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Abstract

This paper proposes a general and practical methodology for the integration of nonlinear output feedback control with optimal
placement of control actuators and measurement sensors for transport-reaction processes described by a broad class of quasi-linear
parabolic partial di5erential equations (PDEs) for which the eigenspectrum of the spatial di5erential operator can be partitioned
into a ,nite-dimensional slow one and an in,nite-dimensional stable fast complement. Initially, Galerkin’s method is employed
to derive ,nite-dimensional approximations of the PDE system which are used for the synthesis of stabilizing nonlinear state
feedback controllers via geometric techniques. The optimal actuator location problem is subsequently formulated as the one of
minimizing a meaningful cost functional that includes penalty on the response of the closed-loop system and the control action and
is solved by using standard unconstrained optimization techniques. Then, under the assumption that the number of measurement
sensors is equal to the number of slow modes, we employ a procedure proposed in Christo,des and Baker (1999) for obtaining
estimates for the states of the approximate ,nite-dimensional model from the measurements. The estimates are combined with the
state feedback controllers to derive output feedback controllers. The optimal location of the measurement sensors is computed by
minimizing a cost function of the estimation error in the closed-loop in,nite-dimensional system. It is rigorously established that
the proposed output feedback controllers enforce stability in the closed-loop in,nite-dimensional system and that the solution to the
optimal actuator=sensor problem, which is obtained on the basis of the closed-loop ,nite-dimensional system, is near-optimal in the
sense that it approaches the optimal solution for the in,nite-dimensional system as the separation of the slow and fast eigenmodes
increases. The proposed methodology is successfully applied to a representative di5usion–reaction process and a nonisothermal
tubular reactor with recycle to derive nonlinear output feedback controllers and compute optimal actuator=sensor locations for
stabilization of unstable steady states. ? 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Transport-reaction processes with signi,cant di5usive
and dispersive mechanism are typically characterized
by severe nonlinearities and spatial variations, and are
naturally described by quasi-linear parabolic partial dif-
ferential equations (PDEs). Nonlinearities usually arise
from complex reaction mechanisms and Arrhenius de-
pendence of the reaction rates on temperature, and spa-
tial variations occur due to the presence of signi,cant
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di5usion and convection phenomena. Typical exam-
ples of transport-reaction processes are tubular reactors,
packed-bed reactors, and chemical vapor deposition
reactors.

Parabolic PDE systems typically involve spatial dif-
ferential operators whose eigenspectrum can be par-
titioned into a ,nite-dimensional slow one and an
in,nite-dimensional stable fast complement (Friedman,
1976; Balas, 1979). This implies that the dynamic be-
havior of such systems can be approximately described
by ,nite-dimensional systems. Therefore, the standard
approach to the control of parabolic PDEs involves the
application of Galerkin’s method to the PDE system
to derive ODE systems that describe the dynamics of
the dominant (slow) modes of the PDE system, which
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are subsequently used as the basis for the synthesis of
,nite-dimensional controllers (e.g., Balas, 1979; Ray,
1981). A potential drawback of this approach is that the
number of modes that should be retained to derive an
ODE system that yields the desired degree of approxima-
tion may be very large, leading to complex controller de-
sign and high dimensionality of the resulting controllers.
Motivated by this, recent e5orts on control of parabolic
PDE systems have focused on the problem of synthesiz-
ing low-order controllers on the basis of ODE models
obtained through combination of Galerkin’s method
with approximate inertial manifolds (see the recent book
Christo,des, 2001 for details and references).

Even though the developed methods allow to systemat-
ically design nonlinear controllers for transport-reaction
processes, there is no work on the integration of nonlinear
controllers with optimal placement of control actuators
and measurement sensors for transport-reaction processes
so that the desired control objectives are achieved with
minimal energy use. Regarding the problem of optimal
placement of control actuators, the conventional approach
is to select the actuator locations based on open-loop con-
siderations to ensure that the necessary controllability re-
quirements are satis,ed. More recently, e5orts have been
made on the problem of integrating feedback control and
optimal actuator placement for certain classes of linear
distributed parameter systems including investigation of
controllability measures and actuator placement in oscil-
latory systems (Arbel, 1981), optimal placement of actu-
ators for linear feedback control in parabolic PDEs (Xu,
Warnitchai, & Igusa, 1994; Demetriou, 1999) and in ac-
tively controlled structures (Rao, Pan & Venkayya, 1991;
Choe & Baruh, 1992).

