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Abstract

This paper proposes a methodology for the synthesis of nonlinear output feedback controllers for single-input single-output
nonlinear di!erential di!erence equation (DDE) systems which include time delays in the states, the control actuator and the
measurement sensor. Initially, DDE systems which only include state delays are considered and a novel combination of geometric and
Lyapunov-based techniques is employed for the synthesis of nonlinear state feedback controllers that guarantee stability and enforce
output tracking in the closed-loop system, independently of the size of the state delays. Then, the problem of designing nonlinear
distributed state observers, which reconstruct the state of the DDE system while guaranteeing that the discrepancy between the actual
and the estimated state tends exponentially to zero, is addressed and solved by using spectral decomposition techniques for DDE
systems. The state feedback controllers and the distributed state observers are combined to yield distributed output feedback
controllers that enforce stability and output tracking in the closed-loop system, independently of the size of the state delays. For DDE
systems with state, control actuator and measurement delays, distributed output feedback controllers are synthesized on the basis of
an auxiliary output constructed within a Smith-predictor framework. The proposed control method is successfully applied to
a reactor-separator process with recycle and a #uidized catalytic cracker and is shown to outperform nonlinear controller designs that
do not account for the presence of dead time associated with the recycle loop and the pipes transferring material from the reactor to
the regenerator and vice versa, respectively. ( 1999 Elsevier Science Ltd. All rights reserved.

Keywords: Nonlinear control; Nonlinear state estimation; Time-delay processes

1. Introduction

The dynamic models of many chemical engineering
processes involve severe nonlinearities and signi"cant
time delays and are naturally described by nonlinear
di!erential di!erence equation (DDE) systems. Nonlin-
earities usually arise from complex reaction mechanisms
and Arrhenius dependence of reaction rates on temper-
ature, while time delays often occur due to transportation
lag such as in #ow through pipes, dead times associated
with measurement sensors (measurement delays) and
control actuators (manipulated input delays), and
approximation of high-order dynamics. Typical exam-
ples of processes which involve nonlinearities and time
delays include chemical reactors with recycle loops,
#uidized catalytic cracking units, distillation columns,
chemical vapor deposition processes to name a few.
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The conventional approach to control linear/nonlin-
ear DDE systems is to neglect the presence of time delays
and address the controller design problem on the basis of
the resulting linear/nonlinear ordinary di!erential equa-
tion (ODE) systems, employing standard control
methods for ODE systems. However, it is well-known
(see, for example, Stephanopoulos, 1984) that such an
approach may pose unacceptable limitations on the
achievable control quality and cause serious problems in
the behavior of the closed-loop system including poor
performance (e.g., sluggish response, oscillations) and in-
stability.

Motivated by the above, signi"cant research e!orts
have focused on the development of control methods for
linear DDE systems that compensate for the e!ect of time
delays. Research initially focused on linear systems with
a single manipulated input delay which are described by
transfer function models, in which the presence of the
time delay prevents the use of large controller gains (i.e.,
the proportional gain of a proportional-integral control-
ler should be su$ciently small in order to avoid destabil-
ization of the closed-loop system), thereby leading to
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sluggish closed-loop response. To overcome this prob-
lem, (Smith proposed in 1957) proposed a control struc-
ture, known as Smith predictor, which completely
eliminates the time delay from the characteristic poly-
nomial of the closed-loop system, allowing the use of
larger controller gains. Since then many researchers have
proposed alternatives or modi"cations of the Smith pre-
dictor structure (e.g., Vit, 1979), extensions to control
structures for linear systems including inferential control
(Brosilow, 1976) and internal model control (Garcia and
Morari, 1982) other predictor structures such as the
analytical predictor (Moore et al., 1970; Wellons and
Edgar, 1987) and established connections of the Smith
predictor with other predictors (Wong and Seborg, 1986).
The Smith predictor structure has also been extended to
linear multivariable systems with multiple input and out-
put delays which are described by transfer function mod-
els, leading to multi-delay compensators (Jerome and
Ray, 1986; Ogunnaike and Ray, 1979). Excellent reviews
of results on Smith and other predictor structures can be
found in Jerome and Ray (1986) and Wong and Seborg
(1986).

Even though the above works provided powerful
methods for dealing with control actuator and measure-
ment dead time in linear systems, they do not explicitly
account for the e!ect of time delays in the process state
variables. This motivates research on the design of
controllers for DDE systems with state delays. In this
direction, the application of classical optimal control
approaches to DDE system in order to design optimal
distributed parameter (in"nite-dimensional) controllers
was initially studied (e.g., Ray, 1981; Soliman and Ray,
1972). Then, the distributed nature of the developed con-
trollers motivated research on the problem of model
reduction of linear DDE systems. This problem is the one
of "nding a linear low-dimensional ODE system that
accurately reproduces the solutions of a linear DDE
system. Approaches to address this problem include bal-
anced approximation based on controllability and ob-
servability gramians (Lu et al., 1987), frequency response
analysis (Gu et al., 1989) and approximations using
Fourier}Laguerre models (Partington, 1991; Wahlberg,
1991) to name a few. An alternative approach for the
synthesis of controllers for linear DDE systems with state
delays that stabilize the closed-loop system independent-
ly of the size of the delays is based on the method of
Lyapunov functionals (Hale and Verduyn Lunel, 1993).
The central idea of this approach is to synthesize a
linear controller so that the time derivative of an
appropriate Lyapunov functional calculated along the
trajectories of the closed-loop DDE system is negative
de"nite, independently of the size of the delays. The
method of Lyapunov functionals has been used in the
design of linear stabilizing controllers for linear DDE
systems in Nazaro! (1973) and Ross and Flugge-Lotz
(1969).

Despite the abundance of results on control of linear
DDE systems, most of the research on nonlinear DDE
systems has focused on the derivation of conditions for
existence and uniqueness of solutions, the understanding
of qualitative and geometric properties of the solutions
(see the book by Hale and Verduyn Lunel, 1993 for
results and reference lists), and stability analysis through
Razumikhin-type theorems and nonlinear small-gain
theorem techniques (e.g., Teel, 1998; Xu and Liu, 1994).
Very few results are available on control of nonlinear
DDE systems, with the exception of optimal control
methods (Koivo and Koivo, 1978; Ray, 1981). For non-
linear systems represented by input}output models, ex-
tensions of the Smith predictor have been proposed in
Bartee et al. (1989) and Wong and Seborg (1988). Within
a state-space framework, the only available results on
controller synthesis are for single-input single-output
nonlinear systems with a single manipulated input delay,
for which a nonlinear Smith predictor structure was
proposed in Kravaris and Wright (1989) under the as-
sumption of open-loop stability, and further extended to
open-loop unstable systems in Henson and Seborg,
(1994). At this stage, there is no rigorous, yet practical,
method for the design of nonlinear controllers for nonlin-
ear DDE systems with state, manipulated input and
measured output delays.

This paper proposes a methodology for the synthesis
of nonlinear output feedback controllers for single-input
single-output nonlinear di!erential di!erence equation
(DDE) systems which include time delays in the states,
the control actuator and the measurement sensor. Ini-
tially, DDE systems which only include state delays are
considered and a novel combination of geometric and
Lyapunov-based techniques is employed for the syn-
thesis of nonlinear state feedback controllers that
guarantee stability and enforce output tracking in the
closed-loop system, independently of the size of the state
delays. Then, the problem of designing nonlinear distrib-
uted state observers, which reconstruct the state of the
DDE system while guaranteeing that the discrepancy
between the actual and the estimated state tends expo-
nentially to zero, is addressed and solved by using spec-
tral decomposition techniques for DDE systems. The
state feedback controllers and the distributed state
observers are combined to yield distributed output feed-
back controllers that enforce stability and output track-
ing in the closed-loop system, independently of the size of
the state delays. For DDE systems with state, control
actuator and measurement delays, distributed output
feedback controllers are synthesized on the basis of an
auxiliary output constructed within a Smith-predictor
framework. The proposed control method is successfully
applied to an exothermic reactor-separator process with
recycle and a #uidized catalytic cracker and is shown to
outperform nonlinear controller designs that do not ac-
count for the presence of dead time associated with the
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recycle loop and the pipes transferring material from the
reactor to the regenerator and vice versa, respectively.

2. Di4erential di4erence equation systems

2.1. Description of nonlinear DDE systems

We consider single-input single-output systems of non-
linear di!erential di!erence equations with the following
state-space description:
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and satis"es f (0, 0,2,0)"0 which implies that x(t),0
is an equilibrium solution for the open-loop (i.e.,
u(tM!a(

1
),0) system of Eq. (1).

There are many chemical engineering processes whose
dynamic models involve time delays in the state variables
and are naturally described by nonlinear DDE systems of
the form of Eq. (1). Example of such processes include
chemical reactors with recycle loops (where the state
delays occur due to transportation lag in the recycle
loops), #uidized catalytic cracking reactors (where the
state delays occur due to dead time in pipes transferring
material from the regenerator to the reactor and vice
versa) and distillation columns (where the state delays
occur due to dead time in reboiler and condenser recycle
loops). Furthermore, control actuator and measurement
sensor dead times are also very common sources of time
delays in chemical process control, and they are explicitly
accounted for in the DDE system of Eq. (1). The linear
appearance of the manipulated input u in the system of
Eq. (1) is also typical in most practical applications,

where inlet #ow rates, inlet temperatures and concentra-
tions are typically chosen as manipulated inputs. Finally,
the assumption that the controlled output is identical to
the measured output is done in order to simplify the
notation of the paper and can be readily relaxed (i.e., the
extension of the proposed theory to systems in which the
controlled output is di!erent from the measured output
is conceptually straightforward).

To simplify the presentation of the results of the paper,
we will transform the DDE system of Eq. (1) into an
equivalent DDE system which includes state and
measurement delays and does not include manipulated
input delay. We will also focus on DDE systems with
a single state delay (the generalization of the results of the
paper to the case of DDE systems with multiple state
delays is conceptually straightforward and will not be
presented here for reasons of brevity). To this end, we set
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1
#a(

2
, t"tM!a(

1
, q"1, B

1
"B, a6 "a6

1
, a"a(

1
#

a6 , x(t)"x6 (t#a(
1
) and obtain the following system

(which will be used in our development):
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Remark 1. In order to compare the proposed approach
for control of nonlinear DDE systems with existing ap-
proaches for control of linear DDE systems, we set
f (x (t), x(t!a))"0, g(x (t), x(t!a))"c and h(x (t!a8 ))
"wx(t!a8 ), where c, w are constant vectors, in the
system of Eq. (2) to derive the following linear DDE
system:

x5 "Ax(t)#Bx(t!a)#cu(t),

x(m)"g6 (m), m3[!a, 0), x(0)"g6
0
,

y"wx(t!a8 ), (3)

which will be used to synthesize linear state feedback
controllers and state observers.

In the next subsection, a typical chemical process
example (Ogunnaike and Ray, 1979) is given in order to
illustrate modeling of a chemical process in the form of
Eq. (2).

2.2. Example of a chemical process modeled by
a nonlinear DDE system

Consider the cascade of two perfectly mixed chemical
reactors with recycle loop, which is shown in Fig. 1.
A "rst-order irreversible reaction of the form APB
takes place in the reactors. The process possesses an
inherent state delay due to the transportation lag in the
recycle loop. Under standard modeling assumptions, the
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Fig. 1. Two chemical reactors with recycle loop.

dynamic model of the process can be derived from mass
and energy balances and consists of the following system
of four nonlinear di!erential di!erence equations:
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where F
1
, F

2
denote the #ow rates of the inlet streams to

the two reactors, <
1
, <

2
denote the volumes of the two

reactors, R denotes the recycle (from the second to the
"rst reactor) #ow rate, F

p1
, F

p2
denote the #ow rate of the

product streams from the two reactors, C
1f

, C
2f

denote
the concentration of species A in the inlet streams to the
reactors, C

1
, C

2
denote the concentration of species A in

the reactors, ¹
1f

, ¹
2f

denote the temperature of the inlet
streams to the two reactors, ¹

1
, ¹

2
denote the temper-

ature in the two reactors, k
0
, E, *H denotes the

pre-exponential constant, the activation energy and the
enthalpy of the reaction, c

p
, o denote the heat capacity

and the density of the reacting liquid, and x denotes the
recycle loop dead time.

A typical control problem for this process can be
formulated as the one of regulating the concentration
of species A in the "rst reactor, C

1
, by manipulating

the feed concentration of A in the "rst reactor, C
1f

.
Setting
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1

the original set of equations can be put in the form
of Eq. (2).

3. Mathematical properties of DDE systems

The objective of this section is to present the basic
mathematical properties of DDE systems that will be
used in our development. We will begin with the spectral
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properties of DDE systems, and we will continue with
stability concepts and results.

3.1. Spectral properties

In this subsection, we formulate the system of Eq. (2) as
an in"nite-dimensional system in an appropriate Banach
space and provide the statement and solution of the
eigenvalue problem for the linear delay operator (see Eq.
(7) below). The solution of the eigenvalue problem will be
utilized in the design of nonlinear distributed state
observers in Section 7. We formulate the system of Eq. (2)
in the Banach space C([!a, 0], R n) of continuous
n-vector valued functions de"ned in the interval [!a, 0]
with inner product and norm:

(u8
1
, u8

2
)"u8

1
(0)u8

2
(0)#P

0

~a
u8

1
(z#a)Bu8

2
(z) dz,

Eu8
1
E
2
"(u8

1
, u8

1
)1@2, (5)

where u8
1

is an element of CH([!a, 0], R nH), R nH is the
n-dimensional vector space of row vectors, and u8

2
3C.

On C, the state function x of the system of Eq. (2) is
de"ned as

x
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The eigenvalue problem for the operator A is de"ned
as

A/
j
"j

j
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, j"1,2,R, (11)

where j
j
denotes an eigenvalue and /

j
denotes an eigen-

function (note that /
j

is a vector of dimension n); the
eigenspectrum of A, p(A), is de"ned as the set of all
eigenvalues of A, i.e., p(A)"Mj

1
, j

2
,2,N and is given by

(Hale and Verduyn Lunel, 1993)

p(A)"Mj: det(jI!A!Be~ja)"0N. (12)

The eigenfunctions can be directly computed from the
formula /j"ejm/j(0), where /j(0) satis"es the equation
(jI!A!Be~ja)/j(0)"0. The adjoint operator AM is
de"ned from the relation (A/, t)"(/, AM t), where (, )
denotes the inner product of Eq. (5), and its eigenspec-
trum, p(AM ), satis"es p(AM )"p(A).

