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Abstract 

This paper proposes a methodology for the computation of optimal locations of point control actuators for nonlinear feedback 
controllers in transport-reaction processes described by a broad class of quasi-linear parabolic partial differential equations (PDE). 
Initially, Galerkin’s method is employed to derive finite-dimensional approximations of the PDE system which are used for the 
synthesis of stabilizing nonlinear state feedback controllers via geometric techniques. Then, the optimal location problem is 
formulated as the one of minimizing a meaningful cost functional that includes penalty on the response of the closed-loop system 
and the control action and is solved by using standard unconstrained optimization techniques. It is established that the solution 
to this problem, which is obtained on the basis of the closed-loop finite-dimensional system, is near-optimal for the closed-loop 
infinite-dimensional system. The proposed methodology is successfully applied to a typical diffusion-reaction process. 0 2000 
Elsevier Science Ltd. All rights reserved. 
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1. Introduction 

Transport-reaction processes with significant diffu- 
sive and convective phenomena are typically character- 
ized by severe nonlinearities and spatial variations, and 
are naturally described by quasi-linear parabolic PDEs. 
Examples include tubular and packed-bed reactors, and 
chemical vapor deposition processes. 

Parabolic PDE systems typically involve spatial dif- 
ferential operators whose eigenspectrum can be parti- 
tioned into a finite-dimensional slow one and an 
infinite-dimensional stable fast complement (Friedman, 
1976; Balas, 1979). This implies that the dynamic be- 
havior of such systems can he approximately described 
by finite-dimensional systems. Therefore, the standard 
approach to the control of parabolic PDEs involves the 
application of Galerkin’s method to the PDE system to 
derive ODE systems that describe the dynamics of the 
dominant (slow) modes of the PDE system, which are 
subsequently used as the basis for the synthesis of 
finite-dimensional controllers (Balas, 1979; Ray, 1981). 
A potential drawback of this approach is that the 
number of modes that should be retained to derive an 
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ODE system that yields the desired degree of approxi- 
mation may be very large, leading to complex con- 
troller design and high dimensionality of the resulting 
controllers. Motivated by this, recent efforts on control 
of parabolic PDE systems have focused on the problem 
of synthesizing low-order controllers on the basis of 
ODE models obtained through combination of 
Galerkin’s method with approximate inertial manifolds 
(Christofides, 2000). 

Even though the above methods allow to systemati- 
cally design practically implementable nonlinear feed- 
back controllers for transport-reaction processes, they 
do not deal with the problem of optimal actuator 
placement so that the desired control objectives are 
achieved with minimal energy use. The conventional 
approach to this problem is to select the actuator 
locations based on open-loop considerations to ensure 
that the necessary controllability requirements are sa- 
tisfied. More recently, efforts have been made on the 
problem of integrating feedback control and optimal 
actuator placement for certain classes of linear dis- 
tributed parameter systems including optimal place- 
ment of actuators for linear feedback control in 
parabolic PDEs (Xu, Warnitchai & Igusa, 1994; 
Demetriou, 1999) and in actively controlled structures 
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(Rao, Pan & Venkayya, 1991; Choe & Baruh, 1992). 
At this stage, there are no results available on opti- 
mal placement of actuators associated with nonlinear 
controllers for quasi-linear parabolic PDEs. 

This paper proposes a methodology for the compu- 
tation of optimal locations of point control actuators 
for nonlinear feedback controllers in transport-reac- 
tion processes described by a broad class of quasi-lin- 
ear parabolic PDEs. Initially, Galerkin’s method is 
employed to derive finite-dimensional approximations 
of the PDE system which are used for the synthesis 
of stabilizing nonlinear state feedback controllers via 
geometric techniques. Then, the optimal location 
problem is formulated as the one of minimizing a 
meaningful cost functional that includes penalty on 
the response of the closed-loop system and the con- 
trol action and is solved by using standard uncon- 
strained optimization techniques. It is established that 
the solution to this problem, which is obtained on the 
basis of the closed-loop finite-dimensional system, is 
near-optimal for the closed-loop infinite-dimensional 
system. The proposed methodology is successfully ap- 
plied to a typical diffusion-reaction process. 

