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Preface

The increasing demand for environmental safety, energy efficiency and high
product quality specifications dictate the development of advanced control
algorithms in order to improve the operation and performance of chemical
processes. Most chemical processes are characterized by nonlinear and hy-
brid nature and cannot be effectively controlled by using controllers which
are designed on the basis of approximate linear or linearized process models.
Typical sources of nonlinear behavior arising in chemical processes include
complex reaction mechanisms and the Arrhenius temperature dependence of
reaction rates, while sources of hybrid behavior include phase changes, the
use of discrete actuators and the coupling of feedback with logic-based su-
pervisory control, to name a few. The limitations of traditional linear control
methods in dealing with nonlinear and hybrid processes have become increas-
ingly apparent as chemical processes may be required to operate over a wide
range of conditions due to large process upsets or set-point changes and the
control systems required to be increasingly fault-tolerant. Moreover, the in-
creased computing power and the low cost availability of computer software
and hardware allow the implementation of advanced control algorithms. These
factors, together with recent advances in analysis of nonlinear systems, have
made control of nonlinear and hybrid process systems one of the most ac-
tive research areas within the chemical engineering community over the last
twenty years.

This book presents general, yet practical, methods for the synthesis of non-
linear feedback control systems for chemical processes described by nonlinear
and hybrid systems. The key practical issues of model uncertainty, constraints
in the capacity of the control actuator and dead-time in the measurement sen-
sors/control actuators are explicitly accounted in the process model and dealt
in the controller design. The controllers use process measurements to achieve
stabilization of the closed-loop system, attenuation of the effect of the uncer-
tain variables (unknown processes parameters and external disturbances) on
process outputs, and force the controlled output to follow the reference input.
The synthesis of the controllers is primarily based on Lyapunov techniques.



VI Preface

Explicit formulas for the controllers which can be readily used for controller
synthesis in specific applications are provided. The methods are applied to nu-
merous examples in detail and are shown to outperform existing approaches.
The book includes discussions of practical implementation issues that can
help engineers and researchers understand the application of the methods in
greater depth.

The book assumes a basic knowledge about linear systems, linear control
and nonlinear systems and is intended for researchers, graduate students and
process control engineers interested in nonlinear control theory and process
control applications.

In closing, we would like to thank all the people who contributed in some
way to this project. In particular, we would like to thank the faculty and
graduate students at UCLA for creating a pleasant working environment, the
staff of Springer-Verlag for excellent cooperation, and the Petroleum Research
Fund, the United States National Science Foundation and the United States
Office of Naval Research for financial support. Last, but not least, we would
like to express our deepest gratitude to our families for their dedication, en-
couragement and support over the course of this project. We dedicate this
book to them.

Los Angeles, California, Panagiotis D. Christofides
September 2004 Nael H. El-Farra
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1

Introduction

1.1 Motivation

The last few decades have witnessed a dramatic change in the chemical process
industries. Modern industrial processes have become now highly integrated
with respect to material and energy flows, constrained ever more tightly by
high quality product specifications, and subject to increasingly strict safety
and environmental regulations. These more stringent operating conditions
have placed new constraints on the operating flexibility of chemical processes
and made the performance requirements for process plants increasingly dif-
ficult to satisfy. The increased emphasis placed on safe and efficient plant
operation dictates the need for continuous monitoring of the operation of a
chemical plant and effective external intervention (control) to guarantee sat-
isfaction of the operational objectives. In this light, it is only natural that the
subject of process control has become increasingly important in both the aca-
demic and industrial communities. In fact, without process control it would
not be possible to operate most modern processes safely and profitably, while
satisfying plant quality standards.

The design of effective, advanced process control and monitoring systems
that can meet these demands, however, can be quite a challenging under-
taking given the multitude of fundamental and practical problems that arise
in process control systems and transcend the boundaries of specific appli-
cations. Although they may vary from one application to another and have
different levels of significance, these issues remain generic in their relationship
to the control design objectives. Central to these issues is the requirement
that the control system provide satisfactory performance in the presence of
strong process nonlinearities, model uncertainty, control actuator constraints
and combined discrete-continuous (hybrid) dynamics. Process nonlinearities,
plant-model mismatch, actuator constraints and hybrid dynamics represent
some of the more salient features whose frequently-encountered co-presence
in many chemical processes can lead to severe performance deterioration and
even closed-loop instability, if not appropriately accounted for in the controller
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design. In the remainder of this chapter, we highlight the origin and implica-
tions of these problems in the context of chemical process control applications
and review some of the relevant results in the literature.

1.2 Background on analysis and control of nonlinear
systems

The objective of this section is to provide a review of results on nonlinear pro-
cess control with special emphasis on nonlinear control of chemical processes
with uncertainty and constraints. This review is not intended to be exhaus-
tive; its objective is to provide the necessary background for the results of
this book. For smoothness of the flow of the chapter, review of results on the
analysis and control of continuous-time process systems with discrete events
is deferred to Section 1.4 below.

Many chemical processes, including high purity distillation columns, highly
exothermic chemical reactors, and batch systems, are inherently nonlinear and
cannot be effectively controlled and monitored with controllers and estimators
designed on the basis of approximate linear or linearized process models. Typ-
ical sources of nonlinear behavior arising in chemical processes include com-
plex reaction mechanisms, the Arrhenius temperature dependence of reaction
rates, and radiative heat transfer phenomena, to name a few. The limitations
of traditional linear control and estimation methods in dealing with nonlinear
chemical processes have become increasingly apparent as chemical processes
may be required to operate over a wide range of conditions due to large process
upsets or set point changes. Motivated by this, the area of nonlinear process
control has been one of the most active research areas within the chemical
engineering community over the last two decades. The main bulk of the re-
search has focused on nonlinear lumped parameter processes (i.e., processes
described by systems of nonlinear ordinary differential equations (ODEs)),
where important contributions have been made including the synthesis of
state feedback controllers [121, 158, 160, 118, 141]; the design of state esti-
mators [144, 254, 248, 142] and output feedback controllers [65, 64, 165, 50];
the synthesis of well-conditioned controllers for nonlinear multiple-time-scale
systems [54, 56, 49, 50]; the synthesis of controllers for time-delay systems
[162, 117, 9, 10, 11, 260]; the analysis and control of nonlinear systems us-
ing functional expansions [30, 111, 112]; control design using concepts from
thermodynamics [298, 92, 109]; and the design of nonlinear model predictive
controllers [300, 228, 102, 213, 280, 192, 122, 94, 241, 242, 225, 244, 302].
Successful experimental applications of the above nonlinear control methods
to lumped parameter chemical processes have been also reported including
control of distillation columns [174], polymerization reactors [247, 255, 256],
pH neutralization processes [289, 291, 212] and anaerobic digestion processes
[230]. Excellent reviews of results in the area of nonlinear process control can
be found in [159, 160, 157, 35, 3, 167, 118].
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In addition to nonlinear behavior, many industrial process models are
characterized by the presence of time-varying uncertainties such as unknown
process parameters and external disturbances which, if not accounted for in
the controller design, may cause performance deterioration and even closed-
loop instability. Motivated by the problems caused by model uncertainty
on the closed-loop behavior, the problem of designing controllers for non-
linear systems with uncertain variables, that enforce stability and output
tracking in the closed-loop system, has received significant attention in the
past. For feedback linearizable nonlinear systems with constant uncertain
variables, adaptive control techniques have been employed to design con-
trollers that enforce asymptotic stability and output tracking (see, for ex-
ample, [238, 266, 134, 188, 164, 29, 72, 296]). On the other hand, for feedback
linearizable nonlinear systems with time-varying uncertain variables that sat-
isfy the so-called matching condition, Lyapunov’s direct method has been used
to design robust state feedback controllers that enforce boundedness and arbi-
trary degree of asymptotic attenuation of the effect of uncertainty on the out-
put (e.g., [161, 15, 172, 224, 4, 58, 52]; a review of results on controller design
via Lyapunov’s direct method can be found in [60, 172]). More recently, robust
output feedback controllers have been also designed through combination of
robust state feedback controllers with high-gain observers [146, 183, 50].

While the above works provide systematic methods for adaptive and ro-
bust control design, they do not lead in general to controllers that are opti-
mal with respect to a meaningful cost (i.e., these controllers do not guarantee
achievement of the control objectives with the smallest possible control ac-
tion). This is an important limitation especially in light of the fact that the
capacity of control actuators used to regulate chemical processes is almost
always limited. Such limitations arise typically due to the finite capacity of
control actuators (e.g., bounds on the magnitude of the opening of valves).
Input constraints restrict our ability to freely modify the dynamic behav-
ior of a chemical process and compensate for the effect of model uncertainty
through high-gain feedback control. The ill-effects due to actuator constraints
manifest themselves, for example, in the form of sluggishness of response and
loss of stability. Additional problems that arise in the case of dynamic con-
trollers include undesired oscillations and overshoots, a phenomenon usually
referred to as “windup”. The problems caused by input constraints have con-
sequently motivated many studies on the dynamics and control of chemical
processes subject to input constraints. Notable contributions in this regard
include controller design and stability analysis within the model predictive
control framework [116, 61, 276, 225, 244, 239], constrained linear [48] and
nonlinear [186] quadratic-optimal control, the design of anti-windup schemes
in order to prevent excessive performance deterioration of an already designed
controller when the input saturates [154, 139, 42, 274, 136], the study of the
nonlinear bounded control problem for a class of two and three state chemical
reactors [8, 7], the characterization of regions of closed-loop stability under
static state feedback linearizing controllers [135], and some general results on
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the dynamics of constrained nonlinear systems [137]. However, these control
methods do not explicitly account for robust uncertainty attenuation.

An approach to address the design of robust optimal controllers is within
the nonlinear H∞ control framework (e.g., [277, 214]). However, the practical
applicability of this approach is still questionable because the explicit con-
struction of the controllers requires the analytic solution of the steady-state
Hamilton-Jacobi-Isaacs (HJI) equation which is not a feasible task except for
simple problems. An alternative approach to robust optimal controller design
which does not require solving the HJI equation is the inverse optimal ap-
proach proposed originally by Kalman [133] and introduced recently in the
context of robust stabilization in [97]. Inverse problems have a long history in
control theory (e.g., see [133, 270, 205]). The central idea of the inverse optimal
approach is to compute a robust stabilizing control law together with the ap-
propriate penalties that render the cost functional well-defined and meaningful
in some sense. This approach provides a convenient route for robust optimal
controller design and is well-motivated by the fact that the closed-loop robust-
ness achieved as a result of controller optimality is largely independent of the
specific choice of the cost functional [245] so long as this cost functional is a
meaningful one. The appealing features of the inverse optimal approach have
motivated its use for the design of robust optimal controllers in [96, 97, 163].
These controllers, however, do not lead to an arbitrary degree of attenuation
of the effect of uncertainty on the closed-loop output. This is a particularly
desirable feature in the case of non-vanishing uncertainty that changes the
nominal equilibrium point of the system. Results on robust optimal control of
chemical processes have been also derived within a model predictive control
framework [22, 23, 302, 239].

Summarizing, a close look at the available literature reveals that the exist-
ing process control methods lead to the synthesis of controllers that can deal
with either model uncertainty or input constraints, but not simultaneously and
effectively with both. This inability clearly limits the achievable control quality
and closed-loop performance, especially in light of the frequently-encountered
simultaneous presence of uncertainty and constraints in chemical processes.
Therefore, the development of a unified framework for control of nonlinear
systems that explicitly accounts for the presence of model uncertainty and
input constraints is expected to have a significant impact on process control.

1.3 Examples of nonlinear chemical processes

1.3.1 Non-isothermal continuous stirred tank reactors

Consider two well–mixed, non–isothermal continuous stirred tank reactors
(CSTRs) in series, where three parallel irreversible elementary exothermic
reactions of the form A

k1→ B, A
k2→ U and A

k3→ R take place, where A is the
reactant species, B is the desired product and U, R are undesired byproducts.
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The feed to CSTR 1 consists of pure A at flow rate F0, molar concentration
CA0 and temperature T0, and the feed to CSTR 2 consists of the output of
CSTR 1 and an additional fresh stream feeding pure A at flow rate F3, molar
concentration CA03 and temperature T03. Due to the non–isothermal nature of
the reactions, a jacket is used to remove/provide heat to both reactors. Under
standard modeling assumptions, a mathematical model of the plant can be
derived from material and energy balances and takes the following form:

dT1

dt
=

F0

V1
(T0 − T1) +

3∑

i=1

(−∆Hi)
ρcp

Ri(CA1, T1) +
Q1

ρcpV1

dCA1

dt
=

F0

V1
(CA0 − CA1)−

3∑

i=1

Ri(CA1, T1)

dT2

dt
=

F1

V2
(T1 − T2) +

F3

V2
(T03 − T2) +

3∑

i=1

(−∆Hi)
ρcp

Ri(CA2, T2) +
Q2

ρcpV2

dCA2

dt
=

F1

V2
(CA1 − CA2) +

F3

V2
(CA03 − CA2)−

3∑

i=1

Ri(CA2, T2)

(1.1)

where Ri(CAj , Tj) = ki0 exp
(−Ei

RTj

)
CAj , for j = 1, 2. T , CA, Q, and V denote

the temperature of the reactor, the concentration of species A, the rate of heat
input/removal from the reactor, and the volume of reactor, respectively, with
subscript 1 denoting CSTR 1 and subscript 2 denoting CSTR 2. ∆Hi, ki, Ei,
i = 1, 2, 3, denote the enthalpies, pre–exponential constants and activation
energies of the three reactions, respectively, cp and ρ denote the heat capacity
and density of the fluid in the reactor. The above model consists of a set of
continuous-time nonlinear differential equations; note in particular the non-
linear dependence of the reaction rates, Ri(CAj , Tj), on reactor temperature.
The above system typically exhibits steady-state multiplicity. For example,
using typical values for the process parameters (see Chapter 8, Table 8.1), the
system describing the first CSTR, with Q1 = 0, has three steady–states: two
locally asymptotically stable and one unstable. The unstable steady–state of
the first CSTR also corresponds to three steady–states for the second CSTR
(with Q2 = 0), one of which is unstable.

A typical control problem for this process is to regulate the reactor tem-
perature and/or reactant concentration by manipulating the rate of heat in-
put subject to constraints. Typical sources of uncertainty include external
time-varying disturbance in the feed temperature and/or inlet reactant con-
centration as well as parametric uncertainty in the model parameters.
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1.3.2 Isothermal continuous crystallizer

Consider the following fifth-order nonlinear model describing the evolution of
the first four moments of the crystal size distribution, and the solute concen-
tration, in an isothermal continuous crystallizer:

ẋ0 = −x0 + (1− x3)Da exp
(−F

y2

)

ẋ1 = −x1 + yx0

ẋ2 = −x2 + yx1

ẋ3 = −x3 + yx2

ẏ =
1− y − (α− y)yx2

1− x3
+

u

1− x3

(1.2)

where xi, i = 0, 1, 2, 3, are dimensionless moments of the crystal size distribu-
tion, y is a dimensionless concentration of the solute in the crystallizer, and
u is a dimensionless concentration of the solute in the feed (the reader may
refer to [47, 76] for a detailed process description, population balance mod-
eling of the crystal size distribution and derivation of the moments model,
and to [51] for further results and references in this area). In the above pro-
cess model, a primary source of nonlinearity comes from the Arrhenius-like
type dependence of the nucleation rate on the solute concentration. Using
typical values of the dimensionless process parameters: F = 3.0, α = 40.0
and Da = 200.0, it can be shown that, at the nominal operating condition
of unom = 0, the above system has an unstable equilibrium point surrounded
by a stable limit cycle. The open-loop behavior of the crystallizer is there-
fore characterized by sustained oscillations. A typical control objective is to
suppress the oscillations and stabilize the system at the unstable equilibrium
point (corresponding to a desired crystal size distribution) by manipulating
the solute feed concentration, u, subject to constraints.

1.4 Background on analysis and control of hybrid
systems

Traditionally, most of the research work in process control has been concerned
predominantly with the control of continuous dynamic processes described by
ordinary differential equations. Yet, there are many examples of chemical and
biological processes where the dynamical properties of the system depend
on a rather intricate interaction between discrete and continuous variables.
These are referred to as hybrid processes because they involve coupled con-
tinuous dynamics and discrete events that together drive the overall system
response in time and space. In many of these applications, the continuous
behavior often arises as a manifestation of the underlying physical laws gov-
erning the process, such as momentum, mass, and energy conservation, and
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is modeled by continuous-time differential equations. Discrete behavior, on
the other hand, is ubiquitously multi-faceted and can originate from a vari-
ety of sources, including: (1) inherent physico-chemical discontinuities in the
continuous process dynamics, such as phase changes, flow reversals, shocks
and transitions, (2) the use of measurement sensors and control actuators
with discrete settings/positions (e.g., binary sensors, on/off valves, pumps,
heaters with constant current, motors with speed control), and (3) the use of
logic-based switching for supervisory and safety control tasks.

Another common source of hybrid behavior in chemical processes comes
from the interaction of the process with its operating environment. Changes in
raw materials, energy sources, and product specifications, together with fluc-
tuations in market demands, forecasts and the concomitant adjustments in
management decisions, lead invariably to the superposition of discrete events
on the basically continuous process dynamics, in the form of controlled transi-
tions between different operational regimes. Regardless of whether the hybrid
(combined discrete-continuous) behavior arises as an inherent feature of the
process itself, its operation, or its control system, the overall process behavior
in all of these instances is characterized by structurally different dynamics
in different situations (regimes), and is, therefore, more appropriately viewed
as intervals of piecewise continuous behavior (corresponding to material and
energy flows) interspersed by discrete transitions governed by a higher-level
decision-making entity.

The traditional approach of dealing with these systems in many areas of
industrial control has been to separate the continuous control from the dis-
crete control. In recent years, however, it has become increasingly evident
that the interaction of discrete events with even simple continuous dynamics
can lead to complex unpredictable dynamics and, consequently, to very unde-
sirable outcomes (particularly in safety-critical applications) if not explicitly
accounted for in the control system design. As efficient and profitable process
operation becomes more dependent on the control system, the need to design
flexible, reliable and effective control systems that can explicitly handle the
intermixture of continuous and discrete dynamics, is increasingly apparent.
Such flexibility and responsiveness play a critical role in achieving optimum
production rates, high-quality products, minimizing waste to the environment
and operating as efficiently as possible. These considerations, together with
the abundance of hybrid phenomena in chemical processes, provide a strong
motivation for the development of analytical tools and systematic methods
for the analysis and control of these systems in a way that explicitly captures
the combined discrete-continuous interactions and their effects.

Even though tools for the analysis and control of purely continuous-time
processes exist and, to a large extent, are well-developed, similar techniques
for combined discrete-continuous systems are limited at present primarily due
to the difficulty of extending the available concepts and tools to account for
the hybrid nature of these systems and their changing dynamics, which makes
them more difficult to describe, analyze, or control. These challenges, coupled
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with the abundance of hybrid phenomena in many engineering systems in
general, have fostered a large and growing body of research work on a diverse
array of problems, including the modeling (e.g., [294, 28]), simulation (e.g.,
[28]), optimization (e.g., [106]), stability analysis (e..g, [120, 70]), and con-
trol (e.g., [32, 123, 156, 91]) of several classes of hybrid systems. Continued
progress notwithstanding, important theoretical and practical problems re-
main to be addressed in this area, including the development of a unified and
practical approach for control that deals effectively with the co-presence of
strong nonlinearities in the continuous dynamics, model uncertainty, actuator
constraints, and combined discrete-continuous interactions.

1.5 Examples of hybrid process systems

1.5.1 Fault-tolerant process control systems

The ability of the control system to deal with failure situations typically re-
quires consideration of multiple control configurations and switching between
them to preserve closed-loop stability in the event that the active control
configuration fails. The occurrence of actuator faults, and the concomitant
switching between different control configurations, give rise to hybrid closed-
loop dynamics. As an example, consider a well–mixed, non–isothermal contin-
uous stirred tank reactor where three parallel irreversible elementary exother-
mic reactions of the form A

k1→ B, A
k2→ U and A

k3→ R take place, where
A is the reactant species, B is the desired product and U, R are undesired
byproducts. The feed to the reactor consists of pure A at flow rate F , molar
concentration CA0 and temperature TA0. Due to the non–isothermal nature
of the reactions, a jacket is used to remove/provide heat to the reactor. Under
standard modeling assumptions, a mathematical model of the process can be
derived from material and energy balances and takes the following form:

dT

dt
=

F

V
(TA0 − T ) +

3∑

i=1

(−∆Hi)
ρcp

ki0 exp
(−Ei

RT

)
CA +

Q

ρcpV

dCA

dt
=

F

V
(CA0 − CA)−

3∑

i=1

ki0 exp
(−Ei

RT

)
CA

dCB

dt
= −F

V
CB + k10 exp

(−E1

RT

)
CA

(1.3)

where CA and CB denote the concentrations of the species A and B, re-
spectively, T denotes the temperature of the reactor, Q denotes the rate of
heat input to the reactor, V denotes the volume of the reactor, ∆Hi, ki, Ei,
i = 1, 2, 3, denote the enthalpies, pre–exponential constants and activation
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energies of the three reactions, respectively, cp and ρ denote the heat capacity
and density of the fluid in the reactor. For typical values of the process param-
eters (see Chapter 8, Table 8.2), the process model has three steady–states:
two locally asymptotically stable and one unstable.
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Fig. 1.1. Switching between multiple control configurations, each characterized by
a different manipulated input, provides a mechanism for fault-tolerant control.

The control objective is to stabilize the reactor at the open–loop unstable
steady–state. Operation at this point is typically sought to avoid high tem-
peratures while, simultaneously, achieving reasonable reactant conversion. To
accomplish this objective in the presence of control system failures, we con-
sider the following manipulated input candidates (see Figure 1.1):

1. Rate of heat input, u1 = Q, subject to the constraint |Q| ≤ u1
max =

748 KJ/s.
2. Inlet stream temperature, u2 = TA0−T s

A0, subject to the constraint |u2| ≤
u2

max = 100 K.
3. Inlet reactant concentration, u3 = CA0 − Cs

A0, subject to the constraint
|u3| ≤ u3

max = 4 kmol/m3.
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Each of the above manipulated inputs represents a continuous control
configuration (or control–loop) that, by itself, can stabilize the reactor using
available measurements of the reactor temperature, reactant and product con-
centrations. The first loop involving the heat input, Q, as the manipulated
variable is considered as the primary control configuration. In the event of a
total failure in this configuration, however, a higher-level supervisor will have
to activate one of the other two fall–back configurations in order to maintain
closed–loop stability. The main question in this case is typically how to design
the supervisory switching logic in order to orchestrate safe transitions between
the constituent configurations and guarantee stability of the overall switched
closed-loop system.

1.5.2 Switched biological systems

The dynamics of many biological systems often involve switching between
many qualitatively different modes of behavior. At the molecular level, for
example, the fundamental process of inhibitor proteins turning off the tran-
scription of genes by RNA polymerase reflects a switch between two contin-
uous processes. An example of this is the classic genetic switch observed in
the bacteriophage λ, where two distinct behaviors, lysis and lysogeny, each
with different mathematical models, are seen. Also, at the cellular level, the
cell growth and division in a eukaryotic cell is usually described as a sequence
of four processes, each being a continuous process that is triggered by a set
of conditions or events. As an example, consider a network of biochemical
reactions, based on cyclin-dependent kinases and their associated proteins,
which are involved in cell cycle control in frog egg development. A detailed
description of this network is given in [210] where the authors used standard
principles of biochemical kinetics and rate equations to construct a nonlin-
ear dynamic model of the network that describes the time evolution of the
key species including free cyclin, the M-phase promoting factor (MPF), and
other regulatory enzymes. For illustration purposes, we will consider below
the simplified network model derived by the authors (focusing only on the
positive-feedback loops in the network) which captures the basic stages of
frog egg development. The model is given by:

du

dt
=

k′1
G
− (

k′2 + k′′2u2 + kwee

)
u + (k′25 + k′′25u

2)
( v

G
− u

)

dv

dt
= k′1 − (k′2 + k′′2u2)v

(1.4)

where G = 1+
kINH

kCAK
, kINH is the rate constant for inhibition of INH, a protein

that negatively regulates MPF, kCAK is the rate constant for activation of
CAK, a cdc-2 activating kinase, u is a dimensionless concentration of active
MPF and v is a dimensionless concentration of total cyclin, k′2 and k′′2 are
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rate constants for the low-activity and high activity forms, respectively, of
cyclin degradation; k′25 and k′′25 are rate constants for the low-activity and
high activity forms, respectively, of tyrosine dephosphorylation of MPF; k′1 is
a rate constant for cyclin synthesis, kwee is the rate constant for inhibition
of Wee1, an enzyme responsible for the tyrosine phosphorylation of MPF
(which inhibits MPF activity). Bifurcation and phase-plane analysis of the
above model [210] shows that, by changing the values of k′2, k′′2 and kwee, the
following four modes of behavior are predicted:

• A G2-arrested state (blocked before the G2-M transition) characterized
by high cyclin concentration and little MPF activity. This corresponds to
a unique, asymptotically stable steady-state (k′2 = 0.01, k′′2 = 10, kwee =
3.5).

• An M-arrested state (blocked before the meta- to anaphase transition)
state with lots of active MPF. This corresponds to a unique, asymptotically
stable steady-state (k′2 = 0.01, k′′2 = 0.5, kwee = 2.0).

• An oscillatory state (alternating phases of DNA synthesis and mitosis)
exhibiting sustained, periodic fluctuation of MPF activity and total cyclin
protein. This corresponds to a stable limit cycle surrounding an unstable
equilibrium point (k′2 = 0.01, k′′2 = 10, kwee = 2.0).

• Co-existing stable steady-states of G2 arrest and M arrest. This corre-
sponds to three steady-states; one unstable and two locally asymptotically
stable (k′2 = 0.015, k′′2 = 0.1, kwee = 3.5).

The above analysis predicts that the network can be switched between
different modes by changes in parameter values. For example, slight increases
in k′2, kwee, accompanied by a significant drop in k′′2 (which could be driven,
for example, by down-regulation of cyclin degradation) can induce a transi-
tion from the oscillatory mode of MPF activity (early embryo stage) to the
bi-stable mode. These parameter typically include rate constants and total en-
zyme concentrations that are under genetic control. Changing the expression
of certain genes will change the parameter values of the model and move the
network across bifurcation boundaries into regions of qualitatively different
behavior. An important question that hybrid systems theory can be used to
answer for the above system is how to determine when switching between two
modes needs to take place in order to achieve a certain desired steady-state
(e.g., whether the cell cycle will get arrested in the G2 or the M phase state
upon switching from the oscillatory to the bistable mode).

1.6 Objectives and organization of the book

Motivated by the fact that many industrially-important processes are charac-
terized by strong nonlinearities, model uncertainty, constraints and combined
discrete-continuous dynamics, and the lack of general nonlinear and hybrid
control methods for such systems, the broad objectives of this book are:
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• To develop a rigorous, yet practical, unified framework for the design of
nonlinear feedback control laws for processes modeled by nonlinear sys-
tems with uncertain variables and manipulated input constraints, that
integrates robustness and explicit constraint-handling capabilities in the
controller designs and provide an explicit characterization of the stability
and performance properties of the designed controllers.

• To develop a general hybrid nonlinear control methodology, for hybrid
nonlinear processes with switched, constrained and uncertain dynamics,
that integrates the synthesis of lower-level nonlinear feedback controllers
with the design of the upper-level supervisor switching logic.

• To provide fundamental understanding and insight into the nature of the
control problem for nonlinear and hybrid processes as well as the limita-
tions imposed by nonlinearities, uncertainty, constraints and the coupling
of continuous dynamics with discrete events on our ability to steer the
dynamics of such systems.

• To illustrate the application of the proposed controller design and analysis
methods to chemical and biological systems of practical interest and docu-
ment their effectiveness and advantages with respect to traditional control
methods.

The rest of the book is organized as follows. Chapter 2 reviews some basic
results on the analysis and control of nonlinear systems. Chapter 3 presents
robust inverse optimal controller designs for input/output linearizable nonlin-
ear systems with time-varying bounded uncertain variables. Under full state
feedback, the controller designs are obtained by re-shaping the scalar non-
linear gain of Sontag’s formula in a way that meets different robustness and
optimality objectives under vanishing and non-vanishing uncertainty. Combi-
nation of the state feedback controllers with high-gain observers and appro-
priate saturation filters that eliminate observer peaking is then employed to
design dynamic robust output feedback controllers that enforce semi-global
closed-loop stability and achieve near-optimal performance, provided that the
observer gain is sufficiently large. The implementation of the controllers is
illustrated using models of chemical reactors with uncertainty.

Chapter 4 focuses on multivariable nonlinear systems, that include both
time-varying uncertain variables and manipulated input constraints, and
presents a unified framework that integrates robustness and explicit constraint-
handling capabilities in the controller synthesis. Using a general state-space
Lyapunov-based approach, the proposed framework leads to the derivation
of explicit formulas for bounded robust nonlinear state feedback controllers
with well-characterized stability and performance properties. The proposed
controllers are shown to guarantee closed-loop stability and robust asymp-
totic set-point tracking with an arbitrary degree of attenuation of the effect
of uncertainty on the output of the closed-loop system, and provide an ex-
plicit characterization of the region of closed-loop stability in terms of the
size of the uncertainty and constraints. The state feedback control designs
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are subsequently combined with appropriate high-gain observers to yield out-
put feedback controllers. The proposed control method is illustrated through
chemical reactor examples and compared with more traditional process con-
trol strategies. The chapter concludes with a presentation of a technique for
tuning classical controllers using nonlinear control methods.

Having laid the foundation for bounded Lyapunov-based control tech-
niques in Chapter 4, we turn in Chapters 5 and 6 to take advantage of the
well-characterized stability properties of these designs, through hybrid con-
trol techniques, to aid the implementation of model predictive controllers. We
start in Chapter 5 with linear time-invariant systems with input constraints
and develop a hybrid predictive control structure that unites model predic-
tive control (MPC) and bounded control in a way that reconciles the tradeoffs
between their respective stability and performance properties. The basic idea
is to embed the implementation of MPC within the stability region of the
bounded controller and use this controller as a fall–back mechanism. In the
event that the predictive controller is unable to stabilize the closed–loop sys-
tem, supervisory switching from MPC to the bounded controller guarantees
closed–loop stability. Extensions of the hybrid predictive control strategy to
address the output feedback stabilization problem are also presented. The hy-
brid predictive control strategy is shown to provide, irrespective of the MPC
formulation, a safety net for the practical implementation of MPC. Chapter 6
generalizes the hybrid predictive control structure to address the stabilization
problem for nonlinear and uncertain systems, and demonstrates the efficacy
of the proposed strategies through applications to chemical process examples.

Chapter 7 focuses on developing hybrid nonlinear control methodologies
for various classes of hybrid nonlinear processes. Initially, switched processes
whose dynamics are both constrained and uncertain are considered. These are
systems that consist of a finite family of continuous uncertain nonlinear dy-
namical subsystems, subject to hard constraints on their manipulated inputs,
together with a higher-level supervisor that governs the transitions between
the constituent modes. The key feature of the proposed control methodol-
ogy is the integrated synthesis, via multiple Lyapunov functions (MLFs), of:
(1) a family of lower-level robust bounded nonlinear feedback controllers that
enforce robust stability in the constituent uncertain modes, and provide an
explicit characterization of the stability region for each mode under uncer-
tainty and constraints, and (2) upper-level robust switching laws that orches-
trate safe transitions between the modes in a way that guarantees robust
stability in the overall switched closed-loop system. Next, switched nonlinear
systems with scheduled mode transitions are considered. These are systems
that transit between their constituent modes at some predetermined switch-
ing times, following a prescribed switching sequence. For such systems, we
develop a Lyapunov-based predictive control strategy that enforces both the
required switching schedule and closed-loop stability. The main idea is to de-
sign a Lyapunov–based predictive controller for each mode, and incorporate
transition constraints in the predictive controller design to ensure that the
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prescribed transitions between the modes occur in a way that guarantees sta-
bility of the switched closed–loop system. The proposed control methods are
demonstrated through applications to chemical process examples. Finally, the
chapter concludes with a demonstration of how hybrid systems techniques –
in particular, the idea of coupling the switching logic to stability regions – can
be applied for the analysis of mode transitions in biological networks.

Chapter 8 presents an application of the hybrid control methodology de-
veloped in Chapter 7 to the problem of designing fault–tolerant control sys-
tems for plants with multiple, distributed interconnected processing units.
The approach brings together tools from Lyapunov–based control and hybrid
systems theory and is based on a hierarchical distributed architecture that in-
tegrates lower–level feedback control of the individual units with upper–level
logic–based supervisory control over communication networks. The proposed
approach provides explicit guidelines for managing the interplays between the
coupled tasks of feedback control, fault–tolerance and communication. The ef-
ficacy of the proposed approach is demonstrated through chemical process ex-
amples. The chapter concludes with an application of the developed concepts
to the dynamic analysis of mode transitions in switched biological networks.

Chapter 9 presents a methodology for the synthesis of nonlinear output
feedback controllers for nonlinear Differential Difference Equation (DDE) sys-
tems which include time delays in the states, the control actuator and the
measurement sensor. Initially, DDE systems which only include state delays
are considered and a novel combination of geometric and Lyapunov-based
techniques is employed for the synthesis of nonlinear state feedback controllers
that guarantee stability and enforce output tracking in the closed-loop system,
independently of the size of the state delays. Then, the problem of designing
nonlinear distributed state observers, which reconstruct the state of the DDE
system while guaranteeing that the discrepancy between the actual and the
estimated state tends exponentially to zero, is addressed and solved by using
spectral decomposition techniques for DDE systems. The state feedback con-
trollers and the distributed state observers are combined to yield distributed
output feedback controllers that enforce stability and output tracking in the
closed-loop system, independently of the size of the state delays. For DDE sys-
tems with state, control actuator and measurement delays, distributed output
feedback controllers are synthesized on the basis of an auxiliary output con-
structed within a Smith-predictor framework.

Finally, the proofs of all the results are given in the appendix.
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Background on Analysis and Control of
Nonlinear Systems

In this chapter, we review some basic results on the analysis and control
of nonlinear systems. The review is not intended to be exhaustive; its only
purpose is to provide the reader with the necessary background for the results
presented throughout subsequent chapters. Since most of the results given in
this chapter are standard in the nonlinear systems and control literature, they
are given here without proofs. For detailed proofs, the reader is referred to
the classic books [148, 126].

2.1 Stability of nonlinear systems

For all control systems, stability is the primary requirement. One of the most
widely used stability concepts in control theory is that of Lyapunov stability,
which we employ throughout the book. In this section we briefly review basic
facts from Lyapunov’s stability theory. To begin with, we note that Lyapunov
stability and asymptotic stability are properties not of a dynamical system
as a whole, but rather of its individual solutions. We restrict our attention to
the class of time-invariant nonlinear systems:

ẋ = f(x) (2.1)

where x ∈ IRn, f : IRn → IRn is a locally Lipshcitz function. The solution
of Eq.2.1, starting from x0 at time t0 ∈ IR, is denoted as x(t; x0, t0), so that
x(t0;x0, t0) = x0. Because the solutions of Eq.2.1 are invariant under a trans-
lation of t0, that is, x(t + T ;x0, t0 + T ) = x(t; x0, t0), the stability properties
of x(t; x0, t0) are uniform, i.e., they do not depend on t0. Therefore, without
loss of generality, we assume t0 = 0 and write x(t; x0) instead of x(t;x0, 0).

Lyapunov stability concepts describe continuity properties of x(t;x0, t0)
with respect to x0. If the initial state x0 is perturbed to x̃0, then, for stability,
the perturbed solution x̃(t; x0) is required to stay close to x(t;x0) for all
t ≥ 0. In addition, for asymptotic stability, the error x̃(t;x0) − x(t;x0) is
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required to vanish as t −→ ∞. Some solutions of Eq.2.1 may be stable and
some unstable. We are particularly interested in studying and characterizing
the stability properties of equilibria, that is, constant solutions x(t;xe) ≡ xe

satisfying f(xe) = 0.
For convenience, we state all definitions and theorems for the case when

the equilibrium point is at the origin of IRn; that is, xe = 0. There is no loss
of generality in doing so since any equilibrium point under investigation can
be translated to the origin via a change of variables. Suppose xe 6= 0, and
consider the change of variables, z = x− xe. The derivative of z is given by:

ż = ẋ = f(x) = f(z + xe) := g(z)

where g(0) = 0. In the new variable z, the system has equilibrium at the
origin. Therefore, for simplicity and without loss of generality, we will always
assume that f(x) satisfies f(0) = 0 and confine our attention to the stability
properties of the origin xe = 0.

2.1.1 Stability definitions

The origin is said to be a stable equilibrium point of the system of Eq.2.1, in
the sense of Lyapunov, if for every ε > 0 there exists a δ > 0 such that we
have:

‖x(0)‖ ≤ δ =⇒ ‖x(t)‖ ≤ ε ∀ t ≥ 0 (2.2)

In this case we will also simply say that the system of Eq.2.1 is stable. A
similar convention will apply to other stability concepts introduced below.
The origin is said to be unstable if it is not stable. The ε-δ requirement for
stability takes a challenge-answer form. To demonstrate that the origin is
stable, then, for every value of ε that a challenger may care to design, we
must produce a value of δ, possibly dependent on ε, such that a trajectory
starting in a δ neighborhood of the origin will never leave the ε neighborhood.

The origin of the system of Eq.2.1 is said to be asymptotically stable if it
is stable and δ in Eq.2.2 can be chosen so that:

‖x(0)‖ ≤ δ =⇒ x(t) −→ 0 as t −→∞ (2.3)

When the origin is asymptotically stable, we are often interested in deter-
mining how far from the origin the trajectory can be and still converge to
the origin as t approaches ∞. This gives rise to the definition of the region
of attraction (also called region of asymptotic stability, domain of attraction,
and basin). Let φ(t; x) be the solution of Eq.2.1 that starts at initial state x at
time t = 0. Then the region of attraction is defined as the set of all points x
such that lim

t→∞
φ(t; x) = 0. Throughout the book, stability properties for which

an estimate of the domain of attraction is given are referred to as regional. If
the condition of Eq.2.3 holds for all δ, i.e., if the origin is a stable equilibrium
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and its domain of attraction is the entire state-space, then the origin is called
globally asymptotically stable.

If the system is not necessarily stable but has the property that all solutions
with initial conditions in some neighborhood of the origin converge to the
origin, then it is called (locally) attractive. We say that the system is globally
attractive if its solutions converge to the origin from all initial conditions.

The system of Eq.2.1 is called exponentially stable if there exist positive
real constants δ, c, and λ such that all solutions of Eq.2.1 with ‖x(0)‖ ≤ δ
satisfy the inequality:

‖x(t)‖ ≤ c‖x(0)‖e−λt ∀ t ≥ 0 (2.4)

If this exponential decay estimate holds for all δ, the system is said to be
globally exponentially stable.

2.1.2 Stability characterizations using function classes K, K∞, and
KL
Scalar comparison functions, known as class K, K∞, and KL, are important
stability analysis tools that are frequently used to characterize the stability
properties of a nonlinear system.

Definition 2.1. A function α : [0, a) −→ [0,∞) is said to be of class K if it
is continuous, strictly increasing, and α(0) = 0. It is said to belong to class
K∞ if a = ∞ and α(r) −→∞ as r −→∞.

Definition 2.2. A function β : [0, a)× [0,∞) −→ [0,∞) is said to be of class
KL if, for each fixed t ≥ 0, the mapping β(r, t) is of class K with respect to r
and, for each fixed r, the mapping β(r, t) is decreasing with respect to t and
β(r, t) −→ 0 as t −→∞.

We will write α ∈ K and β ∈ KL to indicate that α is a class K function
and β is a class KL function, respectively. As an immediate application of
these function classes, we can rewrite the stability definitions of the previous
section in a more compact way. For example, stability of the system of Eq.2.1
is equivalent to the property that there exist a δ > 0 and a class K function,
α, such that all solutions with ‖x(0)‖ ≤ δ satisfy:

‖x(t)‖ ≤ α(‖x(0)‖) ∀ t ≥ 0 (2.5)

Asymptotic stability is equivalent to the existence of a δ > 0 and a class KL
function, β, such that all solutions with ‖x(0)‖ ≤ δ satisfy:

‖x(t)‖ ≤ β(‖x(0)‖, t) ∀ t ≥ 0 (2.6)

Global asymptotic stability amounts to the existence of a class KL function, β,
such that the inequality of Eq.2.6 holds for all initial conditions. Exponential
stability means that the function β takes the form β(r, s) = cre−λs for some
c, λ > 0.
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2.1.3 Lyapunov’s direct (second) method

Having defined stability and asymptotic stability of equilibrium points, the
next task is to find ways to determine stability. To be of practical inter-
est, stability conditions must not require that we explicitly solve Eq.2.1. The
direct method of Lyapunov aims at determining the stability properties of
an equilibrium point from the properties of f(x) and its relationship with a
positive-definite function V (x).

Definition 2.3. Consider a C1 (i.e., continuously differentiable) function V :
IRn −→ IR. It is called positive-definite if V (0) = 0 and V (x) > 0 for all
x 6= 0. If V (x) −→∞ as ‖x‖ −→ ∞, then V is said to be radially unbounded.

If V is both positive-definite and radially unbounded, then there exist two
class K∞ functions α1, α2 such that V satisfies:

α1(‖x‖) ≤ V (x) ≤ α2(‖x‖) (2.7)

for all x. We write V̇ for the derivative of V along the solutions of the system
of Eq.2.1, i.e.:

V̇ (x) =
∂V

∂x
f(x) (2.8)

The main result of Lyapunov’s stability theory is expressed by the following
statement.

Theorem 2.4. (Lyapunov) Let x = 0 be an equilibrium point for the system
of Eq.2.1 and D ⊂ IRn be a domain containing x = 0 in its interior. Suppose
that there exists a positive-definite C1 function V : IRn −→ IR whose derivative
along the solutions of the system of Eq.2.1 satisfies:

V̇ (x) ≤ 0 ∀ x ∈ D (2.9)

then the system of Eq.2.1 is stable. If the derivative of V satisfies:

V̇ (x) < 0 ∀ x ∈ D − {0} (2.10)

then the system of Eq.2.1 is asymptotically stable. If in the latter case, V is
also radially unbounded, then the system of Eq.2.1 is globally asymptotically
stable.

A continuously differentiable positive-definite function V (x) satisfying
Eq.2.9 is called a Lyapunov function. The surface V (x) = c, for some c > 0, is
called a Lyapunov surface or a level surface. The condition v̇ ≤ 0 implies that
when a trajectory crosses a Lyapunov surface V (x) = c, it moves inside the
set Ωc = {x ∈ IRn : v(x) ≤ c} and can never come out again. When V̇ < 0,
the trajectory moves from one Lyapunov surface to an inner Lyapunov surface
with smaller c. As c decreases, the Lyapunov surface V (x) = c shrinks to the
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origin, showing that the trajectory approaches the origin as time progresses.
If we only know that V̇ (x) ≤ 0, we cannot be sure that the trajectory will
approach the origin (see, however, Section 2.1.4), but we can conclude that
the origin is stable since the trajectory can be contained inside any ball, Bε,
by requiring that the initial state x0 to lie inside a Lyapunov surface contained
in that ball.

Various converse Lyapunov theorems show that the conditions of Theorem
2.4 are also necessary. For example, if the system is asymptotically stable, then
there exists a positive-definite C1 function V that satisfies the inequality of
Eq.2.10.

Remark 2.5. It is well-known that for the linear-time invariant system:

ẋ = Ax (2.11)

asymptotic stability, exponential stability, and their global versions are all
equivalent and amount to the property that A is a Hurwitz matrix, i.e., all
eigenvalues of A have negative real parts. Fixing an arbitrary positive-definite
symmetric matrix Q and finding the unique positive-definite symmetric matrix
P that satisfies the Lyapunov equation:

AT P + PA = −Q

one obtains a quadratic Lyapunov function V (x) = xT Px whose derivative
along the solutions of the system of Eq.2.11 is V̇ = −xT Qx. The explicit
formula for P is

P =
∫ ∞

0

eAT tQeAtdt

Indeed we have

AT P + PA =
∫ ∞

0

d

dt

(
eAT tQeAt

)
dt = −Q

because A is Hurwitz.

2.1.4 LaSalle’s invariance principle

With some additional knowledge about the behavior of solutions, it is pos-
sible to prove asymptotic stability using a Lyapunov function which satisfies
the nonstrict inequality of Eq.2.9. This is facilitated by LaSalle’s invariance
principle. To state this principle, we first recall the definition of an invariant
set.

Definition 2.6. A set M is called (positively) invariant with respect to the
given system if all solutions starting in M remain in M for all future times.

We now state a version of LaSalle’s theorem.
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Theorem 2.7. (LaSalle) Suppose that there exists a positive-definite C1 func-
tion V : IRn −→ IR whose derivative along the solutions of the system of Eq.2.1
satisfies the inequality of Eq.2.9. Let M be the largest invariant set contained
in the set {x : V̇ (x) = 0}. Then the system of Eq.2.1 is stable and every solu-
tion that remains bounded for t ≥ 0 approaches M as t −→ 0. In particular,
if all solutions remain bounded and M = {0}, then the system of Eq.2.1 is
globally asymptotically stable.

To deduce global asymptotic stability with the help of this result, one needs
to check two conditions,. First, all solutions of the system must be bounded.
This property follows automatically from the inequality of Eq.2.9 if V is chosen
to be radially unbounded; however, radial boundedness of V is not necessary
when boundedness of solutions can be established by other means. The second
condition is that V is not identically zero along any nonzero solution. We also
remark that if one only wants to prove asymptotic convergence of bounded
solutions to zero and is not concerned with Lyapunov stability of the origin,
then positive-definiteness of V is not needed (this is in contrast to Theorem
2.4).

While Lyapunov’s stability theorem readily generalizes to time-varying
systems, for LaSalle’s invariance principle this is not the case. Instead, one
usually works with the weaker property that all solutions approach the set
{x : V̇ (x) = 0}.

2.1.5 Lyapunov’s indirect (first) method

Lyapunov’s indirect method allows one to deduce stability properties of the
nonlinear system of Eq.2.1, where f is C1, from stability properties of its
linearization, which is the linear system of Eq.2.11 with:

A :=
∂f

∂x
(0) (2.12)

By the mean value theorem, we can write:

f(x) = Ax + g(x)x

where g is given componentwise by gi(x) :=
∂fi

∂x
(zi)− ∂fi

∂x
(0) for some point,

zi, on the line segment connecting x to the origin, i = 1, · · · , n. Since
∂f

∂x
is

continuous, we have ‖g(x)‖ −→ 0 as x −→ 0. From this it follows that if the
matrix A is Hurwitz (i.e., all its eigenvalues in the open left half of the com-
plex plane), then a quadratic Lyapunov function for the linearization serves –
locally – as a Lyapunov function for the original nonlinear system. Moreover,
its rate of decay in a neighborhood of the origin can be bounded below by a
quadratic function, which implies that stability is in fact exponential. This is
summarized by the following result.



2.1 Stability of nonlinear systems 21

Theorem 2.8. If f is C1 and the matrix of Eq.2.12 is Hurwitz, then the sys-
tem of Eq.2.1 is locally exponentially stable.

It is also known that if the matrix A has at least one eigenvalue with a
positive real part, the origin of the nonlinear system of Eq.2.1 is not stable. If
A has eigenvalues on the imaginary axis but no eigenvalues in the open right
half-plane, the linearization test is inconclusive. However, in this critical case,
the system of Eq.2.1 cannot be exponentially stable, since exponential stability
of the linearization is not only a sufficient but also a necessary condition for
(local) exponential stability of the nonlinear system.

2.1.6 Input-to-state stability

It is of interest to extend stability concepts to systems with disturbance inputs.
In the linear case represented by the system:

ẋ = Ax + Bθ

It is well known that if the matrix A is Hurwitz, i.e., if the unforced system,
ẋ = Ax, is asymptotically stable, then bounded inputs θ lead to bounded
states while inputs converging to zero produce states converging to zero. Now,
consider a nonlinear system of the form:

ẋ = f(x, θ) (2.13)

where θ is a measurable locally essentially bounded disturbance input. In gen-
eral, global asymptotic stability of the unforced system ẋ = f(x, 0) does not
guarantee input-to-state properties of the kind mentioned above. For example,
the scalar system:

ẋ = −x + xθ (2.14)

has unbounded trajectories under the bounded input θ ≡ 2. This motivates
the following important concept, introduced by Sontag.

Definition 2.9. The system of Eq.2.13 is called input-tot-state stable (ISS)
with respect to θ if for some functions γ ∈ K∞ and β ∈ KL, for every initial
state x(0), and every input θ, the corresponding solution of the system of
Eq.2.13 satisfies the inequality:

‖x(t)‖ ≤ β(‖x(0)‖, t) + γ(‖θ‖s
[0,t]) (2.15)

where ‖θ‖s
[0,t] := ess.sup.{‖θ(s)‖ : s ∈ [0, t]} (supremum norm on [0, t] except

for a set of measure zero).

Since the system of Eq.2.13 is time-invariant, the same property results if
we write

‖x(t)‖ ≤ β(‖x(t0)‖, t− t0) + γ(‖θ‖s
[t0,t]) ∀ t ≥ t0 ≥ 0 (2.16)
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The ISS property admits the following Lyapunov-like equivalent characteriza-
tion: the system of Eq.2.13 is ISS if and only if there exists a positive-definite
radially unbounded C1 function V : IRn −→ IR such that for some class K∞
functions α and χ we have

∂V

∂x
f(x, θ) ≤ −α(‖x‖) + χ(‖θ‖) ∀ x, θ (2.17)

This is in turn equivalent to the following “gain margin” condition:

‖x‖ ≥ ρ(‖θ‖) =⇒ ∂V

∂x
f(x, θ) ≤ −α(‖x‖) (2.18)

where α, ρ ∈ K∞. Such functions V are called ISS-Lyapunov functions. If the
system of Eq.2.13 is ISS, then θ(t) −→ 0 implies x(t) −→ 0.

The system of Eq.2.13 is said to be locally input-tot-state stable (locally
ISS) if the bound of Eq.2.15 is valid for solutions with sufficiently small initial
conditions and inputs, i.e. if there exists a δ > 0 such that Eq.2.15 is satisfied
whenever ‖x(0)‖ ≤ δ and ‖θ‖s

[0,t] ≤ δ. It turns out that (local) asymptotic
stability of the unforced system ẋ = f(x, 0) implies local ISS.

2.2 Stabilization of nonlinear systems

This book is about control design. Our objective is to create closed-loop sys-
tems with desirable stability properties, rather than analyze the properties
of a given system. For this reason, we are interested in an extension of the
Lyapunov function concept, called a control Lyapunov function (CLF).

Suppose that our problem for the time-invariant system:

ẋ = f(x, u) (2.19)

where x ∈ IRn, u ∈ IR, f(0, 0) = 0, is to design a feedback control law α(x)
for the control variable u such that the equilibrium x = 0 of the closed-loop
system:

ẋ = f(x, α(x)) (2.20)

is globally asymptotically stable. We can pick a function V (x) as a Lyapunov
candidate, and require that its derivative along the solutions of the system of
Eq.2.20 satisfy V̇ ≤ −W (x), where W (x) is a positive-definite function. We
therefore need to find α(x) to guarantee that for all x ∈ IRn

∂V

∂x
(x)f(x, α(x)) ≤ −W (x) (2.21)

This is a difficult task. A stabilizing control law for the system of Eq.2.19 may
exist but we may fail to satisfy Eq.2.21 because of a poor choice of V (x) and
W (x). A system for which a good choice of V (x) and W (x) exists is said to
possess a CLF. This notion is made more precise below.
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Definition 2.10. A smooth positive-definite radially unbounded function V :
IRn −→ IR is called a control Lyapunov function (CLF) for the system of
Eq.2.19 if:

inf
u∈IR

{
∂V

∂x
(x)f(x, u)

}
< 0, ∀ x 6= 0 (2.22)

The CLF concept of Artstein [17] and Sontag is a generalization of Lyapunov
design results by Jacobson and Judjevic and Quinn. Artstein showed that
Eq.2.22 is not only necessary, but also sufficient for the existence of a control
law satisfying Eq.2.21, that is the existence of a CLF is equivalent to global
asymptotic stabilizability.

For systems affine in the control:

ẋ = f(x) + g(x)u, f(0) = 0 (2.23)

and using the Lie derivative notation, LfV (x) =
∂V

∂x
(x)f(x) and LgV (x) =

∂V

∂x
(x)g(x), the CLF inequality of Eq.2.21 becomes:

LfV (x) + LgV (x)u ≤ −W (x) (2.24)

If V is a CLF for the system of Eq.2.23, then a particular stabilizing control
law α(x), smooth for all x 6= 0, is given by Sontag’s formula [252]:

u = αs(x) =




−LfV (x) +

√
(LfV )2(x) + (LgV )4(x)
(LgV )2(x)

LgV (x), LgV (x) 6= 0

0, LgV (x) = 0





(2.25)
It should be noted that Eq.2.24 can be satisfied only if:

LgV (x) = 0 =⇒ LfV (x) < 0, ∀ x 6= 0 (2.26)

and that in this case Eq.2.25 results in:

W (x) =
√

(LfV )2(x) + (LgV )4(x) > 0, ∀ x 6= 0 (2.27)

A further characterization of a stabilizing control law α(x) for the system of
Eq.2.23 with a given CLF V is that α(x) is continuous at x = 0 if and only if
the CLF satisfies the small control property: For each ε > 0 there is a δ(ε) > 0
such that, if x 6= 0 satisfies |x| ≤ δ, then there is some u with |u| < ε such
that:

LfV (x) + LgV (x)u < 0 (2.28)

The main deficiency of the CLF concept as a design tool is that for most
nonlinear systems a CLF is not known. The task of finding an appropriate CLF
maybe as complex as that of designing a stabilizing feedback law. For several
important classes of nonlinear systems, however, it is possible to systematically
construct CLFs, and this issue will be elaborated on throughout the book.
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2.3 Feedback linearization and zero dynamics

One of the popular methods for nonlinear control design is feedback lineariza-
tion, which employs a change of coordinates and feedback control to trans-
form a nonlinear system into a system whose dynamics are linear (at least
partially). A great deal of research has been devoted to this subject over the
last three decades, as evidenced by the comprehensive books [126, 208] and
the references therein. In this section, we briefly review some of the basic ge-
ometric concepts that will be used in subsequent chapters. While this book
does not require the formalism of differential geometry, we will employ Lie
derivatives only for notational convenience. If f : IRn −→ IRn is a vector field

and h : IRn −→ IR is a scalar function, the notation Lfh is used for
∂h

∂x
f(x).

It is recursively extended to:

Lk
fh(x) = Lf (Lk−1

f h(x)) =
∂

∂x
(Lk−1

f h(x))f(x)

Let us consider the nonlinear system:

ẋ = f(x) + g(x)u

y = h(x)
(2.29)

where x ∈ IRn, u ∈ IR, y ∈ IR, f , g, h are smooth (i.e., infinitely differentiable)
vector functions. The derivative of the output y = h(x) is given by:

ẏ =
∂h

∂x
(x)f(x) +

∂h

∂x
(x)g(x)u

= Lfh(x) + Lgh(x)u
(2.30)

If Lgh(x0) 6= 0, then the system of Eq.2.29 is said to have relative degree one
at x0 (note that since the functions are smooth Lgh(x0) 6= 0 implies that there
exists a neighborhood of x0 on which Lgh(x) 6= 0). In our terminology, this
implies that the output y is separated form the input u by one integration
only. If Lgh(x0) = 0, there are two cases:

(i) If there exist points arbitrarily close to x0 such that Lgh(x) 6= 0, then
the system of Eq.2.29 does not have a well-defined relative degree at x0.

(ii) If there exists a neighborhood B0 of x0 such that Lgh(x) = 0 for all
x ∈ B0, then the relative degree of the system of Eq.2.29 may be well-defined.

In case (ii), we define:

ψ1(x) = h(x), ψ2(x) = Lfh(x) (2.31)

and compute the second derivative of y:

ÿ =
∂ψ2

∂x
(x)f(x) +

∂ψ2

∂x
(x)g(x)u

= L2
fh(x) + LgLfh(x)u

(2.32)
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If LgLfh(x0) 6= 0, then the system of Eq.2.29 is said to have relative degree
two at x0. If LgLfh(x) = 0 in a neighborhood of x0, then we continue the
differentiation procedure.

Definition 2.11. The system of Eq.2.29 is said to have relative degree r at
the point x0 if there exists a neighborhood B0 of x0 on which:

Lgh(x) = LgLfh(x) = · · · = LgL
r−1
f h(x) = 0 (2.33)

LgL
r
fh(x) = 0 (2.34)

If Eqs.2.33-2.34 are valid for all x ∈ IRn, then the relative degree of the system
of Eq.2.29 is said to be globally defined.

Suppose now that the system of Eq.2.29 has relative degree r at x0. Then
we can use a change of coordinates and feedback control to locally transform
this system into the cascade interconnection of an r-dimensional linear system
and an (n−r)-dimensional nonlinear system. In particular, after differentiating
r times the output y = h(x), the control appears:

y(r) = Lr
fh(x) + LgL

r−1
f h(x)u (2.35)

Since LgL
r−1
f h(x) 6= 0 in a neighborhood of x0, we can linearize the input-

output description of the system of Eq.2.29 using feedback to cancel the non-
linearities in Eq.2.35:

u =
1

LgL
r−1
f h(x)

[−Lr
fh(x) + v

]
(2.36)

Then the dynamics of y and its derivatives are governed by a chain of r in-
tegrators: y(r) = v. Since our original system of Eq.2.29 has dimension n,
we need to account for the remaining n− r states. Using differential geomet-
ric tools, it can be shown that it is always possible to find n − r functions
ψr+1, · · · , ψn(x) with ∂ψi

∂x (x)g(x) = LgL
i−1
f h(x) = 0, for i = r + 1, · · · , n such

that the change of coordinates:

ζ1 = y = h(x), ζ2 = ẏ = Lfh(x), · · · , ζr = y(r−1) = Lr−1
f h(x)

η1 = ψr+1, · · · , ηn−r = ψn(x)
(2.37)

is locally invertible and transforms, along with the feedback law of Eq.2.36,
the system of Eq.2.29 into:
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ζ̇1 = ζ2

...

ζ̇r = v

η̇1 = Ψ1(ζ, η)

...

η̇n−r = Ψn−r(ζ, η)

y = ζ1

(2.38)

where Ψ1(ζ, η) = Lr+1
f h(x), Ψn−r(ζ, η) = Ln

f h(x).
The states η1, · · · , ηn−r have been rendered unobservable from the output

y by the control of Eq.2.36. Hence, feedback linearization in this case is the
nonlinear equivalent of placing n − r poles of a linear system at the origin
and cancelling the r zeros with the remaining poles. Of course, to guarantee
stability, the cancelled zeros must be stable. In the nonlinear case, using the
new control input v to stabilize the linear subsystem of Eq.2.38 does not
guarantee stability of the whole system, unless the stability of the nonlinear
part of the system of Eq.2.38 has been established separately.

When v is used to keep the output y equal to zero for all t > 0, that is,
when ζ1 ≡ · · · ≡ ζr ≡ 0, the dynamics of η1, · · · , ηn−r are described by:

η̇1 = Ψ1(0, η)

...

η̇n−r = Ψn−r(0, η)

(2.39)

They are called the zero dynamics of the system of Eq.2.29, because they
evolve on the subset of the state-space on which the output of the system
is identically zero. If the equilibrium at η1 = · · · = ηn−r = 0 of the zero
dynamics of Eq.2.39 is asymptotically stable, the system of Eq.2.29 is said to
be minimum phase.

Remark 2.12. Most nonlinear analytical controllers emanating from the area
of geometric process control are input-output linearizing and induce a linear
input-output response in the absence of constraints [160, 126]. For the class
of processes modeled by equations of the form of Eq.2.29 with relative order r
and under the minimum phase assumption, the appropriate linearizing state
feedback controller is given by:

u =
1

LgL
r−1
f h(x)

(
v − Lr

fh(x)− β1L
r−1
f h(x)− · · · − βr−1Lfh(x)− βrh(x)

)

(2.40)
and induces the linear r-th order response:
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dry

dtr
+ β1

dr−1y

dtr−1
+ · · ·+ βr−1

dy

dt
+ βry = v (2.41)

where the tunable parameters, β1, · · · , βr, are essentially closed-loop time
constants that influence and shape the output response. The nominal sta-
bility of the process is guaranteed by placing the roots of the polynomial
sr + β1s

r−1 + · · ·+ βr−1s + βr in the open left-half of the complex plane.

2.4 Singularly perturbed systems

In this section, we review two results on the analysis of singularly perturbed
nonlinear systems having a reduced system that is input-to-state stable with
respect to disturbances. Specifically, these results establish robustness of this
ISS property to uniformly globally asymptotically stable singular perturba-
tions. To this end, we focus on singularly perturbed nonlinear systems with
the following state-space description:

ẋ = f(x, z, θ(t), ε)

εż = g(x, z, θ(t), ε)
(2.42)

where x ∈ IRn and z ∈ IRp denote vectors of state variables, θ ∈ IRq de-
notes the vector of the disturbances and ε is a small positive parameter. The
functions f and g are locally Lipschitz on IRn × IRp × IRq × [0, ε̄), for some
ε̄ > 0. The input vector θ(t) in the system of Eq.2.42 may represent constant
or time-varying (not necessarily slowly) parameters, tracking signals and/or
exogenous disturbances. In what follows, for simplicity, we will suppress the
time-dependence in the notation of the vector of input variables θ(t).

A standard procedure that is followed for the analysis of systems in the
form of Eq.2.42 is the decomposition of the original system into separate
reduced-order systems, each one associated with a different time-scale. This
procedure is called two-time-scale decomposition [153]. Formally, it can be
done by setting ε = 0, in which case the dynamics of the state vector z
becomes instantaneous and the system of Eq.2.42 takes the form:

ẋ = f(x, zs, θ, 0)

g(x, zs, θ, 0) = 0
(2.43)

where zs denotes a quasi-steady-state for the fast state vector z. Assumption
2.1 states that the singularly perturbed system in Eq.2.42 is in standard form.

Assumption 2.1 The algebraic equation g(x, zs, θ, 0) = 0 possesses a unique
root:

zs = h(x, θ) (2.44)

with the properties that h : IRn×IRq → IRp and its partial derivatives
(

∂h
∂x , ∂h

∂θ

)
are locally Lipschitz.
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Substituting Eq.2.44 into Eq.2.43, the following locally Lipschitz system
is obtained:

ẋ = f(x, h(x, θ), θ, 0) (2.45)

The dynamical system in Eq.2.45 is called the reduced system or slow subsys-
tem. The inherent two-time-scale behavior of the system of Eq.2.42 can be
analyzed by defining a fast time-scale:

τ =
t

ε
(2.46)

and the new coordinate y := z − h(x, θ). In the (x, y) coordinates, and with
respect to the τ time scale, the singularly perturbed system in Eq.2.42 takes
the form:

dx

dτ
= εf(x, h(x, θ) + y, θ, ε)

dy

dτ
= g(x, h(x, θ) + y, θ, ε)− ε[

∂h

∂x
f(x, h(x, θ) + y, θ, ε) +

∂h

∂θ
θ̇]

(2.47)

Setting ε equal to zero, the following locally Lipschitz system is obtained:

dy

dτ
= g(x, h(x, θ) + y, θ, 0) (2.48)

Here, x and θ are to be thought of as constant vectors. In what follows, we will
refer to the dynamical system in Eq.2.48 as the fast subsystem or the boundary
layer system. The assumptions that follow state our stability requirements on
the slow and fast subsystems.

Assumption 2.2 The reduced system in Eq.2.45 is input-to-state stable (ISS)
with Lyapunov gain γ.

Assumption 2.3 The equilibrium y = 0 of the boundary layer system in
Eq.2.48 is globally asymptotically stable, uniformly in x ∈ IRn, θ ∈ IRq.

The main result of this section is given in the following theorem (the proof
is given in [57]).

Theorem 2.13. Consider the singularly perturbed system in Eq.2.42 and sup-
pose Assumptions 2.1-2.3 hold and that θ(t) is absolutely continuous. Define
y = z−h(x, θ) and let γ be the function given by Assumption 2.2. Then there
exist functions βx, βy of class KL, and for each pair of positive real numbers
(δ, d), there is an ε∗ > 0 such that if max{‖x(0)‖, ‖y(0)‖, ‖θ‖s, ‖θ̇‖s} ≤ δ and
ε ∈ (0, ε∗], then, for all t ≥ 0,

‖x(t)‖ ≤ βx(‖x(0)‖, t) + γ(‖θ‖s) + d

‖y(t)‖ ≤ βy(‖y(0)‖, t

ε
) + d

(2.49)
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Remark 2.14. When g does not depend on θ, θ(t) can simply be measurable
and there is no requirement on ‖θ̇‖s (if θ̇ exists).

Remark 2.15. The result of Theorem 2.13 can be applied to arbitrarily large
initial conditions (x(0), y(0)), uncertainty θ(t), and rate of change of un-
certainty θ̇(t). Furthermore, this result (even in the undisturbed case, i.e.,
θ(t) ≡ 0), imposes no growth or interconnection conditions to establish bound-
edness of the trajectories (compare with the discussion in Remark 2.17 below).

Remark 2.16. In principle, a value for ε∗ can be extracted from the proof of
the theorem. However, as is the case for most general singular perturbation
results for nonlinear systems (e.g., [235, 63]), this value will typically be quite
conservative.

Remark 2.17. Note that, even with θ(t) ≡ 0, Theorem 2.13 does not provide
any result concerning stability of or convergence to the origin. To guarantee
such properties further assumptions are required. consider, for example, the
singularly perturbed system:

ẋ = z − x3

εż = −z + εx
(2.50)

where x ∈ IR, z ∈ IR. One can easily see that the above system is in standard
form, h(x, θ) = 0 and its fast dynamics:

dy

dτ
= −y (2.51)

possess a globally exponentially stable equilibrium (y = 0). Moreover, the
reduced system takes the form:

ẋ = −x3 (2.52)

which clearly possesses a globally asymptotically stable equilibrium (x = 0).
Thus, the assumptions of the Theorem 2.13 are satisfied and its result can be
applied. However, the origin is not an asymptotically stable equilibrium for
the system of Eq.2.50. This can be easily seen considering the linearization of
Eq.2.50 around the origin:

ẋ = z

εż = −z + εx
(2.53)

which possesses an eigenvalue in the right half of the complex plane for all pos-
itive values of ε. It is clear from the above example that we cannot draw any
conclusions about the stability properties of the equilibrium point of the full-
order system from knowledge of the stability properties of the reduced-order
systems without some type of additional interconnection condition. There are
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several possible interconnection conditions that can be imposed to guarantee
stability of and convergence to the origin. Most efficient conditions are essen-
tially related to the small gain theorem (see [301, 187]) in one way or another.
Saberi and Khalil provide Lyapunov conditions in [235] which are closely re-
lated to small gain conditions in an L2 setting. An L∞ nonlinear small gain
condition is given in [268] and [132]. Perhaps the most straightforward, al-
though conservative, interconnection condition is the assumption that, with
θ(t) ≡ 0, the origin of the slow and fast subsystems are locally exponentially
stable. In this case, it can be shown [235] that there exists ε sufficiently small
such that the origin of the system of Eq.2.42 is locally exponentially stable
and that the basin of attraction does not shrink as ε becomes small. In general,
when a local interconnection condition is given that has this “nonshrinking”
property, the result of Theorem 2.13 can be used to show stability and conver-
gence from an arbitrary large compact set under Assumptions 2.1-2.3. This
is obtained by choosing dx, dy sufficiently small to guarantee convergence in
finite time to the domain of attraction of the origin.

Theorem 2.18 below is a natural extension of the result of Theorem 2.13,
to nonlinear singularly perturbed systems for which the initial conditions of
the fast states depend singularly on ε (the proof is given in [50].

Theorem 2.18. Consider the following singularly perturbed system:

ẋ = f̄(x, z1, sat(z2), θ)

εż1 = ḡ1(x, z1, sat(z2), θ)

εż2 = Az2 + εḡ2(x, z1, sat(z2), θ)

(2.54)

where x ∈ IRn, z1 ∈ IRp1 , z2 ∈ IRp2 , θ ∈ IRq, f̄ , ḡ1, ḡ2 are locally Lipschitz on
IRn× IRp1× IRp2× IRq, and A is a constant matrix. Suppose that the algebraic
equation ḡ(x, z1, 0, θ) = 0 possesses a unique root z1 = h1(x, θ) and that the
slow subsystem:

ẋ = f̄(x, h1(x, θ), 0, θ) (2.55)

is ISS with Lyapunov gain γ. Also, define y1 = z1− h1(x, θ) and suppose that
the fast subsystem:

dy1

dτ
= ḡ1(x, h1(x, θ) + y1, 0, θ) (2.56)

is globally asymptotically stable, uniformly in x ∈ IRn, θ ∈ IRq. Finally, sup-
pose that A is Hurwitz and that θ(t) is absolutely continuous, and define

z2(0) =
ξ(0)
εp2

, where ξ ∈ IRp2 . Whenever the above assumptions are satis-
fied, there exist functions βx, βy1 of class KL and strictly positive constants
K1, a1, and for each pair of positive real numbers (δ, d), there exists a posi-
tive real number ε∗ such that if max{‖x(0)‖, ‖y1(0)‖, ‖ξ(0)‖, ‖θ‖s, ‖θ̇‖s} ≤ δ,
ε ∈ (0, ε∗] then, for all t ≥ 0,
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‖x(t)‖ ≤ βx(‖x(0)‖, t) + γ(‖θ‖s) + d

‖y1(t)‖ ≤ βy1(‖y1(0)‖, t

ε
) + d

‖z2(t)‖ ≤ K1‖z2(0)‖e−a1

t

ε + d

(2.57)

Remark 2.19. Theorem 2.18 is particularly useful for the analysis of closed-
loop systems under output feedback controllers that utilize nonlinear high-gain
observers.





3

Control of Nonlinear Systems with Uncertainty

3.1 Introduction

In this chapter, we consider nonlinear systems with time-varying uncertain
variables and present robust inverse optimal controller designs that enforce
an arbitrary degree of attenuation of the effect of uncertainty on the output of
the closed-loop system. The controller designs are obtained by re-shaping the
scalar nonlinear gain of Sontag’s formula in a way that guarantees the desired
uncertainty attenuation properties in the closed-loop system. The proposed
re-shaping is made different for vanishing and non-vanishing uncertainties so
as to meet different robustness and optimality objectives.

The rest of the chapter is organized as follows. In Section 3.2 we intro-
duce the class of uncertain nonlinear systems considered and review some
preliminaries on inverse optimal controller design. Then in Section 3.3 we for-
mulate the robust inverse optimal state feedback control problem, for both
vanishing and non-vanishing uncertainties, and present the proposed gain re-
shaping procedure, and the resulting control laws, for each case. We discuss
some of the advantages of the proposed gains relative to others that have
been introduced in the literature. In contrast to previous works, the uncer-
tain variables considered do not obey state-dependent bounds and, in the
non-vanishing case, are not only persistent over time but can also change the
nominal equilibrium point of the system. A simulation example is presented
to illustrate the performance of the state feedback controllers and compare it
with other possible controller designs. In Section 3.4, we address the output
feedback control problem by combining the state feedback controllers with ap-
propriate high gain observers. We show that the output feedback controllers
enforce closed-loop stability and robust asymptotic output tracking for initial
conditions and uncertainty in arbitrarily large compact sets, as long as the
observer gain is sufficiently large. Utilizing the inverse optimal control ap-
proach and singular perturbation techniques, this approach is shown to yield
a near-optimal output feedback design in the sense that the performance of
the resulting output feedback controllers can be made arbitrarily close to that
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of the robust inverse optimal state feedback controllers, when the observer
gain is sufficiently large. The developed controllers are successfully applied to
a chemical reactor example. Finally, in Section 3.5, we use a singular pertur-
bation formulation to establish robustness of the output feedback controllers
with respect to unmodeled dynamics. The state feedback control results in
this chapter were first presented in [83], while the output feedback control
results were first presented in [79].

3.2 Preliminaries

We consider single-input single-output (SISO), uncertain continuous-time
nonlinear systems with the following state-space description:

ẋ = f(x) + g(x)u +
q∑

k=1

wk(x)θk(t)

y = h(x)

(3.1)

where x ∈ IRn denotes the vector of state variables, u ∈ IR denotes the ma-
nipulated input, θk(t) ∈ Wk ⊂ IR denotes the k-th uncertain (possibly time-
varying) but bounded variable taking values in a nonempty compact convex
subset Wk of IR, and y ∈ IR denotes the output to be controlled. Without
loss of generality, we assume that the origin is an equilibrium point of the
nominal system (u(t) = θk(t) ≡ 0) of Eq.3.1. This can always be achieved by
working with deviation variables. The uncertain variable θk(t) may describe
time-varying parametric uncertainty and/or exogenous disturbances. The vec-
tor functions f(x), wk(x) and g(x), and the scalar function h(x) are assumed
to be sufficiently smooth. Throughout the chapter, the notation ‖θ‖s is used
to denote ess.sup. ‖θ(t)‖, t ≥ 0 where the function θ is measurable (with re-
spect to the Lebesgue measure). Given a measurable function f : T → IR,
where T is a measure space with measure µ, the essential supremum is defined
as ess.sup.f(t) = inf{M : µ{t : f(t) > M} = 0}, i.e. it is the smallest positive
integer M such that ‖f‖ is bounded by M almost everywhere. For simplicity,
we will suppress the time-dependence in the notation of the uncertain variable
θk(t).

Preparatory for its use as a tool for robust optimal controller design, we
begin by reviewing the concept of inverse optimality introduced in the context
of robust stabilization in [97]. To this end, consider the system of Eq.3.1
with q = 1 and w(0) = 0. Also, let l(x) and R(x) be two continuous scalar
functions such that l(x) ≥ 0 and R(x) > 0 ∀ x ∈ IRn and consider the
problem of finding a feedback control law u(x) for the system of Eq.3.1 that
achieves asymptotic stability of the origin and minimizes the infinite time cost
functional:

J =
∫ ∞

0

(l(x) + uR(x)u) dt (3.2)
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The steady-state Hamilton-Jacobi-Isaacs (HJI) equation associated with the
system of Eq.3.1 and the cost of Eq.3.2 is:

0 ≡ inf
u∈IR

sup
θ∈W

(l(x) + uR(x)u + LfV + LgV u + LwV θ) (3.3)

where the value function V is the unknown. A smooth positive-definite solu-
tion V to this equation will lead to a continuous state feedback u(x) of the
form:

u = −p(x) = −1
2
R−1(x)LgV (3.4)

which provides stability, optimality, and robustness with respect to the distur-
bance θ. However, such a smooth solution may not exist or may be extremely
difficult to compute. Suppose, instead, that we were able to find a positive-
definite radially unbounded C1 scalar function V such that:

inf
u∈IR

sup
θ∈W

(LfV + LgV u + LwV θ) < 0 ∀ x 6= 0 (3.5)

Now, if we can find a meaningful cost functional (i.e., l(x) ≥ 0, R(x) > 0)
such that the given V is the corresponding value function, then we will have
indirectly obtained a solution to the HJI equation and can therefore compute
the optimal control law of Eq.3.4. Such reasoning motivates following the
inverse path. In the inverse approach, a stabilizing feedback control law is
designed first and then shown to be optimal with respect to a well-defined
and meaningful cost functional of the form of Eq.3.2. The problem is inverse
because the weights l(x) and R(x) in the cost functional are a posteriori
computed from the chosen stabilizing feedback control law, rather than a
priori specified by the designer.

A stabilizing control law u(x) is said to be inverse optimal for the system
of Eq.3.1 if it can be expressed in the form of Eq.3.4 where the negative-

definiteness of V̇ is achieved with the control u∗ = −1
2
p(x), that is:

sup
θ∈W

V̇ = sup
θ∈W

(LfV + LgV u∗ + LwV θ)

= LfV − 1
2
LgV p(x) + ‖LwV ‖θb < 0 ∀ x 6= 0

(3.6)

where the worst-case uncertainty (i.e., the one that maximizes V̇ ) is given
by θ = sgn[LwV (x)]θb where θb = ‖θ‖s (which is an admissible uncertainty
since it is both measurable and bounded). When the function l(x) is set equal
to l(x) = − sup

θ∈W
V̇ , then V is a solution to the following steady-state HJI

equation:

0 ≡ l(x) + LfV − 1
4
LgV R−1(x)LgV + ‖LwV ‖θb (3.7)

and the optimal (minimal) value of the cost J is V (x(0)). At this point, we
need to recall the definition of a robust control Lyapunov function which will
be used in the development of the main results of this chapter.
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Definition 3.1. [97] A smooth, proper, and positive-definite function V :
IRn → IR+ is called a robust control Lyapunov function for a system of the
form ẋ = f(x) + g(x)u + w(x)θ when there exist a function, αv(·), of class K,
and cv > 0 such that:

inf
u∈U

sup
θ∈W

[LfV (x) + LgV (x)u + LwV (x)θ + αv(x)] < 0 (3.8)

whenever V (x) > cv, where LfV (x) = ∂V
∂x f(x), LgV (x) = ∂V

∂x g(x) and
LwV (x) = ∂V

∂x w(x).

Finally, we recall the definition of input-to-state stability (ISS) for a system
of the form of Eq.3.1.

Definition 3.2. [252] The system in Eq.3.1 (with u ≡ 0) is said to be ISS
with respect to θ if there exist a function β of class KL and a function γ
of class K such that for each x◦ ∈ IRn and for each measurable, essentially
bounded input θ(·) on [0,∞) the solution of Eq.3.1 with x(0) = x◦ exists for
each t ≥ 0 and satisfies:

‖x(t)‖ ≤ β(‖x(0)‖, t) + γ(‖θ‖s), ∀ t ≥ 0 (3.9)

3.3 Robust inverse optimal state feedback controller
design

3.3.1 Control problem formulation

Referring to the uncertain nonlinear system of Eq.3.1, we consider the follow-
ing two control problems. In the first problem, we assume that the uncertain
variables are vanishing (i.e., wk(0)θk = 0) which means that the origin is an
equilibrium point of the uncertain system of Eq.3.1. We focus on the synthesis
of robust nonlinear state feedback controllers of the general form:

u = P(x, v̄) (3.10)

where P(x, v̄) is a scalar function and v̄ = [v v(1) · · · v(r)]T is a generalized
reference input (v(k) denotes the k-th time-derivative of the reference input v
which is assumed to be a sufficiently smooth function of time), that enforce
global asymptotic stability and asymptotic output tracking with attenuation
of the effect of the uncertainty on the output in the closed-loop system, and
are optimal with respect to a meaningful, infinite time cost functional that
imposes penalty on the control action. In the second control problem, we as-
sume that the uncertain variables are non-vanishing (i.e., wk(0)θk 6= 0). With
this assumption, the origin is no longer an equilibrium point for the uncertain
system. The objective here is to synthesize robust nonlinear state feedback
controllers of the form of Eq.3.10 that guarantee global boundedness of the
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trajectories, enforce the discrepancy between the output and the reference
input to be asymptotically arbitrarily small, and minimize a meaningful cost
functional defined over a finite time interval. In both control problems, the
controller is designed using combination of geometric and Lyapunov tech-
niques. In particular, the design is carried out by combining a Sontag-like
control law with a robust control design proposed in [58]. The analysis of
the closed-loop system is performed by utilizing the concept of input-to-state
stability and nonlinear small gain theorem-type arguments, and optimality is
established using the inverse optimal control approach.

3.3.2 Controller design under vanishing uncertainties

In order to proceed with the synthesis of the controllers, we will impose the
following assumptions on the system of Eq.3.1. The first assumption allows
transforming the system of Eq.3.1 into a partially linear form and is motivated
by the requirement of output tracking.

Assumption 3.1 There exists an integer r and a set of coordinates:

[
ζ
η

]
=




ζ1

ζ2

...
ζr

η1

...
ηn−r




= T (x) =




h(x)
Lfh(x)

...
Lr−1

f h(x)
T1(x)

...
Tn−r(x)




(3.11)

where T1(x), · · · , Tn−r(x) are scalar functions such that the system of Eq.3.1
takes the form:

ζ̇ = Aζ + bLr
fh(T−1(ζ, η)) + bLgL

r−1
f h(T−1(ζ, η))u

+b

q∑

k=1

LwkLr−1
f h(T−1(ζ, η))θk

η̇ = Ψ(ζ, η, θ)

(3.12)

where Ψ is an (n− r)× 1 nonlinear vector function,

A =




0 1 0 · · · 0
0 0 1 · · · 0
...

...
0 0 0 · · · 1
0 0 0 · · · 0




, b =




0
0
...
1


 (3.13)
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A is an r×r matrix, b is an r×1 vector, and LgL
r−1
f h(x) 6= 0 for all x ∈ IRn.

Moreover, for each θ ∈ IRq, the states ζ, η are bounded if and only if the state
x is bounded; and (ζ, η) → (0, 0) if and only if x → 0.

Assumption 3.1 includes the matching condition of the proposed robust
control method; loosely speaking, it states that the uncertain variables cannot
have a stronger effect on the controlled output than the manipulated input.
We note that the change of variables of Eq.3.11 is independent of θ (this is
because the vector field, g(x), that multiplies the input u is independent of θ) ,
and is invertible, since, for every x, the variables ζ, η are uniquely determined
by Eq.3.11. Introducing the notation e = [e1 e2 · · · er]T where ei = ζi−v(i−1),
i = 1, · · · , r, the system of Eq.3.12 can be re-written as:

ė = f̄(e, η, v̄) + ḡ(e, η, v̄)u +
q∑

k=1

w̄k(e, η, v̄)θk

η̇ = Ψ(e, η, θ, v̄)

(3.14)

where f̄(·) = Ae+b
(
Lr

fh(T−1(e, η, v̄))− v(r)
)
, ḡ(·) = bLgL

r−1
f h(T−1(e, η, v̄)),

w̄k(·) = bLwkLr−1
f h(T−1(e, η, v̄)).

Following [58],the requirement of input-to-state stability of the η subsystem of
Eq.3.14 is imposed to allow the synthesis of a robust state feedback controller
that enforces the requested properties in the closed-loop system for any initial
condition. Assumption 3.2 that follows states this requirement.

Assumption 3.2 The dynamical system:

η̇ = Ψ(e, η, θ, v̄) (3.15)

is ISS with respect to e uniformly in θ, v̄.

In most practical applications, there exists partial information about the
uncertain terms of the process model. Information of this kind may result
from physical considerations, preliminary simulations, experimental data, etc.
In order to achieve attenuation of the effect of the uncertain variables on
the output, we will quantify the possible knowledge about the uncertain vari-
ables by assuming the existence of known bounds that capture the size of the
uncertain variables for all times.

Assumption 3.3 There exist known positive constants θbk such that ‖θk(t)‖s ≤
θbk.

In order to address the robust controller synthesis problem on the basis
of the e-subsystem of Eq.3.14, we need to construct an appropriate robust
control Lyapunov function. This can be done in many different ways. One
way, for example, is to use a quadratic function, V = eT Pe, where P is a
positive-definite matrix chosen to satisfy the following Ricatti equation:
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AT P + PA− PBBT P = −Q (3.16)

for some positive-definite matrix, Q. Computing the time-derivative of V along
the trajectories of the e-subsystem of Eq.4.6, and using the relation of Eq.3.16,
it can be shown that:

inf
u∈U

sup
θ∈Wq

V̇ = inf
u∈U

sup
θ∈Wq

[
Lf̄V + LḡV u +

q∑

k=1

Lw̄k
V θk

]

= inf
u∈U

sup
θ∈Wq

[
−eT Qe + eT Pb

(
bT Pe + 2r(e, η, v̄) + 2LgL

r−1
f h(x)u

+2
q∑

k=1

Lwk
Lr−1

f h(x)θk

)]

(3.17)
where r = Lr

fh(x) − v(r), Lf̄V = −eT Qe + eT PbbT Pe + 2eT Pbr, LḡV =
2eT PbLgL

r−1
f h(x), and Lwk

V = 2eT PbLwk
Lr−1

f h(x). Therefore, choosing P

to satisfy Eq.3.16 guarantees that when LḡV = 0, we have inf
u∈U

sup
θ∈Wq

V̇ < 0 for

all e 6= 0.
Theorem 3.3 below provides a formula of the robust state feedback con-

troller and states precise conditions under which the proposed controller en-
forces the desired properties in the closed-loop system. The proof of this the-
orem is given in Appendix A.

Theorem 3.3. Consider the uncertain nonlinear system of Eq.3.1, for which
Assumptions 3.1-3.3 hold, under the feedback control law:

u = p(x, c0, ρ, χ, φ, θbk, v̄)

= −k(x, c0, ρ, χ, φ, θbk, v̄)LḡV
(3.18)

where

k(·) =

{
c0 + rs(x) + rd(x, ρ, χ, φ, θb) , LḡV 6= 0

c0 + rc(x, ρ, χ, φ, θbk) , LḡV = 0

}
(3.19)

and

rs(x) =


Lf̄V +

√
(Lf̄V )2 + (LḡV )4

(LḡV )2


 (3.20)

rd(x, ρ, χ, φ, θb) =




ρ + χ

q∑

k=1

θbk‖LwkLr−1
f h(x)‖

(LgL
r−1
f h(x))2(

‖LḡV ‖
‖LgL

r−1
f h(x)‖ + φ)




(3.21)
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rc(x, ρ, χ, φ, θbk) =




ρ + χ

q∑

k=1

θbk‖LwkLr−1
f h(x)‖

(LgL
r−1
f h(x))2φ




(3.22)

where V = eT Pe, P is a positive-definite matrix that satisfies AT P + PA −
PbbT P < 0, and c0, ρ, χ, and φ are adjustable parameters that satisfy c0 > 0,
ρ > 0, χ > 2, and φ > 0. Furthermore, assume that the uncertain variables
in Eq.3.1 are vanishing in the sense that there exists positive real numbers
δk such that ‖w̄k(e, η, v̄)‖ ≤ δk‖2bT Pe‖ ∀ e ∈ D, where D = {e ∈ IRr :
‖2bT Pe‖ ≤ φ( 1

2χ− 1)−1}. Then for any initial condition, there exists φ∗ > 0
such that if φ ≤ φ∗, the following holds:
(1) The origin of the closed-loop system is asymptotically stable.
(2) The output of the closed-loop system satisfies a relation of the form:

lim sup
t→∞

‖y(t)− v(t)‖ = 0 (3.23)

(3) The control law of Eqs.3.18-3.21 minimizes the cost functional:

Jv =
∫ ∞

0

(l(e) + uR(x)u)dt (3.24)

where R(x) = 1
2 [c0+rs(x)+rd(x, ρ, χ, φ, θb)]−1 > 0 ∀ x ∈ IRn, l(e) = −Lf̄V +

1
4
LḡV R−1(x)LḡV−

q∑

k=1

‖LwkV ‖θbk ≥ k‖2bT Pe‖2 for some real number, k > 0,

and the minimum cost is J∗v = V (e(0)).

Remark 3.4. Referring to the controller of Eqs.3.18-3.21 (when LḡV 6= 0), one
can observe that it is comprised of two components. The first component:

us = −[c0 + rs(x)]LḡV (3.25)

is responsible for achieving stabilization and reference-input tracking in the
nominal closed-loop system (i.e., with θ(t) ≡ 0). This component, with c0 = 0,
is the so-called Sontag’s formula proposed in [253]. The second component of
the controller:

ur = −rd(x, ρ, χ, φ, θb)LḡV (3.26)

enforces, on the other hand, output tracking with an arbitrary degree of
asymptotic attenuation of the effect of θ on y. This component is also contin-
uous everywhere since LgL

r−1
f h(x) 6= 0 for all x (from Assumption 3.1) and

φ > 0. A key feature of the uncertainty compensator of Eq.3.26 is the presence

of a scaling term of the form
‖x‖

‖x‖+ φ
which allows us, not only to tune the

degree of uncertainty attenuation (by adjusting φ), but also to use smaller
and smaller control effort to cancel the uncertainties as the state gets closer
and closer to the equilibrium point. The full weight (gain) of the compensator
is used only when the state is far from the equilibrium point (since φ is small).
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Remark 3.5. Since the term r(x) of Eq.3.20 is undefined when LḡV = 0, the
LḡV controller gain, k(·), must be set to some value at those points where
LḡV = 0. Choosing k(·) = c0+rc(x) when LḡV = 0 ensures that the controller
gain is continuous when LḡV = 0 (note that rc(x) is the limit of rd(x) as LḡV
approaches zero). Continuity of the controller gain ensures that the weight
on the control penalty, R(x), in the cost functional of Eq.3.24 is bounded on
compact sets, which is necessary for the optimality properties of the controller
to be meaningful (see Remark 3.8 below).

Remark 3.6. The re-shaping of the scalar gain of the nominal LgV controller
of Eq.3.25, via the addition of the uncertainty compensator of Eq.3.26, allows
us to achieve attenuation of the effect of θ on y without using unreasonably
large (high-gain) control action. The use of a high-gain controller of the form

u =
1
ε
us where ε is a small positive parameter could also lead to uncertainty

attenuation at the expense of employing unnecessarily large control action
(see the example in Section 3.3.4 for a numerical verification of this fact).

Remark 3.7. The control law of Eqs.3.18-3.21 possesses four adjustable pa-
rameters that directly influence the performance of the output of the closed-
loop system and the achievable level of uncertainty attenuation. The positive
parameter c0 allows a certain degree of flexibility in shaping the dynamic be-
havior of the closed-loop output response as desired. To see this, we note that
by computing the time-derivative of V along the trajectories of the closed-
loop system, the following estimate can be obtained (see Part 1 of the Proof
of Theorem 3.3):

V̇ ≤ −c0(LḡV )2 −
√

(Lf̄V )2 + (LḡV )4 (3.27)

From the above equation, it is transparent that the choice of c0 affects how
negative the time-derivative of V is along the closed-loop trajectories and can
therefore be made so as to make this derivative more or less negative as re-
quested. For example, a large value for c0 will make V̇ more negative and
therefore generate a faster transient response. Note that a positive value of c0

is not necessary for stabilization (since V̇ is negative-definite even when c0 = 0
as can be seen from Eq.3.27); however, a positive value of c0 helps both in
shaping V̇ and in ensuring the positivity of the penalty weights in the cost
functional of Eq.3.24 (see Part 2 of the Proof of Theorem 3.3 for the detailed
calculations). The positive parameter ρ also helps in ensuring the positivity
of the penalty weights; however, its central role is to provide an additional
robustness margin that increases the negativity of V̇ and, thus, provides a
sufficient counterbalance to the undesirable effect of the uncertainty on V̇ to
guarantee global asymptotic stability. As can be seen from the calculations in
Part 1 of the Proof of Theorem 3.3, a zero value of ρ guarantees only bound-
edness of the closed-loop state (but not asymptotic stability). The remaining
two parameters, χ and φ, are primarily responsible for achieving the desired
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degree of attenuation of the effect of uncertainty on the closed-loop output.
A significant degree of attenuation can be achieved by selecting φ to be suffi-
ciently small and/or χ to be sufficiently large. While robust stability can be
achieved using any value of χ satisfying χ > 1, a value satisfying χ > 2 is
necessary to ensure the positive-definiteness of the weight function, l(e), in
the cost functional of Eq.3.24, and thus to ensure meaningful optimality.

Remark 3.8. Regarding the properties of the cost functional of Eq.3.24, we
observe that Jv is well-defined according to the formulation of the optimal
control problem for nonlinear systems [245] because of the following proper-
ties of l(e) and R(x). The function l(e) is continuous, positive-definite, and
bounded from below by a class K function of the norm of e (see Part 2 of the
Proof of Theorem 3.3). The function R(x) is continuous, strictly positive, and
the term uR(x)u has a unique global minimum at u = 0 implying a larger
control penalty for u farther away from zero. Moreover, owing to the vanishing
nature of the uncertain variables and the global asymptotic stability of the
origin of the closed-loop system, Jv is defined on the infinite-time interval and
is finite.

Remark 3.9. Note that since l(e) ≥ k‖2bT Pe‖2, where k is a positive constant
(details of this calculation are given in the Part 2 of the Proof of Theorem
3.3 in the Appendix), the cost functional of Eq.3.24 includes penalty on the
tracking error e = v− y and its time-derivatives up to order r, and not on the
full state of the closed-loop system. This is consistent with the requirement of

output tracking. The term −
q∑

k=1

‖LwkV ‖θbk in Eq.3.24 is a direct consequence

of the worst-case uncertainty formulation of the HJI equation (see Eq.3.3).

Remark 3.10. The linear growth bound on the functions w̄k(e, η, v̄) is imposed
to ensure that the results of Theorem 3.3 hold globally. Note, however, that
this condition is required to hold only over the set D (containing the origin)
whose size can be made arbitrarily small by appropriate selection of the tun-
ing parameters, φ and χ. This bound is consistent with the vanishing nature
of the uncertain variables considered in this section, since it implies that the
functions w̄k(e, η, v̄) vanish when e = 0. We observe that locally (i.e., in a
sufficiently small compact neighborhood of the origin), this growth condition
is automatically satisfied due to the local Lipschitz properties of the functions
w̄k. Finally, we note that the imposed growth assumption can be readily re-
laxed via a slight modification of the controller synthesis formula. One such
modification, for example, is to replace the term ‖LwkLr−1

f h(x)‖ in Eq.3.18
by the term ‖LwkLr−1

f h(x)‖2. Using a standard Lyapunov argument, one can
show that the resulting controller globally asymptotically stabilizes the sys-
tem without imposing the linear growth condition on the functions w̄k over
D. However, we choose not to modify the original controller design because
such modification will possibly increase the gain of the controller, prompting
the expenditure of unnecessarily large control action.
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Remark 3.11. In contrast to feedback linearizing controllers, the controller of
Eqs.3.18-3.21 has two desirable properties not present in the feedback lineariz-
ing design. The first property is the fact that the controller of Eqs.3.18-3.21
recognizes the beneficial effect of the term Lf̄V when Lf̄V < 0 and prevents
its unnecessary cancellation. In this case, the term Lf̄V is a stabilizing term
whose cancellation may generate positive feedback and destabilize the process.
Such a situation can arise whenever the process under consideration is open-
loop stable or contains beneficial nonlinearities that help drive the process
towards the desired steady-state. Under such circumstances, the term (Lf̄V )2

in Eqs.3.18-3.21 guards against the wasteful cancellation of such nonlinearities
(by essentially deactivating the cancelling term Lf̄V ) and helps the controller
avoid the expenditure of large control effort. This is particularly important
when the process operating conditions start relatively far away from the equi-
librium point in which case the feedback linearizing designs may generate a
huge control effort to cancel process nonlinearities. The second property that
the controller of Eqs.3.18-3.21 possesses is the fact that it dominates the term
Lf̄V , instead of cancelling it, when Lf̄V > 0. This situation arises, for ex-
ample, when the process is open-loop unstable. In this case, the term Lf̄V is
a destabilizing one that must be eliminated. The controller of Eqs.3.18-3.21,
however, eliminates the term by domination rather than by cancellation. This
property guards against the non-robustness of cancellation designs which in-
creases the risk of instability due to the presence of other uncertainty not taken
into account in the controller design. This means that input perturbations (or,
equivalently, an error in implementing the control law) will be tolerated by
the design presented in Theorem 3.3 in the sense that the trajectories will
remain bounded.

Remark 3.12. Referring to the practical implementation of the controller of
Eqs.3.18-3.21, we note that even though the controller is continuous at the
origin, it is not smooth at that point and, therefore, when implemented in
simulations, the numerical integration could result in a chattering-like behav-
ior for the control input near the origin (this problem arises because of the
piecewise, or “non-smooth,” form of the Sontag’s formula). In practice, this
problem can be circumvented via a slight modification of the control law,
whereby a sufficiently small positive real number, ε, is added to the (LḡV )2

term in the denominator of Sontag’s formula in order to smoothen out the con-
trol action. The addition of this parameter obviously destroys the asymptotic
stability capability of the controller and leads to some offset in the closed-
loop response. However, this offset can be made arbitrarily small by choosing
ε sufficiently small (practical stability). Clearly, a tradeoff exists between the
smoothness of the control action (which favors a relatively large ε) and the size
of the offset (a small offset favors a relatively small ε). Therefore, in tuning
the controller, ε should be chosen in a way that balances this tradeoff.
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3.3.3 Controller design under non-vanishing uncertainties

To proceed with the main results for the case of non-vanishing uncertain
variables, we let Assumptions 3.1 and 3.3 hold and modify Assumption 3.2 to
the following one.

Assumption 3.4 The dynamical system of Eq.3.15 is ISS with respect to e,
θ, uniformly in v̄.

Theorem 3.13. Let Assumptions 3.1, 3.3, and 3.4 hold and assume that the
uncertain variables in Eq.3.1 are non-vanishing in the sense that there exist
positive real numbers δ̄k, µk such that ‖w̄k(e, η)‖ ≤ δ̄k‖2bT Pe‖+ µk ∀ e ∈ D.
Consider the uncertain nonlinear system of Eq.3.1 under the control law:

u = −p(x, ρ, χ, φ, θbk, v̄) (3.28)

where p(·) was defined in Theorem 3.3. Then for any initial condition and for
every positive real number d, there exists φ∗(d) > 0 such that if φ ∈ (0, φ∗(d)],
the following holds:
(1) The trajectories of the closed-loop system are bounded.
(2) The output of the closed-loop system satisfies a relation of the form:

lim sup
t→∞

‖y(t)− v(t)‖ ≤ d (3.29)

(3) The control law of Eq.3.18 minimizes the cost functional:

Jn = lim
t→Tf

V (e(t)) +
∫ Tf

0

(l̄(e) + uR̄(x)u)dt (3.30)

with a minimum cost, J∗n = V (e(0)), where l̄(e(t)) = −Lf̄V +
1
4
LḡV R̄−1(x)LḡV−

q∑

k=1

‖LwkV ‖θbk > 0 ∀ t ∈ [0, Tf ], Tf = inf {T ≥ 0 : e(t) ∈ Γ ∀ t ≥ T},

Γ = {e ∈ IRr : eT Pe ≤ λmax(P )ε2}, ε = max{α−1
1 (2φ̄∗), α−1

2 (2φ̄∗)},
φ̄∗ =

q∑

k=1

µkθbkφ∗, α1(·), α2(·) are class K functions that satisfy, respectively,

α1(‖e‖) ≤
√

(Lf̄V )2 + (LḡV )4 and α2(‖e‖) ≤ 1
2

[
−Lf̄V +

√
(Lf̄V )2 + (LḡV )4

]
,

and R̄(x) = − 1
2 [c0 + rs(x) + rd(x, ρ, χ, φ, θb)]

−1
> 0.

Remark 3.14. Note that the cost functional of Eq.3.30 differs from that of
Eq.3.24 in two ways. First, owing to the persistent nature of the uncertainty
in this case (w̄k(0, η, v̄) 6= 0) and the fact that asymptotic convergence to
the equilibrium point of the nominal system is no longer possible, Jn cannot
achieve a finite value over the infinite time interval. Therefore, the cost func-
tional of Eq.3.24 is defined only over a finite time interval [0, Tf ]. The size of
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this interval is given by the time required for the tracking error trajectory to
reach and enter a compact ball Γ , centered around the origin, without ever
leaving again. In the Proof of Theorem 3.13, we show that V̇ < 0 outside
this ball, which implies that – once inside – the closed-loop trajectory cannot
escape. The size of Γ scales with φ(χ − 1)−1 and, depending on the desired
degree of attenuation of the effect of the uncertainty on the output, can be
made arbitrarily small by adjusting the controller tuning parameters φ and χ.
Therefore one can practically get as close as desired to the nominal equilib-
rium point. In addition to the terminal time, Tf , the cost functional of Eq.3.30
imposes a terminal penalty given by the term lim

t→Tf

V (e) to penalize the track-

ing error trajectory for its inability to converge to the origin for t > Tf . Note
that since the error trajectory of the closed-loop system converges to the ball
Γ as time tends to Tf , the cost functional of Eq.3.30 is meaningful in the
sense that l̄(e) ≥ k̄‖2bT Pe‖2 and R̄(x) > 0 ∀ t ∈ [0, Tf ].

Remark 3.15. It is important to compare the controller design proposed in
Theorem 3.13 with the following robust nonlinear controller based on the
design proposed in [58]:

u =
1

LgL
r−1
f h(x)

r∑

i=0

βi

βr
(v(i) − Li

fh(x)) + ur (3.31)

where ur was defined in Eq.3.26, which is continuous (since LgL
r−1
f h(x) 6= 0

and φ > 0) and guarantees boundedness of the trajectories of the closed-loop
system and output tracking with an arbitrary degree of asymptotic attenua-
tion of the effect of θ on y. The controller of Eq.3.31 consists of a term that
cancels the nonlinearities of the system of Eq.3.12 with θ(t) ≡ 0 that can be
cancelled by feedback, and a term that compensates for the effect of θ on y.
While the control law of Eq.3.31 can be shown to be optimal with respect to
some performance index, it remains to be seen whether the index is meaning-
ful or not. In particular, we note that the feedback linearizing component of
the controller of Eq.3.31 may generate unnecessarily large control action to
cancel beneficial nonlinearities and, therefore, may not in general be optimal
with respect to a meaningful performance index. Consequently, we use the
normal form of Eq.3.42 not for the design of the controller but only for the
construction of V . The choice of V = eT Pe is made to simplify the explicit
formula of the controller in the context of a specific application. Of course,
this choice for V is not unique and many other positive-definite functions
whose time-derivative along the trajectories of the closed-loop system can be
rendered negative-definite via feedback could be used.

Remark 3.16. An alternative to the gain-reshaping procedure underlying the
controller designs in Theorems 3.3 and 3.13 is the one proposed in [163]
which involves incorporating the uncertainty compensator within (rather than
adding it to) the “nominal” gain of Sontag’s formula. The resulting LgV con-
troller in this case has a scalar gain that is structurally-similar to that of



46 3 Control of Nonlinear Systems with Uncertainty

Sontag’s formula, except that the term LfV appears with the uncertainty
compensator added to it. In particular, when the compensator of Eq.3.26 is
used, this gain-reshaping approach yields the following control law:

u = −



L∗̄
f
V +

√
(L∗̄

f
V )2 + (LḡV )4

(LḡV )2


LḡV (3.32)

where

L∗̄
f
V = Lf̄V + χ

q∑

k=1

θbk‖Lw̄kV ‖
( ‖2Pe‖
‖2Pe‖+ φ

)
(3.33)

Using calculations similar to those in the appendix, one can show that the
above control law is also globally robustly stabilizing and inverse optimal with
respect to a meaningful cost. However, a potential drawback of this design is
the fact that it can limit the ability of the controller to fully “cancel out”
the uncertainty, especially when L∗̄

f
V is negative. This in turn can lead either

to a level of asymptotic uncertainty attenuation smaller than that achieved
by the controllers of Eq.3.18 and Eq.3.28, or to larger control action in order
to enforce the same attenuation level. To illustrate this point, consider the
following system:

ẋ = u + θ (3.34)

Since the system is scalar, we take V = 1
2x2 and get LgV = LwV = x and .

For this choice, the control law based on Eq.3.28 is:

u = −
(

1 +
χθb

‖x‖+ φ

)
x (3.35)

while the control law based on Eqs.3.32-3.33 is:

u = −

 χθb

‖x‖+ φ
+

√
1 +

(
χθb

‖x‖+ φ

)2

 x (3.36)

It is straightforward to verify that, for the same choice of tuning parameters
φ and χ, both controllers enforce the same level of asymptotic uncertainty
attenuation, with an ultimate bound on the state of ‖x‖ ≤ d where d =
φ(χ−1)−1. However, it is also clear that the controller gain in Eq.3.36 is higher,
point-wise, than that of the control law in Eq.3.35. The discrepancy between
the two gains reflects the cost of incorporating the uncertainty compensator
within a Sontag-type gain in Eq.3.36 as opposed to adding it to the nominal
gain of Sontag’s formula as done in Eq.3.35. Note that to reduce the controller
gain in Eq.3.36 requires an increase in φ and/or reduction in χ which, in either
case, implies a lesser level of uncertainty attenuation (larger residual set).

Remark 3.17. Referring to the practical applications of the result of Theorem
3.13, one has to initially verify whether Assumptions 3.1 and 3.4 hold for
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the process under consideration. Then, given the bounds θbk, Eq.3.28 can be
used to compute the explicit formula for the controller. Finally, given the
asymptotic tracking error desired, d, which can be chosen arbitrarily close to
zero, the value of φ∗ should be computed (usually through simulations) to
achieve lim sup

t→∞
‖y(t)− v(t)‖ ≤ d.

3.3.4 Illustrative example

In order to illustrate the performance of the developed control law, we consider
a continuous stirred tank reactor where an irreversible first-order exothermic
reaction of the form A

k→ B takes place. The inlet stream consists of pure A
at flow rate F = 100 L/min, concentration CA0 = 1.0 mol/L and tempera-
ture TA0 = 300 K. Under standard modeling assumptions, the mathematical
model for the process takes the form:

dCA

dt
=

F

V
(CA0 − CA)− k0 exp

(−E

RT

)
CA

dT

dt
=

F

V
(TA0 − T ) +

(−∆Hnom)
ρmcp

k0 exp
(−E

RT

)
CA +

Q

ρmcpV

(3.37)

where CA denotes the reactant concentration, T denotes the reactor tempera-
ture, Q denotes the rate of heat input to the reactor, V = 100 L is the volume
of the reactor, k0 = 7.0 min−1, E = 27.4 KJ/mol, ∆Hnom = 718 KJ/mol
are the pre-exponential constant, the activation energy, and the enthalpy
of the reaction, cp = 0.239 J/g · K and ρm = 1000 g/L, are the heat
capacity and fluid density in the reactor. For these values of process pa-
rameters, the process (with Q = 0) has an unstable equilibrium point at
(CAs, Ts) = (0.731 mol/L, 1098.5 K). The control objective is the regulation
of the reactant concentration at the (open-loop) unstable equilibrium point,
in the presence of time-varying, persistent disturbances in the feed tempera-
ture and uncertainty in the heat of reaction, by manipulating the rate of heat
input Q.

Defining the variables x1 = (CA − CAs)/CAs, x2 = (T − Ts)/Ts, u =
Q/(ρmcpV Ts), θ1(t) = TA0 − TA0s, θ2(t) = ∆H −∆Hnom, y = x1, where the
subscript s denotes the steady-state values, it is straightforward to verify that
the process model of Eq.3.37 can be cast in the form of Eq.3.1 with:

f(x) =
[

0.368− x1 − δ(x1, x2)
−0.736− x2 + 2δ(x1, x2)

]
, g(x) =

[
0
1

]
,

w1(x) =




0

1
Ts


 , w2(x) =




0
CAs

ρmcpTs
δ(x1, x2)




(3.38)
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where δ(x1, x2) = (1 + x1) exp
(

2− 3
x2 + 1

)
, and has a relative degree r =

2. To simulate the effect of the uncertainty, we consider the time-varying
functions θk(t) = θbksin(t), k = 1, 2 with upper bounds θb1 = 30 K and θb2 =
28.7 KJ/mol, respectively. To proceed with the design of the controller, we
initially use the coordinate transformation e1 = x1, e2 = 0.368−x1−δ(x1, x2)
to cast the input/output dynamics of the system of Eq.3.37 in the following
form:

ė = f̄(e) + ḡ(e)u + w̄1(e)θ1 + w̄2(e)θ2 (3.39)

where the functions f̄ , ḡ, w̄1, w̄2 can be computed directly from Eq.3.14. Note
that the uncertainties considered are non-vanishing and, therefore, we use the
result of Theorem 3.13 to design the necessary controller which takes the form

of Eq.3.18 with ρ = 0, q = 2, r = 2, and P =
[

1 0.45
0.45 1

]
. Moreover, the

following values are used for the tuning parameters of the controller: φ =
0.0001, χ = 1.6, and c0 = 0.0001 to guarantee that the output of the closed-
loop system satisfies a relation of the form lim sup

t→∞
‖y − v‖ ≤ 0.005.

Closed-loop simulations were performed to evaluate the robustness and op-
timality properties of the controller. The results are shown by the solid lines
in Figure 3.1, which depict the controlled output (top) and manipulated input
(bottom) profiles. One can immediately see that the robust optimal controller
drives the closed-loop output close to the desired steady-state, while atten-
uating the effect of the uncertainty on the output. Included also in Figure
3.1 is the closed-loop output profile (top plot, dashed-dotted line) and corre-
sponding input profile (bottom plot, dashed-dotted line) when the controller
of Eq.3.18 is implemented without the uncertainty compensation component
(χ = 0). It is clear from the result that the effect of uncertainty is significant
and leads to poor transient performance and offset.

For the sake of comparison, we also considered the robust nonlinear con-
troller of Eq.3.31 (see Remark 3.6 above) as well as the nonlinear high-gain

controller of the form u =
1
ε
[c0 + rs(x)]LḡV where no uncertainty compen-

sation is included and ε is a small positive number. The results for these two
cases (starting from the same initial condition) are shown in Figure 3.1 by the
dashed and dotted lines, respectively, for a choice of the tuning parameters:
β0 = 4, β1 = 9, β2 = 1, ε = 0.05. It is clear from the input profiles that, com-
pared with these two controllers, the controller of Eq.3.18 starts by requesting
significantly smaller control action to achieve a relatively faster closed-loop re-
sponse and enforce, asymptotically, the same level of attenuation of the effect
of uncertainty on x1. Finally, in order to establish the fact that the robust op-
timal controller of Eq.3.18 does not use unnecessary control action compared
with the controller of Eq.3.31, we compared the control actions generated by
the two controllers for a broad range of x1 and x2. The results are shown in
Figure 3.2 and clearly indicate that the controller of Eq.3.18 (dashed lines)
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uses smaller control action, point-wise, than the controller of Eq.3.31 (solid
lines).
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Fig. 3.1. Closed-loop output and manipulated input profiles under the controller of
Eqs.3.18-3.21 (solid lines), the controller of Eqs.3.18-3.21 with χ = 0 (dashed-dotted
lines), the controller of Eq.3.31 (dashed lines), and the high-gain controller (dotted
lines).
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Fig. 3.2. Control action computed by the controller of Eqs.3.18-3.21 (dashed lines)
and the controller of Eq.3.31 (solid lines).

