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Abstract

This paper focuses on transport-reaction processes with unknown time-varying parameters and disturbances described by
quasi-linear parabolic PDE systems, and addresses the problem of computing optimal actuator/sensor locations for robust
nonlinear controllers. Initially, Galerkin’s method is employed to derive finite-dimensional approximations of the PDE system
which are used for the synthesis of robust nonlinear state feedback controllers via geometric and Lyapunov techniques and the
computation of optimal actuator locations. The controllers enforce boundedness and uncertainty attenuation in the closed-loop
system. The optimal actuator location problem is subsequently formulated as the one of minimizing a meaningful cost functional
that includes penalty on the response of the closed-loop system and the control action. Owing to the boundedness of the state,
the cost is defined over a finite-time interval (the final time is defined as the time needed for the process state to become smaller
than the desired uncertainty attenuation limit), while the optimization is performed over a broad set of initial conditions and
time-varying disturbance profiles. Subsequently, under the assumption that the number of measurement sensors is equal to the
number of slow modes, we employ a standard procedure for obtaining estimates for the states of the approximate finite-dimen-
sional model from the measurements. The optimal location of the measurement sensors is computed by minimizing a cost function
of the estimation error in the closed-loop infinite-dimensional system. We show that the use of these estimates in the robust state
feedback controller leads to a robust output feedback controller, which guarantees boundedness of the state and uncertainty
attenuation in the infinite-dimensional closed-loop system, provided that the separation between the slow and the fast eigenvalues
is sufficiently large. We also establish that the solution to the optimal actuator/sensor problem, which is obtained on the basis of
the closed-loop finite-dimensional system, is near-optimal in the sense that it approaches the optimal solution for the
infinite-dimensional system as the separation between the slow and fast eigenvalues increases. The theoretical results are
successfully applied to a typical diffusion-reaction process with nonlinearites and uncertainty to design a robust nonlinear output
feedback controller and compute the optimal actuator/sensor locations for robust stabilization of an unstable steady state. © 2002
Elsevier Science Ltd. All rights reserved.
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1. Introduction

Transport-reaction processes with significant diffu-
sive and dispersive mechanisms are typically character-
ized by severe nonlinearities and spatial variations, and
are naturally described by quasi-linear parabolic partial
differential equations (PDEs). Examples include tubular
and packed-bed reactors, as well as chemical vapor
deposition and crystal growth processes. In addition to

being nonlinear, parabolic PDE systems which model
diffusion–convection-reaction processes are uncertain
due to the presence of unknown or partially known
process parameters and disturbances. Time-varying un-
certain variables, if they are not appropriately ac-
counted for in the controller design, may cause
deterioration of the nominal closed-loop performance,
and even lead to closed-loop instability.

Parabolic PDE systems typically involve spatial dif-
ferential operators whose eigenspectrum can be parti-
tioned into a finite-dimensional slow one and an
infinite-dimensional stable fast complement (Friedman,
1976; Balas, 1979; Ray, 1981; Christofides, 2001). This
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implies that the dynamic behavior of such systems can
be approximately described by finite-dimensional sys-
tems. Therefore, the standard approach to the control
of parabolic PDEs involves the application of
Galerkin’s method to the PDE system to derive ODE
systems that describe the dynamics of the dominant
(slow) modes of the PDE system, which are subse-
quently used as the basis for the synthesis of finite-di-
mensional controllers (Balas, 1979; Ray, 1981). A
potential drawback of this approach is that the number
of modes that should be retained to derive an ODE
system that yields the desired degree of approximation
may be very large, leading to complex controller design
and high dimensionality of the resulting controllers.
Motivated by this, research efforts on control of
parabolic PDE systems over the last decade have fo-
cused on the problem of synthesizing low-order con-
trollers on the basis of ODE models obtained through
combination of Galerkin’s method with approximate
inertial manifolds (see the recent book of Christofides,
2001 for details and references). More recently, Lya-
punov-based control methods for quasi-linear parabolic
PDE systems with time-varying uncertain variables
have been developed which lead to the synthesis of state
(Christofides, 1998) and output (Christofides & Baker,
1999) feedback controllers that achieve closed-loop sta-
bility and uncertainty attenuation.

Even though the developed methods allow to system-
atically design practically-implementable nonlinear
feedback controllers for transport-reaction processes
using parabolic PDE systems, there is no work on the
integration of nonlinear controller design with optimal
placement of control actuators and measurement sen-
sors for transport-reaction processes so that the desired
control objectives are achieved with minimal energy
use. Regarding the problem of optimal placement of
control actuators, the conventional approach is to se-
lect the actuator locations based on open-loop consid-
erations to ensure that the necessary controllability
requirements for stabilization of the closed-loop system
are satisfied. More recently, efforts have been made on
the problem of integrating feedback control and opti-
mal actuator placement for certain classes of linear
distributed parameter systems including investigation of
controllability measures and actuator placement in os-
cillatory systems (Arbel, 1981), optimal placement of
actuators for linear feedback control of parabolic PDEs
(Xu, Warnitchai, & Igusa, 1994; Demetriou, 1999) and
of actively controlled structures (Rao, Pan, &
Venkayya, 1991; Choe & Baruh, 1992).

On the other hand, the problem of selecting optimal
locations for measurement sensors in linear distributed
parameter systems has received very significant atten-
tion over the last 30 years. The essence of this problem
is to use a finite number of measurements to compute
the best estimate of the entire distributed state for all

positions and times employing a state observer in the
presence of measurement noise. Early efforts for the
solution to this problem focused on linear PDE systems
(Yu & Seinfeld, 1973; Chen & Seinfeld, 1975; Kumar &
Seinfeld, 1978a; Omatu, Koide, & Soeda, 1978; Morari
& O’Dowd, 1980) and the application of the results to
optimal state estimation in tubular reactors (Colan-
tuoni & Padmanabhan, 1977; Kumar & Seinfeld,
1978b; Harris, MacGregor, & Wright, 1980; Alvarez,
Romagnoli, & Stefanopoulos, 1981; Waldraff,
Dochain, Bourrel, & Magnus, 1998). The central idea
to the solution involves the use of a spatial discretiza-
tion scheme to obtain a lumped approximation of the
original distributed parameter system followed by the
formulation and solution of an optimal state estimation
problem which involves computing sensor locations so
that an appropriate functional that includes penalty on
the estimation error and the measurement noise is
minimized. Significant research efforts have also been
made on the problem of optimal placement of con-
trollers and sensors for various class of linear dis-
tributed parameter systems (see Amouroux, Di Pillo, &
Grippo, 1976; Malandrakis, 1979; Omatu & Seinfeld,
1983 and the review paper Kubrusly & Malebranche,
1985).

Despite the progress on optimal sensor placement
and the availability of results on the integration of
linear feedback control with actuator placement for
linear parabolic PDEs, there are no results on the
integration of nonlinear control with optimal placement
of control actuators and measurement sensors for
transport-reaction processes described by nonlinear
parabolic PDEs. Motivated by this, we have initiated a
line of work on the computation of optimal actuator/
sensor locations for nonlinear controllers in transport-
reaction processes. In previous work (Antoniades &
Christofides, 2000, 2001), we proposed a general and
practical methodology for the integration of nonlinear
output feedback control with optimal actuator/sensor
placement for transport-reaction processes described by
a broad class of quasi-linear parabolic PDEs. Under
the hypothesis that the process model is perfectly
known, our approach leads to actuator/sensor locations
which allow enforcing the desired performance objec-
tives in the closed-loop system with minimal control
energy use.