2. Preliminaries 

We consider transport-reaction processes described 
by quasi-linear parabolic PDE systems of the form: 

aa at’A~+B~+wb(z)u+j-(z) 

s B 
y;= c’(z)k.f(z, t) dz, i=l,...,l 

OL 

subject to the boundary conditions: 

(1) 

and the initial condition: 

T(z, 0) = &(z) (3) 

where _?(z, t) = [Xr(z, t) . . * X,(z, t)lT~[Wn denotes the 
vector of state variables, ZE[CI, /3] c R is the spatial 
coordinate, t~[0, co] is the time, u = [u’u’ * . . u~EOB 
denotes the vector of manipulated inputs, and y:~iR 

a2 a2.f 
denotes the ith controlled output. a~, s denote the 

first- and second-order spatial derivatives of 2, f(Z) is 
a nonlinear vector function, w, k are constant vectors, 
A, B, C,, D,, C,, D, are constant matrices, R,, R, are 
column vectors, and Z,(z) is the initial condition. b(z) 
is a known smooth vector function of z of the form 
b(z) = [b’(z)b2(z) . . . b’(z)] where hi(z) describes how 

the control action u’(t) is distributed (point or dis- 
tributing actuation) in the interval [c1, /I], and ci(z) is 
a known smooth function of z which is determined 
by the desired performance specifications. Whenever 
the control action enters the system at a single point 
zo, with zo+, PI ( i.e. point actuation), the function 
b’(z) is taken to be nonzero in a finite spatial interval 
of the form [z. - E, z. + E], where E is a small positive 
real number, and zero elsewhere in [a, /3]. Throughout 
the paper, we will use the order of magnitude nota- 
tion O(E). In particular, 8(e) = O(E) if there exist 
positive real numbers kl and k2 such that: I&(E)] I 

kr(E(, V(e( -= k2. 
To precisely characterize the class of parabolic 

PDE systems considered in this work, we formulate 
the system of Eq. (1) as an infinite dimensional sys- 
tem in the Hilbert space %([a, ,!?I; [w”), with Y? being 
the space of n-dimensional vector functions defined 
on [a, 81 that satisfy the boundary condition of Eq. 
(2), with inner product and norm: 

(01, ~2) = 

s 

’ (w,(z), ~2CzNwn dz, ((~((2 = (~1, ~2)“~ 
a 

(4) 

where wi, w2 are two elements of .X&x, ,8]; W”) and 
the notation (*, *)wn denotes the standard inner 
product in R”. Defining the state function x on 
X([c(, 81; Iw”) as: 

x(t) = Z(z, t), t > 0, ZE[tl, /?I (5) 

the operator d in X([c(, 81; KY) as: 

dx=Ag+l?g, 

XED(d) = 
i 

XEsP([cr, j?]; R”): C,i(a, t) + DIE (a, t) 

= R,, C,W, 9 + 02 g (P, t) = R2 

and the input and controlled output operators as: 

8u = wbu, %?x = (c, kx) (6) 

the system of Eqs. (l)-(3) takes the form: 

R = SYZX + %%4 +f(x), x(0) = x0 

y,=gx (7) 

where f(x(t)) =f(Z(z, t)) and x0 = Zo(z). We assume 
that the nonlinear term f(x) is locally Lipschitz with 
respect to its arguments and satisfies f(0) = 0. For s!, 
the eigenvalue problem is defined as: 

&+j = Aj$j, j = 1, . . . , cc (8) 

where /zj denotes an eigenvalue and tij denotes an 
eigenfunction; the eigenspectrum of d, a(&), is 
defined as the set of all eigenvalues of &, i.e. od = 
(4, 22, . * . .> }. Assumption 1 that follows states that 
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and a stable infinite-dimensional complement contain- 
ing the remaining fast eigenvalues, and that the separa- 
tion between the slow and fast eigenvalues of S$ is 
large. This assumption is satisfied by the majority of 
diffusion-convection-reaction processes (Christofides, 
2000). 