Remark 2. Regarding the properties of the eigenspec-
trum of A, several comments are in order (Hale and
Verduyn Lunel, 1993; Manitius et al., 1987) (a) the eigen-
spectrum p(A) is a point spectrum consisting of eigen-
values, j3p(A), of "nite multiplicity, i(j), (b) the number
of eigenvalues of p(A) which have positive real part (i.e.,
they are located in the right-half of the complex plane) is
always "nite, (c) the real parts of all the eigenvalues are
bounded from above (i.e., there exists a positive real
number b such that DRej

i
D)b for all i"1,2,R), and

(d) the eigenvalues are asymptotically distributed along
nearly vertical asymptotes in the complex plane.

Remark 3. To illustrate the formulation of a DDE sys-
tem in an in"nite-dimensional Banach space, and the
formulation and solution of the corresponding eigen-
value problem for the delay operator, we consider the
following numerical example:
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unique equilibrium solution, the Banach space is
C([!3, 0], R 2) and the operator A takes the form
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The eigenvalue problem for A was solved numerically by
using the mathematical software MAPLE and was found
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that p(A) includes two unstable eigenvalues j
1
"0.58,

j
2
"0.21 and in"nitely many stable eigenvalues; this

implies that the equilibrium solution (0,0) of the system of
Eq. (13) is unstable.

We "nally note that even though the solution
(x

1
, x

2
)"(0,0) of the DDE system of Eq. (13) is unstable,

the origin of the undelayed system:
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is globally asymptotically stable (the linearization of the
above system around the origin possesses two stable
eigenvalues: j

1
"!6.78, j

2
"!0.22 and (x

1
, x

2
)"

(0,0) is the unique equilibrium point).

3.2. Stability concepts and results

From the analysis of the previous subsection, it is
evident that DDE systems of the form of Eq. (2) possess
fundamentally di!erent properties from ODE systems.
The main di!erence is that the state space of a DDE
system is in"nite-dimensional, while the state space of an
ODE system is "nite-dimensional. Therefore, the rigor-
ous analysis of the stability properties of the system of
Eq. (2) requires the use of stability concepts and results
for DDE systems. In what follows, we review the de"ni-
tions of asymptotic stability and input-to-state stability
for DDE systems as well as a basic theorem that provides
su$cient conditions for assessing asymptotic stability.
The reader may refer to the classic book (Hale and
Verduyn Lunel, 1993) for a complete treatment of stabil-
ity issues for nonlinear di!erential di!erence equations.

Consider the following system of nonlinear di!erential
di!erence equations:
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Euclidean norm in R m. De"nition 1 that follows provides
a rigorous statement of the concept of input-to-state
stability for the system of Eq. (17).

De5nition 1. (Teel, 1998). Let c be a function of class-Q
(see de"nition of class-Q function in the appendix) and
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, dh be positive real numbers. The zero solution of Eq.
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The above de"nition, when h(t),0, ∀t*0 reduces to
the de"nition of asymptotic stability for the zero solution
of the DDE system of Eq. (17). Furthermore, when a"0,
De"nition 1 reduces to the standard de"nition of input-
to-state stable for nonlinear ODE systems with external
inputs (see, for example, Khalil, 1992). Finally, we note
that from the de"nition of Dx
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(m)D and Eq. (18), it follows

that Dx(t)DRn ) Dx
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The following theorem provides su$cient conditions
for the stability of the zero solution of the system of
Eq. (17), expressed in terms of a suitable functional,
and consists a natural generalization of the direct
method of Lyapunov for ordinary di!erential equations.
The result of this theorem will be directly used in the
solution of the state feedback control problem in
Section 5 below.

Theorem 1. (Hale and Verduyn Lunel 1993). Consider the
system of Eq. (17) with h(t),0 and let c
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3
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the solution x"0 is locally asymptotically stable. If
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solution x"0 is globally asymptotically stable.

Remark 4. Even though, at this stage, there is no system-
atic way for selecting the form of the functional <(x

t
(m))

which is suitable for a particular application, a choice for
<(x

t
(m)), which is frequently used to show local exponen-

tial stability of a DDE system of the form of Eq. (17) via
Theorem 1, is

<(x
t
(m))"x(t)TCx(t)#a2 P

t

t~a
x(s)TEx(s) ds, (20)

where E, C are symmetric positive-de"nite matrices and
a is a positive real number. Clearly, the functional of
Eq. (20) satis"es K

1
Dx(t)D2R n)<(x

t
(m)))K

2
Dx

t
(m)D2 for

some positive K
1
, K

2
.

4. Nonlinear control of DDE systems
with small time delays

In order to motivate the need for accounting for the
presence of time delays in the controller design, we will
now establish that a direct application of any nonlinear
control method to DDE systems without accounting for
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the presence of time delays, will lead to the design of
controllers that enforce stability and output tracking in
the closed-loop system, provided that the time delays are
su$ciently small.

We assume that there exists a nonlinear output feed-
back controller of the form

u5 "F(u, y, v),

u"P(u, y, t), (21)

where F(u, y, v) is a vector function, P(u, y, t) is a scalar
function, and v is the set point, which has been designed
on the basis of the system

x5 "Ax(t)#Bx(t)#f (x(t), x(t))#g(x(t), x(t))u(t),

x(0)"x
0
,

y"h(x(t)) (22)

so that the closed-loop system:

u5 "F(u, y, v), u(0)"u
0

x5 "Ax(t)#Bx(t)#f (x(t), x(t))

#g(x(t), Gx(t))P(u, y, t), x(0)"x
0
,

y"h(x(t)). (23)

is locally exponentially stable (see Khalil (1992) for
stability de"nitions for ODE systems) and the dis-
crepancy between y and v is asymptotically zero (i.e.,
lim

t?=
Dy!vDR "0).

Theorem 2 that follows establishes that if the control-
ler of Eq. (21) enforces local exponential stability and
asymptotic output tracking in the closed-loop system
of Eq. (23), then it also enforces these properties in
the closed-loop system of Eqs. (2)}(21), provided
that the state and measurement delays are su$ciently
small (the proof of the theorem can be found in the
appendix).

Theorem 2. If the ODE system of Eq. (23) is locally expo-
nentially stable, then the nonlinear DDE system of Eq. (2)
under the nonlinear output feedback controller of Eq. (21) is
locally exponentially stable and the discrepancy between
y and v tends asymptotically to zero (i.e., lim

t?=
Dy!

vDR"0), provided that a and a8 are suzciently small.

Remark 5. Even though the result of the theorem clearly
indicates the need for accounting for the presence of time
delays in the controller design, it is worth mentioning
that Theorem 2 establishes a very important robustness
property of any nonlinear controller with respect to small
time delays. This property may also be useful in
many practical applications, because it could lead

to simpli"cations in the controller design task, which,
for DDE systems with small time delays, could be
addressed on the basis of an ODE system instead of
a DDE one.

5. Nonlinear control of DDE systems with
large time delays

5.1. Problem statement

Since the application of controller design methods
which do not account for the presence of time delays is
limited to DDE systems with small time delays, we
address, in this paper, the problem of synthesizing
nonlinear output feedback controllers of the general
form

u5 "Au(t)#Bu(t!a)#f (u(t), u(t!a))

#g(u(t), u(t!a))A(u(t), v6 (t), u(t!a), v6 (t!a))

#I(y(t)!h(u(t))),

u"A(u(t), v6 (t), u(t!a), v6 (t!a)). (24)

where I( ) ) is a nonlinear integral operator, A(u(t), v6 (t),
u(t!a), v6 (t!a)) is a nonlinear scalar function,
v6 (s)"[v (s) v(1) (s) 2 v(r~1)(s)]T, s3[t!a, t] and v(k)
denotes the kth time derivative of the reference input
v3R, that enforce exponential stability, asymptotic out-
put tracking and time-delay compensation in the closed-
loop system, independently of the size of the state and
measurement delays.

5.2. Methodological framework

To develop a comprehensive method for the synthesis
of controllers of the form of Eq. (24) that enforce the
requested properties in the closed-loop system, we will
employ a methodology which involves the following
steps:

1. Synthesis of nonlinear state feedback controllers that
enforce stability and output tracking in the closed-
loop system, independently of the size of the state
delay.

2. Design of nonlinear distributed state observers (i.e.,
the observer itself is a system of nonlinear integro-
di!erential equations) that produce estimates of the
unknown state variables of the process with guaran-
teed asymptotic convergence of the error between the
actual and estimated states to zero.

3. Synthesis of distributed nonlinear output feedback
controllers through combination of the developed
state feedback controllers with the distributed state
observers.
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Initially, nonlinear state feedback controllers will be
synthesized for DDE systems which only include state
delays by employing a novel combination of geometric
control concepts with the method of Lyapunov func-
tionals (i.e., the controllers will be synthesized in such
a way so that the time derivative of an appropriate
Lyapunov functional calculated along the trajectories of
the closed-loop system is negative de"nite). Then, nonlin-
ear distributed state observers will be constructed for
DDE systems which only include state delays by using
spectral decomposition techniques. Finally, for DDE sys-
tems with state and measurement delays, the output
feedback controller will be synthesized on the basis of an
auxiliary output constructed within a Smith-predictor
framework.

6. Nonlinear state feedback control for DDE systems
with state delays

In this section, we consider systems of the form of Eq.
(2) without measurement delay, i.e., a8 "0, (this assump-
tion will be removed below) and assume that measure-
ments of the states are available (i.e., x(s) for s3[t!a, t],
t3[0, R) is known). For these systems, we address the
problem of synthesizing nonlinear static state feedback
control laws of the general form

u"A(x(t), v6 (t), x(t!a), v6 (t!a)). (25)

where A(x(t), v6 (t), x(t!a), v6 (t!a)) is a nonlinear scalar
function, that (a) guarantees local exponential stability,
(b) forces the output to asymptotically follow the refer-
ence input (i.e., ensure that lim

t?=
Dy!vDR"0), and (c)

compensate for the e!ect of the time delay on the output,
in the closed-loop system. The structure of the control
law of Eq. 25 is motivated by available results on stabiliz-
ation of linear DDE systems (e.g., Nazaro!, 1973; Ross
and Flugge-Lotz, 1969) and the requirement of output
tracking.

In order to proceed with the explicit synthesis of the
control law of Eq. (25), we will need to make certain
assumptions on the structure and stability properties
of the system of Eq. (2). To simplify the statement of
these assumptions, we introduce the notation
f (x(t), x(t!a))"f

1
(x(t))#f

2
(x(t), x(t!a)), fI (x(t))"Ax

(t)#f
1

(x(t)), and p6 (x(t), x(t!a))"Bx(t!a)#f
2

(x(t),
x(t!a)), which allows us to rewrite the system of Eq. (2)
in the following form:

x5 "fI (x(t))#g(x(t), x(t!a))u#p6 (x(t), x(t!a)),

y"h(x). (26)

The "rst assumption is motivated by the requirement of
output tracking and will play a crucial role in the syn-
thesis of the controller.

Assumption 1. Referring to the system of Eq. (26), there
exists an integer r and a change of variables:

C
f(s)

g(s)D"

f
1
(s)

f
2
(s)

F

f
r
(s)

g
1
(s)

F

g
n~r

(s)

"X (x(s))"

h(x)

¸
fI
h(x(s))

F

¸r~1
fI

h(x(s))

s
1
(x(s))

F

s
n~r

(x(s))

, (27)

where s3[t!a, t] and s
1
(x(s)),2, s

n~r
(x(s)) are scalar

functions such that the system of Eq. (26) takes the form

fQ
1

" f
2
(t)#p

1
(f(t), g(t), f(t!a), g(t!a)),

F

fQ
r~1

" f
r
(t)#p

r~1
(f(t), g(t), f(t!a), g(t!a)),

fQ
r

" ¸r
fI

h(X~1(f(t), g(t)))

#¸
g
¸r~1
fI

h(X~1(f(t), g(t)))u

#p
r
(f(t), g(t), f(t!a), g(t!a)),

g5
1

" W
1
(f(t), g(t), f(t!a), g(t!a)),

F

g5
n~r

" W
n~r

(f(t), g(t), f(t!a), g(t!a)),

y " f
1
,

(28)

where p
1
(f(t), g(t), f(t!a), g(t!a)), 2,p

r
(f(t), g(t), f(t!a),

g(t!a)), W
1
(f(t), g(t), f(t!a), g(t!a)),2,W

n~r
(f(t), g(t),

f(t!a), g(t!a)) are nonlinear Lipschitz functions and
¸
g
¸r~1
fI

h(x)O0 for all x(s)3R n and s3[t!a, t].

Assumption 1 provides the explicit form of a coordi-
nate change (which is independent of the state delay
present in the system of Eq. (2)) that transforms the
nonlinear DDE system of Eq. (2) into an interconnection
of two subsystems, the f-subsystem which describes the
input/output dynamics of the system of Eq. (2) and the
g-subsystem which includes the dynamics of the system
of Eq. (2) which are unobservable from the output. Spe-
ci"cally, the interconnection of Eq. (28) is obtained by
considering the change of variables of Eq. (27) with s"t,
di!erentiating it with respect to time, and using that
x(t)"X~1(f(t), g(t)) and x(t!a)"X~1(f(t!a), g(t!a))
(note that this is possible because the coordinate change
of Eq. (27) is assumed to be valid for s3[t!a, t]).
The coordinate transformation of Eq. (27) is not restrict-
ive from an application point of view (one can easily
verify that Assumption 1 holds for the two chemical
reactors with recycle of Section 2.2 and the two applica-
tions studied in Section 10). The assumption that
¸
g
¸r~1
fI

h(x)O0 for all x(s)3R n and s3[t!a, t] is neces-
sary in order to guarantee that the controller which will
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be synthesized is well-posed in the sense that it does not
generate in"nite control action for any values of the
states of the process (compare with the structure of the
controller given in Theorem 3).

To proceed with the controller design, we need to
impose the following stability requirement on the g-sub-
system of the system of Eq. (28) which will allow address-
ing the controller synthesis task on the basis of the
low-order f-subsystem.