In this paper, we consider transport-reaction pro-
cesses with unknown time-varying parameters and dis-
turbances modeled by quasi-linear parabolic PDE
systems, and address the problem of computing optimal
actuator/sensor locations for robust nonlinear con-
trollers. Initially, Galerkin’s method is employed to
derive finite-dimensional approximations of the PDE
system which are used for the synthesis of robust
nonlinear state feedback controllers via geometric and
Lyapunov techniques and the computation of optimal
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actuator locations. The controllers enforce boundedness
and uncertainty attenuation in the closed-loop system.
The optimal actuator location problem is subsequently
formulated as the one of minimizing a meaningful cost
functional that includes penalty on the response of the
closed-loop system and the control action. Owing to the
boundedness of the state, the cost is defined over a
finite-time interval (the final time is defined as the time
needed for the process state to become smaller than the
desired uncertainty attenuation limit), while the opti-
mization is performed over a broad set of initial condi-
tions and time-varying disturbance profiles. Sub-
sequently, under the assumption that the number of
measurement sensors is equal to the number of slow
modes, we employ a standard procedure for obtaining
estimates for the states of the approximate finite-dimen-
sional model from the measurements. The optimal loca-
tion of the measurement sensors is computed by
minimizing a cost function of the estimation error in
the closed-loop infinite-dimensional system. We show
that the use of these estimates in the robust state
feedback controller leads to a robust output feedback
controller, which guarantees boundedness of the state
and uncertainty attenuation in the infinite-dimensional
closed-loop system, provided that the separation be-
tween the slow and the fast eigenvalues is sufficiently
large. We also establish that the solution to the optimal
actuator/sensor problem, which is obtained on the basis
of the closed-loop finite-dimensional system, is near-op-
timal in the sense that it approaches the optimal solu-
tion for the infinite-dimensional system as the
separation between the slow and fast eigenvalues in-
creases. The theoretical results are successfully applied
to a typical diffusion-reaction process with nonlinear-
ites and uncertainty to design a robust nonlinear output
feedback controller and compute the optimal actuator/
sensor locations for robust stabilization of an unstable
steady state.

2. Preliminaries

2.1. Description of parabolic PDE systems with
uncertainty

We consider quasi-linear parabolic PDE systems with
uncertain variables of the form:

�x̄
�t

=A
�x̄
�z

+B
�2x̄
�z2 +wb(z)u+ f(x̄)+W(x̄, r(z)�(t))

(1)

yc
i =

� �

�

c i(z)kx̄ dz, i=1, …, l

ym
� =

� �

�

s�(z)�x̄ dz, �=1, …, p

subject to the boundary conditions:

C1x̄(�, t)+D1

�x̄
�z

(�, t)=R1 (2)

C2x̄(�, t)+D2

�x̄
�z

(�, t)=R2

and the initial condition:

x̄(z, 0)= x̄0(z) (3)

where x̄(z, t)= [x̄1(z, t) x̄2(z, t) … x̄n(z, t)]T denotes
the vector of state variables, [�, � ]�R is the domain
of definition of the process, z� [�, � ] is the spatial
coordinate, t� [0, �) is the time, u(t)= [u1(t)
u2(t) … ul(t)]T�Rl denotes the vector of manipulated
inputs, �(t)= [�1(t) �2(t) … �q(t)]�Rq denotes the vec-
tor of uncertain variables, which may include uncertain
process parameters or exogenous disturbances, yc

i �R

denotes a controlled output, ym
� �R denotes a measured

output, �x̄/�z, �2x̄/�z2 denote the first- and second-or-
der spatial derivatives of x̄, f(x̄), W(x̄, r(z)�(t)) are vec-
tor functions, w, k, � are vectors, A, B, C1, D1, C2, D2

are matrices, R1, R2 are column vectors, and x̄0(z) is the
initial condition.

The properties and role of the functions
b(z), r(z), c i(z), s i(z) are as follows: b(z) is a known
smooth vector function of z of the form b(z)=
[b1(z) b2(z) · · · bl(z)], where bi(z) describes how the
control action ui(t) is distributed in the interval [�, � ]
(e.g. point/distributed actuation), r(z)= [r1(z) · · · rq(z)],
where rk(z) is a known smooth function of z which
specifies the position of action of the uncertain variable
�k on [�, � ], c i(z) is a known smooth function of z
which is determined by the specification of the i-th
controlled output in the interval [�, � ], and s i(z) is a
known smooth function of z which is determined by the
location and type of the measurement sensors (e.g.
point/distributed sensing). Throughout the paper, O(�)
denotes the order of magnitude notation (i.e. �(�)=
O(�) if there exist positive real numbers k1 and k2 such
that: ��(�)��k1�� �, ��� ��k2), �·� denotes the standard
Euclidean norm, and ��� �� denotes ess.sup.��(t)�, t�0
for any measurable function � :R�0�Rq. Moreover, we
will use the Lie derivative notation: Lfh denotes the Lie
derivative of a scalar field h with respect to the vector
field f, Lf

kh denotes the k-th order Lie derivative and
LgLf

k−1h denotes the mixed Lie derivative. Finally a
function � (�) is said to be of class.

Defining the state x in the infinite dimensional
Hilbert space H([�, � ], Rn) (with H being the space of
n-dimensional vector functions defined on [�, � ] that
satisfy the boundary condition of Eq. (2) with inner
product and norm:

(�1, �2)=
� �

�

(�1(z), �2(z))
Rndz, ��1�2= (�1, �2)

1

2

where �1, �2 are two elements of H and the notation
(·,·)

Rn denotes the standard inner product in Rn), as:
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x(t)= x̄(z, t), t�0, z� [�, � ], (4)

and the operators as:

Ax=A
�x̄
�z

+B
�2x̄
�z2, (5)

x�D(A)

=
�

x�H; C1x̄(�, t)+D1

�x̄
�z

(�, t)

=R1, C2x̄(�, t)+D2

�x̄
�z

(�, t)=R2
�

Bu=wbu, Cx= (c, kx), Sx= (s, wx)

where c= [c1 c2 … c l], the system of Eqs. (1)– (3)takes
the form:

x� =Ax+Bu+ f(x)+W(x, �), x(0)=x0 (6)

yc=Cx, ym=Sx

where f(x(t))= f(x̄(z, t)), W(x(t), �)=W(x̄, r�) and
x0= x̄0(z).

For A, the eigenvalue problem is defined as:

A�j=	j�j, j=1, …, � (7)

where 	j denotes an eigenvalue and �j denotes an
eigenfunction; the eigenspectrum of A, 
(A), is defined
as the set of all eigenvalues of A, i.e. 
(A)=
{	1, 	2, …, 	j, …}. We will assume that 
(A) satisfies
the following properties.
Assumption 1. (Christofides, 2001)
1. Re{	1}�Re{	2}� ···�Re{	j}� ···, where Re{	j}

denotes the real part of 	j.
2. 
(A) can be partitioned as 
(A)=
1(A)+
2(A),

where 
1(A) consists of the first m (with m finite)
eigenvalues, i.e. 
1(A)={	1, …, 	m}, and �Re{	1}�/
�Re{	m}�=O(1).

3. Re{	m+1}�0 and �Re{	m}�/�Re{	m+1}�=O(�),
where �= �Re{	1}�/�Re{	m+1}��1 is a small positive
number.

Remark 1. Referring to the system of Eq. (1), several
remarks are in order: (a) the spatial differential opera-
tor is linear; this assumption is valid for diffusion–con-
vection-reaction processes where the diffusion
coefficient and the conductivity can be taken indepen-
dent of temperature and concentrations; (b) the manip-
ulated input enters the system in a linear and affine
fashion; this is typically the case in many practical
applications where, for example, the wall temperature is
chosen as the manipulated input; and (c) the nonlinear-
ities appear in an additive fashion (e.g. complex reac-
tion rates, Arrhenius dependence of reaction rates on
temperature).

Remark 2. Referring to Assumption 1, the hypothesis
of finite number of unstable eigenvalues and discrete
eigenspectrum are always satisfied for parabolic PDE
systems defined in finite spatial domains, while the
assumption of existence of only a few dominant modes
that describe the dynamics of the parabolic PDE system
is usually satisfied by the majority of diffusion–convec-
tion-reaction processes (see the catalytic rod example of
Section 6).