Assumption 1. 1. Re{/Z,} 2 Re{R,} 2 *a. 2 Ret&} 2 *a*, 
where Re{S} denotes the real part of ,I, 

2. o(a) can be partitioned as cr(&‘) = ~~(~22) + 
az(d), where ~T,(JZZ’) consists of thefirst m (with mfinite) 
eigenualues, i.e. ol(&) = {A,, . . . , A,}, and 

3. Re&,,+, <O and IRW,Jl 
IRe{R,+ i}/ = O(‘) 

where E c 1 is a small positive number. 

3. Gaierkin’s method 

In this section, we apply standard Galerkin’s method 
to the system of Eq. (7) to derive an approximate 
finite-dimensional system. Let #,, XY be modal sub- 
spaces of cc4, defined as XS = span (&, q&, . . . , } and 
~Y=span(4,+1, &,,+z,. . . , We existence of 
X,, &‘f follows from Assumption 1). Defining the or- 
thogonal projection operators P, and Pr such that 
x, = Ps, x,-= Pfx, the state x of the system of Eq. (7) 
can be decomposed as: 

x=x,+xf=P$+Pfx (9) 

Applying P, and Pr to the system of Eq. (7) and using 
the above decomposition for x, the system of Eq. (7) 
can be equivalently written in the following form: 

dx, 
dt = ~SX, + gSu +f,(x,, xf> 

$= s8fxf+ SQ.4 + fAx,, xf> (10) 

y, = WXS + vx, 

x,(O) = Ppo = Pp(O), xX0) = PfX(0) = PfXO 

where dS = P,%%IP,, &I = P,$ f, = P, f, Sq= 

PY&Pf, W = P/8, fr= Pr f and the notation 2 

is used to denote that the state xf belongs in an infinite- 
dimensional space. In the above system, &, is a diago- 
nal matrix of dimension m x m of the form 

d, = diag{Aj}, f,(x,, xr> and fAx,, xr> are Lipschitz vec- 
tor functions, and z-&‘~ is an unbounded differential 
operator which is exponentially stable (following from 
part 3 of Assumption 1 and the selection of S,, %J. 
Neglecting the fast and stable infinite-dimensional xr 
subsystem in the system of Eq. (lo), the following 
m-dimensional slow system is obtained: 

y, = %& (11) 

where the bar symbol in ZS,, 7, and ~7~ denotes that these 
variables are associated with a finite-dimensional 
system. 

Remark 1. We note that the above model reduction 
procedure which led to the approximate ODE system of 
Eq. (10) can also be used, when empirical eigenfunc- 
tions of the system of Eq. (7) computed through 
Karhunen-Lo&e expansion (Christofides, 2000) are 
used as basis functions in XS and Xf instead of the 
eigenfunctions of SS?. 

4. Integrating nonlinear control and optimal actuator 
placement 

4.1. Problem formulation 

We address the problem of computing optimal loca- 
tions of point control actuators associated with nonlin- 
ear state feedback control laws of the following general 
form: 

24 = 9(z,, ZJ (12) 

where 9(z,, ZJ is a nonlinear vector function, and z, 
denotes the vector of actuator locations so that the 
following properties are enforced in the closed-loop 
system: (a) exponential stability; and (b) near-optimal- 
ity (in a sense made precise in theorem 1) with respect 
to a meaningful cost functional defined over the infinite 
time interval, that imposes penalty on the response of 
the closed-loop system and the control action. 

4.2. Nonlinear controller synthesis 

First, we address the problem of synthesizing nonlin- 
ear static state feedback control laws of the form of Eq. 
(12), that guarantee exponential stability of the closed- 
loop finite-dimensional system. To this end, we will 
need the following assumption (see Remark 3 below for 
a discussion on this assumption). 
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Assumption 2. 1= m (i.e. the number of control actuators 
is equal to the number of slow modes), and the inverse of 
the matrix W, exists. 