Assumption 2. The dynamical system

g5
1
"W

1
(f(t), g(t), f(t!a), g(t!a)),

F

g5
n~r

"W
n~r

(f(t), g(t), f(t!a), g(t!a)) (29)

is input-to-state stable (see Dexnition 1 for a precise state-
ment of this concept) with respect to the input f

t
(m).

Loosely speaking, the above assumption states that
if the state of the f-subsystem is bounded, then the
state of the g-subsystem will also remain bounded (see
Remark 8 for an interpretation of the g-subsystem).
In practice, Assumption 2 can be veri"ed by linearizing
the system of Eq. (29) with f

t
(m)"0 around the operating

steady state and computing the eigenvalues of the result-
ing linear system. If all of these eigenvalues are in the
left-half of the complex plane, then (Teel, 1998) Assump-
tion 2 is satis"ed locally (i.e., for su$ciently small initial
conditions and f

t
(m)). An application of this approach for

checking Assumption 2 is discussed in Section 10.2.2.
Using Assumption 2, the controller synthesis problem

can be now addressed on the basis of the f-subsystem.
Speci"cally, applying the following preliminary feedback
law,

u"
1

¸
g
¸r~1

fI
h(X~1(f(t), g (t)))

(u8 !¸r
fI

h(X~1(f(t), g(t)))

!p
r
(f(t), g(t), f(t!a), g(t!a))), (30)

where u8 is an auxiliary input, to the system of Eq. (28) in
order to cancel all the nonlinear terms that can be cancel-
led by using a feedback which utilizes measurements of
x(s) for s3[t!a, t], we obtain the following modi"ed
system:

fQ
1

" f
2
#p

1
(f(t), g(t), f(t!a), g(t!a)),

F

fQ
r~1

" f
r
#p

r~1
(f(t), g(t), f(t!a), g(t!a))),

fQ
r

" u8 ,

g5
1

" W
1
(f(t), g(t), f(t!a), g(t!a)),

F

g5
n~r

" W
n~r

(f(t), g(t), f(t!a), g(t!a)),

y " f
1
.

(31)

Introducing the notation

AI "

0 1 0 2 0 0

0 0 1 2 0 0

0 0 0 2 0 0

F F F } F F

0 0 0 2 0 0

, b"

0

0

0

F

1

,

p(f(t), g(t), f(t!a), g(t!a))

"

p
1
(f(t), g(t), f(t!a), g(t!a))

p
2
(f(t), g(t), f(t!a), g(t!a))

F

p
r~1

(f(t), g(t), f(t!a), g(t!a))

0

, (32)

the f-subsystem of the system of Eq. (31) can be written in
the following compact form:

fQ"AI f#bu8 #p(f(t), g(t), f(t!a), g(t!a)),

y"f
1
. (33)

The controller synthesis task has been now reduced to
the one of synthesized u8 to stabilize the f-subsystem and
force the output y to asymptotically follow the reference
input, v. To develop a solution to this problem, we will
need to make the following assumption on the growth of
the vector p(f(t), g(t), f(t!a), g(t!a)).

Assumption 3. Let e6 (s)"[(h(x(s))!v(s)) (¸
fI

h(x(s))!
v(1)(s))2(¸r~1

fI
h(x(s))!v(r~1)(s))]T, s3[t!a, t] where

v(k) denotes the kth time derivative of the reference input v.
There exist positive real numbers a

1
, a

2
such that the fol-

lowing bound can be written:

Dp(e6 (t)#v6 (t), g(t), e6 (t!a)#v6 (t!a), g(t!a))D2R n

) a
1
e6 2(t)#a

2
e6 2(t!a). (34)

The above assumption on the growth of the vector
p(e6 (t)#v6 (t), g(t), e6 (t!a)#v6 (t!a), g(t!a)) does not
need to hold globally (i.e., for any e6 (t), g(t)), and thus, it is
satis"ed by most practical problems (see, for example, the
applications studied in Section 10). Furthermore, As-
sumption 3 will allow us to synthesize a linear auxiliary
feedback law of the form u8 "Ke6 to stabilize the f-subsys-
tem and enforce output tracking. The synthesis of such
a u8 will be performed by using the method of Lyapunov
functionals. Speci"cally, u8 will be designed so that the
time derivative of the following Lyapunov functional:

<(e6
t
(m))"e6 T Pe6 #a2 P

t

t~a
e6 T (s)e6 (s) ds, (35)

where a is a positive real number, calculated along the
state of the closed-loop f-subsystem is negative de"nite.
The incorporation of the integral term :t

t~a e6 T (s)e6 (s) ds in
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the functional of Eq. (35) allows accounting for the dis-
tributed parameter (delayed) nature of the system of Eq.
(2) in the controller design stage and synthesizing a con-
troller that enforces the requested properties in the closed-
loop system independently of the size of the state delay.

We are now in a position to state the main controller
synthesis result of this section. Theorem 3 that follows
provides the formula of the controller and conditions
under which stability and output tracking is guaranteed
in the closed-loop system (the proof of the theorem can
be found in the appendix).

Theorem 3. Consider the system of nonlinear diwerential
diwerence equations of Eq. (2) with a8 "0, for which as-
sumptions 1, 2, and 3 hold. Then, if the matrix equation

AI T P#PAI !2PT bR~1
2

bT P#(a2#a
1
)I#P2"!R

1
,

(36)

where a2'a
2
, and R

1
, R

2
are positive-dexnite matrices,

has a unique positive-dexnite solution for P, the nonlinear
state feedback controller:

u"A(x(t), v6 (t), x(t!a), v6 (t!a))

:"
1

¸
g
¸r~1

fI
h(x)

(!R~1
2

bT Pe6 (t)#v(r)(t)!¸r
fI
h(x)

!p
r
(x(t), v6 (t), x(t!a), v6 (t!a))) (37)

enforces (i) local exponential stability, and (ii) asymptotic
output tracking in the closed-loop system, independently of
the size of the state delay.

Remark 6. Regarding the structure, implementation and
closed-loop properties of the nonlinear state feedback
controller of Eq. (37), several remarks are in order: (a) it
uses measurements of the states of the process at t and
t!a (i.e., x(t) and x(t!a)), and thus, it belongs to the
class of the requested control laws of Eq. (25), (b) its
practical implementation requires the use of memory
lines to store the values of x in the time interval [t!a, t],
and (c) it enforces stability and asymptotic output track-
ing in the closed-loop system independently of the size of
the state delay.

Remark 7. In order to apply the result of Theorem 3 to
a chemical process application, one has to initially verify
Assumptions 1}3 of the theorem on the basis of the
process model and compute the parameters a

1
and a

2
.

Then, a, R
1
, R

2
should be chosen so that a2 ' a

2
and

the matrices R
1
, R

2
are positive-de"nite to ensure that

Eq. (36) has a unique positive-de"nite solution for P.
Regarding the role of R

1
, R

2
on closed-loop properties,

we note that R
1

determines the speed of the closed-loop
output response (namely, `largera (in terms of the
smallest eigenvalue) R

1
means faster response), while

R
2

determines the penalty that should be imposed on the
manipulated input in achieving stabilization and output

tracking (`largera R
2
means larger penalty on the control

action). If these assumptions are satis"ed, the synthesis
formula of Eq. (37) can be directly used to derive the ex-
plicit form of the controller (see Section 10 for the applica-
tion of this procedure to two chemical process examples).

Remark 8. In analogy to the case of nonlinear ODE
systems (see, for example, Isidori, 1989; Kravaris and
Arkun, 1991), one can show that the g-subsystem of Eq.
(29) represents the inverse dynamics of the DDE system
of Eq. (2). Moreover, the g-subsystem of Eq. (29) with
f
t
(m)"0, i.e.

g5
1

"W
1
(0, g(t), 0, g(t!a)),

F

g5
n~r

"W
n~r

(0, g(t), 0, g(t!a))

(38)

represents the zero dynamics of the DDE system of
Eq. (2) (i.e., the dynamics of Eq. (2) when the output is set
identically equal to zero). Linearizing the zero dynamics
of Eq. (38) around the zero solution, one can show that
the eigenvalues of the resulting linear system are identical
to the zeros (which are in"nite) of the linear DDE system
of Eq. (3).

Remark 9. Applying the proposed method for the syn-
thesis of state feedback controllers for DDE systems to
linear systems of the form of Eq. (3) with a8 "0, we end up
with the following controller synthesis formula:

u"[wAr~1c]~1 (!R~1
2

bT Pe6 (t)#v(r)(t)!wArx(t)

!wAr~1Bx(t!a)), (39)

where P is the solution of Eq. (36). The linear controller
of Eq. (39) can be thought of as an extension of linear
control laws of the form

u"F
1

x(t)#F
2

x(t!a), (40)

where F
1
, F

2
are constant vectors of appropriate dimen-

sions, which were considered in the context of stabiliz-
ation of linear DDE systems (e.g., Nazaro!, 1973; Ross
and Flugge-Lotz, 1969), to the problems of stabilization
with output tracking. We note that the usual approach
followed in the literature for the design of the vectors
F
1
, F

2
is based on the method of Lyapunov functionals.

Remark 10. A control problem which has attracted sig-
ni"cant attention in the area of nonlinear process control
is the one of specifying the explicit formula of a controller
that enforces a linear response between the controlled
output and the reference input in the closed-loop system.
This problem was solved in Kravaris and Chung (1987)
for systems of nonlinear ODEs, and more recently, in
Christo"des and Daoutidis (1996) for systems of nonlin-
ear hyperbolic PDEs. In this remark, we formally pose
this problem for DDE systems of the form of Eq. (2)
with a8 "0 and show that it leads to the synthesis of a
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nonlinear feedback controller which is non-realizable,
and thus, it cannot be implemented in practice. Speci"-
cally, we seek to design a nonlinear feedback controller
that enforces the following linear input/output response:

c
r

dry

dtr
#2#c

1

dy

dt
#y"v, (41)

where r is the &relative order' of the system of Eq. (2) (i.e.,
the smallest derivative of y which depends explicitly on
the manipulated input u) and c

1
, c

2
,2,c

r
are adjustable

parameters, in the closed-loop system. Calculating the
time-derivatives of the output y, up to order r, in the
system of Eq. (2), we obtain the following expressions:

y " h(x),

dy

dt
" t

1
(x(t), x(t!a)),

d2y

dt2
" t

2
(x(t), x(t!a), x(t!2a)),

F

dry

dtr
" t

r
(x(t), x(t!a),2,x(t!ra))

#/(x(t), x(t!a),2,x(t!ra))u,

(42)

where t
1
(x(t), x(t!a)),2,t

r
(x(t), x(t!a),2,x(t!ra)),

/(x(t), x(t!a),2,x(t!ra)) are smooth nonlinear func-
tions whose speci"c form is omitted for brevity. Substitu-
ting the expressions for the time derivatives of y in Eq.
(41), assuming that the term /(x(t), x(t!a),2,
x(t!ra))O0 and solving for u, we obtain the following
expression for the controller that enforces the linear
response of Eq. (41) in the closed-loop system:

u(t)"
1

/(x(t), x(t!a),2,x(t!ra))
(v!h(x(t))

!

r
+
l/1

cltl(x(t), x(t!a),2,x(t!la)). (43)

The above controller clearly uses measurements of
x(t!la) with 2)l)r which may not be available, and
thus, it cannot be implemented in practice. To illustrate
this point, we consider the representation of the control-
ler of Eq. (43) for t"0 i.e.

u(0)"
1

/(x(0), x(!a),2,x(!ra))
(v!h(x(0))

!

r
+
l/1

cltl(x(0), x(!a),2,x(!la)). (44)

Clearly, the calculation of the initial control action, u(0),
requires values of the state, such as x(!2a),2,x(!ra),
which are not included in the initial data of the system of
Eq. (2), and thus, u(0), cannot be realized. We "nally note
that an extension of the initial conditions in the past as a
remedy to this problem is not meaningful, since, from

a mathematical point of view, it leads to an ill-de"ned
DDE system, while, from a practical point of view, it may
require past knowledge of the state at an arbitrarily large
time interval which, in general, there is no guarantee that
exists.

7. Nonlinear state observer design for DDE systems
with state delay

In this section, we consider nonlinear DDE systems
of the form of Eq. (2) with a8 "0 and focus on the design
of nonlinear state observers that use measurements of
process output, y(s), for s3[t!a, t] to produce estimates
of the state variables x(t), with guaranteed exponential
convergence of the error between the actual and the
estimated values of x(t) to zero. Speci"cally, we consider
the design of state observers with the following general
state-space description:

u5 "Au(t)#Bu(t!a)#f(u(t), u(t!a))

#g(u(t), u(t!a))u#I(y(t)!h(u(t))),

u(m)"u6 (m), m3[!a, 0), u(0)"u6
0
, (45)

where u3R n is the observer state, u6 (m) is a smooth vector
function de"ned in m3[!a, 0), u6

0
is a constant vector

and I( ) ) is a bounded nonlinear integral operator, map-
ping R into C. The system of Eq. (45) consists of a replica
of the system of Eq. (2) and the term I(y(t)!h(u(t)))
which will be designed so that the system of Eq. (45) is
locally exponentially stable and the discrepancy between
x(t) and u(t) tends exponentially to zero. The derivation
of the explicit form of the integral operator I( ) ) will be
performed by working with the in"nite-dimensional for-
mulation, Eq. (10), of the nonlinear DDE system of Eq.
(2) presented in Section 3.1., and using a spectral de-
composition of the DDE system and nonlinear observer
design results for "nite-dimensional systems.

We initially transform the system of Eq. (10) into an
interconnection of a "nite-dimensional system that
describes the dynamics of the eigenmodes of A corre-
sponding to the unstable eigenvalues of p(A), and an
in"nite-dimensional system that describes the dynamics
of the remaining eigenmodes of A. Let H"

Mj: j3p(A) and Re j*0N and assume, in order to sim-
plify the development, that i(j)"1 for each j3p(A) (i.e.,
the multiplicity of all the eigenvalues is assumed to be
one; the usual case in most practical applications). Let
m be the number of eigenvalues included in H (note that
m is always "nite). Also, let the elements of H be ordered
as (j

1
, j

2
,2,j

m
), where Re j

1
* Re j

2
*2*Re j

m
.