On the other hand, the problem of selecting optimal lo-
cations for measurement sensors in distributed parameter
systems has received very signi,cant attention over the
last 20 years. The essence of this problem is to use a ,nite
number of measurements to compute the best estimate of
the entire distributed state for all positions and times em-
ploying a state observer in the presence of measurement
noise. E5orts for the solution of this problem have fo-
cused on linear systems (Yu & Seinfeld, 1973; Chen &
Seinfeld, 1975; Kumar & Seinfeld, 1978a; Omatu, Koide,
& Soeda, 1978; Morari & O’Dowd, 1980) and the appli-
cation of the results to optimal state estimation in tubu-
lar reactors (Colantuoni & Padmanabhan, 1977; Kumar
& Seinfeld, 1978b; Harris, MacGregor, & Wright, 1980;
Alvarez, Romagnoli, & Stephanopoulos, 1981; Waldra5,
Dochain, Bourrel, & Magnus, 1998). The central idea
to the solution involves the use of a spatial discretiza-
tion scheme to obtain a lumped approximation of the dis-
tributed parameter system followed by the formulation
and solution of an optimal state estimation problem which
involves computing sensor locations so that an appropri-
ate functional that includes penalty on the estimation er-
ror and the measurement noise is minimized.

Signi,cant research e5orts have also been made on the
integrated optimal placement of controllers and sensors
for various classes of linear distributed parameter sys-
tems (see, for example, Amouroux, Di Pillo, & Grippo,
1976; Ichikawa & Ryan, 1977; Courdesses, 1978; Ma-
landrakis, 1979; Omatu & Seinfeld, 1983 and the review
paper of Kubrusly & Malebranche, 1985). Despite the
progress on optimal sensor placement and the availabil-
ity of results on the integration of linear feedback con-
trol with actuator placement for linear parabolic PDEs,
there are no results on the integration of nonlinear out-
put feedback control with optimal placement of control
actuators and measurement sensors for transport-reaction
processes described by nonlinear parabolic PDEs.

This paper proposes a general and practical method-
ology for the integration of nonlinear output
feedback control with optimal placement of control ac-
tuators and measurement sensors for transport-reaction
processes described by a broad class of quasi-linear
parabolic partial di5erential equations (PDEs) for which
the eigenspectrum of the spatial di5erential operator
can be partitioned into a ,nite-dimensional slow one
and an in,nite-dimensional stable fast complement.
Initially, Galerkin’s method is employed to derive
,nite-dimensional approximations of the PDE system
which are used for the synthesis of stabilizing nonlin-
ear state feedback controllers via geometric techniques.
The optimal actuator location problem is subsequently
formulated as the one of minimizing a meaningful cost
functional that includes penalty on the response of the
closed-loop system and the control action and is solved
by using standard unconstrained optimization tech-
niques. Then, under the assumption that the number of
measurement sensors is equal to the number of slow
modes, we employ a procedure proposed in Christo,des
and Baker (1999) for obtaining estimates for the states
of the approximate ,nite-dimensional model from the
measurements. The estimates are combined with the
state feedback controllers to derive output feedback con-
trollers. The optimal location of the measurement sensors
is computed by minimizing a cost function of the esti-
mation error in the closed-loop in,nite-dimensional sys-
tem. It is rigorously established that the proposed output
feedback controllers enforce stability in the closed-loop
in,nite-dimensional system and that the solution to
the optimal actuator=sensor problem, which is obtained
on the basis of the closed-loop ,nite-dimensional sys-
tem, is near-optimal in the sense that it approaches
the optimal solution for the in,nite-dimensional sys-
tem as the separation of the slow and fast eigenmodes
increases. The proposed methodology is successfully
applied to a di5usion–reaction process and a non-
isothermal tubular reactor with recycle to derive non-
linear output feedback controllers and compute optimal
actuator=sensor locations for stabilization of unstable
steady states.
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2. Preliminaries