3.4 Robust near-optimal output feedback controller
design

In section 3.3, we addressed the problem of synthesizing robust optimal state
feedback control laws for a large class of nonlinear systems. The practical
applicability of these control laws, however, rests on the assumption of ac-
cessibility of all process states for measurement. In chemical process control
– more so than in most other control areas – however, the complete state
cannot be measured in general (e.g., concentrations of certain species are not
accessible on-line) and therefore the state feedback controllers proposed in
chapter 3.3 may not be directly suited for practical applications. In the past
few years, significant advances have been made in the direction of output
feedback controller design for the purpose of robustly stabilizing nonlinear
systems. Important contributions in this area include general results on ro-
bust output feedback stabilization using the controller-observer combination
approach (e.g., [267, 268]), adaptive output feedback control (e.g., [188, 189]),
and robust output feedback controller design for various classes of nonlinear
systems (e.g., [146, 183, 50]). In addition to these approaches, other methods
for constructing robust stabilizers via output feedback, which do not neces-
sarily appeal to the principle of “composing a state feedback with estimates of
the states” have been explored, including output feedback control within the
H∞ control framework (e.g., [127, 129, 130]) and the recursive stabilization
scheme proposed in [128].
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In this section, we address the problem of synthesizing robust near-optimal
output feedback controllers for a broad class of nonlinear systems with time-
varying bounded uncertain variables. Under the assumptions of input-to-state
stable (ISS) inverse dynamics and vanishing uncertainty, a dynamic controller
is synthesized through combination of a high-gain observer with a robust op-
timal state feedback controller designed via Lyapunov’s direct method and
shown through the inverse optimal approach to be optimal with respect to
a meaningful cost defined on the infinite time-interval. The dynamic out-
put feedback controller enforces exponential stability and asymptotic output
tracking with attenuation of the effect of the uncertain variables on the output
of the closed-loop system for initial conditions and uncertainty in arbitrarily
large compact sets, as long as the observer gain is sufficiently large. Utilizing
the inverse optimal control approach and standard singular perturbation tech-
niques, this approach is shown to yield a near-optimal output feedback design
in the sense that the performance of the resulting output feedback controller
can be made arbitrarily close to that of the robust optimal state feedback
controller on the infinite time-interval, when the observer gain is sufficiently
large. For systems with non-vanishing uncertainty, the same controllers are
shown to ensure boundedness of the states, robust asymptotic output track-
ing, and near-optimality over a finite time-interval. The developed controllers
are successfully applied to a chemical reactor example.

3.4.1 Control problem formulation

Referring to the system of Eq.3.1, we consider two control problems with dif-
ferent control objectives. In the first problem, we consider the class of systems
described by Eq.3.1 where the uncertain variable terms are assumed to be van-
ishing (i.e., wk(0)θk = 0 for any θk ∈ Wk where the origin is the equilibrium
point of the system ẋ = f(x)). In this case, the origin is also an equilibrium
point for the uncertain system of Eq.3.1. The objective in this problem is to
synthesize robust nonlinear dynamic output feedback controllers of the form:

ω̇ = F(ω, y, v̄)

u = P(ω, y, v̄, t)
(3.40)

where ω ∈ IRs is a state, F(ω, y, v̄) is a vector function, P(ω, y, v̄, t) is a scalar
function, v̄ = [v v(1) · · · v(r)]T is a generalized reference input (v(k) denotes
the k-th time derivative of the reference input v, which is assumed to be a
sufficiently smooth function of time), that: (a) enforce exponential stability
in the closed-loop system, (b) guarantee asymptotic robust output tracking
with an arbitrary degree of attenuation of the effect of the uncertainty on the
output, and (c) are near-optimal with respect to a meaningful cost functional,
defined over the infinite time-interval, that imposes penalty on the control
action and the worst-case uncertainty. The near-optimality property, to be
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made more precise mathematically in Theorem 3.20 below, is sought in the
sense that the performance of the dynamic output feedback controller can be
made arbitrarily close to the optimal performance of the corresponding robust
optimal state feedback controller over the infinite time-interval.

In the second control problem, we again consider the system of Eq.3.1.
In this case, however, we assume that the uncertain variable terms are non-
vanishing (i.e., wk(0)θk 6= 0). Under this assumption, the origin is no longer an
equilibrium point of the system of Eq.3.1. The objective in this problem is to
synthesize robust nonlinear dynamic output feedback controllers of the form
of Eq.3.40 that: (a) guarantee boundedness of the closed-loop trajectories,
(b) enforce the discrepancy between the output and reference input to be
asymptotically arbitrarily small, and (c) are near-optimal with respect to a
meaningful cost defined over a finite time-interval, in the sense that their
performance can be made arbitrarily close to the optimal performance of the
corresponding robust optimal state feedback controllers over the same time-
interval.

In both control problems, the design of the dynamic controllers is car-
ried out using combination of a high-gain observer and the robust optimal
state feedback controllers proposed in Section 3.3. In particular, referring to
Eq.3.40, the system ω̇ = F(ω, y, v̄) is synthesized to provide estimates of
the system state variables, while the static component, P(ω, y, v̄, t), is syn-
thesized to enforce the requested properties in the closed-loop system. The
analysis of the closed-loop system employs standard singular perturbation
techniques (due to the high-gain nature of the observer) and utilizes the con-
cept of input-to-state stability (see Definition 3.2) and nonlinear small gain
theorem-type arguments. Near-optimality is established through the inverse
optimal approach (see Section 3.2) and using standard singular perturbation
results. The requested closed-loop properties in both control problems are en-
forced for arbitrarily large initial conditions and uncertainty provided that
the gain of the observer is sufficiently large (semi-global type result).

In order to proceed with the design of the desired output feedback con-
trollers, we need to impose the following three assumptions on the system
of Eq.3.1. The first assumption is motivated by the requirement of output
tracking and allows transforming the system of Eq.3.1 into a partially linear
form.

Assumption 3.5 There exists an integer r and a set of coordinates:

[
ζ
η

]
=




ζ1

ζ2

...
ζr

η1

...
ηn−r




= X (x) =




h(x)
Lfh(x)

...
Lr−1

f h(x)
χ1(x)

...
χn−r(x)




(3.41)
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where χ1(x), · · · , χn−r(x) are nonlinear scalar functions of x, such that the
system of Eq.3.1 takes the form:

ζ̇1 = ζ2

...
ζ̇r−1 = ζr

ζ̇r = Lr
fh(X−1(ζ, η)) + LgL

r−1
f h(X−1(ζ, η))u +

q∑

k=1

LwkLr−1
f h(X−1(ζ, η))θk

η̇1 = Ψ1(ζ, η)
...

η̇n−r = Ψn−r(ζ, η)
y = ζ1

(3.42)
where LgL

r−1
f h(x) 6= 0 for all x ∈ IRn, θ ∈ IRq. Moreover, for each θ ∈ IRq, the

states ζ, η are bounded if and only if the state x is bounded; and (ζ, η) → (0, 0)
if and only if x → 0.

Remark 3.18. We note that the change of variables of Eq.3.41 is independent
of θ and invertible, since, for every x, the variables ζ, η are uniquely determined
by Eq.3.41. This implies that if we can estimate the values of ζ, η for all times,
using appropriate state observers, then we automatically obtain estimates of
x for all times. This property will be exploited later to synthesize a state
estimator for the system of Eq.3.1 on the basis of the system of Eq.3.42. We
also note that Assumption 3.5 includes the matching condition of our robust
control method. In particular, we consider systems of the form Eq.3.1 for
which the uncertain variables enter the system in the same equation with
the manipulated input. This assumption is more restrictive than Assumption
3.1 used in Section 3.3.2 to solve the same robust control problem via state
feedback and is motivated by our requirement to eliminate the presence of θ in
the η-subsystem of the system of Eq.3.42. This requirement and the stability
requirement of Assumption 3.6 below will allow including in the controller a
replica of the η-subsystem of Eq.3.42 which provides estimates of the η states
(see Theorem 3.20 below).

Introducing the notation e = [e1 e2 · · · er]T where ei = ζi − v(i−1),
i = 1, · · · , r, the system of Eq.3.42 can be re-written as:

ė = f̄(e, η, v̄) + ḡ(e, η, v̄)u +
q∑

k=1

w̄k(e, η, v̄)θk

η̇ = Ψ(e, η, v̄)

(3.43)

where f̄(·) = Ae+b
(
Lr

fh(X−1(e, η, v̄))− v(r)
)
, ḡ(·) = bLgL

r−1
f h(X−1(e, η, v̄)),

w̄k(·) = bLwkLr−1
f h(X−1(e, η, v̄)), the matrix A and column vector b are de-
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fined in Eq.3.13. Following the same development presented in Section 3.3, we
use the above normal form of Eq.3.43 to construct a quadratic Lyapunov func-
tion, V = eT Pe, for our controller design, where the positive-definite matrix
P is chosen to satisfy the following Riccati inequality:

AT P + PA− PbbT P < 0 (3.44)

Assumption 3.6 The system:

η̇1 = Ψ1(e, η, v̄)
...

η̇n−r = Ψn−r(e, η, v̄)
(3.45)

is ISS with respect to e, uniformly in v̄, with βη(‖η(0)‖, t) = Kη‖η(0)‖e−at

where Kη ≥ 1, a > 0 are real numbers, and exponentially stable when e = 0.

Remark 3.19. Following [58], the requirement of input-to-state stability of the
system of Eq.3.45 with respect to ζ is imposed to allow the synthesis of a
robust state feedback controller that enforces the requested properties in the
closed-loop system for arbitrarily large initial conditions and uncertain vari-
ables. On the other hand, the requirement that βη(‖η(0)‖, t) = Kηe−at allows
incorporating in the robust output feedback controller a dynamical system
identical to the one of Eq.3.45 that provides estimates of the variables η. As-
sumption 3.6 is satisfied by many chemical processes (see, for example, [54]
and the chemical reactor example of Section 3.4.4).

We are now in a position to state the main results of this chapter. In what
follows we present the results for the case of vanishing uncertainty first, and
then provide the parallel treatment for case of non-vanishing uncertainty.

3.4.2 Near-optimality over the infinite horizon

Theorem 3.20 below provides an explicit formula for the robust near-optimal
output feedback controller and states precise conditions under which the pro-
posed controller enforces the desired properties in the closed-loop system. The
proof of this theorem is given in Appendix A.

Theorem 3.20. Consider the uncertain nonlinear system of Eq.3.1, for which
Assumptions 3.3, 3.5 and 3.6 hold, under the robust output feedback controller:
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˙̃y =




−La1 1 0 · · · 0
−L2a2 0 1 · · · 0

...
...

...
. . .

...
−Lr−1ar−1 0 0 · · · 1
−Lrar 0 0 · · · 0




ỹ +




La1

L2a2

...
Lr−1ar−1

Lrar




y

ω̇1 = Ψ1(sat(ỹ), ω)

...
ω̇n−r = Ψn−r(sat(ỹ), ω)

u = p(x̂, c0, ρ, χ, φ, θb, v̄)

(3.46)

where the parameters, a1, · · · , ar are chosen such that the polynomial sr +
a1s

r−1+a2s
r−2+ · · ·+a1 = 0 is Hurwitz and p(·) was defined in Theorem 3.3,

x̂ = X−1(sat(ỹ), ω)), V = eT Pe, P is a positive-definite matrix that satisfies
Eq.3.44, and c0, ρ, χ, and φ are adjustable parameters that satisfy c0 > 0,
ρ > 0, χ > 2, and φ > 0. Furthermore, assume that the uncertain variables

are vanishing in the sense defined in Theorem 3.3 and let ε =
1
L

. Then, for
each set of positive real numbers δx, δθ, δv̄, there exists φ∗ > 0 and for each
φ ∈ (0, φ∗], there exists an ε∗(φ) > 0, such that if φ ∈ (0, φ∗], ε ∈ (0, ε∗(φ)],

sat(·) = min{1,
ζmax

‖ · ‖ }(·) with ζmax being the maximum value of the vector

[ζ1 ζ2 · · · ζr] for ‖ζ‖ ≤ βζ(δζ , 0) where βζ is a class KL function and δζ is
the maximum value of the vector [h(x) Lfh(x) · · ·Lr−1

f h(x)] for ‖x‖ ≤ δx,
‖x(0)‖ ≤ δx, ‖θ‖s ≤ δθ, ‖v̄‖s ≤ δv̄, ‖ỹ(0)‖ ≤ δζ , ω(0) = η(0) + O(ε), the
following holds:
(1) The origin of the closed-loop system is exponentially stable.
(2) The output of the closed-loop system satisfies a relation of the form:

lim sup
t→∞

‖y(t)− v(t)‖ = 0 (3.47)

(3) The output feedback controller of Eq.3.46 is near-optimal with respect to
the cost functional of Eq.3.24 in the sense that J∗v,o −→ V (e(0)) as ε −→ 0,
where J∗v,o = Jv(u = p(x̂)).

Remark 3.21. The robust output feedback controller of Eq.3.46 consists of a
high-gain observer which provides estimates of the derivatives of the output
y up to order r − 1, denoted as ỹ0, ỹ1, · · · , ỹr−1, and thus estimates of the
variables ζ1, . . . , ζr (note that from Assumption 3.5 it follows directly that

ζk =
dk−1y

dtk−1
, k = 1, · · · , r), an observer that simulates the inverse dynamics of

the system of Eq.3.42, and a static state feedback controller (see discussion in
remark 3.2 below) that attenuates the effect of the uncertain variables on the
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output and enforces reference input tracking. To eliminate the peaking phe-
nomenon associated with the high-gain observer, we use a standard saturation
function, sat, to eliminate wrong estimates of the output derivatives for short
times. We choose to saturate ỹ0, ỹ1, . . . , ỹr−1 instead of the control action as
was proposed in [149], because in most practical applications, it is possible
to use knowledge of process operating conditions to derive nonconservative
bounds on the actual values of the output derivatives.

Remark 3.22. The static component of the controller of Eq.3.46 is the same
as that given in Theorem 3.3, except that it is now a function of the state
estimate and not the actual state. The first component is a generalization of
Sontag’s formula proposed in [253] where the parameter c0 was introduced to
ensure the strict positivity of R(x). Recall from Theorem 3.3 that the static
component of the feedback controller of Eq.3.18 (with x̂ = x) is optimal with
respect to a meaningful cost of the form of Eq.3.24 and that the minimum
cost achieved under the state feedback controller is V (e(0)).

Remark 3.23. The near-optimality property established in Theorem 3.20 for
the output feedback controller of Eq.3.46 is defined in the sense that the
infinite-horizon cost incurred by implementing this controller on the system
of Eq.3.1 tends to the minimum cost achieved by implementing the robust
optimal state feedback controller (i.e., u of Eq.3.46 with x̂ = x) when the gain
of the observer is chosen to be sufficiently large. It is important therefore to
realize that near-optimality of the controller of Eq.3.46 is a consequence of
two integral factors. The first is the optimality of the static component of the
controller (state feedback problem), and the second is the high-gain nature of
the observer which can be exploited to make the performance of the output
feedback controller arbitrarily close to that of the state feedback controller
over the infinite time-interval. Instrumental in this regard is the use of the
saturation function (see Remark 3.21) which allows the use of arbitrarily large
values of the observer gain to achieve the desired degree of near-optimality
without the detrimental effects of observer peaking. Combining other types of
observers that do not possess these properties with the static component of
Eq.3.46, therefore, will not lead to a near-optimal feedback controller design
in the sense of Theorem 3.20.

Remark 3.24. A stronger near-optimality result than the one established in
Theorem 3.20 can be obtained in a sufficiently small neighborhood of the
origin of the system of Eq.3.1, where the functions l(e) and R(x) satisfy the
Lipschitz property. Over such a neighborhood, it can be shown, using the
local Lipschitz properties, that the cost computed using the output feedback
controller of Eq.3.46 is, in fact, O(ε) close to the optimal cost attained under
the optimal state feedback controller (i.e. J∗v = V (e(0)) + O(ε)).

Remark 3.25. Owing to the presence of the fast (high-gain) observer in the
dynamical system of Eq.3.46, the closed-loop system can be cast as a two time-
scale system and, therefore, represented in the following singularly perturbed
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form, where ε =
1
L

is the singular perturbation parameter:

εėo = Aeo + εbΩ(x, x̂, θ, φ, v̄)

ω̇1 = Ψ1(sat(ỹ), ω)

...
ω̇n−r = Ψn−r(sat(ỹ), ω)

ẋ = f(x) + g(x)A(x̂, v̄, φ) +
q∑

k=1

wk(x)θk(t)

(3.48)

where eo is a vector of the auxiliary error variables êi = Lr−i(y(i−1) − ỹi)
(see part 1 of the proof of Theorem 3.20 in the appendix for the details of
the notation used). It is clear from the above representation that, within the
singular perturbation formulation, the observer states, eo, which are directly
related to the estimates of the output and its derivatives up to order r − 1,
constitute the fast states of the singularly perturbed system of Eq.3.48, while
the ω states of the observer and the states of the original system of Eq.3.1
represent the slow states. Owing to the dependence of the controller of Eq.3.46
on both the slow and fast states, the control action computed by the static
component in Eq.3.46 is not O(ε) close to that computed by the state feedback
controller for all times. After the decay of the boundary layer term eo, however,
the static component in Eq.3.46 approximates the state feedback controller to
within O(ε).

It is important to point out that the result of Theorem 3.20 is novel even in
the case of no plant-model mismatch, where θ(t) ≡ 0. The following corollary
states the result for this case:

Corollary 3.26. Suppose the assumptions of Theorem 3.20 are satisfied for
the nonlinear system of Eq.3.1 with θk(t) ≡ 0, then the closed-loop system
properties (1)-(3) given in Theorem 3.20 hold under the output feedback con-
troller of Eq.3.46 with ρ = χ = 0.

3.4.3 Near-optimality over the finite horizon

We now turn to the second control problem posed earlier where the uncertain
variable terms in Eq.3.1 are non-vanishing. To this end, we modify Assumption
3.6 to the following one.

Assumption 3.7 The system of Eq.3.45 is ISS with respect to e, uniformly in
v̄, with βη(‖η(0)‖, t) = Kη‖η(0)‖e−at where Kη ≥ 1, a > 0 are real numbers.
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Theorem 3.27 below provides an explicit formula for the construction of the
necessary robust near-optimal output feedback controller and states precise
conditions under which the proposed controller enforces the desired properties
in the closed-loop system. The proof of this theorem is given in Appendix A.

Theorem 3.27. Consider the uncertain nonlinear system of Eq.3.1, for which
Assumptions 3.3, 3.5 and 3.7 hold, under the robust output feedback controller:

˙̃y =




−La1 1 0 · · · 0
−L2a2 0 1 · · · 0

...
...

...
. . .

...
−Lr−1ar−1 0 0 · · · 1
−Lrar 0 0 · · · 0




ỹ +




La1

L2a2

...
Lr−1ar−1

Lrar




y

ω̇1 = Ψ1(sat(ỹ), ω)
...

ω̇n−r = Ψn−r(sat(ỹ), ω)
u = p(x̂, c0, ρ, χ, φ, θb)

(3.49)

where the parameters, a1, · · · , ar are chosen such that the polynomial sr +
a1s

r−1 + a2s
r−2 + · · · + a1 = 0 is Hurwitz and p(·) was defined in Theorem

3.3. Furthermore, assume that the functions w̄k(ζ, η) are non-vanishing in the

sense defined in Theorem 3.13 and let ε =
1
L

. Then, for each set of positive real

numbers δx, δθ, δv̄, d, there exists φ∗ > 0 and for each φ ∈ (0, φ∗], there exists

an ε∗(φ) > 0, such that if φ ∈ (0, φ∗], ε ∈ (0, ε∗(φ)], sat(·) = min{1,
ζmax

‖ · ‖ }(·)
with ζmax being the maximum value of the vector [ζ1 ζ2 · · · ζr] for ‖ζ‖ ≤
βζ(δζ , 0) + d where βζ is a class KL function and δζ is the maximum value of
the vector [h(x) Lfh(x) · · ·Lr−1

f h(x)] for ‖x‖ ≤ δx, ‖x(0)‖ ≤ δx, ‖θ‖s ≤ δθ,
‖v̄‖s ≤ δv̄, ‖ỹ(0)‖ ≤ δζ , ω(0) = η(0) + O(ε), the following holds:
(1) The trajectories of the closed-loop system are bounded.
(2) The output of the closed-loop system satisfies a relation of the form:

lim sup
t→∞

‖y(t)− v(t)‖ ≤ d (3.50)

(3) The output feedback controller of Eq.3.49 is near-optimal with respect to
the cost functional of Eq.3.30 in the sense that J∗n,o −→ V (e(0)) as ε −→ 0,
where J∗n,o = Jn(u = p̃(x̂)).

Remark 3.28. Note that owing to the persistent nature of the uncertainty in
this case, asymptotic convergence of the closed-loop system to the equilibrium
point of the nominal system (i.e. θ(t) ≡ 0) is no longer possible. Therefore, the
cost functional J cannot achieve a finite value over the infinite time-interval.
Instead, J is defined over a finite time-interval [0, Tf ] whose size is deter-
mined by the time required for the tracking error trajectory to reach and
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enter the ball Γ without ever leaving again. Depending on the desired degree
of uncertainty attenuation, the size of this ball can be tuned by adjusting
the parameters φ and χ. An additional consequence of the non-vanishing un-
certainty is the appearance of the terminal penalty term lim

t→Tf

V (e(t)) in the

cost functional of Eq.3.30 which accounts for the fact that the closed-loop
trajectories do not converge asymptotically to the origin for t > Tf .

Remark 3.29. In contrast to the output feedback controller design of Theorem
3.20, the controller design of Theorem 3.27 is near-optimal in the sense that
the cost incurred by implementing this controller to the system of Eq.3.1 can
be made arbitrarily close to the optimal cost achieved by the corresponding
robust optimal state feedback controller, for times in the finite interval [0, Tf ],
by choosing the gain of the observer to be sufficiently large. As a consequence
of the non-vanishing uncertainty, near-optimality can be established on the
finite time-interval only and not for all times.

Remark 3.30. Referring to the practical applications of the result of Theorem
3.27, one has to initially verify whether Assumptions 3.5 and 3.7 hold for the
process under consideration and compute the bounds θbk. Then, Eq.3.46 can
be used to compute the explicit formula of the controller. Finally, given the
ultimate uncertainty attenuation level desired, d, the values of φ∗ and the
observer gain L should be computed (usually through simulations) to achieve
lim sup

t→∞
‖y(t) − v(t)‖ ≤ d and guarantee the near-optimal performance of the

controller.

3.4.4 Application to a non-isothermal chemical reactor

Process description and control problem formulation

To illustrate the implementation and performance of the output feedback con-
troller design presented in the previous subsection, we consider a well-mixed
continuous stirred tank reactor where three parallel irreversible elementary
endothermic reactions of the form A

k1→ D, A
k2→ U and A

k3→ R take place,
where A is the reactant species, D is the desired product and U,R are un-
desired byproducts. The feed to the reactor consists of pure A at flow rate
F , molar concentration CA0 and temperature TA0. Due to the endothermic
nature of the reactions, a heating jacket is used to provide heat to the reactor.
Under standard modeling assumptions, a mathematical model of the process
can be derived from material and energy balances and takes the following
form:
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V
dCA

dt
= F (CA0 − CA)−

3∑

i=1

ki0 exp
(−Ei

RT

)
CAV

V
dCD

dt
= −FCD + k10 exp

(−E1

RT

)
CAV

V
dT

dt
= F (TA0 − T ) +

3∑

i=1

(−∆Hi)
ρcp

ki0 exp
(−Ei

RT

)
CAV +

UA

ρcp
(Tc − T )

(3.51)
where CA and CD denote the concentrations of the species A and D, T denotes
the temperature of the reactor, Tc denotes the temperature of the heating
jacket, V denotes the volume of the reactor, ∆Hi, ki0, Ei, i = 1, 2, 3, denote
the enthalpies, pre-exponential constants and activation energies of the three
reactions, respectively, cp and ρ denote the heat capacity and density of the
reactor, and U denotes the heat transfer coefficient between the reactor and
the heating jacket. The values of the process parameters and the corresponding
steady-state values are given in Table 3.1. It was verified that these conditions
correspond to a stable equilibrium point of the system of Eq.3.51. The control

Table 3.1. Process parameters and steady-state values for the reactor of Eq.3.51.

V = 1.00 m3

A = 6.0 m2

U = 1000.0 kcal hr−1 m−2 K−1

R = 1.987 kcal kmol−1 K−1

CA0s = 3.75 kmol m−3

TA0s = 310.0 K
Tcs = 320.0 K
∆H10 = 5.4× 103 kcal kmol−1

∆H20 = 5.1× 103 kcal kmol−1

∆H30 = 5.0× 104 kcal kmol−1

k10 = 3.36× 106 hr−1

k20 = 7.21× 106 hr−1

k30 = 1.25× 107 hr−1

E1 = 8.0× 103 kcal kmol−1

E2 = 9.0× 103 kcal kmol−1

E3 = 9.5× 103 kcal kmol−1

cp = 0.231 kcal kg−1 K−1

ρ = 900.0 kg m−3

F = 3.0 m3 hr−1

CAS = 0.913 kmol m−3

CDS = 1.66 kmol m−3

Ts = 302.0 K
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problem is formulated as the one of regulating the concentration of the desired
product CD by manipulating the temperature of the fluid in the heating jacket
Tc. Within the posed control problem we distinguish and address the following
two scenarios. In the first scenario, the control objective is achieved in the
absence of any model uncertainty or exogenous disturbances in the process.
By contrast, the control objective in the second scenario is accomplished in
the presence of uncertainty. In the latter scenario, the enthalpies of the three
reactions ∆Hi, i = 1, 2, 3 and the feed temperature TA0 are assumed to be the
main uncertain variables present. Defining x1 = CA − CAs, x2 = CD − CDs,
x3 = T − Ts, u = Tc − Tcs, θ1 = ∆H1 − ∆H10, θ2 = ∆H2 − ∆H20, θ3 =
∆H3−∆H30, θ4 = TA0−TA0s, y = CD −CDs, where the subscript s denotes
the steady-state values and ∆HD0, ∆HU0, ∆HR0 are the nominal values for
the enthalpies, the process model of Eq.3.51 can be written in the form of
Eq.3.1 where:

f(x) =




F

V
(CA0 − CAs − x1)−

3∑

i=1

ki0 exp
( −Ei

R(x3 + Ts)

)
(x1 + CAs)

−F

V
(CDs + x2) + k10 exp

( −E1

R(x3 + Ts)

)
(x1 + CAs)

F

V
(TA0s − Ts − x3) +

3∑

i=1

(−∆Hi)
ρcp

ki0 exp
( −Ei

R(x3 + Ts)

)
(x1 + CAs)

+
UA

ρcp
(Tcs − Ts − x3)




g(x) =




0

0

UA

ρcp




, wi(x) =




0

0

ki0 exp
( −Ei

R(x3 + Ts)

)
(x1 + CAs)




, i = 1, 2, 3

w4(x) =




0

0

F

V




, h(x) =
[
x2

]

Using the following coordinate transformation:
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ζ1

ζ2

η1


 =




h(x)
Lfh(x)

t(x)


 =




x2

−F

V
(CDs + x2) + k10 exp

( −E1

R(x3 + Ts)

)
(x1 + CAs)

x1




(3.52)
and the notation f̄(e, η, v̄) = [e2 L2

fh(x)−v(2)]T , ḡ(e, η, v̄) = [0 LgLfh(x)]T ,
w̄k(e, η, v̄) = [0 LwkLfh(x)]T , k = 1, 2, 3, 4, the process model can be cast in
the following form:

ė = f̄(e, η, v̄) + ḡ(e, η, v̄)u +
4∑

k=1

w̄k(e, η, v̄)θk

η̇ = Ψ(e, η, v̄)

y = e1 + v

(3.53)

Controller synthesis and simulation results

We now proceed with the design of the controller and begin with the first
scenario where no uncertainty is assumed to be present in the process model
(i.e. θk ≡ 0). Owing to the absence of uncertainty in this case, we use the result
of Corollary 3.26 to design the controller. It can be easily verified that the
system of Eq.3.53 satisfies the Assumptions of the corollary and therefore the
necessary output feedback controller (whose practical implementation requires
measurements of CD only) takes the form:

˙̃y1 = ỹ2 + La1(y − ỹ1)

˙̃y2 = L2a2(y − ỹ1)

ω̇1 =
F

V
(CA0 − CAs − x̂1)−

3∑

i=1

ki0 exp
( −Ei

R(x̂3 + Ts)

)
(x̂1 + CAs)

u = −

c0 +

ˆLf̄V +
√

( ˆLf̄V )2 + ( ˆLḡV )4

( ˆLḡV )2


 ˆLḡV

(3.54)

where
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V = eT Pe, P =
[

1 c
c 1

]
, c ∈ (0, 1)

ˆLf̄V = 2
(
(x̂2 − v) + c

(
Lfh(x̂)− v(1)

))
(Lfh(x̂)− v(1))

+ 2
(
c (x̂2 − v) +

(
Lfh(x̂)− v(1)

)) (
L2

fh(x̂)− v(2)
)

ˆLḡV = 2
(
c (x̂2 − v) +

(
Lfh(x̂)− v(1)

))
LgLfh(x̂)

(3.55)

For the sake of comparison, we consider also the nonlinear output feedback
controller synthesized based on the concepts of feedback linearization and
proposed in [50] with the static component:

u = − 1
LgLfh(x̂)

{
β0

β2
(x̂2 − v) +

β1

β2
(Lfh(x̂)− v(1)) + (L2

fh(x̂)− v(2))
}

(3.56)
Before we present the simulation results for the first scenario, we first

establish the fact that the static state feedback component of the controller
of Eq.3.54 does not expend unnecessary control effort in comparison with
the static controller of Eq.3.56. To this end, we compared the control actions
generated by the two controllers for a broad range of T and CD. The results
are shown in Figure 3.3 for several values of CA. Clearly, the controller of
Eq.3.54 utilizes smaller control action than that of Eq.3.56.

Two sets of simulation runs were performed to evaluate the performance
and near-optimality properties of the dynamic output feedback controller of
Eq.3.54. The following values were used for the controller and observer pa-
rameters: c0 = 0.1, α = 1.0, c = 0.99, L = 3000, a1 = 10, a2 = 20, am = 1.0.

In the first set of simulation runs, we evaluated the capability of the con-
troller to steer the process to the steady-state given in Table 3.1 starting from
arbitrary initial conditions. Figure 3.4 shows the controlled output profile and
the corresponding manipulated input profile. Clearly, the controller success-
fully steers the process to the desired steady-state. Also shown in the figure
is a comparison between the output feedback controller of Eq.3.54 and the
corresponding state feedback controller (i.e., the static component of Eq.3.54
with x̂ = x) synthesized under the assumption that all process states are avail-
able for measurement. It was shown in Section 3.3.2 that the state feedback
controller is optimal with respect to a meaningful cost of the form of Eq.3.24.
From Figure 3.4, one can immediately observe that the controlled output and
manipulated input profiles obtained under the output feedback controller are
very close to the profiles obtained under the state feedback controller. This
comparison then makes clear the fact that the controller of Eq.3.54 is near-
optimal in the sense that its performance approaches the optimal performance
of the state feedback controller when the observer gain is sufficiently high. To
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Fig. 3.3. Control actions computed by the static component of the controller of
Eq.3.54 (solid lines) and the controller of Eq.3.56 (dashed lines) for CA−CAS = −0.4
(top left), -0.2 (top right), 0.2 (bottom left), 0.4 (bottom right)

further illustrate the near-optimality result, we compared the costs associated
with both the state feedback and output feedback controllers. The costs were
computed and found to be 0.250 and 0.257, respectively, further confirming
the near-optimality of the controller of Eq.3.54.

In the second set of simulation runs, we tested the output tracking capa-
bilities of the output feedback controller of Eq.3.54. The process was initially
assumed to be at the steady-state given in Table 3.1 and then a 0.5 mol/L
decrease in the value of the reference input was imposed (v = −0.5). Fig-
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Fig. 3.4. Closed-loop output and manipulated input profiles for stabilization un-
der the output feedback controller of Eq.3.54 (dashed lines) and the optimal state
feedback controller (solid lines) when no uncertainty is present.
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ure 3.5 shows the profiles of the controlled output of the process and of the
corresponding manipulated input. One can immediately observe that the con-
troller successfully drives the output to the desired new reference input value.
The figure also shows the closeness of the controlled output and manipu-
lated input profiles obtained under the output feedback and state feedback
controllers. It is clear that the tracking capabilities of the output feedback con-
troller approach those of the optimal state feedback controller and therefore
the controller of Eq.3.54 is near-optimal.

We now consider the second scenario where we account for the presence
of uncertainty in the process. The following time-varying uncertain variables
were considered in the simulation runs:

θi(t) = 0.4 (−∆Hi0) [1 + sin(2t)] , i = 1, 2, 3

θ4(t) = 0.07TA0s [1 + sin(2t)] (3.57)

The bounds on the uncertain variables were taken to be θbi = 0.4 |(−∆Hi0)|,
for i = 1, 2, 3, θb4 = 0.07TA0s. Moreover, the following values were used for
the tuning parameters of the controller and the observer: c0 = 0.1, c = 0.99,
φ = 0.005, χ = 1.1, L = 30000, a1 = 10, a2 = 20, am = 1.0 to guarantee that
the output of the closed-loop system satisfies a relation of the following form:

lim sup
t→∞

‖y − v‖ ≤ 0.005 (3.58)

To design the necessary controller in this case, we note that since the w̄k

functions defined in Eq.3.53 do not vanish at the origin, the uncertain variables
considered here are non-vanishing. Therefore, we use the result of Theorem
3.27 to construct the necessary robust output feedback controller which takes
the following form:
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Fig. 3.5. Closed-loop output and manipulated input profiles for reference input
tracking under the output feedback controller of Eq.3.54 (dashed lines) and the
optimal state feedback controller (solid lines) when no uncertainty is present.
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˙̃y1 = ỹ2 + La1(y − ỹ1)

˙̃y2 = L2a2(y − ỹ1)

ω̇1 =
F

V
(CA0 − CAs − x̂1)−

3∑

i=1

ki0 exp
( −Ei

R(x̂3 + Ts)

)
(x̂1 + CAs)

u = −

c0 +

ˆLf̄V +
√

( ˆLf̄V )2 + ( ˆLḡV )4

( ˆLḡV )2


 ˆLḡV

−




χ

4∑

k=1

θbk‖LwkLfh(x̂)‖

(LgLfh(x̂))2(
‖ ˆLḡV ‖

‖LgLfh(x̂)‖ + φ)




ˆLḡV

(3.59)

where V , ˆLf̄V , ˆLḡV were defined in Eq.3.55.
Several sets of simulation studies were performed to assess the perfor-

mance, robustness, and near-optimality properties of the dynamic robust out-
put feedback controller of Eq.3.59. In the first set of simulations, we tested the
ability of the controller to drive the output of the process close to the desired
steady-state starting from arbitrary initial conditions despite the presence of
uncertainty. Figure 3.6 shows the controlled output profile and the manipu-
lated input profile. One can immediately see that the effect of the uncertainty
has been significantly reduced (compare with the output of the open-loop sys-
tem) and the output of the process remains very close to the desired steady-
state satisfying the requirement of Eq.3.58. Included in the figure also are the
controlled output and manipulated input profiles for the process under the
optimal state feedback controller (i.e., the static component of Eq.3.59 with
x̂ = x) which was shown in Theorem 3.13 to be optimal with respect to the
cost functional of Eq.3.30 with x̂ = x. It is clear from the figure that the
profiles obtained under the output feedback controller follow closely those ob-
tained under the optimal state feedback controller and, therefore, the robust
output feedback controller of Eq.3.59 is near-optimal.

In the second set of simulations, we investigated the significance of the
term responsible for uncertainty compensation in the controller of Eq.3.59.
To this end, we implemented the controller of Eq.3.59 on the process with-
out the uncertainty compensation component. The closed-loop output and
manipulated input profiles for this simulation run are given in Figure 3.7. It
is clear that the effect of the uncertain variables is appreciable, leading to
poor transient performance and offset and that uncertainty compensation is
required to achieve the control objective.
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Fig. 3.6. Closed-loop output and manipulated input profiles for stabilization under
the robust output feedback controller of Eq.3.59 (dashed lines), the robust optimal
state feedback controller (solid lines) and open-loop profile (dotted line).
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Fig. 3.7. Closed-loop output and manipulated input profiles for stabilization under
the output feedback controller of Eq.3.59 with no uncertainty compensation (χ = 0).
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In the last set of simulations performed, we tested the output tracking ca-
pabilities of the controller of Eq.3.59 for a 0.5 mol/L decrease in the value of
the reference input. The resulting closed-loop output and manipulated input
profiles, shown in Figure 3.8, clearly establish the capability of the output
feedback controller of Eq.3.59 to enforce the requirement of Eq.3.58, despite
the presence of uncertainty. Furthermore, Figure 3.8 demonsttrates the near-
optimality of the output feedback controller within the context of robust out-
put tracking. This is evident from the closeness of the performance of the
robust output feedback controller of Eq.3.59 to that of the corresponding ro-
bust optimal state feedback controller.

3.5 Robust control of nonlinear singulary-perturbed
systems

In addition to parametric uncertainty and external disturbances, unmodeled
dynamics constitute another common source of uncertainty. In the modeling
of physical and chemical systems, it is common practice to neglect stable,
high-frequency dynamics (e.g., actuators/sensors with small time constants)
that increase the order of the model in order to reduce model complexity for
the analysis and controller design tasks. An important consideration in con-
troller design is to ensure robustness of the controller designed on the basis of
the simplified model with respect to the unmodeld dynamics. Singular pertur-
bation theory provides a natural framework for addressing this problem given
that the presence of unmodeld dynamics induces time-scale multiplicity. Sin-
gular perturbation methods allow decomposing a multiple-time-scale system
into separate reduced-order systems that evolve in different time-scales, and
inferring its asymptotic properties from the knowledge of the behavior of the
reduced-order systems [152]. In this section, we study, using singular pertur-
bations techniques, the robustness of the output feedback controller design
presented in Section 3.4 with respect to unmodeled dynamics. To this end,
we consider single-input single-output nonlinear singularly perturbed systems
with uncertain variables of the form:

ẋ = f1(x) + Q1(x)z + g1(x)u + w1(x)θ(t)

εż = f2(x) + Q2(x)z + g2(x)u + w2(x)θ(t)

y = h(x)

(3.60)

where x ∈ IRn and z ∈ IRp denote vectors of state variables, u ∈ IR denotes
the manipulated input, θ ∈ IR denotes the uncertain time-varying variable,
which may include disturbances and unknown process parameters, and y ∈
IR denotes the controlled output, and ε is a small positive parameter that
quantifies the speed ratio of the slow versus the fast dynamics of the system.
The functions, f1(x), f2(x), g1(x) and g2(x), w1(x) and w2(x), are sufficiently



72 3 Control of Nonlinear Systems with Uncertainty

-0.5

-0.45

-0.4

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0 2 4 6 8 10

C
D

-C
D

S
 (

m
o

l/
L

)

time (hr)

-35

-30

-25

-20

-15

-10

-5

0

5

0 1 2 3 4 5 6 7 8 9 10

T
c
-T

c
s
 (

K
)

time (hr)

Fig. 3.8. Closed-loop output and manipulated input profiles for reference input
tracking under the robust output feedback controller of Eq.3.59 (dashed lines) and
the robust optimal state feedback controller (solid lines).
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smooth vector functions, Q1(x) and Q2(x) are sufficiently smooth matrices,
and h(x) is a sufficiently smooth scalar function.

Setting ε = 0 in the system of Eq.3.60 and assuming that Q2(x) is invert-
ible, uniformly in x ∈ IRn, the following slow subsystem is obtained:

ẋ = f(x) + g(x)u + w(x)θ(t)

y = h(x)
(3.61)

where
f(x) = f1(x)−Q1(x)Q−1

2 (x)f2(x)

g(x) = g1(x)−Q1(x)Q−1
2 (x)g2(x)

w(x) = w1(x)−Q1(x)Q−1
2 (x)w2(x)

(3.62)

Defining the fast time-scale, τ =
t

ε
, deriving the representation of the system

of Eq.3.60 in the τ time scale, and setting ε = 0, the following fast subsystem
is obtained:

dz

dτ
= f2(x) + Q2(x)z + g2(x)u + w2(x)θ(t) (3.63)

where x can be considered equal to its initial value, x(0), and θ can be viewed
as constant. In this section, we consider systems of the form of Eq.3.60, for
which the corresponding fast subsystem is globally asymptotically stable (the
reader may refer to [49] for a general method for output feedback controller
design for nonlinear singularly perturbed systems with unstable fast dynam-
ics).

Assumption 3.8 The matrix Q2(x) is Hurwitz uniformly in x ∈ IRn.

3.5.1 Control problem formulation

Referring to the system of Eq.3.60, the objective of this section is to synthesize
robust dynamic output feedback controllers of the form:

ω̇ = F(ω, y, v̄)

u = P(ω, y, v̄, t)
(3.64)

where ω ∈ IRs is a state, F(ω, y, v̄) is a vector function, P(ω, y, v̄, t) is a scalar
function, v̄ = [v v(1) · · · v(r)]T is a generalized reference input (v(k) denotes
the k − th time derivative of the reference input v, which is assumed to be
a sufficiently smooth function of time), that enforce the following properties
in the closed-loop system: (a) boundedness of the trajectories, (b) arbitrary
degree of asymptotic attenuation of the effect of the uncertainty on the output,
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and robust output tracking for changes in the reference input. The above
properties are enforced in the closed-loop system for arbitrarily large initial
conditions, uncertainty and rate of change of uncertainty, provided that ε is
sufficiently small (semi-global type result).

The controller of Eq.3.64 consists of the dynamical system, ω̇ = F(ω, y, v̄),
which will be synthesized to provide estimates of the state variables, and
the static component, P(ω, y, v̄, t), which will be synthesized to enforce the
requested properties in the closed-loop system.

Motivated by the assumption of global asymptotic stability of the fast
dynamics of the system of Eq.3.60, the synthesis of a controller of the form of
Eq.3.64 will be carried out on the basis of the slow subsystem of Eq.3.61. Note
that the slow subsystem is in a form similar to that of Eq.3.1 with q = 1. To
this end, we will impose on the slow subsystem of Eq.3.61 assumptions which
are similar to the ones used in addressing the robust output feedback problem
for the system of Eq.3.1.

3.5.2 Robust output feedback controller synthesis

Theorem 3.31 below provides a formula of the robust output feedback con-
troller and states precise conditions under which the proposed controller en-
forces the desired properties in the closed-loop system. The proof is given in
Appendix A.

Theorem 3.31. Consider the uncertain singularly perturbed nonlinear system
of Eq.3.60, for which Assumptions 3.3, 3.5, 3.7, 3.8 hold, under the robust
output feedback controller:

˙̃y =




−La1 1 0 · · · 0 0
−L2a2 0 1 · · · 0 0

...
...

...
. . .

...
...

−Lr−1ar−1 0 0 · · · 0 1
−Lrar 0 0 · · · 0 0




ỹ +




La1

L2a2

...
Lr−1ar−1

Lrar




y

ω̇1 = Ψ1(sat(ỹ), ω)

...
ω̇n−r = Ψn−r(sat(ỹ), ω)

u = p(x̂, c0, ρ, χ, φ, θb)

(3.65)

where the parameters, a1, · · · , ar are chosen such that the polynomial sr +
a1s

r−1 + a2s
r−2 + · · · + a1 = 0 is Hurwitz, p(·) was defined in Theorem 3.3,

x̂ = X−1(sat(ỹ), ω)). Then, for each set of positive real numbers δx, δz, δθ, δθ̇,
δv̄, d, there exists φ∗(χ) > 0 and for each φ ∈ (0, φ∗(χ)], there exists ε∗(φ) > 0,

such that if φ ∈ (0, φ∗], ε̄ = max{ε, 1
L
} ∈ (0, ε∗(φ)], sat(·) = min{1,

ζmax

‖ · ‖ }(·)
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with ζmax being the maximum value of the vector [ζ1 ζ2 · · · ζr] for ‖ζ‖ ≤
βζ(δζ , 0) + d where βζ is a class KL function and δζ is the maximum value of
the vector [h(x) Lfh(x) · · · Lr−1

f h(x)] for ‖x‖ ≤ δx, ‖x(0)‖ ≤ δx, ‖z(0)‖ ≤
δz, ‖θ‖s ≤ δθ, ‖θ̇‖s ≤ δθ̇, ‖v̄‖s ≤ δv̄, ‖ỹ(0)‖ ≤ δζ , ω(0) = η(0) + O(ε̄), the
output of the closed-loop system satisfies a relation of the form:

lim sup
t→∞

‖y(t)− v(t)‖ ≤ d (3.66)

Remark 3.32. Note that the output feedback controller of Eq.3.65 is the same
as the one proposed in Theorem 3.27 where it has been established that this
output feedback controller enforces stability and robust output tracking for
arbitrarily large initial conditions and uncertainty, provided that the observer
gain is sufficiently large. The result of Theorem 3.31 establishes that the same
output feedback controller, which is designed on the basis of the reduced
system of Eq.3.61, continues to enforce stability and robust output tracking
for the full singularly perturbed closed-loop system for arbitrarily large initial
conditions, uncertainty and rate of change of uncertainty, provided that ε̄ :=

max{ε, 1
L
} is sufficiently small. The result therefore establishes robustness of

the output feedback controller design of Eq.3.65 with respect to stable and
sufficiently fast unmodeled dynamics.

3.6 Conclusions

In this chapter, we presented robust inverse optimal controller designs for
input/output linearizable nonlinear systems with time-varying bounded un-
certain variables. Under full state feedback, the controller designs were ob-
tained by re-shaping the scalar nonlinear gain of Sontag’s formula in a way
that guarantees the desired uncertainty attenuation properties in the closed-
loop system. The proposed re-shaping was made different for vanishing and
non-vanishing uncertainties so as to meet different robustness and optimality
objectives. For systems with vanishing uncertainty, the proposed controller
design was shown to enforce global asymptotic stability, robust asymptotic
output tracking and inverse optimality with respect to an infinite-time cost
functional that includes penalty on the control effort. For systems with non-
vanishing uncertainty, the designed controllers were shown to ensure bound-
edness of the states, robust asymptotic output tracking with an arbitrary
degree of attenuation of the effect of uncertainty, and optimality with re-
spect to a meaningful cost defined on a finite time-interval. In the absence of
full state measurements, combination of the state feedback controllers with
high-gain observers and appropriate saturation filters (to eliminate observer
peaking) was employed to design dynamic robust output feedback controllers.
Under vanishing uncertainty, the output feedback controllers were shown to
enforce asymptotic stability stability, robust asymptotic output tracking with
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uncertainty attenuation, and near-optimal performance over the infinite time-
interval for arbitrarily large initial conditions and uncertainty, provided that
the observer gain is sufficiently large. Under persistent uncertainty, the same
controllers were shown to guarantee boundedness of the states, robust output
tracking with uncertainty attenuation, and near-optimality over a finite time-
interval. The developed controllers were successfully tested on non-isothermal
stirred tank reactors with uncertainty.



4

Control of Nonlinear Systems with Uncertainty
and Constraints

4.1 Introduction

In addition to nonlinear behavior and model uncertainty, one of the ubiquitous
characteristics of process control systems is the presence of hard constraints on
the manipulated inputs. At this stage, most existing process control methods
lead to the synthesis of controllers that can deal with either model uncer-
tainty or input constraints, but not simultaneously or effectively with both.
This clearly limits the achievable control quality and closed-loop performance,
especially in view of the commonly-encountered co-presence of uncertainty
and constraints in chemical processes. Therefore, the development of a unified
framework for control of nonlinear systems that explicitly accounts for the
presence of model uncertainty and input constraints is expected to have a
significant impact on process control.

While the individual presence of either model uncertainty or input con-
straints poses its own unique set of problems that must be dealt with at
the stage of controller design, the combined presence of both uncertainty and
constraints is far more problematic for process stability and performance. The
difficulty here emanates not only from the cumulative effect of the co-presence
of the two phenomena but also from the additional issues that arise from the
interaction of the two. At the core of these issues are the following two prob-
lems:

• The co-presence of model uncertainty and input constraints creates an
inherent conflict in the controller design objectives of the control policy to
be implemented. On the one hand, suppressing the influence of significant
external disturbances typically requires large (high-gain) control action.
On the other hand, the availability of such action is often limited by the
presence of input constraints. Failure to resolve this conflict will render
any potential control strategy essentially ineffective.

• The set of feasible process operating conditions under which the process
can be operated safely and reliably is significantly restricted by the co-
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presence of uncertainty and constraints. While input constraints by them-
selves place fundamental limitations on the size of this set (and conse-
quently on our ability to achieve certain control objectives), these limita-
tions are even stronger when uncertainty is present. Intuitively, many of
the feasible operating conditions permitted by constraints under nominal
conditions (i.e., predicted using a nominal model of the process) cannot
be expected to continue to be feasible in the presence of significant plant-
model mismatch. The success of a control strategy, therefore, hinges not
only on the design of effective controllers, but also on the ability to predict
a priori the feasible conditions under which the designed controllers are
guaranteed to work in the presence of both uncertainty and constraints.

A natural approach to resolve the apparent conflict between the need
to compensate for model uncertainty through high-gain control action and
the presence of input constraints that limit the availability of such action
is the design of robust controllers which expend reasonable control effort to
achieve stabilization and uncertainty attenuation. This problem was addressed
in Chapter 3 where we synthesized, through Lyapunov’s direct method, ro-
bust inverse optimal nonlinear controllers that use reasonable control effort to
enforce stability and asymptotic output tracking with attenuation of the effect
of the uncertain variables on the output of the closed-loop system. The re-
sulting controllers, although better equipped to handle input constraints than
feedback linearizing controllers, do not explicitly account for input constraints
and, therefore, offer no a priori guarantees regarding the desired closed-loop
stability and performance in the presence of arbitrary input constraints.

Motivated by these considerations, we focus in this chapter on state and
output feedback control of multi-input multi-output (MIMO) nonlinear pro-
cesses with model uncertainty and input constraints. A Lyapunov-based non-
linear controller design approach that accounts explicitly and simultaneously
for process nonlinearities, model uncertainty, input constraints, multivariable
interactions, and the lack of full state measurements is proposed. When mea-
surements of the full state are available, the approach leads to the explicit
synthesis of bounded robust nonlinear state feedback controllers that enforce
stability and robust asymptotic set-point tracking in the constrained uncertain
closed-loop system and provide, at the same time, an explicit characterization
of the region of guaranteed closed-loop stability. When complete state mea-
surements are not available, a combination of the state feedback controllers
with high-gain state observes and appropriate saturation filters, is employed to
synthesize bounded robust output feedback controllers that require only mea-
surements of the outputs for practical implementation. The resulting output
feedback design enforces the same closed-loop stability and performance prop-
erties of the state feedback controllers and, in addition, practically preserves
the region of guaranteed closed-loop stability obtained under state feedback,
provided that the observer gain is sufficiently large. The developed state and
output feedback controllers are applied successfully to non-isothermal multi-
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variable chemical reactor examples with uncertainty, input constraints, and
incomplete state measurements. Finally, we conclude the chapter with a dis-
cussion on how nonlinear control tools can be used to provide improved tuning
guidelines for classical controllers. The results of this chapter were first pre-
sented in [81].

4.2 Preliminaries

We consider multi-input multi-output (MIMO) nonlinear processes with un-
certain variables and input constraints, with the following state-space descrip-
tion:

ẋ = f(x) +
m∑

i=1

gi(x)ui +
q∑

k=1

wk(x)θk(t)

u(t) ∈ U

yi = hi(x), i = 1, · · · ,m

(4.1)

where x ∈ IRn denotes the vector of process state variables, u = [u1 u2 · · · um]T

denotes the vector of constrained manipulated inputs taking values in a
nonempty convex subset, U = {u ∈ IRm : ‖u‖ ≤ umax}, ‖ · ‖ is the Euclidean
norm of a vector, umax is a positive real number that captures the maximum
magnitude of the Euclidean norm of the vector of manipulated inputs allowed
by the constraints, θk(t) ∈ W ⊂ IR denotes the k-th uncertain (possibly time-
varying) but bounded variable taking values in a nonempty compact convex
subset of IR, yi ∈ IR denotes the i-th output to be controlled. The uncertain
variable, θk(t), may describe time-varying parametric uncertainty and/or ex-
ogenous disturbances. It is assumed that the origin is the equilibrium point
of the nominal (i.e., with u(t) = θk(t) ≡ 0) system of Eq.4.1. The vector
functions, f(x), gi(x), wk(x), and the scalar functions hi(x) are assumed to
be sufficiently smooth on their domains of definition. In the remainder of this
chapter, for simplicity, we will suppress the time-dependence in the notation of
the uncertain variable, θk(t). The class of systems described by Eq.4.1 is gen-
eral enough to be of practical interest (see the application studies throughout
the chapter), yet specific enough to allow the meaningful synthesis of con-
trollers.

Throughout the chapter, the Lie derivative notation will used. In partic-
ular, Lf h̄ denotes the standard Lie derivative of a scalar function h̄(x) with
respect to the vector function f(x), Lk

f h̄ denotes the k-th order Lie deriva-
tive and LgiL

k−1
f h̄ denotes the mixed Lie derivative where gi(x) is a vector

function. We will also need the definition of a class KL function. A function
β(s, t) is said to be of class KL if, for each fixed t, the function β(s, ·) is con-
tinuous, increasing, and zero at zero and, for each fixed s, the function β(·, t)
is nonincreasing and tends to zero at infinity.
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Referring to the system of Eq.4.1, we define the relative order of the output,
yi, with respect to the vector of manipulated inputs, u, as the smallest integer
ri for which:

[
Lg1L

ri−1
f hi(x) · · · LgmLri−1

f hi(x)
]
6≡ [0 · · · 0] (4.2)

or ri = ∞ if such an integer does not exist. We also define the characteristic
matrix [126]:

C(x) =




Lg1L
r1−1
f h1(x) · · · Lgm

Lr1−1
f h1(x)

... · · · ...

Lg1L
rm−1
f hm(x) · · · LgmLrm−1

f hm(x)




(4.3)

4.3 Bounded robust state feedback control

In this section, we focus on the state feedback control problem where the
full process state is assumed to be available for measurement. The output
feedback control problem will be discussed in Section 4.5. We begin in Section
4.3.1 with the control problem formulation and then present the controller
synthesis results in Section 4.3.2.

4.3.1 Control problem formulation

In order to formulate our control problem, we consider the MIMO nonlinear
process of Eq.4.1 and assume initially that the uncertain variable terms are
vanishing in the sense that wk(0) = 0 (note that this does not require the
variable θk itself to vanish over time). Under this assumption, the origin –
which is an a nominal equilibrium point – continues to be an equilibrium
point for the uncertain process. The results for the case when the uncertain
variables are non-vanishing (i.e., perturb the nominal equilibrium point) are
discussed later on (see Remark 4.14 below). For the control problem at hand,
our objective is two fold. The first is to synthesize, via Lyapunov-based control
methods, a bounded robust multivariable nonlinear state feedback control law
of the general form:

u = P(x, umax, v̄) (4.4)

that enforces the following closed-loop properties in the presence of uncer-
tainty and input constraints, including: (a) asymptotic stability, and (b) ro-
bust asymptotic reference-input tracking with an arbitrary degree of attenua-
tion of the effect of the uncertainty on the outputs of the closed-loop system. In
Eq.4.4, P(·) is an m-dimensional bounded vector function (i.e., ‖u‖ ≤ umax),
v̄ is a generalized reference input which is assumed to be a sufficiently smooth
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function of time. Our second objective is to explicitly characterize the region
of guaranteed closed-loop stability associated with the controller, namely the
set of admissible initial states starting from where, stability and robust output
tracking can be guaranteed in the constrained uncertain closed-loop system.

4.3.2 Controller synthesis

To proceed with the controller synthesis task, we will impose the following
three assumptions on the process of Eq.4.1. We initially assume that there
exists a coordinate transformation that renders the system of Eq.4.1 partially
linear. This assumption is motivated by the requirement of robust output
tracking and is formulated precisely below.

Assumption 4.1 There exist a set of integers, {r1, r2, . . . , rm}, and a coor-
dinate transformation (ζ, η) = T (x) such that the representation of the system
of Eq.4.1, in the (ζ, η) coordinates, takes the form:

ζ̇
(i)
1 = ζ

(i)
2

...
ζ̇
(i)
ri−1 = ζ

(i)
ri

ζ̇
(i)
ri = Lri

f hi(x) +
m∑

j=1

Lgj L
ri−1
f hi(x)uj +

q∑

k=1

Lwk
Lri−1

f hi(x)θk

η̇1 = Ψ1(ζ, η, θ)
...

η̇n−
∑

i
ri

= Ψn−
∑

i
ri

(ζ, η, θ)

yi = ζ
(i)
1 , i = 1, . . . ,m

(4.5)

where x = T−1(ζ, η), ζ = [ζ(1)T · · · ζ(m)T
]T , η = [η1 · · · ηn−

∑
i
ri

]T , θ =

[θ1 · · · θq]T .

Assumption 4.1 includes the matching condition of our robust control
methodology. In particular, we consider systems of the form Eq.4.1 for which
the time-derivatives of the outputs, yi, up to order ri − 1, are independent
of the uncertain variables, θk. Notice that this condition is different from the
standard one which restricts the uncertainty to enter the system of Eq.4.1
in the same equation with the manipulated inputs, ui. Defining the track-
ing error variables, e

(i)
k = ζ

(i)
k − v

(k−1)
i , and introducing the vector notation,

e(i) = [e(i)
1 e

(i)
2 · · · e

(i)
ri ]T , e = [e(1)T

e(2)T · · · e(m)T
]T , where i = 1, · · · ,m,

k = 1, · · · , ri, the ζ-subsystem of Eq.4.5 can be re-written in the following
more compact form:
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ė = Ae + B
[
r(e, η, v̄) + C1(T−1(e, η, v̄))u + C2(T−1(e, η, v̄))θ

]
(4.6)

where A is a constant, (
∑m

i=1ri)×(
∑m

i=1ri) block-diagonal matrix, whose i-th
block is an ri × ri matrix of the form:

Ai =




0 1 0 · · · 0
0 0 1 · · · 0
...

...
0 0 0 · · · 1
0 0 0 · · · 0


 (4.7)

B is an a constant matrix of dimension (
∑m

i=1ri) × m. The i-th column of

B has the general form: bi = [b(0)T

i b
(1)T

i b
(2)T

i ]T , where b
(0)
i and b

(2)
i are

zero row vectors of dimensions 1 ×
(∑i−1

j=1 rj

)
and 1 ×

(∑m
j=i+1 rj

)
, respec-

tively, and b
(1)
i = [0 0 · · · 1] is a 1 × ri row vector. The function r(·) is a

(
∑m

i=1ri) × 1 continuous nonlinear vector function of the form [Lr1
f h1(x) −

vr1
1 Lr2

f h2(x)− vr2
2 · · · Lrm

f hm(x)− vrm
m ]T , and v̄ = [v̄T

1 v̄T
2 · · · v̄T

m]T where

v̄i = [vi v
(1)
i · · · v

(ri)
i ]T is a smooth vector function, and v

(k)
i is the k-th time

derivative of the external reference input vi (which is assumed to be a smooth
function of time). The m × m matrix, C1(·), is the characteristic matrix of
the system of Eq.4.1 defined in Eq.4.3 with x = T−1(e, η, v̄), while C2(·) is an
m× q matrix of the form:

C2(x) =




Lw1L
r1−1
f h1(x) · · · LwqL

r1−1
f h1(x)

... · · · ...

Lw1L
rm−1
f hm(x) · · · Lwk

Lrm−1
f hm(x)




(4.8)

In order to simplify the presentation of the main results, the matrix C1(x) is
assumed to be nonsingular, uniformly in x. This assumption can be relaxed
if robust dynamic state feedback, instead of robust static state feedback, is
used to solve the control problem (see [126] for details). Finally, we define
the function f̄(e, η, v̄) = Ae + Br(e, η, v̄), denote by ḡi the i-th column of the
matrix function G := BC1, i = 1, · · ·m, and denote by w̄k the k-th column of
the matrix function W := BC2, k = 1, · · · q.

Following [78], the requirement of input-to-state stability is imposed on
the η-subsystem of Eq.4.5 to ensure bounded stability of the internal dy-
namics and allow the synthesis of the desired controller on the basis of the
e-subsystem. This assumption, stated below, is standard in the process con-
trol literature concerned with enforcing output tracking and is satisfied by
many practical systems, including the chemical reactor models studied in this
chapter which do not exhibit non-minimum phase behavior (see also [58, 78]
for additional examples).
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Assumption 4.2 The dynamical system:

η̇1 = Ψ1(e, η, θ, v̄)
...

η̇n−
∑

i
ri

= Ψn−r(e, η, θ, v̄)
(4.9)

is ISS with respect to e uniformly in θ, v̄.

In order to achieve attenuation of the effect of the uncertain variables on
the outputs, we assume the existence of known (but not necessarily small)
bounds that capture the size of the uncertain variables for all times.

Assumption 4.3 There exist known constants θbk such that ‖θk‖s ≤ θbk

where ‖θk‖s denotes ess.sup. ‖θ(t)‖, t ≥ 0.

In order to address the robust controller synthesis problem on the basis
of the e-subsystem of Eq.4.6, we need to construct an appropriate robust
control Lyapunov function. For systems of the form of Eq.4.6, this can be
done in many different ways. One way, for example, is to use a quadratic
function, V = eT Pe, where P is a positive-definite matrix chosen to satisfy
the following Ricatti equation:

AT P + PA− PBBT P = −Q (4.10)

for some positive-definite matrix, Q. Computing the time-derivative of V along
the trajectories of the system of Eq.4.6, and using the relation of Eq.4.10, it
can be shown that:

inf
u∈U

sup
θ∈Wq

V̇ = inf
u∈U

sup
θ∈Wq

[
Lf̄V + LGV u + LW V θ

]

= inf
u∈U

sup
θ∈Wq

[−eT Qe + eT PB
(
BT Pe + 2r(e, η, v̄) + 2C1u + 2C2θ

)]

(4.11)
where Lf̄V = −eT Qe + eT PBBT Pe + 2eT PBr, LGV = 2eT PBC1, and
LW V = 2eT PBC2. Therefore, choosing P to satisfy Eq.4.10 guarantees that
when LGV = 0 (i.e., when eT PB = 0, since C1 is nonsingular), we have
inf
u∈U

sup
θ∈Wq

V̇ < 0 for all e 6= 0.

Theorem 4.1 that follows provides the explicit synthesis formula for the
desired bounded robust multivariable state feedback control law and states
precise conditions that guarantee closed-loop stability and robust asymptotic
output tracking in the presence of uncertainty and input constraints. The key
idea in the proposed controller design is that of bounding a robust Lyapunov-
based controller, and is inspired by the results on bounded control in [177]
for systems without uncertainty. Analysis of the closed-loop system utilizes
combination of standard Lyapunov techniques together with the concept of
input-to-state stability and nonlinear small-gain type arguments. The proof
of the theorem can be found in Appendix B.
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Theorem 4.1. Consider the constrained uncertain nonlinear process of Eq.4.1,
for which Assumptions 4.1-4.3 hold, under the static state feedback law:

u = −k(x, umax, θb, ρ, χ, φ) (LGV )T (4.12)

where

k(x, umax, θb, ρ, χ, φ) =
L∗̄

f
V +

√(
L∗∗̄

f
V

)2

+ (umax‖(LGV )T ‖)4

‖(LGV )T ‖2
[
1 +

√
1 + (umax‖(LGV )T ‖)2

] (4.13)

when LGV 6= 0 and k(·) = 0 when LGV = 0; and

L∗̄
f
V = Lf̄V +

(
ρ‖2Pe‖+ χ

q∑

k=1

θbk‖Lw̄kV ‖
) ( ‖2Pe‖

‖2Pe‖+ φ

)

L∗∗̄
f

V = Lf̄V + ρ‖2Pe‖+ χ

q∑

k=1

θbk‖Lw̄kV ‖
(4.14)

V = eT Pe, P is a symmetric, positive-definite matrix that satisfies Eq.4.10,
LGV = [Lḡ1V · · · LḡmV ] is a row vector, and ρ, χ and φ are adjustable
parameters that satisfy ρ > 0, χ > 1 and φ > 0. Let Π be the set defined by:

Π(ρ, χ, θb, umax) =

{x ∈ IRn : Lf̄V + ρ‖2Pe‖+ χ

q∑

k=1

θbk‖Lw̄kV ‖ ≤ umax‖(LGV )T ‖} (4.15)

and, assuming the origin is contained in the interior of Π, let δs > 0 be chosen
such that the set Ω = {x ∈ IRn : ‖x‖ ≤ δs} is an invariant subset of Π. Then
given any initial condition, x0 ∈ Ω, there exists φ∗ > 0 such that if φ ∈ (0, φ∗]:

(1) The origin of the constrained closed-loop system is asymptotically stable
(i.e., there exists a function β of class KL such that ‖x(t)‖ ≤ β(‖x0‖, t), ∀ t ≥
0).
(2) The outputs of the closed-loop system satisfy a relation of the form:

lim sup
t→∞

‖yi(t)− vi(t)‖ = 0, i = 1, · · · ,m (4.16)

Remark 4.2. Theorem 4.1 proposes a direct robust nonlinear controller design
method that accounts simultaneously for closed-loop performance and stabil-
ity in the presence of uncertainty and input constraints. Note that the bounded
control law of Eqs.4.12-4.14 uses explicitly the available knowledge of both the
size of the uncertainty (i.e., θbk) and the manipulated input constraints (i.e.,
umax) to generate the necessary control action. This is in contrast to the
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two-step approach typically employed in process control strategies which first
involves the design of a controller for the unconstrained process and then ac-
counts for the input constraints through a suitable anti-windup modification
to attenuate the adverse effects of improperly handled input constraints.

Remark 4.3. In addition to the explicit controller synthesis formula, Theorem
4.1 provides an explicit characterization of the region in the state-space where
the desired closed-loop stability and set-point tracking properties are guaran-
teed under the proposed control law. This characterization can be obtained
from the inequality in Eq.4.15 which describes a closed state-space region
where: (1) the control action satisfies the input constraints, and (2) the time-
derivative of the Lyapunov function is guaranteed to be negative-definite,
along the trajectories of the constrained uncertain closed-loop system. Any
closed-loop trajectory that evolves (i.e., starts and remains) within this re-
gion is guaranteed to converge asymptotically to the origin. In fact, it is not
difficult to see how this inequality is closely related to the classical Lyapunov
stability condition:

V̇ = Lf̄V + LGV u +
q∑

k=1

Lw̄k
V θk ≤ 0 (4.17)

when the additional requirements that ‖u‖ ≤ umax and ‖θk‖s ≤ θbk are
imposed. The key idea here is that by taking the constraints directly into
account (i.e., bounding the controller), we automatically obtain information
about the region where both stability is guaranteed and the input constraints
are respected. The inequality of Eq.4.15 can therefore be used to identify a pri-
ori (before implementing the controller) the set of admissible initial conditions
starting from where closed-loop stability is guaranteed (region of closed-loop
stability). This aspect of the proposed design has important practical impli-
cations for efficient process operation since it provides plant operators with a
systematic and easy-to-implement guide to identify feasible initial conditions
for process operation. Considering the fact that the presence of disturbances
and constraints limits the conditions under which the process can be operated
safely and reliably, the task of identifying these conditions becomes a central
one. This is particularly significant in the case of unstable plants where lack
of such a priori knowledge can lead to undesirable consequences.

Remark 4.4. Referring to the region described by the set Π in Eq.4.15, it
is important to note that even though a trajectory starting in Π will move
from one Lyapunov surface to an inner Lyapunov surface with lower energy
(because V̇ < 0), there is no guarantee that the trajectory will remain forever
in Π, since it is not necessarily a region of invariance. Once the trajectory
leaves Π, however, there is no guarantee that V̇ < 0. Therefore, in order
to use the inequality in Eq.4.15 to identify the admissible initial conditions
starting from where closed-loop stability is guaranteed, we need to find (or
estimate) an invariant subset – preferably the largest – within Π to guarantee
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that a trajectory starting in Π remains in the region for all future times. For
notational convenience, this invariant subset is represented in Theorem 4.1 by
a Euclidean ball, Ω, of size δs. The stability results of the theorem, however,
hold for any invariant subset (which can be of arbitrary shape) that can be
constructed within Π and contains the origin in its interior. For example, a
more general estimate of the stability region can be obtained using the level
set:

Ωc = {x ∈ IRn : V̄ (x) ≤ c}
when Ωc is bounded and contained in Π and ˙̄V (x) < 0 over Π. This estimate
can be made less conservative by selecting the value of c sufficiently large.
Referring to the above definition of the invariant set, Ωc, it is important to note
that the Lyapunov function, V̄ , is in general not the same as the Lyapunov
function, V , given in the statement of Theorem 4.1. The function V̄ is based on
the full system (i.e., the ζ-η interconnected system of Eq.4.5, while V is based
only on the ζ-subsystem. The reason for the difference is the fact that owing
to the ISS property of the η-subsystem (see Assumption 4.2), only a Lyapunov
function based on the ζ-subsystem, namely V = eT Pe, is needed and used to
design a control law that stabilizes the full closed-loop system. However, in
constructing Ωc, we need to guarantee that the evolution of x (and, hence,
both the ζ and η subsystems) is confined within Π. Therefore, the Lyapunov
function in this case must account for the evolution of the η states as well. One
possible choice for V̄ is a composite Lyapunov function, V̄ = Ve + Vη whose
time-derivative is negative-definite at all points satisfying Eq.4.15, where Ve is
taken to be the same as V given in Theorem 4.1 and Vη is another Lyapunov
function for the η-subsystem. The existence of Vη is guaranteed from converse
Lyapunov theorems owing to the ISS and asymptotic stability properties of
the η-subsystem, and can be computed given the particular structure for this
system. For nonlinear systems with relative degrees

∑
i ri = n, the choice

V̄ = V = eT Pe is sufficient.

Remark 4.5. Note that, since the set Π is closed, the assumption that the ori-
gin lies in the interior of Π assures the existence of an invariant subset around
the origin. This assumption can be checked prior to the practical implemen-
tation of the results of the theorem. However, it can be shown by means of
local Lipschitz arguments that this assumption is automatically satisfied if
the vector fields are sufficiently smooth on their domains of definition and the
adjustable parameters in Eq.4.15 are chosen properly.

Remark 4.6. By inspection of the inequality in Eq.4.15, it is clear that the size
of the set, Π, depends on the size of the constraints and the size of the uncer-
tainty. The tighter the input constraints (i.e., smaller umax) and/or the larger
the plant-model mismatch (i.e., larger θbk), the smaller the closed-loop sta-
bility region. This is quite intuitive since under such conditions, fewer initial
conditions will satisfy the inequality of Eq.4.15. Under extremely tight con-
straints (umax close to zero), this set may contain only the origin (particularly
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in the case of open-loop unstable processes where Lf̄V > 0). In this case, the
origin could be the only admissible initial condition for which closed-loop sta-
bility can be guaranteed. In most applications of practical interest, however,
the stability region contains the origin in its interior and is not empty (see the
chemical reactor examples studied in Sections 4.4 and 4.6 for a demonstration
of this fact). Another important feature of the inequality of Eq.4.15 is that it
suggests a general way for estimating the stability region, which can be used
in conjunction with other control approaches (such as optimization-based ap-
proaches; see, for example, Chapters 5 and 6 of this book) to provide the
necessary a priori closed-loop stability guarantees. Although the inequality of
Eq.4.15 pertains specifically to the bounded robust controller of Eqs.4.12-4.14,
similar ideas can be used to identify the feasible initial conditions for other
control approaches.

Remark 4.7. The inequality in Eq.4.15 captures the classical tradeoff between
stability and performance. In particular, analysis of this inequality reveals an
interesting interplay between the controller design parameters and the un-
certainty in influencing the size of the closed-loop stability region. To this
end, note the multiplicative appearance of the parameter, χ, and the uncer-
tainty bound, θbk, in Eq.4.15. In the presence of significant disturbances, one
typically selects a large value for χ to achieve an acceptable level of robust
performance of the controller. According to the inequality of Eq.4.15, this
comes at the expense of obtaining a smaller region of closed-loop stability.
Alternatively, if one desires to expand the region of closed-loop stability by
selecting a small value for χ, this may be achieved at the expense of obtaining
an unsatisfactory degree of uncertainty attenuation or will be limited to cases
where the uncertainty is not too large (i.e., small θbk) where a large value
for χ is not needed. Therefore, while the presence of the design parameter χ
in Eq.4.15 offers the possibility of enlarging the region of guaranteed closed-
loop stability, a balance must always be maintained between the desired level
of uncertainty attenuation and the desired size of the region of closed-loop
stability.

Remark 4.8. Theorem 4.1 explains some of the advantages of using a Lya-
punov framework for our development and why it is a natural framework to
address the problem within an analytical setting. Owing to the versatility of
the Lyapunov approach in serving both as a useful robust control design tool
(see Chapter 3) and an efficient analysis tool, the proposed controller design
method integrates explicitly the two seemingly separate tasks of controller
design and closed-loop stability analysis into one task. This is in contrast to
other controller design approaches where a control law is designed first to
meet certain design specifications and then a Lyapunov function is found to
analyze the closed-loop stability characteristics. Using a Lyapunov function
to examine the closed-loop stability under a predetermined non-Lyapunov
based control law (e.g., a feedback linearizing controller) usually results in a
rather conservative stability analysis and yields conservative estimates of the
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region of closed-loop stability (see Section 4.4 for an example). In the approach
proposed by Theorem 4.1, however, the Lyapunov function used to charac-
terize the region of guaranteed closed-loop stability under the control law of
Eqs.4.12-4.14 is the same one used to design the controller and is therefore a
natural choice to analyze the closed-loop system.

Remark 4.9. In the special case when the term Lf̄V is negative and no un-
certainty is present (i.e., θbk = 0), the closed-loop stability and performance
properties outlined in Theorem 4.1 can be made to hold globally by setting
ρ = 0. This follows from the fact that when Lf̄V < 0, θbk = 0 and ρ = 0, the
inequality in Eq.4.15 is automatically satisfied everywhere in the state-space.
Consequently, the closed-loop stability and set-point tracking properties are
satisfied for any initial condition; hence the global nature of the result. The
significance of this result is that it establishes the fact that, for open-loop
stable nonlinear systems of the form of Eq.4.1 (where Lf̄V < 0), asymptotic
stability and output tracking can always be achieved globally in the pres-
ence of arbitrary input constraints using the class of bounded control laws of
Eqs.4.12-4.14, both in the case when no uncertainty is present and in the case
when the uncertainty is mild enough that Eq.4.15 continues to be satisfied.

Remark 4.10. Despite some conceptual similarities between the controller of
Eqs.4.12-4.14 and that of Eq.3.18, the two control laws differ in several funda-
mental respects. First, the control law of Eqs.4.12-4.14 is inherently bounded
by umax and generates control action that satisfies the input constraints within
the region described by Eq.4.15. By contrast, the control law of Eq.3.18 is un-
bounded and may compute larger control action that violates the constraints
within the same region. Second, the control law of Eqs.4.12-4.14 possesses a
well-defined region of guaranteed stability and performance properties in the
state-space. One can, therefore, determine a priori whether a particular initial
condition is feasible. No explicit characterization of this region is given for the
control law of Eq.3.18. Finally, while the tasks of nominal stabilization and
uncertainty attenuation could be conceptually distinguished and assigned sep-
arately to different components of the control law of Eq.3.18, this is no longer
possible for the controller of Eqs.4.12-4.14 due to the presence of the term
χθbk‖Lw̄kV ‖ in the radicand, which is a direct consequence of the bounding
procedure of the controller.

Remark 4.11. Similar to the control law of Eq.3.18, the control law of Eqs.4.12-
4.14 recognizes the beneficial effects of process nonlinearities and does not
expend unnecessary control effort to cancel them. However, unlike the con-
troller of Eq.3.18, the one of Eqs.4.12-4.14 has the additional ability to rec-
ognize the extent of the effect of uncertainty on the process and prevent its
cancellation if this effect is not significant. To see this, recall that the con-
troller of Eq.3.18 prevents the unnecessary cancellation of the term Lf̄V –
which does not include the uncertainty – when it is negative. This controller,
therefore, compensates for the presence of any model uncertainty it detects
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and does not discriminate between small or large uncertainty. In contrast,
the controller of Eqs.4.12-4.14 recognizes the beneficial effect of the entire
term Lf̄V +χθbk‖Lw̄kV ‖ (which includes the uncertainty) when it is negative
and prevents its unnecessary and wasteful cancellation. Therefore, if the plant-
model mismatch is not too significant such that the term, Lf̄V +χθbk‖Lw̄kV ‖,
remains negative in the presence of such uncertainty, the controller will pre-
vent the expenditure of unnecessary control effort to cancel such uncertainty.
Essentially the controller realizes, through the negative sign of this term, that
the uncertainty present in the process does not have a strong enough adverse
effect to warrant its cancellation. Therefore the control law of Eqs.4.12-4.14
has the ability to discriminate between small and large model uncertainty and
assess the need for reasonable control effort expenditure accordingly.

Remark 4.12. The bounded nonlinear controller of Eqs.4.12-4.14 possesses cer-
tain optimality properties characteristic of its ability to use reasonable control
action to accomplish the desired closed-loop objectives. Using techniques from
the inverse optimal control approach (see, for example, [97, 245] and Chapter
3), one can prove that, within a well-defined subset of the set Π, this con-
troller is optimal with respect to a meaningful, infinite-time cost functional of
the form:

J =
∫ ∞

0

(l(e) + uT R(x)u)dt (4.18)

where l(e) is a positive-definite penalty on the tracking error and its time-
derivatives, up to order ri−1, that is bounded below by a quadratic function
of the norm of the tracking error, and R(x) = 1

2k(x) > 0 is a positive-definite
penalty weight on the control action. It can also be shown that the minimum
cost achieved by the state feedback controller is V (e(0)). Note that, unlike the
stability and set-point tracking properties which are guaranteed provided that
the closed-loop trajectory remains within Π, inverse optimality is guaranteed
provided that the evolution of the closed-loop trajectory is confined within a
smaller subset of Π. The fact that the optimality region is, in general, a subset
of the stability region can be understood in light of the bounded nature of the
controller. In contrast to their unbounded counterparts (e.g., the controller of
Eq.3.18), bounded controllers tend to experience a reduction in their stability
margins near the boundary of the stability region (note in particular that V̇
becomes increasingly less negative as we approach the boundary of the region
described by Π). These margins, however, are needed in the inverse optimal
approach to establish meaningful optimality (i.e., the positive-definiteness of
the penalty functions). Therefore, to guarantee optimality, one must step back
from the boundary of the region described by the set, Π, and restrict the
evolution of the closed-loop trajectories in a smaller region where stability
margins are sufficient to render the cost functional meaningful. The detailed
mathematical proof of this point can be found in [78] for the case of SISO
nonlinear systems and will not be repeated here.
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Remark 4.13. An important problem, frequently encountered in the control
of multivariable processes with input constraints, is the problem of direction-
ality. This is a performance deterioration problem that arises when a multi-
variable controller, designed on the basis of the unconstrained MIMO process,
is “clipped” to achieve a feasible plant input. Unlike the SISO case, clipping
an unconstrained controller output to achieve a feasible plant input may not
lead in MIMO systems to a plant output that is closest to the unconstrained
plant output, thus steering the plant in the wrong directions and leading to
performance deterioration. Controllers that do not account explicitly for input
constraints suffer from this problem and often require the design of directional-
ity compensators to prevent the resulting excessive performance deterioration
(see, for example, [257]). It is important to note that the Lyapunov-based
control approach proposed in Theorem 4.1 avoids the directionality problem
by taking input constraints directly into account in the controller design. In
particular, note that the controller of Eqs.4.12-4.14 inherently respects the
constraints within the region described by Eq.4.15 and, therefore, starting
from any initial condition in Ω, there is never a mismatch between the con-
troller output and actual plant input at any time.

Remark 4.14. The result of Theorem 4.1 can be extended to the case when
the uncertain variables in Eq.4.1 are non-vanishing. In this case, starting from
any initial state within the invariant set Ω, the bounded robust controller of
Eqs.4.12-4.14 enforces boundedness of the process states and robust asymp-
totic output tracking with an arbitrary degree of attenuation of the effect of
uncertainty on the outputs of the closed-loop system. Owing to the persis-
tent nature of the uncertainty, asymptotic convergence to the origin in this
case is not possible. Instead, the controller sends the closed-loop trajectory,
in finite-time, into a small neighborhood of the origin. The size of this neigh-
borhood (i.e., the asymptotic tracking error) can be made arbitrarily small
by selecting the tuning parameters φ to be sufficiently small and/or selecting
the tuning parameter χ to be sufficiently large. The problem of non-vanishing
uncertainty was addressed in detail in [78] for SISO nonlinear processes. It
is worth noting that the use of a Lyapunov-based control approach allows
the synthesis of a robust controller that can effectively attenuate the effect
of both constant and time-varying persistent uncertainty on the closed-loop
outputs, which cannot be achieved using classical uncertainty compensation
techniques, including integral action and parameter adaptation in the con-
troller. For nonlinear controller design, Lyapunov methods provide useful and
systematic tools (see, for example, [141]).

Remark 4.15. Regarding the continuity properties of the controller of Eqs.4.12-
4.14, it should be noted that the controller is continuous, away from LGV = 0,
because the functions L∗̄

f
V , L∗∗̄

f
V , LGV are continuous everywhere on their

domains of definition. However, similar to other LGV -controller designs, since
the gain function in Eq.4.13 is undefined when LGV = 0, the controller gain
must be set to some value that satisfies the constraints whenever LGV = 0.
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A simple choice is to set the gain to zero at those points. While this choice
can make the controller discontinuous at LGV = 0, continuity at those points
can be ensured by setting the gain to the limit of the function in Eq.4.13
as LGV approaches zero. Note, however, that regardless of the value chosen,
stability is unaffected owing to the property that the time-derivative of V is
negative-definite whenever LGV = 0 (see Eq.4.11). Furthermore, to circum-
vent any potential numerical difficulties that may arise when implementing
the controller (for example, chattering of the control input near the points
where LGV = 0), a continuous approximation of the controller can be imple-
mented, whereby a sufficiently small positive real number, ε, is added to the
‖(LGV )T ‖2 term in the denominator of Eq.4.13 in order to smoothen out the
control action near LGV = 0 (see the simulation example in Section 4.4). As
noted in Remark 3.12, this modification reduces the ability of the controller
to cancel out, or dominate, the undesirable terms, Lf̄V and ‖Lw̄k

V ‖θbk, and
must therefore be compensated for by increasing the controller gain in the
numerator (for example, through proper selection of χ, ρ) to ensure practical
stability (see Remark 3.12 for other possible modifications).

Remark 4.16. Referring to the practical implementation of the proposed con-
trol approach, we initially verify whether Assumptions 4.1-4.2 hold for the
nonlinear process under consideration, and determine the available bounds on
the uncertain variables. Next, given the constraints on the manipulated inputs,
the inequality of Eq.4.15 is used to compute the estimate of the region of guar-
anteed closed-loop stability, Ω, and check whether a given initial condition is
admissible. Then, the synthesis formula of Eq.4.12-4.14 (with the appropri-
ate modifications discussed in Remark 4.15) is used to design the controller
which is then implemented on the process. Note that the actual controller
synthesis requires only off-line computations, including differentiation and al-
gebraic calculations to compute the various terms in the analytical controller
formula. This task can be easily coded into a computer using available soft-
ware for symbolic manipulations (e.g., MATHEMATICA). Furthermore, the
approach provides explicit guidelines for the selection of the tuning parame-
ters that guarantee closed-loop stability and the desired robust performance.
For example, the tuning parameters, χ and φ, are responsible for achieving the
desired degree of uncertainty attenuation. A large value for χ (greater than
one) and a small value for φ (close to zero) lead to significant attenuation of
the effect of uncertainty on the closed-loop outputs.

4.4 Application to an exothermic chemical reactor

Consider a well-mixed continuous stirred tank reactor where an irreversible
elementary exothermic reaction of the form A

k→ B takes place. The feed to
the reactor consists of pure A at flow rate F , molar concentration CA0 and
temperature TA0. Under standard modeling assumptions, the process model
takes the following form:
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V
dCA

dt
= F (CA0 − CA)− k0 exp

(−E

RT

)
CAV

V
dT

dt
= F (TA0 − T ) +

(−∆H)
ρcp

k0 exp
(−E

RT

)
CAV +

Q

ρcp

(4.19)

where CA denotes the concentration of species A, T denotes the temperature
of the reactor, Q denotes the rate of heat input to the reactor, V denotes
the volume of the reactor, k0, E, ∆H denote the pre-exponential constant,
the activation energy, and the enthalpy of the reaction, cp and ρ, denote the
heat capacity and density of the fluid in the reactor. The steady-state values
and process parameters are given in Table 4.1. For these parameters, it was
verified that the given equilibrium point is an unstable one (the system also
possesses two locally asymptotically stable equilibrium points).

Table 4.1. Process parameters and steady-state values for the reactor of Eq.4.19.

V = 100.0 L
R = 8.314 J/mol.K
CA0 = 1.0 mol/L
TA0s = 310.0 K
∆H = −4.78× 104 J/mol
k0 = 7.20× 1010 min−1

E = 8.31× 104 J/mol
cp = 0.239 J/g.K
ρ = 1000.0 g/L
F = 100.0 L/min
CAs = 0.577 mol/L
Ts = 395.3 K

The control objective is to regulate both the reactor temperature and
reactant concentration at the (open-loop) unstable equilibrium point by ma-
nipulating both the rate of heat input/removal and the inlet reactant con-
centration. The control objective is to be accomplished in the presence of: (1)
time-varying persistent disturbances in the feed stream temperature, (2) para-
metric uncertainty in the value of the heat of reaction, and (3) hard constraints
on the manipulated inputs. Defining x1 = CA, x2 = T , u1 = CA0 − CA0s,
u2 = Q, θ1(t) = TA0 − TA0s, θ2(t) = ∆H −∆Hnom, y1 = CA, y2 = T , where
the subscript s denotes the steady-state value and ∆Hnom denotes the nomi-
nal value of the heat of reaction, the process model of Eq.4.19 can be cast in
the form of Eq.4.1 with:
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f(x) =




F

V
(CA0s − CA)− k0 exp

(−E

RT

)
CA

F

V
(TA0s − T ) +

(−∆Hnom)
ρcp

k0 exp
(−E

RT

)
CA




, g1(x) =




F

V

0




g2(x) =




0

1
ρcpV


 , w1(x) =




0

F

V


 , w2(x) =




0

k0 exp
(−E

RT

)
CA




(4.20)
h1(x) = x1, h2(x) = x2. In all simulation runs, the following time-varying
function was considered to simulate the effect of exogenous disturbances in
the feed temperature:

θ1(t) = θ0sin(3t) (4.21)

where θ0 = 0.08TA0s. In addition, a parametric uncertainty of 50% in the
heat of reaction was considered, i.e., θ2(t) = 0.5 (−∆Hnom). The upper
bounds on the uncertain variables were therefore taken to be θb1 = 0.08TA0s,
θb2 = 0.5 |(−∆Hnom)|. Also, the following constraints were imposed on the
manipulated inputs: ‖u1‖ ≤ 1.0 mol/L and ‖u2‖ ≤ 92 KJ/s.

A quadratic Lyapunov function of the form V = (CA − CAs)
2 +(T − Ts)

2

was used to design the multivariable bounded robust controller of Eqs.4.12-
4.14 and to compute the associated region of guaranteed closed-loop stability
with the aid of Eq.4.15. Since the uncertainty considered is non-vanishing
(see Remark 4.14), the following values were used for the tuning parameters:
χ = 8.0, φ = 0.0001, ρ = 0.01 to guarantee that the outputs of the closed-
loop system satisfy a relation of the form lim sup

t→∞
‖yi − vi‖ ≤ 0.0005, i = 1, 2.

Also, the term ‖(LGV )T ‖2 in the denominator of the control law of Eqs.4.12-
4.13 was replaced by the number, ν = 0.001, when the system trajectory
reached close to the desired steady-state to alleviate chattering of the control
action (note that, for this example, ‖(LGV )T ‖ = 0 if and only if (CA, T ) =
(CAs, Ts)).

Several closed-loop simulation runs were performed to evaluate the ro-
bustness and constraint-handling capabilities of the multi-variable controller.
Figure 4.1 depicts the startup reactor temperature and reactant concentra-
tion profiles for an initial condition that lies within the stability region com-
puted from Eq.4.15. The solid lines represent the process response when the
bounded robust controller is tuned properly and implemented on the process.
The dashed lines correspond to the response when the controller is designed
and implemented without the robust uncertainty compensation component
(i.e., χ = 0). Finally, the dotted lines represent the open-loop response. When
compared with the open-loop profiles, it is clear that, starting from the given
admissible initial condition, the properly tuned bounded robust controller suc-
cessfully drives both outputs to the desired steady-state, in the presence of
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input constraints, while simultaneously attenuating the effect of the uncertain
variables on the outputs. It should be noted that this conclusion was reached
a priori (before controller implementation) based on the characterization of
the stability region given in Theorem 4.1. From the dashed profiles we see
that the uncertain variables have a significant effect on the process outputs
and that failure to explicitly account for them in the controller design leads to
instability and poor transient performance. Figure 4.2 shows the correspond-
ing profiles for the manipulated inputs. Note that since the initial condition is
chosen within the region of guaranteed stability, the well-tuned multivariable
controller generates, as expected, control action (solid lines) that respects the
constraints imposed.

In Figure 4.3, we tested the ability of the controller to robustly stabilize
the process at the desired steady-state, starting from initial conditions that
lie outside the region of guaranteed closed-loop stability. In this case, no a
priori guarantees can be made regarding closed-loop stability. In fact, from
the process response denoted by the dashed lines in Figure 4.3, we see that,
starting from the given initial condition, the controller is unable to successfully
stabilize the process or attenuate the effect of uncertainty on the process
outputs. The reason for this can be seen from the corresponding manipulated
inputs’ profiles in Figure 4.4 (dashed lines) which show that both the inlet
reactant concentration and rate of heat input stay saturated for all times,
indicating that stabilizing the process from the given initial condition requires
significantly larger control action, which the controller is unable to provide
due to the constraints. The combination of insufficient reactant material in
the incoming feed stream and insufficient cooling of the reactor prompt an
increase in the reaction rate and, subsequently, an increase in the reactor
temperature and depletion of the reactant material in the reactor. Note that
since the region of guaranteed closed-loop stability given in Theorem 4.1 does
not necessarily capture all the admissible initial conditions (this remains an
unresolved problem in control), it is possible for the controller to robustly
stabilize the process starting from some initial conditions outside this region.
An example of this is shown by the controlled outputs and manipulated inputs’
profiles denoted by solid lines in Figures 4.3-4.4, respectively.

In addition to robust stabilization, we also tested the robust set-point
tracking capabilities of the controller under uncertainty and constraints. The
results for this case are shown in Figures 4.5-4.6 which depict the profiles of
the controlled outputs and manipulated inputs, respectively, in response to
a 0.4 mol/L increase in the reactant concentration set-point and 40 K de-
crease in the reactor temperature set-point. It is clear from the figures that
the controller successfully achieves the requested tracking while simultane-
ously attenuating the effect of uncertainty and generating control action that
respects the constraints imposed. Finally, the state-space region where the
bounded robust multivariable controller satisfies the input constraints was
computed using Eq.4.15 and is depicted in Figure 4.7 (top plot). For the sake
of comparison, we included in Figure 4.7 (bottom plot) the corresponding
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Fig. 4.1. Controlled outputs: reactant concentration (top) and reactor temperature
(bottom) profiles under the bounded multivariable nonlinear state feedback con-
troller of Eqs.4.12-4.14 with uncertainty compensation and initial condition inside
the stability region (solid), without uncertainty compensation (dashed) and under
open-loop conditions (dotted).
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Fig. 4.2. Manipulated inputs: inlet reactant concentration (top) and rate of heat
input (bottom) profiles under the bounded multivariable nonlinear state feedback
controller of Eqs.4.12-4.14 with uncertainty compensation and initial condition in-
side the stability region (solid), without uncertainty compensation (dashed) and
under open-loop conditions (dotted).
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Fig. 4.3. Controlled outputs: reactant concentration (top) and reactor temperature
(bottom) profiles under the bounded robust multivariable nonlinear state feedback
controller of Eqs.4.12-4.14 for initial conditions outside the region of guaranteed
closed-loop stability.
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Fig. 4.4. Manipulated inputs: inlet reactant concentration (top) and rate of heat
input (bottom) profiles under the bounded multivariable nonlinear state feedback
controller of Eqs.4.12-4.14 for initial conditions outside the region of guaranteed
closed-loop stability.
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region for a multivariable input-output linearizing controller that cancels pro-
cess nonlinearities (the stabilizing linear terms were not included since the
associated stabilization cost of these terms would yield an even smaller re-
gion). Evolution of the closed-loop trajectories within either region (which
is insured by constructing the largest invariant subregion within) guarantees
closed-loop stability. It is clear from the comparison that the bounded robust
multivariable controller satisfies the constraints for a wider range of process
operating conditions. This is a consequence of the fact that, unlike the input-
output linearizing controller, the bounded multivariable controller accounts
explicitly for constraints. Furthermore, the cost of cancelling process nonlin-
earities by the linearizing controller renders many initial conditions that are
far from the equilibrium point infeasible. In contrast, the bounded controller
avoids the unnecessary cancellation of nonlinearities and employs reasonably
smaller control action to stabilize the process. This, in turn, results in a larger
set of operating conditions that satisfy the constraints.

4.5 State estimation and output feedback control

The feedback controller of Eqs.4.12-4.14 was designed under the assumption
of accessibility of all process states for measurement. In chemical process con-
trol, however, more so than in other control areas, the complete state often
cannot be measured. For example, the concentration of certain intermedi-
ates in chemical reactors may not be accessible for online measurements and
therefore cannot be used directly for feedback purposes. In the past few years,
significant advances have been made in the direction of output feedback con-
troller design for the purpose of robustly stabilizing nonlinear systems. In this
section, we address the problem of synthesizing bounded robust output feed-
back controllers for the class of constrained uncertain multivariable nonlinear
processes in Eq.4.1. Owing to the explicit presence of time-varying uncertain
variables in the process of Eq.4.1, the approach that is followed for output
feedback controller design is based on combination of high-gain observers and
state feedback controllers (see also [267, 146, 183, 50] for results on output
feedback control for unconstrained nonlinear systems). To this end, we initially
formulate the control problem in Section 4.5.1 and then present it solution in
Section 4.5.2.

4.5.1 Control problem formulation

Referring to the system of Eq.4.1, our objective is to synthesize a bounded
robust nonlinear dynamic output feedback controller of the form:

ω̇ = F(ω, y, v̄)

u = P(ω, y, v̄)
(4.22)
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Fig. 4.5. Controlled outputs: reactant concentration (top) and reactor temperature
(bottom) profiles under the bounded robust multivariable nonlinear state feedback
controller of Eqs.4.12-4.14 for a set-point increase of 0.4 mol/L in the reactant
concentration and a set-point decrease of 40 K in the reactor temperature.
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Fig. 4.6. Manipulated inputs: inlet reactant concentration (top) and rate of heat
input (bottom) profiles under the bounded multivariable nonlinear state feedback
controller of Eqs.4.12-4.14 for a set-point increase of 0.4 mol/L in the reactant
concentration and a set-point decrease of 40 K in the reactor temperature.
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Fig. 4.7. Comparison between the state-space regions where the bounded robust
multivariable controller of Eqs.4.12-4.14 (top) and a multivariable input-output lin-
earizing controller (bottom) satisfy the input constraints. The regions are used to
provide estimates of the corresponding stability regions.
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where ω ∈ IRs is an observer state, F(ω, y, v̄) is a vector function, P(ω, y, v̄) is
a bounded vector function, v̄ is a generalized reference input, that: (a) enforces,
in the presence of actuator constraints, exponential stability and asymptotic
robust output tracking with arbitrary degree of attenuation of the effect of
the uncertainty on the output, and (b) provides an explicit characterization
of the region where the aforementioned properties are guaranteed.

The design of the dynamic controller is carried out using combination of
a high-gain state observer and the bounded robust state feedback controller
proposed in Section 4.3. In particular, the system ω̇ = F(ω, y, v̄) in Eq.4.22
is constructed to provide estimates of the process state variables from the
measured outputs, while the bounded static component, P(ω, y, v̄), is syn-
thesized to enforce the requested properties in the closed-loop system and at
the same time provide the necessary explicit characterization of the region of
guaranteed closed-loop stability. The stability analysis of the closed-loop sys-
tem employs singular perturbation techniques (due to the high-gain nature of
the observer) and utilizes the concept of input-to-state stability and nonlinear
small gain theorem-type arguments.

4.5.2 Controller synthesis

In order to proceed with the controller synthesis task, we need to slightly
modify Assumption 4.1 to the following one.

Assumption 4.4 There exist a set of integers, {r1, r2, . . . , rm}, and a coordi-
nate transformation, (ζ, η) = T (x), such that the representation of the system
of Eq.4.1, in the (ζ, η) coordinates, takes the form of Eq.4.5 with:

η̇1 = Ψ1(ζ, η)

...

η̇n−
∑

i
ri

= Ψn−
∑

i
ri

(ζ, η)

(4.23)

We note that the change of variables of Eq.4.5 and Eq.4.23 is independent of
θ and invertible since, for every x, the variables, ζ and η, are uniquely deter-
mined by Eq.4.5 and Eq.4.23. This implies that if we can estimate the values
of ζ, η for all times, using appropriate state observers, then we automatically
obtain estimates of x for all times. This property will be exploited later to
synthesize a state estimator for the system of Eq.4.1 on the basis of the system
of Eq.4.5. We also note that Assumption 4.4 includes the matching condition
of our robust control method. In particular, we consider systems of the form
Eq.4.1 for which the uncertain variables enter the system in the same equation
with the manipulated inputs. This assumption is motivated by our require-
ment to eliminate the presence of θ in the η-subsystem. This requirement and
the stability requirement of Assumption 4.5 below will allow including in the
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controller a replica of the η-subsystem of Eq.4.23 which provides estimates of
the η states.

Assumption 4.5 The system of Eq.4.23 is ISS with respect to ζ, with
βη(‖η(0)‖, t) = Kη‖η(0)‖e−at where Kη, a are positive real numbers and
Kη ≥ 1.

We are now ready to state the main result of this section. Theorem 4.17
that follows provides the explicit synthesis formula for the desired bounded
robust output feedback controller and states precise conditions that guarantee
closed-loop stability and robust asymptotic output tracking in the presence
of uncertainty and input constraints. The proof of the theorem can be found
in the Appendix B.

Theorem 4.17. Consider the constrained uncertain nonlinear system of Eq.4.1,
for which Assumptions 4.3-4.5 hold, under the output feedback controller:

˙̃y
(i)

= Aỹ(i) + Fi(yi − y
(i)
0 )

ω̇1 = Ψ1(sat(ỹ), ω)

...

ω̇n−
∑

ri
= Ψn−

∑
ri

(sat(ỹ), ω)

u = −k(x̂, umax, θb, ρ, χ, φ)
(
L̂GV

)T

(4.24)

where x̂ = T−1(sat(ỹ), ω), ỹ = [ỹ(1)T · · · ỹ(m)T

]T , ω = [ω1 · · · ωn−
∑

i
ri

]T ,

Fi = [Lia
(i)
1 L2

i a
(i)
2 · · · Lri

i a
(i)
ri ]T , i = 1, · · · ,m. Let ε̄ = max{1/Li}. Then

for each pair of positive real numbers (δb, d) such that β(δb, 0) + d ≤ δs,
where β(·, ·) and δs were defined in Theorem 4.1, and for each pair of pos-
itive real numbers (δθ, δv̄), there exists φ∗ > 0, and for each φ ∈ (0, φ∗],
there exists ε̄∗(φ) > 0, such that if φ ∈ (0, φ∗], ε̄ ∈ (0, ε̄∗(φ)], sat(·) =
min{1, ζmax/‖ · ‖}(·) with ζmax being the maximum value of the vector ζ
for ‖ζ‖ ≤ βζ(δζ , 0) where βζ is a class KL function and δζ is the max-
imum value of the vector [lT1 (x) lT2 (x) · · · lTm(x)]T for ‖x‖ ≤ δb, where
li(x) = [hi(x) Lfhi(x) · · ·Lri−1

f hi(x)]T , ‖x(0)‖ ≤ δb, ‖θ‖s ≤ δθ, ‖v̄‖s ≤ δv̄,
‖ỹ(0)‖ ≤ δζ , ω(0) = η(0) + O(ε), the following holds in the presence of con-
straints:
(1) The origin of the closed-loop system is asymptotically (and locally expo-
nentially) stable.
(2) The outputs of the closed-loop system satisfy a relation of the form:

lim sup
t→∞

‖yi(t)− vi(t)‖ = 0, i = 1, · · · ,m (4.25)
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Remark 4.18. The robust output feedback controller of Eq.4.24 consists of: (1)
m high-gain observers, each of which provides estimates of the derivatives of
one of the m controlled outputs, yi, up to order ri − 1, and thus estimates of
the variables ζ

(i)
1 , . . . , ζ

(i)
ri , (2) an observer that simulates the inverse dynamics

of the system of Eq.4.23, and (3) a bounded robust static feedback controller
(see Theorem 4.1) that uses measurements of the outputs and estimates of
the states to attenuate the effect of the uncertain variables on the process
outputs and enforce reference input tracking. The use of high-gain observers
allows us to achieve a certain degree of separation in the output feedback
controller design, where the observer design is carried out independently of
the state feedback design. This is possible because of the disturbance rejec-
tion properties of high-gain observers that allow asymptotic recovery of the
performance achieved under state feedback, where “asymptotic” here refers
to the behavior of the system as the poles of the observer approach infinity.
It is important to note here that while such “separation principle” holds for
the class of feedback linearizable nonlinear systems considered in this chap-
ter, one should not expect the task of observer design to be independent from
the state feedback design for more general nonlinear systems. In fact, even in
linear control design, when model uncertainties are taken into consideration,
the design of the observer cannot be separated from the design of the state
feedback control.

Remark 4.19. In designing the output feedback controller of Eq.4.24, we use a
standard saturation function, sat, to eliminate the peaking phenomenon typi-
cally exhibited by high-gain observers in their transient behavior. The origin of
this phenomenon owes to the fact that as the observer poles approach infinity,
its exponential modes will decay to zero arbitrarily fast, but the amplitude
of these modes will approach infinity, thus producing impulsive-like behav-
ior. To eliminate observer peaking, we use the saturation filter in conjunction
with the high-gain observers to eliminate (or filter out) wrong estimates of the
process output derivatives provided by the observer for short times. The idea
here is to exploit our knowledge of an estimate of the stability region obtained
under state feedback (Ω) – where the process states evolve – to derive bounds
on the actual values of the outputs’ derivatives, and then use these bounds
to design the saturation filter. Therefore, during the short transient period
when the estimates of the high-gain observers exhibit peaking, the satura-
tion filter eliminates those estimates which exceed the state feedback bounds,
thus preventing peaking from being transmitted to the plant. Over the same
period, the estimation error decays to small values, while the state of the
plant remains close to its initial value. The validity of this idea is justified via
asymptotic analysis from singular perturbation theory (see Proof of Theorem
4.17 in Appendix B).

Remark 4.20. An important consequence of the combined use of high-gain ob-
servers and saturation filters is that the region of closed-loop stability obtained
under state feedback remains practically preserved under output feedback.
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Specifically, starting from any compact subset of initial conditions (whose size
is fixed by δb) within the state feedback region, there always exist observer
gains such that the dynamic output feedback controller of Eq.4.12 continues
to enforce asymptotic stability and reference-input tracking in the constrained
uncertain closed-loop system, when the observer gains are selected to be suf-
ficiently large. Instrumental in deriving this result is the use of the saturation
filter, which allows us to use arbitrarily large observer gains, in order to recover
the state feedback region, without suffering the detrimental effects of observer
peaking. Note that the size of the output feedback region (δb) can be made
close to that of the state feedback region (δs) by selecting d to be sufficiently
small which, in turn, can be done by making ε̄ sufficiently small. Therefore,
although combination of the bounded state feedback controller with the ob-
server results in some loss (given by d) in the size of the region of guaranteed
closed-loop stability, this loss can be made small by selecting ε̄ to be suffi-
ciently small. As expected, the nature of this semi-regional result is consistent
with the semi-global result obtained in Chapter 3 for the unconstrained case.

Remark 4.21. In addition to preserving the stability region, the controller-
observer combination of Eq.4.24 practically preserves the optimality proper-
ties of the state feedback controller explained in Remark 4.12. The output
feedback controller design is near-optimal in the sense that the cost incurred
by implementing this controller tends to the optimal cost achieved by im-
plementing the bounded state feedback controller when the observer gains
are taken to be sufficiently large. Using standard singular perturbation argu-
ments, one can show that cost associated with the output feedback controller
is O(ε̄) close to the optimal cost associated with the state feedback controller
(i.e., Jmin = V (e(0)) + O(ε̄)). The basic reason for near-optimality is the fact
that by choosing ε̄ to be sufficiently small, the observer states can be made
to converge quickly to the process states. This fact can be exploited to make
the performance of the output feedback controller arbitrarily close to that of
the optimal state feedback controller (see Chapter 3 for an analogous result
for the unconstrained case).

Remark 4.22. Owing to the presence of the fast (high-gain) observer in the dy-
namical system of Eq.4.24, the closed-loop system can be cast as a singularly
perturbed system, where ε̄ = max{1/Li} is the singular perturbation param-
eter. Within this system, the states of the high-gain observers, which provide
estimates of the outputs and their derivatives, constitute the fast states, while
the ω states of the observer and the states of the original system of Eq.4.1
under state feedback represent the slow states. Owing to the dependence of
the controller of Eq.4.24 on both the slow and fast states, the control ac-
tion computed by the static component in Eq.4.24 is not O(ε̄) close to that
computed by the state feedback controller for all times. After the decay of
the boundary layer term (fast transients of the high-gain observers), however,
the static component in Eq.4.24 approximates the state feedback controller to
within O(ε̄).
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Remark 4.23. It is important to note that the asymptotic stability results of
Theorem 4.1 (Theorem 4.17) are regional (semi-regional) and nonlocal. By
definition, a local result is one that is valid provided that the initial con-
ditions are sufficiently small. In this regard, neither the result of Theorem
4.1 nor that of Theorem 4.17 requires the initial conditions to be sufficiently
small in order for stability to be guaranteed. The apparent limitations im-
posed on the size of the initial conditions that guarantee closed-loop stability
follow from the fundamental limitations imposed by the input constraints and
uncertainty, as can be seen from Eq.4.15. In the absence of constraints, for
example, one can establish asymptotic stability globally for the state feedback
problem and semi-globally for the output feedback case. In fact, one of the
valuable features of the results in Theorems 4.1 and 4.17 is that they pro-
vide an explicit procedure for constructing reasonably large estimates of the
stability region that depend only on the magnitude of the constraints and
the size of the uncertainty, which therefore allows one to start from initial
conditions farther away (from the equilibrium point) than would be possible
using approaches where no explicit characterization of the stability region is
available and consequently one often has to restrict the initial conditions to
be sufficiently close to the origin.

4.6 Robust stabilization of a chemical reactor via output
feedback control

To illustrate an application of the output feedback controller design presented
in the previous section, we consider in this section a well-mixed continuous
stirred tank reactor where three parallel irreversible elementary exothermic
reactions of the form A

k1→ D, A
k2→ U and A

k3→ R take place, where A
is the reactant species, D is the desired product and U, R are undesired
byproducts. The feed to the reactor consists of pure A at flow rate F , molar
concentration CA0 and temperature TA0. Due to the non-isothermal nature of
the reactions, a jacket is used to remove/provide heat to the reactor. Under
standard modeling assumptions, a mathematical model of the process can be
derived from material and energy balances and takes the following form:

V
dT

dt
= F (TA0 − T ) +

3∑

i=1

(−∆Hi)
ρcp

ki0 exp
(−Ei

RT

)
CAV +

Q

ρcp

V
dCA

dt
= F (CA0 − CA)−

3∑

i=1

ki0 exp
(−Ei

RT

)
CAV

V
dCD

dt
= −FCD + k10 exp

(−E1

RT

)
CAV

(4.26)
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where CA and CD denote the concentrations of the species A and D, T denotes
the temperature of the reactor, Q denotes rate of heat input/removal from
the reactor, V denotes the volume of the reactor, ∆Hi, ki, Ei, i = 1, 2, 3,
denote the enthalpies, pre-exponential constants and activation energies of the
three reactions, respectively, cp and ρ denote the heat capacity and density
of the reactor. The values of the process parameters and the corresponding
steady-state values are given in Table 4.2. It was verified that these conditions
correspond to an unstable equilibrium point of the process of Eq.4.26.

Table 4.2. Process parameters and steady-state values for the reactor of Eq.4.26.