Clearly, the eigenfunctions (column vectors) in the n]m
matrix U

H
"[/

1
, /

2
,2,/

m
] form a basis in Cjw0

. Also,
let W

H
"[t

1
, t

2
,2,t

m
]T be the basis in CHjw0

chosen so
that (W

H
, U

H
)"I, where (W

H
, U

H
)"[(t

i
, /

j
)], t

i
and

/
j
being the ith element and jth element of W

H
and U

H
,
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respectively. De"ning the orthogonal projection oper-
ators P

p
and P

n
such that xp

t
"P

p
x
t
, xn

t
"P

n
x
t
(note that

xp
t
"U

H
(W

H
, x

t
)), the state x

t
of the system of Eq. (10) can

be decomposed as

x
t
"xp

t
#xn

t
"P

p
x
t
#P

n
x
t
. (46)

Applying P
p

and P
n

to the system of Eq. (10) and using
the above decomposition for x

t
, the system of Eq. (10) can

be equivalently written in the following form:

dxp
t

dt
"A

p
xn
t
#f

p
(P(xp

t
#xn

t
), Q(xp

t
#xn

t
))

#g
p
(P(xp

t
#xn

t
), Q(xp

t
#xn

t
))u,

Lxn
t

Lt
"A

n
xn
t
#f

n
(P(xp

t
#xn

t
), Q(xp

t
#xn

t
))

#g
n
(P(xp

t
#xn

t
), Q(xp

t
#xn

t
))u,

y"h(P(xp
t
#xn

t
)),

xp
t
(0)"P

p
x(0)"P

p
g6 , xn

t
(0)"P

n
x(0)"P

n
g6 , (47)

where A
p
"P

p
AP

p
, g

p
"P

p
g, f

p
"P

p
f, A

n
"P

n
AP

n
,

g
n
"P

n
g and f

n
"P

n
f and the notation Lxn

t
/Lt is used to

denote that the state xn
t

belongs in an in"nite-dimen-
sional space. In the above system, A

p
"U

H
A

p
, where

A
p
is a matrix of dimension m]m whose eigenvalues are

the ones included in H, f
p

and f
n

are Lipschitz vector
functions, and A

n
is an in"nite range matrix which is

stable (this follows from the fact that H includes all the
eigenvalues of, p(A), which are in the closed right half of
the complex plane). Neglecting the x

n
-subsystem, the

following "nite-dimensional system is obtained:

dxp
t

dt
"APxp

t
#f

p
(Pxp

t
, Qxp

t
)#g

p
(Pxp

t
, Qxp

t
)u,

y
p
"h(Pxp

t
), (48)

where the subscript p in y
p

denotes that the output is
associated with an approximate "nite dimensional system.

Assumption 4 that follows states that the system of of
Eq. (48) is observable and is needed in order to design
a nonlinear state observer for the system of Eq. (2) (the
reader may refer to Soroush (1997) for a precise de"nition
of the concept of observability for nonlinear "nite-dimen-
sional systems; see also Bhat and Koivo (1976) for de"ni-
tions and characterizations of observability for linear
DDE systems).

Assumption 4. The pair [h(xp
t
)A

p
xp
t
#f

p
(xp, 0)] is locally

observable in the sense that there exists a nonlinear gain
column vector ¸(xp

t
) of dimension m (where m is the number

of unstable eigenvalues of A) so that the xnite-dimensional
dynamical system:

dup
t

dt
"A

p
up

t
#f

p
(Pup

t
, Qup

t
)#¸(up

t
)(y

p
!h(Pup

t
)) (49)

is locally exponentially stable.

Theorem 4 that follows provides a nonlinear distrib-
uted state observer (the proof of the theorem can be
found in the appendix).

Theorem 4. Referring to the system of Eq. (10) with u(t),0
and suppose that Assumption 4 holds. Then, if there exists
a positive real number a

1
such that Eu6 !g6 E

2
)a

1
, the

nonlinear inxnite-dimensional dynamical system

du
t

dt
"Au

t
#f (Pu

t
, Qu

t
)

#U
H
¸((W

H
, u

t
)) (y(t)!h(Pu

t
)),

u
0
(m)"u6 , u

0
(0)"u6

0
(50)

is a local exponential observer for the system of Eq. (10) in
m3(!a, 0), the sense that the estimation error, e

t
"

u
t
!x

t
, tends exponentially to zero.

The abstract dynamical system of Eq. (50) can be
simpli"ed by utilizing a procedure based on the method
of characteristics for "rst-order hyperbolic PDE systems
(this procedure is detailed in the appendix of the paper) to
obtain the following nonlinear integro-di!erential equa-
tion system representation for the state observer:

u5 "Au(t)#Bu(t!a)#f (u(t), u(t!a))

#g(u(t), u(t!a))u#U
H
(0)¸((W

H
, u8 (m, t)))

](y(t)!h(u(t)))#B P
a

0

U
H
(m!a)¸((W

H
, u8 (m, t)))

][y(t!m)!h(u(t!m))] dm,

u(m)"u6 (m), m 3 [!a, 0), u(0)"u6
0
. (51)

Remark 11. Referring to the state observer of Eq. (51), it
is worth noting that: (a) it includes an integral of the
observer error, which is expected because the proposed
observer design method accounts explicitly for the dis-
tributed parameter nature of the time-delay system of
Eq. (2), and (b) it consists of a replica of the process model
and a nonlinear integral gain acting on the discrepancy
between the actual and the estimated output, and thus, it
can be thought of as the analogue of nonlinear Luenber-
ger-type observers (e.g., Kazantzis and Kravaris, 1995;
Soroush, 1997) developed for nonlinear ODE systems in
the case of nonlinear DDE systems.

Remark 12. For open-loop stable systems, the nonlinear
gain ¸((W

H
, u8 (m, t))) can be set identically equal to zero

and the distributed state observer of Eq. (51) reduces to
an open-loop DDE observer of the form

u5 "Au(t)#Bu(t!a)#f (u(t), u(t!a))

#g(u(t), u(t!a))u. (52)

Remark 13. For open-loop unstable systems, the prac-
tical implementation of the state observer of Eq. (51)
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involves the design of a nonlinear gain, ¸((W
H
, u8 (m, t))),

on the basis of a nonlinear "nite-dimensional system
(Assumption 4). However, in most practical applications,
the construction of a nonlinear gain requires performing
extensive computations (for example, series solutions of
nonlinear partial di!erential equations; Kazantzis and
Kravaris, 1995), and thus, it cannot be easily performed.
A computationally e$cient way to address this problem
is to design a constant gain, ¸, on the basis of a linear
DDE system resulting from the linearization of the non-
linear DDE system around an operating steady-state and
evaluating its validity through computer simulations (see
the implementation of the observer of Eq. (51) in the
reactor-separator system studied in Section 10). We note
that the only computations needed to design a constant
observer gain are: (a) the computation of the eigenvalues
of the characteristic equation det(jI!A!Be~ja)"0
which are in the right-half of the complex plane (this can
be done by using standard algorithms, for example,
Manitius and Tran, 1985; Manitius et al., 1987) and (b)
the computation of the eigenfunctions from the formula
/j"ejm/j(0), where /j(0) satis"es the equation (jI!
A!Be~ja)/j(0)"0.

Remark 14. To illustrate the application of the result of
theorem 4, consider the numerical DDE example of re-
mark 3 (Eq. (13)) with y"x

2
as the output. The eigenvec-

tors /
j
(m) corresponding to the two unstable eigenvalues

of the delay operator of Eq. (14) are

/
1
(m)"C

!0.78

0.62D e0.58m, /
2
(m)"C

!0.68

!0.73D e0.21m. (53)

The following constant observer gain,

¸"C
!1.0

!16.0D, (54)

was found to satisfy Assumption 4 and yields the follow-
ing nonlinear state observer:

u5 "C
!2.0 3.5

3.0 !3.0Du(t)#C
!2.0 0.0

0.0 0.0Du(t!3)

#C
4u

1
u

2
!3u2

1
!u2

2
0 D

#C
!0.78 !0.68

0.62 !0.73D C
!1.0

!16.0D(x2
!u

2
)

#C
!2.0 0.0

0.0 0.0D
] P

3

0
C
!0.78e0.58(m~3.0) !0.68e0.21(m~3.0)

0.62e0.58(m~3.0) !0.73e0.21(m~3.0)D
] C

!1.0

!16.0D(x2
(t!m)!u

2
(t!m)) dm. (55)

Remark 15. Applying the proposed observer design
method to linear DDE systems of the form of Eq. (3) with
a8 "0, we obtain the following linear state observer:

u5 "Au(t)#Bu(t!a)#cu

#U
H
(0)¸(wx(t)!wu(t))

#B P
a

0

U
H
(m!a)¸[wx(t!m)!wu(t!m)] dm,

u(m)"u6 (m), m3[!a, 0), u(0)"u6
0
. (56)

8. Nonlinear output feedback control of DDE systems
with state delay

In this section, we consider DDE systems of the form
of Eq. (2) with a8 "0 and address the problem of syn-
thesizing distributed output feedback controllers that
enforce local exponential stability and asymptotic output
tracking in the closed-loop system, independently of the
size of the state delay. The requisite output feedback
controllers will be synthesized employing combination of
the developed distributed state feedback controllers with
distributed state observers.

Theorem 5 that follows provides a state-space realiz-
ation of the distributed output feedback controller and
the properties that it enforces in the closed-loop system
(the proof of the theorem can be found in the appendix).

Theorem 5. Consider the system of nonlinear diwerential
diwerence equations of Eq. (2) with a8 "0, for which the
Assumptions 1}4 hold. Then, if there exists a positive real
number a

0
such that Eu6 !g6 E

2
) a

0
and the matrix equa-

tion of Eq. (36) has a unique positive-dexnite solution for P,
the distributed output feedback controller:

u5 "Au(t)#Bu(t!a)#f (u(t), u(t!a))

#U
H
(0)¸((W

H
, u8 (m, t)))(y(t)!h(u(t)))

#B P
a

0

U
H
(m!a)¸((W

H
, u8 (m, t)))[y(t!m)

!h(u(t!m))]dm#g(u(t), u(t!a))

]
1

¸
g
¸r~1
fI

h(u)
(!R~1

2
bTPe6 (t)#v(r)(t)

!¸r
fI
h(u)!p

r
(u(t), v6 (t), u(t!a), v6 (t!a))),

u(m)"u6 (m), m3[!a, 0), u(0)"u6
0
,

u"
1

¸
g
¸r~1

fI
h(u)

(!R~1
2

bTPe6 (t)#v(r)(t)!¸r
fI
h(u)

!p
r
(u(t), v6 (t), u(t!a), v6 (t!a))), (57)

where eN"[(h(u)!v) (¸
fI

h(u)!v(1))2(¸r~1
fI

h(u)!
v(r~1))]T, (a) guarantees local exponential stability of the
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closed-loop system, and (b) enforces asymptotic output
tracking, independently of the size of the state delay.

Remark 16. For open-loop stable systems, ¸((W
H
,

u8 (m, t))) can be set equal to zero and the distributed
output feedback controller of Eq. (57) can be simpli"ed to

u5 "Au(t)#Bu(t!a)#f (u, u(t!a))

#g(u(t), u(t!a))
1

¸
g
¸r~1
fI

h(u)
(!R~1

2
bT Pe6 (t)

#v(r)(t)!¸r
fI
h(u)!p

r
(u(t), v6 (t), u(t!a), v6 (t!a))),

u6 "
1

¸
g
¸r~1

fI
h(u)

(!R~1
2

bT Pe6 (t)#v(r)(t)!¸r
fI
h(u)

!p
r
(u(t), v6 (t), u(t!a), v6 (t!a))). (58)

Remark 17. Referring to the result of Theorem 5, we note
that no consistent initialization requirement has been
imposed on the observer states in order to prove local
exponential stability and asymptotic output tracking in
the closed-loop system (i.e., it is not necessary that
u6 (m)"g6 (m), m3[!a, 0) and u6

0
"g6

0
).

Remark 18. The exponential stability of the closed-loop
system guarantees that in the presence of small modeling
errors (i.e., unknown model parameters and external dis-
turbances) and initialization errors of the observer states,
the states of the closed-loop system will remain bounded.
Furthermore, it is possible to implement a linear error
feedback controller around the (y!v) loop to ensure
asymptotic o!setless output tracking in the closed-loop
system, in the presence of constant parametric uncertain-
ty, external disturbances and initialization errors. In this
case, one can use calculations similar to the ones in
Daoutidis and Christo"des (1995) to derive a mixed-error
and output feedback controller, which possesses integral
action, (i.e., a controller of the form of Eq. (57) with
e6 "[(y(t)!v) (¸

fI
h(u)!v(1)2(¸r~1

fI
h(u)!v(r~1))]T),

that enforces exponential stability and asymptotic o!set-
less output tracking in the closed-loop system in the
presence of constant modeling errors and disturbances.

9. Nonlinear output feedback control for DDE
systems with state and measurement delay

In this section, we consider DDE systems of the form
of Eq. (2) with a8 '0 and address the problem of syn-
thesizing distributed output feedback controllers that
enforce local exponential stability and asymptotic output
tracking in the closed-loop system, independently of the
size of the state delay. In order to account for the pres-
ence of the measurement delay in the controller design,
the requisite output feedback controller will be obtained
by working within a Smith Predictor framework (Henson
and Seborg, 1994; Kravaris and Wright, 1989). Within

this framework, the state feedback controller is syn-
thesized on the basis of an auxiliary output y6 , which
represents the prediction of the output if there were no
deadtime on the output, and can be obtained by adding
a corrective signal dy to the on-line measurement of the
actual output y:

y6 "y#dy.

Assuming that the open-loop DDE system is observable,
the corrective signal, dy, is obtained through a closed-
loop Smith-type predictor; which for the problem in
question is a nonlinear DDE system driven by the ma-
nipulated input, that simulates the di!erence in the re-
sponses between the process model without output
deadtime and the process model with output deadtime:

u5 "Au(t)#Bu(t!a)#f (u(t), u(t!a))

#g(u(t), u(t!a))u#U
H
(0)¸((W

H
, u8 (m, t)))

](y(t!a8 )!h(u(t!a8 )))#B P
a~a8

0

U
H
(m!a)

]¸((W
H
, u8 (m, t)))[y(t!m!a8 )!h(u(t!m!a8 ))] dm,

u(m)"u6 (m), m3[!a, 0), u(0)"u6
0
. (59)

The resulting output feedback controller and the proper-
ties that it enforces in the closed-loop system are given in
Theorem 6 below (the proof of the theorem is similar to
the one of Theorem 5 and will be omitted for brevity).