2.1. Description of parabolic PDE systems

We consider transport-reaction processes described by
quasi-linear parabolic PDE systems of the form

@ Kx
@t

= A
@ Kx
@z

+ B
@2 Kx
@z2 + wb(z)u + f( Kx);

yi
c =

∫ �

�
ci(z)k Kx(z; t) dz; i = 1; : : : ; l;

y�
m =

∫ �

�
s�(z)! Kx(z; t) dz; � = 1; : : : ; p;

(1)

subject to the boundary conditions:

C1 Kx(�; t) + D1
@ Kx
@z

(�; t) = R1;

C2 Kx(�; t) + D2
@ Kx
@z

(�; t) = R2;
(2)

and the initial condition:

Kx(z; 0) = Kx0(z); (3)

where Kx(z; t) = [ Kx1(z; t) · · · Kxn(z; t)]
T ∈ Rn denotes the

vector of state variables, z ∈ [�; �] ⊂ R is the spatial co-
ordinate, t ∈ [0;∞) is the time, u=[u1 u2 · · · ul]T ∈ Rl

denotes the vector of manipulated inputs, yi
c ∈ R de-

notes the ith controlled output, and y�
m ∈ R denotes

the �th measured output. @ Kx=@z; @2 Kx=@z2 denote the ,rst-
and second-order spatial derivatives of Kx, f( Kx) is a
nonlinear vector function, w; k! are constant vectors,
A; B; C1; D1; C2; D2 are constant matrices, R1; R2 are col-
umn vectors, and Kx0(z) is the initial condition. b(z)
is a known smooth vector function of z of the form
b(z) = [b1(z) b2(z) · · · bl(z)], where bi(z) describes
how the control action ui(t) is distributed in the interval
[�; �]; ci(z) is a known smooth function of z which is
determined by the desired performance speci,cations in
the interval [�; �], and s�(z) is a known smooth function
of z which depends on the shape (point or distribut-
ing sensing) of the measurement sensors in the interval
[�; �]. Whenever the control action enters the system at a
single point z0, with z0 ∈ [�; �] (i.e. point actuation), the
function bi(z) is taken to be nonzero in a ,nite spatial
interval of the form [z0 − �; z0 + �], where � is a small
positive real number, and zero elsewhere in [�; �]. Fig. 1
shows the location of the manipulated inputs, controlled
outputs, and measured outputs in the case of a prototype
example. Throughout the paper, we will use the order
of magnitude notation O(�). In particular,  (�) = O(�)
if there exist positive real numbers k1 and k2 such that:
| (�)|6 k1|�|; ∀|�|¡k2.

Referring to the system of Eq. (1), several remarks
are in order: (a) the spatial di5erential operator is lin-
ear; this assumption is valid for di5usion–convection–
reaction processes where the di5usion coeOcient and the

Fig. 1. Location of the manipulated inputs, controlled outputs, and
measured outputs in the case of a prototype example.

conductivity can be taken independent of temperature and
concentrations, (b) the manipulated input enters the sys-
tem in a linear and aOne fashion; this is typically the
case in many practical applications where, for example,
the wall temperature is chosen as the manipulated input,
and (c) the nonlinearities appear in an additive fashion
(e.g., complex reaction rates, Arrhenius dependence of
reaction rates on temperature).

In the remainder of this section, we precisely charac-
terize the class of parabolic PDE systems of the form
of Eq. (1) which we consider in the manuscript. To this
end, we formulate the parabolic PDE system of Eq. (1)
as an in,nite-dimensional system in the Hilbert space
H([�; �];Rn) (this will also simplify the notation of the
paper, since the boundary conditions of Eq. (2) will be
directly included in the formulation; see Eq. (8) below),
with H being the space of n-dimensional vector func-
tions de,ned on [�; �] that satisfy the boundary condition
of Eq. (2), with inner product and norm

(!1; !2) =
∫ �

�
(!1(z); !2(z))Rn dz;