V = 1000.0 L
R = 8.314 J/mol.K
CA0s = 4.0 mol/L
TA0s = 300.0 K
∆H1 = −5.0× 104 J/mol
∆H2 = −5.2× 104 J/mol
∆H3 = −5.4× 104 J/mol
k10 = 5.0× 104 min−1

k20 = 5.0× 103 min−1

k30 = 5.0× 103 min−1

E1 = 5.0× 104 J/mol
E2 = 7.53× 104 J/mol
E2 = 7.53× 104 J/mol
cp = 0.231 J/g.K
ρ = 1000.0 g/L
F = 83.3 L/min
Ts = 390.97 K
CAs = 3.58 mol/L
CDs = 0.42 mol/L

The control problem is formulated as the one of regulating both the con-
centration of the desired product, CD, and the reactor temperature, T , at
the unstable steady-state by manipulating the inlet reactant concentration,
CA0, and the rate of heat input, Q, provided by the jacket. The control ob-
jective is to be accomplished in the presence of: (1) exogenous time-varying
disturbances in the feed stream temperature, (2) parametric uncertainty in
the enthalpy of the three reaction, and (3) hard constraints on the manipu-
lated inputs. Defining x1 = T , x2 = CA, x3 = CD, u1 = Q, u2 = CA0 −CA0s,
θi = ∆Hi −∆Hi0, i = 1, 2, 3, θ4 = TA0 − TA0s, y1 = x1, y2 = x3, where the
subscript s denotes the steady-state values and ∆Hi0 are the nominal values
for the enthalpies, the process model of Eq.4.26 can be written in the form of
Eq.4.1 with:
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f(x) =




F

V
(TA0s − T ) +

3∑

i=1

(−∆Hi0)
ρcp

ki0 exp
(−Ei

RT

)
CA

F

V
(CA0s − CA)−

3∑

i=1

ki0 exp
(−Ei

RT

)
CA

−F

V
CD + k10 exp

(−E1

RT

)
CA




,

g1(x) =




1
ρcpV

0

0




, g2(x) =




0

F

V

0




,

wi(x) =




ki0 exp
(−Ei

RT

)
CA

0

0




, i = 1, 2, 3, w4(x) =




F

V

0

0




h1(x) = x1, h2(x) = x3. To simulate the effect of uncertainty on the
process outputs, we consider a time-varying function of the form of Eq.4.21,
with θ0 = 0.03TA0, to simulate the effect of external disturbances in the feed
temperature. We also consider a parametric uncertainty of 50% in the values
of the enthalpies. Therefore, the bounds on the uncertain variables are taken
to be θbk = 0.5 |(−∆Hk0)|, k = 1, 2, 3, θb4 = 0.03TA0s. Also, the following
constraints are imposed on the manipulated inputs: ‖u1‖ ≤ 25 KJ/s and
‖u2‖ ≤ 4.0 mol/L.

For this process, the relative degrees of the process outputs, with respect
to the vector of manipulated inputs, are r1 = 1, r2 = 2, respectively. Using
Eq.4.3, it can be verified that the decoupling matrix C(x) is nonsingular and
that the assumptions of Theorem 4.17 are satisfied. In order to proceed with
controller synthesis, we initially use the following coordinate transformation
(in error variables form):




e1

e2

e3


 =




ζ
(1)
1 − v1

ζ
(2)
1 − v2

ζ
(2)
2 − v

(1)
2




=




x1 − v1

x3 − v2

−F

V
CD + k30 exp

(−E3

RT

)
CA
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to cast the process model in its input-output form of Eq.4.6, which is used
directly for output feedback controller design. The necessary controller, whose
practical implementation requires measurements of T and CD only, consists of
a combination of two high-gain observers (equipped with appropriate satura-
tion filters) that provide estimates of the process states and a bounded robust
static feedback component. The static component is designed, with the aid of
the explicit synthesis formula in Eqs.4.12-4.14, using a quadratic Lyapunov
function of the form V = eT Pe, where:

P =




1 0 0
0
√

3 1
0 1

√
3


 (4.27)

which is also used to compute an estimate of the region of guaranteed closed-
loop stability using Eq.4.15. The high-gain observers are designed using
Eq.4.24 and consist of a replica of the linear part of the system of Eq.4.6
plus a linear gain multiplying the discrepancy between the actual and the
estimated values of the outputs. The output feedback controller takes the
following form:

˙̃y
(1)

1 = L1a
(1)
1 (y1 − ỹ

(1)
1 )

˙̃y
(2)

1 = ỹ
(2)
2 + L2a

(2)
1 (y2 − ỹ

(2)
1 )

˙̃y
(2)

2 = L2
2a

(2)
2 (y2 − ỹ

(2)
1 )

u = −k(sat(ỹ))
(
L̂ḡV

)T

(4.28)

where ỹ
(1)
1 , ỹ

(2)
1 , ỹ

(2)
2 are the estimates of the reactor temperature, reactant

concentration, and desired product concentration, respectively, and the satu-
ration filter is defined as:

sat(ỹ(j)
i ) =





a
(j)
m,i, ỹ

(j)
i ≥ a

(j)
m

ỹ
(j)
i , −a

(j)
m,i ≤ ỹ

(j)
i ≤ a

(j)
m,i

−a
(j)
m,i, ỹ

(j)
i ≤ −a

(j)
m,i





(4.29)

The following values were used for the controller and observer parameters:
χ = 3.5, φ = 0.0001, ρ = 0.001, L1 = 100, a

(1)
1 = 10, L2 = 400, a

(2)
1 = 40,

a
(2)
2 = 400, a

(1)
m,1 = 395, a

(2)
m,1 = 4, a

(2)
m,2 = 0.5 to ensure that the process

outputs satisfy a relation of the form lim sup
t→∞

‖yi − vi‖ ≤ 0.0005, i = 1, 2.

Closed-loop simulations were performed to evaluate the robust stabiliza-
tion capabilities of the output feedback controller, starting from an initial
condition inside the stability region, and compare its performance with that
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of the state feedback controller and the open-loop response. Figures 4.8-4.9
depict the controlled outputs (desired product concentration and reactor tem-
perature) and manipulated inputs (inlet reactant concentration and rate of
heat input) profiles, respectively, under output feedback control (solid lines),
under state feedback control (dashed lines) assuming all process states are
available for measurement, and under no control (dotted lines). It is clear from
the comparison with the open-loop profiles that the output feedback controller
successfully drives both controlled outputs close to the desired steady-state
while simultaneously attenuating the effect of disturbances and model uncer-
tainty on the process outputs and generating control action that respects the
constraints imposed. Note that the controlled outputs and manipulated in-
puts’ profiles obtained under the output feedback controller (solid lines) are
very close to the profiles obtained under the state feedback controller (dashed
lines). This closeness, starting from the same initial condition, illustrates two
important features of the output feedback design. The first is the fact that,
by selecting the observer gains to be sufficiently large, the performance of the
output feedback controller approaches (or recovers) that of the state feed-
back controller. Since the process response under state feedback control can
be shown to be optimal (in the inverse sense) with respect to a meaningful
cost (see Remark 4.12), the performance of the output feedback controller
then is near-optimal with respect to the same cost. The second feature is that
the set of admissible initial conditions, starting from where stability of the
constrained closed-loop system is guaranteed under state feedback, remains
practically preserved when the observer gain is chosen sufficiently large.

4.7 Connections with classical control

4.7.1 Motivation and background

The majority (over 90%) of the regulatory loops in the process industries
use conventional Proportional-Integral-Derivative (PID) controllers. Owing
to the abundance of PID controllers in practice and the varied nature of
processes that the PID controllers regulate, extensive research studies have
been dedicated to the analysis of the closed–loop properties of PID controllers
and to devising new and improved tuning guidelines for them, focusing on
closed–loop stability, performance and robustness (see, for example, [303, 232,
272, 169, 215, 249, 19] and the survey papers [20, 59]). Most of the tuning rules
are based on obtaining linear models of the system, either through running
step tests or by linearizing a nonlinear model around the operating steady-
state, and then computing values of the controller parameters that incorporate
stability, performance and robustness objectives in the closed–loop system.

While the use of linear models for the PID controller tuning makes the
tuning process easy, the underlying dynamics of many processes are often
highly complex due, for example, to the inherent nonlinearity of the underly-
ing chemical reaction or due to operating issues such as actuator constraints,
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Fig. 4.8. Controlled outputs: desired product concentration (top) and reactor tem-
perature (bottom) profiles under the bounded robust multivariable output feed-
back controller of Eq.4.24 (solid), under the corresponding state feedback controller
(dashed), for initial condition within the region of guaranteed stability, and under
open-loop conditions (dotted).
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Fig. 4.9. Manipulated inputs: inlet reactant concentration (top) and rate of heat
input (bottom) profiles under the bounded robust multivariable output feedback
controller of Eq.4.24 (solid) and under the corresponding state feedback controller
(dashed), for an initial condition within the region of guaranteed stability.



114 4 Control of Nonlinear Systems with Uncertainty and Constraints

time–delays and disturbances. Ignoring the inherent nonlinearity of the pro-
cess when setting the values of the controller parameters may result in the
controller’s inability to stabilize the closed–loop system and may call for ex-
tensive re-tuning of the controller parameters.

The shortcomings of classical controllers in dealing with complex process
dynamics, together with the abundance of such complexities in modern–day
processes, have been an important driving force behind the significant and
growing body of research work within the area of nonlinear process control
over the past two decades, leading to the development of several practically–
implementable nonlinear control strategies that can deal effectively with a
wide range of process control problems such as nonlinearities, constraints, un-
certainties, and time–delays (see, for example, [78, 81, 177, 9] and the books
[245, 148, 126]). While process control practice has the potential to bene-
fit from these advances through the direct implementation of the developed
nonlinear controllers, an equally important direction in which process control
practice stands to gain from these developments lies in investigating how non-
linear control techniques can be utilized for the improved tuning of classical
PID controllers. This is an appealing goal because it allows control engineers
to potentially take advantage of the improved stability and performance prop-
erties provided by nonlinear control without actually forsaking the ubiquitous
conventional PID controllers or re-designing the control system hardware.

There has been some research effort towards incorporating nonlinear con-
trol tools in the design of PID controllers. For example, in [290] it is shown
that controllers resulting from nonlinear model-based control theory can be
put in a form that looks like the PI or PID controllers for first and second-
order systems. Other examples include [34] where adaptive PID controllers
are designed using a backstepping procedure, and [44] where a self-tuning
PID controller is derived using Lyapunov techniques. In these works, how-
ever, even though the resulting controller has the same structure as that of
a PID controller, the controller parameters (gain: Kc, integral time–constant:
τI , and derivative time–constant: τD) are not constant but functions of the
error or process states. While such analysis provides useful analogies between
nonlinear controllers and PID controllers, implementation of these control de-
signs would require changing the control hardware in a way that allows the
tuning parameter values to be continuously changed while the process is in
operation.

Motivated by the considerations above, we present in this section a two-
level, optimization-based method for the derivation of tuning guidelines for
PID controllers that take nonlinear process behavior explicitly into account.
The central idea behind the proposed method is the selection of the tuning pa-
rameters in a way that has the PID controller emulate, as closely as possible,
the control action and closed–loop response obtained under a given nonlin-
ear controller, for a broad set of initial conditions and set-point changes. To
this end, classical tuning guidelines (typically derived on the basis of linear
approximations, running open or closed–loop tests) are initially used in the



4.7 Connections with classical control 115

first level to obtain reasonable bounds on the range of stabilizing tuning pa-
rameters over which the search for the parameters best matching the PID
and nonlinear controllers is to be conducted. In addition to stability, perfor-
mance and robustness considerations for the linearized closed-loop system can
be introduced in the first level to further narrow down the parameter search
range. The bounds obtained from the first level are then incorporated as con-
straints on the optimization problem solved at the second level to yield a set
of tuning parameter values that enforce closed-loop behavior under the PID
controller that closely matches the closed-loop behavior under the nonlinear
controller. Implications of the proposed method, as a transparent and mean-
ingful link between the classical and nonlinear control domains, as well as
possible extensions of the tuning guidelines and other implementation issues
are discussed. Finally, the proposed tuning method is demonstrated through
a chemical reactor example.

4.7.2 A PID controller tuning method using nonlinear control
tools

We consider continuous–time single–input single–output (SISO) nonlinear sys-
tems, with the following state-space description

ẋ(t) = f(x(t)) + g(x(t))u(t)

y = h(x)
(4.30)

where x = [x1 · · ·xn]T ∈ IRn denotes the vector of state variables and xT

denotes the transpose of x, y ∈ IR is the process output, u ∈ IR is the ma-
nipulated input, f(·) is a sufficiently smooth nonlinear vector function with
f(0) = 0, g(·) is a sufficiently smooth nonlinear vector function and h(·) is a
sufficiently smooth nonlinear function with h(0) = 0.

The basic idea behind the proposed approach is the design (but not imple-
mentation) of a nonlinear controller that achieves the desired process response,
and then, the tuning of the PID controller parameters so as to best “emulate”
the control action and closed–loop process response under the nonlinear con-
troller, subject to constraints derived from classical PID tuning rules. These
ideas are described algorithmically below (see also Fig.4.10):

1. Construct a nonlinear process model and derive a linear model around the
operating steady-state (either through linearization or by running step
tests).

2. On the basis of the linear model, use classical tuning guidelines to deter-
mine bounds on the values of Kc, τI and τD.

3. Using the nonlinear process model and desired process response, design a
nonlinear controller.

4. For a set-point change, compute off-line, through simulations, the input
trajectory (unl(t)) prescribed by the nonlinear controller over the time
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Fig. 4.10. Schematic representation of the implementation of the proposed two-
level, optimization-based tuning method.

(tfinal) that it takes to achieve the set-point change and the corresponding
output profile under the nonlinear controller, ynl(t).

5. Compute PID tuning parameters (Kc, τI and τD) as the solution to the
following optimization problem

J =
∫ tfinal

0

[
(ynl(t)− yPID(t))2 + (unl(t)− uPID(t))2

]
dt (4.31)

s.t. uPID(t) = Kc

(
e +

∫ t

0
e(t′)dt′

τI
+ τD

de

dt

)

e(t) = ysp − yPID

ẋ(t) = f(x(t)) + g(x(t))uPID(t)

yPID = h(x)

α1K
c
c ≤ Kc ≤ α4K

c
c

α2τ
c
I ≤ τI ≤ α5τ

c
I

α3τ
c
D ≤ τD ≤ α6τ

c
D

(Kc, τI , τD) = argmin(J)

(4.32)

where ysp is the desired set-point, ynl, unl are the closed–loop process
response and control action under the nonlinear controller respectively,
Kc

c , τ c
I and τ c

D are the parameter values obtained by using tuning rules
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based on linear models and 0 ≤ αi < 1, i = 1, 2, 3 and 1 < αi < ∞, i =
4, 5, 6 are design parameters.

Remark 4.24. The optimization problem of Eqs.4.31-4.32 computes values for
Kc, τI , τD such that the closed–loop control action and process response under
the PID controller are similar to those under the nonlinear controller, while be-
ing within acceptable ranges of the values obtained from the classical tuning
methods. The method, therefore, allows fine-tuning the closed–loop perfor-
mance under the PID controller to mimic that of the nonlinear controller.
Note that, in principle, the PID controller parameters could have been tuned
to mimic any desired arbitrarily–chosen closed–loop behavior. Mimicking the
behavior of the nonlinear controller, however, is a meaningful objective since
the nonlinear controller utilizes the nonlinear system dynamics in generating
the prescribed input and output response, and therefore provides a “target”
closed–loop system behavior that is realizable. Note also that the performance
index of Eq.4.31 can be generalized to include a weight factor (in front of the
input penalty term) in order to quantify the relative importance of the two
main terms: the first one that aims at minimizing the closed-loop output mis-
match associated with the nonlinear vs. the PID controller, and the second
input penalty term. Furthermore, the inclusion of a weight factor would ensure
consistency of units for the two terms in the performance functional.

Remark 4.25. It should be noted that the controller actually implemented in
the closed–loop system is the PID controller with fixed parameter values, and
that it may not always be possible for the PID controller to exactly match
the closed–loop behavior under the nonlinear controller. The purpose behind
introducing the first-level tuning is twofold: (1) to ensure that important ob-
jectives (such as closed-loop stability) are not sacrificed in the (possibly unsuc-
cessful) quest for a nonlinear controller like behavior (which is accomplished
through the optimization), and (2) to provide a rational way of constructing a
range of the tuning parameter values over which the optimization is performed.
In relation to the first objective, we note that the essence of the second-level
optimization is to try to find the best tuning parameter values that make the
PID controller emulate the behavior of the nonlinear controller. However, this
objective should not come at the expense of more overriding objectives such
as closed–loop stability. In particular, if the optimization problem were to be
carried out without imposing any constraints on the parameter values, the
solution may indeed lead to a closer match, but no longer guarantee that the
PID controller enforces closed–loop stability when implemented. This is one
reason why the proposed method includes the first level whose purpose, in
part, is to make use of existing methods for PID controller tuning in order
to first determine the range of tuning parameters for which closed-loop sta-
bility of the linearized process model under the PID controller is guaranteed.
For such a range of values, the PID controller is expected to enforce (local)
closed–loop stability when implemented on the nonlinear process.
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Remark 4.26. Having obtained the stabilizing parameter range and incorpo-
rated it as a constraint on the optimization, the search for the “optimal” gain
then can take place only over this range. However, the stabilizing range may
be too large to search over and the designer may wish to limit this range fur-
ther by incorporating additional performance and robustness considerations.
The use of first-level methods (which are based on the use of linear models)
provides a rational, though not necessarily unique, way of constructing an ap-
propriate subrange to work with. For example, if certain robustness margins
can be obtained (and quantified explicitly as ranges on the tuning param-
eters) through the use of existing methods based on the linearized model,
these margins can be incorporated as constraints that further limit the search
range. This of course does not guarantee that the PID controller will exhibit
such robustness or performance when implemented on the nonlinear process
since the margins are based on the linearized model. However, at a minimum,
this is a meaningful way to go about constructing or, more precisely, nar-
rowing down the range over which the optimization is done (by requesting
that the performance of the linearized model be consistent with what existing
methods based on linear models yield). Ultimately, it is the “closeness” of the
PID controller to the nonlinear controller resulting from the second-level op-
timization (not the first-level methods) that is essentially responsible for the
performance properties exhibited by the PID controller when implemented on
the nonlinear process. Since different first-level tuning methods lead to differ-
ent performance properties and yield different parameter values, the designer
can examine the values obtained from different methods to form a reasonable
idea about what an acceptable range might be around these nominal values
and then construct such a range (through choosing appropriate αi values) and
implement it as constraints on the optimization (see the simulation studies in
Section 4.7.3 for an example). If the parameter values obtained after perform-
ing the optimization do not yield satisfactory performance (tested through
simulations), then the parameter range could be expanded further (but still
within the stabilizing range determined initially) in an iterative procedure.

Remark 4.27. The αi’s in Eq.4.32 are introduced into the optimization as
design parameters that allow the designer flexibility in tightening or relaxing
the range of parameter values over which the optimization is carried out. If a
given method yields satisfactory performance, and it is desired that the tuning
parameters not be changed appreciably, this can be enforced by using values of
the design parameters, αi, close to 1. The tuning parameters resulting from the
solution to the optimization problem in this case, while changed to mimic the
nonlinear control action, will be close to the ones obtained from the classical
tuning method considered in the first level. If, on the other hand, it is decided
that some further improvement is warranted, then, at a minimum, the αi

values should be chosen to reflect the range (or a subset of the range) within
which the parameter values can be changed by the optimization without losing
stability. If the designer wishes to constrain the search over a smaller range
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(using, for example, certain performance or robustness margins obtained from
the first-level methods for the linearized closed-loop system), then the αi

values can be modified to reflect the new range. In general, the choice of αi

varies depending on the particular process under consideration and on the
particular tuning methods that are being considered in the first level.

Remark 4.28. Regarding the performance properties of the proposed method
in relation to those of the first-level methods, we first note that the first-level
tuning guidelines are derived on the basis of the linearized process model,
and therefore the robustness and performance properties obtained when us-
ing these methods to tune the PID controller are not guaranteed to carry over
when the PID controller is implemented on the nonlinear system. So even if
re-tuning of the first-level methods may bring about further performance im-
provement in the linear case (by possibly sacrificing stability and robustness
margins), this does not imply that a similar improvement should be expected
in the nonlinear setting. In general, there is no systematic way in which such
methods can be re-tuned (if at all possible) to improve the performance in
the nonlinear case. By contrast, the proposed method aims to improve the
performance of the PID controller in the nonlinear setting by explicitly ac-
counting for process nonlinearity through the optimization (an objective not
shared by the first-level approaches). Whether this necessarily means that the
resulting parameters will always yield performance that is “better” than what
a given tuning method might yield is difficult to judge, and, more importantly,
is not a point that the method is intended to address. The point is that the
proposed approach is a meaningful way of tuning PID controllers that can
yield good performance when implemented on the nonlinear system. From
this perspective, the first-level methods serve as a rational starting point for
the construction of the search ranges as discussed in Remark 4.25.

Remark 4.29. The optimization problem of Eqs.4.31-4.32 is solved off-line as
part of the design procedure to compute the optimal values of the tuning
parameters. Also, the above optimization problem can be carried out over a
range of initial conditions and set-point changes that are locally representative
of the process operation to obtain PID tuning parameters that allow the PID
controller to approximate, in an average (with respect to initial conditions
and set-point changes) sense, the closed–loop response under the nonlinear
controller. If the process is required to operate at an equilibrium point that is
very far from the operating point that the parameters are tuned for, then it
is best to perform the optimization again around the new, desired operating
point to yield new tuning parameter values (as is done in classical tuning also).
Regarding the optimization complexity issue, we note that possible complex-
ity of the proposed optimization is mainly a function of the model complexity
(e.g., nonlinearity, model order, etc.). The increase in computational demand
expected in the case of higher-order and highly nonlinear systems is primarily
due to the need to solve a higher-order system of nonlinear differential equa-
tions. However, with current computational capabilities, this does not pose
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unduely significant limitations on the practical implementation prospects of
the proposed method especially when compared with the computational com-
plexity encountered in typical nonlinear optimization problems (e.g., nonlinear
MPC). Furthermore, the approximations discussed in Remark 4.32 below pro-
vide possible means that can help manage potential complexities even further.
Finally, we note that since the method involves a form of nonlinear optimiza-
tion, it is expected that, in general, multiple optimal solutions may exist.

Remark 4.30. The basic idea behind the proposed PID controller tuning
methodology, i.e., that of tuning the PID controller to emulate some other
well–designed controller that handles complex dynamics effectively, can be
used to develop conceptually similar tuning methods for PID control of pro-
cesses with other sources of complexities (besides nonlinearity) such as un-
certainty, time–delays, and manipulated input constraints. The logic behind
such extensions is based on the following intuitive parallel: just as a nonlinear
controller is a meaningful guide to be emulated by a PID controller being
implemented on a nonlinear process, a controller that handles constraints,
uncertainty and/or time–delays effectively can also be a meaningful guide
to be emulated by a PID controller that is being implemented on a process
with these characteristics. In principle, the extensions can be realized by ad-
equately accounting for the complex characteristics of these processes within
both levels of the tuning method. For example, for systems with uncertainty,
classical tuning methods that provide sufficient robustness margins can be
used to come up with the first–level parameter values. Then a robust nonlin-
ear controller (for example, [78]) can be designed and the closed–loop profiles,
obtained under the robust nonlinear controller for a sufficient number of re-
alizations of the uncertainty (which may be simulated, for instance, using
random number generators) may be computed. Finally, the parameter values
obtained from the first level tuning method may be improved upon by solving
an optimization problem that minimizes the error over the profiles in the rep-
resentative set. In a conceptually similar fashion, for systems with constraints,
an anti-windup scheme could be used initially to obtain the first level param-
eter values. A nonlinear controller design that handles input constraints can
then be chosen for the second–level optimization. The PID controller tuning
guidelines can then serve to “carry over” the constraint handling properties
of this nonlinear controller and improve upon the first level tuning methods
in two ways: (1) through the objective function, by requiring the control ac-
tion and closed–loop process response under PID control to mimic that under
the constrained nonlinear controller, and (2) through the incorporation of the
input constraints directly into the optimization problem. It should be noted
however that, while such extensions are intuitively appealing, a detailed as-
sessment and characterization of their potential requires further investigation.

Remark 4.31. Note that the derivative part of the PID controller is often im-
plemented using a filter. This feature can be easily incorporated in the opti-
mization problem by explicitly accounting for the filter dynamics. Constraints
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on the filter time-constant, τf , obtained empirically through knowledge of the
nature of noise in the process, can be imposed to ensure that the filtering ac-
tion restricts the process noise from being transmitted to the control action.

Remark 4.32. To allow for simple computations, approximations can be intro-
duced in solving the optimization problem of Eqs.4.31-4.32. For instance, in
the computation of the control action, the error, e(t), may be approximated by
simply taking the difference between the set-point, ysp, and the process output
under the nonlinear controller, ynl(t), leading to a simpler optimization prob-
lem that can be solved easily using numerical solvers such as Microsoft Excel
(for a given choice of the decision variables, the objective function can be
computed algebraically and does not involve integrating the process dynam-
ics). The justification behind this being that if the resulting value of uPID(t)
is “close enough” to unl(t), then this approximation holds (see the simula-
tion examples in Section 4.7.3 for a demonstration). If the solution of the
optimization problem does not yield a sufficiently small value for the objec-
tive function (indicating that uPID, and hence yPID, is significantly different
from unl, and ynl), this approximation may not be valid anymore. In this
case, one could revert to using e(t) = ysp− yPID(t) in the optimization prob-
lem, where yPID is the closed–loop process response under the PID controller.
Note also that in some cases, particularly for low–dimensional systems with
real analytic vector fields, the value of the performance index may be calcu-
lated explicitly as an algebraic function of the controller parameters (leading
to a static finite–dimensional optimization problem) by solving Zubov’s par-
tial differential equation using techniques similar to those presented in [143].
Those techniques can also be used in designing an optimally–tuned nonlin-
ear controller that serves as a meaningful target to be emulated by the PID
controller.

Remark 4.33. The characteristics of the closed–loop system, analyzed on the
basis of the linearized model, can also be used as guidelines in setting up
the optimization problem. For instance, the gain and phase margins can be
computed for the parameter values prescribed by the proposed method and
changed if not found to be adequate. Note that the value of the gain mar-
gin depends on the value of tuning parameters which in turn depends on the
response of the nonlinear controller that the PID controller is required to
mimic. A highly “aggressive” response prescribed by the nonlinear controller
will likely lead to “aggressively” tuned parameter values and a possibly low
gain margin. The value of the gain margin can be altered by changing the
requested response of the nonlinear controller, making it less or more “aggres-
sive” as the need may be.

Remark 4.34. Finally, we note that the proposed method does not turn the
PID controller into a nonlinear controller. The tuning method can only serve
to improve upon the process response of the PID controller for operating
conditions for which PID control action can be used to stabilize the process.
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If the process is highly nonlinear, or a complex process response is desired,
it may be possible that the PID controller structure is not adequate and, in
this case, the appropriate nonlinear controller should be implemented in the
closed–loop to achieve the desired closed–loop properties.

4.7.3 Application to a chemical reactor example

We consider a continuous stirred tank reactor where an irreversible, first-
order reaction of the form A

k→ B takes place. The inlet stream consists of
pure species A at flow rate F , concentration CA0 and temperature TA0. Under
standard modeling assumptions, the mathematical model for the process takes
the form

ĊA =
F

V
(CA0 − CA)− k0 exp

( −E

RTR

)
CA

ṪR =
F

V
(TA0 − TR) +

(−∆H)
ρcp

k0 exp
( −E

RTR

)
CA +

UA

ρcpV
(Tj − TR)

(4.33)

where CA denotes the concentration of the species A, TR denotes the tem-
perature of the reactor, Tj is the temperature of the fluid in the surrounding
jacket, U is the heat–transfer coefficient, A is the jacket area, V is the volume
of the reactor, k0, E, ∆H are the pre-exponential constant, the activation en-
ergy, and the enthalpy of the reaction respectively, and cp and ρ, are the heat
capacity and fluid density in the reactor respectively. The values of all pro-
cess parameters are given in Table 4.3. At the nominal operating condition of
Tnom

j = 493.87 K, the reactor is operating at the unique, stable steady-state
(Cs

A, T s
R) = (0.52, 398.97). The control objective is to implement set-point

changes in the reactor temperature using the jacket fluid temperature, Tj , as
the manipulated input, using a P, PI or PID controller.

To proceed with our controller tuning method, we initially design an in-
put/output linearizing nonlinear controller. Note that the linearizing con-
troller design is used in the simulation example only for the purpose of illus-
tration, and any other nonlinear controller design deemed fit for the problem
at hand can be used as part of the proposed controller tuning method.

Defining x = [CA − Cs
A, TR − T s

R]′ and u = Tj − Tnom
j , the process of

Eq.4.33 can be recast in the form of Eq.4.30 where the explicit form of f(·)
and g(·) are omitted for brevity. Consider the control law given by:

u =
ν − y(t)− γLfh(x)

γLgh(x)
(4.34)

where Lfh(x) and Lgh(x) are the Lie derivatives of the function h(x) with
respect to the vector functions f(x) and g(x), respectively, γ, a positive real
number, is a design parameter and ν is the set-point. Taking the derivative of
the output in Eq.4.30 with respect to time, we get
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Table 4.3. Process parameters and steady–state values for the reactor of Eq.4.33.

V = 100.0 L
E/R = 8000 K
CA0 = 1.0 mol/L
TA0 = 400.0 K
∆H = 2.0× 105 J/mol
k0 = 4.71× 108 min−1

cp = 1.0 J/g.K
ρ = 1000.0 g/L
UA = 1.0× 105 J/min.K
F = 100.0 L/min
Cs

A = 0.52 mol/L
T s

R = 398.97 K
T nom

j = 493.87 K

ẏ = Lfh(x) + Lgh(x)u (4.35)

Substituting the linearizing control law of Eq.4.34, we get

ẏ =
ν − y

γ
(4.36)

Under the control law of Eq.4.34, the controlled output y evolves linearly,
to achieve the prescribed value of ν, with the design parameter γ being the
time–constant of the closed–loop response.

It is well known that when a first–order closed–loop response, with a given
time–constant, is requested for a linear first-order process, the method of
direct synthesis yields a PI controller. Note that the relative order of the con-
troller output, TR, with respect to the manipulated input, Tj , in the example
of Eq.4.33 is also one. Even though the nonlinear linearizing controller is a
static controller, and the PI controller is dynamic, both controllers are capa-
ble of generating closed–loop behaviors that are of the same kind (a linear
first order response with a prescribed closed–loop time constant). This mo-
tivates using a PI controller and tuning the controller parameters to achieve
the prescribed first-order response.

For the purpose of tuning the PI controller, the nonlinear process response
generated under the nonlinear controller, using a value of γ = 0.25, was used in
the optimization problem. An appropriate range for the tuning parameters was
derived from the Kc and τI suggested by the IMC-based and Ziegler-Nichols
tuning rules (where the parameters Kcu = 6.36 and Pu = 5.0 are obtained
using the method of relay auto tuning [18]). In particular, the constraints on
the values of the parameters were chosen as follows: for a given parameter,
the largest and the smallest values prescribed by the available tuning methods
(in this case the IMC-based and Ziegler Nichols) were chosen and the upper
bound on the parameters was chosen as twice the maximum value, and the
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lower bound was chosen as half the minimum value; 0.9 ≤ Kc ≤ 5.7 and
0.2 ≤ τI ≤ 8.2. The values of the parameters, computed using the IMC
method, Ziegler-Nichols and the two-level PI tuning method are reported in
Table 4.4.

Table 4.4. PI controller tuning parameters

Tuning method Kc τI

IMC 1.81 0.403
Ziegler-Nichols 2.86 4.16
Two-level optimization method 5.56 0.297

The solid lines in Fig.4.11(a)-(b) show the closed–loop response of the out-
put and the manipulated input under the nonlinear controller of Eq.4.34. Note
that the value of γ was chosen as 0.25 to yield a smooth, fast transition to the
desired set-point. The optimization problem was solved approximately, using
the closed–loop process response under the nonlinear controller to compute
e(t), and the objective function only included penalties on the difference be-
tween the control actions under the PI controller and the nonlinear controller
(see Remark 4.32). The dashed–line shows the response of the PI controller
tuned using the proposed optimization-based method. The result shows that
the response under the PI controller is close to that under the nonlinear con-
troller and demonstrates the feasibility of using a PI controller to generate a
closed–loop response that mimics the response of the nonlinear controller.

In Fig.4.12(a), we present the closed–loop responses when the controller
parameters computed using the IMC-based tuning rules and Ziegler-Nichols
are implemented. As can be seen, the transition to the new set-point under
the PID controller tuned using the proposed method (dashed lines) is fastest
when compared to a classical PI controller tuned using IMC tuning rules
(solid line) and Ziegler-Nichols tuning rules (dotted line). The corresponding
manipulated input profiles are shown in Fig.4.12(b).

We now demonstrate the application of the proposed method to the same
system, but with CA as the controlled variable and Tj as the manipulated
variable. As in the previous case, we initially design an input/output lineariz-
ing nonlinear controller to yield a second-order linear input-output response
in the closed–loop system of the form:

τ2
clÿ +

2ξ

τcl
ẏ + y = ν (4.37)

where τcl and ξ are design parameters and were chosen as τcl = 0.2 and
ξ = 1.05 (implying that the closed–loop system is a slightly over-damped
second-order system).

The following tuning methods were used for the first level: (1) IMC-based
tuning rule, where a step test is run to approximate the system by a first-order
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Fig. 4.11. Closed–loop output (a) and manipulated input (b) profiles under the
linearizing controller of Eq.4.34 (solid line) and a PI controller tuned using the
proposed, two-level optimization method (dashed line).

+ time–delay process, hence referred to as IMC-I, (2) IMC-based tuning rule,
where the process is linearized around the operating steady-state to obtain
a second-order linear model, hence referred to as IMC-II, and (3) Ziegler-
Nichols tuning rules, where the parameters Kcu = −34543 and Pu = 0.223
are obtained using the method of relay auto tuning [18] (the tuning parameter
values are reported in Table 4.5). Based on the parameter ranges suggested
by the first level tuning methods, the following constraints were used in the
optimization problem set up to compute Kc, τI and τD: −2072.0 ≤ Kc ≤
−678, 0.149 ≤ τI ≤ 1 and 0.0114 ≤ τD ≤ 0.052. The derivative part of
the controller was implemented using a first order filter with time–constant
τf = 0.1.

The solid lines in Figs.4.13(a)-(b) show the closed–loop response of the
output and the manipulated input under the linearizing controller design.
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Fig. 4.12. Closed–loop output (a) and manipulated input (b) profiles using IMC
tuning rules for the PI controller (solid line), using Ziegler-Nichols tuning rules
(dotted line) and the proposed, two-level optimization method (dashed line).

Table 4.5. PID controller tuning parameters.

Tuning method Kc τI τD

IMC-I -678.8 0.95 0.0524
IMC-II -1208.9 1.00 0.114
Ziegler-Nichols -2072.0 0.149 0.028
Two-level optimization method -951.21 0.978 0.114

The dashed–line shows the response of the PID controller tuned using the
proposed method, which is close to the response of the nonlinear controller.
As is clear from Fig.4.13, the resulting PID controller yields a response that
is close enough to that of the nonlinear controller.
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Fig. 4.13. Closed–loop output (a) and manipulated input (b) profiles under a lin-
earizing controller (solid line) and a PID controller tuned using the proposed, two-
level optimization method (dashed line).

In Fig.4.14(a), we present the closed–loop responses when the controller
parameters computed using the classical tuning rules are implemented. The
values suggested by Ziegler-Nichols tuning lead to an oscillatory closed–loop
response. In the simulation, a smaller value for Kc = −518.4 and a larger
τI = 0.14 were used. As can be seen, the transition to the new set-point using
the proposed tuning method (dashed lines in Fig.4.14) compares favorably
with that obtained when using the IMC-based tuning rules-I and II (dotted
and solid lines, respectively) and the Ziegler-Nichols tuning rules (dash-dotted
line). The corresponding manipulated input profiles are shown in Fig.4.14(b).
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Fig. 4.14. Closed–loop output (a) and manipulated input (b) profiles using IMC
tuning rules I (dotted line), IMC tuning rules II (solid line), Ziegler-Nichols tuning
rules (dash-dotted line) and the proposed, two-level optimization method (dashed
line).

4.8 Conclusions

A Lyapunov-based nonlinear controller design methodology, for MIMO nonlin-
ear processes with uncertain dynamics, actuator constraints, and incomplete
state measurements, was developed. Under the assumption that all process
states are accessible for measurement, the approach led to the explicit synthe-
sis of bounded robust multivariable nonlinear feedback controllers that enforce
stability and robust asymptotic reference-input tracking in the constrained
uncertain closed-loop system and provide, at the same time, an explicit char-
acterization of the region of guaranteed closed-loop stability. When complete
state measurements are not available, a combination of the bounded robust
state feedback controllers with high-gain state observes and appropriate sat-
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uration filters, was employed to synthesize bounded robust multivariable out-
put feedback controllers that require only measurements of the outputs for
practical implementation. The resulting output feedback design was shown to
inherit the same closed-loop stability and performance properties of the state
feedback controller and, in addition, practically preserve the region of guaran-
teed closed-loop stability obtained under state feedback. The developed state
and output feedback controllers were applied successfully to non-isothermal
chemical reactor examples with uncertainty, input constraints, and incomplete
state measurements. Finally, the chapter concluded with an approach on how
nonlinear control tools can be used to provide improved tuning guidelines for
classical controllers.





5

Hybrid Predictive Control of Constrained
Linear Systems

5.1 Introduction

Model Predictive Control (MPC), also known as receding horizon control
(RHC), is a popular control method for handling constraints (both on manip-
ulated inputs and state variables) within an optimal control setting [231]. In
MPC, the control action is obtained by solving repeatedly, on–line, a finite–
horizon constrained open–loop optimal control problem. The popularity of
this approach stems largely from its ability to handle, among other issues,
multi–variable interactions, constraints on controls and states, and optimiza-
tion requirements, all in a consistent, systematic manner. Its success in many
commercial applications is also well–documented in the literature (see, for
example, [99, 223]). These considerations have motivated numerous research
investigations into the stability properties of model predictive controllers and
led to a plethora of MPC formulations that focus on closed-loop stability (see,
for example, [145, 101, 228, 68] and the review paper [191]).

The significant progress in understanding and improving the stability prop-
erties of MPC notwithstanding, the issue of obtaining, a priori (i.e., before
controller implementation), an explicit characterization of the region of con-
strained closed–loop stability for model predictive controllers remains to be
adequately addressed. The difficulty in this direction owes in part to the fact
that the stability of MPC feedback loops depends on a complex interplay be-
tween several factors such as the choice of the horizon length, the penalties in
the performance index, the initial condition and the constraints on the state
variables and manipulated inputs. A priori knowledge of the stability region
requires an explicit characterization of these interplays which is a very difficult
task. This difficulty can impact on the practical implementation of MPC by
imposing the need for extensive closed–loop simulations over the whole set of
possible initial conditions to check for closed–loop stability, or by potentially
limiting operation within an unnecessarily small neighborhood of the nominal
equilibrium point.
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The desire to implement control approaches that allow for an explicit
characterization of their stability properties has motivated significant work
on the design of stabilizing control laws, using Lyapunov techniques, that
provide explicitly–defined, large regions of attraction for the closed–loop sys-
tem; the reader may refer to [151] for a survey of results in this area. In
Chapter 4, a class of Lyapunov–based bounded robust nonlinear controllers,
inspired by the results on bounded control originally presented in [177], was
developed. The controllers enforce robust stability in the closed–loop sys-
tem and provide, at the same time, an explicit characterization of the region
of guaranteed closed–loop stability. Despite their well–characterized stability
and constraint–handling properties, those Lyapunov–based controllers are not
guaranteed to be optimal with respect to an arbitrary performance criterion
(in Chapter 4 we show that the proposed controllers are inverse optimal with
respect to meaningful cost functionals).

However, the fact that Lyapunov–based control methods provide an eas-
ily implementable controller with an explicitly characterized stability region
for the closed–loop system motivates developing control techniques that use
the a priori guarantees of stability provided by the bounded controller as a
safety net for the implementation of the high performance model predictive
controller. Reconciliation of different controllers (designed to satisfy different
control objectives) calls for invoking the hybrid control paradigm, where the
control structure consists of a blend of continuous (i.e., classical) controllers
and discrete components (for example, a logic–based supervisor that orches-
trates switching between the various continuous controllers; see Figure 5.1).

Information
Process

logic

+

-

spy u y
Process

Controller NController 2Controller 1

Supervisor
Switching 

Fig. 5.1. Schematic representation of a hybrid control structure.

Motivated by the above considerations, we develop in this chapter a hy-
brid predictive control structure that seamlessly unites MPC and bounded
control, for the stabilization of linear systems with input constraints, in a way
that allows both approaches to complement the stability and performance
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properties of each other. The guiding principle in developing the hybrid pre-
dictive control structure is the idea of decoupling performance requirements
from the task of characterizing the region of constrained closed-loop stabil-
ity. Specifically, by relaxing the optimality requirement, an explicit bounded
feedback control law is designed and an explicit large estimate of the region of
constrained closed-loop stability – which is not unnecessarily conservative – is
computed. The predictive controller – which minimizes a given cost functional
subject to the same constraints – is then designed and implemented within the
stability region of the bounded controller, which is used a “fall–back” in the
event that MPC is unable to achieve closed–loop stability (due, for example,
to improper tuning of MPC parameters). Switching laws, that place appro-
priate restrictions on the evolution of the closed–loop trajectory under MPC,
are then constructed to orchestrate the transition between the two controllers
in a way that reconciles the tradeoffs between their respective stability and
performance properties and guarantees closed–loop stability for all initial con-
ditions within the stability region of the bounded controller. The switching
scheme is shown to provide a safety net for the practical implementation of
MPC by providing, through off–line computations, a priori knowledge of a
large set of initial conditions for which closed-loop stability is guaranteed.

The general idea of switching, between different controllers or models, for
the purpose of achieving some objective that either cannot be achieved or is
more difficult to achieve using a single controller (or model) has been widely
used in the literature, and in a variety of contexts. Examples include controller
switching in gain scheduled control (e.g., [234]), logic-based switching in adap-
tive control (e.g., [119]), hybrid control of mixed logical dynamical (MLD)
systems [32], the use of multiple linear models for transition control (e.g.,
[25, 259]) and scheduled predictive control (e.g., [21]) of nonlinear processes.
The developed hybrid predictive control structure developed here differs from
other hybrid control structures found in the literature, in the sense that it
employs structurally different controllers as a tool for reconciling the objec-
tives of optimal stabilization of the constrained closed-loop system (through
MPC) and the a priori (off-line) determination of set of initial conditions for
which closed-loop stability is guaranteed (through bounded control).

The rest of the chapter is organized as follows. In Section 5.2, we present
some preliminaries that describe the class of systems considered and review
briefly how the constrained control problem is addressed in both the bounded
control and model predictive control approaches. We then proceed in Section
5.3 to formulate the hybrid control problem within the framework of switched
systems and present the hybrid predictive control structure under the assump-
tion of full state feedback. The theoretical underpinnings and practical im-
plications of the proposed hybrid predictive control structure are highlighted,
and possible extensions of the supervisory switching logic, that address a va-
riety of practical implementation issues, are discussed. The implementation of
the various switching schemes proposed is demonstrated through numerical
simulations. In Section 5.4, we extend the hybrid predictive control structure
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to address the problem of output feedback stabilization. The state feedback
control results of this chapter were first presented in [89] while the output
feedback control results were presented in [195].

5.2 Preliminaries

In this chapter, we consider the problem of asymptotic stabilization of
continuous-time linear time-invariant (LTI) systems with input constraints,
with the following state-space description:

ẋ(t) = Ax(t) + Bu(t) (5.1)

u(t) ∈ U ⊂ IRm (5.2)

where x = [x1 · · ·xn]T ∈ IRn denotes the vector of state variables, u =
[u1 · · ·um]T is the vector of manipulated inputs, taking values in a compact
and convex subset of IRm, U := {u ∈ IRm : ‖u‖ ≤ umax}, that contains the
origin in its interior. The matrices A and B are constant n×n and n×m ma-
trices, respectively. The pair (A,B) is assumed to be controllable. Throughout
the chapter, the notation ‖ · ‖ is used to denote the standard Euclidean norm
of a vector, while the notation ‖ · ‖Q refers to the weighted norm, defined by
‖x‖2Q = x′Qx for all x ∈ IRn, where Q is a positive-definite symmetric matrix
and x′ denotes the transpose of x. Furthermore, the notation x(T−) is used
to denote the limit of the trajectory, x(t), as T is approached from the left,
i.e., x(T−) = lim

t→T−
x(t).

In order to provide the necessary background for the main results of this
chapter, we will briefly review in the remainder of this section the design
procedure for, and the stability properties of, both the model predictive and
bounded controllers which constitute the two components of the hybrid pre-
dictive control structure.

5.2.1 Model predictive control

We consider model predictive control of the system described by Eq.5.1, sub-
ject to the control constraints of Eq.5.2. The control action at time t is conven-
tionally obtained by solving, on–line, a finite horizon optimal control problem
[192] of the form:

P (x, t) : min{J(x, t, u(·))|u(·) ∈ S} (5.3)

where S = S(t, T ) is the family of piecewise continuous functions (functions
continuous from the right), with period ∆, mapping [t, t + T ] into U and T
is the specified horizon. A control u(·) in S is characterized by the sequence
{u[k]} where u[k] := u(k∆). A control u(·) in S satisfies u(t) = u[k] for all
t ∈ [k∆, (k + 1)∆). The performance index is given by:
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J(x, t, u(·)) =
∫ t+T

t

[‖xu(s;x, t)‖2Q + ‖u(s)‖2R
]
ds + F (x(t + T )) (5.4)

where R and Q are strictly positive–definite symmetric matrices, xu(s; x, t)
denotes the solution of Eq.5.1, due to control u, with initial state x at time
t, and F (·) denotes the terminal penalty. In addition to penalties on the
state and control action, the objective function may also include penalties
on the rate of change of the input, reflecting limitations on actuator speed
(for example, a large valve requiring few seconds to change position). The
minimizing control. u0(·) ∈ S, is then applied to the process over the interval
[k∆, (k + 1)∆) and the procedure is repeated indefinitely. This defines an
implicit model predictive control law:

M(x) := u0(t; x, t) (5.5)

It is well known that the control law defined by Eqs.5.3–5.5 is not necessarily
stabilizing. To achieve closed-loop stability, early versions of MPC focused
on tuning the horizon length, T , and/or increasing the terminal penalty (see
[37] for a survey of these approaches), while more recent formulations focused
on imposing stability constraints on the optimization (see [2, 32, 191] for
surveys of different constraints proposed in the literature and the concomitant
theoretical issues) or using off–line computations to come up with explicit
model predictive control laws (see, for example, [219]). The additional stability
constraints serve either to enforce convergence of the states of the closed–loop
system to the equilibrium point, or to force the states to reach some invariant
terminal set at the end of the horizon.

Remark 5.1. By incorporating stability conditions directly as part of the op-
timization problem, asymptotic stability under state feedback MPC is guar-
anteed provided that the initial condition is chosen so that the optimization
yields a feasible solution. However, the implicit nature of the MPC control
law, obtained through repeated on–line optimization, limits our ability to
obtain, a priori, an explicit characterization of the admissible initial condi-
tions starting from where the given model predictive controller (with fixed
horizon length) is guaranteed to be feasible and enforce asymptotic stabil-
ity. This set is a complex function of the constraints and the horizon length.
Estimates of sufficiently large horizon lengths that ensure stability (see, for
example, [48]) are typically conservative and, if used, may lead to a significant
computational burden due to the increased size of the optimization problem.
Therefore, in practice, the initial conditions and/or horizon lengths are usually
chosen using ad hoc criteria and tested through closed–loop simulations which
can add to the computational burden in implementing the model predictive
controller. This motivates implementing MPC within a hybrid control struc-
ture that provides a “fall–back” controller for which a region of constrained
closed–loop stability can be obtained off–line. Lyapunov–based controller de-
sign techniques provide a natural framework for the design of a stabilizing
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“fall–back” controller for which an explicit characterization of the region of
closed–loop stability can be obtained.

5.2.2 Bounded Lyapunov-based control

Consider the Lyapunov function candidate, V = x′Px, where P is a positive–
definite symmetric matrix that satisfies the Riccati equation:

A′P + PA− PBB′P = −Q̄ (5.6)

for some positive–definite matrix Q̄. Using this Lyapunov function, we can
construct, using a modification of Sontag’s formula for bounded controls pro-
posed in [177] (see also Chapter 4), the following bounded nonlinear controller:

u(x) = −2k(x)B′Px := b(x) (5.7)

where

k(x) =




L∗fV +

√(
L∗fV

)2

+ (umax‖(LgV )′‖)4

‖(LgV )′‖2
[
1 +

√
1 + (umax‖(LgV )′‖)2

]


 (5.8)

when LgV 6= 0, and k(x) = 0 when LgV = 0, with L∗fV = x′(A′P + PA)x +
ρx′Px, (LgV )′ = 2B′Px and ρ > 0. This controller is continuous everywhere
in the state–space and smooth away from the origin. Using a Lyapunov ar-
gument, one can show that whenever the closed–loop state trajectory evolves
within the state–space region described by the set:

Φ(umax) = {x ∈ IRn : L∗fV < umax‖(LgV )′‖} (5.9)

the resulting control action respects the constraints (i.e., ‖u‖ ≤ umax) and
enforces, simultaneously, the negative–definiteness of the time–derivative of V
along the trajectories of the closed–loop system (see Appendix C). Note that
the size of the set, Φ(umax), depends on the magnitude of the constraints in a
way such that the tighter the constraints, the smaller the region described by
this set. Starting from any initial state within Φ(umax), asymptotic stability
of the constrained closed–loop system can be guaranteed, provided that the
closed–loop trajectory remains within the region described by Φ(umax). To
ensure this, we consider initial conditions that belong to an invariant subset
– preferably the largest – which we denote by Ω(umax). A similar idea was
used in Chapter 4 in the context of bounded robust control of constrained
nonlinear systems. One way of constructing such a subset is using the level
sets of V (see Chapter 4 in [148] for details), i.e.:

Ω(umax) = {x ∈ IRn : x′Px ≤ cmax} (5.10)

where cmax > 0 is the largest number for which all nonzero elements of
Ω(umax) are contained within Φ(umax). The invariant region described by
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the set Ω(umax) provides an estimate of the stability region, starting from
where the origin of the constrained closed–loop system under the control law
of Eqs.5.7–5.8 is guaranteed to be asymptotically stable.

Remark 5.2. The bounded control law of Eqs.5.7-5.8 will be used in Section
5.3 to illustrate the basic idea of the proposed hybrid control scheme. Our
choice of using this particular design is motivated by its explicit structure
and well-defined region of stability. However, the hybrid predictive control
structure is not restricted to this choice of bounded controllers; and any other
analytical bounded control law, with an explicit structure and well-defined
region of closed–loop stability, can also be used in implementing the proposed
control strategy including, for example, the bounded controls developed in
[265] for certain classes of constrained linear systems.

Remark 5.3. It is worth noting that the bounded nonlinear control law of
Eqs.5.7-5.8 can be viewed as a “linear” controller with a variable (state-
dependent) nonlinear gain. The fact that the nonlinear gain is shaped to
account explicitly for the presence of input constraints allows one to obtain a
larger region, in the state space, where the controller respects the constraints,
than would be obtained, for example, by bounding (clipping) a constant-gain
linear controller that has already been designed without taking the constraints
into account. To illustrate this point, consider, for example, the scalar system
ẋ = x + u for which the LQR controller u = −2x, which minimizes the cost

functional J =
∫ ∞

0

u2(t)dt, has already been designed in the absence of con-

straints. When input constraints with magnitude ‖u‖ ≤ umax are imposed,
it is clear that this controller respects these constraints for all ‖x‖ ≤ umax

2
.

In contrast, we see from Eq.5.9 that the bounded control law of Eqs.5.7-5.8
respects the same constraints for all ‖x‖ ≤ umax.

Remark 5.4. The stability region under a given stabilizing control law is typ-
ically only a subset of the null controllable region (the exact computation of
which remains an open research problem). Furthermore, while the level sets
of V provide only an estimate of the stability region under the bounded con-
troller, less conservative estimates that capture larger portions of the null con-
trollable region can be obtained using, for example, a combination of several
Lyapunov functions (see, for example, [124] and Chapter 6 for some exam-
ples). In general, well–tuned bounded control laws provide larger estimates of
the stability region than controllers designed without taking the constraints
into account (see Remark 5.3 and Chapter 4 for further details on this issue).

Remark 5.5. Referring to the optimality properties of the bounded controller,
it should be noted that, within a well–defined subset of Ω, this class of con-
trollers can be shown to be inverse optimal with respect to some meaningful,
yet unspecified a priori, cost functional that imposes meaningful penalties on
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the state and control action (see the Proof of Theorem 3.3 in Appendix A for
an analogous proof and further details). However, unless this cost functional
(which is determined only after controller design) coincides with the actual
cost functional considered by the control system designer (this conclusion can-
not be ascertained a priori), the performance of the bounded controller will
not be optimal with respect to the actual cost functional. An explicit quan-
titative characterization of the cost incurred by implementing the bounded
controller in this case is difficult to obtain. Furthermore, given an arbitrary
cost functional, there is no transparent way of “tuning” the bounded controller
to achieve optimality since, by design, the goal of the bounded controller is
to achieve stabilization for an explicitly–defined set of initial conditions.

Remark 5.6. When comparing the optimality properties of the bounded and
predictive controllers, it is important to realize that, in general, it is possible
that the total cost of steering the system from the initial state to the origin
under the bounded controller could be less than the total cost incurred under
MPC. Keep in mind that MPC formulations typically consider minimizing a
given cost over some finite horizon. Therefore, for a given objective function
of the form of Eq.5.4 for example, by solving the optimization problem once
and implementing the resulting input trajectory in its entirety, the cost of
taking the system from the initial state to the state at the end of the horizon
under MPC is guaranteed to be smaller than the corresponding cost for the
bounded controller. However, since MPC implementation involves repeated
optimizations (i.e., only the first control move of the input trajectory is im-
plemented each time), one could in some cases end up with a higher total cost
for MPC. This possibility, however, cannot be ascertained a priori (i.e., before
implementing both controllers and computing the total cost).

5.3 Hybrid predictive state feedback control

By comparing the bounded and MPC controller designs reviewed in the pre-
vious section, some tradeoffs with respect to their stability and optimality
properties are observed. For example, while the bounded controller possesses
a well-defined region of admissible initial conditions that guarantee closed-
loop stability in the presence of constraints, the performance of this controller
is not guaranteed to be optimal with respect to an arbitrary performance cri-
terion. On the other hand, MPC is well-suited for handling constraints within
an optimal control setting; however, the analytical characterization of its set of
admissible initial conditions is a more difficult task than it is through bounded
control. In this section, we show how to reconcile the two approaches by means
of a hybrid switching scheme that combines the desirable properties of both
approaches.

To clearly present our approach, we will focus in this section only on the
state feedback control problem where measurements of the entire state, x(t),
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are assumed to be available for all t. The case when state measurements are
available only at discrete sampling instants is discussed in Section 5.3.5, while
the case of output feedback control is treated in Section 5.4.

5.3.1 Problem formulation: Uniting MPC and bounded control

Consider the linear time-invariant system of Eq.5.1, subject to input con-
straints, ‖u‖ ≤ umax, for which the bounded controller of Eqs.5.7-5.8 and
the predictive controller of Eqs.5.3-5.5 have been designed. We formulate the
controller switching problem as the one of designing a set of switching laws
that orchestrate the transition between MPC and the bounded controller in a
way that: (1) respects input constraints, (2) guarantees asymptotic stability
of the origin of the closed-loop system starting from any initial condition in
the set Ω(umax) defined in Eq.5.10, and (3) guarantees recovery of the MPC
performance whenever the pertinent stability criteria are met. For a precise
statement of the problem, we first cast the system of Eq.5.1 as a switched
system of the form:

ẋ = Ax + Bui(t)

‖ui‖ ≤ umax

i(t) ∈ {1, 2}

(5.11)

where i : [0,∞) → {1, 2} is the switching signal which is assumed to be a
piecewise continuous (from the right) function of time, implying that only a
finite number of switches between the two controllers is allowed on any finite
interval of time. The index, i(t), which takes values in the finite set, {1, 2},
represents a discrete state that indexes the control input, u, with the under-
standing that i(t) = 1 if and only if ui(x(t)) = M(x(t)) (i.e., MPC is used)
and i(t) = 2 if and only if ui(x(t)) = b(x(t)) (i.e., bounded control is used).
The value of i(t) is determined by a higher-level supervisor responsible for
executing the transition between the two controllers. Our goal is to construct
a switching law:

i(t) = ψ(x(t), t) (5.12)

that provides the supervisor with the switching times that ensure stabilizing
transitions between the two controllers. This, in turn, determines the time-
course of the discrete state, i(t). A schematic representation of the proposed
hybrid predictive control structure is depicted in Figure 5.2.

In the remainder of this section, we present three switching schemes that
address this problem. The first scheme is formalized in Theorem 5.7 (Section
5.3.2) and focuses primarily on closed-loop stability, while the second scheme,
given in Theorem 5.14 (Section 5.3.3), extends the first one to accommodate
closed-loop performance considerations as well. For illustration purposes, both
the stability-based and performance-based schemes use a classical MPC for-
mulation. Finally, in Section 5.3.4, we present the third switching scheme
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Fig. 5.2. A schematic representation of the hierarchical hybrid predictive control
structure uniting MPC and bounded control for the stabilization of constrained LTI
systems.

(feasibility-based switching) which shows how more advanced MPC formula-
tions can also be accommodated by appropriate choice of the switching logic.
The proofs of Theorems 5.7 and 5.14 are given in Appendix C.

5.3.2 Stability-based controller switching

Theorem 5.7. Consider the constrained LTI system of Eq.5.11, with an ini-
tial condition x(0) := x0 ∈ Ω(umax), where Ω(umax) was defined in Eq.5.10,
under the model predictive controller of Eqs.5.3-5.5. Also let Ts > 0 be the
earliest time for which the closed-loop state satisfies:

− ‖ x(T−s ) ‖2
Q̄

+ ‖ B′Px(T−s ) ‖2 +2x′(T−s )PBu(T−s ) ≥ 0 (5.13)

and suppose that:

i(t) =





1, 0 ≤ t < Ts

2, t ≥ Ts



 (5.14)

where i(t) = 1 ⇔ ui(x(t)) = M(x(t)) and i(t) = 2 ⇔ ui(x(t)) = b(x(t)). Then
the origin of the closed-loop system is asymptotically stable in the presence of
input constraints.

Remark 5.8. Theorem 5.7 describes a stability-based switching strategy for
control of linear systems with input constraints. The three main components
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of this strategy include the bounded controller, the model predictive con-
troller, and a higher-level supervisor that orchestrates the switching between
the two controllers. The implementation of this hybrid control strategy is best
understood through the following stepwise procedure (see also Figure 5.3):

• Given the system model of Eq.5.1 and the constraints on the input, design
the bounded controller using Eqs.5.7-5.8. Given the performance objective
and a choice of the horizon length, design the MPC controller.

• Compute the stability region estimate for the bounded controller, Ω(umax),
using Eqs.5.9-5.10.

• Initialize the closed-loop system, using MPC, at an initial condition, x0,
within Ω(umax).

• Monitor the evolution of the closed-loop trajectory (by checking Eq.5.13
at each time) until the earliest time, Ts, that Eq.5.13 is met.

• At the earliest time that Eq.5.13 is met, discontinue MPC implementation,
switch to the bounded controller and implement it for all future times.

V(x)=Cmax

V(x)=C2

V(x)=C1

umaxΩ(       )

x(T  )

Bounded controller’s

Switching

x(0)

*

Active Bounded control
Active MPC 

Stability region

Fig. 5.3. A schematic representation of the implementation of the stability-based
controller switching proposed in Theorem 5.7.

Remark 5.9. The relations of Eqs.5.13-5.14 represent the switching rule that
the supervisor observes when deciding if a switch between the two controllers
is needed. The implementation of this rule requires only the evaluation of
the algebraic expression on the left hand-side in Eq.5.13, which is the rate
at which the Lyapunov function (used in designing the bounded controller
and characterizing its stability region) grows or decays along the trajectories
of the closed-loop system. By observing this rule, the supervisor is essentially
tracking the temporal evolution of V under MPC, so that whenever an increase
in V is detected after its initial implementation, MPC is disengaged from the



142 5 Hybrid Predictive Control of Constrained Linear Systems

closed-loop and the bounded controller is switched in, thus steering the closed-
loop trajectory to the origin asymptotically. This logic guarantees that, under
MPC, the closed-loop trajectory never escapes Ω(umax) before the bounded
controller can be switched in.

Remark 5.10. Note that in the case when the condition in Eq.5.13 is never
fulfilled – i.e.. the Lyapunov function continues to decay monotonically along
the closed-loop trajectories under MPC – the switching rule of Eq.5.14 en-
sures that only MPC is implemented for all times (no switching occurs) since
it is asymptotically stabilizing. In this case, the MPC performance is fully
recovered.

Remark 5.11. Note that the proposed approach does not turn Ω(umax) into a
stability region for MPC. What the approach does, however, is turn Ω(umax)
into a stability region for the switched closed-loop system. The value of this
can be understood in light of the difficulty in obtaining, a priori, an analytical
characterization of the set of admissible initial conditions that the MPC con-
troller can steer to the origin in the presence of input constraints. By using
the bounded controller as a fall-back controller, the switching scheme allows
us to safely initialize the closed-loop system anywhere within Ω(umax) using
MPC, with the guarantee that the bounded controller can always intervene
(through switching) to “rescue” closed-loop stability in case the closed-loop
starts to become unstable under MPC (due, for example, to a poor choice
of the initial condition or improper tuning of MPC). This safety feature dis-
tinguishes the bounded controller from other fall-back controllers that could
be used, such as PID controllers, which do not provide a priori knowledge of
the constrained stability region and, therefore, do not guarantee a safe tran-
sition in the case of unstable plants. For these controllers, a safe transition is
critically dependent on issues such as whether or not the operator is able to
properly tune the controller online, which, if not achieved, can possibly result
in instability and/or performance degradation. The transition from the MPC
to the bounded controller, on the other hand, is not fraught with such un-
certainty and is always safe because of the a priori knowledge of the stability
region. This aspect helps make plant operation safer and smoother.

Remark 5.12. When compared with Lyapunov-based MPC approaches (e.g.,
contractive MPC [220], CLF-based RHC [221]), we find that the proposed hy-
brid scheme also employs a Lyapunov stability condition to guarantee closed-
loop asymptotic stability. However, the Lyapunov stability condition is en-
forced at the supervisory level, via continuous monitoring of the temporal
evolution of V , rather than being incorporated as an inequality constraint on
the optimization problem, as is customarily done in Lyapunov-based MPC
approaches. This fact may help reduce the complexity of the optimization
problem in some cases, without loss of stability, by reducing the number of
constraints on the optimization. The underlying idea here is that of decoupling
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the stability requirement from optimality. In the proposed hybrid scheme, it
is switching to the bounded controller, with its well-defined stability region,
that safeguards against potential closed-loop instability arising as a conse-
quence of implementing the MPC controller, for which the stability region
is not known a priori. On the other hand, the MPC controller provides, by
design, the desired high performance under constraints. The switching logic
then ensures that any such “optimal” solution is implemented only when it is
asymptotically stabilizing.

Remark 5.13. Note that no assumption is made regarding how fast the opti-
mization needs to be solved for the MPC controller to be implemented because
even if this time is relatively significant and the plant dynamics are unstable,
implementation of the switching rule in Theorem 5.7 guarantees an “instan-
taneous” switch to the stabilizing bounded controller.

5.3.3 Performance-driven switching

While the switching scheme proposed in Theorem 5.7 guarantees closed-loop
stability for all initial conditions within Ω(umax), the implementation of this
scheme can, in some cases, place limitations on the achievable closed-loop per-
formance by (unnecessarily) restricting the implementation of MPC and using
the bounded controller in its place. In particular, note that the switching rule
of Eqs.5.13-5.14 does not permit any transient increase in V under MPC and
requires that, at the first instance such an increase is detected, the super-
visor immediately terminate the implementation of MPC and switch to the
bounded controller instead. Given, however, that a temporary, finite increase
in V does not necessarily translate into closed-loop instability, this particu-
lar switching rule is restrictive in the sense that it does not give MPC any
further chance to stay in the closed-loop despite the fact that the observed
initial increase in V might actually be followed by monotonic decay (in which
case MPC would be stabilizing, yet not implemented because of the particu-
lar switching rule used). Clearly in such a scenario, and since MPC provides
the high performance controller, it would be desirable to keep MPC in the
closed-loop instead of switching to the bounded controller as Theorem 5.7
would require. To allow for greater flexibility in recovering the performance
of MPC, without concern for loss of stability, we propose in this section an
extension of the switching strategy of Theorem 5.7 by relaxing the switching
rule. This is described in the Theorem 5.14 below and shown schematically in
Figure 5.4. The proof of the theorem can be found in Appendix C

Theorem 5.14. Consider the constrained LTI system of Eq.5.11, under the
model predictive controller of Eqs.5.3-5.4, with an initial condition x(0) :=
x0 ∈ Ω(umax), as defined in Theorem 5.7, and let Tb > 0 be the earliest time
for which the closed-loop state satisfies:

xT (T−b )Px(T−b ) = cmax (5.15)
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Also let {Ti, i = 1, · · · , N, N < ∞} be a set of times such that, if exist:

− ‖ x(T−i ) ‖2
Q̄

+ ‖ B′Px(T−i ) ‖2 +2x′(T−i )PBu(T−i ) = 0 (5.16)

Then, the switching rule:

i(t) =





1, 0 ≤ t < min{Tb, TN}

2, t ≥ min{Tb, TN}



 (5.17)

where i(t) = 1 ⇔ ui(x(t)) = M(x(t)) and i(t) = 2 ⇔ ui(x(t)) = b(x(t)),
guarantees that the origin of the closed-loop system is asymptotically stable in
the presence of input constraints.

maxΩ(       )

Switching
in scheme 1

V(x)=C2

V(x)=Cmax

1V(x)=C

MPC - scheme 2
MPC - scheme 1
Bounded control - scheme 2
Bounded control - scheme 1

u

2

No switching
in scheme 2 Bounded controller’s

Stability region

Switching
in scheme 2

x (0)1

x (0)

Fig. 5.4. A schematic representation of the implementation of the controller switch-
ing strategy proposed in Theorem 5.14 and how it compares with the scheme pro-
posed in Theorem 5.7. Starting at x1(0), scheme 2 permits a temporary increase in
V under MPC without switching thus allowing MPC to remain in the closed-loop for
all times (solid trajectory). Starting at x1(0), scheme 1 does not allow the increase
in V and switches immediately to the bounded controller instead (solid followed by
dashed trajectory). Starting at x2(0), scheme 2 enforces a switch from MPC to the
bounded controller when the closed-loop trajectory under MPC is about to leave Ω.

Remark 5.15. The basic idea of the switching scheme of Theorem 5.14 is to
allow MPC to remain in the closed-loop system even if V increases for some
time, provided that the closed-loop trajectory does not leave Ω(umax) during
this time. This requirement is necessary because this region is not invariant
under MPC and, therefore, once the trajectory leaves, there are no guarantees
that it can ever be steered back to the origin, whether using MPC or even
the bounded controller. Note, however, that this requirement by itself guar-
antees only boundedness of the closed-loop trajectory. To ensure asymptotic
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convergence to the origin, V must be made to decrease after some time. To
accomplish this, a choice needs to be made as to how long the increases in V
can be tolerated before switching to the bounded controller is deemed neces-
sary. In the statement of Theorem 5.14, this user-specified choice is quantified
by N which represents the maximum number of times that V̇ is allowed by
the designer to change sign. This requirement is intended to avoid scenarios
where V neither keeps monotonically increasing nor decreasing for all times.

Remark 5.16. Note that the times Tb and Ti are not known a priori. They are
implicity defined by the relations of Eqs.5.15-5.16, respectively, which are con-
tinuously checked on-line by the supervisor. The switching scheme proposed
in Theorem 5.14 then is best understood as follows. For illustration purposes
we choose N = 2. The closed-loop system is initialized within Ω(umax) using
MPC, and the temporal evolution of V is monitored on-line. Suppose that
V keeps increasing monotonically until, at some time t, Eq.5.15 is satisfied
(trajectory hits boundary of Ω(umax)). In this case, we have that Tb = t
and that T1, T2, if exist, must be greater than t. Therefore min{Tb, T2} = t
and, according to the switching law of Eq.5.17, MPC implementation should
be terminated and the bounded controller switched in at Tb. Now suppose,
instead, that at some time t̄ < t, Eq.5.16 is satisfied, then in this case we
would have T1 = t̄, Tb = t. Since T2 in this case, if exists, is greater than t,
we set min{Tb, T2} = t which implies that MPC should be switched off again
at Tb. Finally, consider the case when Eq.5.16 is satisfied at two consecutive
times, t∗ < t̄, prior to which Eq.5.15 is not fulfilled. Then in this case, we
have T1 = t∗, T2 = t̄, and Tb, if exists, must be greater than t̄. Therefore, we
set min{Tb, T2} = t̄ and conclude that MPC should be switched off at t̄. To
summarize, in all the cases, switching is done either when the trajectory gets
“close” to the boundary of the stability region or after V̇ has changed sign N
times, whichever occurs first.

Remark 5.17. The switching schemes proposed in Theorems 5.7 and 5.14 can
be further generalized to allow for multiple switchings between MPC and the
bounded controller. In this case, when switched in, the bounded controller
need not stay in the closed-loop for all future times. Instead, it is employed
only until it brings the closed-loop state trajectory sufficiently closer to the
origin (for example, to a pre-determined inner level set of V ) at which point
MPC is activated once again. This scheme offers the possibility of further en-
hancement in closed-loop performance (over that obtained from the bounded
controller) by implementing MPC for longer periods of time (as permitted
by stability considerations). It also allows for the possibility of stabilizing the
closed-loop system starting from initial conditions for which a given (fixed-
horizon) MPC controller is not stabilizing. This can occur, for example, when
the stability region for such a controller is contained within Ω(umax). In this
case, only a finite number of switches between the two controllers is needed
to steer the closed-loop trajectory to that point, beyond which the MPC con-
troller can stay in the closed-loop for all times (with no further switching).
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5.3.4 Switching using advanced MPC formulations

In Theorems 5.7 and 5.14, a classical MPC formulation (with no stability
constraints) was used as an example to illustrate the basic idea of controller
switching and how it can be used to aid MPC implementation. The value
of the hybrid predictive control structure (see Figure 5.3), however, is not
restricted to classical MPC formulations, and extends to any MPC formulation
for which a priori knowledge of the set of admissible initial conditions is lacking
(or computationally expensive to obtain). The structure can be adapted to
more advanced versions of MPC by appropriate design of the switching logic.
To illustrate this point, consider the case when advanced MPC algorithms,
that employ stability constraints in the optimization formulation, are used to
compute the control action. An example of such formulations is the following
one:

min
u(·)

∫ t+T

t

(x′(s)Qx(s) + u′(s)Ru(s))ds

s.t. ẋ(t) = Ax(t) + Bu(t), x(0) = x0

u(·) ∈ S
x(t + T ) = 0

(5.18)

which uses a terminal equality constraint (note that other types of stability
constraints, such as control Lyapunov function (CLF)-based inequality con-
straints of the form V (x(t+T )) < V (x(t)) can be treated similarly). When the
above formulation is used to compute the MPC control law in our switching
scheme, it is clear that monitoring the evolution of the closed-loop trajectory
(which was the basis for the implementation of the switching rules in The-
orems 5.7 and 5.14) is no longer appropriate as a switching criterion, since,
by definition, a closed-loop trajectory that solves the above optimization will
not “evolve” unless it stabilizes at the origin. By incorporating stability con-
ditions as part of the constrained optimization problem, asymptotic stability
under MPC can be guaranteed provided that the initial optimization yields a
feasible solution. However, inclusion of the stability constraints does not, by
itself, provide any a priori explicit knowledge of the feasible initial conditions,
which must then be identified through simulations. This observation suggests
that the hybrid control structure can be used here to safeguard closed-loop
stability in the event of MPC infeasibility. Specifically, in lieu of monitoring
the growth of V , a different switching logic, based on the feasibility of the
optimization in Eq.5.18, needs to be implemented. The switching algorithm
in this case can be summarized as follows (see also Figure 5.5 for a schematic
representation):

• Given any initial condition, x0, within Ω(umax), check, off-line, whether
the constrained optimization in Eq.5.18 yields a feasible solution. If a so-
lution exists, no switching is needed and MPC can be implemented for all
time.
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• If an initial feasible solution is not found, implement the bounded con-
troller instead, i.e., set u(0) = b(x0).

• While the bounded controller is in the closed-loop, continue to check, off-
line, and as frequently as is desired, the feasibility of the optimization in
Eq.5.18.

• At the earliest time that a feasible solution is found, switch to the MPC
controller, else the bounded controller remains active.

The above discussion underscores an important attribute of the proposed
hybrid control structure, and that is the fact that it is not proposed as a
substitute for stability constraints (even though it guarantees stability when
the MPC formulation is not stabilizing), but as a reliable fall-back mechanism
from which any MPC formulation can benefit.

maxΩ(       )

1V(x)=C

V(x)=Cmax

V(x)=C2

u

"Switch"

x (0) Stability region
Bounded controller’s

Bounded Control
MPC 

Check MPC feasibility 
"No switching"

Check MPC feasibility

Fig. 5.5. A schematic representation of the implementation of switching when a
“stabilizing” MPC formulation is used. Starting at x(0), MPC does not yield a
feasible solution and, therefore, the bounded controller is used. When the trajectory
crosses the C2-level set of V , the supervisor checks off-line the feasibility of the MPC
and finds that no feasible solution exists. The bounded controller remains in action.
Finally, when the trajectory crosses the C1-level set of V , the supervisor finds that
the optimization is feasible and therefore switches to the MPC controller which stays
in the closed-loop system for all future times.

Remark 5.18. An important issue in the practical implementation of MPC is
the selection of the horizon length. It is well known that this selection can have
a profound effect on nominal closed-loop stability, and results are available in
the literature that establish, under certain assumptions, the existence of “suffi-
ciently large” finite horizons that ensure stability (see, for example, [228, 48]).
However, a priori knowledge (without closed-loop simulations) of the critical
horizon length that guarantees closed-loop stability, from an arbitrary initial



148 5 Hybrid Predictive Control of Constrained Linear Systems

condition, is currently not available. Therefore, in practice the horizon length
is typically chosen based on available selection criteria, tested through closed-
loop simulations, and varied, if necessary, to achieve stability. Note that in
all the switching schemes proposed in Section 5.2.2, closed-loop stability is
maintained independent of the horizon length, and therefore selection of the
horizon length can be made solely on the basis of what is computationally
practical for the size of the optimization problem, without increasing, unnec-
essarily, the horizon length (and consequently the computational load) out of
concern for stability.

Remark 5.19. The supervisory checks required in the implementation of all the
switching schemes developed in this chapter do not incur any additional com-
putational costs beyond that involved in MPC implementation alone. In the
event that MPC is infeasible from a given initial condition (due, for example,
to insufficient number of control moves), the supervisor checks as frequently as
desired the initial feasibility of the MPC by actually solving the optimization
problem at each time step and implementing the resulting solution (if found).
If a solution is not found at a given time step, the supervisor implements the
bounded controller (an inexpensive algebraic computation) and continues, in
the mean time, to solve the optimization until it finds a feasible solution to
implement.

Remark 5.20. The switching schemes proposed in this chapter differ, both in
their objective and implementation, from other MPC formulations involving
switching which have appeared earlier in the literature. For example, in dual
mode MPC [200] the strategy includes switching from MPC to a locally sta-
bilizing controller once the state is brought near the origin by MPC. The
purpose of switching in this approach is to relax the terminal equality con-
straint whose implementation is computationally burdensome for nonlinear
systems. However, the set of initial conditions for which MPC is guaranteed
to steer the state close to the origin is not explicitly known a priori. In con-
trast, switching from MPC to the bounded controller is used here only to
prevent any potential closed-loop instability arising from implementing MPC
without the a priori knowledge of the admissible initial conditions. So depend-
ing on the stability properties of the chosen MPC, switching may or may not
occur, and if it occurs, it can take place near or far from the origin. Finally,
we note that the notion of “switching” from a predictive to an unconstrained
LQR controller, for times beyond a finite control horizon, has been used in
[263, 48, 243] in the context of determining a finite horizon that solves the
infinite horizon constrained LQR problem.

5.3.5 Simulation example

Consider the following linear system:
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ẋ =
[

0.5 0.25
0.5 1

]
x +

[
1 0
0 1

]
u (5.19)

where both inputs u1, u2 are constrained in the interval [−5, 5]. It is straight-
forward to verify that the open-loop system has an unstable equilibrium point
at the origin (A has two positive eigenvalues). We initially use Eqs.5.7-5.8 to
design the bounded controller and construct its stability region via Eqs.5.9-
5.10. The matrix P is chosen to be:

P =
[

1.1362 0.8102
0.8102 1.8658

]
(5.20)

For the MPC controller, the parameters in the objective function of Eq.5.4
are chosen as penalty on the states, Q = qI, with q = 1 and penalty on the
control inputs, R = rI, with r = 3. A higher penalty on u is indicative of the
requirement of driving the state to the origin with less control action. We also
choose a horizon length of T = 1 in implementing the MPC controller. The
resulting quadratic program is solved using the MATLAB subroutine QP, and
the set of ODEs are integrated using the MATLAB solver ODE45.

As shown by the solid curve in Figure 5.6, applying the MPC controller
from the initial condition x0 = [6 − 2]T (which belongs to the stability region
of the bounded controller, Ω, represented by the ellipse in Figure 5.6) leads to
closed-loop instability. The corresponding input and output profiles are shown
by the solid lines in Figure 5.7. Using the switching scheme of Theorem 5.7,
however, we find that the supervisor detects an increase in V at t = 1.7 and
therefore immediately switches at this time from the MPC controller to the
bounded controller in order to preserve closed-loop stability. As expected, the
bounded controller asymptotically stabilizes the plant (see dashed lines in
Figures 5.6 and 5.7). It is important to note that one could try to tune the
horizon length further in order to achieve stability using the MPC controller.
For example, we see from the dotted lines in Figures 5.6 and 5.7 that stability
can be achieved by increasing the horizon length to T = 1.5. However, this
conclusion could not be reached a priori, i.e., before running the closed-loop
simulation in its entirety to check whether the choice T = 1.5 is appropriate.
In contrast, closed-loop stability starting from the given initial condition, is
guaranteed, a priori, under the switching scheme of Theorem 5.7.

In the next simulation run, we demonstrate how the switching scheme of
Theorem 5.14 can be used to enhance closed-loop performance by allowing
greater flexibility in implementing the MPC controller. To this end, we again
consider the initial condition x0 = [6 − 2]T ∈ Ω. For the MPC controller,
the objective function includes penalty on the state with q = .5 and penalty
on the inputs with r = 1. We also include a quadratic penalty on the rate of
input change weighted by the matrix S = sI with s = 40. The horizon length
is chosen to be T = 1.5. Initially, we implement the MPC controller and use
the switching scheme of Theorem 5.7 to stabilize the closed-loop system. In
this case, an increase in V is detected immediately (at t = 0) by the super-
visor which, consequently, switches automatically to the bounded controller.
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Fig. 5.6. Closed-loop state trajectory under MPC with T = 1 (solid line), under
the switching scheme of Theorem 5.7 with T = 1 (dashed line), and under MPC
with T = 1.5 (dotted line).

The results for this case are depicted by the solid curves in Figures 5.8 and
5.9, which reflect the closed-loop performance under the bounded controller.
However, when the switching scheme of Theorem 5.14 is used, we find that
the MPC controller stays in action, for all times, thus providing the desired
optimal performance and, at the same time, asymptotically stabilizing the
closed-loop system without the need for switching. The results are shown by
the dashed curves in Figures 5.8 and 5.9. So, while the first switching scheme
selects the bounded controller, the second one selects the MPC controller.
The reason for the difference between the two scenarios is the fact that the
switching law in the second scheme tolerates the initial increase in V (see
Figure 5.10) since this increase does not land the state outside the stability
region and is shortly followed by continuous decrease, and thus keeps the MPC
controller in the closed-loop.

In the following set of simulation runs, we demonstrate an application
of the feasibility-based switching scheme, proposed in Section 5.3.4, which
uses a stable version of MPC, specifically, one employing a terminal equality
constraint. For the MPC controller, the parameters in the objective function
(Eq.5.18) are chosen as q = 1 and r = 1. The horizon length is chosen to
be T = 1.2. As shown by the solid lines in Figure 5.11, starting from an ini-
tial condition, x0 = [2 − 2]T , MPC is found to be feasible and is therefore
implemented and kept in the closed-loop for all times driving the trajectory
asymptotically to the origin. The corresponding input and output profiles
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Fig. 5.7. Input and closed-loop state profiles under MPC with T = 1 (solid line),
under the switching scheme of Theorem 5.7 with T = 1 (dashed line), and under
MPC with T = 1.5 (dotted line).
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Fig. 5.8. Closed-loop state trajectory under the switching scheme of Theorem 5.7
(solid line), and under the switching scheme of Theorem 5.14 (dashed line).
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Fig. 5.9. Input and closed-loop state profiles under the switching scheme of Theorem
5.7 (solid line) and under the switching scheme of Theorem 5.14 (dashed line).

are shown by the solid lines in Figure 5.12. The scenario, therefore, repre-
sents a reasonably well-tuned MPC for initial conditions around the origin.
Now suppose that, after settling at the origin, a temporary disturbance drives
the closed-loop trajectory to the point xi = [5 − 5]T (which is still within
the stability region of the bounded controller). After the disturbance disap-
pears, MPC starting from this initial condition is found to be infeasible and,
therefore, the bounded controller is employed instead. Implementation of the
bounded controller proceeds until the closed-loop trajectory crosses the level
set denoted by Ω2 in Figure 5.11, which occurs at t = 0.6. At this point,
feasibility of MPC is checked again and the MPC controller is found to be
feasible. Consequently, the bounded controller is terminated immediately and
the MPC controller is employed in the closed-loop for the remaining time (in-
side Ω2). This scenario is shown by the dashed lines in Figures 5.11 and 5.12.
Once again, note that using a higher value of the horizon length, T = 1.5 can
lead to MPC being feasible from the initial condition xi = [5 − 5]T (dotted
lines in Figures 5.11 and 5.12). This implies that, once the closed-loop state
is driven by the disturbance to xi, a re-tuning of the horizon length can make
MPC feasible. However, a priori knowledge of the value of the horizon length
that is guaranteed to work could not be obtained short of testing feasibility
at that condition. The prospect of disturbances throwing the system around
would therefore necessitate running extensive closed-loop simulations to de-
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Fig. 5.10. Temporal evolution of the Lyapunov function under the switching scheme
of Theorem 5.7 (solid line), where the bounded controller is switched in immediately
at t = 0, and under the switching scheme of Theorem 5.14 (dashed line), where the
MPC controller stays in action for all time.

termine such a value. The feasibility-based switching scheme, on the other
hand, guarantees closed-loop stability for any value of the horizon length. In
particular, after the disturbance vanishes, the bounded controller drives the
closed-loop trajectory to a point at which the original MPC controller (with
T = 1.2) becomes feasible again and can therefore be implemented. In this
example, feasibility was checked only at one level set. The frequency of fea-
sibility checking could be made larger by introducing more level sets, or by
checking feasibility at predetermined times.

In the last set of simulation runs, we demonstrate an example of how the
switching schemes can be used (or modified) in the case when state measure-
ments are not available continuously, but are rather available only at discrete
sampling instants. For simplicity and clarity of presentation, we focus our
discussion only on the switching scheme of Theorem 5.14. Recall that the
implementation of the switching rule in Theorem 5.14 requires continuous
monitoring of the state trajectory to prevent its potential escape under MPC
from the set Ω(umax). The restricted access to state information during the
time periods between the sampling instants, however, implies the possibility
that, during the first such period after the MPC controller of Eq.5.3-5.4 is
implemented, the closed-loop state trajectory could leave the stability region
Ω before such an escape is detected, especially if the initial condition is cho-
sen close to the boundary of Ω and/or the sampling period is too large. In
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Fig. 5.11. Closed-loop state trajectory starting close to the origin using MPC with
T = 1.2 (solid line) and from a point farther away in state space using the switching
scheme with a horizon length T = 1.2 (dashed line) and using only MPC with
T = 1.5 (dotted line).

this case, closed-loop stability cannot be guaranteed, and any switching to the
bounded controller will be too late to recover from the instability of MPC.
To guard against this possibility, we slightly modify the switching rule by
restricting the implementation of MPC within a subset of Ω. This subset,
henceforth denoted by Ω2 and referred to as the safety zone, is defined as the
set of all states starting from where the closed-loop trajectory is guaranteed
to remain within Ω after a single sampling period. An estimate of this set can
be obtained from:

Ω2 =
{

x ∈ IRn :
√

V (x) ≥ √
cmax exp

(
−α∆

2

)
− β

α

(
1− exp

(
−α∆

2

))}

(5.21)

where ∆ is the sampling period, α =
λmax(PBB′P )

λmin(P )
> 0, β = 2umax

√
α > 0,

λmax(·) and λmin(·) are, respectively, the maximum and minimum eigenvalues
of the given matrix. The above estimate is obtained by writing the appropriate
Lyapunov dissipation inequality for the system, majorizing the right hand side
using appropriate bounds and, finally, integrating both sides of the inequality
from t = 0 (V = V (x)) to t = ∆ (V = cmax). Since the implementation of
MPC is restricted to Ω2, only the bounded controller is used in the annular
region between Ω and Ω2.
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Fig. 5.12. Input and closed-loop state profiles starting close to the origin using
MPC with T = 1.2 (solid line) and from a point farther away in state space using
the switching scheme with a horizon length T = 1.2 (dashed line) and using only
MPC with T = 1.5 (dotted line).

To illustrate the implementation of the resulting switching scheme in the
case of measurement sampling, we consider the case when the state measure-
ments arrive every 0.1 time units (∆ = 0.1). This sampling period is found
to be sufficiently small for the bounded controller to be stabilizing. For the
MPC controller, the parameters in the objective function (Eq.5.4) are chosen
as q = 0.5, r = 2 and s = 40. The horizon length is chosen to be T = 1.5.
The safety zone, Ω2, is constructed using Eq.5.21 to ensure that starting from
Ω2, the state cannot escape Ω in one sampling period. As stated earlier, this
ensures that an increase in V under MPC can be detected by the supervisor
before the trajectory goes outside the stability region of the bounded con-
troller. Starting from the initial condition, x0 = [−3 − 2.5], as shown by the
solid lines in Figure 5.13, the closed-loop state trajectory is clearly unstable
under MPC. The corresponding input and state profiles are shown by the solid
lines in Figure 5.14. Note that since the closed-loop is initialized outside Ω2,
the closed-loop trajectory under MPC was able to escape Ω before being de-
tected. To remedy this problem, the bounded controller is employed, starting
from x0 = [−3 − 2.5], until the closed-loop state is driven inside Ω2. Once
inside the safety zone, the MPC controller is switched in which, as can be seen
from the dashed lines in Figures 5.13 and 5.14, asymptotically stabilizes the
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closed-loop system. It is important to keep in mind that Ω2 is not necessarily
a stability region for MPC. Therefore, even when the MPC controller is acti-
vated only inside Ω2, it is possible for the closed-loop trajectory to leave the
set at some future time. However, if this happens the supervisor will be able,
at the next sampling instance, to detect this behavior and switch back to the
bounded controller, before the trajectory can escape the stability region of
the bounded controller, Ω.
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Fig. 5.13. Closed-loop state trajectory under MPC (solid line) and under the
switching scheme accounting for sampling (dashed line).

5.4 Hybrid predictive output feedback control

The hybrid predictive control structure presented in Section 5.3 was developed
under the assumption of full state feedback. In this section, we address the
hybrid predictive control problem under output feedback. Due to the absence
of complete state measurements, a state observer is constructed to provide
the controllers, as well as the supervisor, with appropriate state estimates.
The observer is tuned in a way so as to guarantee closed–loop stability for
all initial conditions within the bounded controller’s output feedback stability
region (which can be chosen arbitrarily close in size to its state feedback
counterpart, provided that the observer gain is sufficiently large). Switching
laws, that monitor the evolution of the state estimates, are then derived to
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Fig. 5.14. Input and closed-loop state profiles under MPC (solid line) and under
the switching scheme accounting for sampling (dashed line).

orchestrate the transition between the two controllers in a way that reconciles
their respective stability and performance properties and safeguards closed–
loop stability in the event of MPC infeasibility or instability.

In addition to the set of switching rules being different from the ones pro-
posed in Section 5.3 under state feedback, an important characteristic of the
hybrid predictive control strategy under output feedback is the inherent cou-
pling, brought about by the lack of full state measurements, between the tasks
of controller design, characterization of the stability region and supervisory
switching logic design, on one hand, and the task of observer design, on the
other. The rest of this section is organized as follows. In Section 5.4.1, we
present some preliminaries that describe the class of systems considered and
review the design of a Luenberger state observer. Next, in Section 5.4.2 we
discuss the stability properties, of both MPC and Lyapunov–based bounded
control, under output feedback. Then, in Section 5.4.3, we present the hybrid
predictive output feedback control structure. The theoretical underpinnings
and practical implications of the proposed hybrid predictive control structure
are highlighted, and possible extensions of the supervisory switching logic,
that address a variety of practical implementation issues, are discussed. Fi-
nally, in Section 5.4.4, two simulation studies are presented to demonstrate
the implementation and evaluate the effectiveness of the proposed control
strategy, as well as test its robustness with respect to modeling errors and
measurement noise.
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5.4.1 Preliminaries

We consider the problem of output feedback stabilization of continuous–time
linear time–invariant (LTI) systems with input constraints, with the following
state–space description:

ẋ = Ax + Bu (5.22)

y = Cx (5.23)

u ∈ U ⊂ IRm (5.24)

where C is a constant k × n matrix. The pair (A,B) is assumed to be con-
trollable and the pair (C, A) observable.

We will now briefly review the design of a Luenberger state observer for
the system of Eqs.5.22–5.23 which will be used later in the development of the
hybrid predictive control structure (see Remark 5.21 below for a discussion
on the use of other possible estimation schemes). Specifically, we consider a
standard Luenberger state observer described by:

˙̂x = Ax̂ + Bu + L(y − Cx̂) (5.25)

where x̂ = [x̂1 · · · x̂n]′ ∈ IRn denotes the vector of estimates of the state vari-
ables and L is a constant n×k matrix that multiplies the discrepancy between
the actual and estimated outputs. Under the state observer of Eq.5.25, the
estimation error in the closed–loop system, defined as e = x − x̂, evolves,
independently of the controller, according to the following equation:

ė = (A− LC)e (5.26)

The pair (C, A) is assumed to be observable in the sense that the observer
gain matrix, L, can be chosen such that the norm of the estimation error in
Eq.5.26 evolves according to ‖e(t)‖ ≤ κ(β)‖e(0)‖exp(−βt), where −β < 0 is
the largest eigenvalue of A− LC and κ(β) is a polynomial function of β.

Remark 5.21. Referring to the state observer of Eq.5.25, it should be noted
that the results presented in this section are not restricted to this particular
class of observers. Any other observer that allows us to control the rate of
decay of the estimation error at will, can be used. Our choice of using this
particular observer design is motivated by the fact that it provides a trans-
parent relationship between the temporal evolution of the estimation error
bound and the observer parameters. For example, this design guarantees con-
vergence of the state estimates in a way such that for larger values of β,
the error decreases faster. As we discuss later (see Section 5.4.3), the abil-
ity to ensure a sufficiently fast decay of the estimation error is necessary in
order to guarantee closed–loop stability under output feedback control. This
requirement or constraint on the error dynamics is present even when other
estimation schemes, such as moving horizon observers, are used (for example,
see [201, 226]) to ensure closed–loop stability. For such observers, however, it
is difficult in general to obtain a transparent relationship between the tunable
observer parameters and the error decay rate.
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Remark 5.22. For large values of β, the estimation error could possibly in-
crease to large values before eventually decaying to zero (a phenomenon
known as “peaking”; see [261]). However, this does not pose a problem in
our design because the physical constraints on the manipulated inputs pre-
vent transmission of the incorrect estimates to the process (see also Remark
5.28 for a detailed discussion of this issue). In the special case when C is
a square matrix of rank n, the observer gain matrix, L, can be chosen as
L = AC−1 − RC−1, where R is a diagonal matrix whose diagonal elements
are of the form Rii = −βai, where ai 6= aj ≥ 1. For this choice of L, the evo-
lution of each error state is completely decoupled from the rest of the error
states, i.e., each error state evolves according to ėi = −βaiei. In this case, no
peaking occurs since each error term decreases monotonically.

5.4.2 Stability properties under output feedback control

Model predictive control

For the sake of a concrete illustration of the hybrid predictive control strategy,
we will consider the following stabilizing MPC formulation [145, 199], which
includes a terminal equality constraint in the optimization problem (see Re-
mark 5.23 below for more advanced MPC formulations that can also be used).
This model predictive controller is mathematically described by:

Js(x, t, u(·)) =
∫ t+T

t

(x′(s)Qx(s) + u′(s)Ru(s))ds (5.27)

u(·) = argmin{Js(x, t, u(·))|u(·) ∈ S} := Ms(x)

s.t. ẋ = Ax + Bu, x(0) = x0

u(·) ∈ S

x(t + T ) = 0

(5.28)

Remark 5.23. Recall from the discussion in Section 5.3.4 that the hybrid pre-
dictive control strategy (whether under state or output feedback) is not re-
stricted to any particular MPC formulation. The results apply to any MPC
formulation for which a priori knowledge of the set of admissible initial con-
ditions is lacking (or computationally expensive to obtain). In this sense, the
above formulation is really intended as a symbolic example of stabilizing MPC
formulations, with the understanding that other advanced MPC formulations
that employ less restrictive constraints and/or penalties on the state at the
end of the horizon can be used. Examples include formulations with terminal
inequality constraints, such as contractive MPC (see, for example, [220, 155])
and CLF–based receding horizon control (see, for example, [221]), as well as
formulations that employ a combination of terminal penalties and inequality
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constraints (see. for example, [45, 179, 264]). The reader is referred to [191]
for a more exhaustive list.

Remark 5.24. By incorporating stability conditions directly as part of the op-
timization problem in Eq.5.28, asymptotic stability under state feedback MPC
is guaranteed provided that the initial condition is chosen so that the opti-
mization yields a feasible solution. However, the implicit nature of the MPC
control law, obtained through repeated on–line optimization, limits our ability
to obtain, a priori, an explicit characterization of the admissible initial con-
ditions starting from where the given model predictive controller (with fixed
horizon length) is guaranteed to be feasible and enforce asymptotic stabil-
ity. This set is a complex function of the constraints and the horizon length.
Estimates of sufficiently large horizon lengths that ensure stability (for exam-
ple, see [48]) are typically conservative and, if used, may lead to a significant
computational burden due to the increased size of the optimization problem.
Therefore, in practice, the initial conditions and/or horizon lengths are usu-
ally chosen using ad hoc criteria and tested through closed–loop simulations
which can add to the computational burden in implementing the model pre-
dictive controller. The difficulties encountered in characterizing the stability
region under state feedback control carry over to the case of output feedback
control, where the lack of state measurements requires that the control action
be computed using the state estimates. Feasibility of the MPC optimization
problem based on the state estimates, however, does not guarantee closed–loop
stability or even the continued feasibility of the ensuing state estimates. This
motivates implementing MPC within a hybrid control structure that provides
a “fall–back” controller for which a region of constrained closed–loop stability
can be obtained off–line. Lyapunov–based controller design techniques provide
a natural framework for the design of a stabilizing “fall–back” controller for
which an explicit characterization of the region of closed–loop stability can be
obtained.

Lyapunov–based bounded control

In this section, we couple the bounded state feedback controller of Eqs.5.7-5.8
with the state observer of Eq.5.25 to design an output feedback controller
and characterize the stability properties of the resulting closed–loop system
including the set of initial conditions for which closed–loop stability is guar-
anteed. When a state estimator of the form of Eq.5.25 is used, the resulting
closed–loop system is composed of a cascade, between the error system and
the plant, of the form:

ẋ = Ax + Bu(x− e)

ė = (A− LC)e
(5.29)

Note that the values of the states used in the controller contain errors. The
state feedback stability region, therefore, is not exactly preserved under output
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feedback. However, by exploiting the error dynamics of Eq.5.26, it is possible
to recover arbitrarily large compact subsets of the state feedback stability
region, provided that the poles of the observer are placed sufficiently far in
the left half of the complex plane (which can be accomplished by choosing
the observer gain parameter β sufficiently large). This idea is consistent with
earlier results on semi–global output feedback stabilization of unconstrained
systems using high–gain observers (for example, see [267, 183, 50]).

By viewing the estimation error as a dynamic perturbation to the state
feedback problem, the basic idea, in constructing the output feedback con-
troller and characterizing its stability region, is to design the observer in a
way that exploits the robustness of the state feedback controller with respect
to bounded estimation errors. To this end, given the state feedback stability
region, Ω, we initially quantify the robustness margin by deriving a bound
on the estimation error, em > 0, that can be tolerated by the state feedback
controller, in the sense that the closed–loop state trajectory does not escape
Ω for all ‖e‖ ≤ em. Once this bound is computed, the idea is to initialize the
states and the state estimates within any subset Ωb ∈ Ω and choose a consis-
tent observer gain matrix L (parameterized by β) to ensure that, before the
states reach the boundary of Ω, the norm of the estimation error has decayed
to a value less than em (see Figure 5.15 for a pictorial representation of this
idea). These arguments are formalized in Propositions 5.25 and 5.27 below
(the proofs are given in Appendix C).

Proposition 5.25. Consider the constrained LTI system of Eqs.5.22–5.24
under the bounded control law of Eqs.5.7–5.8 with u = u(x − e), where e
is the state measurement error. Then, there exists a positive real number, em,
such that if x(0) ∈ Ω and ‖e(t)‖ ≤ em ∀ t ≥ 0, then x(t) ∈ Ω ∀ t ≥ 0.

Remark 5.26. The bounded control law of Eqs.5.7–5.8 will be used in the next
section to illustrate the basic idea of the proposed hybrid control scheme. Our
choice of using this particular design is motivated by its explicit structure
and well–defined region of stability, which allows for an estimation of the
robustness margin of the state feedback controller with respect to bounded
measurement errors. However, the results of this work are not restricted to this
particular choice of bounded controllers. Any other analytical bounded control
law, with an explicit structure and well–defined region of robust stability with
respect to bounded measurement errors, can also be used in implementing the
proposed control strategy.

Proposition 5.27. Consider the constrained LTI system of Eqs.5.22–5.24,
the state observer of Eq.5.25 and the bounded control law of Eqs.5.7–5.8. Then,
given any positive real number, δb, such that Ωb = {x ∈ IRn : ‖x‖2P ≤ δb} ⊂ Ω,
there exists a positive real number β∗ such that if ‖x(0)‖2P ≤ δb, ‖x̂(0)‖2P ≤ δb

and β ≥ β∗, the origin of the constrained closed–loop system is asymptotically
stable.
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Fig. 5.15. Schematic representation of the evolution of the trajectories of the closed–
loop state and state estimate. Starting within Ωb, the observer gain ensures that,
before the state of the closed–loop system reaches the boundary of Ω, the state
estimate has converged close enough to the true value of the state, so that the norm
of the estimation error is below the allowable error tolerated by the controller within
Ω.

Remark 5.28. Since the only assumption on C is that the pair (C, A) is observ-
able, the observer states may “peak” before they converge to the true state
values. This, however, does not pose a problem in our design because: (a) the
physical constraints on the manipulated input eliminate the occurrence of in-
stability due to peaking of the state estimates (i.e., they prevent transmission
of peaking to the process), and (b) by “stepping back” from the boundary
of the state feedback stability region and choosing an appropriate value for
β, the design ensures that the system states cannot leave the stability region
of the bounded controller before the estimation errors have gone below the
permissible value.

Remark 5.29. In principle, the stability region under output feedback, Ωb, can
be chosen as close as desired to Ω by increasing the observer gain parameter
β. However, it is well–known that large observer gains can amplify measure-
ment noise and induce poor performance (see the simulation studies section
for how this issue is addressed in observer implementation). This points to
a fundamental tradeoff that cannot be resolved by simply changing the esti-
mation scheme. For example, while one could replace the high–gain observer
design with other observer designs (for example, a moving horizon estimator)
to get a better handle on measurement noise, it is difficult in such schemes to
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obtain an explicit relationship between the observer tuning parameters and
the output feedback stability region.

Remark 5.30. Note that, for the bounded controller, initializing x and x̂ within
Ωb guarantees that x cannot escape Ω because of the inherent robustness of
the bounded controller design with respect to bounded estimation errors (see
the proof of Proposition 5.27 in the appendix). For MPC, however, there is
no guarantee that x will stay in Ω, even if both x and x̂ are initialized within
Ωb, and, therefore, whenever MPC is used, it will be necessary to rely on the
evolution of the estimate, x̂(t), to deduce whether x(t) is or is not within Ω. As
we discuss in greater detail in the next section, the ability to reliably deduce
the position of the true state at any given time is essential to the ability of the
bounded controller to “step in” to preserve closed–loop stability in the event
of failure of MPC (see Remark 5.35). One way of ascertaining bounds on the
position of the true states, by looking only at the values of the estimates, is
described in Proposition 5.31 below. The proof of this proposition is given in
the appendix.

Proposition 5.31. Consider the constrained system of Eqs.5.22–5.24, the
state observer of Eq.5.25 and the bounded control law of Eqs.5.7–5.8. Let

T ∗d :=
1
β

ln

(
κ(β)emax(0)

ε
√

cmax/λmax(P )

)

for some 0 < ε < 1 where emax(0) = max
x̂(0),x(0)∈Ωb

‖x̂(0)− x(0)‖. Then, there

exists a positive real number δ∗s < cmax such that for all δs ≤ δ∗s , and for all
t ≥ T ∗d , x̂′(t)Px̂(t) ≤ δs =⇒ x′(t)Px(t) ≤ cmax.

Remark 5.32. The above proposition establishes the existence of a set, Ωs :=
{x ∈ IRm : x′Px ≤ δs}, that allows us to ascertain bounds on the position
of the true state, by looking only at whether the estimate is within this set.
Specifically, for a given bound on the norm of the estimation error, at any
given time, if the state estimate is within Ωs, then we can conclude with cer-
tainty that the true state cannot be outside of Ω, irrespective of the controller
being used (see the proof in the appendix for the mathematical details of this
argument). Note also that the size of Ωs depends on the size of the error, and,
therefore, as time evolves and the estimation error keeps decreasing, the size
of Ωs approaches that of Ω.

5.4.3 Hybrid predictive controller design

Consider the LTI system of Eqs.5.22–5.24, for which the bounded controller of
Eqs.5.7–5.8, the state estimator of Eq.5.25 and the model predictive controller
of Eqs.5.27–5.28 have been designed. The control problem is formulated as the
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one of designing a set of switching laws that orchestrate the transition between
the predictive controller and the bounded controller under output feedback in
a way that: (1) respects input constraints, (2) guarantees asymptotic stability
of the origin of the closed–loop system starting from any initial condition
within arbitrarily large compact subsets of the state feedback stability region
of the bounded controller, and (3) accommodates the optimality requirements
of MPC whenever possible (i.e., when closed–loop stability is guaranteed). For
a precise statement of the problem, we first cast the system of Eqs.5.22–5.24
as a switched linear system of the form:

ẋ = Ax + Bui(t)

y = Cx

‖ui‖ ≤ umax

i(t) ∈ {1, 2}

(5.30)

where i : [0,∞) → {1, 2} is the switching signal which is assumed to be a
piecewise continuous (from the right) function of time, implying that only a
finite number of switches is allowed on any finite interval of time. The index
i(t), which takes values in the finite set {1, 2}, represents a discrete state that
indexes the control input, u(·), with the understanding that i(t) = 1 if and
only if ui(x̂(t)) = b(x̂(t)) (i.e., the bounded controller is implemented in the
closed–loop system), and i(t) = 2 if and only if ui(x̂(t)) = Ms(x̂(t)) (i.e.,
MPC is implemented in the closed–loop system). Our goal, is to construct a
switching law, based on the available state estimates:

i(t) = ψ(x̂(t), t) (5.31)

that provides the set of switching times that ensure asymptotically stabiliz-
ing transitions between the predictive and bounded controllers, in the event
that the predictive controller is unable to enforce closed–loop stability for a
given initial condition within Ω. In the remainder of this section, we present
a switching scheme that addresses this problem. Theorem 5.33 below summa-
rizes the main result (the proof is given in Appendix C).

Theorem 5.33. Consider the constrained system of Eq.5.30, the bounded
controller of Eqs.5.7–5.8, the state estimator of Eq.5.25, and the MPC law
of Eqs.5.27–5.28. Let x(0) ∈ Ωb, x̂(0) ∈ Ωb, β ≥ β∗, δs ≤ δ∗s , Ωs(T ∗d ) =
{x ∈ IRn : x′Px ≤ δs(T ∗d )}, and 0 < Td < Tmin := min{t ≥ 0 : V (x(0)) =
δb, V (x(t)) = cmax, u(t) ∈ U}, where Ωb, β∗ were defined in Proposition 5.27,
and δ∗s , T ∗d were defined in Proposition 5.31. Let Tm ≥ max{Td, T

∗
d } be the

earliest time for which x̂(Tm) ∈ Ωs and the MPC law prescribes a feasi-
ble solution, Ms(x̂(Tm)). Also, let Tf > Tm be the earliest time for which
V̇ (x̂(Tf )) ≥ 0. Then, the following switching rule:
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i(t) =





1, 0 ≤ t < Tm

2, Tm ≤ t < Tf

1, t ≥ Tf





(5.32)

where i(t) = 1 if and only if ui(x̂(t)) = b(x̂(t)) and i(t) = 2 if and only
if ui(x̂(t)) = Ms(x̂(t)), asymptotically stabilizes the origin of the closed–loop
system.

Remark 5.34. Figure 5.16 depicts a schematic representation of the hybrid
predictive control structure proposed in Theorem 5.33. The four main compo-
nents of this structure include the state estimator, the bounded controller, the
predictive controller, and a high–level supervisor that orchestrates the switch-
ing between the two controllers. The implementation of the control strategy is
best understood through the following stepwise procedure (see Figure 5.17):

1. Given the system of Eq.5.22 and the constraints of Eq.5.24, design the
bounded controller using Eqs.5.7–5.8. Given the performance objective,
design the predictive controller.

2. Compute the stability region estimate for the bounded controller under
state feedback, Ω, using Eqs.5.9–5.10 and, for a choice of the output feed-
back stability region, Ωb ⊂ Ω, compute em, β and Td defined in Proposi-
tions 5.25 and 5.27.

3. Compute the region Ωs and T ∗d (see Proposition 5.31) which ensure that
x̂ ∈ Ωs ⇒ x ∈ Ω for all times greater than T ∗d .

4. Initialize the closed–loop system at any initial condition, x(0), within Ωb,
under the bounded controller using an initial guess for the state, x̂(0),
within Ωb. Keep the bounded controller active for a period of time, [0, Tm).

5. At t = Tm (by which time x̂ ∈ Ωs), test the feasibility of MPC using
values of the estimates generated by the state observer. If MPC yields no
feasible solution, keep implementing the bounded controller.

6. If MPC is feasible, disengage the bounded controller from the closed–loop
system and implement the predictive controller instead. Keep MPC active
for as long as x̂ ∈ Ωs and V (x̂) keeps decaying.

7. At the first instance that either V (x̂) begins to increase under MPC, or
MPC runs into infeasibilities, switch back to the bounded controller and
implement it for all future times; else keep the predictive controller active.

Remark 5.35. An important feature that distinguishes the switching logic of
Theorem 5.33 from the state feedback logic in Section 5.3 is the fact that,
in the output feedback case, MPC implementation does not commence until
some period of time, [0, Tm), has elapsed, even if MPC is initially feasible. The
rationale for this delay (during which only bounded control is implemented)
is the need to ensure that, by the time MPC is implemented, the norm of the



166 5 Hybrid Predictive Control of Constrained Linear Systems

i

.
x(t) = Ax(t) + Bu (t)

Su
pe

rvi
so

ry 
lev

el

y(t)=Cx(t)

|u| <  umax

Pla
nt +

Co
nto

l le
ve

l
Ob

se
rve

r
"Optimality"

controller
MPC

objectives
Perofrmance 

x(t)

Switching logic

i = ?

i=1 i=2

y(t) = Cx(t)
|u| < u

x(t) = Ax(t) + Bu (t)
+ L(y-y)

"Constraints"

controller
Bounded 

Stability region

i

max

Ω ( )maxu

Fig. 5.16. Schematic representation of the hierarchical hybrid predictive control
structure merging the bounded and model predictive controllers and a state observer.
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Fig. 5.17. Schematic representation of the evolution of the closed–loop system
under the controller switching strategy proposed in Theorem 5.33. Note that MPC
is not activated (even if feasible) before x̂ enters Ωs.

estimation error has already decayed to sufficiently low values that would allow
the bounded controller to preserve closed–loop stability in the event that MPC
needs to be switched out after its implementation. More specifically, before
MPC can be safely activated, the supervisor needs to make sure that: (1) the
estimation error has decayed to levels below em, and (2) the state, x, will be
contained within Ω at any time that MPC could be switched out after its
implementation. The first requirement ensures that the bounded controller,
when (and if) reactivated, is able to tolerate the estimation error and still
be stabilizing within Ω (see Proposition 5.25). This requirement also implies
that Tm must be greater than Td, which is the time beyond which the observer
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design guarantees ‖e‖ ≤ em (see Part 1 of the Proof of Proposition 5.27). The
second requirement, on the other hand, implies that MPC cannot be safely
switched in before the estimate enters Ωs and the norm of the error is such
that x̂ ∈ Ωs =⇒ x ∈ Ω (see Remarks 5.30-5.32). Recall from Proposition 5.31
that this property holds for all t ≥ T ∗d ; hence Tm must also be greater than
T ∗d , i.e., Tm ≥ max{Td, T

∗
d }. For times greater than Tm, the implementation of

MPC can be safely tested without fear of closed–loop instability, since even if
x̂ tries to escape Ωs (possibly indicating that x under MPC is about to escape
Ω), the switching rule allows the supervisor to switch back immediately to
the bounded controller (before x̂ leaves Ωs), thus guaranteeing that at the
switching time x̂ ∈ Ωs, x ∈ Ω and ‖e‖ ≤ em, which altogether imply that the
bounded controller, once switched in, will be asymptotically stabilizing (see
the Proof of Theorem 5.33 for the mathematical details of this argument).