2.2. Galerkin’s method

We derive an m-dimensional approximation of the
system of Eq. (6) using Galerkin’s method. Letting Hs,
Hf be two subspaces of H, defined as Hs=
span{�1, �2, …, �m} and Hf=span{�m+1, �m+2, …},
and defining the orthogonal projection operators Ps

and Pf such that xs=Psx, xf=Pfx, the state x of the
system of Eq. (6) can be decomposed as:

x=xs+xf=Psx+Pfx (8)

Applying Ps and Pf to the system of Eq. (6) and using
the above decomposition for x, the system of Eq. (6)
can be equivalently written in the following form:

dxs

dt
=Asxs+Bsu+ fs(xs, xf)+Ws(xs, xf, �) (9)

dxf

dt
=Afxf+Bfu+ ff(xs, xf)+Wf(xs, xf, �)

yc=Cxs+Cxf, ym=Sxs+Sxf

xs(0)=Psx(0)=Psx0, xf(0)=Pfx(0)=Pfx0

where As=PsA, Bs=PsB, fs=Ps f, Ws=PsW,
Af=PfA, Bf=PfB, ff=Pf f, Wf=PfW. In the
above system, As is a diagonal matrix of dimension
m×m of the form As=diag{	j}, fs(xs, xf), ff(xs, xf),
are Lipschitz vector functions, Ws(xs, xf, �),
Wf(xs, xf, �) are Lipschitz matrix functions, and Af is a
stable unbounded differential operator. Using that �=
�Re{	1}�/�Re{	m+1}�, the system of Eq. (9) can be writ-
ten in the following form:

dxs

dt
=Asxs+Bsu+ fs(xs, xf)+Ws(xs, xf, �) (10)

�
�xf

�t
=Af�xf+�Bfu+�ff(xs, xf)+�Wf(xs, xf, �)

yc=Cxs+Cxf, ym=Sxs+Sxf

where Af� is an unbounded differential operator
defined as Af�=�Af. Since ��1 and the operators
As, Af� generate semigroups with growth rates which
are of the same order of magnitude, the system of Eq.
(10) is in the standard singularly perturbed form (see
Kokotovic, Khalil, & O’Reilly, 1986 for a precise defin-
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ition of standard form), with xs being the slow states
and xf being the fast states. Introducing the fast time-
scale �= t/� and setting �=0, we obtain the following
infinite-dimensional fast subsystem from the system of
Eq. (10):

�xf

��
=Af�xf (11)

From the fact that Re{	m+1}�0 and the definition of
�, we have that the above system is globally exponen-
tially stable. Setting �=0 in the system of Eq. (10), we
have that xf=0 and thus, the finite-dimensional slow
system takes the form:

dx̃s

dt
=Asx̃s+Bsu+ fs(x̃s, 0)+Ws(x̃s, 0, �) (12)

yc=Cx̃s, ym=Sx̃s

where the tilde notation in x̃s denotes that this is the
state of a finite-dimensional system.

Remark 3. We note that the above model reduction
procedure which led to the approximate ODE system of
Eq. (12) can be also used, when empirical eigenfunc-
tions of the system of Eq. (6) computed through
Karhunen–Loéve expansion (see Christofides, 2001;
Atwell & King, 2001 for applications of this method in
the design of low-order controllers) are used as basis
functions in Hs and Hf, instead of the eigenfunctions
of A.

Remark 4. Referring to the model reduction of the PDE
system of Eq. (1) (diffusion–convection–reaction pro-
cess) using Galerkin’s method, it is important to note
the following: while the solution of the parabolic PDE
system is expanded in terms of the eigenfunctions of the
spatial differential operator, both the linear spatial
differential operator (diffusion and convection terms)
and the nonlinear term f(x̄) and W(w̄,r(z)�(t)) (reac-
tion terms) are projected and used for the construction
of the finite-dimensional approximation. To clearly see
this point, consider the terms fs(x̃s, 0)+Ws(x̃s, 0, �) in
the finite-dimensional system of Eq. (12); these terms
are the projections of the nonlinear terms f(x̄)+
W(x̄, r(z)�(t)) that appear in the parabolic PDE of Eq.
(1). Therefore, the finite-dimensional model not only
approximates the diffusion and convection phenomena
but also it approximates the reaction phenomena (mod-
elled by the nonlinear terms f(x̄)+W(x̄, r(z)�(t))).
Moreover, the separation of the infinite set of ODEs
into fast and slow according to the fast and slow
eigenvalues of the spatial differential operator is mean-
ingful because the kinetics terms ( f(x̄)+W(w̄,r(z)�(t)))
do not contribute to the two-time-scale behavior of the
spatial modes of the parabolic PDE systems since they
do not include terms of the type 1/�. Note that if the

kinetics include terms of the type 1/� the model reduc-
tion procedure can be extended to account for this type
of behavior (see also Kumar, Christofides, & Daoutidis,
1998 for results on this problem). Finally, regarding the
accuracy of the finite-dimensional model, it can be
shown (Christofides, 2001) that when �(t)	0, the dis-
crepancy between the solution of the finite-dimensional
model of Eq. (12) and the solution of the parabolic
PDE of Eq. (1) is of O(�). This result accounts for both
the transport and reaction terms and was shown using
singular perturbation arguments and results for stabil-
ity of infinite-dimensional systems.

3. Problem statement and solution framework

In this paper, we address the problem of computing
optimal locations of point control actuators and point
measurement sensors associated with robust nonlinear
output feedback control laws of the following general
form:

u=F(ym) (13)

where F(ym) is a nonlinear vector function and ym

denotes the vector of measured outputs, so that the
following properties are enforced in the closed-loop
system: (a) boundedness of the state; (b) arbitrary
degree of attenuation of the uncertain variables on the
state of the slow subsystem; and (c) the optimal actua-
tor/sensor locations, which are obtained on the basis of
the closed-loop finite-dimensional system, are near-opti-
mal in the sense that it approaches the optimal solution
for the infinite-dimensional system as the separation of
the slow and fast eigenmodes increases. To address this
problem, we will initially synthesize, under the assump-
tion of existence of bounding functions that capture the
size of the uncertain terms, stabilizing robust nonlinear
state feedback controllers via Lyapunov techniques on
the basis of finite-dimensional approximations of the
PDE system. The optimal actuator location problem
will be subsequently formulated as the one of minimiz-
ing a meaningful cost functional that includes penalty
on the response of the closed-loop system and the
control action. Then, under the assumption that the
number of measurement sensors is equal to the number
of slow modes, we will employ a procedure proposed in
Christofides and Baker (1999) for obtaining estimates
for the states of the approximate finite-dimensional
model from the measurements. The estimates will be
combined with the robust state feedback controllers to
derive robust output feedback controllers. The optimal
location of the measurement sensors will be computed
by minimizing a cost function of the estimation error in
the closed-loop infinite-dimensional system. It will be
established by using singular perturbation techniques
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that: (a) the robust output feedback controllers enforce
boundedness of the state and uncertainty attenuation in
the infinite-dimensional closed-loop system provided
that the separation between the slow and the fast
eigenvalues is sufficiently large; and (b) the solution to
the optimal actuator/sensor problem, which is obtained
on the basis of the closed-loop finite-dimensional sys-
tem, is near-optimal in the sense that it approaches the
optimal solution for the infinite-dimensional system as
the separation between the slow and fast eigenvalues
increases.

4. Integrating robust control and optimal actuator
placement

4.1. Robust state feedback controller synthesis

In this section, we assume that measurements of the
states of the PDE system of Eq. (12) are available and
address the problem of synthesizing robust nonlinear
static state feedback control laws of the general form:

u=F(za, x̃s) (14)

where F(za, x̃s) is a nonlinear vector function and za

denotes the vector of the actuator locations, that guar-
antee boundedness of the state of the closed-loop finite-
dimensional system and make the effect of the
uncertain variables on the state arbitrarily small by
appropriate selection of the controller parameters. We
note that owing to the fact that we allow the uncertain
variables, �(t), to change the equilibrium of the finite-
dimensional system of Eq. (12), it is not possible to
synthesize a continuous controller that enforces asymp-
totic stability in the closed-loop system. To proceed
with the synthesis of the controller, we will need the
following assumptions (see Remark 6 below for a dis-
cussion on this assumption).
Assumption 2. l=m (i.e. the number of control actua-
tors is equal to the number of slow modes), and the
inverse of the matrix Bs exists.