Theorem 6. Consider the nonlinear DDE system of (2) with
a8 '0, for which Assumptions 1}3 hold, and an observabil-
ity property similar to the one of Assumption 4 holds for
0)a8 )a. Then, if there exists a positive real number
a
0

such that Eu6 !g6 E
2
)a

0
and the matrix equation of

Eq. (36) has a unique positive-dexnite solution for P, the
distributed output feedback controller:

u5 "Au(t)#Bu(t!a)#f (u(t), u(t!a))

#U
H
(0)¸((W

H
,u6 (m, t)))(y(t!a6 )!h(u(t!a8 )))

#BP
a~a8

0

U
H
(m!a)¸((W

H
, u8 (m, t)))[y(t!m!a8 )

!h(u(t!m!a8 ))]dm#g(u(t),u(t!a))

]
1

¸
g
¸r~1
fI

h(u)
(!R~1

2
bTPe6 #v(r)(t)!¸r

fI
h(u)

!p
r
(u(t),v6 (t),u(t!a),v6 (t!a))) (60)

u(m)"u6 (m), mo[!a, 0), u(0)"u6
0
,

u6 "
1

¸
g
¸r~1

fI
h(u)

(!R~1
2

bTPe6 #v(r)(t)!¸r
fI
h(u)

!p
r
(u(t), v6 (t), u(t!a), v6 (t!a))),

where e6 "[(y(t!a8 )!v#h(u(t))!h(u(t!a8 ))) (¸
fI
h(u)!

v(1))2(¸r~1
fI

h(u)!v(r~1))]T enforces local exponential
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stability, and asymptotic output tracking in the closed-loop
system, independently of the size of the state delay.

Remark 19. We note that no restrictions have been im-
posed on the stability properties of the open-loop DDE
system (e.g., open-loop stable system) in order to derive
the result of Theorem 6. This is because the predictor of
Eq. (59) which is used to produce values of the corrective
signal dy is a closed-loop one (we remark that the use of
an open-loop predictor would require to assume that the
open-loop DDE system is stable).

Remark 20. For open-loop stable DDE systems with
measurement delay but no state delay (i.e., a8 '0 and
a"0), the output feedback controller of Eq. (60) simpli"-
es to

u5 "Au(t)#Bu(t)#f (u(t), u(t))#g(u(t), u(t))

]
1

¸
g
¸r~1
fI

h(u)
(!R~1

2
bTPe6 #v(r)(t)!¸r

fI
h(u)

!p
r
(u(t), v6 (t), u(t), v6 (t))), (61)

u6 "
1

¸
g
¸r~1

fI
h(u)

(!R~1
2

bTPe6 #v(r)(t)!¸r
fI
h(u)

!p
r
(u(t), v6 (t), u(t), v6 (t)).

where e6 "[(y(t!a8 )!v#h(u(t))!h(u(t!a8 ))) (¸
fI
h(u)!

v(1))2(¸r~1fIh(u)!v(r~1))]T. The above controller is
a Smith-predictor based open-loop output feedback con-
troller similar to the one developed in Kravaris and
Wright (1989).

Remark 21. The nonlinear distributed output feedback
of Eqs. (57)}(60) are in"nite-dimensional ones, due to the
in"nite-dimensional nature of the observers of Eqs.
(51)}(59) respectively. Therefore, "nite-dimensional ap-
proximation of these controllers have to be derived for
on-line implementation. This task can be performed util-
izing standard discretization techniques such as "nite
di!erences. We note that it is well-established (e.g., Soli-
man and Ray, 1972) that as the number of discretization
points increases, the closed-loop system resulting from
the DDE model plus an approximate "nite-dimensional
controller converges to the closed-loop system resulting
from the DDE model plus the in"nite-dimensional con-
troller, guaranteeing the well-posedness of the approxim-
ate "nite-dimensional controller.

10. Simulation studies

10.1. Application to a reactor}separator system
with recycle

10.1.1. Process description } control problem formulation
Consider the process, shown in Fig. 2, which consists

of a reactor and a separator (Lehman et al., 1995). An

Fig. 2. A reactor}separator process with recycle.

irreversible reaction of the form APB, where A is the
reactant species and B is the product species, takes place
in the reactor. The reaction is exothermic and a cooling
jacket is used to remove heat from the reactor. The reac-
tion rate is assumed to be of "rst-order and is given by

r"k
0

expA!
E

R¹BCA
,

where k
0

and E denote the pre-exponential constant and
activation energy of the reaction, and ¹ and C

A
denote

the temperature and concentration of species A in the
reactor. The outlet of the reactor is fed to a separator
where the unreacted species A is separated from the
product B. The unreacted amount of species A is fed back
to the reactor through a recycle loop; this allows increas-
ing the overall conversion of the reaction and minimizing
reactant wastes. The inlet stream to the reactor consists
of a fresh feed of pure A, at #ow-rate jF, concentration
C

Af
and temperature ¹

f
, and of the recycle stream at

#ow-rate (1!j)F, concentration C
A
(t!a) and temper-

ature ¹(t!a), where F is the total reactor #ow rate, j is
the recirculation coe$cient (it varies from zero to one,
with zero corresponding to total recycle and zero fresh
feed and one corresponding to no recycle) and a is the
recycle loop dead time. Under the assumptions of con-
stant volume of the reacting liquid, <, negligible heat
losses, constant density, o, heat capacity, c

p
, of the reac-

ting liquid, and constant jacket temperature, ¹
c
, a pro-

cess dynamic model can be derived from mass and energy
balances and consists of the following two nonlinear
di!erential di!erence equations:

dC
A

dt
"

jF

<
C

Af
!

F

<
C

A
#

(1!j)F

<
C

A
(t!a)

!k
0

expA!
E

R¹B C
A
,
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fI (x(t))"C
jF

<
C

Afs
!

F

<
x
1
!k

0
expA!

E

Rx
2
B x

1

jF

<
¹

f
!

F

<
x
2
#

(!*H)

oc
p

k
0

expA!
E

Rx
2
B x

1
!

;A

<oc
p

(x
2
!¹

c
)D , (64)

g(x(t), x(t!a))"

jF

<

0
, p6 (x(t), x(t!a))"

(1!j)F

<
x
1
(t!a)

(1!j)F

<
x
2
(t!a)

(65)

C
f
1

f
2
D"X(x)"C

h(x)

¸
fI
h(x)D"C

x
2

jF

<
¹

f
!

F

<
x
2
#

(!*H)

oc
p

k
0

expA!
E

Rx
2
B x

1
!

;A

<oc
p

(x
2
!¹

c
)D . (66)

d¹

dt
"

jF

<
¹

f
!

F

<
¹#

(1!j)F

<
¹(t!a)

#

(!*H)

oc
p

k
0

expA!
E

R¹B C
A
!

;A

<oc
p

(¹!¹
c
),

(62)

where *H denotes the enthalpy of the reaction, ; de-
notes the heat transfer coe$cient, and A denotes the heat
transfer area. The values of the process parameters are
given in Table 1. For these values the corresponding
steady state is

C
As
"0.5000 mol/l, ¹

s
"296.16 K, C

Afs
"0.7090 mol/l

(63)

where the subscript s denotes the steady state value. It was
veri"ed, through computation of the eigenvalues of the
open-loop system, that this steady state is a stable one.

The control objective for the process is formulated
as the one of regulating the temperature of the reactor,
¹, by manipulating the inlet concentration of the fresh
feed C

Af
. Setting x

1
"C

A
, x

2
"¹, y"x

2
and u"

C
Af

!C
Afs

, the process model of Eq. (62) can be written
in the form of Eq. (26) with

10.1.2. State feedback controller design
For the system of Eq. (62), Assumption 1 is satis"ed

with r"2 and the coordinate transformation of Eq. (27)
takes the form

Using the above coordinate change, the process dynamic
model can be equivalently written as

fQ
1
"f

2
#

(1!j)F

<
f
1
(t!a),

fQ
2
"¸2

fI
h(x)#¸

g
¸
fI
h(x)u

#p
2
(f

1
(t), f

2
(t), f

1
(t!a), f

2
(t!a)),

y"f
1
, (67)

where the explicit form of the term p
2
(f

1
(t), f

2
(t),

f
1
(t!a), f

2
(t!a)) is omitted for brevity. For the above

system Assumption 2 is trivially satis"ed, while
Assumption 3 is satis"ed with p(e6 (t),#v6 (t), e6 (t!a)#
v6 (t!a))"[0.1e

1
(t!a) 0]T, a

1
"0 and a

2
"0.01. Utiliz-

ing the result of Theorem 3, the following matrix equa-
tion can be formed:

AI TP#PAI !2PTbR~1
2

bTP#a2I#P2"!R
1

(68)

with R
2
"1.0, a"0.101(a2'a

2
), and

AI "C
0 1

0 0D, b"C
0

1D, R
1
"C

0.001 0

0 0.001D. (69)

Eq. (68) has a unique positive-de"nite solution for P of
the form

P"C
0.055 !0.119

!0.119 0.513D, (70)

which leads to the following nonlinear state feedback
controller:

u"
1

¸
g
¸

fI
h(x)

(!0.119(x
2
!v)!0.513(¸

fI
h(x)

#0.1v(t!a))!¸2
fI
h(x)

!p
2
(x(t), v6 (t), x(t!a), v6 (t!a))). (71)

10.1.3. State observer and output feedback controller
design

In order to avoid the lengthy computations involved in
the design of a nonlinear observer gain, we will design

a nonlinear state observer of the form of Eq. (51)
with a constant observer gain, ¸, for the system of
Eq. (62) (see also discussion in Remark 13). Com-
puting the linearization of the system of Eq. (62)
around the unstable steady state, C

As
"2.36 mol/l,

¹
s
"320.0 K (v"320.0 K will be the new value of

the reference input in the simulations discussed in the
next subsection), we obtain the following linear
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Table 1
Process parameters of the reactor}separator system

<"0.10 m3

F"13.3330]10~3 m3 s~1

C
Af

"0.7090 kmol m~3

j"0.25
E"1.20]104 kcal kmol~1

k
0
"1.0]107 s~1

R"1.987 kcal kmol~1 K~1

*H
0
"5.0]104 kcal kmol~1

c
p
"0.001 kcal kg~1 K~1

o"1000.0 kg m~3

¹
f
"300.0 K

¹
c
"295.0 K

;"30.0 kcal m~2 s~1 K~1

A"1.0 m2

DDE system:

x5 "Ax(t)#Bx(t!a), (72)

with

A"C
!0.1970 !0.00885

3181.8 142.23 D, B"C
0.1 0

0 0.1D.
(73)

The system of Eq. (72) was found to possess two real
unstable eigenvalues, j

1
"142.036 and j

2
"0.031 and

in"nitely many stable eigenvalues. The eigenfunctions
corresponding to the unstable eigenvalues were found to
be

/
1
(m)"C

0.00006

!1.0 D ej1m, /
2
(m)"C

!0.0447

1.0 D ej2m.

(74)

The following constant observer gain:

¸"C
!361.0

!50.0D (75)

was found to satisfy Assumption 4 and yields the follow-
ing nonlinear output feedback controller:

u5 "fI (u(t), u(t!a))#g(u, u(t!a))u#p6 (u(t), u(t!a))

#U
H
(0)¸(y(t)!h(u(t)))

#BP
a

0

U
H
(m!a)¸[y(t!m)!h(u(t!m))] dm

u"
1

¸
g
¸

fI
h(u)

(!0.119(y(t)!v)!0.513(¸
fI
h(u)

#0.1v(t!a))!¸2
fI
h(u)

!p
2
(u(t), v6 (t), u(t!a), v6 (t!a))) (76)

where U
H
(m)"[/

1
(m) /

2
(m)]. When both state and

measurement delays are included in the system of
Eq. (62), the following nonlinear output feedback con-
troller was employed in the simulations described in the
next subsection:

u5 "fI (u(t), u(t!a))#g(u, u(t!a))u

#p6 (u(t), u(t!a))#U
H
(0)¸(y(t)!h(u(t)))

#BP
a~a8

0

U
H
(m!a)¸[y(t!m!a8 )

!h(u(t!m!a8 ))] dm

u"
1

¸
g
¸

fI
h(u)

(!0.119(y(t!a8 )!v#u
2
(t)

!u
2
(t!a8 )))!0.513(¸

fI
h(u)#0.1v(t!a))

!¸2
fI
h(u)!p

2
(u(t), v6 (t), u(t!a), v6 (t!a))) (77)

Note that according to the discussion of Remark 18, the
controllers of Eqs. (76) and (77) possess integral action.

10.1.4. Closed-loop system simulations
We performed several sets of simulation runs to evalu-

ate the stabilization and output tracking capabilities of
the output feedback controllers of Eqs. (76) and (77) and
compare their performance with nonlinear controllers
that do not account for the presence of recycle loop dead
time in the model of Eq. (62). In all the simulation runs,
the process was initially assumed to be at the steady state
of Eq. (63) and the user-friendly software package
SIMULINK was used to simulate the closed-loop DDE
system (SIMULINK is a toolbox of the mathematical
software MATLAB that includes a delay function which
can be readily used to simulate di!erential equations
with time delays). The computation of the integrals in the
controllers of Eqs. (76) and (77) was performed by
discretizing the interval [!a, 0) into 10 equispaced in-
tervals using "nite di!erences (further increase on the
number of discretization intervals was found to lead to
negligible di!erences on the results).

In the "rst two sets of simulation runs, a 8.84 K in-
crease in the reference input value (i.e., v"305.0 K) was
imposed at time t"0 s. The new reference input value
corresponds to a stable steady state. In the "rst set of
simulation runs, we initially considered the process of Eq.
(62) with a"40 s and a8 "0 s under the output feedback
controller of Eq. (76) with ¸"0 (due to operation at
a stable region). Fig. 3 shows the closed-loop output and
manipulated input pro"les (solid lines). It is clear that the
proposed controller drives quickly the output to the
new reference input value, achieving an excellent transi-
ent response. For the sake of comparison, we also
implemented on the process the same output feedback
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Fig. 3. Closed-loop output and manipulated input pro"les with a"40 s and x8 "0 s under the controller of Eq. (76) with ¸"0 (solid lines) and the
controller of Eq. (76) with ¸"0 and a"0 s (dashed lines) } operation in stable region.