Remark 5.36. The proposed approach does not require or provide any infor-
mation as to whether the model predictive controller itself is asymptotically
stabilizing or not, starting from any initial condition within Ωb. In other words,
the approach does not turn Ωb into a stability region for MPC. What the ap-
proach does, however, is turn Ωb into a stability region for the switched closed–
loop system. The value of this can be understood in light of the difficulty in
obtaining, a priori, an analytical characterization of the set of admissible ini-
tial conditions that the model predictive controller can steer to the origin in
the presence of input constraints. Given this difficulty, by embedding MPC
implementation within Ωb and using the bounded controller as a fall–back
controller, the switching scheme of Theorem 5.33 allows us to safely initial-
ize the closed–loop system anywhere within Ωb with the guarantee that the
bounded controller can always intervene to preserve closed–loop stability in
case the MPC is infeasible or destabilizing (due, for example, to a poor choice
of the initial condition and/or improper tuning of the horizon length).

Remark 5.37. Note that, once MPC is switched in, if V (x̂) continues to de-
crease monotonically, then the predictive controller will be implemented for
all t ≥ Tm. In this case, the optimal performance of the predictive controller
is practically recovered. Note also, that in this approach, the state–feedback
predictive controller design is not required to be robust with respect to state
measurement errors (see [104] for examples when MPC is not robust) because
even if it is not robust, closed–loop stability can always be guaranteed by
switching back to the bounded controller (within its associated stability re-
gion) which provides the desired robustness with respect to the measurement
errors.

Remark 5.38. Even though the result of Theorem 5.33 was derived using the
MPC formulation of Eqs.5.27–5.28, it is important to point out that the same
result applies to MPC formulations that employ different types of stability
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constraints (see Remark 5.23). The basic commonality between the formu-
lation of Eqs.5.27–5.28 and other stability–handling formulations is the fact
that, in all of these formulations, the implementation of MPC depends on
whether the optimization problem, subject to the stability constraints, is feasi-
ble or not. This issue of feasibility is therefore accommodated in the switching
logic by requiring the supervisor to check the feasibility of MPC in addition
to monitoring the evolution of V . On the other hand, when a conventional
MPC formulation (i.e., one with no stability constraints) is used, potential
infeasibility of the optimization problem is no longer a concern, and, there-
fore, in this case the supervisory switching logic rests only on monitoring the
evolution of V .

Remark 5.39. In conventional MPC formulations (with no stability constraints),
the objective function is typically a tuning parameter that can be manipu-
lated, by arbitrarily changing the weighting matrices, to ensure stability. In
the hybrid predictive control framework, on the other hand, since closed–loop
stability is guaranteed by the bounded controller, the objective function and
the weights, instead of being arbitrarily tuned to guarantee stability, can be
chosen to reflect actual physical costs and satisfy desirable performance ob-
jectives (for example, fast closed–loop response).

5.4.4 Simulation studies

In this section, two simulation studies are presented to demonstrate the imple-
mentation, and evaluate the effectiveness, of the proposed hybrid predictive
control strategy as well as test its robustness with respect to modeling errors
and measurement noise.

Illustrative example

In this section, we demonstrate an application of the proposed hybrid predic-
tive control strategy to a three dimensional linear system where only two of
the states are measured. Specifically, we consider an exponentially unstable
linear system of the form of Eqs.5.22–5.23 with

A =




0.55 0.15 0.05
0.15 0.40 0.20
0.10 0.15 0.45


 , B =




1 0
0 1
1 1


 , C =

[
1 0 0
0 0 1

]
,

where both inputs u1, u2 are constrained in the interval [−1, 1]. Using Eqs.5.7–
5.8, we initially designed the bounded controller and constructed its stability
region, Ω, via Eqs.5.9–5.10. The matrix P was chosen as:

P =




6.5843 4.2398 −3.830
4.2398 3.6091 −2.667
−3.830 −2.667 2.8033
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and the observer gain parameter was chosen to be β = 500 to ensure closed–
loop stability for all initial conditions within a set Ωb ⊂ Ω. For the model
predictive controller, the parameters in the objective function of Eq.5.27 were
chosen as Q = qI, with q = 1 and R = rI, with r = 0.1. We also chose a hori-
zon length of T = 1.5 in implementing the predictive controller of Eqs.5.25,
5.27–5.28. The resulting quadratic program was solved using the MATLAB
subroutine QuadProg, and the set of ODEs integrated using the MATLAB
solver ODE45.

In the first simulation run (solid lines in Figures 5.18–5.19), the states were
initialized at x0 = [0.75 − 0.5 1.0]′, while the observer states were initialized
at x̂0 = [0 0 0]′ (which belong to the stability region of the bounded controller,
Ωb). The supervisor employs the bounded controller, while continuously check-
ing the feasibility of MPC. At t = 5.45, MPC (based on the state estimates)
becomes feasible and is implemented in the closed–loop system to achieve
asymptotic stability. The total cost of stabilization achieved by the switching
strategy (as measured by Eq.5.27) is J = 80.12. The switching scheme leads
to better performance when compared with the scenario where the bounded
controller is implemented for all times (the cost in this case is J = 121.07),
and also better than the model predictive controller, because, starting from
this initial condition, the predictive controller prescribes no feasible control
move (equivalent to an infinite value for the objective function). Note that
even though feasibility of MPC could have been achieved earlier by increas-
ing the horizon length to T = 3.5 (dashed lines in Figures 5.18–5.19), this
conclusion could not be reached a priori, i.e., before running the closed–loop
simulation in its entirety to check whether the choice T = 3.5 is appropriate.
In the absence of any a priori knowledge of the necessary horizon length, for a
given initial condition, the proposed hybrid predictive control can be used to
guarantee closed–loop stability regardless of the choice of the horizon length.

In the second set of simulation results, we demonstrate the need for a
choice of an observer gain consistent with the choice of Ωb. To this end, we
consider an observer design with a low gain (β = 0.5) placing the observer
poles at −0.5,−1.0,−1.5. With the low observer gain, the estimates take a
long time to converge to the true state values, resulting in the implementation
of “incorrect” control action for a large period of time, by the end of which
the states have already escaped out of Ω (even though the states and state
estimates were initiated within Ωb), thus resulting in closed–loop instability
(dashed lines in Figures 5.20–5.21). Recall that stability was achieved when
the observer gain was chosen to be β = 500 in the first set of simulation runs
(the state and input profiles for this case are reproduced by the solid lines in
Figures 5.20–5.21 for convenience of comparison).

To recover, as closely as possible, the state feedback stability region, large
values of the observer gain are needed. However, it is well–known that high
observer gains can amplify measurement noise and induce poor performance.
These observations point to a fundamental tradeoff that cannot be resolved by
simply changing the estimation scheme (see Remark 5.29). For example, if the
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Fig. 5.18. States of the closed–loop system under the proposed hybrid predictive
control strategy using two different horizon lengths of T = 1.5 (solid) and T = 3.5
(dashed) in MPC implementation, and an observer gain parameter of β = 500.
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Fig. 5.19. Manipulated input profiles under the proposed hybrid predictive control
strategy using two different horizon lengths of T = 1.5 (solid) and T = 3.5 (dashed)
in MPC implementation, and an observer gain parameter β = 500.

observer gain consistent with the choice of the output feedback stability region
is abandoned, the noise problem may disappear, but then stability cannot be
guaranteed. One approach to avoid this problem in practice is to initially
use a large observer gain that ensures quick decay of the initial estimation
error, and then switch to a low observer gain. In the following simulation,
we demonstrate how this idea, in conjunction with switching between the
controllers, can be used to mitigate the undesirable effects of measurement
noise. To illustrate this point, we switch between the high and low observer
gains used in the first two simulation runs and demonstrate the attenuation
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Fig. 5.20. States of the closed–loop system under the proposed hybrid predictive
control strategy using two different gain parameters of β = 500 (solid) and β = 0.5
(dashed) in observer implementation, and horizon length of T = 1.5 in the predictive
controller.
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Fig. 5.21. Manipulated input profiles under the proposed hybrid predictive control
strategy using two different gain parameters of β = 500 (solid) and β = 0.5 (dashed)
in observer implementation, and horizon length of T = 1.5 in the predictive con-
troller.

of noise. Specifically, we consider the nominal system described by Eqs.5.22–
5.23 (see the first paragraph of this subsection for the values of A, B and C),
together with model uncertainty and measurement noise. The model matrix
Am (used for controller and observer design) is assumed to be within five
percent error of the system matrix A and the sensors are assumed to introduce
noise in the measured outputs as y(t) = Cx(t) + δ(t) where δ(t) is a random
gaussian noise with zero mean and a variance of 0.01. As seen by the solid lines
in Figure 5.22, starting from the initial condition, x0 = [0.75 −0.5 1.0]′, using
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a high observer gain followed by a switch to a low observer gain at t = 1.0,
and a switch from bounded control to MPC at t = 3.5, the supervisor is still
able to preserve closed–loop stability, while at the same time resulting in a
smoother control action (solid lines in Figure 5.23) when compared to the case
where a high observer gain is used for the entire duration of the simulation
(dotted lines in Figures 5.22–5.23).

Application to a chemical reactor example

In this subsection, we consider a nonlinear chemical reactor example to test
the robustness of the proposed hybrid predictive control structure (designed
on the basis of the linearization of the nonlinear model around the operating
steady–state) with respect to modeling errors arising due to the presence
of nonlinear terms. Specifically, we consider a well–mixed continuous stirred
tank reactor where an irreversible elementary exothermic reaction of the form
A

k→ B, takes place, where A is the reactant species and B is the product. The
feed to the reactor consists of pure A at flow rate F , molar concentration CA0

and temperature TA0. A jacket is used to remove/provide heat to the reactor.
Under standard modelling assumptions, a mathematical model of the process
can be derived from material and energy balances and takes the following
form:

V
dTR

dt
= F (TA0 − TR) +

(−∆H)
ρcp

k0 exp
( −E

RTR

)
CAV +

Q

ρcp

V
dCA

dt
= F (CA0 − CA)− k0 exp

( −E

RTR

)
CAV

(5.33)

where CA denotes the concentrations of the species A, TR denotes the temper-
ature of the reactor, Q denotes rate of heat input/removal from the reactor,
V denotes the volume of the reactor, ∆H, k, E denote the enthalpy, pre–
exponential constant and activation energy of the reaction, cp and ρ denote
the heat capacity and density of the reactor, respectively. The values of the
process parameters are given in Table 5.1. It was verified that these conditions
correspond to three steady–states, one unstable (given in Table 1) and two
locally asymptotically stable.

The control problem is to regulate both the outlet concentration of the
reactant, CA, and the reactor temperature, TR, at the unstable steady–state
by manipulating the inlet reactant concentration, CA0, and the rate of heat
input, Q, provided by the jacket. The control objective is to be accomplished
in the presence of constraints on the manipulated inputs (|Q| ≤ 1 KJ/min,
|∆CA0| = |CA0 − CA0s| ≤ 1 mol/L) using measurements of the reactor tem-
perature. For the purpose of implementing the control scheme, the process
model of Eq.5.33 was linearized around the unstable steady–state, and the
resulting linear model was used for the design of the hybrid predictive control
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Fig. 5.22. Closed–loop states under hybrid predictive control, in the presence of
measurement noise and modeling errors, for the case when the observer is initially
implemented using β = 500 and then switched to β = 0.5 at t = 1.0 (solid lines)
and the case when the observer is implemented using β = 500 for all times (dotted
lines). The horizon length for the predictive controller is T = 1.5.
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Fig. 5.23. Manipulated input profiles under the proposed hybrid predictive control
strategy in the presence of measurement noise and modeling errors. The solid profiles
depict the case when the state observer is initially implemented using β = 500 and
then switched to β = 0.5 at t = 1.0. The dotted profiles depict the case when the
state observer is implemented using β = 500 for all times. The horizon length for
the model predictive controller is T = 1.5.
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Table 5.1. Process parameters and steady–state values for the reactor of Eq.5.33.

V = 0.1 m3

R = 8.314 kJ/kmol ·K
CA0s = 1.0 kmol/m3

TA0s = 310.0 K
∆H = −4.78× 104 kJ/kmol
k0 = 1.2× 109 s−1

E = 8.314× 104 kJ/kmol
cp = 0.239 kJ/kg ·K
ρ = 1000.0 kg/m3

F = 1.67× 10−3 m3/s
TRs = 395.33 K
CAs = 0.57 kmol/m3

structure. Using Eqs.5.7–5.8, we initially designed the bounded controller and
constructed its stability region via Eqs.5.9–5.10. The matrix P was chosen as:

P =
[

0.027 0.47
0.47 15.13

]

and the observer gain parameter was chosen to be β = 5. It should be noted
here that, because of the linearization effect, the largest invariant region, Ω,
computed using Eqs.5.9–5.10 applied to the linear model, includes physically
meaningless initial conditions (CA < 0) and, therefore, a smaller level set,
Ω′ ⊂ Ω, that includes only physically meaningful initial conditions, was cho-
sen and used as the stability region estimate for the bounded controller (see
Figure 5.24). For the predictive controller, the parameters in the objective
function of Eq.5.27 were chosen as Q = qI, with q = 1 and R = rI, with
r = 1. We also chose a horizon length of T = 2. The resulting quadratic
program was solved using the MATLAB subroutine QuadProg, and the set
of ODEs integrated using the MATLAB solver ODE45. In all simulations,
the controllers, designed on the basis of the linearization around the unstable
steady–state, were implemented on the nonlinear system of Eq.5.33.

As seen by the solid lines in Figures 5.25–5.26, starting from the point
(TR, CA) = (395.53 K, 0.47 kmol/m3), the model predictive controller is able
to stabilize the process at the desired steady–state, (TRS , CAS) = (395.33
K, 0.57 kmol/m3). From the initial condition, (TR, CA) = (397.33 K, 0.67
kmol/m3), however, the model predictive controller yields an infeasible solu-
tion. Therefore, using the proposed hybrid control strategy (dotted lines in
Figures 5.25–5.26), the supervisor implements the bounded controller in the
closed–loop system, while continuously checking the feasibility of MPC. At
t = 0.9 seconds, MPC is found to be feasible and the supervisor switches to
the model predictive controller, which in turn stabilizes the nonlinear closed–
loop system at the desired steady–state. These results clearly demonstrate
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Fig. 5.24. Stability region estimate, Ω′, based on the linearization of the nonlinear
model of Eq.5.33. The solid line depicts the closed–loop state trajectory starting
from an initial condition for which MPC (designed based on the linear model with
T = 2) is feasible and stabilizes the nonlinear closed–loop system, while the dotted
line depicts the state trajectory starting from an initial condition for which MPC
is infeasible, and the hybrid predictive control strategy is implemented instead to
enforce closed–loop stability.

a certain degree of robustness that the proposed hybrid predictive control
structure possesses with respect to modeling errors (arising in this case due
to neglecting the nonlinearities).

Remark 5.40. In both simulation studies presented above, we have treated ro-
bustness as a practical implementation issue and performed simulations that
test the performance of the control strategy in the event of some plant–model
mismatch to show that the hybrid predictive controller does posses some ro-
bustness margins that make it suited for practical implementation. We note
that our objective here is not to incorporate robustness explicitly into the
controller design, but rather to investigate the robustness margins of the con-
trollers. The issue of incorporating robustness explicitly into the hybrid pre-
dictive control strategy is addressed in the next chapter. Furthermore, within
predictive control, a common approach to the robust controller design problem
is through the min–max type formulations. However, these formulations are
well–known to be computationally demanding and, more importantly, suffer
from similar difficulties in identifying the set of initial conditions from which
robust closed–loop stability can be guaranteed a priori.

5.5 Conclusions

In this chapter, a hybrid predictive control structure, uniting MPC and
bounded control, was developed for the stabilization of linear time-invariant
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Fig. 5.25. Closed–loop reactant concentration (top) and reactor temperature (bot-
tom) starting from an initial condition for which MPC (designed based on the linear
model with T = 2) is feasible and stabilizes the nonlinear closed–loop system (solid),
and starting from an initial condition for which MPC is infeasible, and the hybrid
predictive control strategy is implemented instead to enforce closed–loop stability
(dotted).
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Fig. 5.26. Rate of heat input (top) and inlet reactant concentration in deviation
variable form (bottom) when MPC is implemented (solid) and when the hybrid
predictive control strategy is implemented (dotted).

systems with input constraints. Both the state and output feedback control
problems were considered. Under full state feedback, the hybrid predictive
control structure consists of three components: a bounded controller with a
well-defined stability region, a high-performance model predictive controller,
and a higher-level supervisor that orchestrates the switching between the two
controllers in a way that: (1) guarantees closed-loop stability for all initial
conditions within the stability region of the bounded controller, and (2) rec-
onciles the stability and performance properties of the two controllers. The
proposed hybrid control structure was used to construct a number of switching
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schemes that address a variety of control objectives, such as closed-loop sta-
bility (stability-based switching) and closed-loop performance (performance-
driven switching). A switching scheme was also developed for more advanced
formulations of MPC (feasibility-based switching). In each case, the switching
logic was tailored to deal with the specific MPC formulation used and the
specific objectives sought.

The hybrid predictive control structure was then extended to address the
output feedback stabilization problem, via the addition of an appropriate state
observer to provide the controllers, as well as the supervisor, with appropriate
state estimates. The observer was tuned in a way so as to guarantee closed–
loop stability for all initial conditions within the bounded controller’s output
feedback stability region (which can be chosen arbitrarily close in size to
its state feedback counterpart, provided that the observer gain is sufficiently
large). Switching laws, that monitor the evolution of the state estimates, were
derived to orchestrate the transition between the two controllers in the event
of MPC infeasibility or instability.

The hybrid predictive control structure was shown to provide, irrespective
of the specific MPC formulation used, a safety net for the practical imple-
mentation of state and output feedback MPC by providing, through off–line
computations, a priori knowledge of a large set of initial conditions for which
stability of the switched closed–loop system is guaranteed. Finally, simulation
studies were presented throughout the chapter to demonstrate the implemen-
tation and evaluate the effectiveness of the proposed hybrid predictive control
strategy, as well as test its robustness with respect to modeling errors and
measurement noise.





6

Hybrid Predictive Control of Nonlinear and
Uncertain Systems

6.1 Introduction

In Chapter 5, we developed a hybrid predictive control strategy for the stabi-
lization of constrained linear systems and demonstrated some of its benefits
in terms of providing a safety net for the practical implementation of MPC.
In this chapter, we focus on nonlinear systems, with and without uncertainty,
and show how the hybrid predictive control strategy can be extended in sev-
eral directions to address the constrained stabilization problem for these sys-
tems and aid MPC implementation. To motivate the hybrid predictive control
structure for nonlinear and uncertain systems, we note that the practical im-
plementation difficulties of MPC are in general more pronounced for nonlinear
and uncertain systems than in the linear case.

For example, when the system is linear, the cost quadratic, and the con-
straints convex, the MPC optimization problem reduces to a quadratic pro-
gram for which efficient software exists and, consequently, a number of control-
relevant issues have been explored, including issues of closed–loop stability,
performance, implementation and constraint satisfaction (see, for example,
the tutorial paper [227]). For nonlinear systems, several nonlinear model pre-
dictive control (NMPC) schemes have been developed in the literature (see, for
example, [190, 200, 45, 155, 262, 179, 264]) that focus on the issues of stability,
constraint satisfaction and performance optimization for nonlinear systems.
A common idea of these approaches is to enforce stability by means of suit-
able penalties and constraints on the state at the end of the finite optimization
horizon. Because of the system nonlinearities, however, the resulting optimiza-
tion problem is non-convex and, therefore, much harder to solve, even if the
cost functional and constraints are convex. The computational burden is more
pronounced for NMPC algorithms that employ terminal stability constraints
(e.g., equality constraints) whose enforcement requires intensive computations
that typically cannot be performed within a limited time–window.

In addition to the computational difficulties of solving a nonlinear opti-
mization problem at each time step, one of the key challenges that impact on
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the practical implementation of NMPC is the inherent difficulty of character-
izing, a priori, the set of initial conditions starting from where a given NMPC
controller is guaranteed to stabilize the closed–loop system. For finite–horizon
MPC, an adequate characterization of the stability region requires an explicit
characterization of the complex interplay between several factors, such as the
initial condition, the size of the constraints, the horizon length, the penalty
weights, etc. Use of conservatively large horizon lengths to address stability
only increases the size and complexity of the nonlinear optimization prob-
lem and could make it intractable. Furthermore, since feasibility of NMPC is
determined through on-line optimization, unless an NMPC controller is ex-
haustively tested by simulation over the whole range of potential initial states,
doubt will always remain as to whether or not a state will be encountered for
which an acceptable solution to the finite horizon problem can be found.

The above host of theoretical and computational issues continue to mo-
tivate research efforts in this area. Most available predictive control formu-
lations for nonlinear systems, however, either do not explicitly characterize
the stability region, or provide estimates of this region based on linearized
models, used as part of some scheduling scheme between a set of local predic-
tive controllers. The idea of scheduling of a set of local controllers to enlarge
the operating region was proposed earlier in the context of analytic control of
nonlinear systems (e.g., see [193, 173]) and requires an estimate of the region
of stability for the local controller designed at each scheduling point. Then
by designing a set of local controllers with their estimated regions of stabil-
ity overlapping each other, supervisory scheduling of the local controllers can
move the state through the intersections of the estimated regions of stability
of different controllers to the desired operating point. Similar ideas were used
in [46, 283] for scheduled predictive control of nonlinear systems. All of these
approaches require the existence of an equilibrium surface that connects the
scheduling points, and the resulting stability region estimate is the union of
the local stability regions, which typically forms an envelope around the equi-
librium surface. Stability region estimates based on linearization, however, are
inherently conservative.

For systems with uncertainty, the MPC problem has been approached
either as an analysis problem, where the robustness properties of nominal
MPC formulations are analyzed (see, for example, [102, 67, 181]), or as
a synthesis problem, where the goal is to develop MPC formulations that
explicitly account for uncertainty (see [32, 191] for surveys of results in
this area). The problem of designing robust predictive controllers for un-
certain linear systems has been extensively investigated (see, for example,
[43, 168, 240, 62, 170, 31, 284]) and is typically addressed within a min–
max optimization framework, where the optimization problem is solved in a
way such that the constraints are satisfied for all possible realizations of the
bounded uncertainty.

For uncertain nonlinear systems, the problem of robust MPC design con-
tinues to be an area of ongoing research (see, for example, [200, 93, 180,
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1, 236, 166]). While min-max formulations provide a natural setting within
which to address this problem, computational complexity remains a very se-
rious issue. The computational burden stems in part from the nonlinearity
of the model which makes the optimization problem non–convex and, there-
fore, generally hard to solve. Performing the min–max optimization over the
non-convex problem further increases the computational complexity of the
optimization problem and makes it unsuitable for the purpose of on–line im-
plementation. These implementation difficulties are further compounded by
the inherent difficulty of obtaining, a priori (i.e., before controller implemen-
tation), an explicit characterization of the set of initial conditions for which
closed–loop stability, under any nonlinear MPC formulation (with or without
stability conditions, and with or without robustness considerations), can be
guaranteed in the presence of uncertainty and constraints. Faced with these
difficulties, in current industrial implementation, the robust stability of MPC
controllers is usually tested through extensive simulations.

The rest of this chapter is organized as follows. In Section 6.2, we develop
a hybrid predictive control structure for the stabilization of nonlinear systems
with input constraints. The central idea is to use a family of bounded nonlinear
controllers, each with an explicitly characterized stability region, as fall–back
controllers, and embed the operation of MPC within the union of these regions.
In the event that the given predictive controller (which can be linear, non-
linear, or even scheduled) is unable to stabilize the closed–loop system (e.g.,
due to failure of the optimization algorithm, poor choice of the initial con-
dition, insufficient horizon length, etc.), supervisory switching from MPC to
any of the bounded controllers, whose stability region contains the trajectory,
guarantees closed–loop stability. Two representative switching schemes that
address (with varying degrees of flexibility) stability and performance consid-
erations are described, and possible extensions of the supervisory switching
logic, to address a variety of practical implementation issues, are discussed.
The efficacy of the proposed approach is demonstrated through applications
to chemical reactor and crystallization process examples. In Section 6.3, we
extend the hybrid predictive control structure to nonlinear systems with input
constraints and uncertain variables, and show that the resulting robust hybrid
predictive control structure provides a safety net for the implementation of any
available MPC formulation, designed with or without taking uncertainty into
account. Two representative switching schemes that address robust stability
and performance objectives are described to highlight the effect of uncertainty
on the design of the switching logic. Finally, the implementation and efficacy
of the robust hybrid predictive control strategy are demonstrated through sim-
ulations using a chemical reactor example. The results of this chapter were
first presented in [88] and [197].
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6.2 Hybrid predictive control of nonlinear systems

6.2.1 Preliminaries

In this section, we consider the problem of asymptotic stabilization of continuous-
time nonlinear systems with input constraints, with the following state-space
description:

ẋ(t) = f(x(t)) + g(x(t))u(t) (6.1)

‖u‖ ≤ umax (6.2)

where x = [x1 · · ·xn]′ ∈ IRn denotes the vector of state variables, u =
[u1 · · ·um]′ is the vector of manipulated inputs, umax ≥ 0 denotes the bound
on the manipulated inputs, f(·) is a sufficiently smooth n×1 nonlinear vector
function, and g(·) is a sufficiently smooth n ×m nonlinear matrix functions.
Without loss of generality, it is assumed that the origin is the equilibrium
point of the unforced system (i.e., f(0) = 0). Throughout the chapter, the no-
tation, ‖ · ‖, will be used to denote the standard Euclidean norm of a vector,
while the notation ‖·‖Q refers to the weighted norm, defined by ‖x‖2Q = x′Qx
for all x ∈ IRn, where Q is a positive–definite symmetric matrix and x′ de-
notes the transpose of x. In order to provide the necessary background for
the main results in Section 6.2.2, we will briefly review in the remainder of
this section the design procedure for, and the stability properties of, both the
bounded and model predictive controllers, which constitute the basic compo-
nents of our hybrid control scheme. For clarity of presentation, we will focus
only on the state feedback problem where measurements of x(t) are assumed
to be available for all t (see Remark 6.16 below for a discussion on the issue
of measurement sampling and how it can be handled).

Bounded Lyapunov-based control

Consider the system of Eqs.6.1-6.2, for which a family of control Lyapunov
functions (CLFs), Vk(x), k ∈ K ≡ {1, · · · , p} has been found (see Remark
6.1 below for a discussion on the construction of CLFs). Using each control
Lyapunov function, we construct, using the results in [177] (see also [78, 81]),
the following continuous bounded control law:

uk(x) = −kk(x)(LgVk)′(x) := bk(x) (6.3)

where

kk(x) =
LfVk(x) +

√
(LfVk(x))2 + (umax‖(LgVk)′(x)‖)4

‖(LgVk)′(x)‖2
[
1 +

√
1 + (umax‖(LgVk)′(x)‖)2

] (6.4)
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when (LgVk)′(x) 6= 0, and kk(x) = 0 when (LgVk)′(x) = 0, LfVk(x) =
∂Vk(x)

∂x
f(x), LgVk(x) = [Lg1Vk(x) · · ·Lgm

Vk(x)]′ and gi(x) is the i-th col-

umn of the matrix g(x). For the above controller, it can be shown (see, for
example, the Proof of Theorem 5.7 in Appendix C), using standard Lyapunov
arguments, that whenever the closed–loop state trajectory, x, evolves within
the state–space region described by the set:

Φk(umax) = {x ∈ IRn : LfVk(x) < umax‖(LgVk)′(x)‖} (6.5)

then the controller satisfies the constraints, and the time-derivative of the Lya-
punov function is negative–definite. Therefore, starting from any initial state
within the set, Φk(umax), asymptotic stability of the origin of the constrained
closed–loop system can be guaranteed, provided that the state trajectory re-
mains within the region described by Φk(umax) whenever x 6= 0. To ensure
this, we consider initial conditions that belong to an invariant subset (prefer-
ably the largest), Ωk(umax). One way to construct such a subset is using the
level sets of Vk, i.e.,

Ωk(umax) = {x ∈ IRn : Vk(x) ≤ cmax
k } (6.6)

where cmax
k > 0 is the largest number for which Φk(umax) ⊃ Ωk(umax)\{0}.

The union of the invariant regions described by the set:

Ω(umax) =
p⋃

k=1

Ωk(umax) (6.7)

then provides an estimate of the stability region, starting from where the
origin of the constrained closed–loop system, under the appropriate control
law from the family of Eqs.6.3-6.4, is guaranteed to be asymptotically stable.

Remark 6.1. CLF-based stabilization of nonlinear systems has been studied
extensively in the nonlinear control literature (see, for example, [17, 177, 97,
245]). The construction of constrained CLFs (i.e., CLFs that take the con-
straints into account) remains a difficult problem (especially for nonlinear sys-
tems) that is the subject of ongoing research. For several classes of nonlinear
systems that arise commonly in the modeling of practical systems, systematic
and computationally feasible methods are available for constructing uncon-
strained CLFs (CLFs for the unconstrained system) by exploiting the system
structure. Examples include the use of quadratic functions for feedback lin-
earizable systems and the use of back-stepping techniques to construct CLFs
for systems in strict feedback form. In this chapter, the bounded controllers
in Eqs.6.3-6.4 are designed using unconstrained CLFs, which are also used
to explicitly characterize the associated regions of stability via Eqs.6.5-6.6.
While the resulting estimates do not necessarily capture the entire domain of
attraction, we will use them throughout the chapter only for a concrete illus-
tration of the basic ideas of the results. It is possible to obtain substantially
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improved (i.e., less conservative) estimates by using, for example, a combina-
tion of several CLFs (see Section 6.2.3 for examples).

Model predictive control

In this section, we consider model predictive control of the system described
by Eq.6.1, subject to the control constraints of Eq.6.2. In the literature, sev-
eral MPC formulations are currently available, each with its own merits and
limitations. While the hybrid predictive control structure is not restricted to
any particular MPC formulation (see Remark 6.7 and Chapter 5 for further
details on this issue), we will briefly describe here the “traditional” formula-
tion for the purpose of highlighting some of the theoretical and computational
issues involved in the nonlinear setting. For this case, MPC at state x and
time t is conventionally obtained by solving, on-line, a finite horizon optimal
control problem [192] of the form:

P (x, t) : min{J(x, t, u(·))|u(·) ∈ S} (6.8)

s.t. ẋ = f(x) + g(x)u (6.9)

where S = S(t, T ) is the family of piecewise continuous functions (functions
continuous from the right), with period ∆, mapping [t, t + T ] into U := {u ∈
IRm : ‖u‖ ≤ umax} and T is the specified horizon. Eq.6.9 is a nonlinear
model describing the time evolution of the states x. A control u(·) in S is
characterized by the sequence {u[k]} where u[k] := u(k∆). A control u(·) in
S satisfies u(t) = u[k] for all t ∈ [k∆, (k + 1)∆). The performance index is
given by:

J(x, t, u(·)) =
∫ t+T

t

[‖xu(s;x, t)‖2Q + ‖u(s)‖2R
]
ds + F (x(t + T )) (6.10)

where R and Q are strictly positive–definite, symmetric matrices and xu(s; x, t)
denotes the solution of Eq.6.1, due to control u, with initial state x at time
t and F (·) denotes the terminal penalty. The minimizing control u0(·) ∈ S is
then applied to the plant over the interval [k∆, (k + 1)∆) and the procedure
is repeated indefinitely. This defines an implicit model predictive control law:

M(x) = argmin(J(x, t, u(·))) = u0(t; x, t) (6.11)

While the use of a nonlinear model as part of the optimization problem is
desirable to account for the system’s nonlinear behavior, it also raises a num-
ber of well-known theoretical and computational issues [192] that impact on
the practical implementation of MPC. For example, in the nonlinear setting,
the optimization problem is non-convex and, in general, harder to solve than
in the linear case. Furthermore, the issue of closed–loop stability is typically
addressed by introducing penalties and constraints on the state at the end of
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the finite optimization horizon (see [191] for a survey of different constraints
proposed in the literature). Imposing constraints adds to the computational
complexity of the nonlinear optimization problem which must be solved at
each time instance.

Even if the optimization problem could be solved in a reasonable time,
any guarantee of closed–loop stability remains critically dependent upon mak-
ing the appropriate choice of the initial condition, which must belong to the
predictive controller’s region of stability (or feasibility), which, in turn, is a
complex function of the constraints, the performance objective, and the hori-
zon length. However, the implicit nature of the nonlinear MPC law, obtained
through repeated on-line optimization, limits our ability to obtain, a priori
(i.e., before controller implementation), an explicit characterization of the ad-
missible initial conditions starting from where a given MPC controller (with a
fixed performance index and horizon length) is guaranteed to asymptotically
stabilize the nonlinear closed–loop system. Therefore, the initial conditions
and the horizon lengths are usually tested through closed–loop simulations,
which can add to the computational burden prior to the implementation of
MPC.

6.2.2 Controller switching strategies

In this section, we show how to reconcile the bounded nonlinear control and
model predictive control approaches by means of switching schemes that pro-
vide a safety net for the implementation of MPC to nonlinear systems with
input constraints. To this end, consider the constrained nonlinear system of
Eqs.6.1-6.2, for which the bounded controllers of Eqs.6.3-6.4 and the pre-
dictive controller of Eqs.6.8-6.11 have been designed. The hybrid predictive
control problem is formulated as the one of designing a set of switching laws
that orchestrate the transition between MPC and the bounded controllers in a
way that guarantees asymptotic stability of the origin of the closed–loop sys-
tem starting from any initial condition in the set, Ω(umax), defined in Eq.6.7,
respects input constraints, and accommodates the performance requirements
whenever possible. For a precise statement of the problem, the system of
Eq.6.1 is first cast as a switched nonlinear system of the form:

ẋ = f(x) + g(x)ui(t)

‖ui‖ ≤ umax

i(t) ∈ {1, 2}

(6.12)

where i : [0,∞) → {1, 2} is the switching signal, which is assumed to be a
piecewise continuous (from the right) function of time, implying that only a
finite number of switches, between the predictive and bounded controllers, is
allowed on any finite interval of time. The index, i(t), which takes values in
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the set {1, 2}, represents a discrete state that indexes the control input u(·),
with the understanding that i(t) = 1 if and only if ui(x(t)) = M(x(t)) and
i(t) = 2 if and only if ui(x(t)) = bk(x(t)) for some k ∈ K. Our goal is to
construct a switching law, i(t) = ψ(x(t), t), that provides the set of switching
times that ensure stabilizing transitions between the predictive and bounded
controllers, in the event that the predictive controller is unable to enforce
closed–loop stability. This in turn determines the time-course of the discrete
state, i(t).

In the remainder of this section, two switching schemes that address the
above problem are presented. The first scheme is given in Theorem 6.2 and fo-
cuses primarily on the issue of closed–loop stability, while the second scheme,
given in Theorem 6.11, provides more flexible switching rules that guaran-
tee closed–loop stability and, simultaneously, enhance the overall closed–loop
performance beyond that obtained from the first scheme. The proofs of both
theorems are given in Appendix D.

Stability-based controller switching

Theorem 6.2. Consider the constrained nonlinear system of Eq.6.12, with
any initial condition x(0) := x0 ∈ Ωk(umax), for some k ∈ K ≡ {1, · · · , p},
where Ωk was defined in Eq.6.6, under the model predictive controller of
Eqs.6.8-6.11. Also, let T̄ ≥ 0 be the earliest time for which either the closed–
loop state, under MPC, satisfies:

LfVk(x(T̄ )) + LgVk(x(T̄ ))M(x(T̄ )) ≥ 0 (6.13)

or the MPC algorithm fails to prescribe any control move. Then, the switching
rule given by:

i(t) =





1, 0 ≤ t < T̄

2, t ≥ T̄



 (6.14)

where i(t) = 1 ⇔ ui(x(t)) = M(x(t)) and i(t) = 2 ⇔ ui(x(t)) = bk(x(t)),
guarantees that the origin of the switched closed–loop system is asymptotically
stable.

Remark 6.3. Theorem 6.2 describes a stability-based switching strategy for
control of nonlinear systems with input constraints. The main components of
this strategy include the predictive controller, a family of bounded nonlinear
controllers, with their estimated regions of constrained stability, and a high–
level supervisor that orchestrates the switching between the controllers. A
schematic representation of the hybrid control structure is shown in Figure
6.1. The implementation procedure of this hybrid control strategy is outlined
below:

• Given the system model of Eq.6.1, the constraints on the input and the
family of CLFs, design the bounded controllers using Eqs.6.3-6.4. Given
the performance objective, set up the MPC optimization problem.
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• Compute the stability region estimate for each of the bounded con-
trollers, Ωk(umax), using Eqs.6.5-6.6, for k = 1, . . . , p, and Ω(umax) =

p⋃

k=1

Ωk(umax).

• Initialize the closed–loop system under MPC at any initial condition, x0,
within Ω, and identify a CLF, Vk(x), for which the initial condition is
within the corresponding stability region estimate, Ωk.

• Monitor the temporal evolution of the closed–loop trajectory (by checking
Eq.6.13 at each time) until the earliest time that either Eq.6.13 holds or
the MPC algorithm prescribes no solution, T̄ .

• If such a T̄ exists, discontinue MPC implementation, switch to the k-th
bounded controller (whose stability region contains x0) and implement it
for all future times.
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Fig. 6.1. Schematic representation of the hybrid predictive control structure merg-
ing MPC and a family of fall–back bounded controllers with their stability regions.

Remark 6.4. The use of multiple CLFs to design a family of bounded con-
trollers, with their estimated regions of stability, allows us to initialize the
closed–loop system from a larger set of initial conditions than in the case
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when a single CLF is used. Note, however, that once the initial condition is
fixed, this determines both the region where MPC operation will be confined
(and monitored) and the corresponding fall–back bounded controller to be
used in the event of MPC failure. If the initial condition falls within the in-
tersection of several stability regions, then any of the corresponding bounded
controllers can be used as the fall–back controller.

Remark 6.5. The relation of Eqs.6.13-6.14 represents the switching rule that
the supervisor observes when contemplating whether a switch, between MPC
and any of the bounded controllers at a given time, is needed. The left hand-
side of Eq.6.13 is the rate at which the Lyapunov function grows or decays
along the trajectories of the closed–loop system, under MPC, at time T̄ . By
observing this rule, the supervisor tracks the temporal evolution of Vk under
MPC such that whenever an increase in Vk is detected after the initial im-
plementation of MPC (or if the MPC algorithm fails to prescribe any control
move due, for example, to failure of the optimization algorithm), the predic-
tive controller is disengaged from the closed–loop system, and the appropriate
bounded controller is switched in, thus steering the closed–loop trajectory to
the origin asymptotically. This switching rule, together with the choice of
the initial condition, guarantee that the closed–loop trajectory, under MPC,
never escapes Ωk(umax) before the corresponding bounded controller can be
activated.

Remark 6.6. In the case when the condition of Eq.6.13 is never fulfilled (i.e.,
MPC continues to be feasible for all times and the Lyapunov function con-
tinues to decay monotonically for all times (T̄ = ∞)), the switching rule
of Eq.6.14 ensures that only MPC is implemented for all times and that no
switching to the fall–back controllers takes place. In this case, MPC is stabi-
lizing and its performance is fully recovered by the hybrid control structure.
This particular feature underscores the central objective of the hybrid control
structure, which is not to replace or subsume MPC but, instead, to provide a
safe environment for the implementation of any predictive control policy for
which a priori guarantees of stability are not available. Note also that, to the
extent that stability under MPC is captured by the given Lyapunov function,
the notion of switching, as described in Theorem 6.2, does not result in loss of
performance, since the transition to the bounded controller takes place only
if MPC is infeasible or destabilizing. Clearly, under these circumstances the
issue of performance is not very meaningful for the predictive controller.

Remark 6.7. The fact that closed–loop stability is guaranteed, for all x0 ∈ Ω
(through supervisory switching), independently of whether MPC itself is sta-
bilizing or not, allows us to use any desired MPC formulation within the
switching scheme (and not just the one mentioned in Theorem 6.2), whether
linear or nonlinear, and with or without terminal stability constraints or ter-
minal penalties, without concern for loss of stability. This flexibility of using
any desired MPC formulation has important practical implications for re-
ducing the computational complexities that arise in implementing predictive
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control algorithms to nonlinear systems by allowing, for example, the use of
less-computationally demanding NMPC formulations, or even the use of linear
MPC algorithms instead (based on linearized models of the plant), with guar-
anteed stability (see Section 6.2.3 for examples). In all cases, by embedding
the operation of the chosen MPC algorithm within the large and well-defined
stability regions of the bounded controllers, the switching scheme provides
a safe fall–back mechanism that can be called upon at any moment to pre-
serve closed–loop stability should MPC become unable to achieve closed–loop
stability. Finally, we note that the Lyapunov functions used by the bounded
controllers can also be used as a guide to design and tune the MPC in case a
Lyapunov-based constraint is used at the end of the prediction horizon.

Remark 6.8. Note that no assumption is made regarding how fast the MPC
optimization needs to be solved since, even if this time is relatively significant
and the plant dynamics are unstable, the implementation of the switching rule
in Theorem 6.2 guarantees an “instantaneous” switch to the appropriate sta-
bilizing bounded controller before such delays can adversely affect closed–loop
stability (the times needed to check Eqs.6.13-6.14 and compute the control
action of the bounded controller are insignificant as they involve only alge-
braic computations). This feature is valuable when computationally-intensive
NMPC formulations fail, in the course of the online optimization, to provide
an acceptable solution in a reasonable time. In this case, switching to the
bounded controller allows us to safely abort the optimization without loss of
stability.

Remark 6.9. One of the important issues in the practical implementation of
finite–horizon MPC is the selection of the horizon length. It is well known
that this selection can have a profound effect on nominal closed–loop stability
as well as the size and complexity of the optimization problem. For NMPC,
however, a priori knowledge of the shortest horizon length that guarantees
closed–loop stability, from a given set of initial conditions (alternatively, the
set of feasible initial conditions for a given horizon length) is not available.
Therefore, in practice the horizon length is typically chosen using ad hoc selec-
tion criteria, tested through extensive closed–loop simulations, and varied, if
necessary, to achieve stability. In the switching scheme of Theorem 6.2, closed–
loop stability is maintained independently of the horizon length. This allows
the predictive control designer to choose the horizon length solely on the basis
of what is computationally practical for the size of the optimization problem,
and without increasing, unnecessarily, the horizon length (and consequently
the computational load) out of concern for stability. Furthermore, even if a
conservative estimate of the necessary horizon length were to be ascertained
for a small set of initial conditions before MPC implementation (say through
extensive closed–loop simulations and testing), then if some disturbance were
to drive the state outside of this set during the on-line implementation of
MPC, this estimate may not be sufficient to stabilize the closed–loop sys-
tem from the new state. Clearly, in this case, running extensive closed–loop
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simulations on-line to try to find the new horizon length needed is not a fea-
sible option, considering the computational difficulties of NMPC as well as
the significant delays that would be introduced until (and if) the new horizon
could be determined. In contrast to the on-line re-tuning of MPC, stability
can be preserved by switching to the fall–back controllers (provided that the
disturbed state still lies within Ω).

Remark 6.10. When compared with other MPC-based approaches, the pro-
posed hybrid control scheme is conceptually aligned with Lyapunov-based
approaches in the sense that it, too, employs a Lyapunov stability condition
to guarantee asymptotic closed–loop stability. However, this condition is en-
forced at the supervisory level, via continuous monitoring of the temporal
evolution of Vk and explicitly switching between two controllers, rather than
being incorporated in the optimization problem, as is customarily done in
Lyapunov-based MPC approaches, whether as a terminal inequality constraint
(e.g., contractive MPC [220, 155], CLF-based RHC for unconstrained nonlin-
ear systems [221]) or through a CLF-based terminal penalty (e.g., [262, 264]).
The methods proposed in these works do not provide an explicit character-
ization of the set of states starting from where feasibility and/or stability is
guaranteed a priori. Furthermore, the idea of switching to a fall–back con-
troller with a well-characterized stability region, in the event that the MPC
controller does not yield a feasible solution, is not considered in these ap-
proaches.

Enhancing closed–loop performance

The switching rule in Theorem 6.2 requires monitoring only one of the CLFs
(any one for which x0 ∈ Ωk) and does not permit any transient increase in
this CLF under MPC (by switching immediately to the appropriate bounded
controller). While this condition is sufficient to guarantee closed–loop stability,
it does not take full advantage of the behavior of other CLFs at the switching
time. For example, even though a given CLF, say V1, may start increasing
at time T̄ under MPC, another CLF, say V2, (for which x(T̄ ) lies inside the
corresponding stability region) may still be decreasing (see Figure 6.2). In this
case, it would be desirable to keep MPC in the closed–loop (rather than switch
to the bounded controller) and start monitoring the growth of V2 instead of
V1, because if V2 continues to decay, then MPC can be kept active for all times
and its performance fully recovered. To allow for such flexibility, we extend
in the remainder of this section the switching strategy of Theorem 6.2 by
relaxing the switching rule. This is formalized in the following theorem whose
proof is given in the Appendix D.

Theorem 6.11. Consider the constrained nonlinear system of Eq.6.12, with
any initial condition x(0) := x0 ∈ Ω(umax), where Ω(umax) was defined in
Eq.6.7, under the model predictive controller of Eqs.6.8-6.11. Let Tk ≥ 0 be
the earliest time for which:
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Fig. 6.2. Schematic representation illustrating the main idea of the controller
switching scheme proposed in Theorems 6.2 and 6.11.

Vk(x(Tk))) ≤ cmax
k

LfVk(x(Tk)) + LgVk(x(Tk))M(x(Tk)) ≥ 0, k ∈ K
(6.15)

and define:

T ∗k (t) =





Tk, 0 ≤ t ≤ Tk

0, t > Tk



 (6.16)

Then, the switching rule given by:

i(t) =





1, 0 ≤ t < T ∗

2, t ≥ T ∗



 (6.17)

where T ∗ = min{T i, T f}, T i ≥ 0 is the earliest time for which the MPC
algorithm fails to prescribe any control move, and T f = max

j
{T ∗j } for all j

such that x(t) ∈ Ωj(umax), guarantees that the origin of the switched closed–
loop system is asymptotically stable.

Remark 6.12. The implementation of the switching scheme proposed in The-
orem 6.11 can be understood as follows:

• Initialize the closed–loop system using MPC at any initial condition, x0,
within Ω, and start monitoring the growth of all the Lyapunov functions
whose corresponding stability regions contain the state.
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• The supervisor disregards (i.e., permanently stops monitoring) any CLF
whose value ceases to decay (i.e., any CLF for which the condition of
Eq.6.15 holds) by setting the corresponding T ∗k (t) to zero for all future
times.

• As the closed–loop trajectory continues to evolve, the supervisor includes
in the pool of Lyapunov functions it monitors any CLF for which the state
enters the corresponding stability region, provided that this CLF has not
been discarded at some earlier time.

• Continue implementing MPC as long as at least one of the CLFs being
monitored is decreasing and the MPC algorithm yields a solution.

• If at any time, there is no active CLF (this corresponds to T f ), or if the
MPC algorithm fails to prescribe any control move (this corresponds to
T i), switch to the bounded controller whose stability region contains the
state at this time, else the MPC controller stays in the closed–loop system.

Remark 6.13. The purpose of permanently disregarding a given CLF, once its
value begins to increase, is to avoid (or “break”) a potential perpetual cycle
in which the value of such a CLF increases (at times when other CLFs are
decreasing) and then decreases (at times when other CLFs are increasing) and
keeps repeating this pattern without decaying to zero. The inclusion of such
a CLF among the pool of active CLFs used to decide whether MPC should
be kept active, would result in MPC staying in the closed–loop indefinitely,
but without actually converging to the origin (i.e., only boundedness of the
closed–loop state can be established but not asymptotic stability). Instead of
disregarding, for all future times, a CLF that begins to increase at some point,
however, an alternative strategy is to consider such a CLF in the supervisory
decision-making only if its value, at the current state, falls below the value
from which it began to increase. This idea is similar to the one used in the sta-
bility analysis of switched systems using multiple Lyapunov functions (MLFs)
(see Chapter 7 for further details on this issue). The greater CLF-monitoring
flexibility resulting from this policy can increase the likelihood of MPC im-
plementation and enhance closed–loop performance, while still guaranteeing
asymptotic stability.

Remark 6.14. The switching schemes proposed in Theorems 6.2 and 6.11 can
be further generalized to allow for multiple switchings between MPC and the
bounded controllers. For example, if a given MPC is initially found infeasible
(due, for example, to some terminal equality constraints), the bounded con-
troller can be activated initially, but need not stay in the closed–loop system
for all future times. Instead, it could be employed only until it brings the
closed–loop trajectory to a point where MPC becomes feasible, at which time
MPC can take over (see Section 6.2.3 for illustrations of this scenario). This
scheme offers the possibility of further enhancement in the closed–loop per-
formance by implementing MPC for all the times that it is feasible (instead
of using the bounded controller). If MPC runs into any feasibility or stability
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problems, then the bounded controller can be re-activated. Chattering prob-
lems, due to back and forth switching, are avoided by allowing only a finite
number of switches over any finite time-interval.

Remark 6.15. Note that the implementation of the switching schemes pro-
posed in Theorems 6.2 and 6.11 can be easily adapted to the case when ac-
tuator dynamics are not negligible and, consequently, a sudden change in
the control action (resulting from switching between controllers) may not be
achieved instantaneously. A new estimate of the stability region under the
bounded controllers can be generated by sufficiently “stepping back” from
the boundary of the original stability region estimate, in order to prevent the
escape of the closed–loop trajectory as a result of the implementation of possi-
bly incorrect control action for some time (due to the delay introduced by the
actuator dynamics). The switching schemes can then be applied as described
in Theorems 6.2 and 6.11, using the revised estimate of the stability region
for the family of bounded controllers.

Remark 6.16. When the proposed hybrid control schemes are applied to a
process on-line, state measurements are typically available only at discrete
sampling instants (and not continuously). In this case, the restricted access
that the supervisor has to the state evolution between sampling times can lead
to the possibility that the closed–loop state trajectory under MPC may leave
the stability region without being detected, particularly if the initial condition
is close to the boundary of the stability region and/or the sampling period is
too large. In such an event, switching to the bounded controller at the next
sampling time may be too late to recover from the instability of MPC. To
guard against this possibility, the switching rules in Theorems 6.2 and 6.11
can be modified by restricting the implementation of MPC within a subset of
the stability region, computed such that, starting from this subset, the system
trajectory is guaranteed to remain within the stability region after one sam-
pling period. Explicit estimates of this subset, which is parameterized by the
sampling period, can be readily obtained off-line by computing (or estimating)
the time-derivative of the Lyapunov function under the maximum allowable
control action and then integrating both sides of the resulting inequality over
one sampling period. Note that this computation of a “worst-case” estimate
does not require knowledge of the solution of the closed–loop system.

Remark 6.17. The hybrid predictive control schemes proposed in this chapter
can be extended to deal with the case when both input and state constraints
are present. In one possible extension, state constraints would be incorporated
directly as part of the constrained optimization problem that yields the model
predictive control law. In addition, estimates of the stability regions for the
bounded controllers would be obtained by intersecting the region described
by Eq.6.5 with the region described by the state constraints, and computing
the largest invariant subset within the intersection. Using these estimates
(which now account for both input and state constraints), implementation of
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the switching schemes can proceed following the same logic outlined for each
case.

6.2.3 Applications to chemical process examples

In this section, we present two simulation studies of chemical process examples
to demonstrate the implementation of the proposed hybrid predictive control
structure and evaluate its effectiveness.

Application to a chemical reactor example

We consider a continuous stirred tank reactor where an irreversible, first-order
exothermic reaction of the form A

k→ B takes place. The inlet stream consists
of pure A at flow rate F , concentration CA0 and temperature TA0. Under
standard modeling assumptions, the mathematical model for the process takes
the form:

dCA

dt
=

F

V
(CA0 − CA)− k0 exp

( −E

RTR

)
CA

dTR

dt
=

F

V
(TA0 − TR) +

(−∆H)
ρcp

k0 exp
( −E

RTR

)
CA +

UA

ρcpV
(Tc − TR)

(6.18)
where CA denotes the concentration of the species A, TR denotes the temper-
ature of the reactor, Tc is the temperature of the coolant in the surrounding
jacket, U is the heat–transfer coefficient, A is the jacket area, V is the volume
of the reactor, k0, E, ∆H are the pre-exponential constant, the activation
energy, and the enthalpy of the reaction, cp and ρ, are the heat capacity
and fluid density in the reactor. The values of all process parameters can be
found in Table 6.1. At the nominal operating condition of Tnom

c = 302 K,
the system has three equilibrium points, one of which is unstable. The con-
trol objective is to stabilize the reactor at the unstable equilibrium point
(Cs

A, T s
R) = (0.52, 398.9) using the coolant temperature, Tc, as the manipu-

lated input with constraints: 275 K ≤ Tc ≤ 370 K.
Defining x = [x1 x2]′ = [(CA − Cs

A) (TR − T s
R)]′ and u = Tc − Tnom

c , the
process model of Eq.6.18 can be written in the form of Eq.6.1. Defining an
auxiliary output, y = h(x) = x1 (for the purpose of designing the controller),
and using the invertible coordinate transformation: ξ = [ξ1 ξ2]′ = T (x) =
[x1 f1(x)]′, where f1(x) = ẋ1, the system of Eq.6.18 can be transformed into
the following partially linear form:

ξ̇ = Aξ + bl(ξ) + bα(ξ)u (6.19)

where A =
[

0 1
0 0

]
, b = [0 1]′, l(ξ) = L2

fh(T−1(ξ)) is the second-order

Lie derivative of h(·) along the vector field f(·), α(ξ) = LgLfh(T−1(ξ)) is
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Table 6.1. Process parameters and steady–state values for the reactor of Eq.6.18.

V = 100.0 L
E/R = 8000 K
CA0 = 1.0 mol/L
TA0 = 400.0 K
∆H = −2.0× 105 J/mol
k0 = 4.71× 108 min−1

cp = 1.0 J/g.K
ρ = 1000.0 g/L
UA = 1.0× 105 J/min.K
F = 100.0 L/min
Cs

A = 0.52 mol/L
T s

R = 398.97 K
T nom

c = 302 K

the mixed order Lie derivative. The system of Eq.6.19 will be used to design
the bounded controllers and compute their estimated regions of stability. A
common choice of CLFs for this system is quadratic functions of the form,
Vk = ξ′Pkξ, where the positive–definite matrix Pk is chosen to satisfy the
Riccati matrix inequality: A′Pk + PkA−Pkbb′Pk < 0. The following matrices

P1 =
[

1.45 1.0
1.0 1.45

]
, P2 =

[
0.55 0.1
0.1 0.55

]
, P3 =

[
8.02 3.16
3.16 2.53

]
(6.20)

were used to construct a family of three CLFs and three bounded con-
trollers, and compute their stability region estimates, Ωk, k = 1, 2, 3, in the
ξ-coordinate system. The corresponding stability regions in the (CA, TR) co-
ordinate system are then computed using the transformation ξ = T (x) defined
earlier. The union of these regions, Ω′, is shown in Figure 6.3.

For the design of the predictive controller, a linear MPC formulation (based
on the linearization of the process model around the unstable equilibrium
point) with terminal equality constraints, x(t + T ) = 0, is chosen for the sake
of illustration (other MPC formulations that use terminal penalties, instead
of terminal equality constraints, could also be used). The parameters in the
objective function of Eq.6.10 are chosen as Q = qI, with q = 1, R = rI,
with r = 1.0, and F = 0. We also choose a horizon length of T = 0.25 in
implementing the MPC controller. The resulting quadratic program is solved
using the MATLAB subroutine QuadProg, and the set of nonlinear ODEs is
integrated using the MATLAB solver ODE45.

As shown by the solid trajectory in Figure 6.3, starting from the initial
condition [CA(0) TR(0)]′ = [0.46 407.0]′, MPC using a horizon length of
T = 0.25 yields a feasible solution, and when implemented in the closed–
loop, stabilizes the nonlinear closed–loop system. The corresponding state
and input profiles are shown in Figures 6.4(a)-(c). Starting from the initial
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condition [CA(0) TR(0)]′ = [0.45 385.0]′ (dashed lines in Figures 6.3-6.4),
however, the linear MPC controller is infeasible. Recognizing that the initial
condition is within the stability region estimate, Ω′

3, the supervisor imple-
ments the third bounded controller, while continuously checking feasibility of
MPC. At t = 0.4, the predictive controller becomes feasible and, therefore,
the supervisor switches to MPC and keeps monitoring the evolution of V3. In
this case, the value of V3 keeps decreasing and MPC stays in the closed–loop
for all future times, thus asymptotically stabilizing the nonlinear plant. Note
that, from the same initial condition, if the horizon length in the MPC is
increased to T = 0.5, MPC yields a feasible solution and, when implemented,
asymptotically stabilizes the closed–loop system (dotted lines in Figures 6.3-
6.4). However, the initial feasibility, based on the linearized model, does not
necessarily imply that the predictive controller will be stabilizing, or for that
matter even feasible at future times. Furthermore, this value of the horizon
length (which yields a feasible solution) could not be determined a priori
(without actually solving the optimization problem with the given initial con-
dition), and stability of the closed–loop could not be ascertained, a priori,
without running the closed–loop simulation in its entirety.
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Ω’ 

Fig. 6.3. Implementation of the proposed hybrid control structure: Closed–loop
state trajectory under MPC with T = 0.25 (solid trajectory), under the switched
MPC/bounded controller(3) with T = 0.25 (dashed trajectory), under MPC with
T = 0.5 (dotted trajectory), and under the switched bounded controller(2)/MPC
with T = 0.5 (dash-dotted line).
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While our particular choice of implementing linear MPC (using the lin-
earized model) facilitates implementation by making the optimization problem
more easily solvable, the stabilizability of a given initial condition is limited,
not only by the possibility of insufficient horizon length, but also by the lin-
earization procedure itself. To demonstrate this, we consider an initial con-
dition, [CA(0) TR(0)]′ = [0.028 484.0]′, belonging to the stability region
Ω′, (dash-dotted lines in Figures 6.3-6.4). For this initial condition, linear
MPC is found infeasible, no matter how large T is chosen to be, suggesting
that this initial condition is outside the feasibility region based on the linear
model. Therefore, using the Lyapunov function, V2, (since the initial condi-
tion belongs to Ω′

2), the supervisor activates the second bounded controller
which brings the state trajectory closer to the desired equilibrium point, while
continuously checking feasibility of linear MPC. At t = 1.925, the predictive
controller with T = 0.5 is found to be feasible and is, therefore, employed in
the closed–loop system to asymptotically stabilize the closed–loop system.

To demonstrate some of the performance benefits of using the more flex-
ible switching rules in Theorem 6.11, we consider the same control prob-
lem, described above, with relaxed constraints on the manipulated input:
250 K ≤ Tc ≤ 500 K. Using these constraints, a new set of four bounded
controllers are designed using a family of four CLFs of the form Vk = ξ′Pkξ,
k = 1, 2, 3, 4, where:

P1 =
[

1.03 0.32
0.32 3.26

]
, P2 =

[
0.4 0.32
0.32 1.28

]
, P3 =

[
1.45 1.0
1.0 1.45

]
, P4 =

[
4.78 2.24
2.24 2.14

]

(6.21)
The stability region estimates of the controllers, Ωk, k = 1, 2, 3, 4, are

depicted in Figure 6.5. The relaxed input constraints are also incorporated
in the design of the predictive controller, using the same MPC formulation
employed in the preceding simulations. Starting from the initial condition
[CA(0) TR(0)]′ = [0.75 361.0]′ (Figures 6.6(a)-(c)), the predictive controller,
with T = 0.1, does not yield a feasible solution and, therefore, the supervisor
implements the first bounded controller, using V1, instead. At t = 0.95, how-
ever, MPC yields a feasible solution and, therefore, the supervisor switches to
MPC. Even though V̇1 > 0 at this time, recognizing the fact that the state
at this time ([0.84 363.3]′, denoted by 4 in Figure 6.5) belongs to Ω′

2 and
that V̇2 < 0, the supervisor continues to implement MPC while monitoring
V̇2 (instead of V1). At t = 1.1, the supervisor detects that V̇2 > 0. However,
the state at this time ([0.84 378.0]′, denoted by ♦ in Figure 6.5) is within
Ω′

3 where V̇3 < 0. Therefore, the supervisor continues the implementation of
MPC while monitoring V3. From this point onwards, V3 continues to decay
monotonically and MPC is implemented in the closed–loop system for all fu-
ture times to achieve asymptotic stability. Note that the switching scheme
of Theorem 6.2 would have dictated a switch back to the first bounded con-
troller at t = 0.95 and would not have allowed for MPC to be implemented in
closed–loop, leading to a total cost of J = 1.81×106 for the objective function
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Fig. 6.4. Closed-loop reactant concentration profile (a), reactor temperature profile
(b) and coolant temperature profile (c) under MPC with T = 0.25 (solid trajectory),
under the switched MPC/bounded controller(3) with T = 0.25 (dashed trajectory),
under MPC with T = 0.5 (dotted trajectory), and under the switched bounded
controller(2)/MPC with T = 0.5 (dash-dotted line).
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Fig. 6.5. Closed-loop state trajectory under the switching rules of Theorem 6.11
with T = 0.1 for MPC.

of Eq.6.10. The switching rules in Theorem 6.11, on the other hand, allow the
implementation of MPC for all the times that it is feasible, leading to a lower
total cost of J = 1.64×105, while guaranteeing, at the same time, closed–loop
stability.

Application to a continuous crystallizer example

We consider a continuous crystallizer described by a fifth-order moment model
of the following form:

ẋ0 = −x0 + (1− x3)Da exp
(−F

y2

)

ẋ1 = −x1 + yx0

ẋ2 = −x2 + yx1

ẋ3 = −x3 + yx2

ẏ =
1− y − (α− y)yx2

1− x3
+

u

1− x3

(6.22)

where xi, i = 0, 1, 2, 3, are dimensionless moments of the crystal size distribu-
tion, y is a dimensionless concentration of the solute in the crystallizer, and u
is a dimensionless concentration of the solute in the feed (the reader may refer
to [47, 76, 51] for a detailed process description, population balance modeling
of the crystal size distribution and derivation of the reduced-order moments
model, and to [55, 24, 16, 75, 84] for further results on model reduction of dis-
sipative partial differential equation systems). The values of the dimensionless
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Fig. 6.6. Closed-loop reactant concentration profile (a), reactor temperature profile
(b) and coolant temperature profile (c) under the switching scheme of Theorem 6.11
with T = 0.1 for MPC.
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process parameters are chosen to be: F = 3.0, α = 40.0 and Da = 200.0. For
these values, and at the nominal operating condition of unom = 0, the above
system has an unstable equilibrium point, surrounded by a stable limit cycle.
The control objective is to stabilize the system at the unstable equilibrium
point, xs = [xs

o xs
1 xs

2 xs
3 ys]′ = [0.0471, 0.0283, 0.0169, 0.0102, 0.5996]′,

where the superscript s denotes the desired steady–state, by manipulating
the dimensionless solute feed concentration, u, subject to the constraints:
−1 ≤ u ≤ 1.

To facilitate the design of the bounded controller, we initially transform
the system of Eq.6.22 into the normal form. To this end, we define the
auxiliary output variable, ȳ = h(x) = x0, and introduce the invertible co-
ordinate transformation: [ξ′ η′]′ = T (x) = [x0 f1(x) x1 x2 x3]′, where
ξ = [ξ1 ξ2]′ = [x0 f1(x)]′, ȳ = ξ1, f1(x) = −x0 + (1 − x3)Da exp(−F/y2),
and η = [η1 η2 η3]′ = [x1 x2 x3]′. The state-space description of the system in
the transformed coordinates takes the form:

ξ̇ = Aξ + bl(ξ, η) + bα(ξ, η)u

η̇ = Ψ(η, ξ)
(6.23)

where A =
[

0 1
0 0

]
, b = [0 1]′, l(ξ, η) = L2

fh(T−1(ξ, η)) is the second-

order Lie derivative of the scalar function, h(·), along the vector field f(·),
and α(ξ, η) = LgLfh(T−1(ξ, η)) is the mixed Lie derivative. The forms of f(·)
and g(·) can be obtained by re-writing the system of Eq.6.22 in the form of
Eq.6.1, and are omitted for brevity.

The partially-linear ξ-subsystem in Eq.6.23 is used to design a bounded
controller that stabilizes the full interconnected system of Eq.6.23 and, conse-
quently, the original system of Eq.6.22. For this purpose, a quadratic function
of the form, Vξ = ξ′Pξ, is used as a CLF in the controller synthesis formula of
Eq.6.3, where the positive–definite matrix, P , is chosen to satisfy the Riccati
matrix equality: A′P + PA−Pbb′P = −Q where Q is a positive–definite ma-
trix. An estimate of the region of constrained closed–loop stability for the full
system is obtained by defining a composite Lyapunov function of the form
Vc = Vξ + Vη, where Vη = η′Pηη and Pη is a positive–definite matrix, and
choosing a level set of Vc, Ωc, for which V̇c < 0 for all x in Ωc. The two-
dimensional projections of the stability region are shown in Figure 6.7 for all
possible combinations of the system states.

In designing the predictive controller, a linear MPC formulation, with a
terminal equality constraint of the form x(t + T ) = 0, is chosen (based on the
linearization of the process model of Eq.6.22 around the unstable equilibrium
point). The parameters in the objective function of Eq.6.10 are taken to be:
Q = qI, with q = 1, R = rI, with r = 1.0, and F = 0. We also choose
a horizon length of T = 0.5 in implementing the predictive controller. The
resulting quadratic program is solved using the MATLAB subroutine Quad-
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Fig. 6.7. Implementation of the proposed hybrid control structure to a continuous
crystallizer: two-dimensional projections of the stability region for the 10 distinct
combinations of the process states.
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Prog, and the nonlinear closed–loop system is integrated using the MATLAB
solver ODE45.
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Fig. 6.8. Closed-loop profiles of the dimensionless crystallizer moments (a)-(d),
the solute concentration in the crystallizer (e) and the manipulated input (f) under
MPC with stability constraints (solid line), under MPC without terminal constraints
(dashed line), and using the switching scheme of Theorem 6.2 (dotted line).
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In the first set of simulation runs, we test the ability of the predictive
controller to stabilize the closed–loop system starting from the initial con-
dition, x(0) = [0.046 0.0277 0.0166 0.01 0.58]′. The result is shown by
the solid lines in Figure 6.8(a)–(e) where it is seen that the predictive con-
troller, with a horizon length of T = 0.5, is able to stabilize the closed–loop
system at the desired equilibrium point. Starting from the initial condition
x(0) = [0.032 0.035 0.010 0.009 0.58]′, however, the predictive controller
yields no feasible solution. If the terminal equality constraint is removed, to
make MPC yield a feasible solution, we see from the dashed lines in Figure
6.8(a)–(e) that the resulting control action cannot stabilize the closed–loop
system and sends the system states into a limit cycle. On the other hand, when
the switching scheme of Theorem 6.2 is employed, the supervisor immediately
switches to the bounded controller which in turn stabilizes the closed–loop
system at the desired equilibrium point. This is depicted by the dotted lines
in Figure 6.8(a)–(e)). The manipulated input profiles for the three scenarios
are shown in Figure 6.8(f). Finally, we note that the hybrid predictive con-
troller designed here has also been implemented successfully on the population
balance model of the crystallizer (see [246]).

6.3 Robust hybrid predictive control of nonlinear
systems

In the previous section, a hybrid predictive control strategy was developed
for nonlinear systems with no uncertainty. In the presence of uncertainty,
however, the nominal controllers (designed without taking the uncertainty
into account) may not be stabilizing as the uncertainty fundamentally alters
the nominal stability region of the closed-loop system. Furthermore, simply
replacing the fall–back controller by an appropriate robust controller and im-
plementing the same switching logics proposed in the previous section may
lead to a switching scheme that is too conservative, resulting in the implemen-
tation of the fall–back controller for almost all times and severely restricting
the chances of MPC implementation. Motivated by these considerations, we
consider in this section nonlinear systems with input constraints and uncer-
tain variables, and develop a robust hybrid predictive control structure that
provides a safety net for the implementation of any available MPC formula-
tion, designed with or without taking uncertainty into account. The key idea
is to use a Lyapunov–based robust controller, for which an explicit character-
ization of the closed–loop robust stability region can be obtained, to provide
a stability region within which MPC can be implemented. This is achieved by
devising a set of switching laws that orchestrate switching between MPC and
the bounded robust controller in a way that exploits the performance of MPC
whenever possible, while using the bounded robust controller as a fall–back
mechanism that can be switched in to preserve robust closed–loop stability
in the event that MPC fails to prescribe a control move (due, for example,
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to computational problems or infeasibility) or leads to instability (due, for
example, to inappropriate penalties and/or horizon length in the objective
function).

The rest of this section is organized as follows. In Section 6.3.1, some
mathematical preliminaries are presented to describe the class of uncertain
nonlinear systems under consideration and briefly review how the robust con-
strained control problem is addressed within the bounded control and MPC
frameworks. In Section 6.3.2, the controller switching problem is formulated,
and two representative switching schemes, that address robust stability and
performance objectives, are described. Finally in Section 6.3.3, the imple-
mentation and efficacy of the robust hybrid predictive control structure are
demonstrated through simulations using a chemical reactor example.

6.3.1 Preliminaries

We consider nonlinear systems with uncertain variables and input constraints,
with the following state–space description:

ẋ = f(x) + G(x)u(t) + W (x)θ(t)

u(t) ∈ U
(6.24)

where x ∈ IRn denotes the vector of state variables, u(t) = [u1(t) · · ·um(t)]′

denotes the vector of constrained manipulated inputs, taking values in a
nonempty convex subset U of IRm, where U = {u ∈ IRm : ‖u‖ ≤ umax}, ‖ · ‖
is the Euclidean norm of a vector, umax ≥ 0 is the magnitude of input con-
straints, and θ(t) = [θ1(t) · · · θq(t)]′ ∈ Θ ⊂ IRq denotes the vector of uncertain
(possibly time–varying) but bounded variables taking values in a nonempty
compact convex subset of IRq. The vector of uncertain variables, θ(t), may de-
scribe time–varying parametric uncertainty and/or exogenous disturbances.
It is assumed that the origin is the equilibrium point of the nominal (i.e.,
u(t) = θ(t) ≡ 0) system of Eq.6.24. The vector function, f(x), the matrices,
G(x) = [g1(x) · · · gm(x)] and W (x) = [w1(x) · · ·wq(x)], where gi(x) ∈ IRn,
i = 1 · · ·m, and wi(x) ∈ IRn, i = 1 · · · q, are assumed to be sufficiently smooth
on their domains of definition.

In order to provide the necessary background for the main results in Sec-
tion 6.3.2, we will briefly review in the remainder of this section the design
procedure and the stability properties of a Lyapunov–based bounded robust
controller and a model predictive controller, which together constitute the two
components of the robusy hybrid predictive control structure. For simplicity,
we will focus only on the state feedback control problem where measurements
of the entire state, x(t), are assumed to be available for all t.

Bounded robust Lyapunov–based control

Consider the nonlinear system of Eq.6.24, where the uncertain variables,
W (x)θ, are assumed to be non–vanishing (in the sense that the uncertainty
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changes the nominal equilibrium point) and a robust control Lyapunov func-
tion (RCLF) [97], V , exists. Due to the non–vanishing nature of the uncer-
tainty, asymptotic convergence to the origin cannot be achieved via continuous
feedback. However, the states of the closed–loop system can be steered, in fi-
nite time, to an arbitrarily small (invariant) neighborhood of the origin by
appropriate choice of the controller (practical stability). In order to enforce
boundedness of the closed–loop trajectories and achieve an arbitrary degree of
attenuation of the effect of the uncertain variables on the states, the existence
of known (not necessarily small) bounds that capture the size of the uncertain
variables for all times is assumed.

Using the RCLF, V , the following bounded robust state feedback control
law can be designed (see Chapter 4 for details on similar controller designs):

u = −k(x, θb, umax) (LGV )′ (6.25)

k(·) =





L∗fV +

√(
L∗∗f V

)2

+ (umax‖(LGV )′‖)4

‖(LGV )′‖2
[
1 +

√
1 + (umax‖(LGV )′‖)2

] , ‖(LGV )′‖ 6= 0

0 , ‖(LGV )′‖ = 0




(6.26)

L∗fV = LfV + (ρ‖x‖+ χθb‖LW V ‖)
( ‖x‖
‖x‖+ φ

)

L∗∗f V = LfV + ρ‖x‖+ χθb‖LW V ‖
(6.27)

where LGV = [Lg1V · · · LgmV ] is a row vector, θb is a positive real number
such that ‖θ(t)‖ ≤ θb, for all t ≥ 0, and ρ, χ and φ are adjustable parameters
that satisfy ρ > 0, χ > 1 and φ > 0. Let Π be the set defined by:

Π(θb, umax) = {x ∈ IRn : L∗∗f V ≤ umax‖(LGV )′‖} (6.28)

and assume that the origin is contained in the interior of Π. Also, let Ω be a
subset of Π, defined by:

Ω = {x ∈ IRn : V (x) ≤ cmax} (6.29)

Then, given any positive real number, d, such that:

ID := {x ∈ IRn : ‖x‖ ≤ d} ⊂ Ω (6.30)

and for any initial condition, x0 ∈ Ω, it can be shown that there exists a
positive real number, ε∗, such that if φ/(χ− 1) < ε∗, the states of the closed–
loop system satisfy x(t) ∈ Ω ∀ t ≥ 0 and lim sup

t→∞
‖x(t)‖ ≤ d (see Appendix B

for an analogous proof).
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Remark 6.18. Referring to the above controller design, it is important to
make the following remarks. First, a general procedure for the construction of
RCLFs for nonlinear systems of the form of Eq.6.24 is currently not available.
Yet, for several classes of nonlinear systems that arise commonly in the mod-
eling of engineering applications, it is possible to exploit system structure to
construct RCLFs. For example, for feedback linearizable systems, quadratic
Lyapunov functions can be chosen as candidate RCLFs and can be made
RCLFs with appropriate choice of the function parameters based on the pro-
cess parameters (see, for example, [97]). Also, for nonlinear systems in strict
feedback form, backstepping techniques can be employed for the construction
of RCLFs [164]. Second, given that an RCLF, V , has been obtained for the
system of Eq.6.24, it is important to clarify the essence and scope of the ad-
ditional assumption that there exists a level set, Ω, of V that is contained in
Π. Specifically, the assumption that the set, Π, contains an invariant subset
around the origin, is necessary to guarantee the existence of a set of initial
conditions for which closed-loop stability is guaranteed (note that even though
V̇ < 0 for all x ∈ Π \ID, there is no guarantee that trajectories starting within
Π will remain within Π for all times). Moreover, the assumption that Ω is a
level set of V is made only to simplify the construction of Ω. This assumption
restricts the applicability of the proposed control method because a direct
method for the construction of an RCLF with level sets contained in Π is not
available. However, the proposed control method remains applicable if the in-
variant set, Ω, is not a level set of V but can be constructed in some other
way (which is a difficult task in general).

Remark 6.19. Regarding the choice of the above controller design, we note
that the problem of designing control laws that guarantee stability in the
presence of input constraints has been extensively studied (see, for example,
[177, 265, 176, 78, 81]). The bounded robust controller design of Eqs.6.25–6.27
(proposed in [82] and inspired by the results on bounded control in [177] for
systems without uncertainty) is an example of a controller design that (1)
guarantees robust stability in the presence of constraints, and (2) allows for
an explicit characterization of the closed-loop stability region, which are the
essential features that make a given controller a suitable fall–back component
in the robust hybrid predictive control structure (to be proposed in Section
6.3.2). The results of this section are not limited to this particular choice of
controllers, and any other robust controller that satisfies the aforementioned
properties, (1) and (2), can be used. Finally, note that when the uncertain
variables in Eq.6.24 are vanishing (in the sense that the uncertainty does not
change the nominal equilibrium point), then starting from any initial state
within Ω, the bounded robust controller of Eqs.6.25–6.27 enforces asymptotic
closed–loop stability.
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Model Predictive Control

For the purpose of illustrating the main results, we describe here a symbolic
MPC formulation that incorporates most existing MPC formulations as spe-
cial cases. This is not a new formulation of MPC; the general description is
only intended for the purpose of highlighting the fact that the robust hybrid
predictive control structure (to be proposed in the next section) can incorpo-
rate any available MPC formulation. In MPC, the control action at time t is
conventionally obtained by solving, on–line, a finite horizon optimal control
problem. The generic form of the optimization problem can be described as:

Js(x, t, u(·)) =
∫ t+T

t

(x′(s)Qx(s) + u′(s)Ru(s))ds + F (x(t + T )) (6.31)

u(·) = argmin{max{Js(x, t, u(·))|θ(·) ∈ Θ}|u(·) ∈ S} := Ms(x)

s.t. ẋ(t) = f(x(t)) + G(x(t))u(t) + W (x(t))θ(t), x(0) = x0

x(t + T ) ∈ ΩMPC(x, t, θ)
(6.32)

where S = S(t, T ) is the family of piecewise continuous functions, with period
∆, mapping [t, t + T ] into the set of admissible controls, T is the horizon
length and θ is the bounded uncertainty assumed to belong to a set Θ. A
control u(·) in S is characterized by the sequence {u[k]} where u[k] := u(k∆)
and satisfies u(t) = u[k] for all t ∈ [k∆, (k + 1)∆). Js is the performance
index, R and Q are strictly positive-definite, symmetric matrices and the
function F (x(t + T )) represents a penalty on the states at the end of the
horizon. The maximization over θ may not be carried out if the MPC version
used is not a min-max type formulation. The set ΩMPC(x, t, θ) could be a
fixed, terminal set or may represent inequality constraints (as in the case
of MPC formulations that require some norm of the state, or a Lyapunov
function for the system, to decrease at the end of the horizon). This stability
constraint may or may not account for uncertainty. The stability guarantees
in MPC formulations (with or without explicit stability conditions, and with
or without robustness considerations, and whether or not it is a min-max type
formulation) are dependent on the assumption of initial feasibility. Obtaining
an explicit characterization of the closed–loop stability region of the predictive
controller under uncertainty and constraints remains a difficult task.

6.3.2 Robust hybrid predictive controller design

Consider the nonlinear system of Eq.6.24 with input constraints, ‖u‖ ≤ umax,
and bounded non–vanishing uncertainty, ‖θ‖ ≤ θb, for which: (1) a predictive
controller of the form of Eqs.6.31–6.32 and the bounded robust controller of
Eqs.6.25–6.27 have been designed, and (2) the set, Ω, starting from where
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the convergence of the closed–loop states to an arbitrarily small (invariant)
neighborhood of the origin, ID, under the bounded robust controller, is en-
sured, has been computed using Eqs.6.28–6.29. We formulate the controller
switching problem as the one of designing a set of switching laws that or-
chestrate the transition between the predictive controller and the bounded
controller in a way that: (1) enforces boundedness of the closed–loop tra-
jectories with an arbitrary degree of uncertainty attenuation, (2) guarantees
convergence of the closed–loop states, in finite time, to the set ID (practical
stability), starting from any initial condition within Ω, and (3) allows recov-
ering the MPC performance whenever the pertinent stability criteria are met.
For a precise statement of the problem, we first cast the system of Eq.6.24 as
a switched system of the form:

ẋ = f(x) + G(x)ui(t) + W (x)θ(t)

‖ui(t)‖ ≤ umax, i(t) ∈ {1, 2}
(6.33)

where i : [0,∞) → {1, 2} is the switching signal which is assumed to be a
piecewise continuous (from the right) function of time, implying that only
a finite number of switches between the two controllers is allowed on any
finite–time interval. The index, i(t), represents a discrete state that indexes
the control input, u, with the understanding that i(t) = 1 if and only if
ui(x(t)) = Ms(x(t)) (i.e., MPC is used) and i(t) = 2 if and only if ui(x(t)) =
b(x(t)) (i.e., bounded control is used). The value of i(t) is determined by a
higher–level supervisor responsible for executing the transition between the
two controllers. Our goal is to construct a switching law, i(t) = ψ(x(t), t),
that provides the supervisor with the switching times that ensure stabilizing
transitions between the two controllers. A schematic representation of the
proposed hybrid predictive control structure is depicted in Figure 6.9.

In the remainder of this section, two switching schemes are presented.
The first scheme is given in Theorem 6.20 and focuses primarily on the issue
of robust closed–loop stability, while the second scheme, given in Theorem
6.27, provides more flexible switching rules that guarantee robust closed–loop
stability and, in addition, enhance the overall closed–loop performance. The
proofs of both theorems are given in Appendix D.

Robust stability-based controller switching

Theorem 6.20. Consider the switched nonlinear system of Eq.6.33, the model
predictive controller of Eqs.6.31–6.32 and the bounded controller design of
Eqs.6.25–6.27. Let x(0) := x0 ∈ Ω, and initially set Ts = TD = Tinf = ∞. At
the earliest time, t ≥ 0, for which the closed–loop state under MPC satisfies

V (x(t−)) = cmax (6.34)

set Ts = t. At the earliest time for which the closed–loop state under MPC
satisfies ‖x(t)‖ ≤ d where d was defined in Eq.6.30, set TD = t. Finally, at
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Fig. 6.9. A schematic representation of the robust hybrid predictive control struc-
ture.

the earliest time, t, that MPC is infeasible, set Tinf = t. Define Tswitch =
min{Ts, TD, Tdesign, Tinf}, where 0 ≤ Tdesign < ∞ is arbitrary. Then, the
switching rule:

i(t) =





1, 0 ≤ t < Tswitch

2, t ≥ Tswitch



 (6.35)

guarantees that x(t) ∈ Ω, for all t ≥ 0, and that lim sup
t→∞

‖x(t)‖ ≤ d.

Remark 6.21. The design and implementation of the robust hybrid predictive
control scheme can be understood algorithmically as follows:

• Given the nonlinear system of Eq.6.24, the bounds on the uncertain vari-
ables and the constraints on the manipulated inputs, design the bounded
robust controller of Eqs.6.25–6.27, and calculate an estimate of its stability
region, Ω.

• Design (or pick) an MPC formulation (the MPC formulation could be
min–max optimization-based, linear or nonlinear, and with or without
stability constraints). For convenience, we refer to the MPC formulation
of Eqs.6.31–6.32.

• Given any x0 ∈ Ω, check the feasibility of the optimization in Eqs.6.31–6.32
(for a given horizon length, T ) at t = 0, and if feasible, start implementing
MPC (i.e., set u(0) = Ms(x0)).
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• If at any time, MPC becomes infeasible (t = Tinf ), or the states of the
closed–loop system approach the boundary of Ω (t = Ts; see the scenario
starting form x1(0) in Figure 6.10), or the closed–loop states enter the
set ID (t = TD; see the scenario starting form x2(0) in Figure 6.10), then
switch to the bounded controller, else keep MPC active in the closed–loop
system until a time Tdesign (see the scenario starting form x3(0) in Figure
6.10).

• Switch to the bounded robust controller at Ts, TD, Tdesign, or Tinf ,
whichever comes earliest, and implement it in the closed–loop system to
achieve practical closed–loop stability.

2

3

1

designswitchT       =T

b,θT       =Tswitch s

Bounded controller’s

x (0)

 Bounded controller 1

x (0)

V(x)=c

max

max

uΩ(              )

 MPC 

Stability region
x (0)

Fig. 6.10. Examples of the evolution of the closed–loop state trajectory under the
switching scheme of Theorem 6.20. Starting from x1(0), the trajectory under MPC
hits the boundary of the stability region, upon which the bounded controller is
switched in. Starting from x2(0), MPC is able to achieve practical stability. Starting
from x3(0), the trajectory under MPC converges to a limit cycle and, therefore,
after a time Tdesign has elapsed, the bounded controller is switched in to enforce
convergence close to the origin.

Remark 6.22. The stability guarantees in various MPC formulations is con-
tingent upon the assumption of initial feasibility of the optimization problem,
and the set of initial conditions for which the optimization problem is feasi-
ble is not explicitly characterized. By using the bounded robust controller as
a fall–back controller, the switching scheme allows us to safely initialize the
closed–loop system anywhere within Ω using MPC. The use of the fall-back
controller turns Ω into a stability region for the switched closed–loop sys-
tem because the bounded controller can always intervene (through switching)
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to maintain closed–loop stability in case the closed–loop system is infeasi-
ble under MPC or starts to become unstable (due, for example, to using a
computationally simple, nominal MPC that does not take uncertainty into
account).

Remark 6.23. Even though the MPC framework provides a transparent way
of specifying performance objectives, the various MPC formulations found
in the literature may, in general, not be optimal, and only approximate the
infinite horizon optimal cost to varying degrees of success. Within the robust
hybrid predictive control framework, the choice of a particular MPC design
can be made entirely on the basis of the desired tradeoff between performance
and computational complexity because the stability guarantees of the robust
hybrid predictive controller are independent of the specific MPC formulation
being used.

Remark 6.24. The purpose of introducing the design parameter, Tdesign, (which
is the time beyond which only the bounded robust controller is implemented)
is to ensure convergence to ID and avoid possible cases where the closed–loop
states, under MPC, could wander forever inside Ω without actually converging
to, and staying within, ID (see, for example, the scenario starting form x3(0)
in Figure 6.10). Other possible means of ensuring convergence to ID include
switching to the bounded controller when V̇ ≥ 0 under MPC (see, for example,
the switching rules in Chapter 5 and Section 6.2.2). However, in the presence
of uncertainty, if a nominal MPC design is being used, such a condition might
be very restrictive in the sense that it may terminate MPC implementation
too early. For example, it could be that the nominal MPC is able to practi-
cally stabilize the closed–loop system when implemented in the closed–loop
system for all times, yet is unable to maintain negative-definiteness of V for
all times due to the disturbances (see Section 6.3.3 for a demonstration of this
point in the context of a chemical process example). If the switching schemes
in Section 6.2.2 (designed for systems without uncertainty) were to be used,
it would dictate an immediate switch to the bounded controller, thus failing
to exploit the high performance of MPC. The parameter Tdesign, on the other
hand, if chosen large enough, provides ample time for the predictive controller
to be implemented and possibly achieve practical stabilization.

Remark 6.25. Note that, while the result of Theorem 6.20 holds for any ar-
bitrary value of the design parameter, Tdesign, the choice of this parameter
provides a handle for extracting better performance out of the robust hybrid
predictive control structure through the possibility of the extended use of
MPC. To achieve this, the value of Tdesign can be suitably altered, depending
on the specific MPC formulation being used. For example, if a robust MPC
design that guarantees stability for the uncertain nonlinear system is used,
Tdesign can be chosen to be practically infinity. In this case, if MPC is fea-
sible, it could be implemented for practically most of the time to stabilize
the closed–loop system (note that the stability safeguards provided by the
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bounded controller would still be required because the stability of any MPC
formulation, robust or otherwise, are based on the assumption of initial feasi-
bility, which cannot be verified short of running closed-loop simulations). On
the other hand, if a “nominal,” computationally inexpensive formulation of
MPC is used, it is possible that it drives the states close to the origin, but
is unable to enforce convergence to the set ID. In this case, Tdesign could be
chosen in a way such that after MPC has driven the states close to the ori-
gin, the bounded controller is switched in (and MPC switched out) to enforce
convergence to ID and achieve the desired degree of uncertainty attenuation.

Remark 6.26. When the uncertainty is vanishing, the same switching scheme
proposed in Theorem 6.20 can be applied by simply setting d = 0. Recall that,
under vanishing uncertainty, the bounded controller guarantees asymptotic
closed–loop stability for all x(0) ∈ Ω and therefore the set, ID, collapses to
the origin (see [87] for how the switching scheme is designed in the case of
linear systems with vanishing disturbances).

Enhancing closed–loop performance

The switching rule in Theorem 6.20 relies on a single bounded controller for
backup, and uses the stability region estimate generated from a single Lya-
punov function within which it restricts the evolution of the closed–loop state
trajectory under MPC. While this is sufficient to guarantee robust closed–
loop stability, the switching logic may limit the chances of MPC implemen-
tation (and thus limit the resulting closed-loop performance) in cases when
the closed–loop state under MPC might temporarily leave the stability region
of the bounded controller, but eventually converge to ID. Furthermore, the
switching scheme in Theorem 6.20 prescribes only a single switch from MPC
to the bounded controller which is then implemented in the closed–loop for
all future times. By not allowing for multiple switches, the switching scheme
might not be able to take advantage of MPC implementation in cases where
MPC is not stabilizing from one initial condition but is stabilizing from an-
other initial condition. In this section, we present a switching scheme that
relaxes the switching rules of Theorem 6.20 in two directions, in order to take
better advantage of the performance of MPC. In one direction, to expand the
region within which MPC implementation is allowed, we use a combination of
several Lyapunov functions (Vk, k = 1, · · · , l, where l is the number of bounded
controllers), and MPC is allowed to remain in the closed–loop system as long
as the closed–loop state trajectory does not escape the union of the stability

regions (ΩL =
l⋃

k=1

Ωk). In the second direction, to allow for the possibility of

multiple switches between the predictive and bounded controllers, at any time
the closed–loop state trajectory hits the boundary of the union of the stability
regions, the appropriate bounded controller is switched in and implemented
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only until it brings the state within a pre–determined, smaller subregion where
MPC is re–activated once again and confined.

With the availability of l + 1 controllers (l bounded controllers and MPC)
that can be used, we recast the system of Eq.6.24 as a switched system of the
form:

ẋ = f(x) + G(x)ui(t) + W (x)θ(t)

‖ui(t)‖ ≤ umax, i(t) ∈ {1, 2, · · · , l + 1} (6.36)

where i(t) = k if and only if ui(x(t)) = bk(x(t)) (i.e., the k-th bounded
controller is used) and i(t) = l + 1 if and only if ui(x(t)) = Ms(x(t)) (i.e.,
MPC is used). We also define, for the l bounded controllers, and the robust
control Lyapunov functions, Vk, k = 1, · · · , l, 0 < α < 1, cmax

k,j = αjcmax
k ,

Ωj
k = {x ∈ IRn : Vk(x) ≤ cmax

k,j } and Ωj
L =

l⋃

k=1

Ωj
k, for j = 0, · · · , N − 1

where N < ∞ is an integer, and dmax = max
k=1,···,l

{dk}, where dk are arbitrarily

small positive numbers such that IDk = {x ∈ IRn : ‖x‖ ≤ dk} ⊂ ΩN−1
k . The

notation, ∂Ω, will also be used to denote the boundary of a closed set, Ω.
We are now in a position to present the relaxed switching scheme which is

formalized in Theorem 6.27. The proof of this theorem is given in Appendix
D.

Theorem 6.27. Consider the constrained switched nonlinear system of Eq.6.36,
the model predictive controller of Eqs.6.31–6.32 and the l bounded controllers
of the form of Eqs.6.25–6.27, designed using the Lyapunov functions Vk, k =
1, · · · , l. Consider any initial condition, x(0) := x0 ∈ Ω0

L, and initially set
T0 = 0, T1 = T2 = · · · = TN = TD = ∞. At the earliest time, t ≥ 0, for which
the closed–loop state under MPC satisfies:

‖x(t)‖ ≤ dmax (6.37)

set TD = t. At the earliest time, t ≥ 0, under MPC such that:

x(t) ∈ ∂Ωj−1
L , x(t−) ∈ Ωj−1

L and Tj−1 < ∞ (6.38)

for some j ∈ {1, · · · , N}, or MPC is infeasible, set Tj = t. Define Tswitch =
min{TD, TN , Tdesign}, where 0 ≤ Tdesign < ∞ is arbitrary. Then, the switch-
ing rule:

i(t) =





l + 1, 0 ≤ Tj ≤ t ≤ Tj+1 ≤ Tswitch, j = 0, · · · , N − 1 and x ∈ Ωj
L

a, 0 ≤ Tj ≤ t ≤ Tj+1 ≤ Tswitch, j = 0, · · · , N − 1 and x /∈ Ωj
L

f, t ≥ Tswitch





(6.39)
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for some a ∈ {1, · · · , l} for which x(Tj) ∈ Ωj−1
a , and for some f ∈ {1, · · · , l}

for which x(Tswitch) ∈ Ω0
f , guarantees that the state of the switched closed–

loop system is bounded and lim sup
t→∞

‖x(t)‖ ≤ dmax.

Remark 6.28. The implementation of the switching scheme proposed in The-
orem 6.27 can be understood as follows (see also the schematic representation
in Figure 6.11 for an example when l = N = 2):

• For each Lyapunov function, Vk, k = 1, · · · , l: construct a bounded con-
troller using Eqs.6.25-6.27, a set of N concentric level sets, Ωj

k, j =
0, · · · , N − 1, with ΩN−1

k ⊂ ΩN−2
k ⊂ · · · ⊂ Ω1

k ⊂ Ω0
k, and a terminal

set, IDk, fully contained in ΩN−1
k .

• Initialize the closed–loop system using MPC at any initial condition, x0,
within Ω0

L (the union of the level sets Ω0
k) and start monitoring the position

of the state of the closed–loop system.
• At the earliest time that the closed-loop state approaches the boundary of

Ω0
L, or MPC is infeasible, switch to bounded control (this corresponds to

encountering T1; see Figure 6.11).
• Implement any of the bounded controllers whose stability region contains

the state at T1 until the state enters Ω1
L (the union of the level sets Ω1

k) af-
ter which switch back to MPC and implement it in the closed–loop system
(in Figure 6.11 this happens when the state enters Ω1

1).
• If the closed–loop state under MPC does not escape the boundary of Ω1

L

and MPC continues to be feasible, keep MPC in the closed–loop system
(this happens in Figure 6.11(a) where the state continues to stay within
Ω1

L). If the closed–loop state, however, tries to escape the boundary of
Ω1

L (this happens in Figure 6.11(b) when the state hits the boundary of
Ω1

2 at t = T2) or MPC is infeasible again, switch to bounded control and
implement it until the states are driven inside the next safety zone where
MPC is re–activated and confined (note that each time MPC is switched
back in, its implementation is confined within a smaller safety zone since
Ω1

L ⊃ Ω2
L ⊃ · · · ⊃ ΩN−1

L ). Repeat this process until either the state
under MPC is about to escape the N -th safety zone, ΩN−1

L , or the state
enters the largest terminal set, IDmax, or a time greater than the design
parameter, Tdesign, has elapsed. At the earliest time that any of these
events takes place, switch permanently to any of the bounded controllers
whose stability region contains the state at the time to ensure practical
stability of the closed–loop system.

Remark 6.29. Even though the switching scheme of Theorem 6.27 allows back
and forth switching between MPC and the bounded controllers, chattering
is avoided by virtue of the fact that the switching scheme limits the maxi-
mum number of switches to N and requires a finite–time interval to elapse in
between consecutive switchings of MPC, which is the time it takes the appro-
priate bounded controller to drive the state from an outer level set to an inner
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Fig. 6.11. Examples of the evolution of closed–loop state trajectory under the
switching scheme of Theorem 6.27: (a) starting from x(0), the closed–loop trajectory
under MPC hits the boundary of Ω0

1 (at T1), upon which the bounded controller
1 is switched in and implemented until the trajectory enters Ω1

1 , following which
MPC is switched back in leading to practical stability, (b) starting from x(0), the
closed–loop trajectory under MPC hits the boundary of Ω0

1 (at T1), upon which
the bounded controller 1 is switched in and implemented until the trajectory enters
Ω1

1 , following which MPC is switched back in. The trajectory under MPC hits the
boundary of Ω1

2 (t = T2) at which time the bounded controller 2 is switched in and
implemented for all future times.

one (note that the level sets of a given Vk are finitely–spaced since α is strictly
less than one; see Figure 6.11 for an illustration). The bounded controller is
invoked to bring the state of the closed–loop system closer to the terminal set.
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Switching back to MPC and trying to implement it in the closed–loop system
is valuable because in some cases MPC may be feasible/stabilizing from this
new initial condition, which is closer to the terminal set.

Remark 6.30. Both N , the maximum allowable number of switches between
MPC and the bounded controllers, and Tdesign serve as design parameters
that help take advantage of MPC performance, while still guaranteeing ro-
bust stability. Note that while Theorem 6.27 allows for the possibility of N
switches between MPC and the bounded controllers, it does not necessarily
dictate that N switches take place (see Figure 6.11(a) for example). If the
predictive controller itself is able to achieve practical stability, then back and
forth switching between the predictive and bounded controllers is not required
and, therefore, not executed.

6.3.3 Application to robust stabilization of a chemical reactor

Consider a well–mixed continuous stirred tank reactor where an irreversible
elementary exothermic reaction of the form A

k→ B takes place. The feed to
the reactor consists of pure A at flow rate F , molar concentration CA0 and
temperature TA0. Under standard modeling assumptions, the process model
takes the following form:

V
dCA

dt
= F (CA0 − CA)− k0 exp

(−E

RT

)
CAV

V
dT

dt
= F (TA0 − T ) +

(−∆H)
ρcp

k0 exp
(−E

RT

)
CAV +

Q

ρcp

(6.40)

where CA denotes the concentration of species A, T denotes the temperature
of the reactor, Q denotes the rate of heat input to the reactor, V denotes
the volume of the reactor, k0, E, ∆H denote the pre–exponential constant,
the activation energy, and the enthalpy of the reaction, cp and ρ denote the
heat capacity and density of the fluid in the reactor. The steady–state values
and process parameters are given in Table 6.2. For these parameters, it was
verified that the given equilibrium point is an unstable one (the system also
possesses two other locally asymptotically stable equilibrium points). The
control objective is to regulate both the reactor temperature and reactant
concentration at the (open–loop) unstable equilibrium point by manipulat-
ing both the rate of heat input/removal and the inlet reactant concentra-
tion. Defining x1 = CA − CAs, x2 = T − Ts, u1 = CA0 − CA0s, u2 = Q,
θ1(t) = TA0 − TA0s, θ2(t) = ∆H − ∆Hnom, where the subscript s denotes
the steady–state value and ∆Hnom denotes the nominal value of the heat of
reaction, the process model of Eq.6.40 can be cast in the form of Eq.6.24.
In all simulation runs, the following time–varying function was considered
to simulate the effect of exogenous disturbances in the feed temperature:
θ1(t) = θ0sin(3t), where θ0 = 0.08TA0s. In addition, a parametric uncertainty
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of 50% in the heat of reaction was considered, i.e., θ2(t) = 0.5 (−∆Hnom).
The upper bounds on the uncertain variables were therefore taken to be
θb1 = 0.08TA0s, θb2 = 0.5 |(−∆Hnom)|. Also, the following constraints were
imposed on the manipulated inputs: |u1| ≤ 1.0 mol/L and |u2| ≤ 92 KJ/s.

Table 6.2. Process parameters and steady–state values for the reactor of Eq.6.40.

V = 0.1 m3

R = 8.314 kJ/kmol ·K
CA0s = 1.0 kmol/m3

TA0s = 310.0 K
∆H = −4.78× 104 kJ/kmol
k0 = 1.2× 109 s−1

E = 8.314× 104 kJ/kmol
cp = 0.239 kJ/kg ·K
ρ = 1000.0 kg/m3

F = 1.67× 10−3 m3/s
TRs = 395.33 K
CAs = 0.57 kmol/m3

A quadratic Lyapunov function of the form V = (CA − CAs)
2 + 1

T 2
Aos

(T −
Ts)2 was used to design the bounded robust controller of Eqs.6.25–6.27
and compute the associated region of guaranteed closed–loop stability, us-
ing Eqs.6.28–6.29. The following values were used for the tuning parameters:
χ = 1.01, φ = 0.0001, ρ = 0.01 to guarantee that the closed–loop states satisfy
a relation of the form lim sup

t→∞
‖x(t)‖ ≤ 0.0005. The set of nonlinear ODEs was

integrated using the MATLAB solver, ODE45, and the optimization problem
in MPC was solved using the MATLAB nonlinear constrained optimization
solver, fmincon.

Figure 6.12 shows the stability region for the nominal bounded controller
(Ω), and the bounded robust controller (Ω(umax, θb)), which, as expected, is
smaller in size since it accounts for the presence of uncertainty. As can be
seen from the solid lines in Figures 6.12–6.13, when the nominal bounded
controller (Eqs.6.25–6.27 with χ = 0) is implemented, the desired uncertainty
attenuation is not achieved. In contrast, from the dashed lines in Figures 6.12–
6.13, it is clear that, starting from the same initial condition, the properly
tuned bounded robust controller successfully drives both states to the desired
steady–state, in the presence of input constraints, while simultaneously at-
tenuating the effect of the uncertain variables on the states. We see from this
comparison that the uncertain variables have a significant effect on the states
and that failure to explicitly account for them in the controller design leads
to poor transient performance and the inability to enforce convergence close
to the origin.
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Fig. 6.12. Closed–loop state trajectories under the bounded controller when ini-
tialized within the stability region estimated without taking the uncertainty into ac-
count (solid line) and the stability region that accounts for the uncertainty (dashed
line).
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Fig. 6.13. Closed–loop state (top) and input (bottom) profiles under the bounded
controller when initialized within the stability region estimated without taking the
uncertainty into account (solid lines) and the stability region that accounts for the
uncertainty (dashed lines).
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The next set of simulation runs demonstrate the use of the robust hy-
brid predictive control strategy of Theorem 6.20. In the first scenario, a
nominal nonlinear MPC formulation, without stability constraints, is used
as part of the robust predictive control structure (setting ΩMPC = IRn,
F (x(t + T )) = 0, T = 0.02 minutes in Eqs.6.31–6.32) and with the design
parameter Tdesign = 10 minutes. The solid lines in Figures 6.14–6.15 repre-
sent the states of the closed–loop system initialized from a point within the
stability region Ω(umax, θb). After the initial implementation of MPC, the
supervisor detects, at t = 0.6 seconds, that the closed–loop states are close
to the boundary of Ω(umax, θb) and therefore switches to the bounded ro-
bust controller to stabilize the closed–loop system. In the next scenario, a
stabilizing formulation of MPC is used (requiring the states to go to a small
invariant set at the end of the horizon), with a horizon length of T = 0.02 and
a Tdesign = 20 minutes. For the initial condition of the trajectory shown by the
dashed lines in Figures 6.14–6.15, the MPC controller yields a feasible solution
and drives the states close to the origin. In this case, since the MPC is able to
achieve the desired degree of uncertainty attenuation, it is implemented for all
future times. For the initial condition depicted by the dotted lines in Figures
6.14–6.15, however, the MPC controller does not yield a feasible solution, and
therefore the supervisor initially implements the bounded robust controller.
At t = 0.465 minutes, the supervisor detects that MPC becomes feasible and,
therefore, switches it in (and switches the bounded controller out) leading to
closed–loop stability.
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Fig. 6.14. Closed–loop state trajectory: implementation of the robust hybrid predic-
tive controller of Theorem 6.20 using a nominal MPC formulation without stability
constraints (solid line) and a nonlinear MPC formulation with stability constraints,
from two different initial conditions (dashed and dotted lines).
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Fig. 6.15. Closed–loop state (top) and input (bottom) profiles: implementation of
the robust hybrid predictive controller of Theorem 6.20 using a nominal MPC for-
mulation without stability constraints (solid lines) and a nonlinear MPC formulation
with stability constraints, from two different initial conditions (dashed and dotted
lines).

Finally, we demonstrate the implementation of the relaxed switching
scheme of Theorem 6.27 using two Lyapunov functions. Figure 6.16 shows
the stability region for the two bounded controllers used as part of the robust
hybrid predictive controller. We use a nominal nonlinear MPC formulation,
without stability constraints, as part of the robust predictive control structure
(setting ΩMPC = IRn, F (x(t + T )) = 0, T = 0.02 minutes in Eqs.6.31–6.32)
and with the design parameter Tdesign = 3 minutes. The solid lines in Fig-
ures 6.16–6.17 represent the states of the closed–loop system initialized, under
MPC, from a point within the stability region Ω2. As seen in Figure 6.16, the
switching logic allow MPC to be implemented in the closed–loop even though
the states escape out of Ω2, since they are still within Ω1. Note also that in
this case the nominal MPC does not enforce the desired degree of uncertainty
attenuation (note the oscillations) and, therefore, after the time Tdesign has
elapsed, the supervisor implements the bounded controller (associated with
Ω2) in the closed–loop system to achieve practical stabilization.
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Fig. 6.16. Closed–loop state trajectory: implementation of the robust hybrid pre-
dictive controller of Theorem 6.27, with l = 2, N = 1, using a nominal MPC
formulation without stability constraints (solid line).
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Fig. 6.17. Closed–loop state (top) and input (bottom) profiles: implementation of
the robust hybrid predictive controller of Theorem 6.27, with l = 2, N = 1, using a
nominal MPC formulation without stability constraints (solid line).
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6.4 Conclusions

In this chapter, we presented hybrid predictive control strategies for the stabi-
lization of input-constrained nonlinear systems with and without uncertainty.
In the absence of uncertainty, the strategy involved using a family of bounded
nonlinear controllers, each with an explicitly characterized stability region, as
fall–back controllers and embedding the operation of MPC within the union
of these regions. In the event that the predictive controller was unable to
stabilize the closed–loop system, supervisory switching from MPC to any of
the bounded controllers, whose stability region contained the trajectory at
the switching time, guaranteed closed–loop stability. The strategy was subse-
quently extended to nonlinear systems with time-varying, bounded uncertain
variables. The resulting robust hybrid predictive control strategy involved us-
ing a bounded robust controller, with a well-characterized region of robust
stability, as a fall–back mechanism and devising a set of switching rules that
take the uncertainty into account and orchestrate, accordingly, the transition
from MPC to bounded control to maintain robust closed–loop stability in
the event that the predictive controller was unable to maintain it. The pro-
posed strategies were shown to provide, through appropriate construction of
the switching logic and irrespective of the MPC formulation used, a safety
net for the implementation of predictive control algorithms to nonlinear and
uncertain systems. The efficacy of the proposed strategies was demonstrated
through applications to chemical process examples.





7

Control of Hybrid Nonlinear Systems

7.1 Introduction

In this chapter, we develop hybrid nonlinear control methodologies for various
classes of hybrid nonlinear processes. Initially, switched processes whose dy-
namics are both constrained and uncertain are considered. These are systems
that consist of a finite family of continuous uncertain nonlinear dynamical
subsystems, subject to hard constraints on their manipulated inputs, together
with a higher-level supervisor that governs the transitions between the con-
stituent modes. The key feature of the proposed control methodology is the
integrated synthesis, via multiple Lyapunov functions (MLFs), of: (1) a fam-
ily of lower-level robust bounded nonlinear feedback controllers that enforce
robust stability in the constituent uncertain modes, and provide an explicit
characterization of the stability region for each mode under uncertainty and
constraints, and (2) upper-level robust switching laws that orchestrate safe
transitions between the modes in a way that guarantees robust stability in
the overall switched closed-loop system. Next, we consider switched nonlin-
ear systems with scheduled mode transitions. These are systems that tran-
sit between their constituent modes at some predetermined switching times,
following a prescribed switching sequence. For such systems, we develop a
Lyapunov-based predictive control strategy that enforces both the required
switching schedule and closed-loop stability. The main idea is to design a
Lyapunov–based predictive controller for each mode, and incorporate tran-
sition constraints in the predictive controller design to ensure that the pre-
scribed transitions between the modes occur in a way that guarantees sta-
bility of the switched closed–loop system. The proposed control methods are
demonstrated through applications to chemical process examples. Finally, the
chapter concludes with a demonstration of how hybrid systems techniques –
in particular, the idea of coupling the switching logic to stability regions –
can be applied for the analysis and control of mode transitions in biological
networks. The results in this chapter were first presented in [82, 196, 85].
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7.2 Switched nonlinear processes with uncertain
dynamics

7.2.1 State-space description

We consider the class of switched uncertain nonlinear processes described by
the following state-space representation:

ẋ(t) = fσ(t)(x(t)) + Gσ(t)(x(t))uσ(t) + Wσ(t)(x(t))θσ(t)(t)

σ(t) ∈ I = {1, · · · , N}
(7.1)

where x(t) ∈ IRn denotes the vector of continuous process state variables,
u(t) = [u1(t) · · ·um(t)]T ∈ U ⊂ IRm denotes the vector of control inputs tak-
ing values in a nonempty compact convex subset of IRm that contains the
origin in its interior, θ(t) = [θ1(t) · · · θq(t)]T ∈ Θ ⊂ IRq denotes the vector of
uncertain (possibly time-varying) – but bounded – variables taking values in
a nonempty compact convex subset of IRq. The uncertain variables, θ(t), may
describe time-varying parametric uncertainty and/or exogenous disturbances.
σ : [0,∞) → I is the switching signal which is assumed to be a piecewise con-
tinuous (from the right) function of time, implying that only a finite number
of switches is allowed on any finite interval of time. σ(t), which takes values in
the finite index set I, represents a discrete state that indexes the vector field
f(·), the matrices G(·) and W (·), the control input u(·), and the uncertain
variable θ(·), which altogether determine ẋ. For each value that the discrete
state, σ, assumes in I, the temporal evolution of the continuous state, x, is
governed by a different set of differential equations. Processes of the form of
Eq.7.1 are therefore of variable structure; they consist of a finite family of N
continuous-time uncertain nonlinear subsystems (or modes) and some rules
for switching between them (see Figure 7.1 for a graphical representation).
These rules define a switching sequence that describes the temporal evolution
of the discrete state. Note that, by indexing the vector of uncertain variables,
θ(t), and the matrix W (x) in Eq.7.1 by σ, it is implied that the constituent
modes do not necessarily share the same uncertain variables nor are they
equally affected by them. The uncertainty is therefore allowed to influence
the dynamics of different modes differently.