Assumption 3 that follows requires the existence of a
nonlinear time-varying bounding function that captures
the size of the uncertain terms in the system of Eq. (12)
and the existence of known bounds for the uncertain
variables �k(t). Such bounding functions are typically
obtained from physical considerations, preliminary sim-
ulations or experimental data. The requirement of exis-
tence of bounding functions is standard in all
Lyapunov-based robust control methods (see Corless &
Leitmann, 1981; Christofides, Teel, & Daoutidis, 1996).
Assumption 3. There exists a known function c(xs, t)
and a known set of positive constants �bk such that the
following conditions holds:

�Ws(x̃s, 0, �)��c(xs, t), ��k(t)���bk, k=1, 2, …, q
(15)

for all xs�Hs, ��Rq, t�0.
Proposition 1 that follows provides the explicit for-

mula for the state feedback controller that achieves the
aforementioned control objectives. The proof of the
proposition is given in the Appendix A.
Proposition 1. Consider the finite-dimensional system of
Eq. (12) for which Assumption 2 and Assumption 3
hold. Then, the state feedback controller:

u=Bs
−1�(�s−As)x̃s− fs(x̃s, 0)−�c(x̃s, t)

x̃s

�x̃s �+�

�
(16)

where �s is a stable matrix, ��1 and ��0 are positi�e
parameters, guarantees boundedness of the state of the
closed-loop finite-dimensional system and ensures that
limt�� �x̃s(t)��(�) where (·) is a class K function.

Remark 5. The structure of the closed-loop finite-di-
mensional system of Eq. (12) under the controller of
Eq. (16) has the following form:

x̃� s=�sx̃s−�c(x̃s, t)
x̃s

�x̃s �+�
+Ws(x̃s, 0, �) (17)

From the above equation, it follows directly that the
response of this system depends on the stable matrix �s,
the initial condition, xs(0), the uncertain variable �(t),
and the matrix Bs which accounts for the actuator
locations. This is completely different from the optimal
actuator placement for PDE systems without uncertain
variables where the structure of the closed-loop finite-
dimensional system was of the following form (Antoni-
ades and Christofides, 2001):

x̃� s=�sx̃s (18)

and thus, the response was independent of the actuator
locations.
Remark 6. The requirement l=m is sufficient and not
necessary, and it is made to simplify the solution of the
controller synthesis problem. Full linearization (when
�(t)�0) of the closed-loop finite-dimensional system
through coordinate change and nonlinear feedback can
be achieved for any number of manipulated inputs (i.e.
for any l� [1, m ]), provided that an appropriate set of
involutivity conditions is satisfied by the corresponding
vector fields of the system of Eq. (12) (see Isidori, 1989
for details).
Remark 7. Referring to the role and selection of the
parameters � and � of the controller of Eq. (16), we
note that � determines the gain of the controller term
that compensates for the effect of the uncertainty and
should be chosen greater than unity to achieve global
boundedness of the state of the closed-loop finite-di-
mensional system (note that the choice �=1 would
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provide local boundedness of the state). On the other
hand, � determines the degree of asymptotic attenua-
tion of the effect of the uncertainty on the state and
should be chosen to ensure uncertainty attenuation
with smooth control action (note that as ��0 the
controller of Eq. (16) becomes discontinuous and the
control action non-smooth). Finally, it is important to
point out that the robust controller of Eq. (16) compen-
sates for the effect of uncertain variables on the state of
the closed-loop finite-dimensional system without using
high-gain feedback; this is a consequence of our objec-
tive to design a practically-implementable controller
which would not destabilize the fast modes of the
closed-loop infinite-dimensional system (note that there
is guarantee that such a destabilization will be avoided
if high-gain feedback of the type 1/� is employed to
compensate for the effect of the disturbances).

4.2. Computation of optimal location of control
actuators

In this subsection, we compute the actuator locations
so that the robust state feedback controller of Eq. (16)
is near-optimal for the full PDE system of Eq. (9) with
respect to a meaningful cost functional which imposes
penalty on the response of the closed-loop system and
the control action. Owing to the boundedness of the
state, we consider a cost functional which is defined
over a finite-time interval (the final time is defined as
the needed for the process state to become smaller than
the desired attenuation limit), Tf. From the stability
bound �x̃s(t)��K �x̃s(0)�e−�2t+(�), it follows directly
that given the desired attenuation limit, d, so that
�x̃s(t�Tf)��d and the value of � used in the con-
troller, the values of Tf can be computed (note that Tf

is the time in which the state x̃s(t) satisfies �x̃s(t�
Tf)��d for the first time). Specifically, we focus on the
ODE system of Eq. (12) and consider the following cost
functional:

Js=
� Tf

0

((x̃ s
T(xs(0), t), Qsx̃s(xs(0), t))

+uT(x̃s(xs(0), t), za) Ru(x̃s(xs(0), t), za)) dt (19)

where Qs and R are positive definite matrices. The cost
of Eq. (19) is well-defined and meaningful since it
imposes penalty on the response of the closed-loop
finite-dimensional system and the control action. How-
ever, a potential problem of this cost is its dependence
on the choice of a particular initial condition, xs(0), and
thus, the solution to the optimal placement problem
based on this cost may lead to actuator locations that
perform very poorly for a large set of initial conditions.
To eliminate this dependence and obtain optimality
over a broad set of initial conditions, we follow (Levine

and Athans, 1978; Antoniades and Christofides, 2000)
and consider an average cost over a set of m linearly
independent initial conditions, xs

i(0), i=1, …, m, of the
following form:

J� s=
1
m

�
m

i=1

� Tfi

0

((x̃ s
T(xs

i(0), t), Qsx̃s(xs
i(0), t))

+uT(x̃s(xs
i(0), t), za) Ru(x̃s(xs

i(0), t), za)) dt (20)

Note that different initial conditions correspond to
different times Tfi

. An additional issue that should be
accounted for in the cost functional used to compute
the optimal actuator locations is the fact that the
evolution of the state, x̃s, of the closed-loop finite-di-
mensional system depends on the profile of the vector
of unknown variables �(t). To account for this depen-
dence, we modify the cost of Eq. (20) to average over a
large set of disturbance profiles as follows:

J� s

=
1
m

1
K

�
K

�=1

�
m

i=1

� Tfi�

0

((x̃ s
T(xs

i(0), ��, t), Qsx̃s(xs
i(0), ��, t))

+uT(x̃s(xs
i(0), ��, t), za) Ru(x̃s(xs

i(0), ��, t), za)) dt (21)

Note again that different profiles of the vector of
unknown variables, �(t), might also correspond to dif-
ferent times Tfi�

. In contrast to the case of PDE systems
without uncertainty, the solution to optimal placement
problem, zam, for which the above cost is minimum can
be only found numerically since it requires multiple
integrations of the closed-loop finite-dimensional sys-
tem of Eq. (17) for appropriate finite times, linearly
independent initial conditions and different disturbance
profiles (Remark 8 below discusses a numerical ap-
proach for computing the optimal actuator locations).

Theorem 1 that follows establishes that the robust
controller of Eq. (16) guarantees the desired bounded-
ness and uncertainty attenuation properties in the
closed-loop finite-dimensional system and the locations
for the control actuators that minimize the cost of Eq.
(21) for the finite-dimensional closed-loop system are
also near optimal for the closed-loop infinite-dimen-
sional system, provided that the degree of separation
between the fast and slow modes of the spatial differen-
tial operator of the PDE system is sufficiently large (the
proof of this theorem can be found in the Appendix A).
Theorem 1. Consider the infinite-dimensional system of
Eq. (9) for which Assumption 1 holds, and the finite-di-
mensional system of Eq. (12), for which Assumption 2
and Assumption 3 hold. Then, there exist positi�e real
numbers �1, �2 and �* such that if �xs(0)���1,
��xf(0)��2��2, and �� (0, �* ], then the controller of Eq.
(14):

1. guarantees boundedness of the state of the closed-
loop infinite-dimensional system, and
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2. the optimal locations of the point actuators obtained
for the closed-loop finite-dimensional system are
near-optimal for the closed-loop infinite-dimensional
system in the sense that:

J�

=
1
K

1
m

�
K

�=1

�
m

i=1

� Tfi�

0

((xs
T(xs

i(0), ��, t), Qsxs(xs
i(0), ��, t))

+(xf
T(xs

i(0), ��, t), Qfxf(xf
i(0), ��, t)) (22)