‖!1‖2 = (!1; !1)1=2; (4)

where !1; !2 are two elements of H([�; �];Rn) and the
notation (·; ·)Rn denotes the standard inner product in Rn.
De,ning the state function x on H([�; �];Rn) as

x(t) = Kx(z; t); t¿0; z ∈ [�; �]; (5)

the operator A in H([�; �];Rn) as

Ax = A
@ Kx
@z

+ B
@2 Kx
@z2 ;

x ∈ D(A) =
{
x ∈ H([�; �];Rn);

C1 Kx(�; t) + D1
@ Kx
@z

(�; t) = R1;

C2 Kx(�; t) + D2
@ Kx
@z

(�; t) = R2

}
; (6)

and the input, controlled output, and measured output
operators as

Bu = wbu; Cx = (c; kx); Sx = (s; !x); (7)
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the system of Eqs. (1)–(3) takes the form

ẋ = Ax + Bu + f(x); x(0) = x0;

yc = Cx; ym = Sx;
(8)

where f(x(t)) = f( Kx(z; t)) and x0 = Kx0(z). We assume
that the nonlinear terms f(x) are locally Lipschitz with
respect to their arguments and satisfy f(0) = 0. For A,
the eigenvalue problem is de,ned as

A#j = %j#j; j = 1; : : : ;∞; (9)

where %j denotes an eigenvalue and #j denotes an eigen-
function; the eigenspectrum of A, &(A), is de,ned as the
set of all eigenvalues of A, i.e. &(A)={%1; %2; : : : ; }. As-
sumption 1 (Christo,des and Daoutidis, 1997) that fol-
lows states that the eigenspectrum ofA can be partitioned
into a ,nite-dimensional part consisting of m slow eigen-
values and a stable in,nite-dimensional complement con-
taining the remaining fast eigenvalues, and that the sep-
aration between the slow and fast eigenvalues of A is
large.

Assumption 1. (1) Re{%1}¿Re{%2}¿ · · · ¿Re{%j}
¿ · · ·, where Re{%j} denotes the real part of %j.

(2) &(A) can be partitioned as &(A) = &1(A) +
&2(A), where &1(A) consists of the +rst m (with m +-
nite) eigenvalues, i.e. &1(A)={%1; : : : ; %m}, and |Re{%1}|

|Re{%m}|=
O(1).

(3) Re%m+1¡0 and |Re {%m}|
|Re{%m+1}| = O(�) where �¡1 is a

small positive number.

The assumption of ,nite number of unstable eigenval-
ues is always satis,ed for nonlinear parabolic PDE sys-
tems (Friedman, 1976), while the assumption of discrete
eigenspectrum and the assumption of existence of only
a few dominant modes that describe the dynamics of the
nonlinear parabolic PDE system are usually satis,ed by
the majority of di5usion–convection–reaction processes
(see the examples of Sections 6 and 7).

2.2. Galerkin’s method

We will now review the application of standard
Galerkin’s method to the system of Eq. (8) to de-
rive an approximate ,nite-dimensional system. Let
Hs, Hf be modal subspaces of A, de,ned as Hs =
span{#1; #2; : : : ; #m} and Hf = span{#m+1; #m+2; : : :}
(the existence of Hs, Hf follows from Assumption 1).
De,ning the orthogonal projection operators Ps and Pf

such that xs = Psx, xf = Pfx, the state x of the system of
Eq. (8) can be decomposed as

x = xs + xf = Psx + Pfx: (10)

Applying Ps and Pf to the system of Eq. (8) and using
the above decomposition for x, the system of Eq. (8) can

be equivalently written in the following form:

dxs
dt

= Asxs + Bsu + fs(xs; xf);

@xf
@t

= Afxf + Bfu + ff(xs; xf);

yc = Cxs + Cxf; ym = Sxs + Sxf;

xs(0) = Psx(0) = Psx0; xf(0) = Pfx(0) = Pfx0;

(11)

where As =PsAPs, Bs =PsB, fs =Psf, Af =PfAPf,
Bf=PfB andff=Pff and the notation @xf=@t is used to
denote that the state xf belongs in an in,nite-dimensional
space. In the above system, As is a diagonal matrix of
dimension m × m of the form As = diag{%j}, fs(xs; xf)
and ff(xs; xf) are Lipschitz vector functions, and Af

is an unbounded di5erential operator which is exponen-
tially stable (following from part (3) of Assumption 1
and the selection of Hs;Hf). Neglecting the fast and
stable in,nite-dimensional xf-subsystem in the system
of Eq. (11), the following m-dimensional slow system is
obtained:

dx̃s
dt

= Asx̃s + Bsu + fs(x̃s; 0);

ỹ c = Cx̃s; ỹ m = Sx̃s;
(12)

where the tilde symbol in x̃s, ỹ c and ỹ m denotes that
the state x̃s, the controlled output ỹ c, and the measured
output ỹ m are associated with the approximation of the
slow xs-subsystem.