Throughout the chapter, the notation tik
and ti′

k
is used to denote the

k-th times that the i-th subsystem is switched in and out, respectively, i.e.
σ(t+ik

) = σ(t−i′
k
) = i, for all k ∈ Z+. With this notation, it is understood

that, when the i-th mode is active, the continuous state evolves according
to ẋ = fi(x) + Gi(x)ui + Wi(x)θi for tik

≤ t < ti′
k
. It is assumed that all

entries of the vector functions fi(x), the n × m matrices Gi(x), the n × q
matrices Wi(x) are sufficiently smooth on IRn and, without loss of generality,
that the origin is the nominal equilibrium point of each mode, i.e. fi(0) =
0 for all i ∈ I. We also assume that the state, x, does not jump at the
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Fig. 7.1. A multi-modal representation of a hybrid process, involving a finite fam-
ily of continuous subsystems and discrete events governing the transitions between
them.

switching instants, i.e. the solution, x(·), is everywhere continuous. Note that
changes in the discrete state σ(t) (i.e., transitions between the continuous
dynamical modes) may, in general, be a function of time, state, or both. When
changes in σ(t) depend only on inherent process characteristics, the switching
is referred to as autonomous. However, when σ(t) is chosen by some higher
process such as a controller or human operator, the switching is referred to
as controlled. In this chapter, we focus on controlled switching where mode
transitions are decided and executed by some higher-level supervisor. This
class of systems arises naturally in the context of coordinated supervisory
and feedback control of chemical process systems (see the illustrative example
below and the simulation study in Section 7.3.5).

7.2.2 Stability analysis via multiple Lyapunov functions

For purely continuous-time nonlinear processes, Lyapunov techniques provide
useful tools for stability analysis as well as nonlinear and robust controller
design (e.g., see [78]). The basic conceptual idea behind any Lyapunov design
is that of “energy shaping”, where an appropriate “energy” function (called a
Lyapunov function) is chosen for the system, and the controller is designed in
a way that enforces the monotonic decay of this function along the trajecto-
ries of the closed-loop system (energy dissipation). Given the view of hybrid
processes as a finite collection of continuous-time nonlinear processes with dis-
crete events that govern the transition between them, it is quite intuitive to
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exploit Lyapunov tools to analyze stability of hybrid processes. In this direc-
tion, one of the main tools for analyzing stability is multiple Lyapunov func-
tions (MLFs) (e.g., see [70]). In many respects, the MLF framework extends
the classical energy shaping idea of Lyapunov analysis for continuous-time
systems to switched systems, but provides, in addition, the tools necessary to
account for the hybrid dynamics of such systems. Preparatory for its use later
in robust controller design, we will briefly review in this section the main idea
of MLF analysis. To this end, consider the switched process of Eq.7.1, with
ui = θi ≡ 0, i = 1, · · · , N , and suppose that we can find a family of Lyapunov
functions {Vi : i ∈ I} such that the value of Vi decreases on each interval
when the i-th subsystem is active, i.e.,

Vi(x(ti′
k
)) < Vi(x(tik

)) (7.2)

for all i ∈ I, k ∈ Z+. The key idea here is that, even if there exists such
a Lyapunov function for each subsystem, fi, individually (i.e., each mode
is stable), restrictions must be placed on the switching logic to guarantee
stability of the overall switched system. The reason is that during the time
periods when a particular mode is inactive, its energy might be adversely
affected by the evolution of the active mode such that at the next time that the
inactive mode is activated, its energy already exceeds the level it had attained
during its last period of activity. When this happens, the overall energy of the
system may keep increasing indefinitely, as the process keeps switching in and
out between the various modes, thus leading to instability. In fact, it is easy to
construct examples of globally asymptotically stable systems and a switching
rule that sends all trajectories to infinity (see [39] for some classical examples).
There are multiple ways of guarding against such instability due to switching.
One possibility is to require, in addition to Eq.7.2, that for every i ∈ I, the
value of Vi at the beginning of each interval on which the i-th mode is active
exceed (or, at least, be equal to) the value at the beginning of the next such
interval (see Figure 7.2); more precisely:

Vσ(tik+1 )(x(tik+1)) ≤ Vσ(tik
)(x(tik

)) (7.3)

where σ(tik+1) = σ(tik
) = i. This guarantees that the switched system is

Lyapunov stable (see [70] and the references therein for alternative switching
rules). In Theorem 7.1 below, a stronger switching condition than the one
given in Eq.7.3 will be invoked to enforce asymptotic stability in the over-
all switched closed-loop system (i.e., to enforce both Lyapunov stability and
asymptotic convergence to the origin).

7.2.3 Illustrative example

In this section, we introduce an example of a hybrid nonlinear chemical process
with model uncertainty and actuator constraints that will be used throughout
the chapter to illustrate the implementation of the hybrid control strategy. To



7.2 Switched nonlinear processes with uncertain dynamics 233

3t2t1 t

E
n

e
rg

y

t0

V (x(t))2
V (x(t))1

Mode active
Mode inactive

Time

Fig. 7.2. Temporal evolution of Multiple Lyapunov Functions for an asymptotically
stable switched system consisting of twomodes.

this end, consider a continuous stirred tank reactor where an irreversible first-
order exothermic reaction of the form A

k→ B takes place. As shown in Figure
7.3, the reactor has two inlet streams; the first continuously feeds pure A
at flow rate F , concentration CA0 and temperature TA0, while the second
has a control valve that can be turned on or off depending on operational
requirements. When the control valve is open, the second stream feeds pure
A at flow rate F ∗, concentration C∗A0 and temperature T ∗A0. Under standard
modeling assumptions, the mathematical model for the process takes the form:

dCA

dt
=

F

V
(CA0 − CA) + σ(t)

F ∗

V
(C∗A0 − CA)− k0 exp

(−E

RT

)
CA

dT

dt
=

F

V
(TA0 − T ) + σ(t)

F ∗

V
(T ∗A0 − T ) +

(−∆Hr)
ρcp

k0 exp
(−E

RT

)
CA

+
Q

ρcpV
(7.4)

where CA denotes the concentration of A, T denotes the reactor temperature,
Q denotes the rate of heat input/removal from the reactor, V denotes the
reactor volume, k0, E, ∆H denote the pre-exponential constant, the activation
energy, and the enthalpy of the reaction, cp and ρ, denote the heat capacity
and density of the fluid in the reactor. The process parameters and steady-
state values are given in Table 7.1. σ(t) is a discrete control variable that
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takes a value of zero when the control valve, on the second inlet stream, is
closed and a value of one when the valve is open. Initially, we assume that the
valve is closed (i.e., σ(0) = 0). During reactor operation, however, it is desired
to open this valve and feed through additional reactant material through the
second inlet stream (i.e., σ = 1) in order to enhance the product concentration
leaving the reactor.
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Fig. 7.3. A switched non-isothermal continuous stirred tank reactor.

Table 7.1. Process parameters and steady-state values for the reactor of Eq.7.4.

V = 0.1 m3

R = 8.314 kJ/kmol.K
CA0 = 1.0 kmol/m3

TA0s = 310.0 K
∆Hnom = −400 kJ/kmol
k0 = 2.0× 107 s−1

E = 8.314× 104 kJ/kmol
cp = 0.002 kJ/kg.K
ρ = 1000.0 kg/m3

F = 2.77× 10−5 m3/s
CAs(σ = 0) = 0.577 kmol/m3

Ts(σ = 0) = 395.3 K
F ∗ = 5.56× 10−5 m3/s
C∗A0 = 2.0 kmol/m3

T ∗A0s = 350.0 K
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The above requirement gives rise to two distinct modes of reactor oper-
ation, between which switching is desired. These modes correspond to the
off(σ = 0)/on(σ = 1) conditions of the control valve on the second inlet
stream. Since the initial operating mode (σ = 0) has an open-loop unstable
steady-state that corresponds to Ts = 395.3 K, our control objective will be
to stabilize the reactor temperature at this point by manipulating the rate of
heat input. However, since switching to the second mode (σ = 1) at some later
point in time can potentially destabilize the process, our switching objective
will be to carry out the transition between the two modes at the earliest time
which does not jeopardize process stability. The control and switching objec-
tives are to be accomplished in the presence of: (1) hard constraints on the
manipulated input, |Q| ≤ 80 KJ/hr, (2) time-varying external disturbances
in the feed temperature of both inlet streams, and (3) time-varying paramet-
ric uncertainty in the enthalpy of reaction. Note that the disturbances in the
feed temperature of the second inlet stream take effect only after switching
and, therefore, impact only the second mode, while the disturbances in the
first stream’s temperature and the parametric uncertainty in the enthalpy
influence both modes.

7.3 Coordinating feedback and switching for robust
hybrid control

7.3.1 Problem formulation and solution overview

Consider the switched nonlinear process of Eq.7.1 where, for each i ∈ I, a
robust control Lyapunov function, Vi, is available, the vector of manipulated
inputs, ui, is constrained by ‖ui‖ ≤ umax

i , and the vector of uncertain variables
is bounded by ‖θi‖ ≤ θbi, where the notation ‖ · ‖ denotes the Euclidean
norm of a vector. The bounds that capture the size of the uncertainty can
be arbitrarily large. Two control problems will be considered. In the first
problem, the uncertain variables are assumed to be vanishing, in the sense
that Wi(0)θi = 0 for any θi ∈ Θ (note that this does not require the variable,
θi, itself to vanish in time). Under this assumption, the origin – which is
an equilibrium point for the nominal modes of the hybrid process – is an
equilibrium point for the uncertain modes as well. For this case, and given
that switching is controlled by a higher-level supervisor, the problem is how
to coordinate switching between the constituent modes, and their respective
controllers, in a way that respects the constraints and guarantees asymptotic
stability of the overall closed-loop system in the presence of uncertainty. To
address the problem, we formulate the following objectives. The first is to
synthesize, using a family of Lyapunov functions, a family of N bounded
robust nonlinear continuous feedback control laws of the general form:

ui = −ki(Vi, u
max
i , θbi)(LGiVi)T , i = 1, · · · , N (7.5)
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that: (1) enforce robust asymptotic stability for their respective closed-loop
subsystems, and (2) provide, for each mode, an explicit characterization of the
set of admissible initial conditions starting from where a given mode is guar-
anteed to be stable in the presence of model uncertainty and input constraints.
The scalar gain, ki(·), of the LGV controller in Eq.7.5 is to be designed so
that ‖ui‖ ≤ umax

i and the energy of the i-th mode – as captured by Vi – is
monotonically decreasing whenever that mode is active. The second objective
is to construct a set of robust switching laws that supply the supervisor with
the set of switching times that guarantee stability of the constrained uncertain
switched closed-loop system, which in turn determines the time-course of the
discrete state, σ(t).

In the second control problem, the uncertain variables are assumed to
be non-vanishing, in the sense that Wi(0)θi 6= 0 for all i ∈ I. In this case,
the origin is no longer an equilibrium point of the uncertain modes or the
overall hybrid process and, therefore, the objective is to coordinate feedback
controller synthesis and switching in a way that guarantees boundedness of
the states of the hybrid process, with an arbitrary degree of attenuation of
the effect of uncertainty.

Having formulated the above robust hybrid control problems, we proceed
in Sections 7.3.2-7.3.3 to present their solutions. The first result, given in
Theorem 7.1 below, addresses the problem of vanishing uncertainty, while the
second result, given in Theorem 7.11, deals with the problem of non-vanishing
uncertainty. For a clear presentation of the main ideas, only the state feedback
control problem is considered below. Results on the output feedback control
problem for switched systems using MLFs can be found in [90].

7.3.2 Hybrid control strategy under vanishing uncertainty

Theorem 7.1 below summarizes the proposed robust hybrid control strategy
for the case when the uncertainty does not affect the nominal equilibrium
point of the hybrid process. Provided in this theorem are the formulae of the
family of bounded robust feedback continuous controllers, together with the
appropriate switching rules used by the supervisor to govern the transitions
between the various closed-loop modes in a way that guarantees the desired
properties in the constrained uncertain hybrid closed-loop system. The proof
of this theorem is given in Appendix E.

Theorem 7.1. Consider the switched uncertain nonlinear process of Eq.7.1,
where Wi(0)θi = 0 for all i ∈ I, under the following family of bounded non-
linear feedback controllers:

ui = −ki(Vi, u
max
i , θbi, χi, φi)(LGiVi)T , i = 1, · · · , N (7.6)

where
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ki(·) =





L∗fi
Vi +

√
(L∗∗fi

Vi)2 + (umax
i ‖(LGi

Vi)T ‖)4

(‖(LGi
Vi)T ‖)2[1 +

√
1 + (umax

i ‖(LGi
Vi)T ‖)2]

, ‖(LGiVi)T ‖ 6= 0

0 , ‖(LGiVi)T ‖ = 0





(7.7)

L∗fi
Vi = LfiVi +

(
ρi‖x‖+ χi‖(LWiVi)T ‖θbi

)( ‖x‖
‖x‖+ φi

)

L∗∗fi
Vi = LfiVi + ρi‖x‖+ χi‖(LWiVi)T ‖θbi

(7.8)

Vi is a robust control Lyapunov function for the i-th subsystem and ρi, χi,
φi are tunable parameters that satisfy ρi > 0, χi > 1 and φi > 0. Let
Ω∗

i (umax
i , θbi) be the largest invariant set embedded within the region described

by the inequality:

Lfi
Vi + ρi‖x‖+ χi‖(LWi

Vi)T ‖θbi ≤ umax
i ‖(LGi

Vi)T ‖ (7.9)

and assume, without loss of generality, that x(0) := x0 ∈ Ω∗
i (umax

i , θbi) for
some i ∈ I. If, at any given time T such that:

x(T ) ∈ Ω∗
j (umax

j , θbj) (7.10)

Vj(x(T )) < Vj(x(tj′)) (7.11)

for some j ∈ I, j 6= i, where tj′ is the time when the j-th subsystem was last
switched out, i.e. σ(t+j′) 6= σ(t−j′) = j, we set σ(T+) = j, then there exists a
positive real number φ∗j such that for any φj ≤ φ∗j , the origin of the switched
closed-loop system is asymptotically stable.

Remark 7.2. The bounded robust feedback controllers given in Eqs.7.6-7.8 are
synthesized, using multiple Lyapunov functions, by reshaping the scalar non-
linear gain of the LGV controller proposed originally in [177] (see also Chapter
4), in order to account for the effect of the uncertain variables. As a result, the
control action now depends explicitly on both the magnitude of the input con-
straints, umax

i , and the size of the uncertainty, θbi. Note that only information
about the size of the uncertainty (and not the uncertainty itself) is needed for
controller design and that this size can be arbitrarily large. Each controller
in Eqs.7.6-7.8 is a smooth function of the state away from the origin. It is
also continuous at the origin whenever the corresponding control Lyapunov
function satisfies the small control property (see [177, 97] for details on this
issue).

Remark 7.3. Each controller in Eqs.7.6-7.8 possesses two tuning parameters,
φi and χi, responsible for enforcing robust stability and achieving the de-
sired degree of attenuation of the effect of uncertainty on each of the con-
stituent modes of the hybrid process. A significant degree of attenuation can
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be achieved by selecting the parameter φi to be sufficiently small and/or
choosing the parameter χi to be sufficiently large (see Step 1 in the Proof of
Theorem 7.1). Another important feature of the uncertainty compensator (i.e.,
the term χi‖(LWi

Vi)T ‖θbi) used in designing the controller gain of Eqs.7.7-7.8

is the presence of a scaling function of the form
‖x‖

‖x‖+ φi
that multiplies the

compensator. Since φi is a small positive number, the scaling function ap-
proaches a value of 1 when ‖x‖ is large (far from the equilibrium point) and
a value of zero when ‖x‖ is small (close to the equilibrium point). This allows
us, as we get closer and closer to the equilibrium point, to use smaller and
smaller control effort to cancel the uncertainties. The full weight of the un-
certainty compensator is used only when the state is far from the equilibrium
point.

Remark 7.4. The use of bounded nonlinear controllers of the form of Eqs.7.6-
7.8 to robustly stabilize the constituent modes is motivated by the fact that
this class of controllers provides an explicit characterization of the limitations
imposed by uncertainty and constraints on the region of closed-loop stability.
Specifically, each controller in Eqs.7.6-7.8 provides an explicit characterization
of the set of admissible initial conditions starting from where robust closed-
loop stability of the corresponding subsystem is guaranteed with the available
control action. This characterization can be obtained from the set of inequal-
ities given in Eq.7.9. For each mode, the corresponding inequality describes a
closed region in the state-space (henceforth denoted by Φi(umax

i , θbi)) where
the corresponding control law satisfies the constraints and the associated Lya-
punov function, Vi, decreases monotonically (see Step 1 in the Proof of Theo-
rem 7.1). Owing to the presence of uncertainty, the size of Φi now depends on
the size of the uncertainty, in addition to the magnitude of input constraints.
The larger the uncertainty and/or the tighter the constraints, the smaller Φi

is in size. It is important to note that even though a trajectory starting in
Φi will move from one Lyapunov surface to an inner Lyapunov surface with
lower energy (because V̇i < 0), there is no guarantee that the trajectory will
remain forever in Φi since it is not necessarily a region of invariance. Once the
trajectory leaves Φi, however, there is no guarantee that V̇i < 0. To guarantee
that V̇i remains negative for all times during which the i-th mode is active,
we compute the largest invariant set, Ω∗

i (umax
i , θbi), within Φi(umax

i , θbi) (see
[148] for details on how to construct these sets). This set, which is also parame-
terized by the constraints and the uncertainty bounds, represents an estimate
of the stability region associated with each mode. Finally, note that in the
absence of any plant-model mismatch (i.e., when θbi ≡ 0), the controllers of
Eqs.7.6-7.8, together with the expressions for the stability regions, Ω∗

i , reduce
to those developed in [80] under nominal conditions.

Remark 7.5. Each of the inequalities in Eq.7.9 captures the classical tradeoff
between stability and performance. To see this, note that the size of the region
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of guaranteed closed-loop stability, obtained from Eq.7.9, can be enlarged by
using small values for the controller tuning parameters χi and ρi. This enlarge-
ment of the stability region, however, comes at the expense of the controller’s
robust performance, since large values for χi and ρi are typically required to
achieve a significant degree of attenuation of the effect of disturbances and
plant-model mismatch on the closed-loop system. Therefore, in selecting the
controller tuning parameters, one must strike a balance between the need to
stabilize the process from a given initial condition and the requirement of
achieving a satisfactory robust performance.

Remark 7.6. The two switching laws of Eqs.7.10-7.11 determine, implicitly,
the times when switching from mode i to mode j is permissible. The first
rule tracks the temporal evolution of the continuous state, x, and requires
that, at the desired time for switching, the continuous state be within the
stability region of the target mode, Ω∗

j (umax
j , θbj). A pictorial representation

of this idea is shown in Figure 7.4. This requirement ensures that, once the
target mode and its corresponding controller are engaged, the corresponding
Lyapunov function continues to decay for as long as the mode remains active.
Note that this condition must be enforced at every time that the supervisor
considers switching between modes. In contrast, the second switching rule of
Eq.7.11 is checked only if the target mode has been activated (at least once)
in the past. In this case, Eq.7.11 allows reactivation of mode j provided that
its energy at the current “switch in” is less than its energy at the last “switch
out”. This condition guarantees that, whenever a given mode is activated,
the closed-loop state is closer to the origin than it was when the same mode
was last activated. Note that if each of the N modes is activated only once
during the course of operation (i.e., we never switch back to a mode previously
activated), the second condition is automatically satisfied. Furthermore, for
the case when only a finite number of switches (over the infinite time-interval)
is considered, this condition can be relaxed by allowing switching to take place
even when the value of Vj , at the desired switching time, is larger than that
when mode j was last switched in, as long as the increase is finite. The reason
owes to the fact that these finite increases in Vj (resulting from switching back
to mode j) will be overcome when the process eventually settles in the “final”
mode whose controller, in turn, forces its Lyapunov function to continue to
decay as time tends to infinity, thus asymptotically stabilizing the overall
hybrid process.

Remark 7.7. Even though the switching conditions of Eqs.7.10-7.11 require
knowledge of the temporal evolution of the closed-loop state, x(t), the a pri-
ori knowledge of the solution of the constrained closed-loop nonlinear system
(which is difficult to obtain in general) is not needed for the practical im-
plementation of the proposed approach. Instead, the supervisor can monitor
(on-line) how x evolves in time to determine if and when the switching condi-
tions are satisfied. If the conditions are satisfied, then we conclude that it is
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Fig. 7.4. Implementation of the switching law based on monitoring the evolution
of the closed-loop trajectory with respect to stability regions.

“safe” to switch from the current mode/controller combination to the one for
which the conditions hold. Otherwise, the current mode is kept active. Note
that, absent any failures in the control system, maintaining closed-loop stabil-
ity does not require switching since the closed-loop system is always initialized
within the stability region of at least one of the constituent modes and, there-
fore, absent switching, the closed-loop trajectory will simply remain in this
invariant set and stabilize at the desired equilibrium point. In many practi-
cal situations, however, changes in operational conditions and requirements
typically motivate switching between various process modes. Under these con-
ditions, the result of Theorem 7.1 provides a strategy for carrying out mode
transitions without jeopardizing the stability of the overall process (see the
simulation example in Section 7.3.5).

Remark 7.8. In many practical situations, the ability of the control system to
deal with failure situations requires consideration of multiple control config-
urations and switching between them to preserve closed-loop stability in the
event that the active control configuration fails. For such cases, the switching
rules proposed in Theorem 7.1 (based on the stability regions) can be used
to explicitly identify the appropriate fall-back control actuator configuration
that should be activated to preserve closed-loop stability (see Chapter 8 for
how this notion can be applied for the design of fault-tolerant control sys-
tems). Clearly, if failure occurs when the state is outside the stability regions
of all the available configurations, then closed-loop stability cannot be pre-
served because of the fundamental limitations imposed by the constraints on
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the stability regions as well as how many backup configurations are available.
However, our approach in this case provides a useful way for analyzing when
the control system can or cannot tolerate failures. For example, by analyzing
the overlap of the stability regions of the given configurations, one can decide
the time periods during which the control system (under a given configura-
tion) cannot tolerate failure (which are the times that the trajectory spends
outside the stability region of the other configurations). By relaxing the con-
straints (i.e., enlarging the stability regions) and/or increasing the available
control configurations (this is ultimately limited by system design consider-
ations) one can reduce the possibility of failures taking place outside of the
stability regions of all configurations.

Remark 7.9. Note that it is possible for more than one subsystem, j, to satisfy
the switching rules given in Eqs.7.10-7.11. This occurs when the process state
lies within the intersection of several stability regions. In this case, Theorem
7.1 guarantees only that a transition from the current mode to any of these
modes is safe, but does not suggest which one to choose since they all guaran-
tee stability. The decision to choose a particular mode to activate is typically
made by the supervisor based on the particular operational requirements of
the process.

Remark 7.10. Referring to the practical applications of Theorem 7.1, one must
initially identify the constituent modes of the hybrid process. A Lyapunov
function is then constructed for each mode to synthesize, via Eqs.7.6-7.8, a
bounded robust controller and construct, with the aid of Eq.7.9, the region of
closed-loop stability associated with each mode. Implementation of the control
strategy then proceeds by initializing the process within the stability region
of the desired initial mode of operation and implementing the corresponding
robust controller. Then, the switching laws of Eqs.7.10-7.11 are checked on-
line, by the supervisor, to determine if it is possible to switch operation to a
particular mode at some time. If the conditions are satisfied, then a transition
to that mode (and its controller) is executed. If the conditions are not satisfied,
then the current operating modes is kept active. A summary of the proposed
robust hybrid control methodology is shown schematically in Figure 7.5.

7.3.3 Hybrid control strategy under non-vanishing uncertainty

In this section, we address the problem of non-vanishing uncertainty, where
the uncertainty changes the nominal equilibrium point of the hybrid process.
Theorem 7.11 below summarizes the proposed hybrid control strategy for this
case and states precisely the resulting closed-loop properties. The proof of this
theorem is given in Appendix E.

Theorem 7.11. Consider the switched uncertain nonlinear process of Eq.7.1,
where Wi(0)θi 6= 0 for all i ∈ I, under the family of controllers given in
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Fig. 7.5. Summary of the proposed hybrid control strategy based on coordinating
feedback and switching.

Eq.7.6-7.8. Assume, without loss of generality, that x(0) ∈ Ω∗
i (umax

i , θbi) for
some i ∈ I and that, for any given T > 0, σ(T+) = j only if the conditions
of Eqs.7.10-7.11 hold for some j ∈ I, j 6= i. Then, given any arbitrarily small
real number, d > 0, there exist a set of positive real numbers {ε∗1, · · · , ε∗N} such
that if εi ≤ ε∗i , i ∈ I, the trajectories of the switched closed-loop system are
bounded and satisfy lim sup

t→∞
‖x(t)‖ ≤ d, where εi = φi/(χi − 1).

Remark 7.12. Owing to the non-vanishing nature of the uncertainty influenc-
ing each mode, asymptotic convergence to the origin is not possible via contin-
uous feedback for any of the constituent modes of the hybrid process. However,
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in lieu of asymptotic stability, one can show (see the Proof of Theorem 7.11
in Appendix E) that, for every mode i by itself (without switching), the cor-
responding controller guarantees convergence of the closed-loop trajectory, in
finite time, to a small neighborhood of the origin (called a residual or terminal
set) such that the trajectory, once inside this set, cannot escape (see Chapter
4 for further details). The size of this set can be made arbitrarily small by
choosing the controller tuning parameter, φi, to be sufficiently small and/or
selecting the tuning parameter, χi, to be sufficiently large. In this manner,
one can achieve an arbitrary degree of robust attenuation of the effect of
uncertainty on each mode of the closed-loop system.

Remark 7.13. Boundedness of the state of the constituent modes does not, in
and of itself, imply boundedness of the state of the overall hybrid process.
Boundedness of the switched closed-loop trajectory can be ensured using the
switching rules given in Eqs.7.10-7.11, which automatically impose constraints
on which mode can be engaged at any given time. These constraints, similar
to the case of the vanishing uncertainty, guarantee that whenever a mode is
activated (or reactivated), not only is its energy less than what it was before
(Eq.7.11) but also that this energy continues to decay for as long as the mode
remains active (Eq.7.10). The only difference in the case of non-vanishing
uncertainty is that these rules need only be implemented, by the supervisor,
when the state lies outside the residual set. To understand the rationale for this
observation, we first observe that since the size of the residual set of each mode
can be tuned (by appropriately adjusting φi and χi), a small common residual
set can be chosen (for all the modes) that is completely contained within the
intersection of the various stability regions. Then, starting from any admissible
initial condition, implementation of the switching logic outside this residual
set ensures that, for every mode, the closed-loop trajectory moves closer and
closer to that set, as we switch in and out of that mode. Since the number of
process modes is finite, and only a finite number of switches is allowed over
any finite time-interval, then at least one of constituent modes will converge,
in finite time, to the residual set. From that time onward, the closed-loop
trajectory stays within the common residual set for all times, regardless of
any further mode switchings (see Step 2 in the Proof of Theorem 7.11 for the
mathematical details).

Remark 7.14. Theorems 7.1 and 7.11 consider, respectively, the cases when
the uncertainties affecting the various modes are either all vanishing or all
non-vanishing. For the general case when the uncertainty is vanishing for
some modes and non-vanishing for others, one can establish only boundedness
of the closed-loop trajectory. If, however, only a finite number of switches
is allowed over the infinite time-interval, then one can establish asymptotic
stability if the uncertainty influencing the final mode – where the hybrid
process eventually settles – is vanishing. If such uncertainty, on the other
hand, is non-vanishing, then the closed-loop trajectory will instead reach and



244 7 Control of Hybrid Nonlinear Systems

enter, in finite time, the residual set of the final mode without ever leaving
again.

7.3.4 Application to input/output linearizable processes

An important class of nonlinear processes that has been studied extensively
within process control is that of input/output feedback linearizable processes.
This class arises frequently in practical problems where the objective is to
force the controlled output to follow some reference-input trajectory (rather
than stabilize the full state at some nominal equilibrium point). In this section,
we illustrate how the coordinated robust feedback and switching methodol-
ogy proposed in this chapter can be applied when the individual modes of
the hybrid process are input/output linearizable. For simplicity, we limit our
attention to the single-input single-output case with vanishing uncertainty.
Consider the hybrid process:

ẋ(t) = fσ(t)(x(t)) + gσ(t)(x(t))uσ(t) + wσ(t)(x(t))θσ(t)

y = h(x)

σ(t) ∈ I = {1, · · · , N}

(7.12)

where y ∈ IR is the controlled output and h(x) is a sufficiently smooth scalar
function. Suppose that, for all i ∈ I, there exists an integer r (this assumption
is made only to simplify notation and can be readily relaxed to allow a different
relative degree, ri, for each mode) and a set of coordinates:

[
ζ
η

]
=




ζ1

ζ2

...
ζr

η1

...
ηn−r




= X (x) =




h(x)
Lfih(x)

...
Lr−1

fi
h(x)

T1,i(x)
...

Tn−r,i(x)




(7.13)

where T1(x), · · · , Tn−r(x) are nonlinear scalar functions of x, such that the
system of Eq.7.12 takes the form:
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ζ̇1 = ζ2

...
ζ̇r−1 = ζr

ζ̇r = Lr
fi

h(X−1(ζ, η)) + Lgi
Lr−1

fi
h(X−1(ζ, η))ui + Lwi

Lr−1
fi

h(X−1(ζ, η))θi

η̇1 = Ψ1,i(ζ, η)
...

η̇n−r = Ψn−r,i(ζ, η)
y = ζ1

(7.14)
where Lgi

Lr−1
fi

h(x) 6= 0 for all x ∈ IRn, i ∈ I. Under the assumption that the
η-subsystem is input-to-state stable (ISS) with respect to ζ for each i ∈ I,
the controller synthesis task for each mode can be addressed on the basis of
the partially linear ζ-subsystem. To this end, upon introducing the notation
ek = ζk−v(k−1), e = [e1 e2 · · · er]T , v̄ = [v v(1) · · · v(r−1)]T , where v(k) is the
k-th time derivative of the reference input, v, which is assumed to be a smooth
function of time, the ζ-subsystem of Eq.7.14 can be further transformed into
the following more compact form:

ė = f̄i(e, η, v̄) + ḡi(e, η, v̄)ui + w̄i(e, η, v̄)θi, i = 1, · · · , N (7.15)

where f̄i, ḡi, w̄i are r × 1 vector functions given by f̄i(e, η, v̄) = Ae +
bLr

fi
h(X−1(e, η, v̄)) and ḡi(e, η, v̄) = bLgiL

r−1
fi

h(X−1(e, η, v̄)), w̄i(e, η, v̄) =
bLwiL

r−1
fi

h(X−1(e, η, v̄)) are r × 1 vector functions, and:

A =




0 1 0 · · · 0
0 0 1 · · · 0
...

...
0 0 0 · · · 1
0 0 0 · · · 0




, b =




0
0
...

1




(7.16)

are an r × r matrix and r × 1 vector, respectively. For systems of the form
of Eqs.7.15-7.16, a simple choice for a robust control Lyapunov function is a
quadratic function of the form V̄i = eT Pie where the positive-definite matrix
Pi is chosen to satisfy the following Riccati inequality:

AT Pi + PiA− Pibb
T Pi < 0 (7.17)

Using these quadratic functions, a bounded robust controller can be designed
for each mode using Eqs.7.6-7.8 applied to the system of Eq.7.15. Using a
standard Lyapunov argument, it can then be shown that each controller ro-
bustly asymptotically stabilizes the e states in each mode. This result together
with the ISS assumption on the η states can then be used to show, via a small
gain argument, that the origin of the full closed-loop e-η interconnection, for
each individual mode, is asymptotically stable.
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Remark 7.15. Note that, since the objective here is output tracking, rather
than full state stabilization, the Lyapunov functions used in designing the
controllers, V̄i’s, are in general different from the Lyapunov functions, Vi’s,
used in implementing the switching rules. Owing to the ISS property of the
η-subsystem of each mode, only a Lyapunov function for the e-subsystem,
namely V̄i, is needed and used to design a controller that robustly stabilizes
the full e-η interconnection for each mode. However, when implementing the
switching rules (constructing the Ω∗

i ’s and verifying Eq.7.11), we need to track
the evolution of x (and hence the evolution of both e and η). Therefore, the
Lyapunov functions used in verifying the switching conditions at any given
time, Vi, are based on x. From the asymptotic stability of each mode, the
existence of these Lyapunov functions is guaranteed by converse Lyapunov
theorems (see chapter 3 in [148] for further details). For systems with relative
degree r = n, the choice V̄i = Vi is sufficient.

7.3.5 Application to a switched chemical reactor

In this section, we revisit the switched chemical reactor example, introduced
earlier in Eq.7.4, to illustrate, through computer simulations, the application
of the proposed hybrid control strategy. Recall that the control objective is
to stabilize the reactor temperature at the open-loop unstable steady-state,
by manipulating the rate of heat input, while the switching objective is to
carry out the transition between the two modes at the earliest time possible
without jeopardizing process stability. The control and switching objectives
are to be accomplished in the presence of hard constraints on the manipu-
lated input (|Q| ≤ 80 KJ/hr), time-varying external disturbances in the feed
temperature of both inlet streams, and time-varying parametric uncertainty
in the enthalpy of reaction. For the purpose of simulating the effect of uncer-
tainty on the process output, we consider time-varying functions of the form
θ(t) = θbsin(4t), where the upper bounds on the feed temperature distur-
bances are taken to be 10 K for both streams, and the upper bound on the
uncertainty in the enthalpy is taken to be 15% of the nominal value. We note
that any other bounded and time-varying function can be used to simulate
the effect of uncertainty. This choice does not affect the results since it is only
the bounds on these functions that are needed for controller and switching
law design.

To accommodate both the control and operational objectives, and since
the uncertain variables considered are non-vanishing, we follow the strategy
proposed in Theorem 7.11. Using two quadratic Lyapunov functions of the
form Vi = 1

2ci(T − Ts)2, where ci > 0, we initially use Eqs.7.6-7.8 to synthe-
size two bounded robust controllers (one for each mode) that enforce robust
closed-loop stability for their respective modes, and also achieve an arbitrary
degree of attenuation of the effect of uncertainty on the reactor temperature.
Then, with the aid of Eq.7.9, we compute the region of guaranteed closed-loop
stability associated with each mode, which will be used in implementing the
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necessary switching laws. The following tuning parameters were used for each
controller: c1 = c2 = 1, φ1 = φ2 = 0.01, χ1 = 2, χ2 = 1.1, ρ1 = ρ2 = 0.001,
to guarantee that the reactor temperature satisfies a relation of the form
lim sup

t→∞
|T (t)− Ts| ≤ 0.01.

Several closed-loop simulations were performed to evaluate the proposed
control strategy. In the first set of simulation runs, the reactor is operated in
the first mode (control valve closed, σ = 0) for all time, with no switching. The
feedback controller designed for this mode is consequently implemented to ro-
bustly stabilize the reactor temperature, starting from an admissible initial
condition. Figure 7.6 (solid lines) depicts the resulting reactor temperature
(controlled output) and rate of heat input (manipulated input) profiles. In-
cluded in the figure also are the corresponding open-loop profiles with no con-
trol (dashed lines). We observe that the controller successfully stabilizes the
reactor temperature at the desired steady-state and simultaneously attenuates
the effect of disturbances and model uncertainty on the reactor temperature.

In the second set of simulation runs, we seek to accommodate the opera-
tional requirement of increasing the product concentration by switching to the
second mode (control valve open, σ = 1) at some point. Note that switching
to the second mode (i.e., opening the valve) is accompanied by a switch to
the second controller responsible for stabilizing this mode. In the absence of
any explicit switching guidelines, suppose that the switching time is randomly
set to be as early as t = 12 min. The resulting temperature and heat input
profiles in this case are shown in Figure 7.7. It is clear from the figure that by
switching at this arbitrarily chosen time, the controller for the σ = 1 mode
is unable to stabilize the reactor temperature at the desired steady-state nor
attenuate the effect of uncertainty on the reactor temperature. The reason –
which is reflected in the input profile – is that at this time, the process state
lies outside the stability region of the σ = 1 mode and therefore, the available
control action is insufficient to stabilize the temperature.

Now, instead of choosing the switching time arbitrarily, suppose that the
nominal switching laws proposed in [77] are used. These laws were used to
address a similar switched reactor control problem under nominal conditions
(without uncertainty). This scenario is considered here to study the effect
of uncertainty on switching. To this end, consider first the case where no
uncertainty is present (i.e., θi ≡ 0) and initialize the closed-loop system within
the first mode (control valve closed, σ = 0) at the same admissible initial
condition, considered previously, using the first controller with ρ1 = χ1 = 0.
By tracking the closed-loop trajectory in time, it is found that the process state
enters the stability region of the second mode at t = 24 min. Consequently, the
mode transition (including a switch to the second controller with ρ2 = χ2 = 0)
is carried out at this time. The resulting controlled output and manipulated
input profiles are depicted by the solid lines in Figure 7.8 which show that
the reactor temperature stabilizes at the desired steady-state in the absence
of uncertainty.
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Fig. 7.6. Reactor temperature and rate of heat input profiles under the bounded
robust controller of the first mode, i.e., control valve closed and σ = 0 (solid lines)
and under open-loop conditions (dashed lines).
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Fig. 7.7. Reactor temperature and rate of heat input profiles when the reactor
is initially operated in the first mode (control valve closed, σ = 0) using the cor-
responding robust controller, then the control valve is opened (σ = 1) at t = 12
min and the robust controller for the second mode is activated in place of the first
controller.
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Fig. 7.8. Reactor temperature and rate of heat input profiles for the case when
mode switching is carried out at t = 24 min with no uncertainty present (solid lines)
and for the case when uncertainty is present and mode switching (using nominal
controllers with ρi = χi = 0) is carried out at t = 24 min (dashed lines).
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Suppose now that the “nominally-safe” switching time, t = 24 min, is used
when model uncertainty is present. The resulting temperature and heat input
profiles are shown by the dashed lines in Figure 7.8 and Figure 7.9, which
depict, respectively, the case when the controllers do not compensate for the
effect of uncertainty (ρi = χi = 0) and the case when they compensate for the
effect of uncertainty. It is clear from the unstable behavior in both profiles that
the effect of uncertainty is significant and that, even when a robust controller
is used in each mode, the nominal switching rules (or times) cannot guarantee
closed-loop stability when uncertainty is present. As indicated by the input
profiles, which remain saturated for all times, the state lies outside the sta-
bility region of the second mode at t = 24 min. These results underscore the
fact that, for hybrid processes, the impact of model uncertainty transcends
the well-known adverse effects on the stability and performance of purely con-
tinuous processes (which comprise in this case the lower-level modes of the
hybrid process) since uncertainty impacts also on the design of the switching
logic. Owing to the limitations imposed by actuator constraints on the sta-
bility regions of the constituent modes of the hybrid process, the design of a
stabilizing switching scheme requires knowledge of these stability regions, in
order to decide when (or where, in the state-space,) a particular mode can be
activated. However, when plant-model discrepancies are taken into consider-
ation, the actual stability region of each mode can be quite smaller than the
one obtained under nominal conditions (compare, for example, the expression
in Eq.7.9 with and without the uncertainty term, θbi). Consequently, nomi-
nal characterizations of stability regions can no longer guarantee safe mode
switching, and the switching rules need to be modified.

In the final set of simulation runs, the switching scheme proposed in The-
orem 7.11, which is based on stability regions that account for the presence
of plant-model mismatch, is implemented. In this case, the reactor is initial-
ized in the σ = 0 mode, using the corresponding robust controller, and then
a switch to the σ = 1 mode (and its robust controller) is carried out only
when the condition in Eq.7.10 is satisfied (note that the condition of Eq.7.11
is not needed since the initial mode is not reactivated). The controlled output
and manipulated input profiles for this case are depicted by the solid lines
in Figure 7.9 which show that the robust hybrid control strategy successfully
drives the reactor temperature to the desired steady-state while attenuating
the effect of uncertainty. The transition between the two modes becomes safe
after about 30 minutes of reactor startup.

7.4 Predictive control of switched nonlinear systems

In Section 7.3, a framework for coordinating feedback and switching for control
of hybrid nonlinear systems with uncertainty and constraints was developed.
The key feature of the proposed control methodology is the integrated synthe-
sis of: (1) a family of lower-level bounded nonlinear controllers that stabilize
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Fig. 7.9. Reactor temperature and rate of heat input profiles for the cases when
uncertainty is present and mode switching (using the bounded robust controllers) is
carried out at t = 24 min (dashed lines) and at t = 30 min (solid lines).
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the continuous dynamical modes, and provide an explicit characterization of
the stability region associated with each mode, and (2) upper-level switching
laws that orchestrate the transition between the modes, on the basis of their
stability regions, in a way that ensures stability of the overall switched closed-
loop system. While the approach allows one to determine whether or not a
switch can be made at any given time without loss of stability guarantees, it
does not address the problem of ensuring that such a switch be made safely
at some predetermined time.

Guiding the system through a prescribed switching sequence requires a
control algorithm that can incorporate both state and input constraints in
the control design. One such method is model predictive control (MPC). As
discussed in the previous two chapters, one of the important issues that arise in
the context of using predictive control policies for the purpose of stabilization
of the individual modes, is the difficulty typically encountered in identifying
a priori (i.e., before controller implementation) the set of initial conditions
starting from where feasibility and closed-loop stability are guaranteed. This
typically results in the need for extensive closed-loop simulations to search
over a large set of possible initial conditions, thus adding to the overall com-
putational load. This difficulty is more pronounced when considering MPC
of hybrid systems that involve switching between multiple modes. Re-tuning
MPC parameters (e.g., horizon length) of each predictive controller on-line, or
running extensive closed-loop simulations in the midst of mode transitions, to
determine the feasibility of switching, becomes computationally intractable,
especially if the hybrid system involves a large number of modes with frequent
switches.

For linear systems, the switched system can be transformed into a mixed
logical dynamical system, and a mixed-integer linear program can be solved
to determine the optimal switching sequence and switching times [33, 73]. For
nonlinear systems, one can, in principle, set up the mixed integer nonlinear
programming problem, where the decision variables (and hence the solution
to the optimization problem) include the control action together with the
switching schedule. The resulting optimization problem – which in general is
non-convex due to the nonlinearity of the system – is harder to solve since it
also involves the discrete decision variables that determine mode switchings.
The complexity of the optimization problem, and the computation time re-
quirements, limit the applicability of this approach for the purpose of real-time
control.

In many systems of practical interest, the switched system is often required
to follow a prescribed switching schedule, where the switching times are no
longer decision variables, but are prescribed via an operating schedule. Moti-
vated by this practical problem, we present in this section a predictive control
framework for the constrained stabilization of switched nonlinear systems that
transit between their constituent modes at prescribed switching times. The
main idea is to design a Lyapunov–based predictive controller for each mode,
and incorporate constraints in the predictive controller design to ensure that
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the prescribed transitions between the modes occur in a way that guarantees
stability of the switched closed–loop system. This is achieved as follows. For
each mode, a Lyapunov-based model predictive controller is designed, and an
analytic bounded controller that uses the same Lyapunov function is used to
explicitly characterize a set of initial conditions for which the predictive con-
troller is guaranteed to be feasible, and hence stabilizing, irrespective of the
predictive controller parameters. Then, constraints are incorporated in the
MPC design which, upon satisfaction, ensure that: (1) the state of the closed–
loop system, at the time of the transition, resides in the stability region of
the mode that the system is switched into, and (2) the Lyapunov function
for each mode is non-increasing wherever the mode is re-activated, thereby
guaranteeing stability. The proposed control method is demonstrated through
application to a chemical process example.

7.4.1 Preliminaries

We consider the class of switched nonlinear systems represented by the fol-
lowing state-space description:

ẋ(t) = fσ(t)(x(t)) + Gσ(t)(x(t))uσ(t)

uσ(t) ∈ Uσ

σ(t) ∈ K := {1, · · · , p}
(7.18)

where x(t) ∈ IRn denotes the vector of continuous-time state variables, uσ(t) =
[u1

σ(t) · · ·um
σ (t)]T ∈ Uσ ⊂ IRm denotes the vector of constrained manipulated

inputs taking values in a nonempty compact convex set, Uσ := {uσ ∈ IRm :
‖uσ‖ ≤ umax

σ }, where ‖·‖ is the Euclidian norm, umax
σ > 0 is the magnitude of

the constraints, σ : [0,∞) → K is the switching signal which is assumed to be a
piecewise continuous (from the right) function of time, i.e., σ(tk) = lim

t→t+
k

σ(t)

for all k, implying that only a finite number of switches is allowed on any
finite interval of time. p is the number of modes of the switched system, σ(t),
which takes different values in the finite index set K, represents a discrete
state that indexes the vector field f(·), the matrix G(·), and the control input
u(·). Throughout this section, we use the notations tkin

r
and tkout

r
to denote

the times at which the k-th subsystem is switched in and out, respectively, for
the r-th time, i.e., σ(t+kin

r
) = σ(t−kout

r
) = k. With this notation, it is understood

that the continuous state evolves according to ẋ = fk(x)+Gk(x)uk for tkin
r
≤

t < tkout
r

.
We denote by Tk,in the set of switching times at which the k-th sub-

system is switched in, i.e., Tk,in = {tkin
1

, tkin
2

, · · ·}. Similarly, Tk,out denotes
the set of switching times at which the k-th subsystem is switched out,
i.e., Tk,out = {tkout

1
, tkout

2
, · · ·}. It is assumed that all entries of the vector
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functions fk(x), and the n × m matrices Gk(x), are sufficiently smooth on
their domains of definition and that fk(0) = 0 for all k ∈ K. Furthermore,
the notation Lf h̄ denotes the standard Lie derivative of a scalar function,

h̄(x), with respect to the vector function, f(x), i.e., Lf h̄(x) =
∂h̄

∂x
f(x), and

lim sup
t→∞

f(x(t)) = lim
t→∞

{sup
τ≥t

f(x(τ))}.
In the remainder of this section, we focus on the problem of stabilizing

switched nonlinear systems of the form of Eq.7.18 where mode transitions are
decided and executed at prescribed times. In order to provide the necessary
background for the main results in Section 7.4.4, we will briefly review, in the
next subsection, the design procedure for a bounded controller whose stability
properties are then exploited for the design of a Lyapunov–based model pre-
dictive controller that guarantees stability for an explicitly characterized set
of initial conditions. For simplicity, we will focus only on the state feedback
control problem where measurements of x(t) are assumed to be available for
all t.

7.4.2 Bounded Lyapunov-based controller design

Consider the system of Eq.7.18, for a fixed σ(t) = k, for some k ∈ K, for
which a control Lyapunov function, Vk, exists. Using the results in [177] (see
also Chapters 4-6), the following bounded control law can be constructed:

uk(x) = −kk(x)LGk
Vk(x) := bk(x) (7.19)

where

kk(x) =
L∗fk

Vk(x) +

√(
L∗fk

Vk(x)
)2

+ (umax
k ‖(LGk

Vk)T (x)‖)4

‖(LGk
Vk)T (x)‖2

[
1 +

√
1 + (umax

k ‖(LGk
Vk)T (x)‖)2

] (7.20)

when LGk
Vk(x) 6= 0, and kk(x) = 0 when LGk

Vk(x) = 0, LGk
Vk =

[Lg1
k
Vk · · ·Lgm

k
Vk] is a row vector, where gi

k is the i-th column of Gk, L∗fk
Vk =

Lfk
Vk + ρkVk and ρk > 0. For the above controller, one can compute an

estimate of the stability region as follows:

Ωk(umax
k ) = {x ∈ IRn : Vk(x) ≤ cmax

k } (7.21)

where cmax
k > 0 is the largest number for which Ωk(umax

k ) is completely
contained within the set

Φk(umax
k ) = {x ∈ IRn : L∗fk

Vk(x) ≤ umax
k ‖(LGk

Vk)T (x)‖} (7.22)

The bounded controller of Eqs.7.19-7.20 possesses a robustness property with
respect to measurement errors, that preserves closed–loop stability when the
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control action is implemented in a discrete (sample and hold) fashion with a
sufficiently small hold time (∆). Specifically, the control law ensures that, for
all initial conditions in Ωk, the closed–loop state remains in Ωk and eventually
converges to some neighborhood of the origin whose size depends on ∆. This
robustness property, formalized below in Proposition 7.16 (see Appendix E
for the proof), will be exploited in designing an appropriate Lyapunov-based
predictive controller in Section 7.4.3. For further results on the analysis and
control of sampled-data nonlinear systems, the reader may refer to [105, 207,
140, 299].

Proposition 7.16. Consider the system of Eq.7.18, for a fixed value of σ(t) =
k, under the bounded control law of Eqs.7.19–7.20 with ρk > 0 and Ωk as
the stability region estimate obtained under continuous implementation. Let
uk(t) = uk(j∆) for all j∆ ≤ t < (j + 1)∆ and uk(j∆) = bk(x(j∆)), j =
0, · · · ,∞. Then, given any positive real number, dk, there exists a positive
real number ∆∗

k such that if x(0) := x0 ∈ Ωk and ∆ ∈ (0,∆∗
k], then x(t) ∈

Ωk ∀ t ≥ 0 and lim sup
t→∞

‖x(t)‖ ≤ dk.

Remark 7.17. The idea behind Proposition 7.16 can be understood as follows
(see also Figure 7.10). For a given dk (that defines a ball in the neighborhood
of the origin that the closed–loop state is required to converge to), one can
find δ

′
k > 0 such that if x ∈ Ωu

k := {x ∈ IRn : Vk(x) ≤ δ
′
k}, then ‖x‖ ≤ dk.

Then, one can find ∆∗
k > 0 and δk (that defines the set Ωf

k := {x ∈ IRn :
Vk(x) ≤ cmax

k − δk}) such that: (a) for all initial conditions in Ωk\Ωf
k := Mk,

V̇k stays negative for an implement and hold time of ∆∗
k, and (b) for all initial

conditions in Ωf
k , the closed–loop state cannot escape Ωu

k under any admissible
control action before a time ∆∗

k has elapsed. Note that for all initial conditions
in Ωf

k , the value of Vk may increase during one hold time. For all x0 ∈ Mk

and 0 < ∆ ≤ ∆∗
k, however, the value of Vk continues to decrease under the

bounded control law until the closed–loop state enters Ωf
k (and therefore Ωu

k ).
From this point onward, for any state x ∈ Ωf

k , x(t) ∈ Ωu
k for t ∈ [0,∆] (by

definition of the sets Ωf
k , Ωu

k ). For any state x ∈ Ωu
k\Ωf

k , V̇k < 0 for t ∈ [0,∆]
and hence x(t) ∈ Ωu

k for t ∈ [0,∆] (since Ωu
k is a level set of Vk). The state of

the closed–loop system, therefore, continues to evolve in Ωu
k for all times after

it has entered Ωu
k , and hence we have that lim sup

t→∞
‖x(t)‖ ≤ dk. Note that if

∆ = 0, the discrete implementation reduces to continuous implementation,
under which asymptotic stability is guaranteed for all initial conditions in Ωk.

7.4.3 Lyapunov-based predictive controller design

In this section, we consider model predictive control of the system of Eq.7.18,
for a fixed σ(t) = k for some k ∈ K. We present here a Lyapunov–based
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Fig. 7.10. A schematic representation of the stability region and the evolution
of the closed–loop state trajectory under discrete implementation of the bounded
controller.

design of MPC (see Remark 7.19 for a discussion on this formulation and its
relationship to other Lyapunov-based formulations) that guarantees feasibility
of the optimization problem and hence constrained stabilization of the closed–
loop system from an explicitly characterized set of initial conditions. For this
MPC design, the control action at state x and time t is obtained by solving,
on-line, a finite horizon optimal control problem of the form:

P (x, t) : min{J(x, t, uk(·))|uk(·) ∈ Sk} (7.23)

s.t. ẋ = fk(x) + Gk(x)uk (7.24)

V̇k(x(τ)) ≤ −εk if Vk(x(t)) > δ
′
k, τ ∈ [t, t + ∆) (7.25)

Vk(x(τ)) ≤ δ
′
k if Vk(x(t)) ≤ δ

′
k, τ ∈ [t, t + ∆) (7.26)

where εk is a sufficiently small positive real number (see the Proof of Propo-
sition 7.16 in Appendix E), δ

′
k is a positive real number for which Vk(x) ≤ δ

′
k

implies ‖x‖ ≤ dk (see Remark 7.17), Sk = Sk(t, T ) is the family of piece-
wise continuous functions (functions continuous from the right), with period
∆, mapping [t, t + T ] into Uk, T is the specified horizon and Vk is the Lya-
punov function used in the bounded controller design. A control uk(·) in Sk

is characterized by the sequence {uk[j]} where uk[j] := uk(j∆) and satisfies
uk(t) = uk[j] for all t ∈ [j∆, (j + 1)∆). The performance index is given by
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J(x, t, uk(·)) =
∫ t+T

t

[‖xu(s; x, t)‖2Q + ‖uk(s)‖2R
]
ds (7.27)

where Q is a positive semi-definite symmetric matrix, R is a strictly positive-
definite symmetric matrix, and xu(s; x, t) denotes the solution of Eq.7.18, due
to control u, with initial state x at time t. The minimizing control u0

k(·) ∈ Sk

is then applied to the plant over the interval [t, t + ∆) and the procedure is
repeated indefinitely. This defines an implicit model predictive control law:

Mk(x) := argmin(J(x, t, uk(·))) := u0
k(t;x, t) (7.28)

The closed–loop stability properties under the Lyapunov–based predictive
controller of Eqs.7.23–7.28 are inherited from the bounded controller of
Eqs.7.19–7.20 under discrete implementation, and are formalized in Propo-
sition 7.18 below (see Appendix E for the proof).

Proposition 7.18. Consider the constrained system of Eq.7.18, for a fixed
value of σ(t) = k, under the MPC law of Eqs.7.23–7.28, designed using a con-
trol Lyapunov function Vk that yields a stability region Ωk under continuous
implementation of the bounded controller of Eqs.7.19-7.20 with a fixed ρk > 0.
Then, given any positive real number dk, there exist positive real numbers ∆∗

k

and δ
′
k, such that if x(0) ∈ Ωk and ∆ ∈ (0,∆∗

k], then x(t) ∈ Ωk ∀ t ≥ 0 and
lim sup

t→∞
‖x(t)‖ ≤ dk.

Remark 7.19. Note that, to achieve closed–loop stability, the predictive con-
troller formulation of Eqs.7.23–7.28 requires that the value of the Lyapunov
function decrease during the first time step only. This is due to the receding-
horizon nature of controller implementation which dictates that only the first
move of the set of calculated control moves be implemented and that the
problem be re-solved at the next time step. Other Lyapunov-based predictive
control approaches (see, for example, [155, 221]) typically incorporate a sim-
ilar Lyapunov function decay constraint, albeit requiring that the constraint
of Eq.7.25 hold at the end of the prediction horizon, and assume initial feasi-
bility of this constraint. In contrast, the requirement that Vk decrease during
the first time step only in Eq.7.25 allows the use of the bounded controller as
an auxiliary controller to explicitly characterize the set of initial conditions
stating from where the predictive controller is guaranteed to be feasible. Ex-
tensions of the Lyapnov–based controller design of Eqs.7.23–7.28 to the case
when both input and state constraints are present can be found in [198].

Remark 7.20. Initial feasibility of the optimization problem is guaranteed be-
cause of: (1) the use of the same Vk that was used to design the bounded
controller of Eqs.7.19-7.20, (2) initializing the closed–loop system within the
stability region of the bounded controller, Ωk, and (3) using a hold time
0 < ∆ ≤ ∆∗

k. Note that for any initial condition, x0, such that x0 ∈ Ωk\Ωu
k ,
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we have x0 ∈Mk, and that for any x0 ∈Mk, negative-definiteness of V̇k for a
time duration less than ∆∗

k can be achieved with a control action (e.g., the one
provided by the bounded controller) that respects the input constraints. For
MPC implementation, therefore, and for sufficiently small ∆ (0 < ∆ ≤ ∆∗

k),
the constraint of Eq.7.25 is guaranteed to be satisfied (the control action com-
puted by the bounded controller design can also be used to provide a feasible
initial guess to the optimization problem). Furthermore, since the state is ini-
tialized in Ωk, which is a level set of Vk, the decay of Vk during any given
time step ensures that the closed–loop state remains within Ωk, thereby guar-
anteeing feasibility at future times. Once the state of the closed–loop system
enters Ωu

k , it may not be possible to drive the state closer to the origin, but
it is possible to restrict the state to be within Ωu

k . In this case, the constraint
of Eq.7.26 is used to ensure that the state of the closed–loop system does not
leave Ωu

k . Note, once again, that the control action prescribed by the bounded
controller provides a feasible initial guess for the satisfaction of this constraint.

Remark 7.21. The fact that only practical stability is achieved is not a limi-
tation of the specific MPC formulation used, but is rather due to the discrete
implementation of the controller. Even if the bounded controller were used
instead under the same implement-and-hold time of ∆, it would still only
guarantee convergence of the closed–loop state to the set Ωu

k , the size of which
is limited by the value of the hold time, ∆ (in the limit as ∆ goes to zero,
i.e., continuous implementation, the bounded controller and the predictive
controller enforce asymptotic stability). Note also that any other Lyapunov-
based analytic control design that provides an explicit characterization of the
stability region and is robust with respect to discrete implementation can be
used as an auxiliary controller.

Remark 7.22. As discussed in Chapter 6, one of the key challenges that impact
on the practical implementation of NMPC is the inherent difficulty of char-
acterizing, a priori, the set of initial conditions starting from where a given
NMPC controller is guaranteed to stabilize the closed–loop system, or for a
given set of initial conditions, to identify the value of the prediction horizon for
which the optimization problem will be feasible. Use of conservatively large
horizon lengths to address stability only increases the size and complexity
of the nonlinear optimization problem and could make it intractable. Owing
to the fact the closed–loop stability is guaranteed by the Lyapunov-based
predictive controller from an explicitly characterized set of initial conditions
irrespective of the prediction horizon, the time required for the computation
of the control action can be made smaller, if so desired, by reducing the pre-
diction horizon without loss of stability.

Remark 7.23. In the event that full state measurements are not available con-
tinuously, but are available only at sampling times ∆s > ∆∗

k, i.e., greater than
what a given bounded control design can tolerate (and, therefore, greater than
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the maximum allowable discretization for the Lyapunov-based predictive con-
troller), it is necessary to redesign the bounded controller to increase the
robustness margin. A larger value of ∆∗

k may be achieved by increasing the
value of the parameter ρk in the design of the bounded controller (see Proof of
Proposition 7.16 in Appendix E). If the value of the sampling time is reason-
able, an increase in the value of the parameter ρk, while leading to a shrinkage
in the stability region estimate for the Lyapunov-based predictive controller,
can increase ∆∗

k to a value greater than ∆s and preserve the desired feasibility
and stability guarantees of the Lyapunov-based predictive controller.

7.4.4 Predictive control with scheduled mode transitions

Consider now the switched nonlinear system of Eq.7.18, with a prescribed
switching sequence (including the switching times) defined by the sets Tk,in =
{tkin

1
, tkin

2
, · · ·} and Tk,out = {tkout

1
, tkout

2
, · · ·}. Also, assume that for each mode

of the switched system, a Lyapunov–based predictive controller of the form of
Eqs.7.23-7.28 has been designed and an estimate of the stability region gener-
ated. The control problem is formulated as the one of designing a Lyapunov-
based predictive controller that guides the closed–loop system trajectory in a
way that the schedule described by the switching times is followed and stabil-
ity of the closed–loop system is achieved. A predictive control algorithm that
addresses this problem is presented in Theorem 7.24 below. The proof of the
theorem is given in Appendix E.

Theorem 7.24. Consider the constrained nonlinear system of Eq.7.18, the
control Lyapunov functions Vk, k = 1, · · · , p, and the stability region estimates,
Ωk, obtained under continuous implementation of the bounded controller of
Eqs.7.19-7.20 with fixed ρk > 0, k = 1, · · · , p. Let 0 < Tdesign < ∞ be a
design parameter, and let t be such that tkin

r
≤ t < tkout

r
and tmin

j
= tkout

r
for

some m, k ∈ K. Consider the following optimization problem:

P (x, t) : min{J(x, t, uk(·))|uk(·) ∈ Sk} (7.29)

J(x, t, uk(·)) =
∫ t+T

t

[‖xu(s; x, t)‖2Q + ‖uk(s)‖2R
]
ds (7.30)

where T is the prediction horizon given by T = tkout
r

− t, if tkout
r

< ∞, or
T = Tdesign if tkout

r
= ∞, subject to the following constraints:

ẋ = fk(x) + Gk(x)uk (7.31)

V̇k(x(τ)) ≤ −εk if Vk(x(t)) > δ
′
k, τ ∈ [t, t + ∆) (7.32)

Vk(x(τ)) ≤ δ
′
k if Vk(x(t)) ≤ δ

′
k, τ ∈ [t, t + ∆) (7.33)

and, if tkout
r

= tmin
j

< ∞,
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Vm(x(tmin
j

)) ≤





Vm(x(tmin
j−1

))− ε∗ , j > 1, Vm(x(tmin
j−1

)) > δ
′
m

δ
′
m , j > 1, Vm(x(tmin

j−1
)) ≤ δ

′
m

cmax
m , j = 1





(7.34)

where ε∗ is a positive real number. Then, given a positive real number dmax,
there exist positive real numbers ∆∗ and δ

′
k, k = 1, · · · , p such that if the

optimization problem of Eqs.7.29-7.34 is feasible at all times, the minimizing
control is applied to the system over the interval [t, t + ∆kr

], where ∆kr
∈

(0,∆∗] and tkout
r

− tkin
r

= lkr∆kr for some integer lkr > 0, and the procedure
is repeated, then lim sup

t→∞
‖x(t)‖ ≤ dmax.
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Fig. 7.11. A schematic representation of the predictive control structure comprised
of the predictive and bounded controllers for the constituent modes, together with
transition constraints.

Remark 7.25. Note that feasibility of the constraint of Eq.7.32 between mode
transitions is guaranteed, provided that the system is initialized within the
stability region, and does not need to be assumed. This stability constraint
ensures that the value of the Lyapunov function of the currently active mode
keeps decreasing (recall that one of the criteria in the MLF stability analysis
is that the individual modes of the switched system be stable). The constraint
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of Eq.7.34 expresses two transition requirements simultaneously: (1) the MLF
constraint that requires that the value of the Lyapunov function be less than
what it was the last time the system was switched into that mode (required
when the switching sequence is infinite, see [39] for details), and (2) the stabil-
ity region constraint that requires that the state of the process reside within
the stability region of the target mode at the time of the switch; since the
stability regions of the modes are expressed as level sets of the Lyapunov
functions, the MLF-constraint also expresses the stability region constraint.
The understanding that the chosen switching schedule is a reasonable one
(i.e., one that does not result in closed–loop instability) motivates the as-
sumption on the feasibility of the transition constraints for all times. Note
that feasibility of the transition constraints can also be used to validate the
given switching schedule, and can be used to abort the switching schedule
(i.e., to decide that the remaining switches should not be carried out) in the
interest of preserving closed–loop stability.

Remark 7.26. Fig.7.11 is a schematic that depicts the main features of the pre-
dictive controller of Eqs.7.29–7.34, for representative switching between two
modes, where the switching schedule dictates the transitions and is accounted
for in the predictive control design. A representative implementation of the
predictive controller is also depicted schematically by the solid lines in Figure
7.12. The algorithm below explains the implementation of the predictive con-
troller of Eqs.7.29–7.34, including the course of action that needs to be taken
if the predictive controller does not yield a feasible solution:

1. Given the system model of Eq.7.18 and the constraints on the input,
design the bounded controller of Eqs.7.19–7.20 for each mode and compute
the stability region estimate, Ωk(umax

k ), for the bounded controller using
Eqs.7.22–7.21.

2. Given the size of the ball that the state is required to converge to, dmax,
compute ∆∗

k, k = 1, · · · , p for the predictive controller of Eqs.7.23–7.28
such that under single mode operation for each mode, lim sup

t→∞
‖x(t)‖ ≤ dmax.

Compute ∆∗ =
p

min
k=1

{∆∗
k}, and use a ∆kr ∈ (0,∆∗], tkout

r
− tkin

r
= lkr∆kr

for some integer lkr > 0, for which for the purpose of MPC implementa-
tion.

3. Consider the time tkin
r

, which designates the time that the closed–loop
system is in the k-th mode for the r-th time, and the state belongs to the
stability region of the k-th mode (for the purpose of initialization, i.e.,
at t = 0, this would correspond to t1in

1
, and the state belonging to the

stability region Ω1(umax
1 )).

4. From the set of prescribed switching times, pick tmin
j

= tkout
r

(tmin
j

, there-
fore, is the time that the next switch takes place, and that the system,
upon exiting from the current mode enters mode m for the j-th time).
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5. Consider the predictive controller of Theorem 7.24. The constraint that
Vm(tmin

j
) ≤ Vm(tmin

j−1
) − ε∗ requires that when the closed–loop system

enters the mode m, the value of Vm is less than what it was at the time
that the system last entered mode m. If the system has never entered
mode m before, i.e., for j = 1, set Vm(tmin

j−1
) = cmax

m (this requires that
the state belongs to the stability region corresponding to mode m). If the
closed–loop state has already entered the desired ball around the origin,
implement Vm(tmin

j
) ≤ δ

′
m, that ensures that the state stays within the

ball, ‖x‖ ≤ dmax.
6. If at any time, the predictive controller of Eqs.7.29–7.34 does not yield

a feasible solution, or the switching schedule does not prescribe another
switch, go to step 7; else implement the predictive controller up-to time
tkout

r
, i.e., until the time that the system switches into mode m and go

back to step 4 to proceed with the rest of the switching sequence.
7. Implement the Lyapunov-based predictive controller of Eqs.7.23-7.28 for

the current mode to stabilize the closed–loop system.

Remark 7.27. Since the switching times are fixed, the prediction of the states
in the controller needs to be carried out from the current time up-to the time
of the next switch only. The predictive controller is therefore implemented
with a shrinking horizon between successive switching times. Note, however,
that the value of the horizon is not a decision variable; it is obtained simply
by evaluating the difference between the next switching time and the current
time. In the case that the switching schedule terminates, then after the last
switch has been made and the system is evolving in the terminal mode, the
horizon is fixed and set equal to a preset design parameter Tdesign. From this
point on, the controller design of Eqs.7.29-7.33 reduces to the Lyapunov–based
predictive controller of Eqs.7.23-7.27 for the terminal mode, and guarantees
practical stability of the closed–loop system for any value of prediction hori-
zon, including for T = Tdesign. Note also that picking the hold time, ∆kr ,
during the time interval between tkin

r
and tkout

r
, such that the time interval

between switches is an integer multiple of the sampling time is made to ensure
that the system does not go through a transition while the final control move
in a given mode is being implemented. To see the reasoning behind this, note
first that, due to the discrete nature of controller implementation, the final
control in the pre-switching mode is implemented for ∆kr time. Therefore, if
the system undergoes a transition during that time (i.e., if t + ∆kr is greater
than tkout

r
), then the control could cause the closed-loop state to leave the

stability region of the target mode after switching has been executed. Picking
∆kr as described above precludes such a possibility.

Remark 7.28. The constraints of Eqs.7.32–7.33 require that the closed–loop
state trajectory evolve in such a way that it enters the stability region of the
target mode (due to Eq.7.34) while, up-to the time of the switch, continuing to
evolve in the stability region of the current mode. Owing to this, if at any time
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the transition constraints become infeasible, and the switching sequence is
aborted, the Lyapunov-based predictive controller for the then-current mode is
guaranteed to stabilize the closed-loop system. While this condition safeguards
against instability, it may be restrictive in the sense that it could hamper the
feasibility of the optimization problem, especially if the boundaries of the
stability regions of the constituent modes do not have a significant overlap.
When dealing with a finite switching sequence, the constraints of Eqs.7.32–
7.33 can be relaxed for all times before the final switch takes place. Also, a
relaxed version of the constraint of Eq.7.34 may be used up to the time of the
terminal switch, requiring only that Vm(tmin

j
) ≤ cmax

m (i.e., the closed–loop
state resides in the stability region of the target mode; see dashed lines in
Figure 7.12).

switch

x(0)
First switch

1
u

Ω (      )u

Second

max

maxΩ (      )1

22

Ω (      )
3 u3

max

Fig. 7.12. Schematic representation of the closed–loop trajectory of a switched
system under the implementation of the predictive control algorithm of Eqs.7.29–
7.34 (solid line) and using the relaxed constraints of Remark 7.28 (dotted line).

Remark 7.29. For purely continuous systems, the problem of implementing
MPC with guaranteed stability regions was addressed in Chapter 5 for linear
systems and in Chapter 6 for nonlinear systems, by means of a hybrid con-
trol structure that unites bounded control and MPC. The hybrid structure
was used to embed the implementation of MPC within the stability region of
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a Lyapunov-based bounded controller which serves as a fall-back component
that can be switched to in the event of infeasibility or instability of the pre-
dictive controller. In this section, the bounded controller design is not used as
a fall–back controller, but rather for the purpose of providing an estimate of
the stability region for the Lyapunov-based predictive controller, and feasible
initial guesses for the control moves (the decision variables in the optimization
problem). Note that the Lyapunov-based predictive controller of Eqs.7.23-7.28
is guaranteed to be feasible and stabilizing from an explicitly characterized
set of initial conditions.

Remark 7.30. The use of a predictive control frameowrk is both beneficial and
essential to the problem of implementing a prescribed switching schedule using
the proposed approach. In particular, while the bounded controller can achieve
stabilization under single mode operation, the bounded controller framework
simply does not address performance considerations. More importantly, it does
not allow for incorporating transition constraints, and there is no guarantee
that the bounded controller (or even the Lyapunov-based predictive controller,
if the transition constraints are not incorporated) can stabilize the closed–loop
system when following a prescribed switching schedule (see the simulation
example in Section 7.4.5 for a demonstration). In contrast, the predictive
controller approach provides a natural framework for specifying appropriate
transitions constraints whose feasibility ensures closed–loop stability.

Remark 7.31. For a nonlinear switched system of the form of Eq.7.18, while
one can in principle set up the mixed integer nonlinear programming prob-
lem, where the decision variables (and hence the solution to the optimization
problem) include the control action together with the switching schedule, it is
not possible to use it for the purpose of online implementation. In many sys-
tems of practical interest, however, the switched system may be only required
to follow a prescribed switching schedule. The predictive controller algorithm
provides an implementable controller for switched nonlinear systems with a
prescribed switching sequence by incorporating appropriate constraints on the
implemented control action in each of the individual modes. Note also that,
if it is possible to solve the mixed integer optimization problem off-line, the
solution can be used to provide a set of optimal switching times, and an as-
sociated switching sequence, which can then be implemented online using the
proposed approach.

Remark 7.32. Note that the predictive controller algorithm presented in The-
orem 7.24 can be adapted to account for possible uncertainty in the switching
schedule. For example, in the case that the switching sequence is known, but
only upper and lower bounds on the switching times are available, i.e., we know
that tkin, min

r
≤ tkin

r
≤ tkin, max

r
, the constraint of Eq.7.34 can be modified to

require that Vk(tkin,min
r

) < Vk(tkin
r−1

), i.e., to require that the closed–loop state
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enters the stability region of the target mode at tkin,min
r

. Additionally, a con-
straint that requires the closed–loop system to evolve in the intersection of
the stability regions of the current and target modes between tkin,min

r
and

tkin,max
r

, can be added so that any time between tkin,min
r

and tkin,max
r

that the
switch occurs, the closed–loop state resides in the stability region of the target
mode.

7.4.5 Application to a chemical process example

We consider a continuous stirred tank reactor where an irreversible, first-order
exothermic reaction of the form A

k→ B takes place. The operation schedule
requires switching between two available inlet streams consisting of pure A
at flow rates F1, F2, concentrations CA1, CA2, and temperatures TA1, TA2,
respectively. For each mode of operation, the mathematical model for the
process takes the form:

dCA

dt
=

Fσ

V
(CAσ − CA)− k0 exp

( −E

RTR

)
CA

dTR

dt
=

Fσ

V
(TAσ − TR) +

(−∆H)
ρcp

k0 exp
( −E

RTR

)
CA +

Qσ

ρcpV

(7.35)

where CA denotes the concentration of the species A, TR denotes the tem-
perature of the reactor, Qσ is the heat removed from the reactor, V is the
volume of the reactor, k0, E, ∆H are the pre-exponential constant, the ac-
tivation energy, and the enthalpy of the reaction, cp and ρ, are the heat ca-
pacity and fluid density in the reactor and σ(t) ∈ {1, 2} is the discrete
variable. The values of all process parameters can be found in Table 7.2.
The control objective is to stabilize the reactor at the unstable equilibrium
point, (Cs

A, T s
R) = (0.57, 395.3), using the rate of heat input, Qσ, and the

change in inlet reactant concentration, ∆CAσ = CAσ − CAσs as manipulated
inputs with constraints: |Qσ| ≤ 1KJ/hr and |∆CAσ| ≤ 1mol/l, σ = 1, 2.
For each mode, we considered a quadratic Lyapunov function of the form

Vk(x) = xT Pkx where x = [CA−Cs
A TR−T s

R]T , with P1 =
[

33.24 1.32
1.32 0.06

]
and

P2 =
[

7.39 0.32
0.32 0.016

]
, and used these in the Lyapunov-based controller design to

compute the stability regions for the two modes, Ω1 and Ω2, shown in Figure
7.13. The matrices Pk were computed by solving a Riccatti inequality using
the linearized system matrices. The computation of the stability regions (us-
ing Eqs.7.21-7.22), however, was done using the nonlinear system dynamics.
The parameters in the objective function of Eq.7.27 are chosen as Q = qI,
with q = 1, and R = rI, with r = 1.0. The constrained nonlinear optimiza-
tion problem is solved using the MATLAB subroutine fmincon, and the set
of ODEs is integrated using the MATLAB solver ODE45.
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Table 7.2. Process parameters and steady–state values for the reactor of Eq.7.35.

V = 0.1 m3

R = 8.314 kJ/kmol ·K
CA1s = 0.79 kmol/m3

CA2s = 1.0 kmol/m3

TA1 = 352.6 K
TA2 = 310.0 K
Q1s = 0.0 KJ/hr
Q2s = 0.0 KJ/hr
∆H = −4.78× 104 kJ/kmol
k0 = 1.2× 109 s−1

E = 8.314× 104 kJ/kmol
cp = 0.239 kJ/kg ·K
ρ = 1000.0 kg/m3

F1 = 3.34× 10−3 m3/s
F2 = 1.67× 10−3 m3/s
TRs = 395.33 K
CAs = 0.57 kmol/m3

We first demonstrate the implementation of the Lyapunov-based predictive
controller to a single mode operation of the chemical reactor, i.e., one in which
the process is operated for all times in mode 1. To this end, we consider an
initial condition that belongs to the stability region of the predictive controller
for mode 1. As shown by the solid line in Figure 7.13, starting from the initial
condition (CA, TR) = (0.14, 404.9), which belongs to the stability region
of the predictive controller for mode 1, the controller successfully stabilizes
the closed–loop system. The corresponding closed–loop state and manipulated
input profiles are shown in Figure 7.14.

To demonstrate the need to implement the algorithm proposed in Theo-
rem 7.24 for stabilization when switching is involved, we choose a schedule
involving a switch from inlet stream 1 (mode 1) to inlet stream 2 (mode 2)
at time t = 0.1 hr. Once again, the system is initialized within the stability
region of mode 1, and the predictive controller for mode 1 is implemented
(without any transition constraints). Up until t = 0.1 hr, the state of the
closed–loop system moves towards the desired steady-state (as seen from the
dashed lines in Figure 7.13); however, when the system switches to mode 2,
the MPC controller, designed for the stabilization of the process in mode 2,
does not yield a feasible solution. If the bounded controller for mode 2 is im-
plemented, the resulting control action is not able to stabilize the closed–loop
system (dashed lines in Figures 7.13–7.14). This happens because at the time
of the transition, the state of the closed–loop system (marked by o in Fig-
ure 7.13) does not belong to the stability region of mode 2. Note also that
while the predictive formulation of Eqs.7.23-7.28 guarantees stabilization for
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all initial conditions belonging to the stability region of mode 1, it does not
incorporate constraints ensuring a safe transition to mode 2.

Finally, the predictive control algorithm of Theorem 7.24 (which incorpo-
rates constraints that account for switching) is implemented (dash-dotted lines
in Figures 7.13–7.14). The MPC controller of mode 1 is designed to drive the
state of the closed–loop system such that the state belongs to the stability re-
gion of mode 2 at the switching time. Consequently, when the system switches
to mode 2 at t = 0.1 hr, the closed–loop system state at the switching time
(marked by the ♦ in Figure 7.13) belongs to the stability region of the MPC
designed for mode 2. At this time, when the process switches to mode 2 and
the corresponding predictive controller is implemented, closed–loop stability
is achieved.
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Fig. 7.13. Closed–loop state trajectory when the reactor is operated in mode 1 for
all times under the stabilizing MPC formulation of Eqs.7.23-7.28 (solid line), when
the reactor operation involves switching from mode 1 to mode 2 at t = 0.1 hr, un-
der the predictive controller design of Eqs.7.23-7.28 without transition constraints
(dashed line), and when the reactor operation involves switching from mode 1 to
mode 2 at t = 0.1 hr, under the predictive controller of Theorem 7.24 with transi-
tions constraints (dashed–dotted line).
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Fig. 7.14. Closed-loop state (top plots) and manipulated input (bottom plots)
profiles when the reactor is operated in mode 1 for all times under the stabilizing
MPC formulation of Eqs.7.23-7.28 (solid line), when the reactor operation involves
switching from mode 1 to mode 2 at t = 0.1 hr under the predictive controller
design of Eqs.7.23-7.28 without transition constraints (dashed line), and when the
reactor operation involves switching from mode 1 to mode 2 at t = 0.1 hr under
the predictive controller of Theorem 7.24 with transition constraints (dashed–dotted
line).

7.5 Applications of hybrid systems tools to biological
networks

Hybrid system models are increasingly being used not only for the model-
ing of engineering systems, such as automotive and chemical process control
systems, but also for the modeling of a diverse array of biological networks
that implement and control important functions in biological cells, such as
metabolism, DNA synthesis, movement and information processing. The dy-
namics of biological networks often involve switching between many qualita-
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tively different modes of behavior. At the molecular level, for example, the
fundamental process of inhibitor proteins turning off the transcription of genes
by RNA polymerase reflects a switch between two continuous processes. An
example of this is the classic genetic switch observed in the bacteriophage λ
(e.g., see [222, 114, 237]), where two distinct behaviors, lysis and lysogeny,
each with different mathematical models, are seen. Also, at the cellular level,
the cell growth and division in a eukaryotic cell is usually described as a se-
quence of four processes, each being a continuous process that is triggered by
a set of conditions or events (e.g., see [115, 175, 273]). At the inter-cellular
level, cell differentiation can also be viewed as a switched system [103].

In addition to naturally occurring switches, switched dynamics can be the
result of external intervention that attempts to re-engineer a given network
by turning on or off, for example, certain pathways. In all of these examples,
the overall behavior of the network is more appropriately viewed as a switched
system, i.e., intervals of continuous dynamics interspersed by discrete transi-
tions, and, therefore, a hybrid approach that combines elements of discrete
and continuous dynamics is necessary, not only for the modeling, simulation
and analysis (e.g., see [6, 5]), but also for controlling and modifying the net-
work behavior. Given the similarity that many biological networks exhibit to
switched systems encountered in engineering (e.g., involving feedback mech-
anisms and switching), it is instructive to investigate how these tools can
be applied to model, analyze and possibly modify the dynamics of biological
networks.

Changes in network dynamics can result from alterations in local condi-
tions (e.g., temperature, nutrient and energy source, light, cell density) and/or
changes in the molecular environment of individual regulatory components
(e.g. intra-cellular concentrations of transcription factors). Often, the net-
work can be switched between different modes by changes in parameter values.
These parameter typically include rate constants and total enzyme concen-
trations that are under genetic control. Changing the expression of certain
genes will change the parameter values of the model and move the network
across bifurcation boundaries into regions of qualitatively different behavior
(e.g., transitions from limit cycles to single and multiple steady-states). Un-
derstanding and analyzing the nature of these qualitatively different modes
of behavior typically involves bifurcation analysis which determines how the
attractors of the vector field depend on parameter values, leading to a charac-
terization of the regions in parameter space where the different behaviors are
observed. The boundaries of these regions represent the bifurcation bound-
aries.

An important question, however, that is not addressed by bifurcation anal-
ysis is that of when, or where in state space, is a transition from one mode to
another feasible. For example, bifurcations can predict that a change in a cer-
tain parameter is required for the network to move from an oscillatory mode
(stable limit cycle) to a multi-stable mode (multiple stable steady-states) but
cannot tell us when, or which, of the new steady-states will be observed upon
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switching. This is an important consideration when one tries to manipulate
the network behavior to achieve a certain desirable behavior or steady-state.
To address this question, bifurcations must be complemented by a dynami-
cal analysis of the transient behavior of the constituent modes of the overall
network. Intuitively, one expects that the newly switched mode will exhibit
the desired steady-state if, at the time of switching, the network state is in
the vicinity of that steady-state. A precise concept from nonlinear dynamical
systems theory that quantifies this closeness is that of the domain of attrac-
tion, which is the set of all points in the state space, starting from where the
trajectories of the dynamical system converge to a given equilibrium state.

In this section, we present a methodology for the dynamic analysis of mode
transitions in biological networks. The proposed approach is based on the no-
tion of coupling the switching logic to the domains of attraction (stability
regions) of the constituent modes, which was introduced earlier in this chap-
ter. To this end, we initially model the overall network as a switched nonlinear
system that dwells in multiple modes, each governed by a set of continuous-
time differential equations. The transition between the continuous modes are
triggered by discrete events (changes in model parameters that correspond to
alterations in physiological conditions). Then, following the characterization
of the steady-state behavior of each mode, Lyapunov techniques are used to
characterize the domains of attraction of the steady-states. Finally, by analyz-
ing how the stability regions of the various modes overlap with one other, it is
possible to determine when, and if, a given steady-state behavior, for a given
mode transition, is feasible or not. The proposed method is demonstrated
using a biological network model arising in cell cycle regulation.

7.5.1 A Switched system representation of biological networks

We consider biological networks modeled by systems of nonlinear ordinary
differential equations of the general form:

dx(t)
dt

= fi(t)(x(t), pi(t))

i(t) ∈ I = {1, · · · , N}
(7.36)

where x = [x1 x2 · · · xn]T ∈ IRn is the vector of continuous state vari-
ables (e.g., concentrations of the various network components such as proteins,
genes, metabolites, etc.), fi(·) is a smooth nonlinear function, pi is a vector
of network parameters (e.g., kinetic constants, total enzyme concentrations)
that are typically under genetic control, i : [0,∞) → I is the switching signal
which is assumed to be a piecewise continuous (from the right) function of
time, i.e., i(tk) = lim

t→t+
k

i(t) for all tk ≥ 0, k ∈ Z+, where Z+ is the set of

positive integers and tk is the k-th switching time, implying that only a finite
number of switches occurs on any finite interval of time. N is the number of
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modes of the switched system, i(t), which takes different values in the finite
index set, I, represents a discrete state that indexes the vector field f(·) which
determines ẋ. For each value that i takes in I, the temporal evolution of the
continuous state is governed by a different set of differential equations. The
system of Eq.7.36 is therefore a switched (multi-modal) system that consists
of a finite family of continuous nonlinear subsystems (modes) and a switching
rule that orchestrates the transitions between them. In biological networks,
mode transitions can be the result of a fundamental change in the vector field
itself (e.g., different modes having different fi’s) or, more commonly, a change
in network parameter values due to changes in levels of gene expression and
enzyme activities (which can occur spontaneously or be induced externally).

The basic problem that we address in this section is that of determin-
ing when (or where in the state-space) can a transition from one mode to
another produce a certain desired behavior that exists in the target mode
(e.g., a desired steady-state). From an analysis point of view, the answer to
this question sheds light on why certain naturally-occurring mode transitions
seem to always favor a certain steady-state behavior. From a control point
of view, on the other hand, the answer provides insight into how and when
the designer should enforce the transition in order to bring about a desired
steady-state behavior. In the next subsection, we outline a methodology that
addresses these questions.

7.5.2 Methodology for analysis of mode transitions

The methodology proposed here is based on the idea of designing the switching
logic on the basis of the stability regions of the constituent modes, which was
introduced in Sections 7.3-7.4 in the context of constrained control of switched
nonlinear systems. However, unlike the results in Sections 7.3-7.4, where the
presence of the stability regions was a consequence of the constraints imposed
on the manipulated inputs of each mode, the stability regions considered here
are directly linked to the intrinsic dynamic behavior of the constituent modes,
which is dictated by the dependence of the attractors of the vector field on
the network parameters. For example, the presence of multiple equilibrium
points in a given mode gives rise to multiple stability regions, or domains of
attraction, whose union covers the entire state-space. Clearly, which equilib-
rium state is attained depends on which region contains the system state at
the switching time. Below is the proposed methodology:

1. Identify the different modes of the network, where each mode is charac-
terized either by a different set of differential equations or by the same set
of equations but with different parameters.

2. Compute the steady-state(s) of each mode by solving:

0 = fi(xs, pi) (7.37)
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where xs is an admissible steady-state solution. Depending on the values of
p, each mode might possess a limit cycle, a single steady-state, or multiple
steady-states.

3. Characterize (or estimate) the domain of attraction (stability region) of
each steady-state in each mode. For a given steady-state, xs, the domain
of attraction, Ω(xs), consists of the set of all states starting from where
the system trajectories converge to that steady-state. Estimates of the
domain of attraction can be obtained using Lyapunov techniques [148].
For example, consider the case of isolated equilibrium points and let Vi

be a Lyapunov function candidate, i.e., Vi(xs) = 0 and Vi(x) > 0 for all
x 6= xs. Consider also the set Π(xs) = {x ∈ IRn : V̇i(x) < 0}. Then
the level set, Ω(xs) = {x ∈ IRn : Vi(x) ≤ cmax

i }, where cmax
i > 0 is the

largest constant for which Ω is fully contained in Π, provides an estimate
of the domain of attraction of xs. Due to the possible conservatism of
the resulting estimates, Lyapunov techniques are usually coupled with
other methods in order to obtain larger estimates (e.g., multiple Lyapunov
functions; see Chapter 4 in [148] for details).

4. Analyze how the domains of attraction of a given mode overlap with those
of another mode. Suppose, for example, that the network is initialized
within mode k and let T be the transition time from mode k to mode j.
Also, let xs be an admissible steady-state (among several others) of the
j-th mode. Then, if

x(T ) ∈ Ωj(xs) (7.38)

and i(t) = j ∀ t ≥ T+ (i.e., no further switches take place), then we will
have lim

t→∞
x(t) = xs, i.e., the xs steady-state will be observed following

switching. The switching rule of Eq.7.38 requires monitoring the temporal
evolution of the state evolution in order to locate where the state is at the
switching time, with respect to the domains of attraction of the mode to
be activated.

Remark 7.33. Referring to the computation of the steady-states of a biological
network, we note that it is, in general, difficult to compute all the steady-state
solutions of a system of nonlinear ordinary differential equations (ODEs). For
an arbitrary system of nonlinear ODEs, where the right-hand side does not
possess any kind of structure, one can resort to general search algorithms,
such as Newton-type methods, to solve Eq.7.37. These methods are usually
local in character and thus may require an extensive search over all possible
initial guesses in order to find all possible solutions. For biological systems,
the search complexity can be reduced somewhat by taking advantage of the
natural limits on the values of the state variables in order to bracket the re-
gion in the state-space where the system is expected to operate and where
the search needs to be carried out. More importantly, the dynamic models
of biological systems often exhibit specific types of structure that arise from
physical considerations and can thus be exploited in the computation of all
the steady-states using computational algorithms that have been developed
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in the literature. For example, if each component on the right-hand side of
the system of ODEs in Eq.7.36, fi, involves linear combinations of rational
functions of variables and parameters, then the algorithm developed in [304]
can be used to find all the steady-states (the algorithm converts the steady-
state equations into a system of polynomial equations and uses a globally
convergent homotopy method to find all the roots of the system of polynomi-
als). Most biological models of molecular networks have linear combinations
of rational functions for the right-hand side of their system of ODEs (see
the cell-cycle and λ-switch models studied in the next two sections for exam-
ples). In fact, the right-hand sides are usually even more restricted to mass
action and Michaelis-Menten type kinetics. Mass action kinetics have the form
k ∗S1 ∗S2 ∗ · · · ∗Sn; where k is a rate constant (parameter) and Si represents
the concentration of a protein (variable). Michaelis- Menten kinetics have the
form k ∗ S ∗ E/(Km + S); where k is a rate constant (parameter), Km is a
Michaelis constant (parameter), S is the substrate concentration (variable),
and E is the enzyme concentration (variable). Clearly, these kinetics are ra-
tional functions. Once the target steady-states are identified, the domains of
attraction for each steady-state can be computed. Then, the switching rule
of Eq.7.38 ensures a priori where the system will end up upon switching at
a given point in the state-space, provided that this point is within the do-
main of attraction of a stable steady-state. Finally, it should be noted that
even in the rare case that a structure cannot be identified – and subsequently
not all of the steady-states can be found – the proposed method still pro-
vides useful information regarding the feasibility of switching into any of the
known steady-states by verifying whether the state at any given given time is
contained within its domain of attraction.

Remark 7.34. The issue of robustness of the proposed approach with respect
to model uncertainty can be explicitly handled by modifying the computation
of the domains of attraction following the results presented in Chapter 4 to
account for the presence of parametric model uncertainty in the computa-
tion of the domain of attraction using bounds on the variation of the model
parameters.

Remark 7.35. The Lyapunov function-based approach that we follow for the
construction of the domains of attraction for the individual stable steady-
states yields a domain of attraction estimate that is dependent upon the
specific Lyapunov function used. To improve upon the obtained estimate, one
can use a group of different Lyapunov functions to come up with a larger
estimate of the domain of attraction. Other methods for the construction of
the Lyapunov function, such as Zubov’s method (e.g., [74]) and the sum of
squares decomposition approach [216], can also be used. Acceptability of the
computed estimates should ultimately be judged with respect to the size of
the expected operating regime. Once the domain of attraction estimates are
obtained, the switching rule of Eq.7.38 ensures that the system will go to a
certain stable steady-state if the switching occurs at a point which is within
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the domain of attraction of this steady-state. Finally, we note that the case of
multiple mode switchings can be handled in a sequential fashion – the same
way that the first mode switch is handled – by tracking where the state is at
the time of each switch.

Remark 7.36. It should be noted that the proposed approach is not limited by
the dimensionality of the system under consideration, and applies to systems
of any dimension. The estimation of the domain of attraction utilizes only
simple algebraic computations and does not incur prohibitive computational
costs with increasing dimensionality. In the simulation study presented below,
the domains of attraction are plotted for the sake of a visual demonstration.
However, a plot of the domain of attraction is not required for the implementa-
tion of the switching rule, and, therefore, poses no limitation when considering
systems of higher dimensions. The knowledge of the domain of attraction is
contained completely in the value of the level set, ci, obtained when comput-
ing the estimate of the domain of attraction. At the time of implementation,
to ascertain whether the state is within the domain of attraction requires only
evaluating the Lyapunov function and verifying if Vi(x(T )) ≤ ci. To reduce
the possible conservatism of the resulting estimate, it is often desirable to
find the largest value of ci for which the estimate Ωci = {x : Vi(x) ≤ ci} is
fully contained within Πi. For this purpose, an iterative procedure to recom-
pute (and enlarge) the estimate of the domain of attraction can be employed
whereby the value of ci is increased gradually in each iteration until a value,
cmax
i , is reached where for any ci > cmax

i , Ωci is no longer fully contained in
Πi. The level set Ωcmax

i
then is the largest estimate of the domain of attraction

that can be obtained using the level sets of the given Lyapunov function. Note
that, for a given value of ci in each iteration, the determination of whether
Ωci is fully contained in Πi involves only algebraic computations and thus
this iterative procedure does not incur prohibitive computational costs as the
dimensionality of the system increases. The same procedure also applies when
a family of Lyapunov functions is used to estimate the domain of attraction of
a given steady-state. Finally, it should be noted that how close the obtained
estimate is to the actual domain of attraction depends on the particular sys-
tem structure as well as the method used to compute this estimate (in this
case the particular Lyapunov functions chosen). In general, it is expected that
the estimate will not capture the entire domain of attraction which implies
that the union of all the estimates of the domains of attraction of all the
steady-states will not cover the entire state-space. An implication of this, for
the case when switching of the network is controlled externally and a priori
stability guarantees are sought, is that switching should be delayed until the
state trajectory enters the computed estimate of the domain of attraction of
the desired target steady-state. The “gaps” between the different estimates
(and hence the conservatism of the switching policy) can be reduced either
with the help of dynamic simulations or by augmenting the individual esti-
mates using any of the methods cited in Remark 7.35.
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Remark 7.37. The proposed approach models biological networks using de-
terministic differential equations and does not account for possible network
stochastic behavior. Such stochasticity can be modeled as uncertainty in the
model parameters, and therefore be handled directly by modifying the com-
putation of the domains of attraction in a way that accounts explicitly for
the effect of parameter model uncertainty following the results presented in
Chapter 4.

In the next subsection, we demonstrate, through computer simulations,
an applications of this methodology to the analysis of mode transitions in a
biological network that arises in eukaryotic cell cycle regulation.

7.5.3 Application to eukaryotic cell cycle regulation

We consider here an example network of biochemical reactions, based on
cyclin-dependent kinases and their associated proteins, which are involved
in cell cycle control in frog egg development. A detailed description of this
network is given in [210] where the authors use standard principles of bio-
chemical kinetics and rate equations to construct a nonlinear dynamic model
of the network that describes the time evolution of the key species includ-
ing free cyclin, the M-phase promoting factor (MPF), and other regulatory
enzymes. The model parameters have either been estimated from kinetic ex-
periments in frog egg extracts or assigned values consistent with experimental
observations. For illustration purposes, we will consider below the simplified
network model derived by the authors (focusing only on the positive-feedback
loops in the network) which captures the basic stages of frog egg development.
The model is given by:

du

dt
=

k′1
G
− (

k′2 + k′′2u2 + kwee

)
u + (k′25 + k′′25u

2)
( v

G
− u

)

dv

dt
= k′1 − (k′2 + k′′2u2)v

(7.39)

where G = 1+ kINH

kCAK
, kINH is the rate constant for inhibition of INH, a protein

that negatively regulates MPF, kCAK is the rate constant for activation of
CAK, a cdc2-activating kinase, u is a dimensionless concentration of active
MPF and v is a dimensionless concentration of total cyclin, k′2 and k′′2 are
rate constants for the low-activity and high activity forms, respectively, of
cyclin degradation; k′25 and k′′25 are rate constants for the low-activity and
high activity forms, respectively, of tyrosine dephosphorylation of MPF; k′1 is
a rate constant for cyclin synthesis, kwee is the rate constant for inhibition of
Wee1, an enzyme responsible for the tyrosine phosphorylation of MPF (which
inhibits MPF activity) (see [210] for model derivation from the molecular
mechanism, and Tables 7.3-7.4 for the parameter and steady-state values).
Bifurcation and phase-plane analysis of the above model [210] shows that, by
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changing the values of k′2, k′′2 and kwee, the following four modes of behavior
are predicted:

Table 7.3. Parameter values for the cell cycle model in Eq.7.39.

k′1 = 0.01
k′25 = 0.04
k′′25 = 100

kINH = 0.1
kCAK = 1

Table 7.4. Steady-state values (us, vs) for the cell cycle model for different values
of k′2, k′′2 , kwee.

k′2 k′′2 kwee Mode M -arrest state G2-arrest state Reference

0.01 10 3.5 G2-arrest n/a (0.016, 0.802)
0.01 0.5 2.0 M-arrest (0.202, 0.329) n/a
0.015 0.1 3.5 Bi-stable (0.276, 0.442) (0.012, 0.666)
0.01 10 2.0 Oscillatory n/a n/a Fig.7.16b

• A G2-arrested state (blocked before the G2-M transition) characterized by
high cyclin concentration and little MPF activity. This corresponds to a
unique, asymptotically stable steady-state (k′2 = 0.01, k′′2 = 10, kwee = 3.5;
see Fig.7.15a).

• An M-arrested state (blocked before the meta- to anaphase transition)
state with lots of active MPF. This corresponds to a unique, asymptotically
stable steady-state (k′2 = 0.01, k′′2 = 0.5, kwee = 2.0; see Fig.7.15b).

• An oscillatory state (alternating phases of DNA synthesis and mitosis)
exhibiting sustained, periodic fluctuation of MPF activity and total cyclin
protein. This corresponds to a stable limit cycle surrounding an unstable
equilibrium point (k′2 = 0.01, k′′2 = 10, kwee = 2.0; see Fig.7.15c).

• Co-existing stable steady-states of G2 arrest and M arrest. This corre-
sponds to three steady-states; one unstable and two locally asymptotically
stable (k′2 = 0.015, k′′2 = 0.1, kwee = 3.5; see Fig.7.15d).

The above analysis predicts that slight increases in k′2, kwee, accompanied
by a significant drop in k′′2 (which could be driven, for example, by down-
regulation of cyclin degradation) can induce a transition from the oscillatory
mode of MPF activity (early embryo stage) to the bi-stable mode. However, it
is not clear from this analysis alone whether the cell will end up in a G2- or an
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Fig. 7.15. Phase-plane portraits of the system of Eq.7.39, for different values of k′2,
k′′2 , and kwee, showing: (a) Stable steady-state with most MPF inactive, (b) Stable
steady-state with most MPF active, (c) Unstable steady-state surrounded by a limit
cycle, and (d) Bi-stability: two stable steady-states separated by an unstable saddle
point.

M-arrested state upon switching. To address this question, we initially com-
pute the domains of attraction of both steady-states in the bi-stable mode.
This is done using a Lyapunov function of the form V = (u−us)4+10(v−vs)2,
where us and vs are the steady-state values. The basic idea here is to compute,
for each steady-state, the region in the (u, v) space where the time-derivative
of V is negative-definite along the trajectories of the dynamical system of
Eq.7.39, and then use this region to obtain an estimate of the domain of
attraction. While several candidate functions could be used, this particular
function was found to yield acceptable estimates of the stability regions. The
stability regions for both steady-states are depicted in Fig.7.16a. The entire
area above the dashed curve (the separatrix) is the stability region of the M-
arrested state while the area below is the stability region of the G2-arrested
state. Both steady-states are denoted by asterisks on the plot. By plotting the
limit cycle (obtained from the oscillatory mode) on the same plot, we see that
a portion of the limit cycle lies within the stability region of the M-arrested
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Fig. 7.16. (a) A plot showing the overlap of the limit cycle of the oscillatory mode
with the domains of attraction for the M-arrested steady-state (entire area above
dashed curve) and for the G2-arrested steady-state (entire area below the dashed
curve), (b) A plot showing that switching from the oscillatory to the bi-stable mode
moves the system to different steady-states depending on where switching takes
place. In both cases, the oscillatory mode is fixed at k′2 = 0.01, k′′2 = 10, kwee = 2.0.
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Fig. 7.17. The time evolution plots of (a) active MPF, and (b) total cyclin upon
switching from the oscillatory to the bi-stable mode at two representative switching
times. At t = 333.5 min, the state trajectory lies on segment A (see Fig.7.16a)
and therefore switching lands the state in the M-arrested steady-state (dash-dotted
line), while at t = 334 min, switching lands the state in the G2-arrested steady-state
(dotted line). In both cases, the oscillatory mode is fixed at k′2 = 0.01, k′′2 = 10,
kwee = 2.0.
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steady-state (segment A in Fig.7.16a) while the rest is completely within the
stability region of the steady-state for the G2-arrested mode. Based on this
analysis, we conclude that switching from the oscillatory mode to the bi-stable
mode would move the cell to the G2-arrested state only if the transition oc-
curs at times when the state is not on segment A, while it would end up in the
M-arrested state if switching were to occur on segment A. This conclusion is
verified by the dotted and dash-dotted state trajectories, respectively, shown
in Fig.7.16b. The corresponding plots of the time-evolution of the states in
both switching scenarios are given in Fig.7.17 for two representative switching
times. Note that because of the periodic nature of the solution in the oscilla-
tory mode, there are many time-intervals, between t = 0 and t = 333.5 min,
when the limit cycle trajectory is on segment A. These intervals are separated
by one period of the limit cycle. Switching during any of these intervals to
the bi-stable mode moves the system to the M-arrested state. Similarly, there
are many time-intervals when the trajectory is not on segment A. Switching
during any of those intervals will land the system at the G2-arrested state.

7.6 Conclusions

In this chapter, a number of hybrid control strategies were developed for broad
classes of hybrid nonlinear processes. Initially, hybrid processes with actuator
constraints and model uncertainty were considered, and a control strategy
that coordinates, via multiple Lyapunov functions, the tasks of feedback con-
troller synthesis and logic-based switching between the constituent modes was
developed. A family of feedback controllers were designed to enforce robust
stability within the constituent modes and provide an explicit characteriza-
tion of the constrained region of robust stability for each mode. The stability
regions were then used to derive stabilizing switching rules that orchestrate
the transition between the various modes (and their controllers) in a way that
guarantees robust stability for the overall hybrid process. Hybrid systems with
scheduled mode transitions were considered next, and a Lyapunov-based pre-
dictive control strategy, that enforces both the switching schedule and closed-
loop stability, was presented. The main idea was to design a Lyapunov–based
predictive controller for each mode, and incorporate constraints in the pre-
dictive controller design to ensure that the prescribed transitions between the
modes occur in a way that guarantees stability of the switched closed–loop
system. The proposed control methods were demonstrated through applica-
tions to chemical process examples. Finally, the chapter was concluded with
a demonstration of how hybrid systems techniques – in particular, the idea of
coupling the switching logic to the stability regions – can be applied for the
analysis of mode transitions in biological networks.
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Fault-Tolerant Control of Process Systems

8.1 Introduction

Safety and reliability are primary goals in the operation of industrial chemical
plants. An important national need currently exists for enhancing the safety
and reliability of chemical plants in ways that reduce their vulnerability to
serious failures. Increasingly faced with the requirements of operational flexi-
bility under tight performance specifications and other economic drivers, plant
operation is relying extensively on highly automated process control systems.
Automation, however, tends to increase vulnerability of the plant to faults,
such as defects/malfunctions in process equipment, sensors and actuators,
failures in the controllers or in the control loops, which, if not appropriately
handled in the control system design, can potentially cause a host of unde-
sired economic, environmental, and safety problems that seriously degrade
the operating efficiency of the plant. These considerations provide a strong
motivation for the development of systematic methods and strategies for the
design of fault–tolerant control systems and have motivated many research
studies in this area (see, for example, [287, 295, 26] and [218, 38, 182] for
references).

Given the complex dynamics of chemical processes (due, for example, to
the presence of nonlinearities and constraints) and the geographically dis-
tributed, interconnected nature of plant units, as well as the large number of
distributed sensors and actuators typically involved, the success of any fault–
tolerant control strategy requires an integrated approach that brings together
several essential elements, including: (1) the design of advanced feedback con-
trol algorithms that handle complex dynamics effectively, (2) the design of
supervisory switching schemes that orchestrate the transition from the failed
control configuration to available well–functioning fall–back configurations to
ensure fault–tolerance, and (3) the efficient exchange of information and com-
munication between the different plant units through a high–level supervisor
that coordinates the overall plant response in failure situations and minimizes
the effects of failure propagation.
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The realization of such an approach is increasingly aided by a confluence of
recent, and ongoing, advances in several areas of process control research, in-
cluding advances in nonlinear controller designs for chemical processes (e.g.,
[141, 138, 78, 81, 275]) and advances in the analysis and control of hybrid
process systems leading to the development of a systematic framework for
the integration of feedback and supervisory control [80, 82]. A hybrid sys-
tems framework provides a natural setting for the analysis and design of
fault–tolerant control systems since the occurrence of failure and subsequent
switching to fall–back control configurations induce discrete transitions super-
imposed on the underlying continuous dynamics. Hybrid control techniques
have been useful in dealing with a wide range of problems that cannot be
addressed using classical control approaches, including fault–tolerant control
of spatially–distributed systems (e.g., [84]), control of processes with switched
dynamics (e.g., [82, 32]), and the design of hybrid predictive control structures
that overcome some of the limitations of classical predictive control algorithms
(e.g., [88]). In addition to control studies, research work on hybrid systems
spans a diverse set of problems ranging from the modeling (e.g., [294, 28]) and
simulation (e.g., [28, 100]) to the optimization (e.g., [110, 106]) and stability
analysis (e..g, [120, 70]) of several classes of hybrid systems.

In addition to the above fundamental advances, recent innovations in ac-
tuator/sensor and communication technologies are increasingly enabling the
integration of communication and control domains [297]. For example, the
use of communication networks as media to interconnect the different com-
ponents in an industrial control system is rapidly increasing and expected
to replace the more costly point–to–point connection schemes currently em-
ployed in distributed control systems. Figure 8.1 shows the basic networked
control architecture for (a) a single–unit plant with few actuators and sen-
sors (centralized structure) and (b) a larger plant with several interconnected
processing units and larger number of actuators and sensors (distributed hi-
erarchical structure). Currently, networked control systems is an active area
of research within control engineering (e.g., see [282, 203, 271, 293] for some
recent results and references in this area). In addition to the advantages of
reduced system wiring (reduced installation, maintenance time and costs) in
this architecture, the increased flexibility and ease of maintenance of a system
using a network to transfer information is an appealing goal. In the context
of fault–tolerant control in particular, systems designed in this manner allow
for easy modification of the control strategy by rerouting signals, having re-
dundant systems that can be activated automatically when component failure
occurs, and in general they allow having a high–level supervisor control over
the entire plant. The appealing features of communication networks motivate
investigating ways for integrating them in the design of fault–tolerant control
systems to ensure a timely and coordinated response of the plant in ways that
minimize the effects of failure propagation between plant units. This entails
devising strategies to deal with some of the fundamental issues introduced by
the network, including issues of bandwidth limitations, quantization effects,
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network scheduling, and communication delays, which continue to be topics
of active research.

Motivated by the above considerations, we develop in this chapter a fault–
tolerant control system design methodology, for plants with multiple (dis-
tributed) interconnected processing units, that accounts explicitly for the in-
herent complexities in supervisory control and communication tasks resulting
from the distributed interconnected nature of plant units. The approach brings
together tools from Lyapunov–based control and hybrid systems theory and
is based on a hierarchical distributed architecture that integrates lower–level
feedback control of the individual units with upper–level logic–based supervi-
sory control over communication networks. The local control systems consist
each of a family of feedback control configurations together with a local super-
visor that communicates with actuators and sensors, via a local communica-
tion network, to orchestrate the transition between control configurations, on
the basis of their fault–recovery regions, in the event of failures. The local su-
pervisors communicate, through a plant–wide communication network, with a
plant supervisor responsible for monitoring the different units and coordinat-
ing their responses in a way that minimizes the propagation of failure effects.
The communication logic is designed to ensure efficient transmission of infor-
mation between units while also respecting the inherent limitations in network
resources by minimizing unnecessary network usage and accounting explicitly
for the effects of possible delays due to fault–detection, control computations,
network communication, and actuator activation. The proposed approach pro-
vides explicit guidelines for managing the interplays between the coupled tasks
of feedback control, fault–tolerance and communication. The efficacy of the
proposed approach is demonstrated through chemical process examples. The
results of this chapter were first presented in [86].

8.2 Preliminaries

8.2.1 System description

We consider a plant composed of l connected processing units, each of which is
modeled by a continuous–time multivariable nonlinear system with constraints
on the manipulated inputs, and represented by the following state–space de-
scription:
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Fig. 8.1. Block diagrams of: (a) a centralized networked control system for a single–
unit plant, and (b) a hierarchical distributed networked control architecture for a
multi–unit plant.
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where xi := [x(1)
i x

(2)
i · · · x

(ni)
i ]T ∈ IRni denotes the vector of process state

variables associated with the i–th processing unit, uki
i := [uki

i,1 uki
i,2 · · · uki

i,mi
]T ∈

IRmi denotes the vector of constrained manipulated inputs associated with the
ki–th control configuration in the i–th processing unit, uki

i,max is a positive real
number that captures the maximum size of the vector of manipulated inputs
dictated by the constraints, ‖ · ‖ denotes the Euclidean norm of a vector, and
Ni is the number of different control configurations that can be used to con-
trol the i–th processing unit. The index, ki(t), which takes values in the finite
set Ki, represents a discrete state that indexes the right–hand side of the set
of differential equations in Eq.8.1. For each value that ki assumes in Ki, the
i–th processing unit is controlled via a different set of manipulated inputs
which define a given control configuration. For each unit, switching between
the available Ni control configurations is controlled by a local supervisor that
monitors the operation of the unit and orchestrates, accordingly, the transi-
tion between the different control configurations in the event of control system
failures. This in turn determines the temporal evolution of the discrete state,
ki(t), which takes the form of a piecewise constant function of time. The local
supervisor ensures that only one control configuration is active at any given
time, and allows only a finite number of switches over any finite interval of
time.