Fig. 4. Closed-loop output and manipulated input pro"les with a"40 s and x8 "12 s under the controller of Eq. (77) with ¸"0 (solid lines) and the
controller of Eq. (77) with ¸"0, a"0 s and a8 "12 s (dashed lines) } operation in stable region.

controller with a"0 s. The closed-loop output and ma-
nipulated input pro"les under this controller are also
displayed in Fig. 3 (dashed lines). This controller yields
a very poor transient response driving the output (dashed

line) to the new reference input value very slowly. In the
second set of simulation runs, we initially considered
the process of Eq. (62) with a"40 s and a8 "12 s under
the output feedback controller of Eq. (77) with ¸"0.
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Fig. 5. Closed-loop output and manipulated input pro"les with a"40 s and a8 "0 s under the controller of Eq. (76) } operation in unstable region.

Fig. 6. Closed-loop output and manipulated input pro"les with a"40 s and a8 "0 s under the controller of Eq. (76) with a"0 s } operation in
unstable region.

The resulting closed-loop output and manipulated input
pro"les are presented in Fig. 4 (solid lines). The proposed
controller, after the initial delay in the output of t"12 s,
which is caused by the presence of measurement delay,

regulates successfully the output to the new reference
input value. We also implemented on the process the
same controller with a"0 s. The closed-loop output and
manipulated input pro"les are also shown in Fig. 4
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Fig. 7. Closed-loop output and manipulated input pro"les with a"40 s and a8 "12 s under the the controller of Eq. (77) } operation in unstable
region.

(dashed lines). The transient performance of the closed-
loop system is clearly inferior to the one obtained by the
proposed controller.

In the next three sets of simulation runs, a 23.84 K
increase in the reference input value (i.e., v"320.0 K)
was imposed at time t"0 s. The new reference input
value corresponds to an unstable steady state. We ini-
tially considered the process of Eq. (62) with a"40 s and
a8 "0 s under the controller of Eq. (76). Fig. 5 shows the
closed-loop output and manipulated input pro"les. It is
clear that the proposed controller drives quickly the
output to the new reference input value. For the sake of
comparison, we also implemented on the process the
same output feedback controller with a"0 s. This
controller led to an unstable closed-loop system (see the
closed-loop output and manipulated input pro"les in
Fig. 6). Then, the process of Eq. (62) with a"40 s and
a8 "12 s was considered under the output feedback
controller of Eq. (77) and Fig. 7 shows the resulting
closed-loop output and manipulated input pro"les. The
proposed controller, after the initial delay in the output
of t"12 s, which is caused by the measurement delay,
regulates successfully the output to the new reference
input value. The same controller with a"0 s was also
implemented on the process. Again, this controller led to
an unstable closed-loop system. Finally, we considered
the process of Eq. (62) with a"40 s and a8 "12 s and

studied the robustness properties of the controller of
Eq. (76) in the presence of a 5 K increase in the value of
the temperature of the fresh feed. Fig. 8 shows the closed-
loop output and manipulated input pro"les. Despite the
presence of signi"cant modeling errors and operation in
unstable region, the controller drives the output of the
closed-loop system close to the reference input value,
exhibiting very good robustness properties.

10.2. Application to a yuidized catalytic cracker

10.2.1. Process modeling } control problem formulation
In this section, we illustrate the implementation of the

developed control methodology on another important
chemical engineering process, the #uidized catalytic
cracker (FCC) shown in Fig. 9. The FCC unit consists of
a cracking reactor, where the cracking of high boiling
gas oil fractions into lighter hydrocarbons (e.g., gas-
oline) and the carbon formation reactions (undesired
reactions) take place and a regenerator, where the
carbon removal reactions take place. The reader
may refer to: (a) Arbel et al. (1995), Denn (1986) and
McFarlane et al. (1993) for a detailed discussion of the
features of the FCC unit, (b) Arbel et al. (1996) for an
analysis of the issue of the control structure, and (c)
Huq et al. (1995), Monge and Georgakis (1987) and
Christo"des and Daoutidis (1997) for application of
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Fig. 8. Closed-loop output and manipulated input pro"les with a"40 s and a8 "12 s under the controller of Eq. (77) in the presence of modeling error
} operation in unstable region.

Fig. 9. A #uidized catalytic cracker.
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linear and nonlinear control methods to the FCC unit,
respectivly. Unfortunately, in all of these studies,
the dead-time associated with the pipes transferring ma-
terial from the reactor to the regenerator and vice versa
were not accounted for both in modeling and controller
design.

Under the standard modeling assumptions, of well-
mixed reactive catalyst in the reactor, small-size catalyst
particles, constant solid holdup in reactor and regener-
ator, uniform and constant pressure in reactor and
regenerator, the process dynamic model takes the form
(Denn, 1986):

<
ra

dC
#!5

dt
"!60F

rc
C

#!5
(t)

#50R
cf

(C
#!5

(t), C
rc
(t!a

1
), ¹

ra
),

<
ra

dC
sc

dt
"60F

rc
[C

rc
(t!a

1
)!C

sc
(t)]

#50R
cf

(C
#!5

(t), C
rc
(t!a

1
), ¹

ra
),

<
ra

d¹
ra

dt
"60F

rc
[¹

rg
(t!a

1
)!¹

ra
(t)]

#0.875
S
f

S
c

D
tf
R

tf
[¹

fp
!¹

ra
(t)]

#0.875
(!*H

fv
)

S
c

D
tf
R

tf

#0.5
(!*H

cr
)

S
c

R
oc
(C

#!5
(t), C

rc
(t!a

1
), ¹

ra
),

<
rg

dC
rc

dt
"60F

rc
[C

sc
(t!a

2
)!C

rc
(t)]

!50R
cb
(C

rc
(t), ¹

rg
(t)),

<
rg

d¹
rg

dt
"60F

rc
[¹

ra
(t!a

2
)!¹

rg
(t)]

#0.5
S
a

S
c

R
ai
[¹

ai
!¹

rg
(t)]

!0.5
(!*H

rg
)

S
c

R
cb
(C

rc
(t), ¹

rg
(t)), (78)

where C
#!5

, C
sc
, C

rc
denote the concentrations of catalytic

carbon on spent catalyst, the total carbon on spent cata-
lyst, and carbon on regenerated catalyst, ¹

ra
, ¹

rg
denote

the temperatures in the reactor and the regenerator, R
ai

is
the air #ow rate in the regenerator, R

tf
is the total feed

#ow rate, D
tf

is the density of total feed, <
ra
, <

rg
denote

the catalyst holdup of the reactor and the regenerator,
*H

rg
, *H

cr
are the heat of regeneration and cracking,

*H
fv

is the heat of feed vaporization, F
rc

denotes the
circulation #ow rate of catalyst from reactor to regener-

Table 2
Process parameters of the #uidized catalytic cracker

E
cc
"18000.0 Btu lb~1 mole~1

E
cr
"27000.0 Btu lb~1 mole~1

E
or
"63000.0 Btu lb~1 mole~1

k
cc
"8.59 Mlb h~1 psia~1 t~1 (wt%)~1.06

k
cr
"11600 Mbbl day~1 psia~1 t~1 (wt%)~1.15

k
or
"3,5]1010 Mlb h~1 psia~1 t~1

<
rg
"200.0 t

<
ra
"60.0 t

F
rc
"40.0 t h~1

¹
fps

"744.0 F
¹

ai
"175.0 F

P
rg
"25.0 psia

P
ra
"40.0 psia

*H
fv
"60.0 Btu lb~1

*H
cr
"77.3 Btu lb~1

DH
rg
"10561.0 Btu lb~1

S
a
"0.3 Btu lb~1 F~1

S
c
"0.3 Btu lb~1 F~1

S
f
"0.7 Btu lb~1 F~1

R
tf
"100.0 Mbbl/day

D
tf
"7.0 lb gal~1

a"0.3 h
R

ai
"400.0 M lb min~1

(C
#!5

)
s1
"0.8723 wt%

(C
sc
)
s1
"1.5696 wt%

(C
rc
)
s1
"0.6973 wt%

(¹
ra
)
s1
"930.62 F

(¹
rg
)
s1
"1155.96 F

ator and vice versa, S
a
, S

c
, S

f
denote speci"c heats of

the air, the catalyst, and the feed, ¹
fp

, ¹
ai

denote the
inlet temperatures of the feed in the reactor and of the air
in the regenerator, and R

cf
, R

oc
, R

cb
denote the

reaction rates of total carbon forming, of gas-oil crack-
ing, and of coke burning. The analytic expressions for
the reaction rates R

cf
, R

oc
, R

cb
can be found in Denn

(1986).
The presence of time delay in the terms C

rc
(t!a

1
),

¹
rg
(t!a

1
) is due to deadtime in the pipes transferring

regenerated catalyst from the regenerator to the reactor,
and the time delay in the terms C

sc
(t!a

2
), ¹

ra
(t!a

2
) is

due to deadtime in pipes transferring spent catalyst from
the reactor to the regenerator. Even though the proposed
method can be readily applied to the case where a

1
Oa

2
,

we pick in order to simplify our development, a
1
"

a
2
"a"0.3 h. The values of the remaining process para-

meters and the corresponding steady-state values are
given in Table 2.

The control objective is formulated as the one of
regulating the temperature in the regenerator, ¹

rg
, by

manipulating the temperature of the inlet air in the
regenerator, ¹

ai
. By setting x"[x

1
x
2

x
3

x
4

x
5
]T"

[¹
rg

C
rc
¹

ra
C

sc
C

#!5
]T u"¹

ai
!¹

ais
, y,"¹

rg
, the pro-

cess model of Eq. (78) can be written in the form of
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Eq. (26) with

fI (x(t))"
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<
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C
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!
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<
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, (79)
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p6
1

p6
2

p6
3

p6
4

p6
5

"

60F
rc

<
rg

¹
ra
(t!a)

60F
rc

<
rg

C
sc
(t!a)

60F
rc

<
ra

¹
rg
(t!a)#0.5

(!*H
cr
)

S
c
<

ra

R
oc
(C

#!5
(t), C
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(t))
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<
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R
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(t))

50

<
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cf
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, (80)

g(x(t), (x(t!a))"

g
1

g
2

g
3

g
4

g
5

"

0.5S
a
R

ai
S
c
<

rg
0

0

0

0

. (81)

10.2.2. State feedback controller design
For the system of Eq. (78), Assumption 1 is satis"ed

with r"1, and the coordinate transformation of Eq. (27)
akes the form [f g

1
g
2

g
3

g
4
]T"[¹

rg
C

rc
¹

ra
C

sc
C

#!5
]

and yields the following system:

fQ"¸
fI
h(X~1(f, g))#¸

g
h(X~1(f, g))u(t)

#p
1
(f(t), g(t), f(t!a), g(t!a)),

g5 "( (f(t), g(t), f(t!a), g(t!a)), (82)

where the explicit form of ((f(t), g(t), (t!a), g(t!a)) is
omitted for brevity. To verify Assumption 2, we consider
the g-subsystem of Eq. (82) with f(t)"(t!a)"f

s
"

1155.96F, i.e., the system:
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(83)
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The linearization of the above system around the steady
state

C
rc
"0.6973 wt%, ¹

ra
"930.62 F, C

sc
"1.5696 wt%,

C
#!5

"0.8723 wt% (84)

was found to be exponentially stable, which implies that
the -subsystem of Eq. (82) possesses a local input-to-state
stability property with respect to f

t
(m). Therefore, As-

sumption 2 holds and the controller synthesis problem
can be addressed on the basis of the f-subsystem which is
given below:
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rg
B g

2
(t!a). (85)

Setting e"f!v where v is the desired set point and
using a preliminary control law of the form of Eq. (30),
the above system becomes

e5 (t)"!R~1
2

bTPe(t). (86)

For the above system, Assumption 4 is trivially satis"ed
since p(x(t), x(t!a))"0. Utilizing the results of The-
orem 3, the following equation can be formed:

AI TP#PAI !2PTbR~1
2

bTP#a2#P2"!R
1

(87)

with R
2
"1.0, a2"0.5 (a2'a

2
"0), and

AI "0, b"1, R
1
"0.5. (88)

Eq. (87) has a unique positive-de"nite solution for P of
the form

P"1.0 (89)

which leads to the following nonlinear state feedback
controller:

u"
1

¸
g
h(x(s))

(!(x
1
!v)!¸

fI
h(x(s))!p

1
(x(t), x(t!a))).

(90)

10.2.3. State observer and output feedback controller
design

Since the open-loop process is stable, we set the ob-
server gain ¸ equal to zero and derive the following
nonlinear output feedback controller using the result of
Theorem 5:

u5 "fI (u(t))#g(u, u(t!a))u#p6 (u(t), u(t!a)),

u"
1

¸
g
h(u)

(!(y(t)!v)!¸
fI
h(u)

!p
1
(u(t), v6 (t), u(t!a), v6 (t!a))). (91)

When both state and measurement delays are included in
the system of Eq. (78), the following nonlinear output
feedback controller was derived by using the result of
Theorem 6 and employed in the simulation described in
the next subsection:

u5 "fI (u(t))#g(u, u(t!a))u#p6 (u(t), u(t!a)),

u"
1

¸
g
h(u)

(!(y(t)!a8 )!v#u
1
(t)!u

1
(t!a8 ))

!¸
fI
h(u)!p

1
(u(t), v6 (t), u(t!a), v6 (t!a))). (92)

Note that the controllers of Eqs. (91) and (92) possess
integral action.

10.2.4. Closed-loop system simulations
We performed several sets of simulation runs to evalu-

ate the performance of the output feedback controllers of
Eqs. (91) and (92) and compare their performance with
nonlinear controllers that do not account for the pres-
ence of time delays in the model of Eq. (78). In all the
simulation runs, the process was initially (t"0.0 h) as-
sumed to be at the steady state shown in Table 2 and the
MATLAB toolbox SIMULINK was used to simulate the
closed-loop DDE system.

