Figure 11). This
demonstrates that the control action requested by the nonlinear
feedback control law to enforce an isolable structure is not
excessive in this case. For the PI controller, the states of the
closed-loop system are all fully coupled, and thus, the state
trajectories will all be affected by any fault, making it impossi-
ble to distinguish between faults on the basis of process
measurements. The simulation with a failure in d2, below,
demonstrates this point.

Figure 12 shows the T2 results for the simulation in closed-
loop operation under the nonlinear feedback controller with a
failure in d2 occurring at t ) 0.5 h. Note that, although there
may be a brief violation of the upper control limit (e.g., at
approximately t ) 0.2 h in Figure 12), this is not declared as a
fault nor is it a false alarm since a fault is declared only after
a persistent state of failure lasting at least 30 s to avoid such
situations. Once the fault is declared around time t ) 0.5 h, the
signature of the system can be determined from the Ti

2 plots
that show W ) [0; 1; 1; 1] ≡ W2 . For the PI-only controller,
all of the states were affected as they were in the case with a

failure in d1; however, the case with the nonlinear feedback
controller designed to enforce an isolable structure correctly
shows that T1 is decoupled from the fault, making it possible
to identify. Figure 13 shows a comparison of the temperature
plots for the PI-only controller and the nonlinear feedback

Figure 11. (top) Temperature trajectories for T1 (solid), T2 (dashed), and
T3 (dotted) for the system under PI-only control with a failure in d1 at t )
0.5 h. (bottom) Control action requested for the same system for u1 (solid)
and u2 (dashed).

Figure 12. Plots of the T2 statistic (solid) with the corresponding TUCL
2

(dashed) for each of the subsystems and for the full-state vector under
nonlinear feedback control with a failure in d2 at t ) 0.5 h.

Figure 13. Temperature trajectories for T1 (solid), T2 (dashed), and T3

(dotted) for the system with a failure in d2 at t ) 0.5 h under PI-only (top)
and nonlinear feedback control (bottom).

Figure 14. Plots of the T2 statistic (solid) with the corresponding TUCL
2

(dashed) for each of the subsystems and for the full-state vector under
nonlinear feedback control with a failure in d3 at t ) 0.5 h.

Figure 15. Plots of the T2 statistic (solid) with the corresponding TUCL
2

(dashed) for each of the subsystems and for the full-state vector under
nonlinear feedback control with a failure in d4 at t ) 0.5 h.
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controller to illustrate this point. The plot in Figure 13 (top)
shows that, under PI-only control, all of the temperature
trajectories are affected (as well as the mass fraction trajectories;
however, these have been omitted for brevity), whereas under
the nonlinear feedback controller, the unique response can be
identified in Figure 13 (bottom) by the fact that the T1 trajectory
is unchanged.

The T2 plots for the system under nonlinear feedback control
with a failure in d3 are shown in Figure 14. This also shows
the expected behavior corresponding to the fault signatures
defined in eq 12; that is, the fault affected only the temperature
of the flash tank and did not influence the other states. The PI
comparison (omitted) showed similar results as before in that
all states were affected and a fault could not be isolated based
on measured data. Finally, note that, for the system under
nonlinear feedback control with a failure in d4 (see Figure 15),
the fault signature only shows that the fault affects the dynamics
of the states in q4 ) {xA1, xA2, xA3, xB1, xB2, xB3} . In this case,
the fault signature indicates that there is a fault in d4 but is
unable to distinguish between any of the faults that directly affect
the states within this set.

As mentioned in Remark 2, it is possible that faults of
intermediate size can be detected but not accurately isolated because
of the states being on the threshold of detection and/or possible
small gain effects of the directly affected subsystem on another.
This was tested in the present model by randomly varying the fault
sizes of each of the four faults between 0 and twice the value used
in the prior 4 simulations. Each fault was tested with over 500
simulations to determine how large of a fault is necessary to detect
and isolate the fault accurately. Table 4 shows the results for these
simulations. The results present the range of values for which faults
were either undetected, falsely isolated, or correctly isolated as well
as the number of simulations for which the faults values fell within
the indicated range.

As shown in Table 4, faults d1 and d2 had a range of values
for which false isolations occurred. This was largely due to the
fact that the temperatures had a relatively small gain effect on
the mass fractions. This can be compensated for, partially, by
increasing the upper control limit of the statistical test for fault
detection (TUCL

2 for the full-state vector). While this makes the
FDI scheme less sensitive, this reduces the incidences of both
false alarms and false isolations.

4. Conclusions

This work has demonstrated the application of a model-
based nonlinear controller designed to enforce an isolable
structure intheclosed-loopsystemofamultiunit reactor-separator
chemical process. Fault detection and isolation were per-
formed using statistical process monitoring techniques and
information based upon the imposed closed-loop system
structure. This was demonstrated through numerical simula-
tion studies of the closed-loop system in the presence of four
different faults. It was shown that, by decoupling faults of
interest from certain states, it was possible to achieve unique
system responses to each of the four faults, allowing fault
isolation based on process measurements only. These results

were compared with a conventional PI controller and were
thoroughly tested for susceptibility to false isolation through
a Monte Carlo simulation study of 500 runs for each of the
four fault scenarios.
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