+uT(xs(xs
i(0), ��, t), za) Ru(xs(xs

i(0), ��, t), za)) dt�J� s
as ��0

where Qf is an unbounded positi�e definite operator and J�
is the a�erage cost function associated with the controller
of Eq. (16) and the infinite-dimensional system of Eq.
(9).
Remark 8. Owing to the numerical complexity involved
in computing the actuator locations that exactly mini-
mize the cost of Eq. (21) (it involves search over an
infinite number of locations), we initially assume a large
number, say L, of equispaced locations along the length
of the spatial domain in which the control actuators are
possible to be placed. In determining this set of loca-
tions, we use standard controllability arguments for
parabolic PDEs (see Ray, 1981) to exclude actuator
locations for which the resulting system is uncontrol-
lable. Since the disturbance vector �(t) is unknown, we
then use a stochastic approach (which is inspired by the
methodology proposed in Gazi, Ungar, Seider, and
Kuipers (1996), Gazi, Seider, and Ungar (1997) for
robust controller verification) to compute a large num-
ber of randomly-generated disturbance profiles that
satisfy ��k(t)���bk for all times (Assumption 2). We
finally compute the value of the cost of Eq. (21) for all
possible combinations of the actuator locations to cal-
culate the optimal locations. While the computational
complexity of the above procedure is not very large for
a small number of control actuators, its computational
complexity grows very fast as the number of control
actuators increases, making the practical implementa-
tion of this procedure very difficult. In this case, the
following algorithm which employs a search procedure
that uses the optimal actuator locations for the nominal
system (see Remark 9 below for how this can be done)
as initial guess can be followed. The procedure is as
follows: we initially fix l−1 control actuators at the
optimal locations computed on the basis of the nominal
system and perform a search for the optimal location of
the remaining control actuator that minimizes the cost
for the uncertain system. This process is then performed
l−1 more times for each one of the other control
actuators to compute a new set of actuator locations
for the uncertain system. This set of actuator locations
is subsequently used as a new initial guess to carry out
the above procedure for a second time. The algorithm

is terminated when the change in the optimal actuator
locations between two consecutive steps is smaller than
a desired accuracy. This approach was successfully used
in the diffusion-reaction process example discussed in
Section 6.
Remark 9. It is important to point out that in the case
of PDE systems without uncertainty, the closed-loop
finite-dimensional system takes the form x̃� s=�sx̃s and
thus the penalty on the response of this system:

J� xs=
1
m

�
m

i=1

��

0

(x̃ s
T(xs

i(0), t), Qsx̃s(xs
i(0), t)) dt (23)

is finite and independent of the actuator locations.
Therefore, the optimal actuator placement problem re-
duces to the one of minimizing the following cost which
only includes penalty on the control action:

J� us=
1
m

�
m

i=1

��

0

uT(x̃s(xs
i(0), t), za) Ru(x̃s(xs

i(0), t), za) dt

J� us is a function of multiple variables, za=
[za1 za2 … zal ], and thus, it obtains its local minimum
values when its gradient with respect to the actuator
locations is equal to zero, i.e.:

�J� us

�za

=
	�J� us

�za1

···
�J� us

�zal

nT

= [0 · · · 0]T (24)

and �z aza
J� us(zam)�0, where �z az a

J� us is the Hessian ma-
trix of J� us and zam is a solution of the system of
nonlinear algebraic equations of Eq. (24) (which in-
cludes l equations with l unknowns and can be obtained
by standard methods). The solution zam for which the
above conditions are satisfied and J� us obtains its
smallest value (global minimum) corresponds to the
optimal actuator locations for the closed-loop finite-di-
mensional system.

5. Robust output feedback control with optimal sensor
placement

In this section, we proceed with the synthesis of
robust output feedback controllers that enforce stability
and uncertainty attenuation in the closed-loop infinite-
dimensional system, and compute the optimal locations
for the measurement sensors. Specifically, we consider
output feedback control laws of the general form:

u(t)=F(ym) (25)

where F(ym) is a nonlinear vector function and ym is
the vector of measured outputs. The synthesis of the
controller of Eq. (25) will be achieved by combining the
state feedback controller of Eq. (16) with a procedure
proposed in Christofides & Baker (1999) for obtaining
estimates for the states of the approximate ODE model
of Eq. (12) from the measurements. To this end, we
need to impose the following requirement on the num-
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ber of measured outputs in order to obtain estimates of
the states xs of the finite-dimensional system of Eq.
(12), from the measurements ym

� , �=1, 2, …, p.
Assumption 4. p=m (i.e. the number of measurements
is equal to the number of slow modes), and the inverse
of the operator S exist, so that x̂s=S−1ym.

We note that the requirement that the inverse of the
operator S exists can be achieved by appropriate
choice of the location of the measurement sensors (i.e.
functions s�(z)). The optimal locations for the measure-
ment sensors can be computed by minimizing an aver-
age cost function of the estimation error of the
closed-loop infinite-dimensional system of the form:

J� (e)

=
1
K

1
m

�
K

�=1

�
m

i=1

� Tfi�

0

(��xs(xs
i(0), ��, t)− x̂s(xs

i(0), ��, t)��2)

dt (26)

where xs is the slow state of the closed-loop infinite-di-
mensional system of Eq. (9), x̂s=S−1ym, and e(t)=
��xs− x̂s ��2 is the estimation error. As in the case of the
optimal location problem for the control actuators, the
solution to the sensor placement problem requires the
numerical integration of the closed-loop system (both
finite- and infinite-dimensional) in order to compute xs,
and x̂s (from the measurements ym

� , �=1, 2, …, p), and
thus, it is computationally demanding (see Remark 11
for how compute the optimal sensor locations).

Theorem 2 that follows establishes that the proposed
robust output feedback controller enforces stability in
the closed-loop infinite-dimensional system and that the
solution to the optimal actuator/sensor problem, which
is obtained on the basis of the closed-loop finite-dimen-
sional system, is near-optimal in the sense that it ap-
proaches the optimal solution for the
infinite-dimensional system as the separation of the
slow and fast eigenmodes increases. The proof of this
theorem can be found in the Appendix A.
Theorem 2. Consider the system of Eq. (9) for which
Assumption 1 hold, and the finite-dimensional system of
Eq. (12), for which Assumption 2, Assumption 3 and
Assumption 4 hold, under the robust output feedback
controller:

u=Bs
−1�(�s−As)S−1ym− fs(S−1ym, 0)

−�c(S−1ym, t)
S−1ym

�S−1ym �+�

�
(27)

Then, there exist positi�e real numbers �1, �2 and �* such
that if �xs(0)���1, ��xf(0)��2��2, and �� (0, �* ], then the
controller of Eq. (27):
(a) guarantees boundedness of the state of the closed-

loop system, and

(b) the locations of the point actuators and measurement
sensors are near-optimal in the sense that the cost
function associated with the controller of Eq. (27)
and the system of Eq. (9) satisfies:

J�

=
1
K

1
m

�
K

�=1

�
m

i=1

� Tfi�

0

((xs
T(xs

i(0), ��, t), Qsxs(xs
i(0), ��, t))

+ (xf
T(xs

i(0), ��, t), Qfxf(xf
i(0), ��, t)) (28)

+uT(xs(xs
i(0), ��, t), za) Ru(xs(xs

i(0), ��, t), za)) dt�J� s

as ��0

where J� and J� s are the a�erage cost functions of the
infinite-dimensional system of Eq. (9) and the finite-di-
mensional system of Eq. (12), respecti�ely, under the
robust output feedback controller of Eq. (27).
Remark 10. Note that in contrast to the case of state
feedback control where the controller depends only the
slow state xs, the output feedback controller of Eq. (27)
uses static feedback of the measured outputs ym

� , �=
1, 2, …, p, and thus, it feeds back both xs and xf. While
this type of feedback of the state xf has been shown to
lead to closed-loop instability for certain classes of
singularly perturbed systems (Kokotovic et al., 1986),
in the present case, the large separation of the slow and
fast modes of the spatial differential operator (i.e. as-
sumption that � is sufficiently small), together with the
special structure of the fast subsystem of Eq. (10)
(where � multiplies the control input) and the fact that
the controller does not include terms of the form O(1/
�), do not allow such a destabilization to occur.
Remark 11. Similar to the case of optimal actuator
placement, we perform the search for the optimal sen-
sor locations so that the cost of Eq. (26) is minimized
over a finite set of equispaced locations along the length
of the spatial domain of the PDE.