In the "rst simulation run, we considered the process
of Eq. (78) with a"0.3 h and a8 "0 h (i.e., no measure-
ment delay is present) under the output feedback control-
ler of Eq. (90). Fig. 10 shows the output and manipulated
input pro"les, for a 44 F increase in the reference input. It
is clear that the proposed controller drives quickly the
output to the new reference input value, compensating
for the e!ect of the dead times associated with the
pipes transferring material from the reactor to the
regenerator and vice versa. For the sake of comparison,
we also implemented on the process the same output
feedback controller with a"0 h and a8 "0 h (i.e., we
did not account for the presence of time delays in
the design of the controller). Fig. 11 shows the
output and manipulated input pro"les; this controller
leads to an unstable closed-loop system because it does
not compensate for the detrimental e!ect of the time
delays.

In the next simulation run, we considered the process
of Eq. (78) with a"0.3 h and a8 "0.05 h (i.e., signi"cant
measurement delay is present) under the output feedback
controller of Eq. (92). Fig. 12 shows the output and
manipulated input pro"les, for a 443F increase in the
reference input. Clearly, the controller of Eq. (92) drives
the output of the closed-loop system, after an initial delay
caused by the measurement dead time, to the new refer-
ence input value.

Finally, we considered the process of Eq. (78) with
a"0.3 h and a8 "0.05 hr and studied the robustness
properties of the controller of Eq. (90) in the presence
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Fig. 10. Closed-loop output and manipulated input pro"les with a"0.3 h and a8 "0 h under the controller of Eq. (91).

Fig. 11. Closed-loop output and manipulated input pro"les with a"0.3 h and a8 "0 h under the controller of Eq. (91) with a"0.0 h.

of modeling errors. In particular, we simultaneously
considered 5% error in the values of: (a) the catalyst
circulation rate, F

rc
, (b) the temperature of the feed in the

reactor, ¹
fp

, and (c) the in#ow air rate in the regener-
ator, R

ai
. Fig. 13 shows the output and manipulated

input pro"les, for a 44 F increase in the reference input.
Despite the presence of a signi"cant modeling errors the
proposed controller drives the output of the closed-loop
system to the new reference input value, exhibiting very
good robustness properties.
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Fig. 12. Closed-loop output and manipulated input pro"les with a"0.3 h and a8 "0.05 h under the controller of Eq. (92).

Fig. 13. Closed-loop output and manipulated input pro"les with a"0.3 h and a8 "0.05 h under the controller of Eq. (92) in the presence of modeling
errors.
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Summarizing, the results of both simulation studies
clearly show that it is necessary to compensate for the
e!ect of dead-time associated with pipes transferring
material from one unit to an other, as well as that the
proposed control methodology is a very e$cient tool for
this purpose.

Remark 22. We "nally note that even though the FCC
unit exhibits two-time-scale behavior (Christo"des and
Daoutidis, 1997; Denn, 1986) owing to the signi"cantly
di!erent holdups of the regenerator and reactor (i.e., the
reactor dynamics are signi"cantly faster than the regener-
ator dynamics), which, in general, may cause controller
ill-conditioning (see, for example, Christo"des and
Daoutidis (1997) for a discussion on this issue), in the
present study, the presence of time-scale multiplicity in
the FCC process model was not taken into account in the
controller design problem addressed in Sections 10.2.2
and 10.2.3 because the control problem that we for-
mulated does not lead to the synthesis of an ill-condi-
tioned controller.

11. Conclusions

In this article, we introduced a methodology for the
synthesis of nonlinear output feedback controllers for
nonlinear DDE systems which include time delays in the
states, the control actuator and the measurement sensor.
Initially, DDE systems with state delays were considered
and a novel combination of geometric and Lyapunov-
based techniques was employed for the synthesis of non-
linear state feedback controllers that guarantee stability
and enforce output tracking in the closed-loop system,
independently of the size of the state delay. Then, the
problem of designing nonlinear distributed state ob-
servers, which reconstruct the state of the DDE system
while guaranteeing that the discrepancy between the ac-
tual and the estimated state tends exponentially to zero,
was addressed and solved by using spectral decomposi-
tion techniques for DDE systems. The state feedback
controllers and the distributed state observers were com-
bined to yield distributed output feedback controllers
that enforce stability and asymptotic output tracking in
the closed-loop system, independently of the size of the
time delay. For DDE systems with state, control actuator
and measurement delays, the output feedback controller
was synthesized on the basis of an auxiliary output
constructed within a Smith-predictor framework. The
proposed control method was successfully applied to an
exothermic reactor}separator process with recycle and
a #uidized catalytic cracker and was shown to outper-
form nonlinear controller designs that do not account for
the presence of deadtime associated with the recycle loop
and the pipes transferring material from the reactor to
the regenerator and vice versa, respectively.
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Appendix A. De5nition

f ¸
f
h denotes the Lie derivative of a scalar "eld h with

respect to the vector "eld f. ¸k
f
h denotes the kth order

Lie derivative and ¸
g
¸k~1
f

h denotes the mixed Lie
derivative.

f A function c: R
w0

PR
w0

is said to be of class Q if it is
continuous, zero at zero and nondecreasing. It is of
class K if it is continuous, strictly increasing and is zero
at zero.

f A function b: R
w0

]R
w0

PR
w0

is said to be of class
K¸ if, for each "xed t, the function b( ) , t) is of class
K and, for each "xed s, the function b(s, ) ) is nonin-
creasing and tends to zero at in"nity.

Proof of Theorem 2. Under the controller of Eq. (21), the
closed-loop system takes the form.

u5 "F(u, h(x(t!a)), v),

x5 "Ax(t)#Bx(t!a)#f (x(t), x(t!a))

#g(x(t), x(t!a))P(u, h(x(t!a)), t),

x(m)"g6 (m), m3[!a, 0), x(0)"g6
0
. (A.1)

Introducing the extended state vector u( "[uT xT]T, the
above system can be written in the following compact
form:

u(5 "FM (u( (t), u( (t!a)), (A.2)

where the speci"c form of the vectorF1 (u( (t), u( (t!a)) can
be easily obtained by comparing Eqs. (A.1) and (A.2) and
it is omitted here for brevity. From the fact that the
controller of Eq. (21) enforces local exponential stability
and asymptotic output tracking in the closed-loop sys-
tem when a"0, we have that the system

u(0 "F1 (u( (t), u( (t)) (A.3)

is locally exponentially stable. For t*2a, the system of
Eq. (A.2) can be rewritten as

u(0 "F1 (u( (t), u( (t))#[F1 (u( (t), u( (t!a))!FM (u( (t), u( (t))]

"F1 (u( (t), u( (t))!P
t

t~a

LF1
Lu(

u( (h), t)F1 (uL (h!a), u( (h)) dh.

(A.4)
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We consider the function <"u( T(t)u( (t) as a Lyapunov
function candidate for the system of Eq. (A.4). Comput-
ing the time derivative of < along the trajectory of the
system of Eq. (A.4), we obtain

<Q "2u( (t)F1 (t), u( (t))

!2P
t

t~a
uL (t)

LF1
Lw(

(u( F(u( (h),u( (h), t)FM (u( (h!a),

]uL (h)) dh. (A.5)

From the smoothness of the function F1 , we have that
there exists an ¸ such that D(LF1 /Lu( (u( (h), u( (h), t)DR n)¸,
and the bound on <Q of Eq. (A.5), takes the form

<Q )2u( (t)F1 (uL (t), u( (t))#2¸2P
t

t~a
Du( (t)u( (h!a)DR n dh

)2u( (t)F1 (u( (t), u( (t))#2¸2Du( (t)DR nP
t

t~a
Du( (h!a)DR n dh.

(A.6)

Now, given a positive real number q6 '1, we consider the
set of all u( (t) that satisfy

u( 2(t!m))q6 2u( 2(t), 0)m)2a (A.7)

for which, we have that

<Q )2u( (t)F1 (u( (t), u( (t))#2¸2aq6 Du( (t)D2R n (A.8)

From the fact that the controller of Eq. (21) enforces local
exponential stability and asymptotic output tracking in
the closed-loop system when a"0, we have that the
system

u(0 "F1 (u( (t), u( (t)) (A.9)

is locally exponentially stable, which implies that

2u( (t)FM (u( (t), u( (t)))!aDu( (t)D2R n, (A.10)

where a is a positive real number. Substituting the above
bound into Eq. (A.8), we obtain

<Q )!aDu( (t)D2R n#2¸2aq6 Du( (t)D2R n)!(a!2¸2aq6 )Du( (t)D2R n.

(A.11)

For a(a/2¸2q6 , we have that <Q )0, and using Theorem
4.2 from Hale and Verduyn Lunel (1993), we directly
obtain that the system of Eq. (A.1) is exponentially stable.
The proof that lim

t?=
Dy!vDR n"0 is conceptually sim-

ilar and will be omitted for brevity.

Proof of Theorem 3. Substitution of the controller of Eq.
(37) into the system of Eq. (2) with a6 "0, yields the

following system:

xR "Ax#Bx(t!a)#f (x, x(t!a))

#g(x, x(t!a))A(x(t), v6 (t), x(t!a), v6 (t!a)),

y"h(x). (A.12)

Using that f (x(t), x(t!a))"f
1
(x(t))#f

2
(x(t), x(t!a)),

fI (x(t))"Ax(t)#f
1
(x(t)), and p6 (x(t), x(t!a))"Bx(t!a)

#f
2
(x(t), x(t!a)), the above system can be written as

x5 "fI (x(t))

#g(x(t), x(t!a))Ax(t), v6 (t), x(t!a), v6 (t!a))

#p6 (x(t), x(t!a)),

y"h(x). (A.13)

Applying the coordinate transformation of Eq. (27) to the
above system and setting, for ease of notation, x(s)"
s~1(f(s), g(s)), s3[t!a, t], we obtain

fQ
1

" f
2
#p

1
(f(t), g(t), f(t!a), g(t!a)),

F

fQ
r~1

" f
r
#p

r~1
(f(t), g(t), f(t!a), g(t!a)),

fQ
r~1

" ¸T
fI
h(x)

#¸
g
¸r~1
fK

h(x)A(x(t), v6 (t), x(t!a), v6 (t!a))

#p
r
(f(t), g(t), f(t!a), g(t!a)),

g5
1

" W
1
(f(t), g(t), f(t!a), g(t!a)),

F

g
n~r

" W
n~r

(f(t), g(t), f(t!a), g(t!a)),

y " f
1
. (A.14)

Introducing, the variables e
i
"f

i
!v(i~1), i"1,2,r, the

system of Eq. (A.14) takes the form

e5
1

" e
2
#p

1
(e6 (t)#v6 (t), g(t), e6 (t!a)#v6 (t!a), g(t!a)),

F

e5
r~1

" e
r
#p

r~1
(e6 (t)#v6 (t), g(t), e6 (t!a)#v6 (t!a),

e5
r

" ¸r
fI
h(x)!v(r)

#¸
g
¸r~1

fI
h(x)A(x(t), v6 (t),

]x(t!a), v6 (t!a)), g(t!a)),

#p
r
(e6 (t)#v6 (t), g(t), e6 (t!a)#v6 (t!a), g(t!a)),

g5
1

" W
1
(e6 (t)#v6 (t), g(t), e6 (t!a)#v6 (t!a), g(t!a)),

F

g5
n~r

" W
n~r

(e6 (t)#v6 (t), g(t), e6 (t!a)#v6 (t!a), g(t!a)),

(A.15)

where e6 "[e
1

e
2
2e

r
]T. For the above system, we as-

sume, without loss of generality, that when g"0, e6 "0 is
an equilibrium solution.
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We now consider the e6 -subsystem of the system of Eq.
(A.15):

e5
1

" e
2
#p

1
(e6 (t)#v6 (t), g(t), e6 (t!a)#v6 (t!a), g(t!a)),

F

e5
r~1

" e
r

#p
r~1

(e6 (t)#v6 (t), g(t), e6 (t!a)#v6 (t!a), g(t!a)),

e5
r

" ¸r
fI
h(x)!v(r)

#¸
g
¸r~1

fI
h(x)A(x(t), v8 (t), x5 (t!a), v6 (t!a))

#p
r
(e6 (t)#v6 (t), g(t), e6 (t!a)#v6 (t!a), g(t!a))

(A.16)

Using the explicit form of the controller formula of Eq.
(37) and the de"nition for the matrix AI and the vectors
b, p of Eq. (32), the above system can be written in the
following compact form:

e65 "AI e6 !bR~1
2

bTPe6

#p(e6 (t)#v6 (t), g(t), e6 (t!a)#v6 (t!a), g(t!a)).