Without loss of generality, it is assumed that xi = 0 is an equilibrium
point of the uncontrolled i–th processing unit (i.e., with uki

i = 0) and that
the vector functions, fki

i (·), and the matrix functions, Gki
i (·) and W

kj

j,p(·),
are sufficiently smooth on their domains of definition, for all ki ∈ Ki, i =
1, · · · , l, j = 2, · · · , l, p = 1, · · · , l − 1. For the j–th processing unit, the term,
W

kj

j,p(xj)xp, represents the connection that this unit has with the p–th unit
upstream. Note from the summation notation in Eq.8.1 that each processing
unit can in general be connected to all the units upstream from it. Our nominal
control objective (i.e., in the absence of control system failures) is to design, for
each processing unit, a stabilizing feedback controller that enforces asymptotic
stability of the origin of the closed–loop system in the presence of control
actuator constraints. To simplify the presentation of our results, we will focus
only on the state feedback control problem where measurements of all process
states are available for all times.

8.2.2 Problem statement and solution overview

Consider the plant of Eq.8.1 where, for each processing unit, a stabilizing feed-
back control system has been designed and implemented. Given some catas-
trophic fault – that has been detected and isolated – in the actuators of one
of the control systems, our objective is to develop a plant–wide fault–tolerant
control strategy that: (1) preserves closed–loop stability of the failing unit, if
possible, and (2) minimizes the negative impact of this failure on the closed–
loop stability of the remaining processing units downstream. To accomplish



288 8 Fault-Tolerant Control of Process Systems

both of these objectives, we construct a hierarchical control structure that in-
tegrates lower–level feedback control of the individual units with upper–level
logic–based supervisory control over communication networks. The local con-
trol system for each unit consists of a family of control configurations for each
of which a stabilizing feedback controller is designed and the stability region
is explicitly characterized. The actuators and sensors of each configuration
are connected, via a local communication network, to a local supervisor that
orchestrates switching between the constituent configurations, on the basis of
the stability regions, in the event of failures. The local supervisors communi-
cate, through a plant–wide communication network, with a plant supervisor
responsible for monitoring the different units and coordinating their responses
in a way that minimizes the propagation of failure effects. The basic problem
under investigation is how to coordinate the tasks of feedback, control system
reconfiguration and communication, both at the local (processing unit) and
plant–wide levels in a way that ensures timely recovery in the event of failure
and preserves closed–loop stability.

Remark 8.1. In the design of any fault–tolerant control system, an important
task that precedes the control system reconfiguration is the task of fault–
detection and isolation (FDI). There is an extensive body of literature on
this topic including, for example, the design of fault–detection and isolation
schemes based on fundamental process models (e.g., [95, 69]) and statisti-
cal/pattern recognition and fault diagnosis techniques (e.g., [286, 113, 66,
209, 12, 278]). In this work, we focus mainly on the interplay between the
communication network and the control system reconfiguration task. To this
end, we assume that the FDI tasks take place at a time scale that is very
fast compared to the time constant of the overall process dynamics and the
time needed for the control system reconfiguration, and thus can be treated
separately from the control system reconfiguration (we note that the time
needed for FDI is accounted for in the control system reconfiguration through
a time–delay; see the Sections 8.3 and 8.4 for details). In the context of pro-
cess control applications, this sequential and decoupled treatment of FDI and
control system reconfiguration is further justified by the overall slow dynamics
of chemical plants.

8.2.3 Motivating example

In this section, we introduce a simple benchmark example that will be revis-
ited later to illustrate the design and implementation aspects of the fault–
tolerant control design methodology to be proposed in Section 8.3. While
the discussion will center around this example, we note that the proposed
framework can be applied to more complex plants involving more complex
arrangements of processing units as shown in Eq.8.1. To this end, consider
two well–mixed, non–isothermal continuous stirred tank reactors (CSTRs) in
series, where three parallel irreversible elementary exothermic reactions of the
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form A
k1→ B, A

k2→ U and A
k3→ R take place, where A is the reactant species,

B is the desired product and U, R are undesired byproducts. The feed to
CSTR 1 consists of pure A at flow rate F0, molar concentration CA0 and
temperature T0, and the feed to CSTR 2 consists of the output of CSTR 1
and an additional fresh stream feeding pure A at flow rate F3, molar concen-
tration CA03 and temperature T03. Due to the non–isothermal nature of the
reactions, a jacket is used to remove/provide heat to both reactors. Under
standard modeling assumptions, a mathematical model of the plant can be
derived from material and energy balances and takes the following form:

dT1

dt
=

F0

V1
(T0 − T1) +

3∑

i=1

(−∆Hi)
ρcp

Ri(CA1, T1) +
Q1

ρcpV1

dCA1

dt
=

F0

V1
(CA0 − CA1)−

3∑

i=1

Ri(CA1, T1)

dT2

dt
=

F1

V2
(T1 − T2) +

F3

V2
(T03 − T2) +

3∑

i=1

(−∆Hi)
ρcp

Ri(CA2, T2) +
Q2

ρcpV2

dCA2

dt
=

F1

V2
(CA1 − CA2) +

F3

V2
(CA03 − CA2)−

3∑

i=1

Ri(CA2, T2)

(8.2)
where Ri(CAj , Tj) = ki0 exp

(
−Ei

RTj

)
CAj , for j = 1, 2. T , CA, Q, and V de-

note the temperature of the reactor, the concentration of species A, the rate
of heat input/removal from the reactor, and the volume of reactor, respec-
tively, with subscript 1 denoting CSTR 1 and subscript 2 denoting CSTR
2. ∆Hi, ki, Ei, i = 1, 2, 3, denote the enthalpies, pre–exponential constants
and activation energies of the three reactions, respectively, cp and ρ denote
the heat capacity and density of the fluid in the reactor. Using typical val-
ues for the process parameters (see Table 8.1), CSTR 1, with Q1 = 0, has
three steady–states: two locally asymptotically stable and one unstable at
(T s

1 , Cs
A1) = (388.57 K, 3.59 kmol/m3). The unstable steady–state of CSTR

1 corresponds to three steady–states for CSTR 2 (with Q2 = 0), one of which
is unstable at (T s

2 , Cs
A2) = (429.24 K, 2.55 kmol/m3).

The control objective is to stabilize both reactors at the (open–loop) un-
stable steady–states. Operation at these points is typically sought to avoid
high temperatures, while simultaneously achieving reasonable conversion. To
accomplish the control objective under normal conditions (with no failures),
we choose as manipulated inputs the rates of heat input, u1

1 = Q1, subject to
the constraint |Q1| ≤ uQ1

max = 2.7 × 106 KJ/hr and u2
1 = Q2, subject to the

constraint |Q2| ≤ uQ2
max = 2.8× 106 KJ/hr.

As shown in Figure 8.2, each unit has a local control system with its sensors
and actuators connected through a communication network. The local con-
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Table 8.1. Process parameters and steady–state values for the reactors of Eq.8.2.

F0 = 4.998 m3/hr
F1 = 4.998 m3/hr
F3 = 30.0 m3/hr
V1 = 1.0 m3

V2 = 3.0 m3

R = 8.314 KJ/kmol ·K
T0 = 300.0 K
T03 = 300.0 K
CA0 = 4.0 kmol/m3

Cs
A03 = 2.0 kmol/m3

∆H1 = −5.0× 104 KJ/kmol
∆H2 = −5.2× 104 KJ/kmol
∆H3 = −5.4× 104 KJ/kmol
k10 = 3.0× 106 hr−1

k20 = 3.0× 105 hr−1

k30 = 3.0× 105 hr−1

E1 = 5.0× 104 KJ/kmol
E2 = 7.53× 104 KJ/kmol
E3 = 7.53× 104 KJ/kmol
ρ = 1000.0 kg/m3

cp = 0.231 KJ/kg ·K
T s

1 = 388.57 K
Cs

A1 = 3.59 kmol/m3

T s
2 = 429.24 K

Cs
A2 = 2.55 kmol/m3

trol systems in turn communicate with the plant supervisor (and with each
other) through a plant–wide communication network. Note that in designing
each control system, only measurements of the local process variables are used
(for example, the controller for the second unit uses only measurements of T2

and CA2). This decentralized architecture is intended to minimize unneces-
sary communication costs incurred by continuously sending measurement data
from the first to the second unit over the network. We note that while this
issue may not be a pressing one for the small plant considered here (where a
centralized structure can in fact be easily designed), real plants nonetheless
involve a far more complex arrangement of units with thousands of actuators
and sensors, which makes the complexity of a centralized structure as well
as the cost of using the network to share measurements between units quite
significant. For this reason, we choose the distributed structure in Figure 8.2
in order to highlight some of the manifestations of the inherent interplays
between the control and communication tasks.

The fault–tolerant control problem under consideration involves a total
failure in both control systems after some time of startup, with the failure
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in the first unit being permanent. Our objective will be to preserve closed–
loop stability of CSTR 2 by switching to an alternative control configuration
involving, as manipulated variables, the rate of heat input, u1

2 = Q2, subject to
the same constraint, and the inlet reactant concentration, u2

2 = CA03 −Cs
A03,

subject to the constraint |CA03−Cs
A03| ≤ uCA03

max = 0.4 kmol/m3 where Cs
A03 =

3.0 kmol/m3. The main question, which we address in the next section, is
how to devise the switching and network communication logics in a way that
ensures fault–tolerance in the second unit and, simultaneously, accounts for
the inherent limitations in network resources and possible delays in fault–
detection, communication and actuator activation.
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Fig. 8.2. Process flow diagram of two CSTR units in series.

8.3 Fault–tolerant control system design methodology

In this section, we outline the main steps involved in the fault–tolerant control
system design procedure. These include: (1) the synthesis of a stabilizing feed-
back controller for each of the available fall–back control configurations, (2)
the explicit characterization of the stability region for each configuration which
characterize the operating conditions for which fault–recovery can be guaran-
teed, (3) the design of a switching law that orchestrates the re–configuration
of the failing control system in a way that safeguards closed–loop stability in
the event of failures, and (4) the design of the network communication logic
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in a way that minimizes the propagation of failure effects between plant units
while also accounting for bandwidth constraints and delays. A major feature
of the design methodology is the inherent coupling between the aforemen-
tioned tasks whereby each task affects how the rest are carried out. Below is
a more detailed description of each step and a discussion on how the tradeoffs
between the different steps are managed.

8.3.1 Constrained feedback controller synthesis

Referring to the system of Eq.8.1, consider first the case when no failures take
place anywhere in the plant. Under such conditions, our objective is to de-
sign, for each processing unit, a “nominal” feedback controller that enforces
asymptotic closed–loop stability and provides an explicit characterization of
the stability region under actuator constraints. One way to do this is to use
Lyapunov–based control techniques. Specifically, consider the nonlinear sys-
tem describing the i–th processing unit under the ki–th control configuration,
for which a control Lyapunov function, V ki

i , is available. Using this function,
one can construct the following bounded nonlinear control law (see [177, 78]):

uki
i = −r(xi, u

ki
i,max)βT (xi) (8.3)

where

r(xi, u
ki
i,max) =

α∗(xi) +

√
(α∗(xi))2 +

(
uki

i,max‖βT (xi)‖
)4

‖βT (xi)‖2
[
1 +

√
1 + (uki

i,max‖βT (xi)‖)2
] (8.4)

α∗(xi) = α(xi) + ρki
i ‖xi‖2, ρki

i > 0 is a real number, α(xi) = L
f

ki
i

V ki
i (xi),

βT (xi) = (L
G

ki
i

V ki
i )T (xi), the notation L

f
ki
i

V ki
i is used to denote the Lie

derivative of the scalar function, V ki
i , with respect to the vector field, fki

i , and
L

G
ki
i

V ki
i is a row vector whose constituent components are the Lie derivatives

of V ki
i along the column vectors of the matrix Gki

i . Note that the control
law of Eqs.8.3–8.4 requires measurements of the local process state variables,
xi, only and not measurements from other plant units upstream. This fully
decentralized design is motivated by the desire to minimize unnecessary com-
munication costs which would be incurred when sharing measurement data
between the different units over the communication network. By disregard-
ing the interconnections between the units in the controller design, however,
closed–loop stability for a given unit rests on the stability properties of the
upstream units. In particular, using a combination of Lyapunov and small–
gain theorem type arguments, one can show that, starting from any invariant
subset (e.g, a level–set of V ki

i ) of the region described by:

Φi(uki
i,max) := {xi ∈ IRni : α(xi) + ρki

i ‖xi‖2 ≤ uki
i,max‖βT (xi)‖} (8.5)
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the control law of Eqs.8.3–8.4 asymptotically stabilizes the i–th unit, under
the ki–th control configuration, at the origin provided that the closed–loop
states of the upstream units, x1, x2, · · · , xi−1, converge asymptotically to the
origin. In this case, and because of the way the various units are connected (see
Eq.8.1), the closed–loop states of the upstream units can be viewed as bounded
vanishing perturbations that affect the i–th unit and, therefore, a control law
that asymptotically stabilizes the unperturbed i–th unit (i.e., disregarding the
upstream states) also stabilizes the closed–loop system when the perturbations
(connections) are added.

Having designed the nominal feedback control systems, we now proceed
to consider the effect of control actuator failure on the feedback controller de-
sign for each unit. To this end, let us consider a total failure in the actuators
of the ki–th control configuration in the i–th control system. This failure, if
not addressed properly, can lead to closed–loop instabilities both within the
i–th processing unit itself (where the failure has occurred) and within all the
remaining units downstream. Minimizing the effects of failure propagation
throughout the plant can be achieved in one of two ways. The first involves
reconfiguring the local control system of the i–th unit – once the failure is
detected and isolated – by appropriately switching from the malfunctioning
control configuration to some well–functioning fall–back configuration (recall
that each processing unit has a family of control configurations). If this is
feasible and can be done sufficiently fast, then the inherent fault–tolerance
of the local control system is sufficient to preserve closed–loop stability not
only for the i-th unit with the failing control system but also for the other
units downstream without having to reconfigure their control systems. How-
ever, if local fault–recovery is not possible (this can happen, for example, in
cases when the failure occurs at times that the state lies outside the stability
regions of all the available fall–back control configurations; see Section 8.3.2
for details), then it becomes necessary to communicate the failure information
to the control systems downstream and reconfigure them in order to preserve
their closed–loop stability.

The main issue here is how to design the feedback control law for a given
fall–back configuration in the units downstream in a way that respects the
actuators’ constraints and guarantees closed–loop stability despite the failure
in the control system of some upstream unit. The choice of the feedback law
depends on our choice of the communication policy. To explain this interde-
pendence, we first note that a total failure in the control system of the i–th
unit will cause its state, xi, to move away from the origin (possibly settling at
some other steady–state). Therefore, unless the nominal feedback controllers
for the downstream units, i + 1, i + 2, · · · , l, are re–designed to account for
this incoming “disturbance”, the evolution of their states, xi+1, xi+2, · · · , xl,
will be adversely affected driving them away from the origin. To account for
the disturbance caused by the upstream control system failure, one option is
to send available measurements of xi, through the communication network,
to the affected units and redesign their controllers accordingly. From a com-
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munications cost point of view, however, this option may be costly since it
requires continued usage of the network resources after the failure, which can
adversely affect the performance of other units sharing the same communica-
tion medium due to bandwidth limitations and overall delays.

To reduce unnecessary network usage, we propose an alternative approach
where the failure in the i–th processing unit is viewed as a bounded non–
vanishing disturbance affecting units i + 1, i + 2, · · · , l, and use the available
process models of these units to capture, or estimate, the size of this dis-
turbance (by comparing, for example, the evolution of the process variables
for the i–th unit under the failed and well–functioning control configurations
through simulations). In this formulation, state measurements from the i–th
unit need not be shared with the other units; instead, only bounds on the
disturbance size are transmitted to the downstream units. This approach in-
volves using the network only once at the failure time and not continuously
thereafter. The disturbance information can then be used to design an ap-
propriate robust controller for each downstream unit to attenuate the effect
of the incoming disturbance and enforce robust closed–loop stability. To il-
lustrate how this can be done, let us assume that the failure in the control
system of unit i occurs at t = Tf and that the failure is detected immediately
(the effect of possible delays in fault–detection and how to account for them
are discussed in Section 8.3.4). Consider some unit, j, downstream from the
i–th unit, that is described by the following model:

ẋj = f
kj

j (xj) + G
kj

j (xj)u
kj

j + δi

i−1∑
p=1

W
kj

j,p(xj)xp +
j−1∑

p=i

W
kj

j,p(xj)θp (8.6)

for i = 1, · · · , l − 1, j = i + 1, · · · , l, where δi = 0 for i = 1, and δi = 1 for
i = 2, · · · , l − 1. The third term on the right–hand side of Eq.8.6 describes
the input from all the units upstream of unit i. The θp’s are time–varying,
but bounded, functions of time that describe the evolution of the states of
the i–th unit and all the units downstream from unit i but upstream from
unit j (i.e., θp(t) = xp(t), p = i, · · · , j − 1). The choice of using the notation
θp, instead of xp, for units i, · · · , j − 1 is intended to distinguish the effect of
these units (where the failure originates and propagates downstream) as non–
vanishing disturbances to the j–th unit, compared with the units upstream
from unit i which are unaffected by the failure. Note that for unit j = i + 1,
which immediately follows the failing unit, the only source of disturbances
that should be accounted for in its controller design is that coming from the
i–th unit with the failing control system. However, for units that lie further
downstream, i.e., for j = i + 2, · · · , l, the controller design needs to account
for the additional disturbances resulting from the effect of the failure on the
intermediate units separating units i and j.

For a system of the form of Eq.8.6, one possible choice of a stabilizing con-
troller is the following bounded robust Lyapunov–based control law proposed
in Chapter 7 (see also Chapter 4 which has the general form:
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u
kj

j = −rj(xj , u
kj

j,max, θb)βT (xj), (8.7)

where

rj(xj , u
kj

j,max, θb) =
α1(xj) +

√
(α2(xj))2 +

(
u

kj

j,max‖βT (xj)‖
)4

(‖βT (xj)‖)2
[
1 +

√
1 + (ukj

j,max‖βT (xj)‖)2
] (8.8)

α1(xj) = α(xj) +


ρ

kj

j ‖xj‖+
j−1∑

p=i

χ
kj

j θp
b (Tf )‖ωT

p (xj)‖



(
‖xj‖

‖xj‖+ φ
kj

j

)

(8.9)

α2(xj) = α(xj) + ρ
kj

j ‖xj‖+
j−1∑

p=i

χ
kj

j θp
b (Tf )‖ωT

p (xj)‖ (8.10)

θp
b (Tf ) := max

t≥Tf

‖xp(t)‖, p = i, · · · , j − 1 are positive real numbers the capture

the size of the disturbances, originating from the failure in the control system
of the i–th unit and propagating downstream, ωp(xj) = (L

W
kj
j,p

V
kj

j )(xj) is a

row vector whose constituent components are the Lie derivatives of V
kj

j along

the column vectors of the matrix W
kj

j,p, V
kj

j is a robust control Lyapunov

function for the j–th system under the kj–th control configuration, and ρ
kj

j >

0, χ
kj

j > 1, φ
kj

j > 0 are tuning parameters. Estimates of the disturbance
bounds, θp

b , can be obtained by comparing, through simulations for example,
the responses of the p–th unit under the pre– and post–failure configurations
(see Section 8.4 for an example). It should be noted that since all the incoming
disturbances to unit j take effect only after Tf , the controller of Eqs.8.7–8.10
is implemented only for t ≥ Tf . For t < Tf , the nominal controllers of Eqs.8.3–
8.4 are used.

Remark 8.2. When compared with the nominal controller of Eqs.8.3–8.4, we
observe that the nonlinear gain function for the fall–back controller, rj(·) in
Eqs.8.7–8.10, depends not only on the size of actuator constraints, u

kj

j,max, and
the particular fall–back control configuration being used, kj , but also on the
size of the disturbances caused by the occurrence of failure, θp

b . This gain re–
shaping procedure is carried out in order to guarantee constraint satisfaction
and enforce robust closed–loop stability, with an arbitrary degree of attenua-
tion of the effect of the failure on the j–th unit downstream. Note that, owing
to the assumption of a persistent failure in the i–th unit (i.e., a non–vanishing
disturbance), asymptotic closed–loop stability cannot be achieved for any of
the units downstream. Instead, practical stability can be enforced whereby
the states of each unit are driven, in finite–time, to a neighborhood of the ori-
gin whose size can be made arbitrarily small by selecting the controller tuning
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parameters (ρkj

j , χ
kj

j , φ
kj

j ) appropriately (see [81] for a detailed proof). These
closed–loop properties are enforced within a well–defined state–space region
that is explicitly characterized in Section 8.3.2.

Remark 8.3. Note that since the processing units upstream of unit i are not
affected by its failing control system, the nominal controllers designed for
these units (see Eqs.8.3–8.4) will asymptotically stabilize their states, xp, p =
1, · · · , i − 1, at the origin regardless of the failure; hence these state can be
viewed as bounded vanishing inputs to the j–th unit and thus need not be
accounted for in the controller design. The terms describing the intermediate
units, p = i + 1, · · · , j − 1 cannot however be treated as vanishing inputs.
The reason is that even if the control systems of these units are immediately
and appropriately re–configured to suppress the effect of the failure, their
controllers, as discussed above, will at best be able to drive the states of
these units, in finite time, only near the origin without achieving asymptotic
convergence.

Remark 8.4. It should be noted that the fault–tolerant control system de-
sign methodology presented in this section is not restricted to the use of the
bounded controller designs given in Eqs.8.3–8.4 (for the nominal case) and in
Eqs.8.7–8.10 (for the case with failure). Any other stabilizing controller design
that accounts for the constraints, enforces the desired robustness properties
under failure, and provides an explicit characterization of the stability region
can be used.

Remark 8.5. The treatment of failure in the control system of unit i as a
bounded disturbance is rooted in the assumption that xi, while moving away
from the origin after failure, will eventually settle at some other (undesirable)
steady–state (recall that this is how the disturbance bound is computed). In
the case that the i–th processing unit has only a single steady–state in the
post–failure configuration, however, the failure event cannot be treated as a
bounded disturbance since xi will simply grow unbounded after the failure,
and will not settle at any point. In such a case, unless the control system of
unit i is repaired in time, a shutdown of the plant will be unavoidable.

8.3.2 Characterization of fault–recovery regions

Consider once again the j–th processing unit described by the model of Eq.8.6.
In Section 8.3.1, we outlined how to design, for a given fall–back control con-
figuration, kj ∈ Kj , a robust feedback controller that, when implemented, can
preserve closed–loop stability for this unit in the event of control system failure
in some upstream unit, i. Given that actuator constraints place fundamental
limitations on the ability of the controller to steer the closed–loop dynamics
at will, it is important for the control system designer to explicitly character-
ize these limitations by identifying, or estimating, the set of admissible states
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starting from where the controller of Eqs.8.7–8.10 is guaranteed to robustly
stabilize the closed–loop system for unit j (region of robust closed–loop stabil-
ity). Since suppression of the upstream failure effects on unit j is formulated
as a robust stabilization problem, we shall refer to the robust stability region
associated with any of the fall–back configurations also as the fault–recovery
region. As discussed in Section 8.3.3, the characterization of this region plays
a central role in devising the appropriate switching policy that reconfigures
the control system and ensures fault–recovery.

For the class of robust control laws given in Eqs.8.7–8.10, using a Lyapunov
argument one can show that the set, Π

kj

j (ukj

j,max, θb(Tf )) :=

{xj ∈ IRnj : α(xj) + ρ
kj

j ‖xj‖+
j−1∑

p=i

χ
kj

j θp
b (Tf )‖ωT

p (xj)‖ ≤ u
kj

j,max‖βT (xj)‖}

(8.11)
describes a region in the state–space where the control action satisfies the
constraints and the Lyapunov function decays monotonically along the tra-
jectories of the closed–loop system (see [81] for the detailed mathematical
analysis). Note that the size of this set depends both on the magnitude of
the constraints and the size of the disturbance (which in turn depends on
the failure time, Tf ). In particular, as the constraints become tighter and/or
the disturbances greater, the set gets smaller. For a given control configura-
tion, one can use the above inequality to estimate the fault–recovery region
associated with this configuration by constructing, for example, the largest
invariant subset of Πj , which we denote by Ω

kj

j (ukj

j,max, θb(Tf )). For a given
fall–back configuration, kj , implementation of the controller of Eqs.8.7–8.10
at any time that the state is within Ω

kj

j ensures that the closed–loop trajec-

tory stays within the region defined by Πj – and hence V
kj

j continues to decay
monotonically – for all the times that the given fall–back control configuration
is active.

Remark 8.6. Note that, unlike the nominal stability regions associated with
the nominal controllers of Eqs.8.3–8.4 and obtained from Eq.8.5, the fault–
recovery region of any downstream unit, j, cannot be computed a priori (i.e.,
before plant startup) since this region, as can be seen from Eq.8.11, depends on
the failure time which is unknown prior to startup. However, once the failure
occurs, estimates of the disturbance bounds can be computed by the local
supervisors of the upstream units, i, · · ·, j−1 (through on–line simulations of
each unit’s response under the pre– and post–failure configurations) and then
transmitted, through the communication network, to unit j which in turn uses
these bounds to construct, on–line, both the controller and the fault–recovery
region (see Section 8.3.4 for a discussion on how the resulting computational
delays can be handled).
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8.3.3 Supervisory switching logic design

Having designed the robust feedback control law and characterized the fault–
recovery region associated with each fall–back configuration, the third step in
our design methodology is to derive the switching policy that the local su-
pervisor of the downstream unit, j, needs to follow in reconfiguring the local
control system (i.e., activating/deactivating the appropriate fall–back config-
urations) in the event of the upstream failure. In the general case, when more
than one fall–back control configuration is available for the unit under con-
sideration, the question is how to decide which of these configurations can
and should be activated at the time of failure in order to preserve closed–loop
stability. The key idea here is that, because of the limitations imposed by con-
straints on the fault–recovery region of each configuration, the local supervisor
can only activate the configuration whose fault–recovery region contains the
closed–loop state at the time of the failure. Without loss of generality, let the
active control configuration in the j–th unit, prior to the occurrence of failure
in unit i, be kj(T−f ) = µ for some µ ∈ Kj , where kj(T−f ) = lim

t→T−
f

kj(t) and

Tf is the time that the control system of unit i fails, then the switching rule
given by

kj(T+
f ) = ν if xj(Tf ) ∈ Ων

j (uν
j,max, θb(Tf )) (8.12)

for some ν ∈ Kj , ν 6= µ, guarantees that the closed–loop system of the j–th
unit is stable. The implementation of the above switching law requires mon-
itoring, by the local supervisor, of the evolution of the closed–loop state tra-
jectory with respect to the fault–recovery regions associated with the various
control actuator configurations. Another way to look at the above switching
logic is that it implicitly determines, for a fixed fall–back configuration, the
times that the control system of the j–th unit can tolerate upstream fail-
ures by switching to this configuration. If failure occurs at times when xj lies
outside the fault–recovery region of all available configurations, this analysis
suggests that either the constraints should be relaxed – to enlarge the fault–
recovery region of the given configurations – or additional fall–back control
loops must be introduced. The second option, however, is ultimately limited
by the maximum allowable number of control loops that can be designed for
the given processing unit. If neither option is feasible, a shutdown could be
unavoidable. The proposition of constructing the switching logic on the basis
of the stability regions was first proposed in [80] for the control of switched
nonlinear systems.

8.3.4 Design of the communication logic

Given the distributed interconnected nature of the plant units – and thus the
potential for failure effects propagating from one unit to another – an essen-
tial element in the design of the fault–tolerant control system is the use of a
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communication medium that ensures fast and efficient transmission of infor-
mation during failure events. As discussed in the introduction, communication
networks offer such a medium that is both fast (relative to the typically slow
dynamics of chemical processes) and inexpensive (relative to current point–
to–point connection schemes which require extensive cabling and higher main-
tenance time and costs). The ability of the network to fulfill this role, however,
requires that we devise the communication policy in a way that respects the
inherent limitations in network resources, such as bandwidth constraints and
overall delays, by minimizing unnecessary usage of the network.

In Section 8.3.1, we have already discussed how the bandwidth constraint
issue can be handled by formulating the problem as a robust control problem,
where the failure in the control system of the i–th processing unit and the
consequent effects on units i + 1, · · ·, j − 1 are treated as a bounded non–
vanishing disturbances that affect unit j downstream. The communication
policy requires that the local supervisors of units i, · · ·, j − 1 perform the
following tasks: (1) compute the disturbance bounds using the process model
of each unit, and (2) send this information, together with other relevant infor-
mation such as the failure type, the failure time and operating conditions, to
the plant supervisor. The plant supervisor in turn forwards the information to
the local supervisor of unit j utilizing the plant–wide communication network
(see Figure 8.1b). This policy avoids unnecessary overloading of the network
(which could result when measurements from the upstream units are sent
continuously to unit j) while also guaranteeing fault–tolerance in the down-
stream units. The idea of using knowledge of the plant dynamics to balance the
tradeoff between bandwidth limitations (which favor reduced communication
of measurements) and optimum control performance (which favors increased
communication of measurements) is conceptually aligned with the notion of
minimum attention control (e.g., see [40, 203]). In our work, however, this
idea is utilized in the context of fault–tolerant control.

The second consideration in devising the communication logic is the issue
of time–delays which typically result from the time sharing of the communica-
tion medium as well as the computing time required for the physical signal cod-
ing and communication processing. The characteristics of these time–delays
depend on the network protocols adopted as well as the hardware chosen. For
our purposes here, we consider an overall fixed time–delay (which we denote by
τ j
max) that combines the contribution of several delays, including: (1) delays in

fault–detection, (2) the time that the local supervisors of units i, · · · , j−1 take
to compute the effective disturbance bounds (through simulations comparing
the pre– and post–failure state evolutions in each unit), (3) the time that the
local supervisors of units i, · · · , j−1 take to send the information to the plant
supervisor, (4) the time that it takes the plant supervisor to forward the in-
formation to the local supervisor of unit j, (5) the time that it takes the local
supervisor for unit j to compute the fault–recovery region for the given fall–
back configurations using the information arriving from the upstream units
and the time that it takes for the supervisor’s decision to reach and activate
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the appropriate fall–back configuration, and (6) the inherent actuator/sensor
dead–times.

Failure to take such delays into account can result in activating the wrong
control configuration and subsequent instability. For example, even though
the upstream failure may take place at t = Tf , the fall–back configuration in
the control system of unit j will not be switched in before t = Tf + τ j

max.
If the delay is significant, then the switching rule in Section 8.3.3 should
be modified such that the local supervisor for unit j activates configuration,
kj = ν, for which xj(Tf + τ j

max) ∈ Ων
j (uν

j,max, θb). This modification is yet
another manifestation of the inherent coupling between the switching and
communication logics. The implementation of the modified switching rule that
accounts for delays requires that the local supervisor of unit j be able to
predict where the state trajectory will be at t = Tf + τ j

max (e.g., through
simulations using the process model) and check whether the state at this
time is within the fault–recovery region of a given fall–back configuration. If
not, then either an alternative fall–back configuration, for which the fault–
recovery region contains the state at the end of the delay, should be activated
or a shutdown maybe unavoidable. The availability of several fall–back control
loops, however, is limited by process design considerations which dictate, for
example, how many variables can be used for control. Figure 8.3 summarizes
the overall fault–tolerant control strategy for a two–unit plant.

8.4 Simulation studies

In this section, we present two simulation studies that demonstrate the ap-
plication of the proposed fault–tolerant control system design methodology
to two chemical processes. In the first application, a single chemical reac-
tor example is considered to demonstrate the idea of re–configuring the local
control system in the event of failures on the basis of the stability regions
of the constituent control configurations, and how overall communication de-
lays impact the re–configuration logic. In the second application, a cascade
of two chemical reactors in series is considered to demonstrate how the is-
sue of failure propagation between a multi–unit plant is handled within the
proposed methodology, and how the various interplays between the feedback,
supervisory control and communication tasks are handled in the multi–unit
setting.

8.4.1 Application to a single chemical reactor

Consider a well–mixed, non–isothermal continuous stirred tank reactor where
three parallel irreversible elementary exothermic reactions of the form A

k1→ B,
A

k2→ U and A
k3→ R take place, where A is the reactant species, B is the

desired product and U, R are undesired byproducts. The feed to the reactor
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Fig. 8.3. Summary of the fault–tolerant control strategy, for a two–unit plant, using
communication networks.

consists of pure A at flow rate F , molar concentration CA0 and temperature
TA0. Due to the non–isothermal nature of the reactions, a jacket is used to
remove/provide heat to the reactor. Under standard modeling assumptions, a
mathematical model of the process can be derived from material and energy
balances and takes the following form:
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dT

dt
=

F

V
(TA0 − T ) +

3∑

i=1

(−∆Hi)
ρcp

Ri(CA, T ) +
Q

ρcpV

dCA

dt
=

F

V
(CA0 − CA)−

3∑

i=1

Ri(CA, T )

dCB

dt
= −F

V
CB + R1(CA, T )

(8.13)

where Ri(CA, T ) = ki0 exp
(−Ei

RT

)
CA, CA and CB denote the concentrations of

the species A and B, respectively, T denotes the temperature of the reactor,
Q denotes the rate of heat input to the reactor, V denotes the volume of
the reactor, ∆Hi, ki, Ei, i = 1, 2, 3, denote the enthalpies, pre–exponential
constants and activation energies of the three reactions, respectively, cp and ρ
denote the heat capacity and density of the fluid in the reactor. The values of
the process parameters and the corresponding steady–state values are given
in Table 8.2. It was verified that under these conditions, the process model
of Eq.8.13 has three steady–states: two locally asymptotically stable and one
unstable at (T s, Cs

A, Cs
B) = (388 K, 3.59 kmol/m3, 0.41 kmol/m3).

Table 8.2. Process parameters and steady–state values for the reactor of Eq.8.13.

F = 4.998 m3/hr
V = 1.0 m3

R = 8.314 KJ/kmol ·K
TA0 = 300.0 K
CA0 = 4.0 kmol/m3

CB0 = 0.0 kmol/m3

∆H1 = −5.0× 104 KJ/kmol
∆H2 = −5.2× 104 KJ/kmol
∆H3 = −5.4× 104 KJ/kmol
k10 = 3.0× 106 hr−1

k20 = 3.0× 105 hr−1

k30 = 3.0× 105 hr−1

E1 = 5.0× 104 KJ/kmol
E2 = 7.53× 104 KJ/kmol
E3 = 7.53× 104 KJ/kmol
ρ = 1000.0 kg/m3

cp = 0.231 KJ/kg ·K
T s = 388.57 K
Cs

A = 3.59 kmol/m3

Cs
B = 0.41 kmol/m3
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Fig. 8.4. Switching between multiple control configurations, each characterized by
a different manipulated input, provides a mechanism for fault-tolerant control.

The control objective is to stabilize the reactor at the (open–loop) unstable
steady–state. Operation at this point is typically sought to avoid high tem-
peratures while, simultaneously, achieving reasonable reactant conversion. To
accomplish this objective in the presence of control system failures, we con-
sider the following manipulated input candidates (see Figure 8.4):

1. Rate of heat input, u1 = Q, subject to the constraint |Q| ≤ u1
max =

2.7× 106 KJ/hr.
2. Inlet stream temperature, u2 = TA0−T s

A0, subject to the constraint |u2| ≤
u2

max = 100 K.
3. Inlet reactant concentration, u3 = CA0 − Cs

A0, subject to the constraint
|u3| ≤ u3

max = 4 kmol/m3.

Each of the above manipulated inputs represents a unique control config-
uration (or control–loop) that, by itself, can stabilize the reactor using avail-
able measurements of the reactor temperature, reactant and product concen-
trations provided by the sensors. The sensors and control actuators of each
configuration are connected to the unit supervisor (e.g., a distant control
room) over a communication network (see Figure 8.5). The first loop involv-
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Fig. 8.5. Fault–tolerant control structure for a single unit operation, integrating
supervisory and feedback control over a communication network.

ing the heat input, Q, as the manipulated variable will be considered as the
primary control configuration. In the event of a total failure in this config-
uration, however, the supervisor will have to activate one of the other two
fall–back configurations in order to maintain closed–loop stability. The main
question that we address in this simulation study is how can the supervisor
determine which control loop to activate once failure is detected in the active
configuration and how overall communication delays influence this decision.

Following the proposed methodology, we initially synthesize, for each con-
trol configuration, a feedback controller that enforces asymptotic closed–loop
stability in the presence of actuator constraints. This task is carried out on the
basis of the process input/output dynamics. While our control objective is to
achieve full–state stabilization, auxiliary process outputs are introduced here
to facilitate transforming the system of Eq.8.13 into a form more suitable for
explicit controller synthesis. In the case of the process of Eq.8.13, a further sim-
plification can be obtained by noting that CB does not affect the evolution of
either T or CA and, therefore, the controller design can be addressed on the ba-
sis of the T and CA equations only. A controller that stabilizes the (T, CA) sub-
system also stabilizes the entire closed–loop system. For the first configuration
with u1 = Q, we consider the output y1 = (CA − Cs

A)/Cs
A. This choice yields

a relative degree of r1 = 2 for the output with respect to the manipulated
input. The coordinate transformation (in error variables form) takes the form:
e1 = (CA − Cs

A)/Cs
A, e2 = F

V (CA0 − CA)/Cs
A −

∑3
i=1ki0 exp

(−Ei

RT

)
CA/Cs

A.
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For the second configuration with u2 = TA0 − T s
A0, we choose the output

y2 = (CA −Cs
A)/Cs

A which yields the same relative degree as in the first con-
figuration, r2 = 2, and the same coordinate transformation. For the third con-
figuration, with u3 = CA0−Cs

A0, we choose the output y3 = (T−T s)/T s which
yields a relative degree of r3 = 2 and a coordinate transformation of the form:
e1 = (T − T s)/Ts, e2 = F

V (TA0 − T )/T s +
∑3

i=1
(−∆Hi)
ρcpTs

Ri(CA, T ) + Q
ρcpV Ts

.
Note that since our objective is full–state stabilization, the choice of the

output in each case is really arbitrary. However, to facilitate the controller de-
sign and subsequent stability analysis, we have chosen in each case an output
that produces a system of relative degree 2. For each configuration, the cor-
responding state transformation yields a system, describing the input/output
dynamics, of the following form:

ė = Ae + lk(e) + bαkuk

:= f̄k(e) + ḡk(e)uk, k = 1, 2, 3
(8.14)

where A =
[

0 1
0 0

]
, b =

[
0
1

]
, lk(·) = L2

fk
hk(x), αk(·) = Lgk

Lfk
hk(x), hk(x) =

yk is the output associated with the k–th configuration, x = [x1 x2]T with
x1 = (T − T s)/T s, x2 = (CA − Cs

A)/Cs
A, and the functions fk(·) and gk(·)

can be obtained by re–writing the (T, CA) model equations in Eq.8.13 in the
form of Eq.8.1. The explicit forms of these functions are omitted for brevity.
Using a quadratic Lyapunov function of the form Vk = eT Pke, where Pk

is a positive–definite symmetric matrix that satisfies the Riccati inequality
AT Pk + PkA−PkbbT Pk < 0, we synthesize, for each control–loop, a bounded
nonlinear feedback control law of the form of Eqs.8.3–8.4 and characterize
the associated stability region with the aid of Eq.8.5. Figure 8.6 depicts the
stability region, in the (T,CA) space, for each configuration. The stability
region of configuration 1 includes the entire area of the plot. The stability
region of configuration 2 is the entire area to the left of the solid line, while
the stability region of configuration 3 covers the area to the right of the dashed
vertical line. The desired steady–state is depicted with an asterisk that lies in
the intersection of the three stability regions.

We consider first the case when no time–delays are involved and the su-
pervisor can switch immediately between the different control loops in the
event of failures. To this end, the reactor is initialized at T (0) = 300 K,
CA(0) = 4.0 kmol/m3, CB(0) = 0.0 kmol/m3, using the Q—control configu-
ration, and the supervisor proceeds to monitor the evolution of the closed–loop
trajectory. As shown by the solid parts of the closed–loop trajectory in Figure
8.6, the state profiles in Figure 8.7 and the rate of heat input profile in Figure
8.8, the controller proceeds to drive the closed–loop trajectory towards the
desired steady–state until the control actuators Q–configuration experiences
a total failure after 2.0 hr of startup (simulated by fixing Q = 0 for all t ≥ 2.0
hr).
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Fig. 8.6. Stability regions of the three control configurations (I, II, III) considered
for the chemical reactor example of Eq.8.13.

From the solid part of the trajectory in Figure 8.6, it is clear that the
failure of the primary control configuration occurs when the closed–loop tra-
jectory is within the stability region of the second control configuration, and
outside the stability region of the third control configuration. Therefore, on
the basis of the switching logic, the supervisor immediately activates the sec-
ond configuration, with TA0 as the manipulated input. The result is shown by
the dashed parts of the closed–loop trajectory in Figure 8.6, the state profiles
in Figure 8.7 and the inlet stream temperature profile in Figure 8.8 where
it is seen that, upon switching to the TA0–configuration, the corresponding
controller continues to drive the closed–loop trajectory closer to the desired
steady–state. At t = 15.0 hr, we consider another total failure in the control
actuators of the TA0–configuration (simulated by fixing TA0 for all t ≥ 15.0
hr). From the dashed part of the trajectory in Figure 8.6, it is clear that this
failure occurs when the closed–loop trajectory is within the stability region of
the third configuration. Therefore, the supervisor immediately activates the
third control configuration, with CA0 as the manipulated input, which then
successfully stabilizes the reactor at the desired steady–state (see the dotted
parts of the closed–loop trajectory in Figure 8.6, the state profiles in Figure
8.7 and the inlet reactant concentration in Figure 8.8).

To demonstrate the effect of delays on the implementation of the switch-
ing logic, we consider an overall delay, between the supervisor and the con-
stituent control configurations, of τmax = 8.0 min (accounting for possible
delays in fault–detection, control computations, network transmission and ac-
tuator activation). In this case, the reactor is initialized at T (0) = 300 K,
CA(0) = 4.0 kmol/m3, CB(0) = 0 kmol/m3 under the first control configura-
tion (with Q as the manipulated input). The actual failure of this configuration
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Fig. 8.7. Evolution of the closed–loop state profiles under repeated control system
failures and subsequent switching by the supervisor from configuration 1 (solid lines)
to configuration 2 (dashed lines) to configuration 3 (dotted lines).

occurs at t = 10 hr which, as can be seen from Figure 8.9, is a time when
the closed–loop state trajectory is within the intersection of all three stability
regions.

In the absence of delays, this suggests that switching to either configura-
tion 2 or 3 should preserve closed–loop stability. We observe, however, from
Figure 8.10 that, when the delay is present, activation of configuration 3 leads
to instability (dotted profile) while activation of configuration 2 achieves sta-
bilization at the desired steady–state (dashed profiles). The reason is the fact
that, for the time period between the actual failure (t = 10 hr) and the acti-
vation of the backup configuration (t = 10.13 hr), the process evolves in an
open–loop fashion leading the trajectory to move out of the intersection zone
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Fig. 8.8. Manipulated input profiles for each control configuration as the supervisor
switches from configuration 1 to configuration 2 at t = 2 hr and from configuration
2 to configuration 3 at t = 15 hr.

such that at t = 10.13 hr the state is within the stability region of config-
uration 2 and outside that of configuration 3. This is shown in Figure 8.9.
The corresponding manipulated input profiles are shown in Figure 8.11. To
activate the correct configuration in this case, the supervisor needs to pre-
dict where the state trajectory will be at the end of the communication delay
period.

8.4.2 Application to two chemical reactors in series

In this section, we revisit the two chemical reactors in series of Eq.8.2, in-
troduced earlier in Section 8.2.3, to illustrate the implementation of the pro-
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Fig. 8.9. A phase plot showing the closed–loop state trajectory leaving the intersec-
tion zone (I,II & III) during the delay period (dashed–dotted trajectory) rendering
configuration 3 destabilizing (dotted trajectory).

posed fault–tolerant control methodology. To this end, the reactors are ini-
tialized at (T1(0), CA1(0)) = (300 K, 4.0 kmol/m3), and (T2(0), CA2(0)) =
(440 K, 4.0 kmol/m3). Under normal operating conditions (with no failures),
each reactor is controlled by manipulating the rate of heat input, using a
bounded nonlinear control law of the form of Eqs.8.3–8.4. To simplify com-
putations, we design each controller on the basis of the temperature equation
only. Specifically, a quadratic function of the form V2 = 1

2a2(x
(1)
2 )2, where

x
(1)
2 = (T2−T s

2 )/T s
2 , is used to design the controller and estimate the resulting

stability region using Eq.8.5. The values of the controller tuning parameters
are chosen to be a2 = 0.5 and ρ2 = 0.0001. Figure 8.12 (solid profiles) and Fig-
ure 8.13 show the resulting closed–loop state and manipulated input profiles
when the controllers are implemented without failure for both reactors. We
observe that each controller successfully stabilizes the corresponding reactor
at the desired steady–state.

Consider now a total failure in the actuators of both control systems (Q1

and Q2) at Tf = 5 min. In this case, both reactors revert to their open–loop
mode of behavior and, consequently, if no fall–back control configuration is
activated, the states move away from the desired steady–state, as shown by
the dashed lines in Figure 8.12 for the first reactor, and Figure 8.14 for the
second reactor (note that CA03 remains fixed for all times since it is not used as
a manipulated variable in the pre–failure configuration). As stated in Section
8.2.3, we assume that the controller failure in the first reactor is permanent;
and our objective is to prevent the propagation of this effect to the second
reactor. A permanent failure in the first unit could be the result of lack of
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Fig. 8.10. Evolution of the closed–loop state profiles when configuration 1 (solid
lines) fails at t = 10 hr and an overall delay of τmax = 8.0 min elapses before the
backup configuration is activated. Activation of configuration 2 preserves closed–
loop stability (dashed lines) while activation of configuration 3 leads to instability
(dotted lines).

sufficient fall–back configurations or because failure occurs at a time when the
state is outside the stability regions of all the available configurations for this
unit.

Using the proposed methodology, the supervisor of CSTR 1, at the fail-
ure time, runs both open–loop and closed–loop simulations using the process
model of CSTR 1 to estimate the size of the disturbance affecting CSTR 2,
and transmits this information to the local supervisor of CSTR 2 through
the communication network. The maximum disturbance size is proportional
to the largest discrepancy (after the failure time) between the values of
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Fig. 8.11. Manipulated input profiles when configuration 1 fails at t = 10 hr and an
overall delay of τmax = 8.0 min elapses before the backup configuration is activated.

CA1, T1 in the well–functioning (solid lines in Figure 8.12) and in the failed
(dashed lines in Figure 8.12) modes. Using this information, the local su-
pervisor of CSTR 2 designs a robust control law of the form of Eqs.8.7–
8.10 to stabilize CSTR 2, using the available fall–back configuration with
(Q2, CA03) as the manipulated inputs, and constructs the associated fault–
recovery region for this configuration. The controller design procedure involves
re–writing the process model of CSTR 2 in Eq.8.2 in the form of Eq.8.6, using
the dimensionless variables, x

(1)
i = (Ti − T s

i )/T s
i , x

(2)
i = (CAi − Cs

Ai)/Cs
Ai,

i = 1, 2, and with the states of CSTR 1 re–defined as the disturbance vari-
ables, θ1(t) = [θ(1)

1 (t) θ
(2)
1 (t)]T , where θ

(1)
1 (t) = (F1T

s
1 /V2T

s
2 )(x(1)

1 (t) + 1)
and θ

(2)
1 (t) = (F1C

s
A1/V2C

s
A2)(x

(2)
1 (t) + 1), for all t ≥ Tf . Then, using a
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Fig. 8.12. Evolution of the closed–loop state and manipulated input profiles for
CSTR 1 under a well–functioning control system (solid) and when the control actu-
ator fail at t = 5 min (dashed lines).

quadratic function of the form V2 = 1
2a2(x

(1)
2 )2 + 1

2a2(x
(2)
2 )2, the controller of

Eqs.8.7–8.10 is constructed and its fault–recovery region is computed with the
aid of Eq.8.11. The disturbance bound is computed as θ1

b = supt≥Tf
‖θ1(t)‖.

The values of the controller tuning parameters are selected to be a2 = 0.5,
ρ2 = 0.0001, χ2 = 2.0001 and φ2 = 0.0001. The fault–recovery region is
depicted by the shaded area in Figure 8.15.

From Figure 8.15, we observe that the failure occurs when the states of
CSTR 2 are within the fault–recovery region. Therefore, assuming no delays in
the fault–detection, computations and communication processing (i.e., instan-
taneous switching), when the fall–back controllers are activated, closed–loop
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Fig. 8.13. Evolution of the closed–loop state and manipulated input profiles for
CSTR 2 under a well–functioning control system.

stability is preserved and the closed–loop states converge close to the desired
steady–state as shown by the solid lines in Figure 8.14.

When delay effects are taken into account, we see from Figure 8.15 (top
plot) that if an overall delay of 3 min (accounting for delays in fault–detection,
controller computations, information transmission and actuator activation)
elapses between the failure and the activation of the (Q2, CA03) configuration
– during this delay, CSTR 2 evolves in an open–loop mode as indicated by the
dotted line – the state at the end of the delay still resides within the fault–
recovery region and, therefore, closed–loop stability is preserved by switching
to the (Q2, C

s
A0) configuration at the end of the delay. The corresponding

state and input profiles are shown by the solid lines in Figures 8.15–8.16. By
contrast, we see from the bottom plot in Figure 8.15 that when an overall
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Fig. 8.14. Evolution of the closed–loop state and manipulated input profiles for
CSTR 2 when the controller of the fall–back configuration (Q2, CA03) is activated
immediately after the failure (solid lines), and the open–loop state and input profiles
resulting when the fall–back configuration is not activated after the failure (dashed
lines).

delay of 4.1 min is considered, the state at the end of the delay lies outside
the fault–recovery region; hence the fall–back configuration cannot stabilize
the system at the desired steady–state, as can be seen from the dashed lines
in Figures 8.15–8.16.

Examination of Figure 8.15 provides useful insights into how the trade-
off between the controller design, switching and communication logics can be
managed to ensure fault–tolerance. For example, the picture suggests that
with a larger fault–recovery region, even large delays maybe tolerated by
switching to this particular configuration. A larger region can be obtained
by relaxing the constraints. Figure 8.17 shows the resulting fault–recovery
region for the (Q2, CA03) configuration when the constraints are relaxed to
|Q2| ≤ uQ2

max = 1.4× 107 KJ/hr and |CA03 −CA03s| ≤ uCA03
max = 2.0 kmol/m3.

In this case, the fault–recovery region includes the entire area of the plot. As
a result, activation of the fall–back configuration, whether after 3 min or 4.1
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Fig. 8.15. Fault–recovery region of the fall–back control configuration (Q2, CA03)
for CSTR 2, with constraints |Q2| ≤ 2.8 × 106 KJ/hr and |CA03 − Cs

A03| ≤
0.4 kmol/m3. when failure occurs at Tf = 5 min. Activation of the fall–back configu-
ration after a 3 min delay preserves closed–loop stability (top plot), while activation
after 4.1 min delay fails to ensure fault–tolerance (bottom plot).

min from the failure time, stabilizes the reactor since the state at the end of
the delay in both cases is contained within the fault–recovery region. Figure
8.18 shows the corresponding closed–loop state and input profiles of CSTR 2
for both scenarios.
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Fig. 8.16. Evolution of the closed–loop state and input profiles when the failure
occurs at Tf = 5 min and the fall–back configuration (Q2, CA03), with constraints
|Q2| ≤ 2.8× 106 KJ/hr and |CA03 −Cs

A03| ≤ 0.4 kmol/m3 is activated after a total
delay of 3 min (solid lines) and after a total delay of 4.1 min. (dashed lines).
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Fig. 8.17. Fault–recovery region of the fall–back control configuration (Q2, CA03)
for CSTR 2, with constraints |Q2| ≤ 1.4 × 107 KJ/hr and |CA03 − Cs

A03| ≤
2.0 kmol/m3. when failure occurs at Tf = 5 min. Activation of the fall–back config-
uration after a delay of either 3 min or 4.1 min ensures fault–tolerance.



8.4 Simulation studies 317

0 0.2 0.4 0.6 0.8 1
420

430

440

450

460

470

480

Time (hr)

T
em

pe
ra

tu
re

, T
2 (

K
)

Failure 

τ
delay

 = 3 min

τ
delay

 = 4.1 min

0 0.2 0.4 0.6 0.8 1
2.4

2.6

2.8

3.0

3.2

3.4

3.6

3.8

4.0

Time (hr)

R
ea

ct
an

t c
on

ce
nt

ra
tio

n,
 C

A
2 (

km
ol

/m
3 )

Failure 

τ
delay

 = 3 min

τ
delay

 = 4.1 min

0 0.2 0.4 0.6 0.8 1

−3

−2

−1

0

x 10
6

Time (hr)

R
at

e 
of

 h
ea

t i
np

ut
, Q

2 (
K

J/
hr

)

Failure τ
delay

 = 3 min

τ
delay

 = 4.1 min

0 0.2 0.4 0.6 0.8 1
1

2

3

4

5

Time (hr)

In
le

t r
ea

ct
an

t c
on

ce
nt

ra
tio

n,
 C

A
03

 (
km

ol
/m

3 )

Failure 
τ
delay

 = 3 min

τ
delay

 = 4.1 min

Fig. 8.18. Evolution of the closed–loop state and manipulated input profiles when
the failure occurs at Tf = 5 min and the fall–back configuration (Q2, CA03), with
constraints |Q2| ≤ 1.4× 107 KJ/hr and |CA03 − Cs

A03| ≤ 2.0 kmol/m3 is activated
after a total delay of 3 min (solid lines) and after a total delay of 4.1 min. (dashed
lines).
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8.5 Conclusions

In this chapter, a methodology for the design of fault–tolerant control systems
for chemical plants with distributed interconnected processing units was devel-
oped. Bringing together tools from Lyapunov–based nonlinear control and hy-
brid systems theory, the approach is based on a hierarchical architecture that
integrates lower–level feedback control of the individual units with upper–level
logic–based supervisory control over communication networks. The local con-
trol system for each unit consists of a family of control configurations for each
of which a stabilizing feedback controller is designed and the stability region
is explicitly characterized. The actuators and sensors of each configuration
are connected, via a local communication network, to a local supervisor that
orchestrates switching between the constituent configurations, on the basis of
the stability regions, in the event of failures. The local supervisors communi-
cate, through a plant–wide communication network, with a plant supervisor
responsible for monitoring the different units and coordinating their responses
in a way that minimizes the propagation of failure effects. The communication
logic is designed to ensure efficient transmission of information between units
while also respecting the inherent limitations in network resources by mini-
mizing unnecessary network usage and accounting explicitly for the effects of
possible delays due to fault–detection, control computations, network commu-
nication and actuator activation. Explicit guidelines for managing the various
interplays between the coupled tasks of feedback control, fault–tolerance and
communication were provided. The efficacy of the proposed approach was
demonstrated through chemical process examples.



9

Control of Nonlinear Systems with Time
Delays

9.1 Introduction

The dynamic models of many chemical engineering processes involve severe
nonlinearities and significant time delays and are naturally described by non-
linear differential difference equation (DDE) systems. Nonlinearities usually
arise from complex reaction mechanisms and Arrhenius dependence of reaction
rates on temperature, while time delays often occur due to transportation lag
such as in flow through pipes, dead times associated with measurement sensors
(measurement delays) and control actuators (manipulated input delays), and
approximation of high-order dynamics. Typical examples of processes which
involve nonlinearities and time delays include chemical reactors with recycle
loops, fluidized catalytic cracking units, distillation columns, chemical vapor
deposition processes to name a few.

The conventional approach to control linear/nonlinear DDE systems is to
neglect the presence of time delays and address the controller design problem
on the basis of the resulting linear/nonlinear ordinary differential equation
(ODE) systems, employing standard control methods for ODE systems. How-
ever, it is well-known (see, for example, [258]) that such an approach may pose
unacceptable limitations on the achievable control quality and cause serious
problems in the behavior of the closed-loop system including poor performance
(e.g., sluggish response, oscillations) and instability.

Motivated by the above, significant research efforts have focused on the
development of control methods for linear DDE systems that compensate for
the effect of time delays. Research initially focused on linear systems with
a single manipulated input delay which are described by transfer function
models, in which the presence of the time delay prevents the use of large
controller gains (i.e., the proportional gain of a proportional-integral controller
should be sufficiently small in order to avoid destabilization of the closed-loop
system), thereby leading to sluggish closed-loop response. To overcome this
problem, O. J. M. Smith [250] proposed a control structure, known as Smith
predictor, which completely eliminates the time delay from the characteristic
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polynomial of the closed-loop system, allowing the use of larger controller
gains. Since then many researchers have proposed alternatives or modifications
of the Smith predictor structure (e.g., [279]), extensions to control structures
for linear systems including inferential control [41] and internal model control
[98], other predictor structures such as the analytical predictor [204, 285] and
established connections of the Smith predictor with other predictors [288].
The Smith predictor structure has also been extended to linear multivariable
systems with multiple input and output delays which are described by transfer
function models, leading to multi-delay compensators [211, 131]. Excellent
reviews of results on Smith and other predictor structures can be found in
[131, 288].

Even though the above works provided powerful methods for dealing with
control actuator and measurement dead time in linear systems, they do not
explicitly account for the effect of time delays in the process state variables.
This motivates research on the design of controllers for DDE systems with
state delays. In this direction, the application of classical optimal control ap-
proaches to DDE systems in order to design optimal distributed parameter
(infinite-dimensional) controllers was initially studied (e.g., [251, 229]). Then,
the distributed parameter nature of the developed controllers motivated re-
search on the problem of model reduction of linear DDE systems. This problem
is the one of finding a linear low-dimensional ODE system that accurately re-
produces the solutions of a linear DDE system. Approaches to address this
problem include balanced approximation based on controllability and observ-
ability gramians [178], frequency response analysis [107], and approximations
using Fourier-Laguerre models [217, 281] to name a few. An alternative ap-
proach for the synthesis of controllers for linear DDE systems with state delays
that stabilize the closed-loop system independently of the size of the delays
is based on the method of Lyapunov functionals [108]. The central idea of
this approach is to synthesize a linear controller so that the time-derivative of
an appropriate Lyapunov functional calculated along the trajectories of the
closed-loop DDE system is negative definite, independently of the size of the
delays. The method of Lyapunov functionals has been used in the design of
linear stabilizing controllers for linear DDE systems in [233, 206].

Despite the abundance of results on control of linear DDE systems, most
of the research on nonlinear DDE systems has focused on the derivation of
conditions for existence and uniqueness of solutions, the understanding of
qualitative and geometric properties of the solutions (see the book [108] for
results and reference lists), and stability analysis through Razumikhin-type
theorems and nonlinear small-gain theorem techniques (e.g., [292, 269]). Very
few results are available on control of nonlinear DDE systems, with the excep-
tion of optimal control methods [150, 229]. For nonlinear systems represented
by input-output models, extensions of the Smith predictor have been pro-
posed in [27]. Within a state-space framework, the only available results on
controller synthesis are for single-input single-output nonlinear systems with
a single manipulated input delay, for which a nonlinear Smith predictor struc-
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ture was proposed in [162] under the assumption of open-loop stability, and
further extended to open-loop unstable systems in [117]. At this stage, there
is no rigorous, yet practical, method for the design of nonlinear controllers for
nonlinear DDE systems with state, manipulated input and measured output
delays.

This chapter proposes a methodology for the synthesis of nonlinear out-
put feedback controllers for single-input single-output nonlinear DDE systems
which include time delays in the states, the control actuator and the mea-
surement sensor. Initially, DDE systems which only include state delays are
considered and a novel combination of geometric and Lyapunov-based tech-
niques is employed for the synthesis of nonlinear state feedback controllers that
guarantee stability and enforce output tracking in the closed-loop system, in-
dependently of the size of the state delays. Then, the problem of designing
nonlinear distributed state observers, which reconstruct the state of the DDE
system while guaranteeing that the discrepancy between the actual and the
estimated state tends exponentially to zero, is addressed and solved by using
spectral decomposition techniques for DDE systems. The state feedback con-
trollers and the distributed state observers are combined to yield distributed
output feedback controllers that enforce stability and output tracking in the
closed-loop system, independently of the size of the state delays. For DDE sys-
tems with state, control actuator and measurement delays, distributed output
feedback controllers are synthesized on the basis of an auxiliary output con-
structed within a Smith-predictor framework. The results of this chapter were
first presented in [9].

9.2 Differential difference equation systems

9.2.1 Description of nonlinear DDE systems

We consider single-input single-output systems of nonlinear differential differ-
ence equations with the following state-space description:

˙̄x = Ax̄(t̄) +
q∑

κ=1

Bκx̄(t̄− ᾱκ) + f(x̄(t̄), x̄(t̄− ᾱ1), . . . , x̄(t̄− ᾱq))

+g(x̄(t̄), x̄(t̄− ᾱ1), . . . , x̄(t̄− ᾱq))u(t̄− α̂1),

x̄(ξ) = η̄(ξ), ξ ∈ [−ᾱ, 0), x̄(0) = η̄0

y = h(x̄(t̄− α̂2))

(9.1)

where x̄ ∈ IRn denotes the vector of state variables, u ∈ IR denotes the ma-
nipulated input, and y ∈ IR denotes the controlled output (whose on-line
measurements are assumed to be available). ᾱκ, κ = 1, . . . , q, denotes the
κ−th state delay, ᾱ = max{ᾱ1, . . . , ᾱq}, α̂1 denotes the manipulated input
delay (control actuator dead time) and α̂2 denotes the measured output delay
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(measurement sensor dead time). A,B1, . . . , Bq are constant matrices of di-
mension n×n, f(x̄(t̄), x̄(t̄− ᾱ1), . . . , x̄(t̄− ᾱq)), g(x̄(t̄), x̄(t̄− ᾱ1), . . . , x̄(t̄− ᾱq))
are locally Lipschitz nonlinear vector functions, h(x̄(t̄− α̂2)) is a locally Lip-
schitz nonlinear scalar function, η̄(ξ) is a smooth vector function defined in
the interval [−ᾱ, 0) and η̄0 is a constant vector. We will assume that the vec-
tor function f(x̄(t̄), x̄(t̄ − ᾱ1), . . . , x̄(t̄ − ᾱq)) includes only nonlinear terms
and satisfies f(0, 0, . . . , 0) = 0 which implies that x(t) ≡ 0 is an equilibrium
solution for the open-loop (i.e., u(t̄− α̂1) ≡ 0) system of Eq.9.1.

There are many chemical engineering processes whose dynamic models
involve time delays in the state variables and are naturally described by non-
linear DDE systems of the form of Eq.9.1. Example of such processes include
chemical reactors with recycle loops (where the state delays occur due to
transportation lag in the recycle loops), fluidized catalytic cracking reactors
(where the state delays occur due to dead time in pipes transferring material
from the regenerator to the reactor and vice versa) and distillation columns
(where the state delays occur due to dead time in reboiler and condenser recy-
cle loops). Furthermore, control actuator and measurement sensor dead times
are also very common sources of time delays in chemical process control, and
they are explicitly accounted for in the DDE system of Eq.9.1. The linear
appearance of the manipulated input u in the system of Eq.9.1 is also typi-
cal in most practical applications, where inlet flow rates, inlet temperatures
and concentrations are typically chosen as manipulated inputs. Finally, the
assumption that the controlled output is identical to the measured output is
done in order to simplify the notation of this work and can be readily relaxed
(i.e., the extension of the proposed theory to systems in which the controlled
output is different from the measured output is conceptually straightforward)

To simplify the presentation of the results of this work, we will transform
the DDE system of Eq.9.1 into an equivalent DDE system which includes state
and measurement delays and does not include manipulated input delay. We
will also focus on DDE systems with a single state delay (the generalization
of the results of this chapter to the case of DDE systems with multiple state
delays is conceptually straightforward and will not be presented here for rea-
sons of brevity). To this end, we set α̃ = α̂1 + α̂2, t = t̄− α̂1, q = 1, B1 = B,
ᾱ = ᾱ1, α = α̂1 + ᾱ, x(t) = x̄(t + α̂1) and obtain the following system (which
will be used in our development):

ẋ = Ax(t) + Bx(t− α) + f(x(t), x(t− α)) + g(x(t), x(t− α))u(t),

x(ξ) = η̄(ξ), ξ ∈ [−α, 0), x(0) = η̄0

y = h(x(t− α̃))

(9.2)

Remark 9.1. In order to compare the proposed approach for control of nonlin-
ear DDE systems with existing approaches for control of linear DDE systems,
we set f(x(t), x(t−α)) = 0, g(x(t), x(t−α)) = c and h(x(t− α̃)) = wx(t− α̃),
where c, w are constant vectors, in the system of Eq.9.2 to derive the following
linear DDE system:
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ẋ = Ax(t) + Bx(t− α) + cu(t), x(ξ) = η̄(ξ), ξ ∈ [−α, 0), x(0) = η̄0

y = wx(t− α̃)
(9.3)

which will be used to synthesize linear state feedback controllers and state
observers.

In the next subsection, a typical chemical process example [211] is given
in order to illustrate modeling of a chemical process in the form of Eq.9.2.

9.2.2 Example of a chemical process modeled by a nonlinear DDE
system

Consider the cascade of two perfectly-mixed chemical reactors with recycle
loop, which is shown in Figure 9.1. A first-order irreversible reaction of the
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Fig. 9.1. Two chemical reactors with recycle loop.

form A→B takes place in the reactors. The process possesses an inherent
state delay due to the transportation lag in the recycle loop. Under standard
modeling assumptions, the dynamic model of the process can be derived from
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mass and energy balances and consists of the following system of four nonlinear
differential difference equations:

dC1

dt
=

F1

V1
C1f − (F1 + R)

V1
C1 +

R

V1
C2(t− α)− k0 exp

(
− E

RT1

)
C1

dT1

dt
=

F1

V1
T1f − (F1 + R)

V1
T1 +

R

V1
T2(t− α) +

(−∆H)
ρcp

k0 exp
(
− E

RT1

)
C1

dC2

dt
=

F2

V2
C2f − (Fp2 + R)

V2
C2 +

(F1 + R− Fp1)
V2

C1 − k0 exp
(
− E

RT2

)
C2

dT2

dt
=

F2

V2
T2f − (Fp2 + R)

V2
T2 +

(F1 + R− Fp1)
V2

T1

+
(−∆H)

ρcp
k0 exp

(
− E

RT2

)
C2

(9.4)
where F1, F2 denote the flow rates of the inlet streams to the two reactors,
V1, V2 denote the volumes of the two reactors, R denotes the recycle (from
the second to the first reactor) flow rate, Fp1, Fp2 denote the flow rate of the
product streams from the two reactors, C1f , C2f denote the concentration of
species A in the inlet streams to the reactors, C1, C2 denote the concentration
of species A in the reactors, T1f , T2f denote the temperature of the inlet
streams to the two reactors, T1, T2 denote the temperature in the two reactors,
k0, E, ∆H denotes the pre-exponential constant, the activation energy and
the enthalpy of the reaction, cp, ρ denote the heat capacity and the density
of the reacting liquid, and α denotes the recycle loop dead time.

A typical control problem for this process can be formulated as the one of
regulating the concentration of species A in the first reactor, C1, by manipu-
lating the feed concentration of A in the first reactor, C1f . Setting:

x1 = C1, x2 = C2, x3 = T1, x4 = T2, u = C1f , y = C1

the original set of equations can be put in the form of Eq.9.2.

9.3 Mathematical properties of DDE systems

The objective of this section is to present the basic mathematical properties
of DDE systems that will be used in our development. We will begin with
the spectral properties of DDE systems, and we will continue with stability
concepts and results.

9.3.1 Spectral properties

In this subsection, we formulate the system of Eq.9.2 as an infinite dimensional
system in an appropriate Banach space and provide the statement and solution
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of the eigenvalue problem for the linear delay operator (see Eq.9.7 below). The
solution of the eigenvalue problem will be utilized in the design of nonlinear
distributed state observers in Section 9.7. We formulate the system of Eq.9.2
in the Banach space C([−α, 0], IRn) of continuous n-vector valued functions
defined in the interval [−α, 0] with inner product and norm:

(ω̃1, ω̃2) = ω̃1(0)ω̃2(0) +
∫ 0

−α

ω̃1(z + α)Bω̃2(z)dz,

‖ω̃1‖2 = (ω̃1, ω̃1)
1
2

(9.5)

where ω̃1 is an element of C∗([−α, 0], IRn∗), IRn∗ is the n-dimensional vector
space of row vectors, and ω̃2 ∈ C. On C, the state function x of the system of
Eq.9.2 is defined as:

xt(ξ) = x(t + ξ), t ≥ 0, ξ ∈ [−α, 0], (9.6)

the operator A as:

Aφ(ξ) =





dφ(ξ)
dξ

, ξ ∈ [−α, 0)

Aφ(0) + Bφ(−α), ξ = 0





(9.7)

φ(ξ) ∈ D(A) =
{

φ ∈ C∗([−α, 0], IRn∗) : φ̇ ∈ C, φ̇(0) = Aφ(0) + Bφ(−α)
}

(9.8)
and the output as:

y(t) = h(Pxt) (9.9)

where P : C → IRn is defined by Pxt = xt(0). D(A) is a dense subset of C. If
η ∈ D(A), then the system of Eq.9.2 can be equivalently written as:

dxt

dt
= Axt + f(Pxt, Qxt) + g(Pxt, Qxt)u, x0(ξ) = η̄, x0(0) = η̄0

y(t) = h(Pxt)
(9.10)

where Qxt = xt(−α).
The eigenvalue problem for the operator A is defined as:

Aφj = λjφj , j = 1, . . . ,∞ (9.11)

where λj denotes an eigenvalue and φj denotes an eigenfunction (note that φj

is a vector of dimension n); the eigenspectrum of A, σ(A), is defined as the
set of all eigenvalues of A, i.e., σ(A) = {λ1, λ2, . . . , } and is given by [108]:

σ(A) =
{
λ : det(λI −A−Be−λα) = 0

}
(9.12)
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The eigenfunctions can be directly computed from the formula φλ = eλξφλ(0),
where φλ(0) satisfies the equation (λI − A − Be−λα)φλ(0) = 0. The adjoint
of operator Āψ of A is defined from the relation (Aφ, ψ) = (φ, Āψ), where
(, ) denotes the inner product of Eq.9.5, and its eigenspectrum, σ(Ā), satisfies
σ(Ā) = σ(A).

Remark 9.2. Regarding the properties of the eigenspectrum of A, several com-
ments are in order [108, 185]: a) the eigenspectrum σ(A) is a point spectrum
consisting of eigenvalues, λ ∈ σ(A), of finite multiplicity, κ(λ), b) the number
of eigenvalues of σ(A) which have positive real part (i.e., they are located in
the right-half of the complex plane) is always finite, c) the real parts of all the
eigenvalues are bounded from above (i.e., there exists a positive real number
β such that |Re λi| ≤ β for all i = 1, . . . ,∞), and d) the eigenvalues are
asymptotically distributed along nearly vertical asymptotes in the complex
plane.

Remark 9.3. To illustrate the formulation of a DDE system in an infinite
dimensional Banach space, and the formulation and solution of the corre-
sponding eigenvalue problem for the delay operator, we consider the following
numerical example:

ẋ =
[−2.0 3.5

3.0 −3.0

]
x(t) +

[−2.0 0.0
0.0 0.0

]
x(t− 3) +

[
4x1x2 − 3x2

1 − x2
2

0

]
(9.13)

For the above system, the solution (x1, x2) = (0, 0) is the unique equilibrium
solution, the Banach space is C([−3, 0], IR2) and the operator A takes the
form:

Aφ(ξ) =





dφ(ξ)
dξ

, ξ ∈ [−3, 0)

[−2.0 3.5
3.0 −3.0

]
φ(0) +

[−2.0 0.0
0.0 0.0

]
φ(−3), ξ = 0





(9.14)

φ(ξ) ∈ D(A) =
{

φ ∈ C∗([−3, 0], IR2∗) : φ̇ ∈ C,

φ̇(0) =
[−2.0 3.5

3.0 −3.0

]
φ(0) +

[−2.0 0.0
0.0 0.0

]
φ(−3)

} (9.15)

The eigenvalue problem for A was solved numerically by using the mathe-
matical software MAPLE and was found that σ(A) includes two unstable
eigenvalues λ1 = 0.58, λ2 = 0.21 and infinitely many stable eigenvalues; this
implies that the equilibrium solution (0, 0) of the system of Eq.9.13 is unstable.

We finally note that even though the solution (x1, x2) = (0, 0) of the DDE
system of Eq.9.13 is unstable, the origin of the undelayed system:

ẋ =
[−4.0 3.5

3.0 −3.0

]
x(t) +

[
4x1x2 − 3x2

1 − x2
2

0

]
(9.16)
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is globally asymptotically stable (the linearization of the above system around
the origin possesses two stable eigenvalues: λ1 = −6.78, λ2 = −0.22 and
(x1, x2) = (0, 0) is the unique equilibrium point).

9.3.2 Stability concepts and results

From the analysis of the previous subsection, it is evident that DDE systems
of the form of Eq.9.2 possess fundamentally different properties from ODE
systems. The main difference is that the state-space of a DDE system is infinite
dimensional, while the state-space of an ODE system is finite dimensional.
Therefore, the rigorous analysis of the stability properties of the system of
Eq.9.2 requires the use of stability concepts and results for DDE systems.
In what follows, we review the definitions of asymptotic stability and input-
to-state stability for DDE systems as well as a basic theorem that provides
sufficient conditions for assessing asymptotic stability. The reader may refer to
the classic book [108] for a complete treatment of stability issues for nonlinear
differential difference equations.

Consider the following system of nonlinear differential difference equations:

ẋ(t) = f(x(t), x(t− α), θ(t), θ(t− α)), x(ξ) = η̄(ξ), ξ ∈ [−α, 0), x(0) = η̄0

(9.17)
where x ∈ IRn, θ ∈ IRm, and suppose that f(0, 0, 0, 0) = 0. Now, given
a function θ : [−α,∞) → IRm and t ∈ [0,∞), θt(ξ) represents a function
from [−α, 0] to IRm defined by θt(ξ) := θ(t + ξ). We also define ‖θt(ξ)‖ :=
maxt−α≤ξ≤t ‖θt(ξ)‖, ‖θt‖s := sup

s≥0
‖θs(ξ)‖ and ‖θt‖s

T := sup
0≤s≤T

‖θs(ξ)‖. Finally,

‖ · ‖ denotes the standard Euclidean norm in IRn. Definition 9.4 that follows
provides a rigorous statement of the concept of input-to-state stability for the
system of Eq.9.17.

Definition 9.4. [269] Let γ be a function of class-Q (see definition of class-Q
function in Appendix F) and δx, δθ be positive real numbers. The zero solution
of Eq.9.17 is said to be input-to-state stable if ‖x0(ξ)‖ ≤ δx and ‖θt‖s ≤ δθ

imply that the solution of the system of Eq.9.17 is defined for all times and
satisfies:

‖xt(ξ)‖ ≤ β(‖x0(ξ)‖, t) + γ(‖θt‖s), ∀ t ≥ 0 (9.18)

The above definition, when θ(t) ≡ 0, ∀ t ≥ 0 reduces to the definition
of asymptotic stability for the zero solution of the DDE system of Eq.9.17.
Furthermore, when α = 0, Definition 9.4 reduces to the standard definition
of input-to-state stable for nonlinear ODE systems with external inputs (see,
for example, [148]). Finally, we note that from the definition of ‖xt(ξ)‖ and
Eq.9.18, it follows that ‖x(t)‖ ≤ ‖xt(ξ)‖ ≤ β(‖x0(ξ)‖, t) + γ(‖θt‖s), ∀ t ≥ 0.
The following theorem provides sufficient conditions for the stability of the
zero solution of the system of Eq.9.17, expressed in terms of a suitable func-
tional, and consists a natural generalization of the direct method of Lyapunov
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for ordinary differential equations. The result of this theorem will be directly
used in the solution of the state feedback control problem in Section 9.5 below.

Theorem 9.5. [108] Consider the system of Eq.9.17 with θ(t) ≡ 0 and let
γ1, γ2, γ3 be functions of class Q. If γ1(s), γ2(s) > 0 for s > 0 and there is a
continuous functional V : C → R≥0 such that:

γ1(‖x(t)‖) ≤ V (xt(ξ)) ≤ γ2(‖xt(ξ)‖)
V̇ (xt(ξ)) ≤ −γ3(‖x(t)‖)

(9.19)

then the solution x = 0 is stable. If γ3(s) > 0 for s > 0, then the solution
x = 0 is locally asymptotically stable. If γ1(s) →∞ as s →∞ and γ3(s) > 0
for s > 0, then the solution x = 0 is globally asymptotically stable.

Remark 9.6. Even though, at this stage, there is no systematic way for se-
lecting the form of the functional V (xt(ξ)) which is suitable for a particular
application, a choice for V (xt(ξ)), which is frequently used to show local ex-
ponential stability of a DDE system of the form of Eq.9.17 via Theorem 9.5,
is:

V (xt(ξ)) = x(t)T Cx(t) + a2

∫ t

t−α

x(s)T Ex(s)ds (9.20)

where E,C are symmetric positive definite matrices and a is a positive real
number. Clearly, the functional of Eq.9.20 satisfies K1‖x(t)‖2 ≤ V (xt(ξ)) ≤
K2‖xt(ξ)‖2 for some positive K1,K2.

9.4 Nonlinear control of DDE systems with small time
delays

In order to motivate the need for accounting for the presence of time delays
in the controller design, we will now establish that a direct application of any
nonlinear control method to DDE systems without accounting for the presence
of time delays, will lead to the design of controllers that enforce stability and
output tracking in the closed-loop system, provided that the time delays are
sufficiently small.

We assume that there exists a nonlinear output feedback controller of the
form:

ω̇ = F(ω, y, v)

u = P(ω, y, t)
(9.21)

where F(ω, y, v) is a vector function, P(ω, y, t) is a scalar function, and v is
the set point, which has been designed on the basis of the system:

ẋ = Ax(t) + Bx(t) + f(x(t), x(t)) + g(x(t), x(t))u(t), x(0) = x0

y = h(x(t))
(9.22)
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so that the closed-loop system:

ω̇ = F(ω, y, v), ω(0) = ω0

ẋ = Ax(t) + Bx(t) + f(x(t), x(t)) + g(x(t), x(t))P(ω, y, t), x(0) = x0

y = h(x(t))
(9.23)

is locally exponentially stable (see [148] for stability definitions for ODE
systems) and the discrepancy between y and v is asymptotically zero (i.e.,
lim

t→∞
‖y(t)− v(t)‖ = 0).

Theorem 9.7 that follows establishes that if the controller of Eq.9.21 en-
forces local exponential stability and asymptotic output tracking in the closed-
loop system of Eq.9.23, then it also enforces these properties in the closed-loop
system of Eqs.9.2-9.21, provided that the state and measurement delays are
sufficiently small (the proof of the theorem can be found in Appendix F).

Theorem 9.7. If the ODE system of Eq.9.23 is locally exponentially stable,
then the nonlinear DDE system of Eq.9.2 under the nonlinear output feedback
controller of Eq.9.21 is locally exponentially stable and the discrepancy between
y and v tends asymptotically to zero (i.e., lim

t→∞
‖y(t) − v(t)‖ = 0), provided

that α and α̃ are sufficiently small.

Remark 9.8. Even though the result of the theorem clearly indicates the need
for accounting for the presence of time delays in the controller design, it is
worth mentioning that Theorem 9.7 establishes a very important robustness
property of any nonlinear controller with respect to small time delays. This
property may also be useful in many practical applications, because it could
lead to simplifications in the controller design task, which, for DDE systems
with small time delays, could be addressed on the basis of an ODE system
instead of a DDE one.

9.5 Nonlinear control of DDE systems with large time
delays

9.5.1 Problem statement

Since the application of controller design methods which do not account for the
presence of time delays is limited to DDE systems with small time delays, we
address, in this paper, the problem of synthesizing nonlinear output feedback
controllers of the general form:

ω̇ = Aω(t) + Bω(t− α) + f(ω(t), ω(t− α))

+g(ω(t), ω(t− α))A(ω(t), v̄(t), ω(t− α), v̄(t− α)) + I(y(t)− h(ω(t)))

u = A(ω(t), v̄(t), ω(t− α), v̄(t− α))
(9.24)
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where I(·) is a nonlinear integral operator, A(ω(t), v̄(t), ω(t− α), v̄(t− α)) is
a nonlinear scalar function, v̄(s) = [v(s) v(1)(s) · · · v(r−1)(s)]T , s ∈ [t − α, t]
and v(k) denotes the k−th time-derivative of the reference input v ∈ IR,
that enforce exponential stability, asymptotic output tracking and time-delay
compensation in the closed-loop system, independently of the size of the state
and measurement delays.

9.5.2 Methodological framework

To develop a comprehensive method for the synthesis of controllers of the form
of Eq.9.24 that enforce the requested properties in the closed-loop system, we
will employ a methodology which involves the following steps:

1. Synthesis of nonlinear state feedback controllers that enforce stability and
output tracking in the closed-loop system, independently of the size of the
state delay.

2. Design of nonlinear distributed state observers (i.e., the observer itself is a
system of nonlinear integro-differential equations) that produce estimates
of the unknown state variables of the process with guaranteed asymptotic
convergence of the error between the actual and estimated states to zero.

3. Synthesis of distributed nonlinear output feedback controllers through
combination of the developed state feedback controllers with the dis-
tributed state observers.

Initially, nonlinear state feedback controllers will be synthesized for DDE sys-
tems which only include state delays by employing a novel combination of
geometric control concepts with the method of Lyapunov functionals (i.e., the
controllers will be synthesized in such a way so that the time-derivative of
an appropriate Lyapunov-functional calculated along the trajectories of the
closed-loop system is negative definite). Then, nonlinear distributed state ob-
servers will be constructed for DDE systems which only include state delays
by using spectral decomposition techniques. Finally, for DDE systems with
state and measurement delays, the output feedback controller will be synthe-
sized on the basis of an auxiliary output constructed within a Smith-predictor
framework.

9.6 Nonlinear state feedback control for DDE systems
with state delays

In this section, we consider systems of the form of Eq.9.2 without measurement
delay, i.e., α̃ = 0, (this assumption will be removed below) and assume that
measurements of the states are available (i.e., x(s) for s ∈ [t−α, t], t ∈ [0,∞) is
known). For these systems, we address the problem of synthesizing nonlinear
static state feedback control laws of the general form:
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u = A(x(t), v̄(t), x(t− α), v̄(t− α)) (9.25)

where A(x(t), v̄(t), x(t − α), v̄(t − α)) is a nonlinear scalar function, that: a)
guarantee local exponential stability, b) force the output to asymptotically
follow the reference input (i.e., ensure that lim

t→∞
‖y(t) − v(t)‖ = 0), and c)

compensate for the effect of the time delay on the output, in the closed-
loop system. The structure of the control law of Eq.9.25 is motivated by
available results on stabilization of linear DDE systems (e.g., [233, 206]) and
the requirement of output tracking.

In order to proceed with the explicit synthesis of the control law of Eq.9.25,
we will need to make certain assumptions on the structure and stability prop-
erties of the system of Eq.9.2. To simplify the statement of these assumptions,
we introduce the notation f(x(t), x(t − α)) = f1(x(t)) + f2(x(t), x(t − α)),
f̃(x(t)) = Ax(t)+f1(x(t)), and p̄(x(t), x(t−α)) = Bx(t−α)+f2(x(t), x(t−α)),
which allows us to rewrite the system of Eq.9.2 in the following form:

ẋ = f̃(x(t)) + g(x(t), x(t− α))u + p̄(x(t), x(t− α))

y = h(x)
(9.26)

The first assumption is motivated by the requirement of output tracking and
will play a crucial role in the synthesis of the controller.

Assumption 9.1 Referring to the system of Eq.9.26, there exists an integer
r and a change of variables:

[
ζ(s)
η(s)

]
=




ζ1(s)
ζ2(s)

...
ζr(s)
η1(s)

...
ηn−r(s)




= X (x(s)) =




h(x)
Lf̃h(x(s))

...
Lr−1

f̃
h(x(s))

χ1(x(s))
...

χn−r(x(s))




(9.27)

where s ∈ [t−α, t] and χ1(x(s)), · · · , χn−r(x(s)) are scalar functions such that
the system of Eq.9.26 takes the form:
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ζ̇1 = ζ2(t) + p1(ζ(t), η(t), ζ(t− α), η(t− α))
...

ζ̇r−1 = ζr(t) + pr−1(ζ(t), η(t), ζ(t− α), η(t− α))
ζ̇r = Lr

f̃
h(X−1(ζ(t), η(t))) + LgL

r−1

f̃
h(X−1(ζ(t), η(t)))u

+pr(ζ(t), η(t), ζ(t− α), η(t− α))

η̇1 = Ψ1(ζ(t), η(t), ζ(t− α), η(t− α))
...

η̇n−r = Ψn−r(ζ(t), η(t), ζ(t− α), η(t− α))
y = ζ1

(9.28)

where p1(ζ(t), η(t), ζ(t− α), η(t− α)), . . . , pr(ζ(t), η(t), ζ(t− α), η(t− α)),
Ψ1(ζ(t), η(t), ζ(t − α), η(t − α)), . . . , Ψn−r(ζ(t), η(t), ζ(t − α), η(t − α)) are
nonlinear Lipschitz functions and LgL

r−1

f̃
h(x) 6= 0 for all x(s) ∈ IRn and

s ∈ [t− α, t].

Assumption 9.1 provides the explicit form of a coordinate change (which is
independent of the state delay present in the system of Eq.9.2) that trans-
forms the nonlinear DDE system of Eq.9.2 into an interconnection of two
subsystems, the ζ-subsystem which describes the input/output dynamics of
the system of Eq.9.2 and the η-subsystem which includes the dynamics of
the system of Eq.9.2 which are unobservable from the output. Specifically,
the interconnection of Eq.9.28 is obtained by considering the change of vari-
ables of Eq.9.27 with s = t, differentiating it with respect to time, and using
that x(t) = X−1(ζ(t), η(t)) and x(t − α) = X−1(ζ(t − α), η(t − α)) (note
that this is possible because the coordinate change of Eq.9.27 is assumed to
be valid for s ∈ [t − α, t]). The coordinate transformation of Eq.9.27 is not
restrictive from an application point of view (one can easily verify that As-
sumption 9.1 holds for the two chemical reactors with recycle of Subsection
9.2.2 and the two applications studied in Sections 9.10-9.11). The assumption
that LgL

r−1

f̃
h(x) 6= 0 for all x(s) ∈ IRn and s ∈ [t− α, t] is necessary in order

to guarantee that the controller which will be synthesized is well-posed in the
sense that it does not generate infinite control action for any values of the
states of the process (compare with the structure of the controller given in
Theorem 9.9).

To proceed with the controller design, we need to impose the following
stability requirement on the η−subsystem of the system of Eq.9.28 which will
allow addressing the controller synthesis task on the basis of the low-order
ζ-subsystem.

Assumption 9.2 The dynamical system:
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η̇1 = Ψ1(ζ(t), η(t), ζ(t− α), η(t− α))
...

η̇n−r = Ψn−r(ζ(t), η(t), ζ(t− α), η(t− α))
(9.29)

is input-to-state stable (see Definition 9.4 for a precise statement of this con-
cept) with respect to the input ζt(ξ).

Loosely speaking, the above assumption states that if the state of the
ζ−subsystem is bounded, then the state of the η−subsystem will also re-
main bounded (see Remark 9.12 for an interpretation of the η-subsystem). In
practice, Assumption 9.2 can be verified by linearizing the system of Eq.9.29
with ζt(ξ) = 0 around the operating steady-state and computing the eigenval-
ues of the resulting linear system. If all of these eigenvalues are in the left-half
of the complex plane, then [269] Assumption 9.2 is satisfied locally (i.e., for
sufficiently small initial conditions and ζt(ξ)). An application of this approach
for checking Assumption 9.2 is discussed in Subsection 9.11.2.

Using Assumption 9.2, the controller synthesis problem can be now ad-
dressed on the basis of the ζ−subsystem. Specifically, applying the following
preliminary feedback law:

u =
1

LgL
r−1

f̃
h(X−1(ζ, η))

×

(ũ− Lr
f̃
h(X−1(ζ, η))− pr(ζ(t), η(t), ζ(t− α), η(t− α)))

(9.30)

where ũ is an auxiliary input, to the system of Eq.9.28 in order to cancel all
the nonlinear terms that can be cancelled by using a feedback which utilizes
measurements of x(s) for s ∈ [t − α, t], we obtain the following modified
system:

ζ̇1 = ζ2 + p1(ζ(t), η(t), ζ(t− α), η(t− α))
...

ζ̇r−1 = ζr + pr−1(ζ(t), η(t), ζ(t− α), η(t− α)))
ζ̇r = ũ

η̇1 = Ψ1(ζ(t), η(t), ζ(t− α), η(t− α))
...

η̇n−r = Ψn−r(ζ(t), η(t), ζ(t− α), η(t− α))
y = ζ1

(9.31)

Introducing the notation:
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Ã =




0 1 0 · · · 0 0
0 0 1 · · · 0 0
0 0 0 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 0 0




, b =




0
0
0
...
1




,

p(ζ(t), η(t), ζ(t− α), η(t− α)) =




p1(ζ(t), η(t), ζ(t− α), η(t− α))
p2(ζ(t), η(t), ζ(t− α), η(t− α))

...
pr−1(ζ(t), η(t), ζ(t− α), η(t− α))

0




(9.32)
the ζ-subsystem of the system of Eq.9.31 can be written in the following
compact form:

ζ̇ = Ãζ + bũ + p(ζ(t), η(t), ζ(t− α), η(t− α))

y = ζ1

(9.33)

The controller synthesis task has been now reduced to the one of synthesized
ũ to stabilize the ζ-subsystem and force the output y to asymptotically follow
the reference input, v. To develop a solution to this problem, we will need to
make the following assumption on the growth of the vector p(ζ(t), η(t), ζ(t−
α), η(t− α)).

Assumption 9.3 Let

ē(s) = [(h(x(s))−v(s)) (Lf̃h(x(s))−v(1)(s)) · · · (Lr−1

f̃
h(x(s))−v(r−1)(s))]T ,

s ∈ [t−α, t] where v(k) denotes the k−th time-derivative of the reference input
v. There exist positive real numbers a1, a2 such that the following bound can
be written:

‖p(ē(t) + v̄(t), η(t), ē(t− α) + v̄(t− α), η(t− α))‖2 ≤ a1ē
2(t) + a2ē

2(t− α)
(9.34)

The above assumption on the growth of the vector p(ē(t) + v̄(t), η(t), ē(t −
α) + v̄(t−α), η(t−α)) does not need to hold globally (i.e., for any ē(t), η(t)),
and thus, it is satisfied by most practical problems (see, for example, the
applications studied in Sections 9.10-9.11). Furthermore, Assumption 9.3 will
allow us to synthesize a linear auxiliary feedback law of the form ũ = Kē
to stabilize the ζ-subsystem and enforce output tracking. The synthesis of
such a ũ will be performed by using the method of Lyapunov functionals.
Specifically, ũ will be designed so that the time-derivative of the following
Lyapunov functional:

V (ēt(ξ)) = ēT P ē + a2

∫ t

t−α

ēT (s)ē(s)ds (9.35)



9.6 Nonlinear state feedback control for DDE systems with state delays 335

where a is a positive real number, calculated along the state of the closed-
loop ζ−subsystem is negative definite. The incorporation of the integral term∫ t

t−α

ēT (s)ē(s)ds in the functional of Eq.9.35 allows accounting for the distributed

parameter (delayed) nature of the system of Eq.9.2 in the controller design
stage and synthesizing a controller that enforces the requested properties in
the closed-loop system independently of the size of the state delay.

We are now in a position to state the main controller synthesis result of
this section. Theorem 9.9 that follows provides the formula of the controller
and conditions under which stability and output tracking is guaranteed in the
closed-loop system (the proof of the theorem can be found in Appendix F).

Theorem 9.9. Consider the system of nonlinear differential difference equa-
tions of Eq.9.2 with α̃ = 0, for which Assumptions 9.1-9.3 hold. Then, if the
matrix equation:

ÃT P + PÃ− 2PT bR−1
2 bT P + (a2 + a1)I + P 2 = −R1 (9.36)

where a2 > a2, and R1, R2 are positive definite matrices, has a unique positive
definite solution for P , the nonlinear state feedback controller:

u = A(x(t), v̄(t), x(t− α), v̄(t− α))

:=
1

LgL
r−1

f̃
h(x)

(
−R−1

2 bT P ē(t) + v(r)(t)− Lr
f̃
h(x)

−pr(x(t), v̄(t), x(t− α), v̄(t− α)))

(9.37)

enforces: (a) local exponential stability, and (b) asymptotic output tracking in
the closed-loop system, independently of the size of the state delay.

Remark 9.10. Regarding the structure, implementation and closed-loop prop-
erties of the nonlinear state feedback controller of Eq.9.37, several remarks
are in order: a) it uses measurements of the states of the process at t and
t−α (i.e., x(t) and x(t−α)), and thus, it belongs to the class of the requested
control laws of Eq.9.25, b) its practical implementation requires the use of
memory lines to store the values of x in the time interval [t− α, t], and c) it
enforces stability and asymptotic output tracking in the closed-loop system
independently of the size of the state delay.

Remark 9.11. In order to apply the result of Theorem 9.9 to a chemical process
application, one has to initially verify Assumptions 9.1-9.3 of the theorem
on the basis of the process model and compute the parameters a1 and a2.
Then, a,R1, R2 should be chosen so that a2 > a2 and the matrices R1, R2 are
positive definite to ensure that Eq.9.36 has a unique positive definite solution
for P . Regarding the role of R1, R2 on closed-loop properties, we note that
R1 determines the speed of the closed-loop output response (namely, “larger”
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(in terms of the smallest eigenvalue) R1 means faster response), while R2

determines the penalty that should be imposed on the manipulated input in
achieving stabilization and output tracking (“larger” R2 means larger penalty
on the control action). If these assumptions are satisfied, the synthesis formula
of Eq.9.37 can be directly used to derive the explicit form of the controller
(see Sections 9.10-9.11 for the application of this procedure to two chemical
process examples).

Remark 9.12. In analogy to the case of nonlinear ODE systems (see, for exam-
ple, [126, 157]), one can show that the η-subsystem of Eq.9.29 represents the
inverse dynamics of the DDE system of Eq.9.2. Moreover, the η-subsystem of
Eq.9.29 with ζt(ξ) = 0, i.e.:

η̇1 = Ψ1(0, η(t), 0, η(t− α))
...

η̇n−r = Ψn−r(0, η(t), 0, η(t− α))
(9.38)

represents the zero dynamics of the DDE system of Eq.9.2 (i.e., the dynamics
of Eq.9.2 when the output is set identically equal to zero). Linearizing the
zero dynamics of Eq.9.38 around the zero solution, one can show that the
eigenvalues of the resulting linear system are identical to the zeros (which are
infinite) of the linear DDE system of Eq.9.3.

Remark 9.13. Applying the proposed method for the synthesis of state feed-
back controllers for DDE systems to linear systems of the form of Eq.9.3 with
α̃ = 0, we end up with the following controller synthesis formula:

u = [wAr−1c]−1
(−R−1

2 bT P ē(t) + v(r)(t)− wArx(t)− wAr−1Bx(t− α)
)

(9.39)
where P is the solution of Eq.9.36. The linear controller of Eq.9.39 can be
thought of as an extension of linear control laws of the form:

u = F1x(t) + F2x(t− α) (9.40)

where F1, F2 are constant vectors of appropriate dimensions, which were con-
sidered in the context of stabilization of linear DDE systems (e.g., [233, 206]),
to the problems of stabilization with output tracking. We note that the usual
approach followed in the literature for the design of the vectors F1, F2 is based
on the method of Lyapunov functionals.

Remark 9.14. A control problem which has attracted significant attention in
the area of nonlinear process control is the one of specifying the explicit for-
mula of a controller that enforces a linear response between the controlled
output and the reference input in the closed-loop system. This problem was
solved in [158] for systems of nonlinear ODEs, and more recently, in [53] for
systems of nonlinear hyperbolic PDEs. In this remark, we formally pose this
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problem for DDE systems of the form of Eq.9.2 with α̃ = 0 and show that it
leads to the synthesis of a nonlinear feedback controller which is non-realizable,
and thus, it cannot be implemented in practice. Specifically, we seek to design
a nonlinear feedback controller that enforces the following linear input/output
response:

γr
dry

dtr
+ · · ·+ γ1

dy

dt
+ y = v (9.41)

where r is the ‘relative order’ of the system of Eq.9.2 (i.e., the smallest
derivative of y which depends explicitly on the manipulated input u) and
γ1, γ2, · · · , γr are adjustable parameters, in the closed-loop system. Calculat-
ing the time-derivatives of the output y, up to order r, in the system of Eq.9.2,
we obtain the following expressions:

y = h(x)

dy

dt
= ψ1(x(t), x(t− α))

d2y

dt2
= ψ2(x(t), x(t− α), x(t− 2α))

...

dry

dtr
= ψr(x(t), x(t− α), . . . , x(t− rα)) + φ(x(t), x(t− α), . . . , x(t− rα))u

(9.42)
where ψ1(x(t), x(t − α)), . . . , ψr(x(t), x(t − α), . . . , x(t − rα)), φ(x(t), x(t −
α), . . . , x(t− rα)) are smooth nonlinear functions whose specific form is omit-
ted for brevity. Substituting the expressions for the time-derivatives of y in
Eq.9.41, assuming that the term φ(x(t), x(t−α), . . . , x(t− rα)) 6= 0 and solv-
ing for u, we obtain the following expression for the controller that enforces
the linear response of Eq.9.41 in the closed-loop system:

u(t) =
1

φ(x(t), x(t− α), . . . , x(t− rα))
((v − h(x(t))

−
r∑

ν=1

γνψν(x(t), x(t− α), . . . , x(t− να)

) (9.43)

The above controller clearly uses measurements of x(t − να) with 2 ≤ ν ≤ r
which may not be available, and thus, it cannot be implemented in practice.
To illustrate this point, we consider the representation of the controller of
Eq.9.43 for t = 0 i.e.:

u(0) =
1

φ(x(0), x(−α), . . . , x(−rα))
(v − h(x(0))

−
r∑

ν=1

γνψν(x(0), x(−α), . . . , x(−να)

) (9.44)
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Clearly, the calculation of the initial control action, u(0), requires values of
the state, such as x(−2α), . . . , x(−rα), which are not included in the initial
data of the system of Eq.9.2, and thus, u(0), cannot be realized. We finally
note that an extension of the initial conditions in the past as a remedy to this
problem is not meaningful, since, from a mathematical point of view, it leads
to an ill-defined DDE system, while, from a practical point of view, it may
require past knowledge of the state at an arbitrarily large time interval which,
in general, there is no guarantee that exists.

9.7 Nonlinear state observer design for DDE systems
with state delay

In this section, we consider nonlinear DDE systems of the form of Eq.9.2
with α̃ = 0 and focus on the design of nonlinear state observers that use
measurements of process output, y(s), for s ∈ [t − α, t] to produce estimates
of the state variables x(t), with guaranteed exponential convergence of the
error between the actual and the estimated values of x(t) to zero. Specifically,
we consider the design of state observers with the following general state-space
description:

ω̇ = Aω(t) + Bω(t− α) + f(ω(t), ω(t− α)) + g(ω(t), ω(t− α))u

+I(y(t)− h(ω(t))),

ω(ξ) = ω̄(ξ), ξ ∈ [−α, 0), ω(0) = ω̄0

(9.45)

where ω ∈ IRn is the observer state, ω̄(ξ) is a smooth vector function defined
in ξ ∈ [−α, 0), ω̄0 is a constant vector and I(·) is a bounded nonlinear integral
operator, mapping IR into C. The system of Eq.9.45 consists of a replica of
the system of Eq.9.2 and the term I(y(t) − h(ω(t))) which will be designed
so that the system of Eq.9.45 is locally exponentially stable and the discrep-
ancy between x(t) and ω(t) tends exponentially to zero. The derivation of the
explicit form of the integral operator I(·) will be performed by working with
the infinite dimensional formulation, Eq.9.10, of the nonlinear DDE system
of Eq.9.2 presented in Section 9.10, and using a spectral decomposition of
the DDE system and nonlinear observer design results for finite-dimensional
systems.

We initially transform the system of Eq.9.10 into an interconnection of a
finite-dimensional system that describes the dynamics of the eigenmodes of A
corresponding to the unstable eigenvalues of σ(A), and an infinite-dimensional
system that describes the dynamics of the remaining eigenmodes of A. Let
H = {λ : λ ∈ σ(A) and Reλ ≥ 0} and assume, in order to simplify the de-
velopment, that κ(λ) = 1 for each λ ∈ σ(A) (i.e., the multiplicity of all the
eigenvalues is assumed to be one; the usual case in most practical applica-
tions). Let m be the number of eigenvalues included in H (note that m is
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always finite). Also, let the elements of H be ordered as (λ1, λ2, . . . , λm),
where Reλ1 ≥ Reλ2 ≥ · · ·Reλm. Clearly, the eigenfunctions (column vectors)
in the n × m matrix ΦH = [φ1, φ2, . . . , φm] form a basis in Cλ≥0. Also, let
ΨH = [ψ1, ψ2, . . . , ψm]T be the basis in C∗λ≥0 chosen so that (ΨH , ΦH) = I,
where (ΨH , ΦH) = [(ψi, φj)], ψi and φj being the i-th element and j-th element
of ΨH and ΦH , respectively. Defining the orthogonal projection operators Pp

and Pn such that xp
t = Ppxt, xn

t = Pnxt (note that xp
t = ΦH(ΨH , xt)), the

state xt of the system of Eq.9.10 can be decomposed as:

xt = xp
t + xn

t = Ppxt + Pnxt (9.46)

Applying Pp and Pn to the system of Eq.9.10 and using the above decomposi-
tion for xt, the system of Eq.9.10 can be equivalently written in the following
form:

dxp
t

dt
= Apx

p
t + fp(P (xp

t + xn
t ), Q(xp

t + xn
t )) + gp(P (xp

t + xn
t ), Q(xp

t + xn
t ))u

∂xn
t

∂t
= Anxn

t + fn(P (xp
t + xn

t ), Q(xp
t + xn

t )) + gn(P (xp
t + xn

t ), Q(xp
t + xn

t ))u

y = h(P (xp
t + xn

t ))

xp
t (0) = Ppx(0) = Ppη̄, xn

t (0) = Pnx(0) = Pnη̄
(9.47)

where Ap = PpAPp, gp = Ppg, fp = Ppf , An = PnAPn, gn = Png and

fn = Pnf and the notation
∂xn

t

∂t
is used to denote that the state xn

t belongs
in an infinite-dimensional space. In the above system, Ap = ΦHAp, where Ap

is a matrix of dimension m×m whose eigenvalues are the ones included in H,
fp and fn are Lipschitz vector functions, and An is an infinite range matrix
which is stable (this follows from the fact that H includes all the eigenvalues
of, σ(A), which are in the closed right half of the complex plane). Neglecting
the xn-subsystem, the following finite-dimensional system is obtained:

dxp
t

dt
= Apx

p
t + fp(Pxp

t , Qxp
t ) + gp(Pxp

t , Qxp
t )u

yp = h(Pxp
t )

(9.48)

where the subscript p in yp denotes that the output is associated with an
approximate finite dimensional system.

Assumption 9.4 that follows states that the system of Eq.9.48 is observ-
able and is needed in order to design a nonlinear state observer for the system
of Eq.9.2 (the reader may refer to [254] for a precise definition of the con-
cept of observability for nonlinear finite-dimensional systems; see also [36] for
definitions and characterizations of observability for linear DDE systems).

Assumption 9.4 The pair [h(xp
t ) Apx

p
t + fp(x

p
t , 0)] is locally observable in

the sense that there exists a nonlinear gain column vector L(xp
t ) of dimension
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m (where m is the number of unstable eigenvalues of A) so that the finite-
dimensional dynamical system:

dωp
t

dt
= Apω

p
t + fp(Pωp

t , Qωp
t ) + L(ωp

t )(yp − h(Pωp
t )) (9.49)

is locally exponentially stable.

Theorem 9.15 that follows provides a nonlinear distributed state observer (the
proof of the theorem can be found in Appendix F).

Theorem 9.15. Referring to the system of Eq.9.10 with u(t) ≡ 0 and suppose
that Assumption 9.4 holds. Then, if there exists a positive real number a1 such
that ‖ω̄ − η̄‖2 ≤ a1, the nonlinear infinite-dimensional dynamical system:

dωt

dt
= Aωt + f(Pωt, Qωt) + ΦHL(ΨH , ωt)(y(t)− h(Pωt)),

ω0(ξ) = ω̄, ω0(0) = ω̄0

(9.50)

is a local exponential observer for the system of Eq.9.10 in the sense that the
estimation error, et = ωt − xt, tends exponentially to zero.

The abstract dynamical system of Eq.9.50 can be simplified by utilizing a
procedure based on the method of characteristics for first-order hyperbolic
PDE systems (this procedure is detailed in Appendix F of this dissertation)
to obtain the following nonlinear integro-differential equation system repre-
sentation for the state observer:

ω̇ = Aω(t) + Bω(t− α) + f(ω(t), ω(t− α)) + g(ω(t), ω(t− α))u

+ΦH(0)L(ΨH , ω̃(ξ, t))(y(t)− h(ω(t)))

+B

∫ α

0

ΦH(ξ − α)L(ΨH , ω̃(ξ, t))[y(t− ξ)− h(ω(t− ξ))]dξ,

ω(ξ) = ω̄(ξ), ξ ∈ [−α, 0), ω(0) = ω̄0

(9.51)

Remark 9.16. Referring to the state observer of Eq.9.51, it is worth noting
that: a) it includes an integral of the observer error, which is expected because
the proposed observer design method accounts explicitly for the distributed
parameter nature of the time-delay system of Eq.9.2, and b) it consists of
a replica of the process model and a nonlinear integral gain acting on the
discrepancy between the actual and the estimated output, and thus, it can
be thought of as the analogue of nonlinear Luenberger-type observers (e.g.,
[144, 254]) developed for nonlinear ODE systems in the case of nonlinear DDE
systems.
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Remark 9.17. For open-loop stable systems, the nonlinear gain L(ΨH , ω̃(ξ, t))
can be set identically equal to zero and the distributed state observer of
Eq.9.51 reduces to an open-loop DDE observer of the form:

ω̇ = Aω(t) + Bω(t− α) + f(ω(t), ω(t− α)) + g(ω(t), ω(t− α))u (9.52)

Remark 9.18. For open-loop unstable systems, the practical implementation
of the state observer of Eq.9.51 involves the design of a nonlinear gain,
L(ΨH , ω̃(ξ, t)), on the basis of a nonlinear finite dimensional system (Assump-
tion 9.4). However, in most practical applications, the construction of a non-
linear gain requires performing extensive computations (for example, series
solutions of nonlinear partial differential equations [144]), and thus, it cannot
be easily performed. A computationally efficient way to address this problem
is to design a constant gain, L, on the basis of a linear DDE system result-
ing from the linearization of the nonlinear DDE system around an operating
steady-state and evaluating its validity through computer simulations (see
the implementation of the observer of Eq.9.51 in the reactor-separator system
studied in Section 9.9). We note that the only computations needed to design a
constant observer gain are: (a) the computation of the eigenvalues of the char-
acteristic equation det(λI−A−Be−λα) = 0 which are in the right-half of the
complex plane (this can be done by using standard algorithms, for example,
[184, 185]) and (b) the computation of the eigenfunctions from the formula
φλ = eλξφλ(0), where φλ(0) satisfies the equation (λI−A−Be−λα)φλ(0) = 0.

Remark 9.19. To illustrate the application of the result of Theorem 9.15, con-
sider the numerical DDE example of Remark 9.3 (Eq.9.13) with y = x2 as the
output. The eigenvectors φj(ξ) corresponding to the two unstable eigenvalues
of the delay operator of Eq.9.14 are:

φ1(ξ) =
[−0.78

0.62

]
e0.58ξ, φ2(ξ) =

[−0.68
−0.73

]
e0.21ξ (9.53)

The following constant observer gain:

L =
[ −1.0
−16.0

]
(9.54)

was found to satisfy Assumption 9.4 and yields the following nonlinear state
observer:

ω̇ =
[−2.0 3.5

3.0 −3.0

]
ω(t) +

[−2.0 0.0
0.0 0.0

]
ω(t− 3) +

[
4ω1ω2 − 3ω2

1 − ω2
2

0

]

+
[−0.78 −0.68

0.62 −0.73

] [ −1.0
−16.0

]
(x2 − ω2)
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+
[−2.0 0.0

0.0 0.0

] ∫ 3

0

[−0.78e0.58(ξ−3.0) −0.68e0.21(ξ−3.0)

0.62e0.58(ξ−3.0) −0.73e0.21(ξ−3.0)

]

×
[ −1.0
−16.0

]
(x2(t− ξ)− ω2(t− ξ))dξ

(9.55)

Remark 9.20. Applying the proposed observer design method to linear DDE
systems of the form of Eq.9.3 with α̃ = 0, we obtain the following linear state
observer:

ω̇ = Aω(t) + Bω(t− α) + cu + ΦH(0)L(wx(t)− wω(t))

+B

∫ α

0

ΦH(ξ − α)L[wx(t− ξ)− wω(t− ξ)]dξ,

ω(ξ) = ω̄(ξ), ξ ∈ [−α, 0), ω(0) = ω̄0

(9.56)

9.8 Nonlinear output feedback control of DDE systems
with state delay

In this section, we consider DDE systems of the form of Eq.9.2 with α̃ = 0 and
address the problem of synthesizing distributed output feedback controllers
that enforce local exponential stability and asymptotic output tracking in the
closed-loop system, independently of the size of the state delay. The requi-
site output feedback controllers will be synthesized employing combination
of the developed distributed state feedback controllers with distributed state
observers.