Remark 1. We note that the above model reduction pro-
cedure which led to the approximate ODE system of
Eq. (11) can also be used, when empirical eigenfunctions
of the system of Eq. (8) computed through Karhunen–
LoReve expansion (see Christo,des, 2001 for details) are
used as basis functions in Hs and Hf instead of the
eigenfunctions of A. Furthermore, we note that due to
the separation of the fast and slow modes of the spatial
di5erential operator (which is characterized by �; part (3)
of Assumption 1), the coupling of the xs and xf sub-
systems in the interconnection of Eq. (11) through the
terms fs(xs; xf) and ff(xs; xf) in a bounded region of
the state space is weak (i.e., it scales with � and disap-
pears as � → 0); this property is the basis for using the
,nite-dimensional system of Eq. (12) for nonlinear output
feedback controller design and optimal actuator=sensor
placement.

3. Problem statement and solution framework

In this paper, we address the problem of computing
optimal locations of point control actuators and point
measurement sensors associated with nonlinear output
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feedback control laws of the following general form:

u = F(ym); (13)

where F(ym) is a nonlinear vector function and ym de-
notes the vector of measured outputs, so that the follow-
ing properties are enforced in the closed-loop system: (a)
exponential stability, and (b) the solution to the optimal
actuator=sensor location problem, which is obtained on
the basis of the closed-loop ,nite-dimensional system, is
near-optimal in the sense that it approaches the optimal
solution for the in,nite-dimensional system as the sep-
aration of the slow and fast eigenmodes increases. To
address this problem, we will initially synthesize stabi-
lizing nonlinear state feedback controllers via geometric
techniques on the basis of ,nite-dimensional approxima-
tions of the PDE system obtained via Galerkin’s method.
The optimal actuator location problem will be subse-
quently formulated as the one of minimizing a mean-
ingful cost functional that includes penalty on the re-
sponse of the closed-loop system and the control action
and will be solved by using standard unconstrained op-
timization techniques. Then, under the assumption that
the number of measurement sensors is equal to the num-
ber of slow modes, we will employ a procedure pro-
posed in Christo,des and Baker (1999) for obtaining esti-
mates for the states of the approximate ,nite-dimensional
model from the measurements. The estimates will be
combined with the state feedback controllers to derive
output feedback controllers. The optimal location of the
measurement sensors will be computed by minimizing a
cost function of the estimation error in the closed-loop
in,nite-dimensional system. It will be established by us-
ing singular perturbation techniques that the desired prop-
erties are enforced in the closed-loop system, provided
that the separation of the slow and fast eigenmodes is
suOciently large.

4. Integrating nonlinear control and optimal actuator
placement

4.1. Nonlinear state feedback controller synthesis

In this section, we assume that measurements of the
states of the PDE system of Eq. (12) are available and
address the problem of synthesizing nonlinear static state
feedback control laws of the general form

u = F(za; x̃s); (14)

where F(za; x̃s) is a nonlinear vector function and za de-
notes the vector of the actuator locations, that guarantee
exponential stability of the closed-loop ,nite-dimensional
system. To this end, we will need the following as-
sumption (see Remark 3 below for a discussion on this
assumption).

Assumption 2. l = m (i.e., the number of control actu-
ators is equal to the number of slow modes), and the
inverse of the matrix Bs exists.

Proposition 1 that follows provides the explicit formula
for the state feedback controller that achieves the control
objective.

Proposition 1. Consider the +nite-dimensional system
of Eq. (12) for which Assumption 2 holds. Then; the
state feedback controller:

u = B−1
s ((*s −As)x̃s − fs(x̃s; 0)); (15)

where *s is a stable matrix; guarantees global exponen-
tial stability of the closed-loop +nite-dimensional sys-
tem.