6. Application to a diffusion-reaction process with
uncertainty

Consider a long, thin rod in a reactor (Fig. 1). The
reactor is fed with pure species A and a zeroth order
exothermic catalytic reaction of the form A�B takes
place on the rod. Since the reaction is exothermic, a
cooling medium which is in contact with the rod is used
for cooling. Under the assumptions of constant density
and heat capacity of the rod, constant conductivity of
the rod, and constant temperature at both ends of the
rod, the mathematical model which describes the spa-
tiotemporal evolution of the dimensionless rod temper-
ature consists of the following parabolic PDE:
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�x̄
�t

=
�2x̄
�z2 +�Te−/(1+ x̄)+�U(b(z)u(t)− x̄)−�T,ne−

(29)

subject to the Dirichlet boundary conditions:

x̄(0, t)=0, x̄(�, t)=0 (30)

and the initial condition:

x̄(z, 0)= x̄0(z) (31)

where x̄ denotes the dimensionless temperature of the
rod, �T denotes a dimensionless heat of reaction (which
is assumed to be unknown and time-varying; uncertain
variable), �T,n denotes a nominal dimensionless heat of
reaction,  denotes a dimensionless activation energy,
�U denotes a dimensionless heat transfer coefficient,
and u denotes the manipulated input (temperature of
the cooling medium). The following typical values were
given to the process parameters:

�T,n=50.0, �U=2.0, =4.0 (32)

The eigenvalue problem for the spatial differential op-
erator of the process:

Ax=
�2x̄
�z2, x�D(A)={x�H([0, � ]; R);

x̄(0, t)=0, x̄(�, t)=0} (33)

can be solved analytically and its solution is of the
form:

	j= − j 2, �j(z)=�� j(z)=

2

�
sin( j z),

j=1, …, � (34)

where 	j, �j, �� j, denote the eigenvalues, eigenfunctions
and adjoint eigenfunctions of Ai, respectively.

Even though the eigenvalues of A are all stable, the
spatially uniform operating steady-state x̄(z, t)=0 of
the system of Eq. (29) is an unstable one (i.e. the
linearization of the system of Eq. (29) around x̄(z, t)=
0 possesses one unstable eigenvalue due to the exother-
mic nature of the reaction). Fig. 2 shows the
spatiotemporal evolution of the open-loop dimensional
rod temperature when no uncertainty is present, start-
ing from initial conditions close to the steady state
x̄(z, t)=0; the process moves to another stable steady
state characterized by a maximum in the temperature
profile, hot-spot, in the middle of the rod. We note that
in all the simulation runs, a 20-th order Galerkin
truncation of the system of Eq. (29) was used in our
simulations in order to accurately describe the process
(further increase on the order of the Galerkin trunca-
tion was found to give identical numerical results).
Therefore, the control objective is to stabilize the di-
mensionless rod temperature at the unstable steady-
state x̄(z, t)=0, in the presence of time-varying
uncertainty in the dimensionless heat of reaction �T.

We consider the first two Galerkin modes of the PDE
system as the slow modes and use Galerkin’s method to
construct a second-order ODE system which is used for
controller design and optimal actuator/sensor place-
ment. This approximate system has the following form:

	x̃� s1

x̃� s2

n
=
		1−�U 0

0 	2−�U

n	x̃s1

x̃s2

n
(35)

+�U
	�� 1(za1) �� 1(za2)

�� 2(za1) �� 2(za2)
n	u1

u2

n
+ (�T,n+�(t))

	f1(x̃s, 0)
f2(x̃s, 0)

n
where za1 and za2 are the locations of the two point
actuators, �(t) is the uncertain term in the dimension-
less heat of reaction and the explicit form of the terms
f1(x̃s, 0) and f2(x̃s, 0) are omitted for brevity. We used
the second-order ODE system of Eq. (35) for the
synthesis of the nonlinear robust output feedback con-
troller through an application of the formula of Eq.
(16) (the explicit form is omitted for brevity). This
controller was employed in the simulations with �=
1.1, �b=12.5 and �=0.005.

Fig. 1. Catalytic rod.

Fig. 2. Profile of evolution of rod temperature in the open-loop
system.
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Fig. 3. Profile of three randomly-generated disturbances.

+uT(x̃s(xs
i(0), ��, t), za) Ru(xs(x̃ s

i(0), ��, t), za)) dt

where

Qs=R=
	1 0

0 1
n

,

T� f=max{Tfi�
}=10 for i=1, 2, �=1, 2, …, 20,

xs
1(0)=�1 and xs

2(0)=�2, are the two linearly indepen-
dent initial conditions, and ��, �=1, 2, …,20, are the
randomly generated disturbance profiles that satisfy
�(t)� [−0.25 �T,n, 0.25 �T,n ] and �(t+0.001)=�(t)+
0.04 r where r is a random number r� [−1, 1]. In Fig. 3,
we can see three of these randomly generated profiles of
the uncertainty. The optimal location of control actua-
tors were computed to be: za1=0.42� and za2=0.59�.
In Fig. 4 we see the contour plot of constant J� s
(0.87, 0.89, 0.93, 1.05, 1.2, 1.5, 2.5 and 6) for the closed-
loop system under the robust state feedback controller
for different locations of the two control actuators. The
plot is symmetric about the 45° line as the two actuator
locations are equivalent. We can see that the minimum
J� s=0.87 is at the optimal locations that we have
computed.

Using the result of Theorem 2, the vector of mea-
sured outputs ȳm(t)�R2 is defined as:	ȳm1

ȳm2

n
=
	x(zs1, t)

x(zs2, t)
n

(37)

where zs1 and zs2 are the locations of the two point
sensors. The optimal sensor locations were computed
by minimizing a cost functional of the estimation error
which has the following form:

J� (e)

=
1
40

�
20

�=1

�
2

i=1

� T� f

0

(��xs(xs
i(0), ��, t)− x̂s(xs

i(0), ��, t)��2) dt

(38)

where xs is obtained from the simulation of the high-or-
der discretization of the PDE, and x̂s is calculated from
the following equations:	x̂s1

x̂s2

n
=
	�� 1(zs1) �� 1(zs2)

�� 2(zs1) �� 2(zs2)
n−1	ym1(zs1, t)

ym2(zs2, t)
n

, (39)

The optimal location of the measurement sensors were
computed to be: zs1=0.35� and zs2=0.66�.

In the remainder, we will present some of our simula-
tion results. We initially focus on the state feedback
control problem and compute, for the sake of compari-
son, the optimal locations of the control actuators, J� s
for the case where no uncertainty in the dimensionless
heat of reaction is considered (�T=�T,nom). We also
compute J� s for two arbitrary actuator locations. The
computed results for these cases are shown in Table 1.
From the values in Table 1, one can see that a robust

Fig. 4. Contour plot of constant J� s (0.87, 0.89, 0.93, 1.05, 1.2, 1.5, 2.5
and 6) for the closed-loop system under the robust state feedback
controller for different locations of the two control actuators.

Table 1
Results for the actuator locations

Case Actuator locations J� s

0.42�, 0.59�Optimal 0.8678
2 0.39�, 0.66� 0.9198

0.32�, 0.68�3 1.0380
4 0.25�, 0.75� 1.5060

Using the results of Theorem 1, the optimal locations
of the control actuators were computed by minimizing
a cost that includes penalty on the control action and
averages over the set of two linearly independent initial
conditions and a large set of randomly generated dis-
turbance profiles �(t) which satisfy ��(t)���b for all
times. The specific cost used in our calculations has the
following form:

J� u=
1

40
�
20

�=1

�
2

i=1

� T� f

0

((x̃ s
T(xs

i(0), ��, t), Qsx̃s(xs
i(0), ��, t))

(36)
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controller which uses the optimal actuator locations at
za1=0.42� and za2=0.59�, utilizes less control effort in
order to stabilize the system at the spatially-uniform
steady state x̃(z, t)=0, compared to the other three
actuator placements.

Fig. 5 shows the norm of the control effort, ��u ��, for
the four different actuator placements reported in Table
1, optimal case (solid line), case 2 (long-dashed line),
case 3 (short-dashed line), and case 4 (dotted line), for
xs(0)=�1 and for two different, randomly generated,
disturbance profiles. We can see that the control effort
used for the optimal case is less than the other cases.
Fig. 6 presents the same results as Fig. 5 but for the
initial condition xs(0)=�2. One observe that there is
no significant difference in the control effort needed for
stabilization and uncertainty attenuation among the
different actuator placements.

We now turn to the problem of optimal placement of
the measurement sensors. For the sake of comparison,
Table 2 shows J� (e), J� s for the optimal sensor place-

Fig. 6. Norm of the control effort, ��u �� for two different disturbance
profiles (top and bottom plots) for the optimal case (solid line), case
2 (long-dashed line), case 3 (short-dashed line), and case 4 (dotted
line)—xs(0)=�2.