Theorem 9.21 that follows provides a state-space realization of the dis-
tributed output feedback controller and the properties that it enforces in the
closed-loop system (the proof of the theorem can be found in Appendix F).

Theorem 9.21. Consider the system of nonlinear differential difference equa-
tions of Eq.9.2 with α̃ = 0, for which the Assumptions 9.1-9.4 hold. Then, if
there exists a positive real number a0 such that ‖ω̄ − η̄‖2 ≤ a0 and the ma-
trix equation of Eq.9.36 has a unique positive definite solution for P , the
distributed output feedback controller:
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ω̇ = Aω(t) + Bω(t− α) + f(ω(t), ω(t− α))

+ΦH(0)L(ΨH , ω̃(ξ, t))(y(t)− h(ω(t)))

+B

∫ α

0

ΦH(ξ − α)L(ΨH , ω̃(ξ, t))[y(t− ξ)− h(ω(t− ξ))]dξ

+g(ω(t), ω(t− α))× 1
LgL

r−1

f̃
h(ω)

(
−R−1

2 bT P ē(t) + v(r)(t)− Lr
f̃
h(ω)

−pr(ω(t), v̄(t), ω(t− α), v̄(t− α)))

ω(ξ) = ω̄(ξ), ξ ∈ [−α, 0), ω(0) = ω̄0

u =
1

LgL
r−1

f̃
h(ω)

(
−R−1

2 bT P ē(t) + v(r)(t)− Lr
f̃
h(ω)

−pr(ω(t), v̄(t), ω(t− α), v̄(t− α)))
(9.57)

where ē = [(h(ω)−v) (Lf̃h(ω)−v(1)) · · · (Lr−1

f̃
h(ω)−v(r−1))]T , a) guarantees

local exponential stability of the closed-loop system, and b) enforces asymptotic
output tracking, independently of the size of the state delay.

Remark 9.22. For open-loop stable systems, L(ΨH , ω̃(ξ, t)) can be set equal to
zero and the distributed output feedback controller of Eq.9.57 can be simpli-
fied to:

ω̇ = Aω(t) + Bω(t− α) + f(ω, ω(t− α)) + g(ω(t), ω(t− α))

× 1
LgL

r−1

f̃
h(ω)

(
−R−1

2 bT P ē(t) + v(r)(t)− Lr
f̃
h(ω)

−pr(ω(t), v̄(t), ω(t− α), v̄(t− α)))

ū =
1

LgL
r−1

f̃
h(ω)

(
−R−1

2 bT P ē(t) + v(r)(t)− Lr
f̃
h(ω)

−pr(ω(t), v̄(t), ω(t− α), v̄(t− α)))

(9.58)

Remark 9.23. Referring to the result of Theorem 9.21, we note that no con-
sistent initialization requirement has been imposed on the observer states in
order to prove local exponential stability and asymptotic output tracking in
the closed-loop system (i.e., it is not necessary that ω̄(ξ) = η̄(ξ), ξ ∈ [−α, 0)
and ω̄0 = η̄0).

Remark 9.24. The exponential stability of the closed-loop system guarantees
that in the presence of small modeling errors (i.e., unknown model parame-
ters and external disturbances) and initialization errors of the observer states,
the states of the closed-loop system will remain bounded. Furthermore, it is
possible to implement a linear error feedback controller around the (y − v)
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loop to ensure asymptotic offsetless output tracking in the closed-loop sys-
tem, in the presence of constant parametric uncertainty, external distur-
bances and initialization errors. In this case, one can use calculations similar
to the ones in [64] to derive a mixed-error and output feedback controller,
which possesses integral action, (i.e., a controller of the form of Eq.9.57 with
ē = [(y(t)−v) (Lf̃h(ω)−v(1)) · · · (Lr−1

f̃
h(ω)−v(r−1))]T ), that enforces expo-

nential stability and asymptotic offsetless output tracking in the closed-loop
system in the presence of constant modeling errors and disturbances.

9.9 Nonlinear output feedback control for DDE systems
with state and measurement delay

In this section, we consider DDE systems of the form of Eq.9.2 with α̃ > 0 and
address the problem of synthesizing distributed output feedback controllers
that enforce local exponential stability and asymptotic output tracking in the
closed-loop system, independently of the size of the state delay. In order to
account for the presence of the measurement delay in the controller design,
the requisite output feedback controller will be obtained by working within
a Smith Predictor framework [162, 117]. Within this framework, the state
feedback controller is synthesized on the basis of an auxiliary output ȳ, which
represents the prediction of the output if there were no dead-time on the
output, and can be obtained by adding a corrective signal δy to the on-line
measurement of the actual output y:

ȳ = y + δy

Assuming that the open-loop DDE system is observable, the corrective sig-
nal, δy, is obtained through a closed-loop Smith-type predictor; which for the
problem in question is a nonlinear DDE system driven by the manipulated in-
put, that simulates the difference in the responses between the process model
without output dead-time and the process model with output dead-time:

ω̇ = Aω(t) + Bω(t− α) + f(ω(t), ω(t− α)) + g(ω(t), ω(t− α))u

+ΦH(0)L(ΨH , ω̃(ξ, t))(y(t− α̃)− h(ω(t− α̃)))

+B

∫ α−α̃

0

ΦH(ξ − α)L(ΨH , ω̃(ξ, t))[y(t− ξ − α̃)− h(ω(t− ξ − α̃))]dξ,

ω(ξ) = ω̄(ξ), ξ ∈ [−α, 0), ω(0) = ω̄0

(9.59)
The resulting output feedback controller and the properties that it enforces
in the closed-loop system are given in Theorem 9.25 below (the proof of the
theorem is similar to the one of theorem of Theorem 9.21 and will be omitted
for brevity).
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Theorem 9.25. Consider the nonlinear DDE system of Eq.9.2 with α̃ > 0,
for which Assumptions 9.1-9.3 hold, and an observability property similar to
the one of Assumption 9.4 holds for 0 ≤ α̃ ≤ α. Then, if there exists a positive
real number a0 such that ‖ω̄ − η̄‖2 ≤ a0 and the matrix equation of Eq.9.36
has a unique positive definite solution for P , the distributed output feedback
controller:

ω̇ = Aω(t) + Bω(t− α) + f(ω(t), ω(t− α))

+ΦH(0)L(ΨH , ω̃(ξ, t))(y(t− α̃)− h(ω(t− α̃)))

+B

∫ α−α̃

0

ΦH(ξ − α)L(ΨH , ω̃(ξ, t))[y(t− ξ − α̃)− h(ω(t− ξ − α̃))]dξ

+g(ω(t), ω(t− α))× 1
LgL

r−1

f̃
h(ω)

(
−R−1

2 bT P ē + v(r)(t)− Lr
f̃
h(ω)−

−pr(ω(t), v̄(t), ω(t− α), v̄(t− α)))

ω(ξ) = ω̄(ξ), ξ ∈ [−α, 0), ω(0) = ω̄0

ū =
1

LgL
r−1

f̃
h(ω)

(
−R−1

2 bT P ē + v(r)(t)− Lr
f̃
h(ω)−

−pr(ω(t), v̄(t), ω(t− α), v̄(t− α)))

(9.60)

where ē = [(y(t−α̃)−v+h(ω(t))−h(ω(t−α̃))) (Lf̃h(ω)−v(1)) · · · (Lr−1

f̃
h(ω)−

v(r−1))]T , enforces: a) local exponential stability, and b) asymptotic output
tracking in the closed-loop system, independently of the size of the state delay.

Remark 9.26. We note that no restrictions have been imposed on the stability
properties of the open-loop DDE system (e.g., open-loop stable system) in
order to derive the result of Theorem 9.25. This is because the predictor of
Eq.9.59 which is used to produce values of the corrective signal δy is a closed-
loop one (we remark that the use of an open-loop predictor would require to
assume that the open-loop DDE system is stable).

Remark 9.27. For open-loop stable DDE systems with measurement delay but
no state delay (i.e., α̃ > 0 and α = 0), the output feedback controller of Eq.9.60
simplifies to:

ω̇ = Aω(t) + Bω(t) + f(ω(t), ω(t)) + g(ω(t), ω(t))

× 1
LgL

r−1

f̃
h(ω)

(
−R−1

2 bT P ē + v(r)(t)− Lr
f̃
h(ω)− pr(ω(t), v̄(t), ω(t), v̄(t))

)

ū =
1

LgL
r−1

f̃
h(ω)

(
−R−1

2 bT P ē + v(r)(t)− Lr
f̃
h(ω)− pr(ω(t), v̄(t), ω(t), v̄(t))

)

(9.61)
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where ē = [(y(t−α̃)−v+h(ω(t))−h(ω(t−α̃))) (Lf̃h(ω)−v(1)) · · · (Lr−1

f̃
h(ω)−

v(r−1))]T . The above controller is a Smith-predictor based open-loop output
feedback controller similar to the one developed in [162].

Remark 9.28. The nonlinear distributed output feedback of Eqs.9.57-9.60 are
infinite dimensional ones, due to the infinite dimensional nature of the ob-
servers of Eqs.9.51-9.59, respectively. Therefore, finite-dimensional approxi-
mation of these controllers have to be derived for on-line implementation.
This task can be performed utilizing standard discretization techniques such
as finite differences. We note that it is well-established (e.g., [251]) that as
the number of discretization points increases, the closed-loop system result-
ing from the DDE model plus an approximate finite-dimensional controller
converges to the closed-loop system resulting from the DDE model plus the
infinite-dimensional controller, guaranteeing the well-posedness of the approx-
imate finite-dimensional controller.

9.10 Application to a reactor-separator system with
recycle

In this section, the nonlinear control method is applied to an exothermic
reactor-separator process with recycle and a fluidized catalytic cracker and is
shown to outperform nonlinear controller designs that do not account for the
presence of dead time associated with the recycle loop and the pipes transfer-
ring material from the reactor to the regenerator and vice versa, respectively.

9.10.1 Process description - Control problem formulation

Consider the process, shown in Figure 9.2, which consists of a reactor and
a separator [171]. An irreversible reaction of the form A→B, where A is the
reactant species and B is the product species, takes place in the reactor. The
reaction is exothermic and a cooling jacket is used to remove heat from the
reactor. The reaction rate is assumed to be of first-order and is given by:

r = k0 exp
(
− E

RT

)
CA

where k0 and E denote the pre-exponential constant and activation energy
of the reaction, and T and CA denote the temperature and concentration
of species A in the reactor. The outlet of the reactor is fed to a separator
where the unreacted species A is separated from the product B. The unre-
acted amount of species A is fed back to the reactor through a recycle loop;
this allows increasing the overall conversion of the reaction and minimizing
reactant wastes. The inlet stream to the reactor consists of a fresh feed of
pure A, at flow-rate λF , concentration CAf and temperature Tf , and of the
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Fig. 9.2. A reactor-separator process with recycle.

recycle stream at flow-rate (1−λ)F , concentration CA(t−α) and temperature
T (t − α), where F is the total reactor flow-rate, λ is the recirculation coeffi-
cient (it varies from zero to one, with zero corresponding to total recycle and
zero fresh feed and one corresponding to no recycle) and α is the recycle loop
dead time. Under the assumptions of constant volume of the reacting liquid,
V , negligible heat loses, constant density, ρ, and heat capacity, cp, of the re-
acting liquid, and constant jacket temperature, Tc, a process dynamic model
can be derived from mass and energy balances and consists of the following
two nonlinear differential difference equations:

dCA

dt
=

λF

V
CAf − F

V
CA +

(1− λ)F
V

CA(t− α)− k0 exp
(
− E

RT

)
CA

dT

dt
=

λF

V
Tf − F

V
T +

(1− λ)F
V

T (t− α) +
(−∆H)

ρcp
k0 exp

(
− E

RT

)
CA

− UA

V ρcp
(T − Tc)

(9.62)
where ∆H denotes the enthalpy of the reaction, U denotes the heat transfer
coefficient, and A denotes the heat transfer area. The values of the process
parameters are given in Table 9.1. For these values the corresponding steady-
state is:
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Table 9.1. Process parameters of the reactor-separator system.

V = 0.10 m3

F = 13.3330× 10−3 m3 sec−1

CAf = 0.7090 kmol m−3

λ = 0.25
E = 1.20× 104 kcal kmol−1

k0 = 1.0× 107 sec−1

R = 1.987 kcal kmol−1 K−1

∆H0 = −5.0× 104 kcal kmol−1

cp = 0.001 kcal kg−1 K−1

ρ = 1000.0 kg m−3

Tf = 300.0 K
Tc = 295.0 K
U = 30.0 kcal m−2 sec−1 K−1

A = 1.0 m2

CAs = 0.5000 mol/L, Ts = 296.16oK, CAfs = 0.7090 mol/L (9.63)

where the subscript s denotes the steady-state value. It was verified, through
computation of the eigenvalues of the open-loop system, that this steady-state
is a stable one.

The control objective for the process is formulated as the one of regulating
the temperature of the reactor, T , by manipulating the inlet concentration of
the fresh feed CAf . Setting x1 = CA, x2 = T , y = x2 and u = CAf − CAfs,
the process model of Eq.9.62 can be written in the form of Eq.9.26 with:

f̃(x(t)) =




λF

V
CAfs − F

V
x1 − k0 exp

(
− E

Rx2

)
x1

λF

V
Tf − F

V
x2 +

(−∆H)
ρcp

k0 exp
(
− E

Rx2

)
x1 − UA

V ρcp
(x2 − Tc)


 ,

(9.64)

g(x(t), x(t− α)) =

[
λF

V
0

]
, p̄(x(t), x(t− α)) =




(1− λ)F
V

x1(t− α)
(1− λ)F

V
x2(t− α)




(9.65)

9.10.2 State feedback controller design

For the system of Eq.9.62, Assumption 9.1 is satisfied with r = 2 and the
coordinate transformation of Eq.9.27 takes the form:



9.10 Application to a reactor-separator system with recycle 349

[
ζ1

ζ2

]
= X (x) =

[
h(x)

Lf̃h(x)

]

=




x2

λF

V
Tf − F

V
x2 +

(−∆H)
ρcp

k0 exp
(
− E

Rx2

)
x1 − UA

V ρcp
(x2 − Tc)




(9.66)
Using the above coordinate change, the process dynamic model can be equiv-
alently written as:

ζ̇1 = ζ2 +
(1− λ)F

V
ζ1(t− α)

ζ̇2 = L2
f̃
h(x) + LgLf̃h(x)u + p2(ζ1(t), ζ2(t), ζ1(t− α), ζ2(t− α))

y = ζ1

(9.67)

where the explicit form of the term p2(ζ1(t), ζ2(t), ζ1(t−α), ζ2(t−α)) is omitted
for brevity. For the above system Assumption 9.2 is trivially satisfied, while
Assumption 9.3 is satisfied with p(ē(t)+ v̄(t), ē(t−α)+ v̄(t−α)) = [0.1e1(t−
α) 0]T , a1 = 0 and a2 = 0.01. Utilizing the result of Theorem 9.9, the
following matrix equation can be formed:

ÃT P + PÃ− 2PT bR−1
2 bT P + a2I + P 2 = −R1 (9.68)

with R2 = 1.0, a = 0.101 (a2 > a2), and

Ã =
[

0 1
0 0

]
, b =

[
0
1

]
, R1 =

[
0.001 0

0 0.001

]
(9.69)

Eq.9.68 has a unique positive definite solution for P of the form:

P =
[

0.055 −0.119
−0.119 0.513

]
(9.70)

which leads to the following nonlinear state feedback controller:

u =
1

LgLf̃h(x)

(
−0.119(x2 − v)− 0.513(Lf̃h(x) + 0.1v(t− α))

−L2
f̃
h(x)− p2(x(t), v̄(t), x(t− α), v̄(t− α))

) (9.71)

9.10.3 State observer and output feedback controller design

In order to avoid the lengthy computations involved in the design of a non-
linear observer gain, we will design a nonlinear state observer of the form
of Eq.9.51 with a constant observer gain, L, for the system of Eq.9.62 (see
also discussion in Remark 9.18). Computing the linearization of the system of
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Eq.9.62 around the unstable steady state, CAs = 2.36 mol/L, Ts = 320.0oK
(v = 320.0oK will be the new value of the reference input in the simulations
discussed in the next subsection), we obtain the following linear DDE system:

ẋ = Ax(t) + Bx(t− α) (9.72)

with:

A =
[−0.1970 −0.00885

3181.8 142.23

]
, B =

[
0.1 0
0 0.1

]
(9.73)

The system of Eq.9.72 was found to possess two real unstable eigenvalues,
λ1 = 142.036 and λ2 = 0.031 and infinitely many stable eigenvalues. The
eigenfunctions corresponding to the unstable eigenvalues were found to be:

φ1(ξ) =
[

0.00006
−1.0

]
eλ1ξ, φ2(ξ) =

[−0.0447
1.0

]
eλ2ξ (9.74)

The following constant observer gain:

L =
[−361.0
−50.0

]
(9.75)

was found to satisfy Assumption 9.4 and yields the following nonlinear output
feedback controller:

ω̇ = f̃(ω(t), ω(t− α)) + g(ω, ω(t− α))u + p̄(ω(t), ω(t− α))

+ΦH(0)L(y(t)− h(ω(t))) + B

∫ α

0

ΦH(ξ − α)L[y(t− ξ)− h(ω(t− ξ))]dξ

u =
1

LgLf̃h(ω)

(
−0.119(y(t)− v)− 0.513(Lf̃h(ω) + 0.1v(t− α))

−L2
f̃
h(ω)− p2(ω(t), v̄(t), ω(t− α), v̄(t− α))

)

(9.76)
where ΦH(ξ) = [φ1(ξ) φ2(ξ)]. When both state and measurement delays are
included in the system of Eq.9.62, the following nonlinear output feedback
controller was employed in the simulations described in the next subsection:

ω̇ = f̃(ω(t), ω(t− α)) + g(ω, ω(t− α))u + p̄(ω(t), ω(t− α))

+ΦH(0)L(y(t)− h(ω(t)))

+B

∫ α−α̃

0

ΦH(ξ − α)L[y(t− ξ − α̃)− h(ω(t− ξ − α̃))]dξ

u =
1

LgLf̃h(ω)

(
−0.119(y(t− α̃)− v + ω2(t)− ω2(t− α̃)))− 0.513(Lf̃h(ω)

+0.1v(t− α))− L2
f̃
h(ω)− p2(ω(t), v̄(t), ω(t− α), v̄(t− α))

)

(9.77)
Note that according to the discussion of Remark 9.24, the controllers of
Eq.9.76 and Eq.9.77 possess integral action.
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9.10.4 Closed-loop system simulations

We performed several sets of simulation runs to evaluate the stabilization and
output tracking capabilities of the output feedback controllers of Eqs.9.76-9.77
and compare their performance with nonlinear controllers that do not account
for the presence of recycle loop dead time in the model of Eq.9.62. In all the
simulation runs, the process was initially assumed to be at the steady state
of Eq.9.63 and the user-friendly software package SIMULINK was used to
simulate the closed-loop DDE system (SIMULINK is a toolbox of the mathe-
matical software MATLAB that includes a delay function which can be readily
used to simulate differential equations with time delays). The computation of
the integrals in the controllers of Eqs.9.76-9.77 was performed by discretizing
the interval [−α, 0) into ten equispaced intervals using finite differences (fur-
ther increase on the number of discretization intervals was found to lead to
negligible differences on the results). In the first two sets of simulation runs, a
8.84oK increase in the reference input value (i.e., v = 305.0oK) was imposed
at time t = 0 sec. The new reference input value corresponds to a stable
steady state.

In the first set of simulation runs, we initially considered the process of
Eq.9.62 with α = 40 sec and α̃ = 0 sec under the output feedback controller
of Eq.9.76 with L = 0 (due to operation at a stable region). Figure 9.3 shows
the closed-loop output and manipulated input profiles (solid lines).

It is clear that the proposed controller drives quickly the output to the
new reference input value, achieving an excellent transient response. For the
sake of comparison, we also implemented on the process the same output
feedback controller with α = 0 sec. The closed-loop output and manipulated
input profiles under this controller are also displayed in Figure 9.3 (dashed
lines). This controller yields a very poor transient response driving the output
(dashed line) to the new reference input value very slowly.

In the second set of simulation runs, we initially considered the process of
Eq.9.62 with α = 40 sec and α̃ = 12 sec under the output feedback controller
of Eq.9.77 with L = 0. The resulting closed-loop output and manipulated
input profiles are presented in Figure 9.4 (solid lines). The proposed controller,
after the initial delay in the output of t = 12 sec, which is caused by the
presence of measurement delay, regulates successfully the output to the new
reference input value. We also implemented on the process the same controller
with α = 0 sec. The closed-loop output and manipulated input profiles are
also shown in Figure 9.4 (dashed lines). The transient performance of the
closed-loop system is clearly inferior to the one obtained by the proposed
controller.

In the next three sets of simulation runs, a 23.84oK increase in the ref-
erence input value (i.e., v = 320.0oK) was imposed at time t = 0 sec. The
new reference input value corresponds to an unstable steady state. We ini-
tially considered the process of Eq.9.62 with α = 40 sec and α̃ = 0 sec under
the controller of Eq.9.76. Figure 9.5 shows the closed-loop output and ma-
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Fig. 9.3. Closed-loop output and manipulated input profiles with α = 40 sec and
α̃ = 0 sec under the controller of Eq.9.76 with L = 0(solid lines) and the controller
of Eq.9.77 with L = 0 and α = 0 sec (dashed lines) - operation in stable region.

nipulated input profiles. It is clear that the proposed controller drives quickly
the output to the new reference input value. For the sake of comparison, we
also implemented on the process the same output feedback controller with
α = 0 sec. This controller led to an unstable closed-loop system (see the
closed-loop output and manipulated input profiles in Figure 9.6).

Then, the process of Eq.9.62 with α = 40 sec and α̃ = 12 sec was consid-
ered under the output feedback controller of Eq.9.77 and Figure 9.7 shows the
resulting closed-loop output and manipulated input profiles. The proposed
controller, after the initial delay in the output of t = 12 sec, which is caused by
the measurement delay, regulates successfully the output to the new reference
input value. The same controller with α = 0 sec was also implemented on the
process. Again, this controller led to an unstable closed-loop system. Finally,
we considered the process of Eq.9.62 with α = 40 sec and α̃ = 12 sec and
studied the robustness properties of the controller of Eq.9.76 in the presence
of a 5oK increase in the value of the temperature of the fresh feed. Figure
9.8 shows the closed-loop output and manipulated input profiles. Despite the
presence of a significant disturbance and operation in unstable region, the
controller drives the output of the closed-loop system close to the reference
input value, exhibiting very good robustness properties.
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Fig. 9.4. Closed-loop output and manipulated input profiles with α = 40 sec and
α̃ = 12 sec under the controller of Eq.9.77 with L = 0 (solid lines) and the controller
of Eq.9.77 with L = 0, α = 0 sec and α̃ = 12 sec (dashed lines) - operation in stable
region.

9.11 Application to a fluidized catalytic cracker

9.11.1 Process modeling - Control problem formulation

In this section, we illustrate the implementation of the developed control
methodology on another important chemical engineering process, the fluidized
catalytic cracking (FCC) unit shown in Figure 9.9. The FCC unit consists of
a cracking reactor, where the cracking of high boiling gas oil fractions into
lighter hydrocarbons (e.g., gasoline) and the carbon formation reactions (un-
desired reactions) take place and a regenerator, where the carbon removal
reactions take place. The reader may refer to: a) [71, 194, 13] for a detailed
discussion of the features of the FCC unit, b) [14] for an analysis of the issue
of the control structure and c) [202, 125] and [56] for application of linear and
nonlinear control methods to the FCC unit, respectively. Unfortunately, in all
of these studies, the dead-time associated with the pipes transferring material
from the reactor to the regenerator and vice versa were not accounted for both
in modeling and controller design.

Under the standard modeling assumptions, of well-mixed reactive catalyst
in the reactor, small-size catalyst particles, constant solid holdup in reactor
and regenerator, uniform and constant pressure in reactor and regenerator,
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Fig. 9.5. Closed-loop output and manipulated input profiles with α = 40 sec and
α̃ = 0 sec under the controller of Eq.9.76 - operation in unstable region.
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Fig. 9.6. Closed-loop output and manipulated input profiles with α = 40 sec and
α̃ = 0 sec under the controller of Eq.9.76 with α = 0 sec - operation in unstable
region.
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Fig. 9.7. Closed-loop output and manipulated input profiles with α = 40 sec and
α̃ = 12 sec under the the controller of Eq.9.77 - operation in unstable region.

the process dynamic model takes the form [71]:

Vra
dCcat

dt
= −60FrcCcat(t) + 50Rcf (Ccat(t), Crc(t− α1), Tra)

Vra
dCsc

dt
= 60Frc[Crc(t− α1)− Csc(t)] + 50Rcf (Ccat(t), Crc(t− α1), Tra)

Vra
dTra

dt
= 60Frc[Trg(t− α1)− Tra(t)] + 0.875

Sf

Sc
DtfRtf [Tfp − Tra(t)]

+ 0.5
(−∆Hcr)

Sc
Roc(Ccat(t), Crc(t− α1), Tra)

+ 0.875
(−∆Hfv)

Sc
DtfRtf

Vrg
dCrc

dt
= 60Frc[Csc(t− α2)− Crc(t)]− 50Rcb(Crc(t), Trg(t))

Vrg
dTrg

dt
= 60Frc[Tra(t− α2)− Trg(t)] + 0.5

Sa

Sc
Rai[Tai − Trg(t)]

−0.5
(−∆Hrg)

Sc
Rcb(Crc(t), Trg(t))

(9.78)
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Fig. 9.8. Closed-loop output and manipulated input profiles with α = 40 sec
and α̃ = 0 sec under the controller of Eq.9.76 in the presence of modeling error
- operation in unstable region.

where Ccat, Csc, Crc denote the concentrations of catalytic carbon on spent
catalyst, the total carbon on spent catalyst, and carbon on regenerated cata-
lyst, Tra, Trg denote the temperatures in the reactor and the regenerator, Rai

is the air flow rate in the regenerator, Rtf is the total feed flow rate, Dtf is the
density of total feed, Vra, Vrg denote the catalyst holdup of the reactor and the
regenerator, ∆Hrg,∆Hcr are the heat of regeneration and cracking, ∆Hfv is
the heat of feed vaporization, Frc denotes the circulation flow rate of catalyst
from reactor to regenerator and vice-versa, Sa, Sc, Sf denote specific heats of
the air, the catalyst, and the feed, Tfp, Tai denote the inlet temperatures of
the feed in the reactor and of the air in the regenerator, and Rcf , Roc, Rcb

denote the reaction rates of total carbon forming, of gas-oil cracking, and of
coke burning. The analytic expressions for the reaction rates Rcf , Roc, Rcb can
be found in [71].

The presence of time delay in the terms Crc(t− α1), Trg(t− α1) is due to
dead-time in the pipes transferring regenerated catalyst from the regenerator
to the reactor, and the time delay in the terms Csc(t − α2), Tra(t − α2) is
due to dead time in pipes transferring spent catalyst from the reactor to
the regenerator. Even though the proposed method can be readily applied
to the case where α1 6= α2, we pick in order to simplify our development,
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Fig. 9.9. A fluidized catalytic cracking unit.

α1 = α2 = α = 0.3 hr. The values of the remaining process parameters and
the corresponding steady-state values are given in Table 9.2.

The control objective is formulated as the one of regulating the tem-
perature in the regenerator, Trg, by manipulating the temperature of the
inlet air in the regenerator, Tai. By setting x = [x1 x2 x3 x4 x5]T =
[Trg Crc Tra Csc Ccat]T , u = Tai−Tais, y = Trg, the process model of Eq.9.78
can be written in the form of Eq.9.26 with:
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Table 9.2. Process parameters of the fluidized catalytic cracking unit.

Ecc = 18000.0 Btu lb−1 mole−1

Ecr = 27000.0 Btu lb−1 mole−1

Eor = 63000.0 Btu lb−1 mole−1

kcc = 8.59 Mlb hr−1 psia−1ton−1(wt%)−1.06

kcr = 11600 Mbbl day−1 psia−1ton−1(wt%)−1.15

kor = 3, 5× 1010 Mlb hr−1 psia−1ton−1

Vrg = 200.0 ton
Vra = 60.0 ton
Frc = 40.0 ton hr−1

Tfps = 744.0 F
Tai = 175.0 F
Prg = 25.0 psia
Pra = 40.0 psia
∆Hfv = 60.0 Btu lb−1

∆Hcr = 77.3 Btu lb−1

∆Hrg = 10561.0 Btu lb−1

Sa = 0.3 Btu lb−1F−1

Sc = 0.3 Btu lb−1F−1

Sf = 0.7 Btu lb−1F−1

Rtf = 100.0 Mbbl/day
Dtf = 7.0 lb gal−1

α = 0.3 hr
Rai = 400.0 Mlb min−1

(Ccat)s1 = 0.8723 wt%
(Csc)s1 = 1.5696 wt%
(Crc)s1 = 0.6973 wt%
(Tra)s1 = 930.62 F
(Trg)s1 = 1155.96 F

f̃(x(t)) =




f̃1

f̃2

f̃3

f̃4

f̃5




=




0.5SaRai

ScVrg
Tais −

(
60Frc

Vrg
+ 0.5

SaRai

ScVrg

)
Trg(t)

−0.5
(−∆Hrg,n)

ScVrg
Rcb(Crc(t), Trg(t))

−60Frc

Vrg
Crc(t)− 50

Vrg
Rcb(Crc(t), Trg(t))

−60Frc

Vra
Tra(t) + 0.875

Sf

ScVra
DtfRtf [Tfp − Tra(t)]

+0.875
(−∆Hfv)

ScVra
DtfRtf

−60Frc

Vra
Csc(t)

−60Frc

Vra
Ccat(t)




(9.79)
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p̄(x(t), x(t−α)) =




p̄1

p̄2

p̄3

p̄4

p̄5




=




60Frc

Vrg
Tra(t− α)

60Frc

Vrg
Csc(t− α)

60Frc

Vra
Trg(t− α)

+0.5
(−∆Hcr)

ScVra
Roc(Ccat(t), Crc(t− α), Tra(t))

60Frc

Vra
Crc(t− α)

+
50
Vra

Rcf (Ccat(t), Crc(t− α), Tra(t))

50
Vra

Rcf (Ccat(t), Crc(t− α), Tra(t))




(9.80)

g(x(t), x(t− α)) =




g1

g2

g3

g4

g5




=




0.5SaRai

ScVrg

0

0

0

0




(9.81)

9.11.2 State feedback controller design

For the system of Eq.9.78, Assumption 9.1 is satisfied with r = 1, and
the coordinate transformation of Eq.9.27 takes the form [ζ η1 η2 η3 η4]T =
[Trg Crc Tra Csc Ccat]T and yields the following system:

ζ̇ = Lf̃h(X−1(ζ, η)) + Lgh(X−1(ζ, η))u(t) + p1(ζ(t), η(t), ζ(t− α), η(t− α))

η̇ = Ψ(ζ(t), η(t), ζ(t− α), η(t− α))
(9.82)
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where the explicit form of Ψ(ζ(t), η(t), ζ(t − α), η(t − α)) is omitted for
brevity. To verify Assumption 9.2, we consider the η-subsystem of Eq.9.82
with ζ(t) = ζ(t− α) = ζs = 1155.96oF i.e., the system:



η̇1

η̇2

η̇3

η̇4




=




−60Frc

Vrg
η1 − 50

Vrg
Rcb(η1, ζs) +

60Frc

Vrg
η3(t− α)

−60Frc

Vra
η2 + 0.875

Sf

ScVra
DtfRtf [Tfp − η2]

+0.875
(−∆Hfv)

ScVra
DtfRtf + 0.5

(−∆Hcr)
ScVra

Roc(η4, η1(t− α), η2)

−60Frc

Vra
η3 +

60Frc

Vra
η1(t− α) +

50
Vra

Rcf (η4, η1(t− α), η2)

−60Frc

Vra
η4 +

50
Vra

Rcf (η4, η1(t− α), η2)




(9.83)
The linearization of the above system around the steady-state, Crc = 0.6973
wt%, Tra = 930.62oF , Csc = 1.5696 wt%, Ccat = 0.8723 wt%, was found to
be exponentially stable, which implies that the η-subsystem of Eq.9.82 pos-
sesses a local input-to-state stability property with respect to ζt(ξ). Therefore,
Assumption 9.2 holds and the controller synthesis problem can be addressed
on the basis of the ζ-subsystem which is given below:

ζ̇ = −
(

60Frc

Vrg
+

0.5SaRai

ScVrg

)
ζ(t)− 0.5

(−∆Hrg,n)
ScVrg

Rcb(η1(t), ζ(t))

+
(

0.5SaRai

ScVrg

)
u(t) +

(
60Frc

Vrg

)
η2(t− α)

(9.84)

Setting e = ζ − v where v is the desired set point and using a preliminary
control law of the form of Eq.9.30, the above system becomes:

ė(t) = −R−1
2 bT Pe(t) (9.85)

For the above system, Assumption 9.4 is trivially satisfied since p(x(t), x(t−
α)) = 0. Utilizing the results of Theorem 9.9, the following equation can be
formed:

ÃT P + PÃ− 2PT bR−1
2 bT P + a2 + P 2 = −R1 (9.86)

with R2 = 1.0, a2 = 0.5 (a2 > a2 = 0), and

Ã = 0 , b = 1 , R1 = 0.5 (9.87)
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Eq.9.86 has a unique positive definite solution for P of the form:

P = 1.0 (9.88)

which leads to the following nonlinear state feedback controller:

u =
1

Lgh(x(s))

(
−(x1 − v)− Lf̃h(x(s))− p1(x(t), x(t− α))

)
(9.89)

9.11.3 State observer and output feedback controller design

Since the open-loop process is stable, we set the observer gain L equal to zero
and derive the following nonlinear output feedback controller using the result
of Theorem 9.21:

ω̇ = f̃(ω(t)) + g(ω, ω(t− α))u + p̄(ω(t), ω(t− α))

u =
1

Lgh(ω)

(
−(y(t)− v)− Lf̃h(ω)− p1(ω(t), v̄(t), ω(t− α), v̄(t− α))

)

(9.90)
When both state and measurement delays are included in the system of

Eq.9.78, the following nonlinear output feedback controller was derived by
using the result of Theorem 9.25 and employed in the simulations described
in the next subsection:

ω̇ = f̃(ω(t)) + g(ω, ω(t− α))u + p̄(ω(t), ω(t− α))

u =
1

Lgh(ω)

(
−(y(t− α̃)− v + ω1(t)− ω1(t− α̃))− Lf̃h(ω)

−p1(ω(t), v̄(t), ω(t− α), v̄(t− α)))

(9.91)

Note that the controllers of Eq.9.90 and Eq.9.91 possess integral action.

9.11.4 Closed-loop system simulations

We performed several sets of simulation runs to evaluate the performance of
the output feedback controllers of Eqs. 9.90-9.91 and compare their perfor-
mance with nonlinear controllers that do not account for the presence of time
delays in the model of Eq.9.78. In all the simulation runs, the process was
initially (t = 0.0 hr) assumed to be at the steady-state shown in Table 9.2
and the MATLAB toolbox SIMULINK was used to simulate the closed-loop
DDE system.

In the first simulation run, we considered the process of Eq.9.78 with α =
0.3 hr and α̃ = 0 hr (i.e., no measurement delay is present) under the output
feedback controller of Eq.9.90. Figure 9.10 shows the output and manipulated
input profiles, for a 44oF increase in the reference input. It is clear that
the proposed controller drives quickly the output to the new reference input
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Fig. 9.10. Closed-loop output and manipulated input profiles with α = 0.3hr and
α̃ = 0hr under the controller of Eq.9.90.

value, compensating for the effect of the dead times associated with the pipes
transferring material from the reactor to the regenerator and vice versa. For
the sake of comparison, we also implemented on the process the same output
feedback controller with α = 0 hr and α̃ = 0 hr (i.e., we did not account for
the presence of time delays in the design of the controller).

Figure 9.11 shows the output and manipulated input profiles; this con-
troller leads to an unstable closed-loop system because it does not compensate
for the detrimental effect of the time delays.

In the next simulation run, we considered the process of Eq.9.78 with
α = 0.3 hr and α̃ = 0.05 hr (i.e., significant measurement delay is present)
under the output feedback controller of Eq.9.91.

Figure 9.12 shows the output and manipulated input profiles, for a 44oF
increase in the reference input. Clearly, the controller of Eq.9.91 drives the
output of the closed-loop system, after an initial delay caused by the mea-
surement dead time, to the new reference input value.

Finally, we considered the process of Eq.9.78 with α = 0.3 hr and α̃ =
0.05 hr and studied the robustness properties of the controller of Eq.9.89 in the
presence of modeling errors. In particular we simultaneously considered 5%
error in the values of: (a) the catalyst circulation rate, Frc, (b) the temperature
of the feed in the reactor, Tfp, and (c) the inflow air rate in the regenerator,
Rai.
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Fig. 9.11. Closed-loop output and manipulated input profiles with α = 0.3hr and
α̃ = 0hr under the controller of Eq.9.90 with α̃ = 0.05hr.
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Fig. 9.12. Closed-loop output and manipulated input profiles with α = 0.3hr and
α̃ = 0.05hr under the controller of Eq.9.91.
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Fig. 9.13. Closed-loop output and manipulated input profiles with α = 0.3hr and
α̃ = 0.05hr under the controller of Eq.9.91 in the presence of modeling errors.

Figure 9.13 shows the output and manipulated input profiles, for a 44oF
increase in the reference input. Despite the presence of a significant modeling
errors the proposed controller drives the output of the closed-loop system to
the new reference input value, exhibiting very good robustness properties.

Summarizing, the results of both simulation studies clearly show that it
is necessary to compensate for the effect dead-time associated with pipes
transferring material from one unit to an other, as well as that the proposed
control methodology is a very efficient tool for this purpose.

Remark 9.29. We finally note that even though the FCC unit exhibits two-
time-scale behavior [71, 56] owing to the significantly different hold ups of
the regenerator and reactor (i.e., the reactor dynamics are significantly faster
than the regenerator dynamics), which, in general, may cause controller ill-
conditioning (see, for example, [56] for a discussion on this issue), in the
present study, the presence of time-scale multiplicity in the FCC process model
was not taken into account in the controller design problem addressed in
Subsections 9.11.2-9.11.3 because the control problem that we formulated does
not lead to the synthesis of an ill-conditioned controller.
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9.12 Conclusions

In this chapter, we presented a methodology for the synthesis of nonlinear
output feedback controllers for nonlinear DDE systems which include time de-
lays in the states, the control actuator and the measurement sensor. Initially,
DDE systems with state delays were considered and a novel combination of
geometric and Lyapunov-based techniques was employed for the synthesis of
nonlinear state feedback controllers that guarantee stability and enforce out-
put tracking in the closed-loop system, independently of the size of the state
delay. Then, the problem of designing nonlinear distributed state observers,
which reconstruct the state of the DDE system while guaranteeing that the
discrepancy between the actual and the estimated state tends exponentially
to zero, was addressed and solved by using spectral decomposition techniques
for DDE systems. The state feedback controllers and the distributed state
observers were combined to yield distributed output feedback controllers that
enforce stability and asymptotic output tracking in the closed-loop system,
independently of the size of the time-delay. For DDE systems with state, con-
trol actuator and measurement delays, the output feedback controller was
synthesized on the basis of an auxiliary output constructed within a Smith-
predictor framework. The nonlinear control method was successfully applied
to an exothermic reactor-separator process with recycle and a fluidized cat-
alytic cracker and was shown to outperform nonlinear controller designs that
do not account for the presence of dead time associated with the recycle loop
and the pipes transferring material from the reactor to the regenerator and
vice versa, respectively.





A

Proofs of Chapter 3

Proof of Theorem 3.3:
The proof is divided into two parts. In Part 1 we establish that the controller
of Eq.3.18 globally asymptotically stabilizes the origin of the closed-loop sys-
tem and show that the closed-loop output satisfies the relation of Eq.3.23. In
Part 2, we prove that the controller of Eq.3.18 is optimal with respect to the
cost functional of Eq.3.24. To simplify the development of the proof, we will
consider only the case of a single uncertain variable, i.e., q = 1 in Eq.3.1. The
extension to the case when q > 1 is conceptually straightforward.
Part 1: Consider the representation of the closed-loop system in the trans-
formed coordinates of Eq.3.14. We now follow a three-step procedure to es-
tablish closed-loop asymptotic stability and output tracking. Initially, we use
a Lyapunov argument to show that, starting from any initial condition, the
states of the closed-loop e-subsystem converge asymptotically to the origin
and derive bounds that capture the evolution of the states of the e and η sub-
systems. We then invoke a small-gain argument to show that the trajectories
of the e-η interconnected system remain bounded for all times starting from
any initial condition. Finally, we show that the states of the closed-loop sys-
tem of Eq.3.14 converge to the origin and that the output satisfies the relation
of Eq.3.23.
Step 1: Substituting the control law of Eq.3.18 into Eq.3.14 and computing
the time-derivative of V along the trajectories of the closed-loop e-subsystem,
we get:

V̇ = Lf̄V + LḡV u + Lw̄V θ

= −c0(LḡV )2 −
√

(Lf̄V )2 + (LḡV )4 + Lw̄V θ

−




ρ + χθb‖LwLr−1
f h(x)‖

(LgL
r−1
f h(x))2

(
‖LḡV ‖

‖LgL
r−1
f h(x)‖ + φ

)




(LḡV )2

(A.1)
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for LḡV 6= 0. Substituting the expressions LḡV = 2
[
(LgL

r−1
f h(x)

]
bT Pe and

Lw̄V = 2
[
LwLr−1

f h(x)
]
bT Pe into the above equation, and using the fact that

c0 > 0, we obtain:

V̇ ≤ −c0(LḡV )2 −
√

(Lf̄V )2 + (LḡV )4 −
(

ρ + χθb‖LwLr−1
f h(x)‖

(‖2bT Pe‖+ φ)

)
‖2bT Pe‖2

+‖2bT Pe‖‖LwLr−1
f h(x)‖θb

= −c0(LḡV )2 −
√

(Lf̄V )2 + (LḡV )4 −
(

ρ‖2bT Pe‖2
‖2bT Pe‖+ φ

)

−
(

θb‖LwLr−1
f h(x)‖‖2bT Pe‖((χ− 1)‖2bT Pe‖ − φ)

‖2bT Pe‖+ φ

)

(A.2)
From the last inequality and the fact that ρ > 0 and χ > 2, it is clear that
whenever ‖2bT Pe‖>φ(χ− 1)−1, the time-derivative of V satisfies:

V̇ ≤ −c0(LḡV )2 −
√

(Lf̄V )2 + (LḡV )4 (A.3)

which is strictly negative when LḡV 6= 0. For the case when ‖2bT Pe‖ ≤ φ(χ−
1)−1, we have ‖2bT Pe‖ ≤ φ( 1

2χ − 1)−1; and, therefore, from the assumption
of vanishing uncertainty, we have that the function LwLr−1

f h(x) satisfies the
bound ‖LwLr−1

f h(x)‖ ≤ δ‖2bT Pe‖ for all ‖2bT Pe‖ ≤ φ( 1
2χ − 1)−1, where δ

is a positive constant. Substituting this bound, together with the fact that
φ− (χ− 1)‖2bT Pe‖ < φ, into the last inequality of Eq.A.2 yields:

V̇ ≤ −
√

(Lf̄V )2 + (LḡV )4 +
(

(θbδφ− ρ)‖2bT Pe‖2
‖2bT Pe‖+ φ

)
(A.4)

∀ ‖2bT Pe‖ < φ(χ − 1)−1. If φ is small enough to satisfy the bound φ ≤
ρ

δθb
:= 2φ∗, then it’s clear from the above equation that V̇ satisfies Eq.A.3,

irrespective of the value of ‖2bT Pe‖. Consider now the case when LḡV = 0.
In this case, we have from Eq.3.18 that u = 0 and, hence, computing the
time-derivative of V = eT Pe, we get:

V̇ ≤ eT
(
AT P + PA

)
e + 2bT Pe

(
f̄r(e, η, v̄) + w̄r(e, η, v̄)θ

)
(A.5)

where the functions, f̄r and w̄r are given by f̄r(e, η, v̄) = Lr
fh(T−1(e, η, v̄))−

v(r) and w̄r(e, η, v̄) = LwLr−1
f (T−1(e, η, v̄)). From the fact that P satisfies

AT P +PA−PbbT P < 0, we have that there exists a positive-definite matrix,
Q, such that AT P +PA−PbbT P = −Q. Substituting this relation into Eq.A.5
yields:

V̇ ≤ −eT Qe + (bT Pe)2 + 2bT Pe
(
f̄r(e, η, v̄) + w̄r(e, η, v̄)θ

)
(A.6)
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From the assumption that LgL
r−1
f h(T−1(e, η, v̄)) 6= 0 for all x ∈ IRn (As-

sumption 3.1), we have that LḡV = 0 =⇒ bT Pe = 0; and, consequently,
V̇ = −eT Qe < 0 ∀ e 6= 0.

From the above analysis, it is clear that V̇ < 0 ∀ e 6= 0. Consequently,
there exists a function βe of class KL (see chapter 5 in [148] for details) such
that the following ISS inequality holds for the e states of the system of Eq.3.14:

‖e(t)‖ ≤ βe (‖e(0)‖ , t) ∀ t ≥ 0 (A.7)

and the origin of the e-subsystem is asymptotically stable. From Assumption
3.2, we have that the η-subsystem of Eq.3.14 possesses an ISS property with
respect to e which implies that there exists a function βη of class KL and a
function γη of class K such that the following ISS inequality holds:

‖η(t)‖ ≤ βη(‖η(0)‖ , t) + γη(‖e‖s) ∀ t ≥ 0 (A.8)

uniformly in θ and v̄.
Step 2: We now analyze the behavior of the interconnected dynamical

system comprised of the e and η states of the system of Eq.3.14 for which
the inequalities of Eq.A.7 and Eq.A.8 hold. In order to proceed with our
analysis, we define the following positive real numbers: δe = De + φ∗, δη =
Dη + γη(δe) + φ∗, De = βe(δ̄e, 0), Dη = βη(δ̄η, 0), φ∗ =

ρ

2δθb
and δ̄e, δ̄η are

any positive real numbers. Then, using a contradiction argument similar to
the one used in [57, 58], one can prove that if φ ∈ (0, φ∗], then, starting from
any initial state that satisfies ‖e(0)‖ ≤ δ̄e, ‖η(0)‖ ≤ δ̄η, the evolution of the e
and η states satisfies ‖e(t)‖≤δe and ‖η(t)‖≤δη, respectively, for all times; and
that the states are therefore bounded. This argument is omitted for brevity.
Step 3: Having established in the previous two steps that the origin of the
closed-loop e-subsystem is globally asymptotically stable and that the η sub-
system, with e as input, is ISS, we can apply the results of Lemma 5.6 in
[148] directly to conclude that the origin of the interconnected e-η system of
Eq.3.14 is globally asymptotically stable. It follows then from Assumption 3.1
that the origin of the closed-loop system of Eq.3.1 is globally asymptotically
stable. The asymptotic output tracking result can be obtained by taking the
limsup of both sides of Eq.A.7, which yields:

lim sup
t→∞

‖e(t)‖ = 0 =⇒ lim sup
t→∞

‖y(t)− v(t)‖ = 0 (A.9)

Part 2: In this part, we prove that the control law of Eq.3.18 is optimal with
respect to a meaningful cost functional of the form of Eq.3.24. We proceed
in two steps. In the first step, we show that the cost functional defined in
Eq.3.24 is a meaningful one by proving that the weights, l(e) and R(x), are
positive-definite and strictly positive functions, respectively. In the second
step, we show that the stabilizing control law of Eq.3.18 minimizes this cost
functional.
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Step 1: From its definition in Theorem 3.3, l(e) is given by:

l(e) = −Lf̄V +
1
4
LḡV R−1(x)LḡV − ‖Lw̄V ‖ θb (A.10)

Consider first the case when LḡV 6= 0. Direct substitution of the expression
for R−1(x) given in Theorem 3.3 into the above equation yields:

l(e) =
1
2
c0(LḡV )2 +

1
2

[
−Lf̄V +

√
(Lf̄V )2 + (LḡV )4

]
− ‖Lw̄V ‖θb

+
1
2

(
ρ + χθb‖LwLr−1

f h(x)‖
)
‖2bT Pe‖2

‖2bT Pe‖+ φ

=
1
2
c0(LḡV )2 +

1
2

[
−Lf̄V +

√
(Lf̄V )2 + (LḡV )4

]
+

1
2

(
ρ‖2bT Pe‖2
‖2bT Pe‖+ φ

)

+
θb‖2bT Pe‖‖LwLr−1

f h(x)‖ [
( 1
2χ− 1)‖2bT Pe‖ − φ

]

‖2bT Pe‖+ φ
(A.11)

where we used the expression for Lw̄V and the fact that c0 > 0 to derive
the above inequality. Note that the second term on the right-hand side of the
above equation is strictly positive when LḡV 6= 0. From this and the fact that
ρ > 0 and χ > 2, it’s clear that whenever ‖2bT Pe‖ > φ(1

2χ− 1)−1, we have:

l(e) ≥ 1
2
c0(LḡV )2 ≥ k1‖bT Pe‖2 (A.12)

where k1 = 1
2c0k

2
2 > 0, k2 = min

x∈IRn
‖LgL

r−1
f h(x)‖. To analyze the sign of l(e)

when ‖2bT Pe‖ ≤ φ( 1
2χ − 1)−1, we use the growth bound ‖LwLr−1

f h(x)‖ ≤
δ‖2bT Pe‖ together with the fact that ( 1

2χ− 1)‖2bT Pe‖ − φ > −φ to write:

l(e) ≥ 1
2
c0(LḡV )2 +

(ρ

2
− θbδφ

)
‖2bT Pe‖2

‖2bT Pe‖+ φ
∀ ‖2bT Pe‖ ≤ φ(

1
2
χ− 1)−1

(A.13)
Clearly, if φ is small enough to satisfy φ ≤ ρ

2θbδ
:= φ∗, then we have that

l(e) satisfies Eq.A.12, irrespective of the value of ‖2bT Pe‖. Consider now the
case when LḡV = 0. In this case, we have from Eq.A.10, and the fact that
V = eT Pe with P satisfying AT P + PA − PbbT P = −Q for some positive-
definite matrix, Q, that:

l(e) = −Lf̄V − ‖Lw̄V ‖θb

= −eT
(
AT P + PA

)
e− 2bT Pe

(
f̄r(e, η, v̄)

)− ‖2bT Pe‖‖w̄r(e, η, v̄)‖θb

= eT Qe− (bT Pe)2 − 2bT Pe
(
f̄r(e, η, v̄)

)− ‖2bT Pe‖‖w̄r(e, η, v̄)‖θb

(A.14)
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where f̄r and w̄r were defined following Eq.A.5. Recall that LḡV = 0 =⇒
bT Pe = 0; and, consequently in this case, l(e) = eT Qe > 0 ∀ e 6= 0. Using
the identities: (a) eT Qe ≥ λmin(Q)‖e‖2, where λmin(Q) > 0 is the minimum
eigenvalue of the matrix Q, (b) ‖Pe‖2 ≤ λmax(P 2)‖e‖2, where λmax(P 2) > 0
is the maximum eigenvalue of the matrix P 2, and (c) ‖bT Pe‖2 ≤ ‖Pe‖2
(recall from Eq.3.13 that ‖b‖ = 1), we finally have l(e) ≥ k3‖bT Pe‖2, where
k3 = λmin(Q)λ−1

max(P 2) > 0. Combining this result with that obtained in
Eq.A.12 for the case when LḡV 6= 0, we conclude that l(e) > 0 ∀ e 6= 0 and
that l(e) ≥ k‖bT Pe‖2, where k = min{k1, k3}. Note also that R(x) > 0 for all
x ∈ IRn. Therefore, the cost functional of Eq.3.24 is a meaningful one.
Step 2: In this step, we prove that control law of Eq.3.18 minimizes the cost
functional of Eq.3.24. Substituting:

α = u +
1
2
R−1(x)LḡV (A.15)

into Eq.3.24, we get the following chain of equalities:

Jv =
∫ ∞

0

(l(e) + uR(x)u)dt

=
∫ ∞

0

(
−Lf̄V +

1
4
LḡV R−1(x)LḡV − ‖Lw̄V ‖θb + αRα− α(LḡV )

)
dt

+
∫ ∞

0

(
1
4
LḡV R−1 (LḡV )

)
dt

=
∫ ∞

0

(−Lf̄V − LḡV u− ‖Lw̄V ‖θb

)
dt +

∫ ∞

0

αR(x)α dt

= −
∫ ∞

0

sup
θ∈W

(
V̇

)
dt +

∫ ∞

0

αR(x)α dt

Since R(x) > 0 for all x ∈ IRn, it is clear that the minimum of Jv is achieved
when α(t) ≡ 0 (which proves that the controller of Eq.3.18 minimizes the cost
of Eq.3.24) and is equal to:

J∗v = −
∫ ∞

0

sup
θ∈W

(
V̇

)
dt ≤ V (e(0))− lim

t→∞
V (e(t)) = V (e(0)) (A.16)

where we have used the fact that lim
t→∞

V (e(t)) = 0, which follows from asymp-
totic stability of the origin, to derive the last equality. To complete the proof
of optimality, we need to show that J∗v = V (e(0)). To this end, consider the
uncertain variable θ∆ ∈ W where for every e∆(0) ∈ IRr, every u ∈ IR, and
every ∆ > 0, we have:

∫ ∞

0

V̇ (e∆, u, θ∆) dt ≥
∫ ∞

0

sup
θ∈W

V̇ (e∆, u, θ) dt−∆ (A.17)
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(The existence of θ∆ follows from the properties of θ(t)). From the inequality
of Eq.A.17, we obtain:

V (e(0)) = −
∫ ∞

0

V̇ dt ≤ −
∫ ∞

0

sup
θ∈W

V̇ (e∆, u, θ) dt + ∆ (A.18)

Combining the inequalities of Eq.A.18 and Eq.A.16, we get:

V (e(0))−∆ ≤ J∗v ≤ V (e(0)) (A.19)

for arbitrarily small ∆. Clearly, if J∗v = V (e(0)), the proof of optimality is
complete. Otherwise, there exists µ > 0 such that J∗v + µ = V (e(0)). Since ∆
is arbitrary, we can choose it to be sufficiently small such that ∆ < µ and the
inequality of Eq.A.19 is violated. Thus, the only way to satisfy the inequality
of Eq.A.19 for arbitrary ∆ is to set J∗v = V (e(0)). This completes the proof
of the theorem. 4

Proof of Theorem 3.13:
The proof of this theorem follows that of Theorem 3.3. We will only highlight
the differences.
Part 1: In this part, we establish that the controller of Eq.3.28 enforces global
boundedness of the closed-loop trajectories and that the closed-loop output
satisfies Eq.3.29.
Step 1: Substituting the control law of Eq.3.28 into Eq.3.14 and computing the
time-derivative of V along the trajectories of the closed-loop e-subsystem, it
is straightforward to show that V̇ satisfies Eq.A.3 whenever ‖2bT Pe‖ > φ(χ−
1)−1. To analyze the sign of V̇ when ‖2bT Pe‖ ≤ φ(χ−1)−1, we use the bound
‖LwLr−1

f h(x)‖ ≤ δ‖2bT Pe‖+ µ and the fact that φ− (χ− 1)‖2bT Pe‖ < φ to
obtain the following estimates:

θb‖LwLr−1
f h(x)‖‖2bT Pe‖ (

φ− (χ− 1)‖2bT Pe‖)

≤ θb‖LwLr−1
f h(x)‖‖2bT Pe‖φ

≤ θbδφ‖2bT Pe‖2 + θbµφ‖2bT Pe‖

(A.20)

∀ ‖2bT Pe‖ ≤ φ(χ− 1)−1. Substituting the estimates of Eq.A.20 directly into
Eq.A.2 yields:

V̇ ≤ −c0 (LḡV )2 −
√

(Lf̄V )2 + (LḡV )4

+
(−ρ + δθbφ)‖2bT Pe‖2

‖2bT Pe‖+ φ
+

θbµφ‖2bT Pe‖
‖2bT Pe‖+ φ

(A.21)

It is clear from the above equation, together with the fact that θbµφ > 0 and
‖2bT Pe‖

‖2bT Pe‖+ φ
≤ 1, that if φ ≤ ρ

δθb
:= φ∗1, then V̇ satisfies:
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V̇ ≤ −c0 (LḡV )2 −
√

(Lf̄V )2 + (LḡV )4 + φ̄ (A.22)

irrespective of the value of ‖2bT Pe‖, where φ̄ = θbµφ. Note that the function
described by the first two terms on the right-hand side of the above equation
is negative-definite, since for all e 6= 0, LḡV = 0 =⇒ Lf̄V < 0. Consequently,
there exists a function α1(·) of class K such that:

V̇ ≤ −α1(‖e‖) + φ̄ (A.23)

Choosing φ small enough such that φ̄ ≤ 1
2α1(‖e‖), we have:

V̇ ≤ − 1
2α1(‖e‖) < 0 ∀ ‖e‖ ≥ α−1

1 (2φ̄) (A.24)

This inequality shows that V̇ is negative outside the set B1 := {e ∈ IRr :
‖e‖ ≤ α−1

1 (2φ̄)}. A direct application then of the result of Theorem 5.1 and
its corollaries in [148] allows us to conclude that starting from any initial
condition, the following ISS inequality holds for the e states of the closed-loop
system of Eq.3.14 and Eq.3.28:

‖e(t)‖ ≤ β̄e (‖e(0)‖, t) + γ̄e(φ) ∀ t ≥ 0 (A.25)

where β̄e is a class KL function and γ̄e is a class K∞ function. From Assump-
tion 3.4, we have that the η states of the system of Eq.3.14 possess an ISS
property with respect to e and θ:

‖η(t)‖ ≤ β̄η (‖η(0)‖, t) + γ̄η

(‖[eT θ]T ‖s
)

≤ β̄η (‖η(0)‖, t) + γ̄η1 (‖e‖s) + γ̄η2 (‖θ‖s)
(A.26)

uniformly in v̄, where γ̄η1 , γ̄η2 are class K functions defined as γ̄η1(s) =
γ̄η2(s) = γ̄η(2s).
Step 2: We now analyze the behavior of the interconnected closed-loop dy-
namical system of Eq.3.14 and Eq.3.28, comprised of the e and η states
for which the inequalities of Eq.A.25 and Eq.A.26 hold. We first define the
following positive real numbers: δe = Dē + φ∗, δη = Dη̄ + γ̄η1(δe) + φ∗,
Dē = β̄e(δ̄e, 0) + γ̄e(φ∗), Dη̄ = β̄η(δ̄η, 0) + γ̄η2(θb), φ∗ = min{ 1

2φ∗1, γ̄e
−1(d)}

where d > 0 is arbitrary and δ̄e, δ̄η are any positive real numbers. Then, using
a contradiction argument similar to the one used in [57, 58], one can show
that if φ ∈ (0, φ∗], the evolution of the states e and η, starting from any
initial states that satisfy ‖e(0)‖ ≤ δ̄e, ‖η(0)‖ ≤ δ̄η, satisfies the inequalities
‖e(t)‖≤δe, ‖η(t)‖≤δη for all times. Finally, for φ ∈ (0, φ∗] and for any initial
states, taking the limsup of both sides of Eq.A.25 as t →∞, we have:

lim sup
t→∞

‖y(t)− v(t)‖ ≤ lim sup
t→∞

‖e(t)‖

≤ lim sup
t→∞

(
β̄e(‖e(0)‖, t) + γ̄e(φ)

) ≤ γ̄e(φ∗) ≤ d

(A.27)
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Part 2: In this part, we prove that the control law of Eq.3.28 is optimal with
respect to a meaningful cost functional of the form of Eq.3.30. We proceed in
two steps. In the first step, we show that the cost functional defined in Eq.3.30
is a meaningful one. In the second step, we show that the stabilizing control
law of Eq.3.28 minimizes this cost functional.
Step 1: From its definition in Theorem 3.13, l̄(e) is given by:

l̄(e) = −Lf̄V +
1
4
LḡV R̄−1(x)LḡV − ‖Lw̄V ‖θb (A.28)

Substitution the expression for R̄−1(x), given in Theorem 3.13, into the above
equation, and performing some algebraic manipulations (similar to those in
Eq.A.11), it can be shown that, whenever ‖2bT Pe‖ > φ( 1

2χ − 1)−1, l̄(e) sat-
isfies:

l̄(e) ≥ 1
2

[
−Lf̄V +

√
(Lf̄V )2 + (LḡV )4

]
(A.29)

which is positive-definite since, away from the origin, Lf̄V and LḡV do not
vanish together. To analyze the sign of l̄(e) when ‖2bT Pe‖ < φ( 1

2χ − 1)−1,
we use the bound ‖LwLr−1

f h(x)‖ ≤ δ‖2bT Pe‖ + µ and the fact that ( 1
2χ −

1)‖2bT Pe‖ − φ > −φ to obtain the following estimates:

θb‖LwLr−1
f h(x)‖‖2bT Pe‖ (

φ− ( 1
2χ− 1)‖2bT Pe‖)

≥ −θb‖LwLr−1
f h(x)‖‖2bT Pe‖φ

≥ −θbδφ‖2bT Pe‖2 − θbµφ‖2bT Pe‖

(A.30)

∀ ‖2bT Pe‖ ≤ φ(1
2χ − 1)−1. Substituting the estimates of Eq.A.30 directly

into Eq.A.11 yields:

l̄(e) ≥ 1
2

[
−Lf̄V +

√
(Lf̄V )2 + (LḡV )4

]

+
(1
2ρ− δθbφ)‖2bT Pe‖2
‖2bT Pe‖+ φ

− θbµφ‖2bT Pe‖
‖2bT Pe‖+ φ

(A.31)

From the above equation, it is clear that if φ ≤ ρ

2δθb
:= φ∗2, l̄(e) satisfies:

l̄(e) ≥ 1
2

[
−Lf̄V +

√
(Lf̄V )2 + (LḡV )4

]
− φ̄ (A.32)

irrespective of the value of ‖2bT Pe‖. Therefore, there exists a function α2(·)
of class K such that:

l̄(e) ≥ α2(‖e‖)− φ̄

≥ 1
2α2(‖e‖) > 0 ∀ ‖e‖ ≥ α−1

2 (2φ̄)
(A.33)
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The last inequality implies that l̄(e) is positive outside the set B2 := {e ∈
IRr : ‖e‖ ≤ α−1

2 (2φ̄)}. Note that this set is completely contained within the
set Γ since ‖e‖ ≤ α−1

2 (2φ̄) ≤ α−1
2 (2φ̄∗) ≤ ε =⇒ eT Pe ≤ λmax(P )‖e‖2 ≤

λmax(P )ε2 where ε := max{α−1
1 (2φ̄∗), α−1

2 (2φ̄∗)} and λmax(P ) > 0 is the
maximum eigenvalue of the matrix P . Similarly, the set B1 – defined right after
Eq.A.24 – is also contained within Γ , and therefore V̇ < 0 on and outside the
boundary of Γ . From its definition in Theorem 3.13, Tf is the minimum time
for the trajectories of the closed-loop system to reach and enter Γ without
ever leaving again (note that Γ is a level set of V ). Therefore, we have that
‖e(t)‖ ≥ α−1

2 (2φ̄) ∀ t ∈ [0, Tf ]. Hence, l̄(e(t)) > 0 ∀ t ∈ [0, Tf ]. Note also that
R̄(x) > 0 for all x. Therefore the cost functional of Eq.3.30 is a meaningful
one.
Step 2: In this step, we prove that control law of Eq.3.28 minimizes the cost
functional of Eq.3.30. Substituting:

α = u +
1
2
R̄−1(x)LḡV (A.34)

into Eq.3.30, we get the following chain of equalities:

Jn = V (e(Tf )) +
∫ Tf

0

(
l(e(t)) + u(t)R̄(x(t))u(t)

)
dt

= V (e(Tf )) +
∫ Tf

0

(
−Lf̄V +

1
2
LḡV R̄−1(x)LḡV − ‖Lw̄V ‖θb − LḡV α

)
dt

+
∫ Tf

0

αR̄(x)α dt

= V (e(Tf ))−
∫ Tf

0

sup
θ∈W

(
V̇

)
dt +

∫ Tf

0

αR(x)α dt

(A.35)
Note that:

J∗n = V (e(Tf ))−
∫ Tf

0

sup
θ∈W

(
V̇

)
dt ≤ V (e(Tf ))−

∫ Tf

0

V̇ dt = V (e(0))

(A.36)
Since R̄(x) > 0 for all x ∈ IRn, it is clear that the minimum of Jn is J∗n.
This minimum is achieved when α(t) ≡ 0 which proves that the controller of
Eq.3.28 minimizes the cost of Eq.3.30. Finally, using an argument similar to
that used in Eqs.A.17-A.19, we have that J∗n = V (e(0)). This completes the
proof of the theorem. 4

Proof of Theorem 3.20:
The proof of this theorem consists of three parts. In the first part, we use
a singular perturbation formulation to represent the closed-loop system and
show that the origin of the resulting fast subsystem is globally exponentially
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stable. In the second part, we focus on the closed-loop reduced system and
derive ISS bounds for its states. Then, using the result of Lemma 2.18, we
establish that these ISS bounds continue to hold up to an arbitrarily small
offset, for arbitrarily large initial conditions and uncertainty. The resulting
ISS inequalities are then analyzed to establish semi-global boundedness and
local exponential stability of the full closed-loop system, which is then used
to establish Eq.3.47, provided that φ and ε are sufficiently small. Finally, in
the third part, we establish the near-optimality of the controller of Eq.3.46
with respect to the cost of Eq.3.24.
Part 1: Defining the auxiliary error variables, êi = Lr−i(y(i−1) − ỹi), i =
1, . . . , r, the vector eo = [ê1 ê2 · · · êr]T , the vector of controller parameters

φc = [c0 ρ χ φ θb]T , the parameter ε =
1
L

, the matrix Ã and the vector b̃:

Ã =




−a1 1 0 · · · 0
−a2 0 1 · · · 0

...
...

...
. . .

...
−ar−1 0 0 · · · 1
−ar 0 0 · · · 0




, b̃ =




0
0
...
0
1




(A.37)

the system of Eq.3.1, under the controller of Eq.3.46, takes the form:

εėo = Ãeo + εb̃Ω(x, x̂, θ, φc, v̄)

ω̇1 = Ψ1(sat(ỹ), ω)

...
ω̇n−r = Ψn−r(sat(ỹ), ω)

ẋ = f(x) + g(x)p(x̂, φc, v̄) +
q∑

k=1

wk(x)θk

(A.38)

where x̂ = X−1(sat(yd − ∆(ε)eo), ω) and yd = [y(0) y(1) · · · y(r−1)]T , ∆(ε)
is a diagonal matrix whose i-th diagonal element is εr−i, and Ω(x, x̂, θ, φc, v̄)
is a Lipschitz function of its argument. Owing to the presence of the small
parameter, ε, that multiplies the time-derivative, ėo, the system of Eq.A.38 is

a two-time-scale one. Defining the fast time-scale, τ =
t

ε
, and setting ε = 0,

the closed-loop fast subsystem takes the form:

deo

dτ
= Ãeo (A.39)

Since the constant matrix Ã is Hurwitz, the origin of the system of Eq.A.39
is globally exponentially stable.
Part 2: In this part of the proof, we initially derive ISS bounds for the states of
the system of Eq.A.38 when ε = 0, in appropriately transformed coordinates,



A Proofs of Chapter 3 377

and then use the result of Lemma 2.18 to show that these bounds hold up to an
arbitrarily small offset, for initial conditions and uncertainty in an arbitrarily
large compact set, provided that ε is sufficiently small. To this end, we first
write the closed-loop system in the following form:

εėo = Ãeo + εb̃Ω(e, η, x̂, θ, φc, v̄)

ω̇1 = Ψ1(sat(ỹ), ω)

...
ω̇n−r = Ψn−r(sat(ỹ), ω)

ė1 = e2

...

ėr−1 = er

ėr = Lr
fh(X−1(e, η, v̄))− v(r) + LgL

r−1
f h(X−1(e, η, v̄))p(x̂, φc, v̄)

+
q∑

k=1

LwkLr−1
f h(X−1(e, η, v̄))θk

η̇1 = Ψ1(e, η, v̄)

...

η̇n−r = Ψn−r(e, η, v̄)

y = e1 + v

(A.40)

where e = [e1 e2 · · · er]T , ei = ζi−v(i−1), i = 1, · · · , r, and Ψi, i = 1, · · · , n−r,
are Lipschitz functions of their arguments.
Step 1: Consider the system of Eq.A.40 with ε = 0. In order to analyze the
dynamic behavior of the resulting closed-loop slow (reduced) system, we ini-
tially need to show that for the system of Eq.A.40, η(0) = ω(0)+O(ε) implies
η(t) = ω(t) + O(ε), ∀ t ≥ 0. To this end, consider the following singularly
perturbed system:
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εėo = Ãeo + εb̃Ω(e, η, x̂, θ, φc, v̄)

ω̇1 = Ψ1(sat(ỹ), ω)

...
ω̇n−r = Ψn−r(sat(ỹ), ω)

η̇1 = Ψ1(e, η, v̄)

...

η̇n−r = Ψn−r(e, η, v̄)

(A.41)

It is straightforward to verify that the above system satisfies the assumptions
of Theorem 1 reported in [149]. Applying the result of this theorem, we have
that there exists a positive real number, ε0, such that for any positive real
number, δω, satisfying:

δω ≥ max
‖x‖≤δx

{
n−r∑
ν=1

‖χν(x)‖
}

(A.42)

where χν(x), ν = 1, . . . , n−r, are the functions defined in Assumption 3.5, the
states (η, ω) of this system, starting from any initial condition that satisfies
η(0) = ω(0) + O(ε) (with max{‖η(0)‖, ‖ω(0)‖} ≤ δω), if ε ∈ (0, ε0], satisfy
η(t) = ω(t) + O(ε), ∀ t ≥ 0.

Since η(t) = ω(t) ∀ t ≥ 0 and eo = 0 when ε = 0, the reduced (slow)
closed-loop system (i.e., the system of Eq.A.40 with ε = 0) reduces to the one
studied in the Proof of Theorem 3.3, where it was shown that the evolution
of the e-subsystem satisfies:

‖e(t)‖ ≤ βe (‖e(0)‖, t) (A.43)

∀ t ≥ 0. From Assumption 3.6, we have that the η states of the reduced (slow)
closed-loop system of Eq.A.40 satisfy the following ISS inequality:

‖η(t)‖ ≤ Kη‖η(0)‖e−at + γη(‖e‖s) (A.44)

∀ t ≥ 0, uniformly in v̄, where a > 0, Kη ≥ 1 and γη(·) is a class K function
of its argument. Realizing that the reduced closed-loop slow system is an
interconnection of the e and η subsystems, we show now that the origin of the
reduced closed-loop system is asymptotically stable. From Eqs.A.43-A.44, we
have that the solutions of the reduced closed-loop system satisfy:

‖η(t)‖ ≤ Kη‖η(s)‖e−a(t−s) + γη( sup
s≤τ≤t

‖e(τ)‖) (A.45)
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‖e(t)‖ ≤ βe (‖e(s)‖, t− s) (A.46)

where t≥s≥0. Applying Eq.A.45 with s = t
2 , we obtain:

‖η(t)‖ ≤ Kη

∥∥η
(

t
2

)∥∥ e−a t
2 + γη

(
sup

t
2≤τ≤t

‖e(τ)‖
)

(A.47)

To estimate η
(

t
2

)
, we apply Eq.A.45 with s = 0 and t replaced by t

2 to obtain:

∥∥η
(

t
2

)∥∥ ≤ Kη ‖η(0)‖ e−a t
2 + γη

(
sup

0≤τ≤ t
2

‖e(τ)‖
)

(A.48)

From Eq.A.46, we have:

sup
0≤τ≤ t

2

‖e(τ)‖ ≤ βe (‖e(0)‖, 0) (A.49)

sup
t
2≤τ≤t

‖e(τ)‖ ≤ βe

(‖e(0)‖, t
2

)
(A.50)

Substituting Eqs.A.48-A.50 into Eq.A.47 and using the inequalities ‖η(0)‖ ≤
‖π(0)‖, ‖e(0)‖ ≤ ‖π(0)‖ and ‖π(t)‖ ≤ ‖η(t)‖ + ‖e(t)‖, where π(0) =
[eT (0) ηT (0)]T , we obtain:

‖π(t)‖ ≤ β (‖π(0)‖ , t) (A.51)

where

β (‖π(0)‖ , t) =
[
Kη ‖π(0)‖ e−a t

2 + γη (βe (‖π(0)‖, 0))
]
e−a t

2

+γη

(
βe

(‖π(0)‖, t
2

))
+ βe (‖π(0)‖, t)

(A.52)

It can be easily verified that β is a class KL function. Hence, the origin of the
reduced closed-loop system is asymptotically stable (i.e., π(t) → 0 as t →∞).
Therefore, there exists a class KL function, β̄η(·, ·), such that:

‖η(t)‖ ≤ β̄η (‖η(0)‖, t) , ∀ t ≥ 0 (A.53)

To show exponential stability, we proceed as follows. Repeating the same cal-
culations of Step 1 in Part 1 of the Proof of Theorem 3.3, it is straightforward
to show that, when LḡV 6= 0, there exists a positive real number φ∗ such that
if φ ≤ φ∗, V̇ – computed along the trajectories of the reduced closed-loop
e-subsystem – satisfies:

V̇ ≤ −1
2
c0(LḡV )2

≤ −2c0‖Pe‖2‖LgL
r−1
f h(x)‖2

≤ −2c0λmax(P 2)‖e‖2‖LgL
r−1
f h(x)‖2

(A.54)
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where we have used the fact that ‖LḡV ‖ ≤ 2‖Pe‖‖LgL
r−1
f h(x)‖ in deriving

the second inequality in Eq.A.54. Since ‖LgL
r−1
f h(x)‖ is a continuous function

of x and LgL
r−1
f h(x) 6= 0 ∀ x ∈ IRn, there exists a positive real number, κ1,

such that ‖LgL
r−1
f h(x)‖2 ≥ κ1 and, therefore, V̇ ≤ −κ2‖e‖2, where κ2 =

2c0κ1λmax(P 2) > 0. Recall also from the analysis of Eq.A.6 in the Proof of
Theorem 3.3 that, when LḡV = 0, V̇ ≤ −eT Qe ≤ −λmin(Q)‖e‖2, where Q

is a positive-definite matrix. Therefore, we have V̇ ≤ −κ3‖e‖2, where κ3 =
max{κ2, λmin(Q)}, and there exist real numbers, k1 ≥ 1 and a1 > 0, such
that the following inequality holds for the reduced closed-loop e-subsystem:

‖e(t)‖ ≤ k1‖e(0)‖e−a1t ∀ t ≥ 0 (A.55)

From the above inequality and the fact that the origin of the η-subsystem, with
e = 0, is exponentially stable (from Assumption 3.6), it follows that the e-η
interconnected, reduced closed-loop system of Eq.A.40 is locally exponentially
stable. Therefore, there exists a positive real number, r, such that:

‖π(t)‖ ≤ k3‖π(t0)‖e−a2(t−t0) ∀ ‖π(t0)‖ ≤ r (A.56)

for some k3 ≥ 1 and a2 > 0.
Finally, we note that since the static component of the controller of Eq.3.46

with x̂ = x enforces global asymptotic stability in the reduced (slow) closed-
loop system, the ζ states of this system satisfy a bound of the following form,
∀ t ≥ 0:

‖ζ(t)‖ ≤ βζ(δζ , t) (A.57)

where βζ is a class KL function and δζ is the maximum value of the norm
of the vector [h(x) Lfh(x) · · · Lr−1

f h(x)], for ‖x‖ ≤ δx. Based on the above
bound and following the results of [149, 268], we disregard estimates of ỹ,
obtained from the high-gain observer, with norm ‖ỹ‖ > βζ(δζ , 0). Hence, we

set sat(·) = min{1,
ζmax

‖ · ‖ }(·) where ζmax is the maximum value of the vector

[ζ1 ζ2 · · · ζr], for ‖ζ‖ ≤ βζ(δζ , 0).
Step 2: In order to apply the result of Lemma 2.18, we need to define a set of
positive real numbers {δ̄e, δ̄η, δθ, δv̄, δη, δe, d, de, dη}, where δθ and δv̄ were
specified in the statement of the theorem, d, de and dη are arbitrary positive
real numbers,

δ̄e ≥ max
‖x‖≤δx,‖v̄‖s≤δv̄

{∥∥∥∥∥
r∑

k=1

(v(k−1) − Lk−1

f̃
h(x))

∥∥∥∥∥

}

δ̄η ≥ max
‖x‖≤δx,‖v̄‖s≤δv̄

{
n−r∑
ν=1

‖χν(x)‖
} (A.58)

δe > βe(δ̄e, 0)+de, δη > β̄η(δ̄η, 0)+dη. First, consider the singularly perturbed
system comprised of the states (ζ, eo) of the closed-loop system of Eq.A.40.
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This system is in standard form, possesses a globally exponentially stable fast
subsystem, and its corresponding reduced system is globally asymptotically
stable.

Therefore, using the result of Lemma 2.18, given any pair of positive real
numbers (d, δ), with δ = max{δζ , δθ, δv̄, δη}, there exists a positive real num-
ber, εζ(φ), such that if ε ∈ (0, εζ(φ)], and ‖ζ(0)‖ ≤ δζ , ‖ỹ(0)‖ ≤ δζ , ‖θ‖s ≤ δθ,
‖v̄‖s ≤ δv̄, ‖η‖ ≤ δη, then:

‖ζ(t)‖ ≤ βζ(δζ , t) + d

‖eo(t)‖ ≤ k4‖eo(0)‖e−a3

t

ε + d
(A.59)

for some k4 ≥ 1 and a3 > 0.
Consider now the singularly perturbed system comprised of the states

(e, eo) of the system of Eq.A.40. This system is in standard form, possesses
a globally exponentially stable fast subsystem, and its corresponding reduced
system is globally asymptotically stable. These properties allow the applica-
tion of the result of Lemma 2.18, with δ = max{δ̄e, δζ , δθ, δv̄, δη} and d = de, to
obtain the existence of a positive real number, εe(φ), such that if ε ∈ (0, εe(φ)],
and ‖e(0)‖ ≤ δ̄e, ‖ỹ(0)‖ ≤ δζ , ‖θ‖s ≤ δθ, ‖v̄‖s ≤ δv̄, ‖η‖s ≤ δη, then:

‖e(t)‖ ≤ βe (‖e(0)‖, t) + de (A.60)

Similarly, it can be shown that Lemma 2.18, with δ = max{δ̄η, δζ , δθ, δv̄, δe}
and d = dη, can be applied to the system comprised of the states (η, eo) of the
system of Eq.A.40. Thus, we have that there exist positive real numbers εη(φ)
such that if ε ∈ (0, εη(φ)] and ‖η(0)‖ ≤ δ̄η, ‖ỹ(0)‖ ≤ δζ , ‖θ‖s ≤ δθ, ‖v̄‖s ≤ δv̄,
‖e‖s ≤ δe, then:

‖η(t)‖ ≤ β̄η (‖η(0)‖ , t) + dη (A.61)

Finally, the inequalities of Eqs.A.43-A.44 and Eqs.A.59-A.61 can be manip-
ulated using a small-gain theorem type argument, similar to the one used
in the Proof of Theorem 1 in [58], to show that given the following set of
positive real numbers {δ̄e, δ̄η, δζ , δθ, δv̄, d, de, dη} and with φ ∈ (0, φ∗], there
exists a positive real number, ε̃(φ) := min{εζ(φ), εe(φ), εη(φ)}, such that if
ε ∈ (0, min{ε0, ε̃(φ)}], and ‖e(0)‖ ≤ δ̄e, ‖η(0)‖ ≤ δ̄η, ‖ỹ(0)‖ ≤ δζ , ‖θ‖s ≤ δθ,
‖v̄‖s ≤ δv̄, then the states of the closed-loop system are bounded. For brevity,
this argument will not be repeated here.
Step 3: So far in the proof, we have established that the states of the singularly
perturbed closed-loop system of Eq.A.40 are semi-globally bounded. In this
section we show that the origin of the closed-loop system is (semi-globally)
asymptotically stable. To this end, we note – from the inequalities of Eqs.A.59-
A.61 – that, as t increases, the trajectories will be ultimately bounded with
ultimate bounds that depend on d, de, and dη. Since d, de, and dη are arbitrary,
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we can choose them small enough such that after a sufficiently large time, say t̃,
the trajectories of the closed-loop system are confined within a small compact
neighborhood of the origin. Obviously, t̃ depends on both the initial condition
and the desired size of the neighborhood, but is independent of ε. Let d̃ :=
max{d, de, dη} ≤ r/4, where r was defined in Eq.A.56, and t̃ be the earliest
time such that max{βe

(‖e(0)‖, t̃) , β̄η

(‖η(0)‖, t̃) , k4‖eo(0)‖e−a3
t̃
ε } ≤ d̃. Then

it can be easily verified that:

‖π(t)‖ ≤ r, ‖eo(t)‖ ≤ r, ∀ t ≥ t̃ (A.62)

Recall from Eq.A.56 and Eq.A.39 that both the reduced (slow) and fast closed-
loop subsystems are exponentially stable within the balls of Eq.A.62. There-
fore, a direct application of the result of Theorem 9.3 in [148] yields that there
exists ε̄ > 0 such that if ε ∈ (0, ε̄], then:

‖Π(t)‖ ≤ α1‖Π(t̃)‖e−β1(t−t̃) (A.63)

for some α1 ≥ 1 and β1 > 0, where Π(t) = [eT (t) ηT (t) ωT (t) eT
o (t)]T and

ε ∈ (0, min{ε0, ε̄, ε̃}]. Consequently, the states of the closed-loop system of
Eq.A.40 converge to the origin as t →∞, which together with the boundedness
of the close-loop states established in Step 2, implies that the origin of the
closed-loop system is asymptotically (and locally exponentially) stable. The
asymptotic output tracking result can now be obtained by simply noting that
from Eq.A.63 that we have:

lim sup
t→∞

‖e(t)‖ = 0 (A.64)

and therefore

lim sup
t→∞

‖e1(t)‖ = lim sup
t→∞

‖y(t)− v(t)‖ = 0 (A.65)

Part 3: In this part, we show that the controller of Eq.3.46 is near-optimal
with respect to the cost of Eq.3.24 in the sense that the cost achieved by this
controller tends to the minimum cost for the state feedback problem as ε → 0.
To this end, we adopt the following three-step procedure. In Step 1, we show
that, for the reduced (slow) closed-loop system, the controller of Eq.3.46 with
ε = 0 (i.e., x̂ = x) is optimal with respect to a cost functional of the form of
Eq.3.24 with a minimum cost of V (e(0)). In Step 2, we establish the closeness
of solutions of the reduced and full closed-loop systems on the infinite time-
interval. Finally, in Step 3, we exploit the closeness of solutions result to show
that the minimum cost achieved by the controller of Eq.3.46 in the full closed-
loop system approaches the optimal cost for the reduced system under state
feedback, when the observer gain is sufficiently large.
Step 1: In this step we show that the static component of the controller of
Eq.3.46 with ε = 0 and x̂ = x minimizes the cost functional associated with
the reduced (slow) closed-loop system which has the form of Eq.3.24. To this
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end, consider the closed-loop system of Eq.A.40 with ε = 0, where u of Eq.3.46
is applied with x̂ = x. We note that the resulting reduced closed-loop system
is identical to the one studied in the Proof of Theorem 3.3 (state feedback
problem) and satisfies the assumptions stated therein. Applying the result of
this theorem, we have that the static component of the controller of Eq.3.46
minimizes a cost functional of the form:

Jr =
∫ ∞

0

(l(ē) + uR(x̄)u) dt (A.66)

where x̄ = X−1(ē, η̄, v̄) refers to the solution of the reduced closed-loop system
under state feedback control. Following the same treatment presented in Part
3 of the Proof of Theorem 3.3, it can be shown that upon substitution of
the static component, with u = p(x̄), of Eq.3.46 in the above expression, the
minimum cost obtained is:

J∗r =
∫ ∞

0

(l(ē) + p(x̄)R(x̄)p(x̄)) dt = V (ē(0)) (A.67)

Step 2: In this step, we show that starting from an arbitrarily large compact
set of initial conditions and for arbitrarily large uncertainties, the following
estimates hold:

z(t, ε)− z̄(t) = O(ε) ∀ t ≥ 0

eo(t, ε) = O(ε) ∀ t ≥ tb
(A.68)

for some tb > 0 where z̄(t) = [ēT (t) η̄T (t) ω̄T (t)]T is the solution of the
reduced (slow) problem obtained by setting ε = 0 in Eq.A.40. The strategy
we shall adopt to prove the above estimates involves, first, the application of
Tikhonov’s theorem to establish the closeness of solutions on a finite time-
interval whose size can be made arbitrarily large by selecting ε sufficiently
small. Then, once the trajectories of the closed-loop system become confined
within an appropriately small ball around the origin, we apply the result of
Theorem 9.4 reported in [148] to obtain the estimates of Eq.A.68.

Referring to the system of Eq.A.40, it is straightforward to show that this
system satisfies the conditions of Theorem 9.1 in [148]. Applying the result of
this theorem to the system of Eq.A.40, we conclude that there exists a finite
time, t1 > 0, and positive constants. K, L , and ¯̄ε, such that if ε ∈ (0, ¯̄ε] and
‖e(0)‖ ≤ δ̄e, ‖η(0)‖ ≤ δ̄η, ‖ỹ(0)‖ ≤ δζ , ‖θ‖s ≤ δθ, ‖v̄‖s ≤ δv̄, then:

‖z(t, ε)− z̄(t)‖ ≤ εK[1 + t1] exp (Lt1) (A.69)

and the estimate:
z(t, ε)− z̄(t) = O(ε) (A.70)

holds uniformly for t ∈ [0, t1]. Furthermore, given any tb > 0, there is εb ≤ ¯̄ε
such that the estimate:

eo(t, ε) = O(ε) (A.71)
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holds uniformly for t ∈ [tb, t1] whenever ε < ¯̄ε. In order for the above estimates
to hold on the infinite time-interval, we require that t1 ≥ t̃ where t̃ was defined
in Step 3 of Part 2 of the proof. From Eq.A.69, it is clear that t1 can be made
arbitrarily large – while maintaining the estimate of Eq.A.70 – by selecting
ε sufficiently small. Therefore, there exists a positive constant, ε∗∗, such that
if ε ∈ (0, ε∗∗], we have t1 ≥ t̃ and the trajectories of the closed-loop system
lie within the neighborhood of the origin defined in Eq.A.56 for all t ≥ t1. It
can be easily verified that, within this neighborhood, the closed-loop system
of Eq.A.40 satisfies the assumptions of Theorem 9.4 in [148]. Applying the
result of this theorem, we obtain the existence of a positive constant, ε′, such
that if ε ∈ (0, ε′], the estimates of Eq.A.68 hold ∀ ‖z(t)‖ ≤ r and ‖eo(t)‖ ≤ r.
Finally, we now have that if ε ∈ (0, ε∗] where ε∗ := min{ε′, ε∗∗, ¯̄ε, ε̄, ε̃, ε0}, then
Eq.A.68 is satisfied for ‖e(0)‖ ≤ δ̄e, ‖η(0)‖ ≤ δ̄η, ‖ỹ(0)‖ ≤ δζ , ‖θ‖s ≤ δθ,
‖v̄‖s ≤ δv̄.
Step 3: In this step, we exploit the closeness of solutions result obtained in
Step 2 and combine it with the optimality result established in Step 1 to
prove that the output feedback controller of Eq.3.46 is near-optimal in the
sense that it achieves a cost for the full closed-loop system that approaches
the minimum cost for the reduced (state feedback) problem provided that the
gain of the observer is sufficiently large. To this end, consider re-writing the
cost functional of Eq.3.24 as follows:

Jv(u) =
∫ tb

0

(l(e) + uR(x)u) dt +
∫ ∞

tb

(l(e) + uR(x)u) dt (A.72)

From Step 2, we have that the following estimates hold for t ≥ tb:

e(t) = ē(t) + O(ε)

x(t) = x̄(t) + O(ε)

x̂(t) = x̄(t) + O(ε)

(A.73)

It follows then from the continuity properties of the functions l(·), u(·),
R(·) that, for t ≥ tb and as ε −→ 0, l(e(t)) −→ l(ē(t)), p(x̂(t)) −→
p(x̄(t)), R(x(t)) −→ R(x̄(t)), and therefore:

∫ ∞

tb

(l(e) + p(x̂)R(x)p(x̂)) dt −→
∫ ∞

tb

(l(ē) + p(x̄)R(x̄)p(x̄)) dt (A.74)

From the stability of the full closed-loop system established in Part 2 of
the proof, together with the continuity properties of the functions l(·),
u(·), R(·), we have that there exists a positive real number, M , such that
‖l(e) + p(x̂)R(x)p(x̂)‖ ≤ M , for ‖e(0)‖ ≤ δ̄e, ‖η(0)‖ ≤ δ̄η, ‖ỹ(0)‖ ≤ δζ ,
‖θ‖s ≤ δθ, ‖v̄‖s ≤ δv̄, and with φ ∈ (0, φ∗] and ε ∈ (0, ε∗]. Using the fact that
tb = O(ε), we get:
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∫ tb

0

(l(e) + p(x̂)R(x)p(x̂)) dt ≤
∫ tb

0

Mdt

≤ Mε

= O(ε)

(A.75)

Similarly, from the stability of the reduced closed-loop system (state feedback
problem) established in Part 1 and the fact that tb = O(ε), there exists a
positive real number M ′ such that:

∫ tb

0

(l(ē) + p(x̄)R(x̄)p(x̄)) dt ≤
∫ tb

0

M ′dt

≤ M ′ε

= O(ε)

(A.76)

Combining Eqs.A.74-A.76, we have that as ε −→ 0:

J∗v,o :=
∫ ∞

0

(l(e) + p(x̂)R(x)p(x̂)) dt −→
∫ ∞

0

(l(ē) + p(x̄)R(x̄)p(x̄)) dt

(A.77)
and, therefore, from Eq.A.67, we finally have:

J∗v,o −→ V (ē(0)) as ε −→ 0 (A.78)

This completes the proof of the theorem. 4

Proof of Theorem 3.27:
The proof of this theorem follows closely the proof of Theorem 3.20. We
will only point out the differences. In the first part, we establish the global
exponential stability of the fast closed-loop subsystem and derive ISS bounds
for the states of the reduced closed-loop system. Then using Lemma 2.18, we
show that the derived ISS bounds continue to hold, up to an arbitrarily small
offset, for arbitrarily large initial conditions and uncertainty. In the second
part of the proof, the resulting ISS inequalities are studied, using techniques
similar to those used in [132, 58] to show boundedness of the closed-loop
trajectories and establish the inequality of Eq.3.50. In third part of the proof,
we apply Tikhonov’s theorem to obtain closeness of solutions (between the
full and reduced closed-loop systems) on the finite time-interval and then use
this result to prove the finite-horizon near-optimality of the output feedback
controller of Eq.3.49.
Part 1: The global exponential stability of the closed-loop fast subsystem was
established in Step 1 of Part 1 of the Proof of Theorem 3.20 and will not
be repeated here. Instead, we focus on the reduced system and derive ISS
bounds that capture the evolution of its states. To this end, we consider again
the system of Eq.A.40 with ε = 0. Using the same argument presented in Step
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2 of Part 1 in the Proof of Theorem 3.20, one can again show that for the
system of Eq.A.40, ω(0) = η(0) + O(ε) implies η(t) = ω(t) + O(ε) ∀ t ≥ 0,
which yields that ω(t) = η(t) when ε = 0. Therefore, the reduced closed-loop
system (i.e., the system of Eq.A.40 with ε = 0) is identical to the one studied
in the Proof of Theorem 3.13, where it was shown that the evolution of the
e-subsystem satisfies:

‖e(t)‖ ≤ β̄e (‖e(0)‖, t) + γ̄e(φ) (A.79)

∀ t ≥ 0, where β̄e is a class KL function and γ̄e is a class K∞ function. From
Assumption 3.7, we have that the η states of the reduced closed-loop system
possess an ISS property with respect to e:

‖η(t)‖ ≤ Kη‖η(0)‖e−at + γ̄η (‖e‖s) (A.80)

uniformly in v̄,where γ̄η is a class K function. Realizing that the reduced
closed-loop system, for which the inequalities of Eqs.A.79-A.80 hold, is iden-
tical to the system studied in the Proof of Theorem 3.13, we note that the
static component of the controller of Eq.3.49 with x̂ = x enforces global ulti-
mate boundedness in the reduced closed-loop system, and thus, the ζ states
of the reduced closed-loop system satisfy the following bound:

‖ζ(t)‖ ≤ βζ(δζ , t) + γ̃(φ) ∀ t ≥ 0 (A.81)

where βζ is a class KL function, γ̃ is a class K∞ function and δζ is the
maximum value of the vector [h(x) Lfh(x) · · ·Lr−1

f h(x)] for ‖x‖ ≤ δx.
Based on the above bound and following the results of [149, 268], we dis-

regard estimates of ỹ, obtained from the high-gain observer, with norm ‖ỹ‖ >

βζ(δζ , 0) + d where d > γ̃(φ). Hence, we set sat(·) = min{1,
ζmax

‖ · ‖ }(·) where

ζmax is the maximum value of the vector [ζ1 ζ2 · · · ζr] for ‖ζ‖ ≤ βζ(δζ , 0)+d.
We are now in a position to apply the result of Lemma 2.18. To this end,

we define the following positive real numbers, {δ̄e, δ̄η, δθ, δv̄, δη, δe, de, dη},
where δθ and δv̄ were specified in the statement of the theorem, δ̄e and δ̄η

were defined in Eq.A.58, de and dη are arbitrary, δe > β̄e(δ̄e, 0) + γ̄e(φ) + de,
δη > Kη δ̄η + γ̄η(δe) + dη.

First, consider the singularly perturbed system comprised of the states
(ζ, eo) of the closed-loop system. This system is in standard form, possesses
a globally exponentially stable fast subsystem, and its corresponding reduced
system satisfies Eq.A.81. These properties allow a direct application of the
result of Lemma 2.18 with δ = max{δζ , δθ, δv̄, δη} and d = φ, to obtain
the existence of a positive real number εζ(φ) such that if ε ∈ (0, εζ(φ)], and
‖ζ(0)‖ ≤ δζ , ‖ỹ(0)‖ ≤ δζ , ‖θ‖s ≤ δθ, ‖v̄‖s ≤ δv̄, ‖η‖ ≤ δη, then:

‖ζ(t)‖ ≤ βζ(δζ , t) + γ̃(φ) + φ (A.82)

Let φ̄ be such that γ̃(φ̄) + φ̄ ≤ d. Consider now the singularly perturbed
system comprised of the states (e, eo) of the system of Eq.A.40. This system
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is in standard form, possesses a globally exponentially stable fast subsystem,
and its corresponding reduced system satisfies Eq.A.79. Applying the result
of Lemma 2.18 with δ = max{δ̄e, δζ , δθ, δv̄, δη} and d = de = φ, we obtain
the existence of a positive real number εe(φ) such that if ε ∈ (0, εe(φ)], and
‖e(0)‖ ≤ δ̄e, ‖ỹ(0)‖ ≤ δζ , ‖θ‖s ≤ δθ, ‖v̄‖s ≤ δv̄, ‖η‖s ≤ δη, then:

‖e(t)‖ ≤ β̄e (‖e(0)‖, t) + γ̄e(φ) + φ (A.83)

Let φ̃ be such that γ̄e(φ̃) + φ̃ ≤ d. Similarly, it can be shown that Lemma
2.18, with δ = max{δ̄η, δζ , δθ, δv̄, δe} and d = dη̄, can be applied to the system
comprised of the states (η, eo) of the system of Eq.A.40. Thus, we have that
there exist positive real numbers εη(φ) such that if ε ∈ (0, εη(φ)] and ‖η(0)‖ ≤
δ̄η, ‖ỹ(0)‖ ≤ δζ , ‖θ‖s ≤ δθ, ‖v̄‖s ≤ δv̄, ‖e‖s ≤ δe, then:

‖η(t)‖ ≤ Kη‖η(0)‖e−at + γ̄η(‖e‖s) + dη (A.84)

Finally, the inequalities of Eqs.A.79-A.84 can be manipulated using a small-
gain theorem type argument, similar to the one used in the Proof of Theorem 1
in [58], to show that given the set of positive real numbers {δ̄e, δ̄η, δζ , δθ, δv̄, d}
and with φ∗ := min{φ̄, φ̃} and with φ ∈ (0, φ∗], there exists ε∗(φ) ∈
(0, min{εζ(φ), εe(φ), εη(φ)}] such that if ε ∈ (0, ε∗(φ)], and ‖e(0)‖ ≤ δ̄e,
‖η(0)‖ ≤ δ̄η, ‖eo(0)‖ ≤ δeo , ‖θ‖s ≤ δθ, ‖v̄‖s ≤ δv̄, then ‖ζ(t)‖ ≤ βζ(δζ , 0) + d
and the remaining states of the closed-loop system are bounded and its out-
put satisfies the relation of Eq.3.50. For brevity, this argument will not be
repeated here.
Part 3: In this part of the proof, we show that the output feedback controller
of Eq.3.49 is near-optimal over a finite time-interval for the class of systems
considered in Eq.3.1 and produces a finite cost which tends to the optimal
cost for the reduced closed-loop system (state feedback problem) as ε −→ 0.
To this end, we adopt a similar three-step procedure to the one employed in
Part 3 of the Proof of Theorem 3.20. In the first step, we show that, for the
reduced system, the controller of Eq.3.49 with ε = 0 is optimal with respect to
a cost functional of the form of Eq.3.30. In Step 2, we use Tikhonov’s theorem
to establish closeness of the solutions between the reduced and full closed-loop
systems on a finite time-interval. Finally, in Step 3, we combine the results
of Steps 1 and 2 to show that the cost associated with the full closed-loop
system tends to the optimal cost for the reduced system as ε → 0.
Step 1: In this step we show that the controller of Eq.3.49 with ε = 0 and
x̂ = x minimizes the cost functional associated with the reduced system. To
this end, consider the closed-loop system of Eq.A.40 with ε = 0. We note that
the resulting slow system is identical to the one studied in Theorem 3.13 un-
der state feedback and satisfies the assumptions stated therein. Applying the
result of this theorem, we obtain that the static component of the controller
of Eq.3.49 minimizes the cost functional:

J̄r = lim
t→Tf

V (ē(t)) +
∫ Tf

0

(l(ē) + u(x̄)R(x̄)u(x̄)) dt (A.85)
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where, as before, x̄ = X−1(ē, η̄, v̄) refers to the solution of the reduced closed-
loop system under state feedback and Tf is defined in Theorem 3.13. Following
the same treatment presented in Part 3 of the Proof of Theorem 3.13, it can be
readily shown that upon substitution of the static component of the controller
of Eq.3.49 in the above expression (i.e., u = p(x̄)), the minimum cost obtained
is:

J̄∗r := lim
t→Tf

V (ē(t)) +
∫ Tf

0

(l(ē) + p(x̄)R(x̄)p(x̄)) dt = V (ē(0)) (A.86)

Step 2: Referring to the system of Eq.A.40, it is straightforward to show that
this system satisfies the conditions of Theorem 9.1 in [148]. Applying the
result of this theorem to the system of Eq.A.40, we conclude that there exists
a finite time, t1 > 0, and positive constants, K, L, and ¯̄ε, such that if ε ∈ (0, ¯̄ε]
and ‖e(0)‖ ≤ δ̄e, ‖η(0)‖ ≤ δ̄η, ‖ỹ(0)‖ ≤ δζ , ‖θ‖s ≤ δθ, ‖v̄‖s ≤ δv̄, then:

‖z(t, ε)− z̄(t)‖ ≤ εK[1 + t1]exp(Lt1) (A.87)

and the estimate:
z(t, ε)− z̄(t) = O(ε) (A.88)

holds uniformly for t ∈ [0, t1] where z̄(t) = [ēT (t) η̄T (t) ω̄T (t)]T is the solution
of the reduced (slow) problem. Furthermore, given any tb > 0, there is εb ≤ ¯̄ε
such that the estimate:

eo(t, ε) = O(ε) (A.89)

holds uniformly for t ∈ [tb, t1] whenever ε < ¯̄ε.
Step 3: In this step, we exploit the closeness of solutions result obtained in
Step 1 and combine it with the optimality result established in Step 2 to
prove that the output feedback controller of Eq.3.49 is near-optimal in the
sense that the cost associated with the full closed-loop system approaches the
optimal cost for the reduced system under state feedback, provided that the
gain of the observer is sufficiently large. Note first that in order to guarantee
near-optimality, we must require t1 ≥ Tf . This requirement guarantees that
the solutions of the reduced and full closed-loop systems remain close during
the time interval over which the state feedback controller (i.e. u of Eq.3.49
with ε = 0 and x̂ = x) is optimal. From Eq.A.87, it is clear that t1 can
be made arbitrarily large – while maintaining the estimate of Eq.A.88 – by
selecting ε sufficiently small (or equivalently by selecting the gain of the ob-
server sufficiently large). Therefore, there exists a positive constant, ε∗∗, such
that if ε ∈ (0, ε∗∗], we have t1 ≥ Tf . Therefore, we set ε∗ in Theorem 3.27 as
ε∗ := min{ε0, ε̃, ¯̄ε, ε∗∗}. To proceed with the proof of near-optimality, consider
rewriting the cost functional of Eq.3.30 as follows:

Jn(u) = lim
t→Tf

V (e(t)) +
∫ tb

0

(l(e) + uR(x)u) dt +
∫ Tf

tb

(l(e) + uR(x)u) dt

(A.90)
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From Step 2, we have that the following estimates hold for t ∈ [tb, t1]:

e(t) = ē(t) + O(ε)

x(t) = x̄(t) + O(ε)

x̂(t) = x̄(t) + O(ε)

(A.91)

It follows then from the continuity properties of the functions, V (·), l(·), u(·),
and R(·) that for t ∈ [tb, t1], and as ε −→ 0, V (e(t)) −→ V (ē(t)), l(e(t)) −→
l(ē(t)), p(x̂(t)) −→ p(x̄(t)), R(x(t)) −→ R(x̄(t)), and therefore:

lim
t→Tf

V (e(t)) +
∫ Tf

tb

(l(e) + p(x̂)R(x)p(x̂)) dt −→

lim
t→Tf

V (ē(t)) +
∫ Tf

tb

(l(ē) + p(x̄)R(x̄)p(x̄)) dt

(A.92)

From the boundedness of the trajectories of the closed-loop system es-
tablished in Part 2, there exists a positive real number, M , such that
‖l(e) + p(x̂)R(x)p(x̂)‖ ≤ M , for ‖e(0)‖ ≤ δ̄e, ‖η(0)‖ ≤ δ̄η, ‖ỹ(0)‖ ≤ δζ ,
‖θ‖s ≤ δθ, ‖v̄‖s ≤ δv̄, and with φ ∈ (0, φ∗] and ε ∈ (0, ε∗]. Using the fact that
tb = O(ε), we get:

∫ tb

0

(l(e) + p(x̂)R(x)p(x̂)) dt ≤
∫ tb

0

Mdt ≤ Mε = O(ε) (A.93)

Similarly, from the stability of the reduced closed-loop system under state
feedback established in Part 2 and the fact that tb = O(ε), there exists a
positive real number M ′ such that:

∫ tb

0

(l(ē) + p(x̄)R(x̄)p(x̄)) dt ≤
∫ tb

0

M ′dt ≤ M ′ε = O(ε) (A.94)

Combining Eqs.A.92-A.94, we obtain that as ε −→ 0:

J∗n,o := lim
t→Tf

V (e(t)) +
∫ Tf

0

(l(e) + p(x̂)R(x)p(x̂)) dt

−→ lim
t→Tf

V (ē(t)) +
∫ Tf

0

(l(ē) + p(x̄)R(x̄)p(x̄)) dt

(A.95)

and, from Eq.A.86, we finally have:

J∗n,o −→ V (ē(0)) as ε −→ 0 (A.96)

This completes the proof of the theorem. 4



390 A Proofs of Chapter 3

Proof of Theorem 3.31:
The proof of this theorem is somewhat analogous to the Proof of Theorem
3.27. We will only highlight the differences. In the first part of the proof, the
global exponential stability of the fast closed-loop subsystem is established.
In the second part, we focus on the reduced closed-loop system and derive
ISS bounds for its states. Then, we use the result of Lemma 2.18 to establish
that these ISS bounds continue to hold up to an arbitrarily small offset, for
arbitrarily large initial conditions, uncertainty and rate of change of uncer-
tainty. In the third part, the resulting ISS inequalities are studied, using a
small-gain type argument to show boundedness of the closed-loop trajectories
and establish the inequality of Eq.3.66, provided that φ and ε̄ are sufficiently
small.
Part 1: Defining the auxiliary error variables, êi = Lr−i(y(i−1) − ỹi), i =
1, . . . , r, the vector eo = [ê1 ê2 · · · êr]T , the vector of controller parameters

φc = [c0 ρ χ φ θb]T , and the parameter µ =
1
L

, the system of Eq.3.60, under
the controller of Eq.3.65, takes the form:

µėo = Ãeo + µb̃Ω(x, x̂, θ, φc, v̄)

ω̇1 = Ψ1(sat(ỹ), ω)

...
ω̇n−r = Ψn−r(sat(ỹ), ω)

ẋ = f(x) + g(x)p(x̂, φc, v̄) + w1(x)θ + Q1(x)[z − C(x, x̂, θ, φc, v̄)]
εż = Q2(x)[z − C(x, x̂, θ, φc, v̄)]

(A.97)
where the matrix, Ã, and the vector, b̃ were defined in Eq.A.37, x̂ =
X−1(sat(yd − ∆(µ)e0), ω) and yd = [y(0) y(1) · · · y(r−1)]T , ∆(µ) is a di-
agonal matrix whose i-th diagonal element is µr−i, Ω(x, x̂, θ, φc, v̄) is a Lip-
schitz function of its argument and C(x, x̂, θ, φc, v̄) = −[Q2(x)]−1[f2(x) +
g2(x)p(x̂, φc, v̄) + w2(x)θ]. Owing to the presence of the small parameters, µ
and ε, that multiply the time-derivatives, ėo and ż, respectively, the system
of Eq.A.97 can be, in general, a three-time-scale one. Therefore, the results
proved in [147] will be used to establish asymptotic stability of the fast dy-
namics. Defining ε̄ := max{µ, ε}, multiplying the z-subsystem of Eq.A.97 with
ε̄

ε
and the eo-subsystem with

ε̄

µ
, introducing the fast time-scale, τ̄ =

t

ε̄
, and

setting ε̄ = 0, the closed-loop fast subsystem takes the form:

deo

dτ̄
=

ε̄

µ
Ãeo

dz

dτ̄
=

ε̄

ε
Q2(x)[z − C(x, x̂, θ, φc, v̄)]

(A.98)
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The above system possesses a triangular (cascaded) structure, the matrix Ã
is Hurwitz and the matrix Q2(x) is Hurwitz uniformly in x ∈ IRn. Therefore,

the system of Eq.A.98 satisfies Assumption 3 in [147] and, since
ε̄

µ
≥ 1,

ε̄

ε
≥ 1, the same approach as in [147] can be used to show that it possesses a

globally exponentially stable equilibrium manifold of the form eo = 0, zs =
C(x, x̂, θ, φc, v̄), for all values of µ and ε.
Part 2: In this part of the proof, we initially derive ISS bounds, when ε̄ = 0, for
the states of the system of Eq.A.97, in appropriately transformed coordinates,
and then use the result of Lemma 2.18 to show that these bounds hold up to an
arbitrarily small offset, for initial conditions, uncertainty and rate of change of
uncertainty in an arbitrarily large compact set, provided that ε̄ is sufficiently
small. Defining the variables, ez = z − C(x, x̂, θ, φc, v̄), x = X−1(ζ, η), ei =
ζi − v(i−1), i = 1, · · · , r, e = [e1 e2 · · · er]T and v̄ = [v v(1) · · · v(r−1)]T , the
closed-loop system can be written as:

µėo = Ãeo + µb̃Ω(e, η, x̂, θ, φc, v̄)

ω̇1 = Ψ1(sat(ỹ), ω)

...
ω̇n−r = Ψn−r(sat(ỹ), ω)

ė1 = e2 + ezΨ̄1(e, η, v̄, θ)
...