Proposition 1 that follows provides the explicit for- 
mula for the state feedback controller that achieves the 
control objective. 

Proposition 1. Consider the finite-dimensional system of 
Eq. (11) for which Assumption 2 holds. Then, the state 
feedback controller: 

24 = g*- ‘((A, - a,)% -f,(%, 0)) (13) 

where A, is a stable matrix, guarantees global exponen- 
tial stability of the closed-loop finite-dimensional system. 

Remark 2. The structure of the closed-loop finite-di- 
mensional system under the controller of Eq. (13) has 
the following form: 

f, = A& (14) 

and thus, the response of this system depends only on 
the stable matrix A, and the initial condition, x,(O), and 
is independent of the actuator locations. 

Remark 3. The requirement I = m is sufficient and not 
necessary, and it is made to simplify the solution of the 
controller synthesis problem. Full linearization of the 
closed-loop finite-dimensional system through coordi- 
nate change and nonlinear feedback can be achieved for 
any number of manipulated inputs (i.e. for any 
1~[1, ml), provided that an appropriate set of involutiv- 
ity conditions is satisfied by the corresponding vector 
fields of the system of Eq. (11) (Isidori, 1989). 

Remark 4. We note that, owing to space limitations, we 
only focus here on the problem of computing optimal 
locations of control actuators for nonlinear state feed- 
back controllers, and therefore, we assume throughout 
the paper that the state 2 of the PDE system of Eq. (1) 
is known; the solution to the problem of computing 
optimal locations of control actuators and measure- 
ment sensors for nonlinear output feedback controllers 
is presented in Antoniades and Christofides (2000). 

4.3. Computation of optimal actuator locations 

In this subsection, we compute the actuator locations 
so that the state feedback controller of Eq. (12) is near 
optimal for the full PDE system of Eq. (10) with respect 
to a meaningful cost functional which is defined over 
the infinite time interval and imposes a penalty on the 
response of the closed-loop system and the control 
action. To this end, we initially focus on the ODE 
system of Eq. (11) and consider the following cost 
functional: 

J, = 
s 
Oa (~,T(x,(O), t)Q&(x,to)~ t) 

+ u=&MO), t), za)R4WstO), 0, z,)) dt (15) 

where QS, and R are positive definite matrices. The cost 
of Eq. (15) is well-defined and meaningful since it 
imposes penalty on the response of the closed-loop 
finite-dimensional system and the control action. How- 
ever, a potential problem of this cost is its dependence 
on the choice of a particular initial condition, x,(O), and 
thus, the solution to the optimal placement problem 
based on this cost may lead to actuator locations that 
perform very poorly for a large set of initial conditions. 
To eliminate this dependence and obtain optimality 
over a broad set of initial conditions, we follow Levine 
and Athans (1978) and consider an average cost over a 
set of m linearly independent initial conditions, 
xi(O), i= 1,. . . , m of the following form: 

+ uT&t~XO), 0, z,)Wstx:tO), t), 4) dt (16) 

Referring to the above cost, we first note that the 
penalty on the response of the closed-loop system: 

s mCW% tKB,txf(O), t) dt 
0 

(17) 

is finite because the solution of the closed-loop system 
of Eq. (14) is exponentially stable by appropriate choice 
of A,. Moreover, jXS is independent of the actuator 
locations (Remark 2), and thus, the optimal actuator 
placement problem reduces to the one of minimizing 
the following cost which only includes penalty on the 
control action: 

j_=Ai$i O” 
s 

ur(%(xf(0), 0, z,)R@,(xf(O), t), z,) dt 
0 

L is a function of multiple variables, z, = 

[Z&S? * . . z,,] and thus, it obtains its local minimum 
values when its gradient with respect to the actuator 
locations is equal to zero, i.e. 