Fig. 5. Norm of the control effort, ��u �� for two different disturbance
profiles (top and bottom plots) for the optimal case (solid line), case
2 (long-dashed line), case 3 (short-dashed line), and case 4 (dotted
line)—xs(0)=�1.

Table 2
Results for the sensor locations

Case J� (e) J� sSensor locations

0.35�, 0.66� 8.862e−4 0.8992Optimal
0.95232.131e−22 0.30�, 0.64�

3 5.435e−1 4.35310.38�, 0.68�

ment and two other placements. We can see from Table
2 that the computed optimal sensor locations at zs1=
0.35� and zs2=0.66�, have much smaller estimation
error than the other two sensor locations. Fig. 7 shows
the norm of the closed-loop estimation error versus
time, for the optimal actuator/sensor locations, for
xs(0)=�1 (top plot) and xs(0)=�2 (bottom plot) for
five different, randomly generated, disturbances.
Clearly, the estimation error is very small for both
initial conditions.

Fig. 8 displays the profiles of the evolution of the
temperature of the rod, under robust output feedback



C. Antoniades, P.D. Christofides / Computers and Chemical Engineering 26 (2002) 187–203 199

control, for the optimal actuator/sensor locations, for
xs(0)=�1 (top plot), and xs(0)=�2 (bottom plot). In
both cases, the controller stabilizes the closed-loop
PDE system at the spatially uniform operating steady-
state very quickly despite the presence of time-varying
uncertainty.

Finally, for the sake of comparison, we show in Figs.
9 and 10 the profiles of the evolution of the temperature
of the rod under an output feedback controller that
does not account for the presence of uncertainty for
xs(0)=�1. In Fig. 9 we have used the optimal actuator/
sensor locations (za1=0.42�, za2=0.59� and zs1=
0.35�, zs2=0.66�) and in Fig. 10 we have used the
optimal actuator/sensor locations for the case where no
uncertainty is considered (za1=0.39�, za2=0.66� and
zs1=0.31�, zs2=0.72�). We have used the same ran-
domly generated disturbance profiles employed in the
simulations shown in Fig. 8 (top plot), Figs. 9 and 10 in
order for our comparison to be meaningful. We clearly
observe that the closed-loop performance is signifi-
cantly superior (in terms of uncertainty attenuation and

Fig. 8. Profile of evolution of the rod temperature under robust
output feedback control with the optimal actuator/sensor locations.
Top plot: xs(0)=�1. Bottom plot: xs(0)=�2.

Fig. 7. Norm of the closed-loop estimation error ��e �� versus time, for
the optimal actuator/sensor locations, for five different disturbance
profiles. Top plot: xs(0)=�1. Bottom plot: xs(0)=�2.

Fig. 9. Profile of evolution of the rod temperature under output
feedback control without uncertainty attenuation using the optimal
actuator/sensor locations—xs(0)=�1.

speed of convergence to the steady-state) when the
robust output feedback controller with the optimal
actuator/sensor locations is applied to the system.

7. Conclusions

This paper focused on transport-reaction processes
with unknown time-varying parameters and distur-
bances described by quasi-linear parabolic PDE sys-
tems, and addressed the problem of computing optimal
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actuator/sensor locations for robust nonlinear con-
trollers. Galerkin’s method was initially employed to
derive finite-dimensional approximations of the PDE
system which were used for the synthesis of robust
nonlinear state feedback controllers via geometric and
Lyapunov techniques and the computation of optimal
actuator locations. The controllers enforce boundedness
and uncertainty attenuation in the closed-loop system.
The optimal actuator location problem was subse-
quently formulated as the one of minimizing a mean-
ingful cost functional that includes penalty on the
response of the closed-loop system and the control
action. Owing to the boundedness of the state, the cost
was defined over a finite-time interval (the final time is
defined as the time needed for the process state to
become smaller than the desired uncertainty attenua-
tion limit), while the optimization was performed over a
broad set of initial conditions and time-varying distur-
bance profiles. Subsequently, under the assumption that
the number of measurement sensors is equal to the
number of slow modes, we employed a standard proce-
dure for obtaining estimates for the states of the ap-
proximate finite-dimensional model from the
measurements. The optimal location of the measure-
ment sensors was computed by minimizing a cost func-
tion of the estimation error in the closed-loop
infinite-dimensional system. We showed that the use of
these estimates in the robust state feedback controller
leads to a robust output feedback controller, which
guarantees boundedness of the state and uncertainty
attenuation in the infinite-dimensional closed-loop sys-
tem, provided that the separation between the slow and
the fast eigenvalues is sufficiently large. We also estab-
lished that the solution to the optimal actuator/sensor
problem, which is obtained on the basis of the closed-
loop finite-dimensional system, is near-optimal in the
sense that it approaches the optimal solution for the
infinite-dimensional system as the separation between
the slow and fast eigenvalues increases. The theoretical

results were successfully applied to a typical diffusion-
reaction process with nonlinearites and uncertainty to
design a robust nonlinear output feedback controller
and compute the optimal actuator/sensor locations for
robust stabilization of an unstable steady state.
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Appendix A

Proof of Proposition 1. Substituting the control law of
Eq. (16) into the finite-dimensional system of Eq. (12),
we obtain:

x̃� s=�sx̃s−�c(x̃s, t)
x̃s

�x̃s �+�
+Ws(x̃s, 0, �) (40)

To prove boundedness of the state of the above system
and uncertainty attenuation, we use the following Lya-
punov function candidate:

V=
1
2

x̃ s
2 (41)

Computing the time-derivative of this function along
the trajectories of the closed-loop system of Eq. (40),
we obtain:

V� = x̃ s
Tx̃� s= x̃ s

T[�sx̃s−�c(x̃s, t)
x̃s

�x̃s �+�
+Ws(x̃s, 0, �)]

(42)

Using the stability property of �s and the bound of
Assumption 3, the following bound for V� can be
computed:

V� � −�1x̃ s
2−�c(x̃s, t)

x̃ s
2

�x̃s �+�
+ �x̃s �c(x̃s, t) (43)

� −�1x̃ s
2+

−�x̃ s
2c(x̃s, t)+ x̃ s

2c(x̃s, t)+� �x̃s �c(x̃s, t)
�x̃s �+�

� −�1x̃ s
2+

− (�−1)x̃ s
2c(x̃s, t)+� �x̃s �c(x̃s, t)

�x̃s �+�

where �1 is a strictly positive real number which is
smaller or equal to the smallest eigenvalue of the matrix
�s. Since �x̃s �/�x̃s �+��1, we finally have:

V� � −�1x̃ s
2+ (− (�−1)�x̃s �+�)c(x̃s, t) (44)

From the above inequality, it follows that when �x̃s ��
�/(�−1) (i.e. the state, x̃s, is outside of a ball which is
centered at the origin), then − (�−1)�x̃s �+��0, and
thus, V� satisfies the following bound:

Fig. 10. Profile of evolution of the rod temperature, under output
feedback control and optimal actuator/sensor placement which do
not account for the disturbances—xs(0)=�1.
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V� � −�1x̃ s
2 (45)

This implies (Khalil, 1992) that there exist positive real
numbers K, �2 and a class K function (·) such that the
state of the system of Eq. (40) satisfies:

�x̃s(t)��K �x̃s(0)�e−�2t+(�) (46)

From the above inequality, it follows directly that the
state of the system of Eq. (40) remains bounded and
asymptotically approaches a ball whose size is scaled by
the controller parameter �, lim

t��
�x̃s(t)��(�).�

Proof of Theorem 1. The proof of this theorem will be
obtained in two steps. In the first step, we will show
boundedness and closeness of solutions for the closed-
loop system of Eq. (9), provided that the initial condi-
tions and � are sufficiently small. In the second step, we
will exploit the closeness of solutions result to show
that the cost associated with the closed-loop PDE sys-
tem approaches the optimal cost associated with the
closed-loop finite-dimensional system under state feed-
back control, when the initial conditions and � are
sufficiently small, thereby establishing that the location
of the control actuators obtained by using the finite-di-
mensional system is near-optimal.