(A.17)

We will now show that if Eq. (36) has a unique positive
de"nite solution for P and the state of the g-subsystem
of Eq. (A.15) is bounded, then the system of Eq. (A.17)
is exponentially stable, which implies that
lim

t?=
Dy!vDR"0. To establish this result, we consider

the following smooth functional <:CPR
w0

:

<(e6
t
(m))"e6 TPe6 #a2P

t

t~a
e6 T(s)e6 (s) ds (A.18)

which clearly satis"es, K
1
De6 (t)D2R n)<(e6

t
(m)))K

2
De6
t
(m)D2,

for some positive constants K
1

and K
2
. Computing the

time derivative of< along the trajectories of the system of
Eq. (A.17), we obtain

<Q "e6 0 TPe6 #e6 TPe60 #a2(e6 T(t)e6 (t)!e6 T(t!a)e6 (t!a))

)(e6 TAI T!e6 TPTbR~1
2

bT

#pT(e6 (t)#v6 (t), g(t), e6 (t!a)

#v6 (t!a), g(t!a)))Pe6

#e6 TP(AI e6 !bR~1
2

bTPe6

#p(e6 (t)#v6 (t), g(t), e6 (t!a)

#v6 (t!a), g(t!a)))

#a2(e6 T(t)e6 (t)!e6 T(t!a)e6 #(t!a))

)e6 T(AI TP#PAI !2PTbR~1
2

bTP#a2I
nCn

)e6

#2pT(e6 (t)

#v6 (t), g(t), e6 (t!a)#v6 (t!a), g(t!a))PeN

!a2e6 T(t!a)e6 (t!a) (A.19)

where I
nCn

denotes the identity matrix of dimension
n]n. Using the inequality 2xTy)xTx#yTy where
x and y are column vectors, we obtain

<Q )e6 T(AI TP#PAI !2PTbR~1
2

bTP#a2I
nCn

)e6

#p2(e6 (t)#v6 (t), g(t), e6 (t!a)#v6 (t!a), g(t!a))

#e6 TP2e6 !a2e6 T(t!a)e6 (t!a),

)e6 T(AI TP#PAI !2PTbR~1
2

bTP#a2I
nCn

#P2)e6

#p2(e6 (t)#v6 (t), g(t), e6 (t!a)#v6 (t!a), g(t!a))

!a2e6 T(t!a)e6 (t!a). (A.20)

Since the state of the g-subsystem of Eq. (A.15) is sup-
posed to be bounded and assuming quadratic growth for
the term p2(e6 (t)#v6 (t), g(t), e6 (t!a)#v6 (t!a), g(t!a))
(Assumption 3), we have that there exist positive real num-
bers a

1
, a

2
such that the following bound can be written:

Dp(e6 (t)#v6 (t), g(t), e6 (t!a)#v6 (t!a),

g(t!a))DR r)a
1
e6 2(t)#a

2
e6 2(t!a). (A.21)

Substituting the above inequality on the bound for <Q in
Eq. (A.20), we obtain

<Q )e6 T(AI TP#PAI !2PTbR~1
2

bTP#a2I
nCn

#P2)e6

#a
1
e6 2(t)#a

2
e6 2(t!a)!a2e6 T(t!a)e6 (t!a)

)e6 T(AI TP#PAI !2PTbR~1
2

bTP#(a2#a
1
)I

nCn

#P2)e6 !(a2!a
2
)e6 2(t!a). (A.22)

Now, if a2'a
2

and there exists a positive-de"nite sym-
metric matrix P which solves the following matrix equa-
tion:

AI TP#PAI !2PTbR~1
2

bTP#(a2#a
1
)I

nCn

#P2"!R
1
, (A.23)

where R
1

is a positive-de"nite matrix, then

<Q )!e6 TR
1
e6 !a

3
e6 2(t!a)

)!j
.*/

(R
1
)e6 2!a

3
e6 2(t!a). (A.24)

where a
3

is a positive real number and j
.*/

(R
1
) denotes

the smallest eigenvalue of the matrix R
1
. Since < and

<Q satisfy the assumptions of Theorem 1, we have that
there exist positive real numbers K, a such that the state
of the e6 -subsystem of Eq. (A.16) is exponentially stable,
i.e., it satis"es

De6 (t)DR r)Ke~atDe6 (0)DR r (A.25)

for every value of the delay, a, and thus, lim
t?=

Dy!vDR"0.
To complete the proof of the theorem, we need to show

that there exists a positive real number d such that if
maxMDx

0
(m)D, DDv6 DDN)d, then the state of the closed-loop

system is exponentially stable and the output of the
closed-loop system satis"es lim

t?=
Dy!vDR"0. To es-

tablish this result, we will analyze the behavior of the
DDE system of Eq. (A.15) using a two-step small-gain
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Au
t
(m)#U

H
¸((W

H
, /))(y(t)!h(Pu

t
(m)))"G

d/(m)

dm
#U

H
(m)¸((W

H
, /))(y(t)!h(Pu

t
(m))), m3[!a, 0)

Au
t
(0)#B/(!a)!U

H
(0)¸((W

H
, /))h(Pu

t
(m)), m"0

(A.35)

theorem type argument (Teel, 1998). In the "rst step, we
will use a contradiction argument to show that the evolu-
tion of the states e6 , g, starting from su$ciently small
initial conditions, i.e., De6

0
(m)D)d

e6
and Dg

0
(m)D)dg (where

(d
e6
, dg) are positive real numbers which can be explicitly

computed as functions of d from the coordinate change of
Eq. (27)), satis"es the following inequalities:

De6 (t)DR r)dM
e6
, D g(t)DR n~r)dM g , ∀t3[0, R), (A.26)

where dM
e6
'Kd

e6
and dM g'dg are positive real number

which will be speci"ed below. In the second step, we will
use the boundedness result obtained from the "rst step
and the exponentially decaying bound of Eq. (A.25) to
prove that the state of the g-subsystem of Eq. (A.15)
decays exponentially to zero.

From Assumption 3, we have that the g-subsystem of
the system of Eq. (A.15) is input-to-state stable, which
implies that there exist a function c6

e6
of class Q, a function

bg of class K¸ and positive real numbers dM
e6
, dg such that if

Dg
0
(m)D(dg and Ee6

t
E(dM

e6
, then

Dg(t)DR n~r)Dg
t
(m)D)b(Dg

0
(m)D, t)#c6

e6
(Ee6

t
E), ∀t*0.

(A.27)

We will proceed by contradiction. Set dM g'bg(dg, 0)#
c6
e6
(Kd

e6
) and let ¹M be the smallest time such that there is

a dK so that t3(¹M , ¹M #dK ) implies either De6 (t)DR r'dM
e6
or

Dg6 (t)DR n~r'dM g. Then, for each t3[0, ¹M ] the conditions of
Eq. (A.26) hold.

Consider the functions e6 TM (t), gTM (t) de"ned as follows:

e6 T1 (t)"G
e6 (t), t3[0, ¹M ]
0 t3(¹M , R)

, gTM (t)"G
g(t), t3[0, ¹M ],
0 t3(¹M , R).

(A.28)

Now, using Eq. (A.27) we have that

sup
0xtxTM

(bg(Dg0(m)D, t)#c6
e6
(Ee6

t
E)))bg(dg, 0)#c6

e6
(Kd

e6
),

sup
0xtxT

M
(KDe6 (0)DR r e~at))KDe6 (0)DR r)Kd

e6
. (A.29)

and that

Ee6 T1 E)Kd
e6
(dM

e6
,

EgTM E)bg(dg, 0)#c6
e6
(Kd

e6
)(dM g. (A.30)

By continuity, we have that there exist some positive real
number kM such that Ee6 T1 `kM (t)E)dM

e6
and EgTM `kM (t)E)

dM g, ∀t3[0, ¹M #kM ]. This contradicts the de"nition of ¹M .
Hence, Eq. (A.26) holds ∀t*0.

Since the states, (e6 , g), of the closed-loop system of Eq.
(A.15) are bounded and e6 (t) decays exponentially to zero,
a direct application of the result of theorem 2 in Teel

(1998) implies that the g-subsystem of Eq. (A.15) is also
exponentially stable, and thus, the system of Eq. (A.15) is
exponentially stable and its output satis"es
lim

t?=
Dy!vDR"0.

Proof of Theorem 4. We initially construct that dynam-
ical system which describes the dynamics of the estima-
tion error, e

t
"u

t
!x

t
. Di!erentiating e

t
and using the

systems of Eqs. (10) and (50), we obtain

de
t

dt
"Ae

t
#f (P(e

t
#x

t
), Q(e

t
#x

t
))!f (Px

t
, Qx

t
)

#U
H
¸((W

H
, e

t
#x

t
))( y(t)!h(P(e

t
#x

t
))). (A.31)

Computing the linearization of the above system and
applying the spectral decomposition procedure, we obtain

dep
t

dt
"A

p
ep
t
!U

H
¸(w(Pep

t
#Pen

t
)),

Len
t

Lt
"A

n
en
t
,

ep
t
(0)"P

p
e(0)"P

p
(u6 !g6 ), en

t
(0)"P

n
e(0)"P

n
(u6 !g6 )

(A.32)

because P
n
U

H
¸((W

H
, u

t
))(y(t)!h(Pu

t
)),0 by construc-

tion. Since all the eigenvalues of the operator A
n
lie in the

left-half of the complex plane, this implies that the sub-
system

Len
t

Lt
"A

n
en
t

(A.33)

is exponentially stable. Therefore, the in"nite-dimen-
sional system of Eq. (A.32) possesses identical stability
properties with the "nite-dimensional system:

dep
t

dt
"A

p
ep
t
#U

H
¸wPep

t
(A.34)

From the observability Assumption 4, however, we have
that the above system is exponentially stable, which
implies that the error system is exponentially to zero, and
thus, the estimation error, e

t
"u

t
!x

t
, tends locally ex-

ponentially to zero.
Nonlinear state observer simplixcation: The abstract

dynamical system of Eq. (50) can be simpli"ed by utiliz-
ing the fact that

which implies that is equivalent to the following system
of partial di!erential equations:

Lu8
Lt

(m, t)"
Lu8
Lm

(m, t)

#U
H
(m)¸((W

H
, u8 (m, t)))(y(t)!h(u8 (0, t))), (A.36)
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Lu8
Lt

(0, t)"Au8 (0, t)#Bu8 (!a, t)

#U
H
(0)¸((W

H
, u8 (m, t)))(y(t)!h(u8 (0, t))),

(A.37)

where u8 (m, t)"u
t
(m). A further simpli"cation can be per-

formed by integrating the hyperbolic PDE of Eq. (A.36)
along its characteristics to obtain a nonlinear integro-
di!erential equation system for the observer. The charac-
teristics of Eq. (A.36) are the family of lines with slope
dt/dm"!1, i.e., the set of lines satisfying t#m"c,
where c is a constant. Integrating the Eq. (A.36) along its
characteristics, we obtain

du8
dm

(c!m, m)"!U(m)¸((W
H
, u8 (m, t)))h(u8 (0, c!m))

#U(m)¸((W
H
, u8 (m, t)))y(c!m) (A.38)

so that

u8 (c!h, h)"u8 (c, 0)!P
h

0

U(m)¸((W
H
, u8 (m, t)))

](h(u8 (0, c!m))!y(c!m)) dm, h3[!a,0], (A.39)

or

u8 (t, h)"u8 (t#h, 0)!P
h

0

U(m)¸((W
H
, u8 (m, t)))

](h(u8 (0, t#h!m))!y(t#h!m)) dm. (A.40)

Finally,

u8 (t!a)"u8 (t!a, 0)!P
~a

0

U(m)¸((W
H
, u8 (m, t)))

](h(u8 (0, t!a!m))!y(t!a!m)) dm

"u8 (t!a, 0)#P
a

0

U(m!a)¸((W
H
, u8 (m, t)))

](h(u8 (0, t!m))!y(t!m)) dm. (A.41)

Substituting u8 (t#h, 0)"u(t#h) into Eq. (A.37), we
obtain the following system:

u5 "Au(t)#Bu(t!a)#f (u(t), u(t!a))

#g(u(t), u(t!a))u

#U
H
(0)¸((W

H
, u8 (m, t)))(y(t)!h(u(t)))

#BP
a

0

U
H
(m!a)¸((W

H
, u8 (m, t)))[y(t!m)

!h(u(t!m))] dm. (A.42)

which is identical to the one of Eq. (51).

Proof of Theorem 5. Under the output feedback control-
ler of Eq. (57), the closed-loop system takes the form

u5 "Au(t)#Bu(t!a)#f (u(t), u(t!a))

#U
H
(0)¸((W

H
, u8 (m, t)))(y(t)!h(u(t)))

#BP
a

0

U
H
(m!a)¸((U

H
, u8 (m, t)))[y(t!m)

!h(u(t!m))] dm#g(w(t), u(t!a))

]
1

¸
g
¸r~1
fI

h(u)
(!R~1

2
bTPe6 (t)#v(r)(t)!¸r

fI
h(u)

!p
r
(u(t), v6 (t), u(t!a), v6 (t!a))), (A.43)

x5 "Ax(t)#Bx(t!a)#f (x(t), x(t!a))

#g(x(t), x(t!a))
1

¸
g
¸r~1
fI

h(u)
(!R~1

2
bTPe6 (t)

#v(r)(t)!¸r
fI
h(u)!p

r
(u(t), v6 (t), u(t!a)), v6 (t!a))).

Since we are interested in proving local exponential stab-
ility of the above system, we compute its linearization
around the zero solution and use that f (0, 0)"0 and
f (x(t), x(t!a)) includes higher-order terms, and g(0,0)"
c, where c is a constant vector, to obtain the following
linear system:

u5 "Au(t)#Bu(t!a)#U
H
(0)¸(wx(t)!wu(t))

#BP
a

0

U
H
(m!a)¸[wx(t!m)!wu(t!m)] dm

#cu
-*/

(u(t), v6 (t), u(t!a), v6 (t!a)),

x5 "Ax(t)#Bx(t!a)

#cu
-*/

(u(t), v6 (t), u(t!a), v6 (t!a)), (A.44)

where ¸ is the linearization of the nonlinear vector
¸((W

H
, u8 (m, t))) around the zero solution, w"(Lh/Lx)(0),

and u
l*/

is the linearization of the term:

1

¸
g
¸r~1
fI

h(u)
(!R~1

2
bTPe6 (t)#v(r)(t)!¸r

fI
(u))

!p
r
(u(t), v6 (t), u(t!a), v6 (t!a))) (A.45)

around the zero solution.
Introducing the error vector e

r
"x!u, the closed-

loop system of Eq. (A.44) can be written as

e5
r
"Ae

r
(t)#Be

r
(t!a)#U

H
(0)¸we

r
(t)

#BP
a

0

U
H
(m!a)¸we

r
(t!m) dm,

x5 "Ax(t)#Bx(t!a)#cu
-*/

(x(t)

#e
r
(t), v6 (t), x(t!a)#e

r
(t!a), v6 (t!a)). (A.46)

C. Antoniades, P.D. Christoxdes / Chemical Engineering Science 54 (1999) 5677}5709 5707



From the observability Assumption 3, we have that the
error system

e5
r
"Ae

r
(t)#Be

r
(t!a)#U

H
(0)¸we

r
(t)

#BP
a

0

U
H
(m!a)¸we

r
(t!m) dm (A.47)

is exponentially stable. Moreover, from the construction
of the state feedback controller, we have that the system

x5 "Ax(t)#Bx(t!a)#cu
-*/

(x(t), v6 (t), x(t!a),v6 (t!a)),

y"wx(t) (A.48)

is exponentially stable and the output asymptotically
follows the reference input (proof of Theorem 2). There-
fore, we have that the linear system of Eq. (A.46) is an
interconnection of two exponentially stable subsystems,
which implies that it is also exponentially stable. Using
the result of Theorem 1.1 in Hale and Verduyn Lunel
(1993) Chapter 10 (which allows inferring the local stabil-
ity properties of a nonlinear system based on its lineariz-
ation) we obtain that the nonlinear closed-loop system of
Eq. (A.43) is locally exponentially stable and the discrep-
ancy between the output and the reference input asymp-
totically tends to zero.
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