(18) 

and V,,ZzU,(z,,) > 0 where V,OZO.?U, is the Hessian ma- 
trix of J,, and z, is a solution of the system of 
nonlinear algebraic equations of Eq. (18) (which in- 
cludes I equations with I unknowns). The solution z,, 
for which the above conditions are satisfied and J,, 
obtains its smallest value (global minimum) corre- 
sponds to the optimal actuator locations for the closed- 
loop finite-dimensional system. Theorem 1 that follows 
establishes that these locations are near-optimal for the 
closed-loop infinite-dimensional system (the proof is 
given in Antoniades and Christofides (2000). 
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Theorem 1. Consider the infinite-dimensional system of 
Eq. (10) for which Assumption 1 holds, and thefinite-di- 
mensional system of Eq. (1 l), for which Assumption 2 
holds. Then, there exists positive real numbers p,, ,uz and 
E* such that if Ix,(O)I <pI, jlxxO>II <,u2, and 40, l ], 
then the controller of Eq. (13): (a) guarantees exponen- 
tial stability of the closed-loop infinite-dimensional sys- 
tem, and (b) the optimal locations of the point actuators 
obtainedfor the closed-loop finite-dimensional system are 
near-optimal for the closed-loop infinite-dimensional sys- 
tem in the sense that: 

+ xrT(-q9, e&oj@), t> 

+ u =(x,(xX0), t), z,)JWx,(xf(0), t), 4) dt +-t 
as e+O (1% 

where Qf is an unbounded positive definite operator and J^ 
is the cost function associated with the controller of Eq. 
(13) and the infinite-dimensional system of Eq. (10). 

Remark 5. Note that even though the response of the 
closed-loop finite-dimensional system of Eq. (14) is 
independent of the actuator locations, the response of 
the closed-loop infinite-dimensional system does depend 
on the actuators locations. However, this dependence is 
scaled by E, and therefore, it decreases as we increase 
the number of modes included in the finite-dimensional 
system used for controller design. 

Remark 6. In general, the solution to the system of Eq. 
(18) can be computed through a combination of numer- 
ical integration techniques and multivariable Newton’s 
method. 

5. Application to a diffusion-reaction process 

Consider a long, thin rod in a reactor. The reactor is 

Fig. 1. Profile of evolution of open-loop rod temperature. 

fed with pure species A and a zeroth order exothermic 
catalytic reaction of the form A + B takes place on the 
rod. Since the reaction is exothermic, a cooling medium 
which is in contact with the rod is used for cooling. 
Under standard assumptions, the spatiotemporal evolu- 
tion of the dimensionless rod temperature is described 
by the following parabolic PDE: 

an a22 
K=s+BTe l:i+/?o(b(z)u(t)-a)-Pre-Y 

subject to the boundary and initial conditions: 

X(0, t) = 0, 2(7-c, t) = 0, f(z, 0) = .&J(z) (20) 

where x denotes the dimensionless temperature in the 
reactor, /?T denotes a dimensionless heat of reaction, y 
denotes a dimensionless activation energy, BLi denotes a 
dimensionless heat transfer coefficient, u(t) denotes the 
vector of manipulated inputs and b(z) the vector of the 
corresponding actuator locations. The following typical 
values were given to the process parameters: 

pT = 50.0, pu = 2.0, y = 4.0 (21) 

For the above values, the operating steady state 
X(z, t) = 0 is an unstable one (Fig. 1 shows the profile 
of evolution of open-loop rod temperature starting 
from initial conditions close to the steady state 
n(z, t) = 0; the process moves to another stable steady 
state characterized by a maximum in the temperature 
profile in the center of the rod). Therefore, the control 
objective is to stabilize the rod temperature profile at 
the unstable steady state 3(z, t) = 0. The eigenvalue 
problem for the spatial differential operator of the 
process: 

dx = 2, x0(d) = {xeX([O, ?r]; R): n(0, t) = 0, 

f(?r, t) = O} (22) 

can he solved analytically and its solution is: 
- 

lj= -j2, @Jz) = 4j(z) = 
J 

a sin( jz) 

where ,Q, tiji, $j denote the eigenvalues, eigenfunctions 
and adjoined eigenfunctions of d, respectively, and 
j= 1,. . . ,a. 