Remark 2. The structure of the closed-loop ,nite-
dimensional system under the controller of Eq. (15) has
the following form:

˙̃xs = *sx̃s; (16)

and thus, the response of this system depends only on the
stable matrix *s and the initial condition, xs(0), and is
independent of the actuator locations.

Remark 3. The requirement l = m is suOcient and not
necessary, and it is made to simplify the solution of
the controller synthesis problem. Full linearization of the
closed-loop ,nite-dimensional system through coordinate
change and nonlinear feedback can be achieved for any
number of manipulated inputs (i.e., for any l ∈ [1; m]),
provided that an appropriate set of involutivity conditions
is satis,ed by the corresponding vector ,elds of the sys-
tem of Eq. (12) (see Isidori, 1989 for details).

4.2. Computation of optimal location of control
actuators

In this subsection, we compute the actuator loca-
tions so that the state feedback controller of Eq. (15) is
near-optimal for the full PDE system of Eq. (11) with
respect to a meaningful cost functional which is de,ned
over the in,nite time-interval and imposes penalty on
the response of the closed-loop system and the control
action. To this end, we initially focus on the ODE system
of Eq. (12) and consider the following cost functional:

Js =
∫ ∞

0
((x̃T

s (xs(0); t); Qsx̃s(xs(0); t))

+ uT(x̃s(xs(0); t); za)Ru(x̃s(xs(0); t); za)) dt; (17)

where Qs and R are positive de,nite matrices. The
cost of Eq. (17) is well de,ned and meaningful since
it imposes penalty on the response of the closed-loop
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,nite-dimensional system and the control action. How-
ever, a potential problem of this cost is its dependence
on the choice of a particular initial condition, xs(0), and
thus, the solution to the optimal placement problem based
on this cost may lead to actuator locations that perform
very poorly for a large set of initial conditions. To elim-
inate this dependence and obtain optimality over a broad
set of initial conditions, we follow Levine and Athans
(1978) and consider an average cost over a set of m lin-
early independent initial conditions, xis(0), i=1; : : : ; m, of
the following form:

Ĵ s =
1
m

m∑
i=1

∫ ∞

0
((x̃T

s (x
i
s(0); t); Qsx̃s(xis(0); t))

+ uT(x̃s(xis(0); t); za)Ru(x̃s(xis(0); t); za)) dt: (18)

Referring to the above cost, we ,rst note that the penalty
on the response of the closed-loop system

Ĵ xs =
1
m

m∑
i=1

∫ ∞

0
(x̃T

s (x
i
s(0); t); Qsx̃s(xis(0); t)) dt (19)

is ,nite because the solution of the closed-loop system of
Eq. (16) is exponentially stable by appropriate choice of
*s. Moreover, Ĵ xs is independent of the actuator locations
(Remark 2), and thus, the optimal actuator placement
problem reduces to the one of minimizing the following
cost which only includes penalty on the control action:

Ĵ us =
1
m

m∑
i=1

∫ ∞

0
uT(x̃s(xis(0); t); za)Ru(x̃s(xis(0); t); za) dt

Ĵ us is a function of multiple variables, za = [za1 za2 · · ·
zal], and thus, it obtains its local minimum values when
its gradient with respect to the actuator locations is equal
to zero, i.e.:

@Ĵ us

@za
=

[
@Ĵ us

@za1
· · · @Ĵ us

@zal

]T

= [0 · · · 0]T; (20)

and�zaza Ĵ us(zam)¿0 where�zaza Ĵ us is the Hessian matrix
of Ĵ us and zam is a solution of the system of nonlinear al-
gebraic equations of Eq. (20) (which includes l equations
with l unknowns). The solution zam for which the above
conditions are satis,ed and Ĵ us obtains its smallest value
(global minimum) corresponds to the optimal actuator
locations for the closed-loop ,nite-dimensional system.
Theorem 1 that follows establishes that these locations
are near-optimal for the closed-loop in,nite-dimensional
system (the proof of this theorem can be found in the
Appendix).