Boundedness–closeness of solutions: Using that �=
�Re{	1}�/�Re{	m+1}� and under the controller of Eq.
(16), the closed-loop system of Eq. (9) takes the form:

dxs

dt
=�sxs−�c(xs, t)

xs

�xs �+�
+Ws(xs, xf, �)+ fs(xs, xf)

− fs(xs, 0) (47)

�
�xf

�t
=Af�xf+�f� f(xs, xf)+�Wf(xs, xf, �)

where Af� is an unbounded differential operator
defined as Af�=�Af, and − f� f(xs, xf)=BfBs

−1((As−
�s)xs+ fs(xs, 0)−�c(xs, t)(xs/�xs �+�))+ ff(xs, xf).
Since � is a small positive number less than unity
(Assumption 1, part 3), the system of Eq. (47) is in the
standard singularly perturbed form, with xs being the
slow states and xf being the fast states. Introducing the
fast time-scale �= t/� and setting �=0, we obtain the
following infinite-dimensional fast subsystem from the
system of Eq. (47):

�x̃f

��
=Af�x̃f (48)

where the tilde symbol in x̃f, denotes that the state x̃f is
associated with the approximation of the fast xf-subsys-
tem. From the fact that Re{	m+1}�0 and the defini-
tion of �, we have that the above system is globally
exponentially stable. Setting �=0 in the system of Eq.
(47) and using that the operator Af� is invertible, we
have that:

x̃f=0 (49)

and thus the closed-loop of the finite-dimensional slow
system takes the form:

dx̃s

dt
=�sx̃s−�c(x̃s, t)

x̃s

�x̃s �+�
+Ws(x̃s, 0, �) (50)

In Proposition 1, we proved that the state of the above
slow subsystem is globally bounded. Since the state of
the slow subsystem of Eq. (50) is bounded and the fast
subsystem of Eq. (48) is globally exponentially stable,
there exist positive real numbers �1, �2, and �* such
that if �xs(t)���1, ��xf(t)��2��2, and �� (0, �* ], then the
system of Eq. (47) is bounded and the solution
xs(t), xf(t) of the system of Eq. (47) satisfies for all
t� [tb, Tf):

xs(t)= x̃s(t)+O(�) (51)

xf(t)= x̃f(t)+O(�)

where tb=O(�) is the time required for xf(t) to ap-
proach x̃f(t). x̃s(t) and x̃f(t) are the solutions of the
slow and fast subsystems of Eqs. (48) and (50), respec-
tively (Christofides, 2001) and Tf=O(1) is a positive
constant.

Near-optimality of the actuator locations: The cost for
the closed-loop infinite-dimensional system can be writ-
ten as follows:

J� = 1
K

1
m

�
K

�=1

�
m

i=1

� tb

0

((xs
T(xs

i(0), ��, t), Qsxs(xs
i(0), ��, t))

+(xf
T(xs

i(0), ��, t), Qfxf(xf
i(0), ��, t)) (52)

+uT(xs(xs
i(0), ��, t), za) Ru(xs(xs

i(0), ��, t), za)) dt

+
1
K

1
m

�
K

�=1

�
m

i=1

� Tfi�

tb

((xs
T(xs

i(0), ��, t), Qsxs(xs
i(0), ��, t))

+ (xf
T(xs

i(0), ��, t), Qfxf(xf
i(0), ��, t))

+uT(xs(xs
i(0), ��, t), za) Ru(xs(xs

i(0), ��, t), za)) dt

From the closeness of solutions results of Eq. (51) and
picking Tfi�

�Tf (this is always possible by appropriate
choice of the controller parameters), it follows that for
tb� t�Tfi�

(outside of the boundary layer):

xs(xs
i(0), ��, t)� x̃s(xs

i(0), ��, t), xf(xf
i(0), ��, t)�0,

u(xs(xs
i(0), t), za)�u(x̃s(xs

i(0), t), za) as ��0
(53)

and hence:

1
K

1
m

�
K

�=1

�
m

i=1

� Tfi�

t b

(xs
T(xs

i(0), ��, t) Qsxs(xs
i(0), ��, t)

+ (xf
T(xf

i(0), ��, t) Qfxf(xf
i(0), ��, t) (54)

+uT(xs(xs
i(0), ��, t), za) Ru(xs(xs

i(0), ��, t), za)) dt

�
1
K

1
m

�
K

�=1

�
m

i=1

� Tfi�

t b

(x̃ s
T(xs

i(0), ��, t) Qsx̃s(xs
i(0), ��, t)

+uT(x̃s(xs
i(0), ��, t), za) Ru(x̃s(xs

i(0), ��, t), za)) dt
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as ��0

From the boundedness of the state of the closed-loop
system, we have that there exists a positive real number
M that bounds the absolute values of the integrand of
Eq. (52) for t� [0, Tf ]. Using the fact that tb=O(�), we
then have:

1
K

1
m

�
K

�=1

�
m

i=1

� tb

0

(xs
T(xs

i(0), ��, t) Qsxs(xs
i(0), ��, t)

+ (xf
T(xf

i(0), ��, t) Qfxf(xf
i(0), ��, t) (55)

+uT(xs(xs
i(0), ��, t), za) Ru(xs(xs

i(0), ��, t), za)) dt

�
� tb

0

M dt�M�=O(�)

Similarly, from the stability of the closed-loop finite-di-
mensional system of Eq. (12) and the fact that tb=
O(�), we have that there exists a positive real number
M � such that:

1
K

1
m

�
K

�=1

�
m

i=1

� tb

0

(x̃ s
T(xs

i(0), ��, t) Qsx̃s(xs
i(0), ��, t)

(56)

+uT(x̃s(xs
i(0), ��, t), za) Ru(x̃s(xs

i(0), ��, t), za)) dt

�
� tb

0

M � dt�M ��=O(�)

Combining Eqs. (54)– (56), we obtain:

1
K

1
m

�
K

�=1

�
m

i=1

� Tfi�

0

(xs
T(xs

i(0), ��, t) Qsxs(xs
i(0), ��, t)

+ (xf
T(xf

i(0), ��, t) Qfxf(xf
i(0), ��, t) (57)

+uT(xs(xs
i(0), ��, t), za) Ru(xs(xs

i(0), ��, t), za)) dt

�
1
K

1
m

�
K

�=1

�
m

i=1

� Tfi�

0

(x̃ s
T(xs

i(0), ��, t) Qsx̃s(xs
i(0), ��, t)

+uT(x̃s(xs
i(0), ��, t), za) Ru(x̃s(xs

i(0), ��, t), za)) dt

as ��0

This completes the proof of the theorem.

Proof of Theorem 2. Under the output feedback con-
troller of Eq. (27), the closed-loop system takes the
form:

dxs

dt
=�sxs−�c(xs+xf, t)

xs+xf

�xs+xf �+�
+ (As−�s)xf

+fs(xs, xf) (58)

− fs(xs+xf, 0)+Ws(xs, xf, �)

�
�xf

�t
=Af�xf

+�BfBs
−1((As−�s)(xs+xf)+ fs(xs+xf, 0)

−�c(xs+xf, t)
xs+xf

�xs+xf �+�
)+�ff(xs, xf)

+�Wf(xs, xf, �)

Using that � is a small positive number less than unity
(Assumption 1, part 3), and introducing the fast time-
scale �= t/� and setting �=0, we obtain the following
infinite-dimensional fast subsystem which describes the
fast dynamics of the system of Eq. (58):

�x̃f

��
=Af�x̃f (59)

which is globally exponentially stable. Setting �=0 in
the system of Eq. (58) and using that the operator Af�

is invertible, we have that:

x̃f=0 (60)

and thus the closed-loop of the finite-dimensional slow
system takes the form:

dx̃s

dt
=�sxs−�c(xs, t)

xs

�xs �+�
+Ws(xs, 0, �) (61)

which is globally bounded. Therefore, there exist posi-
tive real numbers �1, �1, and �* such that if �xs(t)���1,
��xf(t)��2��2, and �� (0, �* ], then the system of Eq. (10)
is globally bounded and the solution xs(t), xf(t) of the
system of Eq. (58) satisfies the estimates of Eq. (58).

Given the stability and closeness of solutions results
for the closed-loop system, the near-optimality of the
control actuators and measurement sensors in the sense
described in Eq. (28) can be established by using similar
calculations to the ones in part 2 of the proof of
Theorem 1.
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