ėr = Lr
fh(x)− v(r) + LgL

r−1
f h(x)p(x̂, φc, v̄) + LwLr−1

f h(x)θ

+ ezΨ̄r(e, η, v̄, θ)

η̇1 = Ψ1(e, η, v̄) + ezΨ̄r+1(e, η, v̄, θ)

...
η̇n−r = Ψn−r(e, η, v̄) + ezΨ̄n(e, η, v̄, θ)

εż = Q2(e, η, v̄)ez

(A.99)

where Ψ̄i, i = 1, · · · , n are Lipschitz functions of their arguments.
Step 1: Consider the system of Eq.A.99 with ε̄ = max{ε, µ} = 0. In order to
analyze the dynamic behavior of the resulting reduced closed-loop system, we
initially need to show that, for the system of Eq.A.99, ω(0) = η(0) + O(ε̄)
implies η(t) = ω(t) + O(ε̄), ∀ t ≥ 0. To this end, consider the singularly
perturbed system comprised of the states, eo, ω, η, z, of the system of Eq.A.99.
For this system, it is straightforward to verify that it satisfies the assumptions
of Theorem 1 reported in [149]. Applying the result of this theorem, we have
that there exists a positive real number, ε0, such that for any positive real



392 A Proofs of Chapter 3

number δω satisfying δω ≥ max
‖x‖≤δx

{
n−r∑
ν=1

‖χν(x)‖
}

, where χν(x), ν = 1, . . . , n−
r are the functions defined in Assumption 3.5, the states (η, ω) of this system,
starting from any initial conditions that satisfy η(0) = ω(0) + O(ε̄) (with
max{‖η(0)‖, ‖ω(0)‖} ≤ δω), if ε̄ ∈ (0, ε0], satisfy η(t) = ω(t) + O(ε̄), ∀ t ≥ 0.
Since η(t) = ω(t) ∀ t ≥ 0, eo = 0 and ez = 0, when ε̄ = 0, the closed-loop slow
system reduces to the one studied in the Proof of Theorem 3.13 (see also the
Proof of Theorem 3.27), where it was shown that the e states satisfy:

‖e(t)‖ ≤ β̄e (‖e(0)‖, t) + γ̄e(φ) ∀ t ≥ 0 (A.100)

where β̄e is a class KL function and γ̄e is a class K∞ function. From Assump-
tion 3.7, we have that the η states of the reduced closed-loop system possess
an ISS property with respect to e:

‖η(t)‖ ≤ Kη‖η(0)‖e−at + γ̄η (‖e‖s) (A.101)

uniformly in v̄, where γ̄η is a class K function. Realizing that the reduced
closed-loop system, for which the inequalities of Eqs.A.100-A.101 hold, is iden-
tical to the system studied in the Proof of Theorem 3.13, we note that the
static component of the controller of Eq.3.65 with x̂ = x (i.e., p(x, φc, v̄))
enforces global ultimate boundedness in the reduced closed-loop system, and
thus the ζ states of the reduced closed-loop system satisfy the following bound:

‖ζ(t)‖ ≤ βζ(δζ , t) + γ̃(φ) ∀ t ≥ 0 (A.102)

where βζ is a class KL function, γ̃ is a class K∞ function and δζ is the max-
imum value of the vector [h(x) Lfh(x) · · ·Lr−1

f h(x)] for ‖x‖ ≤ δx. Based on
the above bound and following the results of [149, 268], we disregard estimates
of ỹ, obtained from the high-gain observer, with norm ‖ỹ‖ > βζ(δζ , 0) + d

where d > γ̃(φ). Hence, we set sat(·) = min{1,
ζmax

‖ · ‖ }(·) where ζmax is the

maximum value of the vector [ζ1 ζ2 · · · ζr] for ‖ζ‖ ≤ βζ(δζ , 0) + d.
Step 2: We are now in a position to apply the result of Lemma 2.18. To this
end, we define the following set of positive real numbers, {δ̄e, δ̄η, δz, δθ, δθ̇,
δv̄, δη, δe, de,dη} where δz, δθ, δθ̇, and δv̄ were specified in the statement
of the theorem, δ̄e and δ̄η were defined in Eq.A.58, de and dη are arbitrary,
δe > β̄e(δ̄e, 0) + γ̄e(φ) + de, δη > Kη δ̄η + γ̄η(δe) + dη. First, consider the
singularly perturbed system comprised of the states (ζ, eo, z) of the closed-
loop system. This system is in standard form, possesses a globally exponen-
tially stable fast subsystem, and its corresponding reduced system satisfies
Eq.A.102. These properties allow the application of the result of Lemma 2.18
with δ = max{δζ , δz, δθ, δv̄, δη} and d = φ, to obtain the existence of a positive
real number εζ(φ) such that if ε ∈ (0, εζ(φ)], and ‖ζ(0)‖ ≤ δζ , ‖ỹ(0)‖ ≤ δζ ,
‖z(0)‖ ≤ δz, ‖θ‖s ≤ δθ, ‖v̄‖s ≤ δv̄, ‖η‖s ≤ δη, then:

‖ζ(t)‖ ≤ βζ(δζ , t) + γ̃(φ) + φ (A.103)
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Let φ̄ be such that γ̃(φ̄)+φ̄ ≤ d. Consider now the singularly perturbed system
comprised of the states (e, eo, z) of the system of Eq.A.99. This system is in
standard form, possesses a globally exponentially stable fast subsystem, and
its corresponding reduced system satisfies Eq.A.100. These properties allow
the application of the result of Lemma 2.18 with δ = max{δ̄e, δζ , δz, δθ, δv̄, δη}
and d = de = φ, to obtain the existence of a positive real number εe(φ) such
that if ε ∈ (0, εe(φ)], and ‖e(0)‖ ≤ δ̄e, ‖ỹ(0)‖ ≤ δζ , ‖z(0)‖ ≤ δz, ‖θ‖s ≤ δθ,
‖v̄‖s ≤ δv̄, ‖η‖s ≤ δη, then:

‖e(t)‖ ≤ β̄e (‖e(0)‖, t) + γ̄e(φ) + φ (A.104)

Let φ̃ be such that γ̄e(φ̃) + φ̃ ≤ d. Similarly, it can be shown that Lemma
2.18, with δ = max{δ̄η, δζ , δz, δθ, δθ̇, δv̄, δe} and d = dη̄, can be applied to the
system comprised of the states (η, eo, z) of the system of Eq.A.99. Thus, we
have that there exist positive real numbers εη(φ) such that if ε ∈ (0, εη(φ)]
and ‖η(0)‖ ≤ δ̄η, ‖ỹ(0)‖ ≤ δζ , ‖z(0)‖ ≤ δz, ‖θ‖s ≤ δθ, ‖θ̇‖ ≤ δθ̇, ‖v̄‖s ≤ δv̄,
‖e‖s ≤ δe, then:

‖η(t)‖ ≤ Kη‖η(0)‖e−at + γ̄η(‖e‖s) + dη (A.105)

Part 3: Finally, the inequalities of Eqs.A.100-A.105 can be manipulated us-
ing a small-gain theorem type argument similar to the one used in the Proof
of Theorem 1 in [58] to show that the states of the closed-loop systems are
bounded and its output satisfies the relation of Eq.3.66. For brevity, this ar-
gument will not be repeated here. This completes the proof of the theorem.
4





B

Proofs of Chapter 4

Proof of Theorem 4.1:
Consider the representation of the closed-loop system in terms of the trans-
formed coordinates (e, η) introduced in Eqs.4.5-4.6:

ė = f̄(e, η, v̄)−
m∑

i=1

ḡi(e, η, v̄)k(x, umax, θb, ρ, χ, φ)LḡiV +
q∑

k=1

w̄k(e, η, v̄)θk

η̇ = Ψ(e, η, v̄, θ)

yi = e
(i)
1 + vi, i = 1, · · · , m

(B.1)
where Ψ(·) = [Ψ1(·) · · · Ψn−

∑
ri

(·)]T . We now follow a four-step procedure to

establish both asymptotic stability and reference-input tracking in the closed-
loop system of Eq.B.1. Initially, we show that the controller of Eqs.4.12-4.14
satisfies the constraints within the region described by the set Π(θb, umax)
in Eq.4.15. Then, using a Lyapunov argument we show that, starting from
any initial condition that belongs to any invariant subset of Π, Ω, the state
feedback controller of Eqs.4.12-4.14 asymptotically stabilizes the closed-loop
e-subsystem and derive bounds that capture the evolution of the states of
the e and η subsystems. Next, a small gain argument is invoked to show that
the trajectories of the e-η interconnected closed-loop system remain bounded
for all times. Finally, we show that the states of the full closed-loop system
of Eq.B.1 converge to the origin and that the outputs satisfy the relation of
Eq.4.16.
Step 1: To prove that the control law of Eqs.4.12-4.14 satisfies the constraints
within the region described by the set Π(θb, umax), we have from Eqs.4.12-4.14
that:
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‖u(x)‖ ≤ ‖k(x, umax, θb, ρ, χ, φ)‖
∥∥(LGV )T

∥∥

≤

∥∥∥∥∥L∗̄
f
V +

√(
L∗∗̄

f
V

)2

+ (umax ‖(LGV )T ‖)4
∥∥∥∥∥

∥∥(LGV )T
∥∥

[
1 +

√
1 + (umax ‖(LGV )T ‖)2

]
(B.2)

From the definitions of L∗̄
f
V and L∗∗̄

f
V in Eq.4.14 and the fact that ρ >

0, it is clear that if L∗∗̄
f

V ≤ umax

∥∥(LGV )T
∥∥, then we also have L∗̄

f
V ≤

umax

∥∥(LGV )T
∥∥. Therefore, for any x ∈ Π, the following estimates hold:

(
L∗∗̄

f
V

)2

≤ (
umax

∥∥(LGV )T
∥∥)2

L∗̄
f
V ≤ umax

∥∥(LGV )T
∥∥

(B.3)

Substituting the above estimates into Eq.B.2 yields:

‖u(x)‖ ≤
umax

∥∥(LGV )T
∥∥

[
1 +

√
1 + (umax ‖(LGV )T ‖)2

]

∥∥(LGV )T
∥∥

[
1 +

√
1 + (umax ‖(LGV )T ‖)2

] = umax (B.4)

Step 2: Consider the smooth, positive-definite function, V : IR
∑

i
ri→R≥0,

V = eT Pe as a Lyapunov function candidate for the e-subsystem of Eq.B.1.
Computing the time-derivative of V along the trajectories of the closed-loop
e-subsystem, we get:

V̇ = Lf̄V + LGV u +
q∑

k=1

Lw̄k
V θk

= Lf̄V −




L∗̄
f
V +

√(
L∗∗̄

f
V

)2

+ (umax‖(LGV )T ‖)4
[
1 +

√
1 + (umax‖(LGV )T ‖)2

]


 +

q∑

k=1

Lw̄k
V θk

≤ Lf̄V + χ

q∑

k=1

‖Lw̄k
V ‖θbk −

L∗̄
f
V +

√(
L∗∗̄

f
V

)2

+ (umax‖(LGV )T ‖)4
[
1 +

√
1 + (umax‖(LGV )T ‖)2

]

(B.5)
After performing some algebraic manipulations, the above inequality can be
re-written as:
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V̇ ≤ α(e, η, v̄) +




q∑

k=1

θbk ‖Lw̄k
V ‖

(
φ− (χ− 1) ‖2Pe‖

‖2Pe‖+ φ

)
− ρ

(
‖2Pe‖2
‖2Pe‖+ φ

)

[
1 +

√
1 + (umax‖(LGV )T ‖)2

]




(B.6)
where

α(e, η, v̄) =

(
Lf̄V + χ

q∑

k=1

θkb ‖Lw̄k
V ‖

)√
1 + (umax‖(LGV )T ‖)2

[
1 +

√
1 + (umax‖(LGV )T ‖)2

]

−

√(
L∗∗̄

f
V

)2

+ (umax‖(LGV )T ‖)4
[
1 +

√
1 + (umax‖(LGV )T ‖)2

]

(B.7)

To analyze the sign of V̇ in Eq.B.6, we will initially study the sign of the term,
α(e, η, v̄), on the right-hand side. It is clear that the sign of this term depends

on the sign of the term Lf̄V + χ

q∑

k=1

θkb ‖Lw̄k
V ‖. To this end, we consider the

following two cases:

Case 1: L∗∗̄
f

V ≤ 0

Since L∗∗̄
f

V = Lf̄V +ρ ‖2Pe‖+χ

q∑

k=1

‖Lw̄k
V ‖θbk and ρ is a positive real number,

the fact that L∗∗̄
f

V ≤ 0 implies that Lf̄V + χ

q∑

k=1

‖Lw̄k
V ‖ θbk ≤ 0. As a result,

we have that α(e, η, v̄) ≤ 0 and the time-derivative of V in this case satisfies
the following bound:

V̇ ≤

q∑

k=1

θbk ‖Lw̄k
V ‖

(
φ− (χ− 1) ‖2Pe‖

‖2Pe‖+ φ

)
− ρ

(
‖2Pe‖2
‖2Pe‖+ φ

)

[
1 +

√
1 + (umax‖(LGV )T ‖)2

] := β(e, η, v̄)

(B.8)
Case 2: 0 < L∗∗̄

f
V ≤ umax

∥∥(LGV )T
∥∥

In this case, we have:
(
L∗∗̄

f
V

)2

≤ (
umax‖(LGV )T ‖)2 (B.9)
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and therefore:

−
√(

L∗∗̄
f

V
)2

+ (umax‖(LGV )T ‖)4

= −
√(

L∗∗̄
f

V
)2

+ (umax‖(LGV )T ‖)2(umax‖(LGV )T ‖)2

≤ −
(
L∗∗̄

f
V

) √
1 + (umax‖(LGV )T ‖)2

(B.10)

Substituting the estimate of Eq.B.10 into the expression for V̇ in Eqs.B.6-B.7
yields:

V̇ =
−ρ‖2Pe‖

√
1 + (umax‖(LGV )T ‖)2

[
1 +

√
1 + (umax‖(LGV )T ‖)2

] + β(e, η, v̄)

≤ β(e, η, v̄)

(B.11)

From the above analysis, it is clear that whenever L∗∗̄
f

V ≤ umax‖(LGV )T ‖,
the inequality of Eq.B.8 holds. To guarantee that the state of the closed-
loop system satisfies L∗∗̄

f
V ≤ umax‖(LGV )T ‖ for all time, we confine the

initial conditions within an invariant subset, Ω, embedded within the region
described by Eq.4.15. Therefore, starting from any x(0) ∈ Ω, the inequality of
Eq.B.8 holds. Referring to this inequality, note that since χ > 1 and ρ > 0, it

is clear that, whenever ‖2Pe‖ >
φ

χ− 1
, the first term on the right-hand side

is strictly negative, and therefore V̇ satisfies:

V̇ ≤ − ρ ‖2Pe‖2

(‖2Pe‖+ φ)
[
1 +

√
1 + (umax‖(LGV )T ‖)2

]

≤ − k1 ‖e‖2

(‖2Pe‖+ φ)
[
1 +

√
1 + (umax‖(LGV )T ‖)2

]
(B.12)

where k1 = 2ρλmin(P 2) > 0. To study the behavior of V̇ when ‖2Pe‖ ≤
φ/(χ− 1), we first note that since the functions w̄k(e, η, v̄) are smooth and
vanish when e = 0, then there exists positive real constants φ∗1, δk, k =
1, · · · , q, such that if φ ≤ φ∗1, the bound ‖w̄k(e, η, v̄)‖ ≤ δk‖e‖, holds for
‖2Pe‖ ≤ φ/(χ− 1). Using this bound, we obtain the following estimates:
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q∑

k=1

θbk ‖Lw̄k
V ‖ (φ− (χ− 1) ‖2Pe‖) ≤

q∑

k=1

θbk ‖Lw̄k
V ‖φ

=
q∑

k=1

θbk ‖w̄k‖ ‖2Pe‖φ

≤ k2φ

q∑

k=1

θbkδk‖e‖2 ∀ ‖2Pe‖ ≤ φ

χ− 1
(B.13)

where k2 = 2
√

λmax(P 2) > 0. Substituting the estimate of Eq.B.13 directly
into Eq.B.8, we get:

V̇ ≤




(
k2φ

q∑

k=1

θbkδk − 2k1

)
‖e‖2

(‖2Pe‖+ φ)
[
1 +

√
1 + (umax‖(LGV )T ‖)2

]




∀ ‖2Pe‖ ≤ φ

χ− 1

(B.14)

If φ is sufficiently small to satisfy the bound φ ≤ k1

k2

∑q
k=1δkθbk

:= φ∗2, then

it is clear from Eqs.B.12-B.14 that the last inequality in Eq.B.12 is satisfied,
irrespective of the value of ‖2Pe‖. In summary, we have that for any initial
condition in the invariant set Ω (where Eq.4.15 holds ∀ t ≥ 0), there exists
φ∗ := min{φ∗1, φ∗2} such that if φ ≤ φ∗, V̇ satisfies:

V̇ ≤ −k1 ‖e‖2

(‖2Pe‖+ φ)
[
1 +

√
1 + (umax‖(LGV )T ‖)2

] < 0 ∀ e 6= 0 (B.15)

Consequently, there exists a function βe of class KL (see [148] for details)
such that the following ISS inequality holds for the e states of the system of
Eq.B.1:

‖e(t)‖ ≤ βe (‖e(0)‖ , t) ∀ t ≥ 0 (B.16)

and the origin of the e-subsystem is asymptotically stable. From Assumption
4.2, we have that the η-subsystem of Eq.B.1 possesses an ISS property with
respect to e which implies that there exists a function, βη, of class KL and a
function, γη, of class K such that the following ISS inequality holds:

‖η(t)‖ ≤ βη(‖η(0)‖ , t) + γη(‖e‖s) ∀ t ≥ 0 (B.17)

uniformly in θ, v̄. Using the inequalities of Eqs.B.16-B.17, it can be shown by
means of a small gain argument, similar to that used in [57, 58], that the origin
of the full closed-loop system is asymptotically stable for all initial conditions
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inside the invariant set Ω. The asymptotic output tracking result can finally
be obtained by simply taking the limsup of both sides of Eq.B.16 which yields:

lim sup
t→∞

‖e (t)‖ = 0 (B.18)

and, hence:

lim sup
t→∞

‖e(i)
1 (t) ‖ = lim sup

t→∞
‖yi (t)− vi (t)‖ = 0, i = 1, · · · ,m (B.19)

This completes the proof of the theorem. 4
Proof of Theorem 4.17:
The proof of this theorem consists of three parts. In the first part, we use a sin-
gular perturbation formulation to represent the closed-loop system and show
that the resulting fast subsystem is globally exponentially stable. In the second
part, we focus on the closed-loop reduced (slow) system and derive bounds for
its states. Then, in the third part, we use a technical lemma proved in [50], to
establish that these bounds continue to hold up to an arbitrarily small offset,
for arbitrarily large compact subsets of the stability region obtained under
state feedback. The resulting bounds are then analyzed to establish asymp-
totic and local exponential stability of the full closed-loop system, which is
then used to establish Eq.4.25, provided that φ and ε̄ are sufficiently small.
Part 1: Defining the auxiliary error variables ê

(i)
j = Lri−j

i (y(j−1)
i − ỹ

(i)
j ), j =

1, . . . , ri, the vectors e
(i)
o = [ê(i)

1 ê
(i)
2 · · · ê

(i)
ri ]T , eo = [e(1)T

o e
(2)T

o · · · e
(m)T

o ]T ,

the parameters εi =
1
Li

, the matrices Ãi and the vector b̃:

Ãi =




−a
(i)
1 1 0 · · · 0

−a
(i)
2 0 1 · · · 0
...

...
...

. . .
...

−a
(i)
ri−1 0 0 · · · 1

−a
(i)
ri 0 0 · · · 0




, b̃ =




0

0

...

0

1




(B.20)

where i = 1, · · · ,m, the system of Eq.4.1 under the controller of Eq.4.24 takes
the following form:

εiė
(i)
o = Ãie

(i)
o + εib̃ψi(x, x̂, θ, ρ, χ, φ, v̄), i = 1, · · · ,m

ω̇ = Ψ(sat(ỹ), ω)

ẋ = f(x)−
m∑

i=1

gi(x)k(x̂, umax, θb, ρ, χ, φ)L̂ḡiV +
q∑

k=1

wk(x)θk(t)

(B.21)
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where ψi(·) is a Lipschitz function of its argument. Owing to the presence of
the small parameters εi that multiply the time-derivatives, ė

(i)
o , the system

of Eq.B.21 can be, in general, a multiple-time-scale system. Therefore, the
results proved in [147] will be used to establish exponential stability of the
fast dynamics. Defining ε̄ = max{εi}, i = 1, · · · ,m, multiplying each e

(i)
o -

subsystem by ε̄/ε, introducing the fast time-scale τ̄ =
t

ε̄
and setting ε̄ = 0, the

closed-loop fast subsystem takes the form:

deo

dτ̄
=

ε̄

ε
Ãieo, i = 1, · · · ,m (B.22)

The above system possesses a triangular (cascaded) structure, with the con-
stant matrices Ãi being Hurwitz. Therefore, it satisfies Assumption 3 in [147]
and, since ε̄/ε ≥ 1, the same approach, as in [147], can be used to deduce that
the origin of this system is globally exponentially stable, i.e., there exists real
numbers, k3 ≥ 1, a3 > 0 such that:

‖eo(τ̄)‖ ≤ k3‖eo(0)‖e−a3τ̄ ∀ τ̄ ≥ 0 (B.23)

Part 2: Using the coordinate change of Eq.4.5 and Eq.4.23, together with
the notation introduced thereafter, we can re-write the closed-loop system of
Eq.B.21 in the following form:

εiėo = Ãieo + εib̃ψi(e, η, x̂, θ, χ, ρ, φ, v̄)

ω̇ = Ψ(sat(ỹ), ω)

ė = f̄(e, η, v̄)−
m∑

i=1

ḡi(e, η, v̄)k(x̂, umax, θb, ρ, χ, φ)L̂ḡiV +
q∑

k=1

w̄k(e, η, v̄)θk

η̇ = Ψ(e, η, v̄)

yi = e
(i)
1 + vi, i = 1, · · · ,m

(B.24)
Consider the above system with ε̄ = max{εi} = 0. Using the result of Theorem
1 in [149], it can be shown that η(0) = ω(0)+O(ε̄) implies η(t) = ω(t)+O(ε̄),
∀ t ≥ 0 and therefore η(t) = ω(t) ∀ t ≥ 0, when ε̄ = 0. The closed-loop reduced
(slow) system of Eq.B.24 therefore reduces to the one studied in the Proof of
Theorem 4.1 (see Eq.B.1) under state feedback, where we have already shown
that given any initial condition such that ‖x(0)‖ ≤ δs, there exists φ∗ > 0
such that if φ ≤ φ∗ and ‖x(0)‖ ≤ δs, the origin of the closed-loop system is
asymptotically stable. Consequently, the denominator expression in Eq.B.15
is bounded and there exist real numbers, ke > 0, k1 ≥ 1, a1 > 0 such that if
‖e(0)‖ ≤ δe, ‖η(0)‖ ≤ δη, ‖v̄‖s ≤ δv̄, where δs = T−1(δe, δη, δv̄), we have that
V̇ satisfies V̇ ≤ −ke‖e‖2 and the e states of the closed-loop system satisfy:
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‖e(t)‖ ≤ k1‖e(0)‖e−a1t ∀ t ≥ 0 (B.25)

which shows that the origin of the e-subsystem is exponentially stable. From
this result and the fact that the η-subsystem (with e = 0) is locally exponen-
tially stable, we have that the e-η interconnected closed-loop reduced (slow)
system is also locally exponentially stable (see [148] for details). Therefore,
given the set of positive real numbers, {δe, δη, δv̄}, there exists b > 0 such that
if ‖e(0)‖ ≤ δe, ‖η(0)‖ ≤ δη, ‖v̄‖s ≤ δv̄, the following bound holds:

‖π(t)‖ ≤ k2‖π(t0)‖e−a2(t−t0) ∀ t ≥ t0 (B.26)

for all ‖π(t0)‖ ≤ b, where π(t) = [eT (t) ηT (t)]T , for some k2 ≥ 1, a2 > 0.
Note that since the static component of the controller of Eq.4.24 with x̂ = x
enforces asymptotic stability in the closed-loop slow system, the state, ζ, of
the closed-loop slow system satisfies a bound of the following form ∀ t ≥ 0:

‖ζ(t)‖ ≤ βζ(δζ , t) (B.27)

where βζ is a class KL function and δζ is the maximum value of the
norm of the vector [lT1 (x) lT2 (x) · · · lTm(x)]T for ‖x‖ ≤ δb, where li(x) =
[hi(x) Lfhi(x) · · ·Lri−1

f hi(x)]T . Based on the above bound and following the
results of [149, 268], we disregard estimates of ỹ, obtained from the high-gain

observer, with norm ‖ỹ‖ > βζ(δζ , 0). Hence, we set sat(·) = min{1,
ζmax

‖ · ‖ }(·)
where ζmax is the maximum value of the vector [ζ1 ζ2 · · · ζr] for ‖ζ‖ ≤
βζ(δζ , 0).
Part 3: Having analyzed the stability properties of both the fast and slow
closed-loop systems in Parts 1 and 2, respectively, it can be shown, with the
aid of calculations similar to those performed in [57, 79], that the inequalities
of Eq.B.23 (derived for the fast system), and Eqs.B.17-B.25 (derived for the
slow system) continue to hold, for the states of the full closed-loop system,
up to an arbitrarily small offset, d, for initial conditions in large compact
subsets (Ωb ⊂ Ω) where Ωb := {x ∈ IRm : ‖x‖ ≤ δb} and β(δb, 0) + d ≤ δs,
provided that the singular perturbation parameter, ε̄, is sufficiently small. The
requirement that β(δb, 0)+d ≤ δs guarantees that during the initial boundary
layer (when the fast states have not decayed yet), the slow states of the closed-
loop system remain within the invariant region Ω. Therefore, given the pair
(δb, d), the set (δθ, δv̄, δζ), and with φ ∈ (0, φ∗], there exists ε̄(1) > 0 such
that if ε̄ ∈ (0, ε̄(1)], ‖x(0)‖ ≤ δb, ‖ỹ‖ ≤ δζ , ‖θk‖s ≤ δθ, ‖v̄‖s ≤ δv̄, then, for all
t ≥ 0, the states of the closed-loop singularly perturbed system satisfy:

‖π(t)‖ ≤ k2‖π(0)‖e−a2t + d

‖eo(t)‖ ≤ k3‖eo(0)‖e−a3

t

ε + d

(B.28)

The above inequalities imply that the trajectories of the closed-loop singularly
perturbed system will be bounded. Furthermore, as t increases, they will be
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ultimately bounded with an ultimate bound that depends on d. Since d is
arbitrary, we can choose it small enough such that after a sufficiently large
time, say t̃, the trajectories of the closed-loop system are confined within a
small compact neighborhood of the origin of the closed-loop system. Obvi-
ously, t̃ depends on both the initial conditions and the desired size of the
neighborhood, but is independent of ε̄. For reasons that will become obvi-
ous shortly, we choose d = b/2 and let t̃ be the smallest time such that

max{k2‖π(0)‖e−a2 t̃, k3‖eo(0)‖e−a3t̃/ε} ≤ d. Then it can be easily verified
that:

‖π(t)‖ ≤ b, ‖eo(t)‖ ≤ b ∀ t ≥ t̃ (B.29)

Recall from Eq.B.23 and Eq.B.26 that both the fast and slow subsystems are
exponentially stable within the ball of Eq.B.29. Then, a direct application
of the result of Theorem 9.3 in [148] can be performed to show that there
exists ε̄(2) such that if ε̄ ≤ ε̄(2), the singularly perturbed closed-loop system
is locally exponentially stable and, therefore, once inside the ball of Eq.B.29,
the closed-loop trajectories converge to the origin as t →∞.

To summarize, we have that given the pair of positive real numbers (δb, d)
such that β(δb, 0) + d ≤ δs, given the set of positive real numbers (δθ, δv̄, δζ),
and with φ ∈ (0.φ∗], there exists ε̄∗ := min{ε̄(1), ε̄(2)} such that if |x(0)| ≤ δb,
|ỹ(0)| ≤ δζ , ‖θ‖ ≤ δθ, ‖v̄‖ ≤ δv̄, and ε̄ ∈ (0, ε̄∗], the closed-loop trajectories are
bounded and converge to the origin as time tends to infinity, i.e., the closed-
loop system is asymptotically stable. The asymptotic output tracking result
can then be established by noting that from Eq.B.26 we have:

lim sup
t→∞

‖e(t)‖ = 0 (B.30)

and therefore:

lim sup
t→∞

‖e(i)
1 (t)‖ = lim sup

t→∞
‖yi(t)− vi(t)‖ = 0, i = 1, · · · ,m (B.31)

This completes the proof of the theorem. 4





C

Proofs of Chapter 5

Proof of Theorem 5.7:
To prove this theorem, we proceed in two steps. In the first step we show that,
starting from any initial condition within the set Ω(umax), the bounded con-
trol law of Eqs.5.7-5.8 asymptotically stabilizes the constrained closed-loop.
Then, in the second step, we show that switching between the model predic-
tive controller of Eqs.5.3-5.5 and the bounded controller, according to the rule
of Eqs.5.13-5.14, guarantees asymptotic stability in the switched closed-loop
system, starting from any initial condition that belongs to Ω(umax).
Step 1: Consider first the system of Eq.5.1, under the control law of Eq.5.7-5.8.
Evaluating the time-derivative of the Lyapunov function along the closed-loop
trajectories, we have:

V̇ = LfV + LgV u

= LfV − LgV
L∗fV +

√
(L∗fV )2 + (umax‖(LgV )T ‖)4

‖(LgV )T ‖2
[
1 +

√
1 + (umax‖(LgV )T ‖)2

] (LgV )T

=
−ρx′Px + LfV

√
1 + (umax‖(LgV )T ‖)2 −

√
(L∗fV )2 + (umax‖(LgV )T ‖)4

[
1 +

√
1 + (umax‖(LgV )T ‖)2

]

(C.1)
From the above equation, and the fact that L∗fV < 0 =⇒ LfV < 0 (since
ρ > 0), we have that V satisfies:

V̇ ≤ −ρx′Px[
1 +

√
1 + (umax‖(LgV )T ‖)2

] < 0 ∀ x 6= 0
(C.2)

Furthermore, whenever 0 < L∗fV ≤ umax‖(LgV )T ‖, we have:
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√
(L∗fV )2 + (umax‖(LgV )T ‖)4 ≥ LfV

√
1 + (umax‖(LgV )T ‖)2

Substituting the above estimate into Eq.C.1, we have that V̇ satisfies Eq.C.2.
To summarize, we see that whenever L∗fV ≤ umax‖(LgV )T ‖, we have V̇ < 0.
Since Ω(umax) is taken to be the largest invariant set where this inequality
holds for all x 6= 0, then starting from any initial state x(0) ∈ Ω(umax), the
inequality of Eq.5.9 holds for all times and consequently:

V̇ < 0 ∀ x ∈ Ω(umax)\{0} (C.3)

which implies that the origin of the closed-loop system, under the control law
of Eqs.5.7-5.8 is asymptotically stable.
Step 2: Consider the switched system of Eq.5.11, subject to the switching
rule of Eqs.5.13-5.14, with any initial state x(0) ∈ Ω(umax). From the defini-
tion of Ts given in Theorem 5.7, it is clear that if Ts is a finite number, then
V̇ (xM (t)) < 0 ∀ 0 ≤ t < T , where the notation xM (t) denotes the closed-loop
state under MPC at time t, which implies that x(t) ∈ Ω(umax) ∀ 0 ≤ t < Ts

(or that x(T−) ∈ Ω(umax)). This fact, together with the continuity of the so-
lution of the switched system, x(t), (which follows from the fact that the right
hand side of Eq.5.11 is continuous in x and piecewise continuous in time (only
finite number of switches is allowed over any finite time interval)) implies that,
upon switching (instantaneously) to the bounded controller at t = Ts, we have
x(Ts) ∈ Ω(umax) and u(t) = b(x(t)) for all t ≥ Ts. Therefore, from our analysis
in Step 1 we conclude that V̇ (xb(t)) < 0 ∀ t ≥ Ts. In summary, the switch-
ing rule of Eqs.5.13-5.14 guarantees that, starting from any x(0) ∈ Ω(umax),
V̇ (x(t)) < 0 ∀ 0 6= x ∈ Ω(umax), ∀ t ≥ 0. which implies that the origin
of the switched closed-loop system is asymptotically stable. Note that if no
such Ts exists, then we simply have V̇ (xM (t)) < 0 ∀ t ≥ 0 and the origin
of the closed-loop system is, again, asymptotically stable. This completes the
proof of the theorem. 4

Proof of Theorem 5.14:
To prove this theorem, we first note that if neither Tb nor TN exists, then no
switching takes place and we simply have V̇ (xM (t)) < 0 ∀ t ≥ 0 imply-
ing that the origin of the closed-loop system is asymptotically stable under
the model predictive controller of Eqs.5.3-5.5. Therefore, in what follows we
consider only the case when at least one of these numbers exists. From the
definition of TN given in Theorem 5.14, it is clear that (if this number ex-
ists) the Lyapunov function under the model predictive controller, V (xM (t)),
changes sign no more than N times over the time interval [0, TN ). Since the set
Ω(umax) is not necessarily invariant under the control law of Eqs.5.3-5.5, the
trajectory of the closed-loop system can possibly leave Ω(umax) at some time
during the interval [0, TN ) which implies that in this case there exists (at least
one) finite time t1 ∈ [0, TN ) such that V (xM (t1)) = cmax. From the definition
of Tb given in Theorem 5.14, it is clear that the smallest such t1 is equal to Tb,
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and that Tb ∈ [0, TN ), i.e. min{Tb, TN} = Tb. If, on the other hand, the closed-
loop trajectory under the model predictive controller remains within Ω(umax)
for all times in [0, TN ), then we have V (xM (t)) ≤ cmax ∀ t ∈ [0, TN ) and
we set min{Tb, TN} = TN .
From the above analysis we can deduce that, starting from any initial state
x(0) ∈ Ω(umax), the closed-loop trajectory satisfies xM (t) ∈ Ω(umax) ∀ 0 ≤
t < min{Tb, TN}. This fact, together with continuity of the solution of the
switched closed-loop system implies that, upon switching (instantaneously) to
the bounded controller at t = min{Tb, TN} := Tp, we have x(Tp) ∈ Ω(umax)
and u(t) = b(x(t)) for all t ≥ Tp. Then, by repeating the arguments of Step 1
in the Proof of Theorem 5.7, we can show that V̇ (xb(t)) < 0 ∀ t ≥ Tp and
that the origin of the switched closed-loop system is therefore asymptotically
stable for any x(0) ∈ Ω(umax). This completes the proof of the theorem. 4

Proof of Proposition 5.25:
The proof consists of two parts. In the first part, we establish that the bounded
state feedback control law of Eqs.5.7–5.8 enforces asymptotic stability for all
initial conditions within Ω. In the second part, we compute an estimate of
the tolerable measurement error, em, which guarantees that a state trajectory
starting within Ω remains within it for all ‖e‖ ≤ em, for all t ≥ 0 .
Part 1: We have already shown in Step 1 of Part 1 of the Proof of Theorem
5.7 that the time–derivative of the V , along the trajectories of the closed–loop
system of Eq.5.22 and Eqs.5.7–5.8, satisfies:

V̇ (x) = LfV (x) + LgV (x)u(x)

≤ −ρx′Px[
1 +

√
1 + (2umax‖B′Px‖)2

] (C.4)

for all x ∈ Φ, and hence for all x ∈ Ω, where Φ and Ω were defined in Eqs.5.9–
5.10, respectively. Since the denominator term in Eq.C.4 is bounded on Ω,
there exists a positive real number, ρ∗, such that:

V̇ ≤ −ρ∗x′Px (C.5)

for all x ∈ Ω, which implies that the origin of the closed–loop system, under
the control law of Eqs.5.7–5.8, is asymptotically stable, with Ω as an estimate
of the domain of attraction.
Part 2: In this part, we analyze the behavior of V̇ on the boundary of Ω (i.e.,
the level surface described by V (x) = cmax) under bounded measurement
errors, ‖e‖ ≤ em. To this end, we have:
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V̇ (x) = LfV (x) + LgV (x)u(x− e)

= LfV (x) + LgV (x)u(x) + LgV (x) [u(x− e)− u(x)]

≤ −ρ∗cmax + ‖LgV ‖‖u(x− e)− u(x)‖

≤ −ρ∗cmax + M‖u(x− e)− u(x)‖

(C.6)

for all x = V −1(cmax), where M = max
V (x)=cmax

(‖LgV (x)‖) (note that M exists

since ‖LgV (·)‖ is continuous and the maximization is considered on a closed
set). Since u(·) is continuous, then given any positive real number r such that

µ =
ρ∗cmax − r

M
> 0, there exists em > 0 such that if ‖(x−e)−x‖ = ‖e‖ ≤ em,

then ‖u(x− e)− u(x)‖ ≤ µ and, consequently:

V̇ (x) ≤ −ρ∗cmax + Mµ = −r < 0 (C.7)

for all x = V −1(cmax). This implies that for all measurement errors such that
‖e‖ ≤ em, we have V̇ < 0 on the boundary of Ω. Therefore, under the bounded
controller, any closed–loop state trajectory, starting within Ω, cannot escape
this region, i.e., x(t) ∈ Ω ∀t ≥ 0. This completes the proof of the proposition.
4

Proof of Proposition 5.27:
The proof is divided into two parts. In the first part, we show that given
δb > 0 (the size of the output feedback stability region) such that Ωb ⊂ Ω,
there exists a choice of β such that the closed–loop trajectories are bounded
for all x(0) and x̂(0) belonging in Ωb. In the second part, we use a Lyapunov
argument, together with boundedness of the states of the closed–loop system
and of the estimation error, to show that the state is ultimately bounded with
a bound that depends on the norm of the estimation error; and, therefore,
converges to zero as the error tends to zero.

Part 1: From Eq.5.26, we have that the error dynamics are given by ė =
(A − LC)e, where A − LC is Hurwitz, and all the eigenvalues of the matrix
A−LC satisfy λ ≤ −β. It then follows that an estimate of the form ‖e(t)‖ ≤
κ(β)‖e(0)‖exp(−βt) holds for some κ(β) > 0, for all t ≥ 0. Given any positive
real number, δb, such that Ωb = {x ∈ IRn : ‖x‖2P ≤ δb} ⊂ Ω, let Tmin =
min{t ≥ 0 : V (x(0)) = δb, V (x(t)) = cmax, u(t) ∈ U} (i.e., Tmin is the shortest
time during which the closed–loop state trajectory can reach the boundary of
Ω starting from the boundary of Ωb using any admissible control action).
Furthermore, let emax(0) = max

x,x̂∈Ωb

‖x(0)− x̂(0)‖ (emax(0) therefore is the

largest possible initial error given that both the states and state estimates are
initialized within Ωb). Choose Td such that 0 < Td < Tmin and let β∗ be such
that em ≤ κ(β∗)emax(0)exp(−β∗Td) (the existence of such a β∗ follows from
the fact that κ(β) is polynomial in β). For any choice of β ≥ β∗, therefore, it
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follows that ‖e(Tmin)‖ ≤ em (since ‖e(Td)‖ ≤ em, Tmin ≥ Td and the bound
on the norm of the estimation error decreases monotonically with time for
all t ≥ 0). This implies that the norm of the estimation error decays to a
value less than em before the closed–loop state trajectory, starting within Ωb,
could reach the boundary of Ω. It then follows from Proposition 5.25 that the
closed–loop state trajectory cannot escape Ω for all t ≥ 0, i.e., the trajectories
are bounded and ‖x(t)‖2p ≤ cmax ∀ t ≥ 0.

Part 2: To prove asymptotic stability, we note that for all x ∈ Ω:

V̇ (x) = LfV (x) + LgV (x)u(x− e)

= LfV (x) + LgV (x)u(x) + ‖LgV (x)‖‖u(x− e)− u(x)‖

≤ −ρ∗‖x‖2p + M‖u(x− e)− u(x)‖

(C.8)

The term ‖u(x−e)−u(x)‖ is continuous and vanishes when e = 0. Therefore,
since both x and e are bounded, there exists a positive real number ϕ such
that ‖u(x − e) − u(x)‖ ≤ ϕ‖e‖ for all ‖x‖2p ≤ cmax, ‖e‖ ≤ em. Substituting
this estimate into Eq.C.8 yields:

V̇ (x) ≤ −ρ∗‖x‖2p + Mϕ‖e‖

≤ −ρ∗

2
‖x‖2p ∀ ‖x‖p ≥

√
2Mϕ‖e‖

ρ∗
:= γ1(‖e‖)

(C.9)

where γ1(·) is a class K function (a continuous function α(·) is said to belong
to class K if it is strictly increasing and α(0) = 0; see also [148]). The above
inequality implies that V̇ is negative outside some residual set whose size
depends on ‖e‖. Using the result of Theorem 5.1-Corollary 5.2 in [148], this
implies that, for any x(0) ∈ Ωb, there exists a class KL function β̄(·, ·) and a
class K function γ2(·), such that:

‖x(t)‖ ≤ β̄(‖x(0)‖, t) + γ2(supτ≥0 ‖e(τ)‖) ∀ t ≥ 0 (C.10)

implying that the x subsystem of Eq.5.29, with e as input, is input-to-state sta-
ble (recall, from Proposition 5.25, that x(t) ∈ Ωb ∀t ≥ 0). Noting also that the
origin of the e-subsystem of Eq.5.29 is asymptotically stable ( lim

t→∞
‖e(t)‖ = 0),

and using Lemma 5.6 in [148], we get that the origin of the interconnected
system of Eq.5.29 is asymptotically stable. This completes the proof of the
proposition. 4

Proof of Proposition 5.31:
Since the error dynamics obey a bound of the form ‖e(t)‖ ≤ κ(β)emax(0)
exp(−βt), substituting T ∗d into this expression yields ‖e(T ∗d )‖ := e∗ ≤
ε
√

cmax/λmax(P ). Then, for all t ≥ T ∗d , if x̂′(t)Px̂(t) ≤ δs for some δs > 0,
we can write:



410 C Proofs of Chapter 5

x′(t)Px(t) = (x̂(t) + e(t))′P (x̂(t) + e(t))

= x̂′(t)Px̂(t) + 2x̂′(t)Pe(t) + e′(t)Pe(t)

≤ δs + 2‖Px̂(t)‖‖e(t)‖+ ‖e(t)‖2p

≤ δs + 2

√
λmax(P 2)δs

λmin(P )
e∗ + λmax(P )e∗2

:= f(δs)

(C.11)

Note that f(·) is a continuous, monotonically increasing function of δs ≥ 0,
with f(0) = ε2cmax < cmax and f(cmax) > cmax. This implies that there
exists 0 < δ∗s < cmax such that, for all δs ≤ δ∗s , the relation f(δs) ≤ cmax

holds, i.e., x′(t)Px(t) ≤ cmax. This completes the proof of the proposition.4

Proof of Theorem 5.33:
Given x(0) ∈ Ωb, x̂(0) ∈ Ωb, β ≥ β∗ (see Proposition 5.27), and δs ≤ δ∗s (see
Proposition 5.31), we consider the following cases:

Case 1: Consider first the case when Tm = ∞ (i.e., MPC is never feasible).
Then, we have from Eq.5.32 that i(t) = 1 and u(x̂(t)) = b(x̂(t)) for all t ≥ 0.
It then follows from Proposition 5.27 that the origin of the closed–loop system
is asymptotically stable.

Case 2: Now, consider the case when Tm < ∞ and Tf = ∞. Since Tm ≥ Td

and ‖e(Td)‖ ≤ em (see Part 1 of the Proof of Proposition 5.27), we have that
‖e(Tm)‖ ≤ em. Since only the bounded controller is implemented, i.e. i(t) = 1,
for 0 ≤ t < Tm, it follows from Proposition 5.25 that x(t) ∈ Ω for all
0 ≤ t < Tm (or that x(T−m) ∈ Ω). This fact, together with the continuity
of the solution of the switched closed–loop system – which follows from the
fact that the right hand side of Eq.5.30 is continuous in x and piecewise
continuous in time since only a finite number of switches is allowed over any
finite time interval – implies that, upon switching (instantaneously) to the
model predictive controller at t = Tm, we have x(Tm) ∈ Ω. Since Tf = ∞,
then from the definition of Tf in Theorem 5.33 it follows that u(x̂(t)) =
Ms(x̂(t)) and V̇ (x̂(t)) < 0 for all t ≥ Tm. This implies that x̂(t) ∈ Ωs for
all t ≥ Tm and, consequently from the definition of Tm (note that Tm ≥ T ∗d
where T ∗d was defined in Proposition 5.31), that x(t) ∈ Ω for all t ≥ Tm

(i.e., the closed–loop state trajectory is bounded). Furthermore, since x̂(t) =
x(t)− e(t) and lim

t→∞
‖e(t)‖ = 0, it follows that lim

t→∞
x̂′(t)Px̂(t) = 0; and, hence,

lim
t→∞

x′(t)Px(t) = 0. The origin of the switched closed–loop system is therefore
asymptotically stable.

Case 3: Finally, consider the case when Tm < ∞ and Tf < ∞. From the
analysis in case 2 above, we have that x(t) ∈ Ω ∀ 0 ≤ t < Tf (or that
x(T−f ) ∈ Ω). This fact, together with the continuity of the solution of the
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switched closed–loop system, implies that, upon switching (instantaneously)
to the bounded controller at t = Tf , we have x(Tf ) ∈ Ω and u(t) = b(x̂(t)) for
all t ≥ Tf . We also have ‖e(t)‖ ≤ em for all t ≥ Tf since Tf > Td. Therefore,
from Proposition 5.25 it is guaranteed that x(t) ∈ Ω for all t ≥ Tf . Finally,
following the same arguments presented in Part 2 of the Proof of Proposition
5.27, it can be shown that ‖x(t)‖ → 0 as t →∞, which together with bound-
edness of the state trajectory, establishes asymptotic stability of the origin of
the closed–loop system. This completes the proof of the theorem. 4





D

Proofs of Chapter 6

Proof of Theorem 6.2:
Step 1: Substituting the control law of Eqs.6.3-6.4 into the system of Eq.6.1
and evaluating the time-derivative of the Lyapunov function along the tra-
jectories of the closed–loop system, it can be shown that V̇k < 0 for all
x ∈ Φk(umax) (where Φk(umax) was defined in Eq.6.5). Since Ωk(umax) (de-
fined in Eq.6.6) is an invariant subset of Φk(umax)

⋃{0}, it follows that for
any x(0) ∈ Ωk(umax), the origin of the closed–loop system, under the control
law of Eqs.6.3-6.4, is asymptotically stable.
Step 2: Consider the switched closed–loop system of Eq.6.12, subject to the
switching rule of Eqs.6.13-6.14, with any initial state x(0) ∈ Ωk(umax). From
the definition of T̄ given in Theorem 6.2, it is clear that if T̄ is a finite
number, then V̇k(xM (t)) < 0 ∀ 0 ≤ t < T̄ , where the notation xM (t)
denotes the closed–loop state under MPC at time t, which implies that
x(t) ∈ Ωk(umax) ∀ 0 ≤ t < T̄ (or that x(T̄−) ∈ pΩk(umax)). This fact,
together with the continuity of the solution of the switched system, x(t),
(following from the fact that the right hand side of Eq.6.12 is continuous in
x and piecewise continuous in time) implies that, upon switching (instan-
taneously) to the bounded controller at t = T̄ , we have x(T̄ ) ∈ Ωk(umax)
and u(t) = bk(x(t)) for all t ≥ T̄ . Therefore, from our analysis in Step
1, we conclude that V̇k(xbk(t)) < 0 ∀ t ≥ T̄ . In summary, the switching
rule of Eqs.6.13-6.14 guarantees that, starting from any x(0) ∈ Ωk(umax),
V̇k(x(t)) < 0 ∀ x 6= 0, x ∈ Ωk(umax), ∀ t ≥ 0, which implies
that the origin of the switched closed–loop system is asymptotically stable.
Note that if no such T̄ exists, then we simply have from Eqs.6.13-6.14 that
V̇k(xM (t)) < 0 ∀ t ≥ 0, and the origin of the closed–loop system is also
asymptotically stable. This completes the proof of the theorem. 4

Proof of Theorem 6.11:
The proof of this theorem, for the case when only one bounded controller is
used as the fall–back controller (i.e., p = 1), is same as that of Theorem 6.2.
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To simplify the proof, we prove the result only for the case when the family of
fall–back controllers consists of 2 controllers (i.e., p = 2). Generalization of the
proof to the case of a family of p controllers, where 2 < p < ∞, is conceptually
straightforward. Also, without loss of generality, we consider the case when
the optimization problem in MPC is feasible for all times (i.e., T i = ∞), since
if it is not (i.e., T i < ∞), then the switching time is simply taken to be the
minimum of {T i, T f}, as stated in Theorem 6.11.

Without loss of generality, let the closed–loop system be initialized within
the stability region of the first bounded controller, Ω1(umax), under MPC.
Then one of the following scenarios will take place:

Case 1: V̇1(xM (t)) < 0 for all t ≥ 0. The switching law of Eqs.6.15-6.17
dictates in this case that MPC be implemented for all times. Since x(0) ∈
Ω1(umax), where Ω1 is a level set of V1, and V̇1 < 0, then the state of the
closed–loop system is bounded and converges to the origin as t →∞.

Case 2: V̇1(xM (T1)) ≥ 0 and xM (T1) ∈ Ω1(umax), for some finite T1 > 0.
In this case, one of the following scenarios will occur:

(a) If x(T1) is outside of Ω2(umax), then it follows from Eqs.6.15-6.17
that the supervisor will set T ∗ = Tf = T1 and switch to the first bounded
controller at t = T1, using V1 as the CLF, which enforces asymptotic stability
as discussed in step 2 of the proof of Theorem 6.2.

(b) If x(T1) ∈ Ω2(umax) and V̇2(x(T1)) < 0 (i.e., 0 < T1 < T2), then the
supervisor will keep MPC in the closed–loop system at T1. If T2 is a finite
number, then the supervisor will set T ∗ = Tf = T2 (since T ∗1 = 0 for all
t > T1 from Eq.6.16) at which time it will switch to the second bounded con-
troller, using V2 as the CLF. Since V̇2(xM (t)) < 0 for all T1 ≤ t < T2, and
x(T1) ∈ Ω2(umax), then x(T ∗

−
) ∈ Ω2(umax). By continuity of the solution of

the closed–loop system, it follows that x(T ∗) ∈ Ω2(umax); and since Ω2(umax)
is the stability region corresponding to V2, then implies that upon implemen-
tation of the corresponding bounded controller for all future times, asymptotic
stability is achieved. Note that if T2 does not exist (or T2 = ∞), then we sim-
ply have x(T1) ∈ Ω2(umax) and V̇2(x(T1)) < 0 for all t ≥ T1, which implies
that the origin of the closed–loop system is again asymptotically stable.

(c) If 0 < T2 < T1 (i.e., x(T2) ∈ Ω2(umax), V1(x(T2)) < 0 and
V2(x(T2)) ≥ 0), then it follows from Eqs.6.15-6.17 that the supervisor will
set T ∗ = Tf = T1 (since T ∗2 = 0 for all t > T2 from Eq.6.16) and switch to
the first bounded controller, using V1 as the CLF. Since V̇1(xM (t)) < 0 for
all t < T1, and x(0) ∈ Ω1(umax), then x(T ∗

−
) ∈ Ω1(umax). By continuity

of the solution of the closed–loop system, we have x(T ∗) ∈ Ω1(umax), and
since Ω1(umax) is the stability region corresponding to V1, this implies that
upon implementation of the first bounded controller for the remaining time,
asymptotic closed–loop stability is achieved. This completes the proof of the
theorem. 4
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Proof of Theorem 6.20: The proof draws upon the fact that if the state of
the closed–loop system resides in Ω at the time that the bounded controller is
switched in, i.e., x(Tswitch) ∈ Ω, then boundedness of closed–loop state, and
convergence to the set ID under the bounded robust controller are guaranteed
(for a proof, see [81, 82]). Therefore, we need only show that, under the switch-
ing scheme of Eqs.6.34–6.35, the closed–loop state is always within Ω at the
time the bounded controller is switched in. For this purpose, we enumerate
the four possible values that Tswitch could take, and show that x(Tswitch) ∈ Ω
in all cases.

• Case 1: If Tswitch = Ts, then from the definition of Ts in Eq.6.34, x(T−s ) ∈
Ω. By continuity of the solution of the system of Eq.6.24 (which follows
from the fact that the right hand side of Eq.6.33 is continuous in x and
piecewise continuous in time, since only a finite number of switches is
allowed), we have x(Ts) ∈ Ω, i.e., x(Tswitch) ∈ Ω.

• Case 2: If Tswitch = TD, then from the definition of TD, x(TD) ∈ ID ⊂ Ω;
hence x(Tswitch) ∈ ID ⊂ Ω.

• Case 3: If Tswitch = Tdesign, then from the definition of Tswitch, Tdesign ≤
Ts. To prove that x(Tdesign) ∈ Ω, we proceed by contradiction. Assume
x(Tdesign) /∈ Ω. Then V (x(Tdesign)) > cmax (from the definition of Ω). By
continuity of the solution, continuity of V (·) and the fact that V (x0) ≤
cmax, there exists a time 0 ≤ T ′s ≤ Tdesign for which V (x(T

′−
s )) = cmax.

Since Ts is the earliest time for which Eq.6.34 holds, then it must be
that Ts ≤ T ′s ≤ Tdesign, which leads to a contradiction (Tdesign ≤ Ts).
Therefore, once again, x(Tswitch) ∈ Ω.

• Case 4: If Tswitch = Tinf , the same argument as in Case 3 can be used
(replacing Tdesign by Tinf ) to show that x(Tswitch) ∈ Ω.

This completes the proof of the theorem, 4

Proof of Theorem 6.27: Similar to the proof of Theorem 6.20, the proof
of this theorem also draws upon the fact that if the state of the closed–loop
system resides in Ω0

L at the time that the f th bounded controller, for which
x(Tswitch) ∈ Ω0

f , is switched in (and kept in the closed–loop for all future
times), then under the bounded robust controller f , the region Ω0

f is invariant
(for a proof, see [81, 82]), and since Ω0

f ⊂ Ω0
L, the closed–loop state evolves

in Ω0
L for all future times.

We now show that for t ≤ Tswitch (i.e., up until the time that the switching
between the controllers is governed by Eqs.6.38-6.39), the closed–loop state,
initialized within Ω0

L, stays within Ω0
L. We only need to show that the switch-

ing logic ensures that the bounded controller is switched in before the states
have escaped Ω0

L under MPC. To this end, we first note that cmax
k,j < cmax

k,0 , for
all k = 1, · · · , l. Therefore Ωj

L ⊂ Ω0
L. This implies that if x ∈ Ωj

L then x ∈ Ω0
L.

Consider any time, t, when Tj ≤ t < Tj+1 < Tswitch, for some j ≥ 1.
Between Tj and Tj+1, we have from Eq.6.39 that MPC is switched in (and the
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bounded controller is switched out) only when x(t) ∈ Ωj
L. Now consider the

time Tj+1 at which time the bounded controller is switched back in, either due
to Eq.6.38 or because MPC is infeasible. In the first case, x(Tj+1) ∈ Ωj

L ⊂ Ω0
L.

In the second case, since the right hand side of the equation 6.36 is a piecewise
continuous function of time and a continuous function of its states, and the
closed–loop system is initialized within Ωj

L under MPC, any time the MPC
optimization problem is infeasible, x(t) ∈ Ωj

L ⊂ Ω0
L.

At the time t = Tswitch, the state of the closed–loop system can be shown
to be within Ω0

L following the same line of reasoning used in the proof of
Theorem 6.20, with the additional possibility of Tswitch = TN . As shown
above, x(t) ∈ Ω0

L for all Tj−1 ≤ t ≤ Tj , and therefore x ∈ Ω0
L for TN−1 ≤ t ≤

TN and therefore x(TN ) ∈ Ω0
L implying once again that x(Tswitch) ∈ Ω0

L.
For all t ≥ Tswitch, the closed–loop state evolves under some bounded con-

troller u(x) = bk(x), for which x(Tswitch) ∈ Ω0
k. Therefore, lim sup

t→∞
‖x(t)‖ ≤ dk

(see [81, 82] for the proof). Note that since dmax is chosen to be the
largest of dk, k = 1, · · · , l, ‖x(t)‖ ≤ dk implies ‖x(t)‖ ≤ dmax; hence
lim sup

t→∞
‖x(t)‖ ≤ dmax. This completes the proof of Theorem 6.27. 4
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Proofs of Chapter 7

Proof of Theorem 7.1:
To prove this theorem, we proceed in two steps. In the first step we show that,
for each individual mode (without switching), the control law of Eqs.7.6-7.7
satisfies the constraints within the region described by Eq.7.9 and that, start-
ing from any initial condition within the set, Ω∗

i , the corresponding feedback
control law robustly asymptotically stabilizes the origin of the i-th closed-loop
subsystem. In the second step, we use this fact together with MLF stability
analysis to show that the switching laws of Eqs.7.10-7.11 enforce asymptotic
stability in the switched uncertain closed-loop system, starting from any ini-
tial condition that belongs to any of the sets, Ω∗

i , i ∈ I.

Step 1: To prove that the control law of Eqs.7.6-7.7 satisfies the constraints
within the region described by the inequality of Eq.7.9, we need consider only
the case when ‖(LGiVi)T ‖ 6= 0 (since when ‖(LGiVi)T ‖ = 0, ui = 0 and the
constraints are trivially satisfied). For this case, we have from Eqs.7.6-7.7:

‖ui(x)‖ ≤ ‖ki(Vi, u
max
i , θbi, χi, φi)‖

∥∥(LGiVi)T
∥∥

≤

∥∥∥∥∥L∗fi
Vi +

√(
L∗∗fi

Vi

)2

+ (umax
i ‖(LGiV )T ‖)4

∥∥∥∥∥
∥∥(LGiVi)T

∥∥
[
1 +

√
1 + (umax

i ‖(LGiVi)T ‖)2
]

(E.1)

From the definitions of L∗fi
Vi and L∗∗fi

Vi in Eq.7.8 and the fact that ρ > 0,
it is clear that if L∗∗fi

Vi ≤ umax
i

∥∥(LGiVi)T
∥∥, then we also have L∗fi

Vi ≤
umax

i

∥∥(LGiVi)T
∥∥. Therefore, for any x satisfying Eq.7.9, the following es-

timates hold: (
L∗∗fi

Vi

)2

≤ (
umax

i

∥∥(LGiVi)T
∥∥)2

L∗fi
Vi ≤ umax

i

∥∥(LGiVi)T
∥∥

(E.2)

Substituting the above estimates into Eq.E.1 yields:
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‖ui(x)‖ ≤
umax

i

∥∥(LGi
Vi)T

∥∥
[
1 +

√
1 + (umax

i ‖(LGi
Vi)T ‖)2

]

∥∥(LGiVi)T
∥∥

[
1 +

√
1 + (umax

i ‖(LGiVi)T ‖)2
] = umax

i

(E.3)
which shows that the constraints are satisfied. Consider now the i-th sub-
system of the switched nonlinear system of Eq.7.1. Substituting the control
law of Eqs.7.6-7.8, evaluating the time-derivative of the Lyapunov function
along the closed-loop trajectories, and using the fact that ‖(LGi

Vi)T ‖2 =
(LGi

Vi)(LGi
Vi)T , we obtain:

V̇i = Lfi
Vi + LGi

Viui + LWi
Viθi

≤ Lfi
Vi + χi‖ (LWi

Vi)
T ‖θbi

−




L∗fi
Vi +

√
(L∗∗fi

Vi)2 + (umax
i ‖(LGiVi)T ‖)4

‖(LGi
Vi)T ‖2

[
1 +

√
1 + (umax

i ‖(LGiVi)T ‖)2
]




(E.4)

After performing some algebraic manipulations, the above inequality can be
re-written as:

V̇i ≤ αi(x) +




θbi

∥∥∥(LWiVi)
T
∥∥∥

(
φi − (χ− 1) ‖x‖

‖x‖+ φi

)
− ρi

(
‖x‖2

‖x‖+ φi

)

[
1 +

√
1 + (umax

i ‖(LGiVi)T ‖)2
]




(E.5)
where

αi(x) =




(
LfiVi + χiθbi

∥∥∥(LWiVi)
T
∥∥∥
) √

1 + (umax
i ‖(LGiVi)T ‖)2

[
1 +

√
1 + (umax

i ‖(LGiVi)T ‖)2
]




−



−

√(
L∗∗fi

Vi

)2

+ (umax
i ‖(LGiVi)T ‖)4

[
1 +

√
1 + (umax

i ‖(LGiVi)T ‖)2
]




(E.6)

To analyze the sign of V̇i in Eq.E.5, we initially study the sign of the term,
αi(x), on the right-hand side. It is clear that the sign of this term depends on
the sign of the term LfiVi + χi

∥∥∥(LWiVi)
T
∥∥∥ θbi. To this end, we consider the

following two cases:
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Case 1: L∗∗fi
Vi ≤ 0

Since L∗∗fi
Vi = Lfi

Vi + ρi ‖x‖ + χi‖ (LWi
Vi)

T ‖θbi and ρi is a positive real
number, the fact that L∗∗fi

Vi ≤ 0 implies that LfiVi + χi ‖LWiVi‖ θbi ≤ 0. As
a result, we have that αi(x) ≤ 0 and the time-derivative of Vi in this case
satisfies the following bound:

V̇i ≤




∥∥∥(LWi
Vi)

T
∥∥∥ θbi

(
φi − (χi − 1) ‖x‖

‖x‖+ φi

)
− ρi

(
‖x‖2

‖x‖+ φi

)

[
1 +

√
1 + (umax

i ‖(LGiVi)T ‖)2
]




:= βi(x)

(E.7)
Case 2: 0 < L∗∗fi

Vi ≤ umax
i

∥∥(LGi
Vi)T

∥∥
In this case, we have:

(
L∗∗fi

Vi

)2

≤ (
umax

i ‖(LGiVi)T ‖)2 (E.8)

and therefore:

−
√(

L∗∗fi
Vi

)2

+ (umax
i ‖(LGiVi)T ‖)4

= −
√(

L∗∗fi
Vi

)2

+ (umax
i ‖(LGiVi)T ‖)2(umax

i ‖(LGiVi)T ‖)2

≤ −
(
L∗∗fi

Vi

)√
1 + (umax

i ‖(LGiVi)T ‖)2

(E.9)

Substituting the estimate of Eq.E.9 in the expression for V̇i in Eqs.E.5-E.6
yields:

V̇i =
−ρi‖x‖

√
1 + (umax

i ‖(LGiVi)T ‖)2
[
1 +

√
1 + (umax

i ‖(LGiVi)T ‖)2
] + βi(x)

≤ βi(x)

(E.10)

From the above analysis, it is clear that whenever L∗∗fi
Vi ≤ umax

i ‖(LGiVi)T ‖,
the inequality of Eq.E.7 holds. Since Ω∗

i (umax
i , θbi) is taken to be the largest

invariant set embedded within the region described by Eq.7.9, we have that
starting from any x(0) ∈ Ω∗

i , the inequality of Eq.E.7 holds. Referring to
this inequality, note that since χi > 1 and ρi > 0, it is clear that, whenever

‖x‖ >
φi

χi − 1
, the first term on the right-hand side is strictly negative, and

therefore V̇i satisfies:
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V̇i ≤ − ρi ‖x‖2

(‖x‖+ φi)
[
1 +

√
1 + (umax

i ‖(LGiVi)T ‖)2
]

(E.11)

To study the behavior of V̇i when ‖x‖ <≤ φi/(χi − 1), we first note that since
the entries of the matrix function, Wi(x), and the entries of the row vector,
∇xVi, are smooth and vanish when x = 0, then there exists positive real
constants, φ1

i , δi and δ′i, such that if φi ≤ φ1
i , the bounds ‖Wi(x)‖ ≤ δi‖x‖,

‖∇T
x Vi‖ ≤ δ′i‖x‖ hold for ‖x‖ ≤ φi/(χi − 1). Using this bound, we obtain the

following estimates:
∥∥∥(LWi

Vi)
T
∥∥∥ θbi (φi − (χi − 1) ‖x‖) ≤

∥∥∥(LWi
Vi)

T
∥∥∥ θbiφi

= ‖Wi(x)‖
∥∥∇T

x Vi

∥∥ θbiφi

≤ φiθbiδiδ
′
i‖x‖2 ∀ ‖x‖ ≤ φi

χi − 1
(E.12)

Substituting the estimate of Eq.E.12 directly into Eq.E.7, we get:

V̇i ≤




(φiθbiδiδ
′
i − ρi) ‖x‖2

(‖x‖+ φi)
[
1 +

√
1 + (umax

i ‖(LGiVi)T ‖)2
]


 ∀ ‖x‖ ≤ φi

χi − 1

(E.13)
If φi is sufficiently small to satisfy the bound φi ≤ ρi

θbiδiδ′i
:= φ2

i , then it is clear

from Eqs.E.11-E.13 that the inequality in Eq.E.11 is satisfied, irrespective of
the value of ‖x‖. In summary, we have that for any initial condition in the
invariant set, Ω∗

i , there exists φ∗i := min{φ1
i , φ

2
i } such that if φi ≤ φ∗i , V̇i

satisfies:

V̇ ≤ −ρi ‖x‖2

(‖x‖+ φi)
[
1 +

√
1 + (umax

i ‖(LGiVi)T ‖)2
] < 0 ∀ x 6= 0, i = 1, · · · , N

(E.14)
which implies that the origin of the individual closed-loop subsystems are
asymptotically stable.

Step 2: Consider now the switched closed-loop system and, without loss of gen-
erality, suppose that x(0) ∈ Ω∗

i for some i ∈ I. Then it follows from Eq.E.14
above and the invariance of Ω∗

i that the Lyapunov function for this mode, Vi,
decays monotonically, along the trajectories of the closed-loop system, for as
long as mode i is to remain active, i.e., for all times such that σ(t) = i. If at
any time T , such that x(T ) ∈ Ω∗

j for some j ∈ I, j 6= i, we set σ(T+) = j (i.e.,
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activate mode j and its respective controller), then using the same argument,
it is clear that the corresponding Lyapunov function for this mode, Vj , will
also decay monotonically for as long as we keep σ(t) = j. Note that T , which
is the time that mode i is switched out, is not known a priori but is rather
determined by the evolution of the closed-loop continuous state. By tracking
the closed-loop trajectory in this manner, we conclude that, starting from any
x(0) ∈ Ω∗

i for any i ∈ I and as long as the i-th mode (and its controller) is
activated only at a time when x(t) ∈ Ω∗

i , we have that for all i ∈ I, k ∈ Z+:

V̇σ(tik
) < 0 ∀ t ∈ [tik

, ti′
k
) (E.15)

where tik
and ti′

k
refer, respectively, to the times that the i-th mode is switched

in and out for the k-th time, by the supervisor. Furthermore, from Eq.7.11,
we have that for any admissible switching time, tik

:

Vi(x(tik
)) < Vi(x(ti′

k−1
)) (E.16)

which consequently implies that:

Vi(x(tik
)) < Vi(x(tik−1)) (E.17)

since Vi(x(ti′
k−1

)) < Vi(x(tik−1)) from Eq.E.15. Using Eqs.E.15-E.17, a direct
application of the MLF result of Theorem 2.3 in [39] can be performed to
conclude that the switched closed-loop system, under the switching laws of
Theorem 7.1, is Lyapunov stable. To prove asymptotic stability, we note that
Eq.E.16 also implies:

Vi(x(ti′
k
)) < Vi(x(ti′

k−1
)) (E.18)

since Vi(x(ti′
k
)) < Vi(x(tik

)) from Eq.E.15. From the strict inequality in
Eq.E.18, it follows that for every (infinite) sequence of switching times,
ti′1 , ti′2 , · · ·, such that σ(t+ik

) = σ(t−i′
k
) = i, the sequence Vσ(t−

i′
1
), Vσ(t−

i′
2
), · · · is

decreasing and positive, and therefore has a limit L ≥ 0. We have:

0 = L− L = lim
k→∞

Vσ(t−
i′
k+1

)(x(ti′
k+1

))− lim
k→∞

Vσ(t−
i′
k

)(x(ti′
k
))

= lim
k→∞

[
Vi(x(ti′

k+1
))− Vi(x(ti′

k
))

] (E.19)

Note that the term in brackets in the above equation is strictly negative for
all nonzero x and zero only when x = 0 (from Eq.E.18) . Therefore, there
exists a function α of class K (i.e., continuous, increasing, and zero at zero)
such that: [

Vi(x(ti′
k+1

))− Vi(x(ti′
k
))

]
≤ −α(‖x(ti′

k
)‖) (E.20)

Substituting the above estimate into Eq.E.19, we have:

0 = lim
k→∞

[
Vi(x(ti′

k+1
))− Vi(x(ti′

k
))

]

≤ lim
k→∞

[
−α(‖x(ti′

k
)‖)

]
≤ 0

(E.21)
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which implies that x(t) converges to the origin. This fact, together with Lya-
punov stability, implies that the origin of the switched closed-loop system is
asymptotically stable. This concludes the proof of the theorem. 4

Proof of Theorem 7.11:
The proof of this theorem shares several steps with the Proof of Theorem 7.1.
We will highlight only the differences.

Step 1: We have already shown in Step 1 of the Proof of Theorem 7.1 that, for
each mode considered separately, the evolution of the corresponding Lyapunov
function, starting from any x(0) ∈ Ω∗

i , obeys the growth bound of Eq.E.11

whenever ‖x‖ ≥ φi

χi − 1
. Since the uncertain variables are non-vanishing, the

bounds used in Eq.E.12 to establish asymptotic convergence to the origin
cannot be invoked here and no further conclusion can be made regarding the

sign of V̇i when ‖x‖ <
φi

χi − 1
. However, from Eq.E.11, we conclude that V̇i is

negative-definite outside a ball of radius εi = φi/(χi − 1), which implies (see
Theorem 5.1 and its corollaries in [148]) that, for any x(0) ∈ Ω∗

i , there exists
a finite time t1 such that the solution to the i-th closed-loop system satisfies:

‖x(t)‖ ≤ βi(‖x0‖, t), ∀ 0 ≤ t < t1

‖x(t)‖ ≤ bi(εi), ∀ t ≥ t1
(E.22)

where βi(·, ·) is a class KL function and bi(·) is of class K∞. This implies that
the state is ultimately bounded and that the ultimate bound can be made
arbitrarily small by choosing εi to be sufficiently small.

Step 2: Having established boundedness of the trajectory of the individual
closed-loop modes of the hybrid system, we proceed in this step to show
boundedness of the overall switched closed-loop trajectory. To this end, given
any positive real number, d, it follows from the properties of class K∞ func-
tions that there exist a set of positive real numbers, {ε∗1, ε∗2, · · · , ε∗N}, such
that:

b1(ε∗1) = b2(ε∗2) = · · · = bN (ε∗N ) ≤ d (E.23)

where ε∗i ≥ εi, ∀ i ∈ I, which ensures that all modes share a common residual
set. Since switching occurs only in regions where the various stability regions
intersect (as required by Eq.7.10), we need consider only the case when the
intersection,

⋂
iΩ

∗
i , is nonempty and choose d such that the set D = {x ∈

IRn : ‖x‖ ≤ d} ⊂ ⋂
iΩ

∗
i , i = 1, · · · , N .

Without loss of generality, assume that x(0) ∈ Ω∗
i for some i ∈ I. If this

mode remains active for all times, then boundedness follows directly from the
analysis in Step 1 above. If switching takes place, however, then it follows
from the switching rules of Eqs.7.10-7.11 that for every admissible sequence
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of switching times, ti1 , ti2 , · · ·, such that σ(t+ik
) = i and ‖x(tik

)‖ > d, the pos-
itive sequence Vσ(ti1 ), Vσ(ti2 ), · · · is monotonically decreasing. This, together
with the fact that the set D is non-empty and completely contained within
Ω∗

i , implies the existence of a finite k∗ such that ‖x(tik
)‖ ≤ d for some k ≥ k∗,

k ∈ Z+. Since N is finite, and only a finite number of switches are allowed over
any finite time-interval, the preceding analysis implies that, if εi ≤ ε∗i , ∀ i ∈ I,
there exists finite time, t′ > 0, during which (at least) one of the modes will
converge to D. Since D was chosen to be a common residual set for all the
modes (Eq.E.23), it follows that ‖x(t)‖ ≤ d for all t ≥ t′, regardless of which
mode is switched in or out for t ≥ t′. Therefore, the switched closed-loop
trajectory is bounded for all times. This concludes the proof of the theorem.
4

Proof of Proposition 7.16:
The proof consists of two parts. In the first part, we establish that the bounded
state feedback control law of Eqs.7.19–7.20 enforces asymptotic stability for
all initial conditions in Ωk with a certain robustness margin. In the second
part, given the size of a ball around the origin that the system is required
to converge to, dk,we show the existence of a positive real number, ∆∗

k, such
that if the discretization time ∆ is chosen to be in the interval (0, ∆∗

k], then
Ωk remains invariant under discrete implementation of the bounded control
law, and also that the state of the closed–loop system converges to the ball
‖x‖ ≤ dk.
Part 1: Substituting the control law of Eqs.7.19–7.20 into the system of
Eq.7.18 for a fixed σ(t) = k, it can be shown that:

V̇k(x) = Lfk
Vk(x) + LGk

Vk(x)u(x) ≤ −ρkVk[
1 +

√
1 + (umax

k ‖(LGk
Vk)T (x)‖)2

]

(E.24)
for all x ∈ Ωk, where Ωk was defined in Eqs.7.21. Since the denominator term
in Eq.E.24 is bounded in Ωk, there exists a positive real number, ρ∗k, such that
V̇k ≤ −ρ∗kVk for all x ∈ Ωk, which implies that the origin of the closed–loop
system, under the control law of Eqs.7.19–7.20, is asymptotically stable, with
Ωk as an estimate of the domain of attraction.
Part 2: Note that since Vk(·) is a continuous function of the state, one can
find a finite, positive real number, δ

′
k, such that Vk(x) ≤ δ

′
k implies ‖x‖ ≤ dk.

In the rest of the proof, we show the existence of a positive real number ∆∗
k

such that all closed–loop state trajectories originating in Ωk converge to the
level set of Vk (Vk(x) ≤ δ

′
k) for any value of ∆ ∈ (0,∆∗

k] and hence we have
that lim sup

t→∞
‖x(t)‖ ≤ dk.

To this end, consider a “ring” close to the boundary of the stability region,
described by Mk := {x ∈ IRn : (cmax

k − δk) ≤ Vk(x) ≤ cmax
k } (see also Figure

7.10), for a 0 ≤ δk < cmax
k . Let the control action be computed for some
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x(0) := x0 ∈Mk and held constant until a time ∆∗∗
k , where ∆∗∗

k is a positive
real number (uk(t) = uk(x0) := u0 ∀ t ∈ [0,∆∗∗

k ]). Then, ∀ t ∈ [0,∆∗∗
k ],

V̇k(x(t)) = Lfk
Vk(x(t)) + LGk

Vk(x(t))u0

= Lfk
Vk(x0) + LGk

Vk(x0)u0 + (Lfk
Vk(x(t))− Lfk

Vk(x0))
+(LGk

Vk(x(t))u0 − LGk
Vk(x0)u0)

(E.25)

Since the control action is computed based on the states in Mk ⊆ Ωk,
Lfk

Vk(x0)+LGk
Vk(x0)u0 ≤ −ρ∗kVk(x0). By definition, for all x0 ∈Mk, Vk(x0) ≥

cmax
k − δk, therefore Lfk

V (x0) + LGk
Vk(x0)u0 ≤ −ρ∗k(cmax

k − δk).
Since the function fk(·) and the elements of the matrix Gk(·) are contin-

uous, ‖uk‖ ≤ umax
k , and Mk is bounded, one can find, for all x0 ∈Mk and a

fixed ∆∗∗
k , a positive real number K1

k , such that ‖x(t)− x0‖ ≤ K1
k∆∗∗

k for all
t ≤ ∆∗∗

k .
Since the functions Lfk

Vk(·), LGk
Vk(·) are continuous, then given that

‖x(t) − x0‖ ≤ K1
k∆∗∗

k , one can find positive real numbers K2
k and K3

k

such that ‖Lfk
Vk(x(t)) − Lfk

Vk(x0)‖ ≤ K3
kK1

k∆∗∗
k and ‖LGk

Vk(x(t))u0 −
LGk

Vk(x0)u0‖ ≤ K2
kK1

k∆∗∗
k . Using these inequalities in Eq.E.25, we get:

V̇k(x(t)) ≤ −ρ∗k(cmax
k − δk) + (K1

kK2
k + K1

kK3
k)∆∗∗

k (E.26)

For a choice of ∆∗∗
k <

ρ∗k(cmax
k − δk)− εk

(K1
kK2

k + K1
kK3

k)
, where εk is a positive real number

that satisfies
εk < ρ∗k(cmax

k − δk) (E.27)

we get that V̇k(x(t)) ≤ −εk < 0 for all t ≤ ∆∗∗
k . This implies that, given δ

′
k, if

we pick δk such that cmax
k − δk < δ

′
k and find a corresponding value of ∆∗∗

k ,
then if the control action is computed for any x ∈Mk, and the ‘hold’ time is
less than ∆∗∗

k , we get that V̇k remains negative during this time, and therefore
the state of the closed–loop system cannot escape Ωk (since Ωk is a level set of
Vk). We now show the existence of ∆

′
k such that for all x0 ∈ Ωf

k := {x ∈ IRn :
Vk(x0) ≤ cmax

k − δk}, we have that x(∆) ∈ Ωu
k := {x0 ∈ IRn : Vk(x0) ≤ δ

′
k},

where δ
′
k < cmax

k , for any ∆ ∈ (0,∆
′
k].

Consider ∆
′
k such that:

δ′k = max
Vk(x0)≤cmax

k
−δk, uk∈Uk, t∈[0,∆

′
k
]
Vk(x(t)) (E.28)

Since Vk is a continuous function of x, and x evolves continuously in time, then
for any value of δk < cmax

k , one can choose a sufficiently small ∆
′
k such that

Eq.E.28 holds. Let ∆∗
k = min{∆∗∗

k , ∆
′
k}. We now show that for all x0 ∈ Ωu

k

and ∆k ∈ (0,∆∗
k], x(t) ∈ Ωu

k for all t ≥ 0.
For all x0 ∈ Ωu

k

⋂
Ωf

k , by definition x(t) ∈ Ωu
k for 0 ≤ t ≤ ∆k (since

∆k ≤ ∆
′
k). For all x0 ∈ Ωu

k\Ωf
k (and hence x0 ∈ Mk), V̇k < 0 for 0 ≤ t ≤ ∆

(since ∆k ≤ ∆∗∗
k ). Since Ωu

k is a level set of Vk, then x(t) ∈ Ωu
k for 0 ≤ t ≤ ∆k.

Either way, for all initial conditions in Ωu
k , x(t) ∈ Ωu

k for all future times.
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We note that for x such that x ∈ Ωk\Ωu
k , negative definiteness of V̇k

is guaranteed for ∆ ≤ ∆∗
k ≤ ∆∗∗

k . Hence, all trajectories originating in Ωk

converge to Ωu
k , which has been shown to be invariant under the bounded

control law with a hold time ∆ less than or equal to ∆∗
k, and therefore, for all

x0 ∈ Ωk, lim sup
t→∞

Vk(x(t)) ≤ δ
′
k. Finally, since Vk(x) ≤ δ

′
k implies ‖x‖ ≤ dk, we

have that lim sup
t→∞

‖x(t)‖ ≤ dk. This completes the proof of Proposition 7.16.4

Proof of Proposition 7.18:
From the proof of Proposition 7.16, we infer that given a positive real number,
dk, there exists an admissible manipulated input trajectory (provided by the
bounded controller), and values of ∆∗

k and δ
′
k, such that for any ∆ ∈ (0,∆∗

k]
and x(0) ∈ Ωk, lim sup

t→∞
Vk(x(t)) ≤ δ

′
k and lim sup

t→∞
‖x(t)‖ ≤ dk. The rest of the

proof is divided in three parts. In the first part, we show that for all x0 ∈ Ωk,
the predictive controller of Eqs.7.23-7.28 is feasible. We then show that Ωk is
invariant under the predictive control algorithm of Eqs.7.23-7.28. Finally, we
prove practical stability for the closed–loop system.

Part 1: Consider some x0 ∈ Ωk under the predictive controller of Eqs.7.23-
7.28, with a prediction horizon T = N∆, where ∆ is the hold time and
1 ≤ N < ∞ is the number of prediction steps. The initial condition can be
such that either Vk(x0) ≤ δ

′
or δ

′
k < Vk(x0) ≤ cmax

k .
Case 1: If δ

′
k < Vk(x0) ≤ cmax

k , the control input trajectory under the bounded
controller of Eqs.7.19–7.20 provides a feasible solution to the constraint of
Eq.7.25 (see Proposition 7.16), given by u(j∆) = bk(x(j∆)), j = 1, · · · , N .
Note that if u = bk for t ∈ [0,∆], and ∆ ∈ (0,∆∗

k], then V̇k(x(t)) ≤ −εk <
0 ∀ t ∈ [0,∆] and bk(x(t)) ∈ Uk (since bk is computed using the bounded
controller of Eqs.7.19–7.20).
Case 2: If Vk(x0) ≤ δ

′
k, once again we infer from Proposition 7.16 that the

control input trajectory provided by the bounded controller of Eqs.7.19–7.20
provides a feasible initial guess, given by u(j∆) = bk(x(j∆)), j = 1, · · · , N
(recall from Proposition 7.16 that under the bounded controller of Eqs.7.19–
7.20, if Vk(x0) ≤ δ

′
k then Vk(x(t)) ≤ δ

′
k ∀ t ≥ 0 ). This shows that for all

x0 ∈ Ωk, the Lyapunov–based predictive controller of Eqs.7.23-7.28 is feasible.
Part 2: As shown in Part 1, for any x0 ∈ Ωk\Ωu

k , the constraint of Eq.7.25
in the optimization problem is feasible. Upon implementation, therefore, the
value of the Lyapunov function decreases. Since Ωk is a level set of Vk, the
state trajectories cannot escape Ωk. On the other hand, if x0 ∈ Ωu

k , feasibility
of the constraint of Eq.7.26 guarantees that the closed–loop state trajectory
stays in Ωu

k ⊂ Ωk. In both cases, Ωk continues to be an invariant region under
the Lyapunov–based predictive controller of Eqs.7.23-7.28.

Part 3: Finally, consider an initial condition x0 ∈ Ωk\Ωu
k . Since the optimiza-

tion problem continues to be feasible, we have that V̇k < 0 for all x(t) /∈ Ωu
k ,

i.e., Vk(x(t)) > δ
′
k. All trajectories originating in Ωk, therefore converge to Ωu

k .
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For x0 ∈ Ωu
k , the feasibility of the optimization problem implies x(t) ∈ Ωu

k ,
i.e., Vk(x(t)) ≤ δ′k. Therefore, for all x0 ∈ Ωk, lim sup

t→∞
Vk(x(t)) ≤ δ

′
k. Also,

since Vk(x) ≤ δ
′
k implies ‖x‖ ≤ dk, we have that lim sup

t→∞
‖x(t)‖ ≤ dk. This

completes the proof of Proposition 7.18. 4

Proof of Theorem 7.24:
The proof of this theorem follows from the assumption of feasibility of the
constraints of Eqs.7.32-7.34 at all times. Given the radius of the ball around
the origin, dmax, the values of δ

′
k and ∆∗

k, for all k ∈ K, are computed the
same way as in the Proof of Proposition 7.16. Then, for the purpose of MPC
implementation, a value of ∆kr

∈ (0,∆∗] is chosen where ∆∗ = min
k=1,...,p

∆∗
k

and tkout
r

− tkin
r

= lkr∆kr for some integer lkr > 0 (note that given any two
positive real numbers tkout

r
− tkin

r
and ∆∗, one can always find a positive real

number ∆kr
≤ ∆∗ such that tkout

r
− tkin

r
= lkr

∆kr
for some integer lkr

> 0).

Part 1: First, consider the case when the switching sequence is infinite. Let
t be such that tkin

r
≤ t < tkout

r
and tmin

j
= tkout

r
< ∞. Consider the active

mode k. If Vk(x) > δ
′
k, the continued feasibility of the constraint of Eq.7.32

implies that Vk(x(tkout
r

)) < Vk(x(tkin
r

)). The transition constraint of Eq.7.34
ensures that if this mode is switched out and then switched back in, then
Vk(x(tkin

r+1
)) < Vk(x(tkin

r
)). In general, Vk(x(tkin

l
)) < Vk(x(tkin

l−1
)) < · · · <

cmax
k . Under the assumption of feasibility of the constraints of Eqs.7.32-7.34

for all future times, therefore, the value of Vk(x) continues to decrease. If the
mode corresponding to this Lyapunov function is not active, there exists at
least some j ∈ 1, · · · , p such that mode j is active and Lyapunov function Vj

continues to decrease until the time that Vj ≤ δ
′
j (this happens because there

are finite number of modes, even if the number of switches may be infinite).
From this point onwards, the constraint of Eq.7.33 ensures that Vj continues
to be less than δ

′
j ; hence, lim sup

t→∞
‖x(t)‖ ≤ dmax.

Part 2: For the case of a finite switching sequence, consider a t such that
tkin

r
≤ t < tkout

r
= ∞. Under the assumption of continued feasibility of

Eqs.7.32-7.34, Vk(x(tkin
r

)) < Vk(x(tkin
r−1

)) < · · · < cmax
k . At the time of

the switch to mode k, therefore, x(tkin
r

) ∈ Ωk. From this point onwards,
the Lyapunov-based predictive controller is implemented using the Lyapunov
function Vk, and the constraint of Eq.7.34 is removed, in which case the predic-
tive controller of Theorem 7.24 reduces to the predictive controller of Eqs.7.23-
7.27. Since the value of ∆kr is chosen to be in (0,∆∗], where ∆∗ = min

k=1,...,p
∆∗

k,

we have ∆kr < ∆∗
k, which guarantees feasibility and convergence to the ball

‖x‖ ≤ dmax for any value of the prediction horizon (hence, for a choice of
T = Tdesign), and leads to lim sup

t→∞
‖x(t)‖ ≤ dmax. This completes the proof of

Theorem 7.24. 4
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F

Proofs of Chapter 9

Proof of Theorem 9.7:
Under the controller of Eq.9.21, the closed-loop system takes the form:

ω̇ = F(ω, h(x(t− α)), v)

ẋ = Ax(t) + Bx(t− α) + f(x(t), x(t− α))

+g(x(t), x(t− α))P(ω, h(x(t− α)), t),

x(ξ) = η̄(ξ), ξ ∈ [−α, 0), x(0) = η̄0

(F.1)

Introducing the extended state vector ω̂ = [ωT xT ]T , the above system can
be written in the following compact form:

˙̂ω = F̄(ω̂(t), ω̂(t− α)) (F.2)

where the specific form of the vector F̄(ω̂(t), ω̂(t−α)) can be easily obtained
by comparing Eq.F.1 and Eq.F.2, and it is omitted here for brevity. From
the fact that the controller of Eq.9.21 enforces local exponential stability and
asymptotic output tracking in the closed-loop system when α = 0, we have
that the system:

˙̂ω = F̄(ω̂(t), ω̂(t)) (F.3)

is locally exponentially stable. For t ≥ 2α, the system of Eq.F.2 can be rewrit-
ten as:

˙̂ω = F̄(ω̂(t), ω̂(t)) + [F̄(ω̂(t), ω̂(t− α))− F̄(ω̂(t), ω̂(t))]

= F̄(ω̂(t), ω̂(t))−
∫ t

t−α

∂F̄
∂ω̂

(ω̂(θ), ω̂(θ), t)F̄(ω̂(θ − α), ω̂(θ))dθ
(F.4)

We consider the function V = ω̂T (t)ω̂(t) as a Lyapunov function candidate for
the system of Eq.F.4. Computing the time-derivative of V along the trajectory
of the system of Eq.F.4, we obtain:
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V̇ = 2ω̂(t)F̄(ω̂(t), ω̂(t))− 2
∫ t

t−α

ω̂(t)
∂F̄
∂ω̂

(ω̂(θ), ω̂(θ), t)F̄(ω̂(θ − α), ω̂(θ))dθ

(F.5)
From the smoothness of the function F̄ , we have that there exists an L such

that
∥∥∥∥

∂F̄
∂ω̂

(ω̂(θ), ω̂(θ), t)
∥∥∥∥

IRn

≤ L, and the bound on V̇ of Eq.F.5, takes the

form:

V̇ ≤ 2ω̂(t)F̄(ω̂(t), ω̂(t)) + 2L2

∫ t

t−α

‖ω̂(t)ω̂(θ − α)‖dθ

≤ 2ω̂(t)F̄(ω̂(t), ω̂(t)) + 2L2‖ω̂(t)‖
∫ t

t−α

‖ω̂(θ − α)‖dθ

(F.6)

Now, given a positive real number q̄ > 1, we consider the set of all ω̂(t) that
satisfy:

ω̂2(t− ξ) ≤ q̄2ω̂2(t), 0 ≤ ξ ≤ 2α (F.7)

for which, we have that:

V̇ ≤ 2ω̂(t)F̄(ω̂(t), ω̂(t)) + 2L2αq̄‖ω̂(t)‖2 (F.8)

From the fact that the controller of Eq.9.21 enforces local exponential stability
and asymptotic output tracking in the closed-loop system when α = 0, we have
that the system:

˙̂ω = F̄(ω̂(t), ω̂(t)) (F.9)

is locally exponentially stable, which implies that:

2ω̂(t)F̄(ω̂(t), ω̂(t)) ≤ −a‖ω̂(t)‖2 (F.10)

where a is a positive real number. Substituting the above bound into Eq.F.8,
we obtain:

V̇ ≤ −a‖ω̂(t)‖2 + 2L2αq̄‖ω̂(t)‖2

≤ −(a− 2L2αq̄)‖ω̂(t)‖2
(F.11)

For α <
a

2L2q̄
, we have that V̇ ≤ 0, and using Theorem 4.2 from [108], we di-

rectly obtain that the system of Eq.F.1 is exponentially stable. The proof that
limt→∞ ‖y− v‖ = 0 is conceptually similar and will be omitted for brevity. 4

Proof of Theorem 9.9:
Substitution of the controller of Eq.9.37 into the system of Eq.9.2 with α̃ = 0,
yields the following system:

ẋ = Ax + Bx(t− α) + f(x, x(t− α))

+g(x, x(t− α))A(x(t), v̄(t), x(t− α), v̄(t− α))

y = h(x)

(F.12)
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Using that f(x(t), x(t−α)) = f1(x(t)) + f2(x(t), x(t−α)), f̃(x(t)) = Ax(t) +
f1(x(t)), and p̄(x(t), x(t − α)) = Bx(t − α) + f2(x(t), x(t − α)), the above
system can be written as:

ẋ = f̃(x(t)) + g(x(t), x(t− α))A(x(t), v̄(t), x(t− α), v̄(t− α))

+p̄(x(t), x(t− α))

y = h(x)

(F.13)

Applying the coordinate transformation of Eq.9.27 to the above system and
setting, for ease of notation, x(s) = X−1(ζ(s), η(s)), s ∈ [t− α, t], we obtain:

ζ̇1 = ζ2 + p1(ζ(t), η(t), ζ(t− α), η(t− α))
...

ζ̇r−1 = ζr + pr−1(ζ(t), η(t), ζ(t− α), η(t− α))

ζ̇r = Lr
f̃
h(x) + LgL

r−1

f̃
h(x)A(x(t), v̄(t), x(t− α), v̄(t− α))

+pr(ζ(t), η(t), ζ(t− α), η(t− α))

η̇1 = Ψ1(ζ(t), η(t), ζ(t− α), η(t− α))
...

η̇n−r = Ψn−r(ζ(t), η(t), ζ(t− α), η(t− α))
y = ζ1

(F.14)

Introducing, the variables ei = ζi− v(i−1), i = 1, · · · , r, the system of Eq.F.14
takes the form:

ė1 = e2 + p1(ē(t) + v̄(t), η(t), ē(t− α) + v̄(t− α), η(t− α))
...

ėr−1 = er + pr−1(ē(t) + v̄(t), η(t), ē(t− α) + v̄(t− α), η(t− α))

ėr = Lr
f̃
h(x)− v(r) + LgL

r−1

f̃
h(x)A(x(t), v̄(t), x(t− α), v̄(t− α))

+pr(ē(t) + v̄(t), η(t), ē(t− α) + v̄(t− α), η(t− α))

η̇1 = Ψ1(ē(t) + v̄(t), η(t), ē(t− α) + v̄(t− α), η(t− α))

...

η̇n−r = Ψn−r(ē(t) + v̄(t), η(t), ē(t− α) + v̄(t− α), η(t− α))

(F.15)

where ē = [e1 e2 · · · er]T . For the above system, we assume, without loss of
generality, that when η = 0, ē = 0 is an equilibrium solution.

We now consider the ē-subsystem of the system of Eq.F.15:
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ė1 = e2 + p1(ē(t) + v̄(t), η(t), ē(t− α) + v̄(t− α), η(t− α))

...

ėr−1 = er + pr−1(ē(t) + v̄(t), η(t), ē(t− α) + v̄(t− α), η(t− α))

ėr = Lr
f̃
h(x)− v(r) + LgL

r−1

f̃
h(x)A(x(t), v̄(t), x(t− α), v̄(t− α))

+pr(ē(t) + v̄(t), η(t), ē(t− α) + v̄(t− α), η(t− α))

(F.16)

Using the explicit form of the controller formula of Eq.9.37 and the definition
for the matrix Ã and the vectors b, p of Eq.9.32, the above system can be
written in the following compact form:

˙̄e = Ãē− bR−1
2 bT P ē + p(ē(t) + v̄(t), η(t), ē(t− α) + v̄(t− α), η(t− α))

(F.17)
We will now show that if Eq.9.36 has a unique positive definite solution for
P and the state of the η-subsystem of Eq.F.15 is bounded, then the system
of Eq.F.17 is exponentially stable, which implies that limt→∞ ‖y − v‖ = 0.
To establish this result, we consider the following smooth functional V : C →
IR≥0:

V (ēt(ξ)) = ēT P ē + a2

∫ t

t−α

ēT (s)ē(s)ds (F.18)

which clearly satisfies, K1‖ē(t)‖2 ≤ V (ēt(ξ)) ≤ K2‖ēt(ξ)‖2, for some positive
constants K1 and K2. Computing the time-derivative of V along the trajec-
tories of the system of Eq.F.17, we obtain:

V̇ = ˙̄eT
P ē + ēT P ˙̄e + a2(ēT (t)ē(t)− ēT (t− α)ē(t− α))

≤ (ēT ÃT − ēT PT bR−1
2 bT

+pT (ē(t) + v̄(t), η(t), ē(t− α) + v̄(t− α), η(t− α)))P ē

+ēT P (Ãē− bR−1
2 bT P ē

+p(ē(t) + v̄(t), η(t), ē(t− α) + v̄(t− α), η(t− α)))

+a2(ēT (t)ē(t)− ēT (t− α)ē(t− α))

≤ ēT (ÃT P + PÃ− 2PT bR−1
2 bT P + a2In×n)ē

+2pT (ē(t) + v̄(t), η(t), ē(t− α) + v̄(t− α), η(t− α))P ē

−a2ēT (t− α)ē(t− α)

(F.19)

where In×n denotes the identity matrix of dimension n×n. Using the inequal-
ity 2xT y ≤ xT x + yT y where x and y are column vectors, we obtain:

V̇ ≤ ēT (ÃT P + PÃ− 2PT bR−1
2 bT P + a2In×n)ē

+p2(ē(t) + v̄(t), η(t), ē(t− α) + v̄(t− α), η(t− α))

+ēT P 2ē− a2ēT (t− α)ē(t− α)
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≤ ēT (ÃT P + PÃ− 2PT bR−1
2 bT P + a2In×n + P 2)ē

+p2(ē(t) + v̄(t), η(t), ē(t− α) + v̄(t− α), η(t− α))

−a2ēT (t− α)ē(t− α)
(F.20)

Since the state of the η-subsystem of Eq.F.15 is supposed to be bounded and
assuming quadratic growth for the term p2(ē(t) + v̄(t), η(t), ē(t − α) + v̄(t −
α), η(t−α)) (Assumption 9.3), we have that there exist positive real numbers
a1, a2 such that the following bound can be written:

‖p(ē(t) + v̄(t), η(t), ē(t− α) + v̄(t− α), η(t− α))‖2 ≤ a1ē
2(t) + a2ē

2(t− α)
(F.21)

Substituting the above inequality on the bound for V̇ in Eq.F.20, we obtain:

V̇ ≤ ēT (ÃT P + PÃ− 2PT bR−1
2 bT P + a2In×n + P 2)ē

+a1ē
2(t) + a2ē

2(t− α)− a2ēT (t− α)ē(t− α)

≤ ēT (ÃT P + PÃ− 2PT bR−1
2 bT P + (a2 + a1)In×n + P 2)ē

−(a2 − a2)ē2(t− α)

(F.22)

Now, if a2 > a2 and there exists a positive definite symmetric matrix P which
solves the following matrix equation:

ÃT P + PÃ− 2PT bR−1
2 bT P + (a2 + a1)In×n + P 2 = −R1 (F.23)

where R1 is a positive definite matrix, then:

V̇ ≤ −ēT R1ē− a3ē
2(t− α)

≤ −λmin(R1)ē2 − a3ē
2(t− α)

(F.24)

where a3 is a positive real number and λmin(R1) denotes the smallest eigen-
value of the matrix R1. Since V and V̇ satisfy the assumptions of Theorem
9.5, we have that there exist positive real numbers K, a such that the state of
the ē−subsystem of Eq.F.16 is exponentially stable i.e., it satisfies:

‖ē(t)‖ ≤ Ke−at‖ē(0)‖ (F.25)

for every value of the delay, α, and thus, limt→∞ ‖y − v‖ = 0.
To complete the proof of the theorem, we need to show that there exists a

positive real number δ such that if max{‖x0(ξ)‖, ‖v̄‖s} ≤ δ, then the state of
the closed-loop system is exponentially stable and the output of the closed-
loop system satisfies limt→∞ ‖y − v‖ = 0. To establish this result, we will
analyze the behavior of the DDE system of Eq.F.15 using a two-step small-
gain theorem type argument [269]. In the first step, we will use a contradiction
argument to show that the evolution of the states ē, η, starting from sufficiently
small initial conditions i.e., ‖ē0(ξ)‖ ≤ δē and ‖η0(ξ)‖ ≤ δη (where (δē, δη) are
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positive real numbers which can be explicitly computed as functions of δ from
the coordinate change of Eq.9.27), satisfies the following inequalities:

‖ē(t)‖ ≤ δ̄ē , ‖η(t)‖ ≤ δ̄η, ∀ t ∈ [0,∞) (F.26)

where δ̄ē > Kδē and δ̄η > δη are positive real numbers which will be specified
below. In the second step, we will use the boundedness result obtained from
the first step and the exponentially decaying bound of Eq.F.25 to prove that
the state of the η-subsystem of Eq.F.15 decays exponentially to zero.

From Assumption 9.3, we have that the η−subsystem of the system of
Eq.F.15 is input-to-state stable, which implies that there exist a function γ̄ē

of class Q, a function βη of class KL and positive real numbers δ̄ē, δη such
that if ‖η0(ξ)‖ < δη and ‖ēt‖s < δ̄ē, then:

‖η(t)‖ ≤ ‖ηt(ξ)‖ ≤ β(‖η0(ξ)‖, t) + γ̄ē(‖ēt‖s), ∀ t ≥ 0 (F.27)

We will proceed by contradiction. Set δ̄η > βη(δη, 0) + γ̄ē(Kδē) and let T̄ be
the smallest time such that there is a δ̂ so that t ∈ (T̄ , T̄ + δ̂) implies either
‖ē(t)‖ > δ̄ē or ‖η̄(t)‖ > δ̄η. Then, for each t ∈ [0, T̄ ] the conditions of Eq.F.26
hold.

Consider the functions ēT̄ (t), ηT̄ (t) defined as follows:

ēT̄ (t) =
{

ē(t) t ∈ [0, T̄ ]
0 t ∈ (T̄ ,∞)

}
, ηT̄ (t) =

{
η(t) t ∈ [0, T̄ ]
0 t ∈ (T̄ ,∞)

}
(F.28)

Now, using Eq.F.27 we have that:

sup
0≤t≤T̄

(βη(‖η0(ξ)‖, t) + γ̄ē(‖ēt‖s)) ≤ βη(δη, 0) + γ̄ē(Kδē) (F.29)

sup
0≤t≤T̄

(
K‖ē(0)‖e−at

) ≤ K‖ē(0)‖ ≤ Kδē

and that:
‖ēT̄ ‖s ≤ Kδē < δ̄ē

‖ηT̄ ‖s ≤ βη(δη, 0) + γ̄ē(Kδē) < δ̄η

(F.30)

By continuity, we have that there exist some positive real number k̄ such that
‖ēT̄+k̄(t)‖s ≤ δ̄ē and ‖ηT̄+k̄(t)‖s ≤ δ̄η, ∀ t ∈ [0, T̄ + k̄]. This contradicts the
definition of T̄ . Hence, Eq.F.26 holds ∀ t ≥ 0.

Since the states, (ē, η), of the closed-loop system of Eq.F.15 are bounded
and ē(t) decays exponentially to zero, a direct application of the result of The-
orem 2 in [269] implies that the η-subsystem of Eq.F.15 is also exponentially
stable, and thus, the system of Eq.F.15 is exponentially stable and its output
satisfies limt→∞ ‖y − v‖ = 0. 4

Proof of Theorem 9.15:
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We initially construct that dynamical system which describes the dynamics
of the estimation error, et = ωt − xt. Differentiating et and using the systems
of Eq.9.10 and Eq.9.50, we obtain:

det

dt
= Aet + f(P (et + xt), Q(et + xt))− f(Pxt, Qxt)

+ΦHL(ΨH , et + xt)(y(t)− h(P (et + xt)))
(F.31)

Computing the linearization of the above system and applying the spectral
decomposition procedure, we obtain:

dep
t

dt
= Ape

p
t − ΦHL(w(Pep

t + Pen
t ))

∂en
t

∂t
= Anen

t

ep
t (0) = Ppe(0) = Pp(ω̄ − η̄), en

t (0) = Pne(0) = Pn(ω̄ − η̄)

(F.32)

because PnΦHL(ΨH , ωt)(y(t)−h(Pωt)) ≡ 0 by construction, and w =
∂h

∂x
(0).

Since all the eigenvalues of the operator An lie in the left-half of the complex,
this implies that the subsystem:

∂en
t

∂t
= Anen

t (F.33)

is exponentially stable. Therefore, the infinite-dimensional system of Eq.F.32
possesses identical stability properties with the finite-dimensional system:

dep
t

dt
= Ape

p
t + ΦHLwPep

t (F.34)

From the observability Assumption 9.4, however, we have that the above sys-
tem is exponentially stable, which implies that the error system is exponen-
tially to zero, and thus, the estimation error, et = ωt − xt, tends locally
exponentially to zero.

Nonlinear state observer simplification:
The abstract dynamical system of Eq.9.50 can be simplified by utilizing the
fact that:

Aωt(ξ) + ΦHL(ΨH , φ)(y(t)− h(Pωt(ξ)))

=





dφ(ξ)
dξ

+ ΦH(ξ)L(ΨH , φ)(y(t)− h(Pωt(ξ))), ξ ∈ [−α, 0)

Aωt(0) + Bφ(−α)− ΦH(0)L(ΨH , φ)h(Pωt(ξ)), ξ = 0





(F.35)
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which implies that is equivalent to the following system of partial differential
equations:

∂ω̃

∂t
(ξ, t) =

∂ω̃

∂ξ
(ξ, t) + ΦH(ξ)L(ΨH , ω̃(ξ, t))(y(t)− h(ω̃(0, t))) (F.36)

∂ω̃

∂t
(0, t) = Aω̃(0, t) + Bω̃(−α, t) + ΦH(0)L(ΨH , ω̃(ξ, t))(y(t)− h(ω̃(0, t)))

(F.37)
where ω̃(ξ, t) = ωt(ξ). A further simplification can be performed by integrating
the hyperbolic PDE of Eq.F.36 along its characteristics to obtain a nonlinear
integro-differential equation system for the observer. The characteristics of

Eq.F.36 are the family of lines with slope
dt

dξ
= −1, i.e., the set of lines

satisfying t + ξ = c, where c is a constant. Integrating the Eq.F.36 along its
characteristics, we obtain:

dω̃

dξ
(c− ξ, ξ) = −Φ(ξ)L(ΨH , ω̃(ξ, t))h(ω̃(0, c− ξ)) + Φ(ξ)L(ΨH , ω̃(ξ, t))y(c− ξ)

(F.38)
so that:

ω̃(c− θ, θ) = ω̃(c, 0)−
∫ θ

0

Φ(ξ)L(ΨH , ω̃(ξ, t))(h(ω̃(0, c− ξ))− y(c− ξ))dξ,

θ ∈ [−α, 0],
(F.39)

or:

ω̃(t, θ) = ω̃(t + θ, 0)

−
∫ θ

0

Φ(ξ)L(ΨH , ω̃(ξ, t)))(h(ω̃(0, t + θ − ξ))− y(t + θ − ξ))dξ

(F.40)
Finally,

ω̃(t,−α) = ω̃(t− α, 0)−
∫ −α

0

Φ(ξ)L(ΨH , ω̃(ξ, t))(h(ω̃(0, t− α− ξ))

−y(t− α− ξ))dξ

= ω̃(t− α, 0) +
∫ α

0

Φ(ξ − α)L(ΨH , ω̃(ξ, t))(h(ω̃(0, t− ξ))

−y(t− ξ))dξ

(F.41)

Substituting ω̃(t+θ, 0) = ω(t+θ) into Eq.F.37, we obtain the following system:

ω̇ = Aω(t) + Bω(t− α) + f(ω(t), ω(t− α)) + g(ω(t), ω(t− α))u

+ΦH(0)L(ΨH , ω̃(ξ, t))(y(t)− h(ω(t)))

+B

∫ α

0

ΦH(ξ − α)L(ΨH , ω̃(ξ, t))[y(t− ξ)− h(ω(t− ξ))]dξ

(F.42)
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which is identical to the one of Eq.9.51. 4
Proof of Theorem 9.21:
Under the output feedback controller of Eq.9.57, the closed-loop system takes
the form:

ω̇ = Aω(t) + Bω(t− α) + f(ω(t), ω(t− α))

+ΦH(0)L(ΨH , ω̃(ξ, t))(y(t)− h(ω(t)))

+B

∫ α

0

ΦH(ξ − α)L(ΦH , ω̃(ξ, t))[y(t− ξ)− h(ω(t− ξ))]dξ

+g(ω(t), ω(t− α))
1

LgL
r−1

f̃
h(ω)

(
−R−1

2 bT P ē(t) + v(r)(t)− Lr
f̃
h(ω)

−pr(ω(t), v̄(t), ω(t− α), v̄(t− α)))

ẋ = Ax(t) + Bx(t− α) + f(x(t), x(t− α))

+g(x(t), x(t− α))
1

LgL
r−1

f̃
h(ω)

(
−R−1

2 bT P ē(t) + v(r)(t)− Lr
f̃
h(ω)

−pr(ω(t), v̄(t), ω(t− α), v̄(t− α)))
(F.43)

Since we are interested in proving local exponential stability of the above
system, we compute its linearization around the zero solution and use that
f(0, 0) = 0 and f(x(t), x(t− α)) includes higher-order terms, and g(0, 0) = c,
where c is a constant vector, to obtain the following linear system:

ω̇ = Aω(t) + Bω(t− α) + ΦH(0)L(wx(t)− wω(t))

+B

∫ α

0

ΦH(ξ − α)L[wx(t− ξ)− wω(t− ξ)]dξ

+culin(ω(t), v̄(t), ω(t− α), v̄(t− α))

ẋ = Ax(t) + Bx(t− α) + culin(ω(t), v̄(t), ω(t− α), v̄(t− α))

(F.44)

where L is the linearization of the nonlinear vector L(ΨH , ω̃(ξ, t)) around the

zero solution, w =
∂h

∂x
(0), and ulin is the linearization of the term:

1
LgL

r−1

f̃
h(ω)

(−R−1
2 bT P ē(t) + v(r)(t)− Lr

f̃
h(ω)

−pr(ω(t), v̄(t), ω(t− α), v̄(t− α)))

(F.45)

around the zero solution. Introducing the error vector er = x − ω, the
closed-loop system of Eq.F.44 can be written as:
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ėr = Aer(t) + Ber(t− α) + ΦH(0)Lwer(t) + B

∫ α

0

ΦH(ξ − α)Lwer(t− ξ)dξ

ẋ = Ax(t) + Bx(t− α)

+culin(x(t) + er(t), v̄(t), x(t− α) + er(t− α), v̄(t− α))
(F.46)

From the observability Assumption 9.3, we have that the error system:

ėr = Aer(t) + Ber(t− α) + ΦH(0)Lwer(t) + B

∫ α

0

ΦH(ξ − α)Lwer(t− ξ)dξ

(F.47)
is exponentially stable. Moreover, from the construction of the state feedback
controller, we have that the system:

ẋ = Ax(t) + Bx(t− α) + culin(x(t), v̄(t), x(t− α), v̄(t− α))

y = wx(t)
(F.48)

is exponentially stable and the output asymptotically follows the reference
input (Proof of Theorem 9.7). Therefore, we have that the linear system of
Eq.F.46 is an interconnection of two exponentially stable subsystems, which
implies that it is also exponentially stable. Using the result of Theorem 1.1
in [108, Chapter 10] (which allows inferring the local stability properties of
a nonlinear system based on its linearization) we obtain that the nonlinear
closed-loop system of Eq.F.43 is locally exponentially stable and the discrep-
ancy between the output and the reference input asymptotically tends to zero.

4
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