In the remainder of this section, we use the proposed 
method to compute the optimal locations in the case of 
using two control actuators. Following Assumption 2, 
we use Galerkin’s method to derive a second order 
ODE approximation of the PDE model which will be 
used for controller design and optimal actuator place- 
ment. The form of the approximate ODE system is 
given below: 
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Table 1 
Results for two control actuators 

Case Actuator locations jU 

Optimal 0.39x, 0.66rc 0.8075 0.5332 1.3407 
Linear 0.32n, 0.68~ 0.8980 0.5414 1.4416 
3 0.20x, 0.80~ 5.2109 0.17957 7.0066 
4 0.3orc, 0.7072 0.9065 0.5608 1.5473 

4) 
&I 1 

(25) 

Substituting the above controller into the system of Eq. 
(24), we obtain the following closed-loop ODE system: 

Fig. 2. Profile of the norm of the control action 11~ I/, for the optimal 
case (solid line), the linearized case (long-dashed line), case 3 (short- 
dashed line), and case 4 (dotted line) for x(0) = 4,. 

Fig. 3. Profile of the norm of the control action, 11~ )I, for the optimal 
case (solid line), the linearized case (long-dashed line), case 3 (short- 
dashed line), and case 4 (dotted line) for x(0) = q$ 

+ p” &2(Zad [ 

6dZd ““‘“][ d] + p%; w] 

42(Za2> 

(24) 

where z,, and z,, are the locations of the two point 
actuators and the explicit forms of the terms fr(j&, 0) 
and f&, 0) are omitted for brevity. For the system of 
Eq. (24), the nonlinear state feedback controller of Eq. 
(13) takes the form: 

24’ 
U= [I u2 

(26) 

where CI and /I are positive real numbers. Since the 
response of the above system depends only on the 
parameters a, p and the initial condition x,(O), and is 
independent of the actuator locations, we compute the 
optimal actuator locations by minimizing the following 
cost functional, which only includes penalty on the 
control action: 

Using the following values for the parameters a = j3 = 
1, xi(O) = #,, and x:(O) = d2, and taking R, Q,, Qf to 
be unit matrices of appropriate dimensions, the optimal 
actuator locations were found to be: z,r = 0.3971 and 
Z = 0.667~. Table 1 shows the values of the costs 
j:t jX, and .? of the full-order closed-loop system un- 
der the state feedback controller of Eq. (25) in the case 
of optimal actuator placement, and for the sake of 
comparison, the values of these costs in the case of 
alternative actuator placements including optimal actu- 
ator placement based on the linearized system (second 
line). 

The cost of the control action used to stabilize the 
system at Z(z, t) = 0 when the actuators are located at 
0.397~ and 0.667~ is clearly smaller than in the other 
cases. 

Figs. 2 and 3 show the norm of the control action, 
11~ 11, for x(0) = 4, (Fig. 2) and x(O) = +2 (Fig. 3), for 
the optimal case (solid line), the linearized case (long- 
dashed line), case 3 (short-dashed line), and case 4 
(dotted line). Clearly, the control action used for stabi- 
lization in the case of optimal actuator placement is 
smaller than all the other cases. Finally, Figs. 4 and 5 
display the profiles of the evolution of the temperature 
of the rod, under state feedback control, for the opti- 
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Fig. 4. Profile of evolution of rod temperature under state feedback 
control and optimal actuator locations for x(0) = 4,. 

ma1 actuator locations, for x(0) = q5, (Fig. 4) and for 
x(O) = c#+ (Fig. 5). In both cases, the nonlinear con- 
trollers achieve stabilization of the PDE system at 
X(z, t) = 0. 
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