Theorem 1. Consider the in+nite-dimensional system
of Eq. (11) for which Assumption 1 holds; and the
+nite-dimensional system of Eq. (12); for which As-
sumption 2 holds. Then; there exist positive real

numbers -1; -2 and �∗ such that if |xs(0)|6-1;
‖xf(0)‖26-2; and � ∈ (0; �∗]; then the controller of
Eq. (13): (a) guarantees exponential stability of the
closed-loop in+nite-dimensional system, and

(b) the optimal locations of the point actuators ob-
tained for the closed-loop +nite-dimensional system are
near-optimal for the closed-loop in+nite-dimensional
system in the sense that:

Ĵ =
1
m

m∑
i=1

∫ ∞

0
((xT

s (x
i
s(0); t); Qsxs(xis(0); t))

+ (xT
f(xis(0); t); Qfxf(xif(0); t))

+ uT(xs(xis(0); t); za)Ru(xs(xis(0); t); za)) dt → Ĵ s

as � → 0; (21)

where Qf is an unbounded positive de+nite operator and
Ĵ is the average cost function associated with the con-
troller of Eq. (15) and the in+nite-dimensional system
of Eq. (11).

Remark 4. Note that even though the response of the
closed-loop ,nite-dimensional system of Eq. (16) is
independent of the actuator locations, the response of
the closed-loop in,nite-dimensional system does depend
on the actuators locations. However, this dependence is
scaled by �, and therefore, it decreases as we increase
the number of modes included in the ,nite-dimensional
system used for controller design.

Remark 5. In general, the solution to the system of
Eq. (20) can be computed through combination of nu-
merical integration techniques and multivariable New-
ton’s method.

Remark 6. The results of this section, state feedback
control and optimal actuator placement, can be gener-
alized to the case where the ,nite-dimensional approx-
imation of the system of Eq. (11) is obtained through
combination of Galerkin’s method with approximate in-
ertial manifolds (Christo,des, 2001). This would lead
to a higher than O(�) closeness between the solution of
the ,nite-dimensional closed-loop system and the solu-
tion of the in,nite-dimensional closed-loop system (see
Christo,des (2001) for a detailed study of this issue),
which, in turn, would allow to obtain a better character-
ization and a signi,cant improvement of the closed-loop
in,nite-dimensional system performance. However, since
the objective of the present work is output feedback con-
trol with optimal actuator=sensor placement, we do not
pursue this approach because the error that will be intro-
duced in the estimates of the slow states from the output
measurements will be of O(�) (see Assumption 3 below),
and thus, it is not possible to obtain a better than O(�)
characterization of the closed-loop in,nite-dimensional
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system performance under the static output feedback con-
troller presented in the next section.

5. Integrating nonlinear output feedback control and
optimal actuator=sensor placement

The nonlinear controller of Eq. (15) was derived under
the assumption that measurements of the state variables,
Kx(z; t), are available at all positions and times. However,
from a practical point of view, measurements of the state
variables are only available at a ,nite number of spatial
positions, while in addition, there are many applications
where measurements of process state variables cannot
be obtained on-line (for example, concentrations of cer-
tain species in a chemical reactor may not be measured
on-line). Motivated by these practical problems, we ad-
dress in this section: (a) the synthesis of nonlinear output
feedback controllers that use measurements of the pro-
cess outputs, ym, to enforce stability in the closed-loop
in,nite-dimensional system, and (b) the computation of
optimal locations of the measurement sensors. Speci,-
cally, we consider output feedback control laws of the
general form

u(t) = F(ym); (22)

where F(ym) is a nonlinear vector function and ym is
the vector of measured outputs. The synthesis of the con-
troller of Eq. (22) will be achieved by combining the
state feedback controller of Eq. (15) with a procedure
proposed in Christo,des and Baker (1999) for obtaining
estimates for the states of the approximate ODE model of
Eq. (12) from the measurements. To this end, we need to
impose the following requirement on the number of mea-
sured outputs in order to obtain estimates of the states
xs of the ,nite-dimensional system of Eq. (12), from the
measurements y�

m, � = 1; : : : ; p.

Assumption 3. p=m ( i.e.; the number of measurements
is equal to the number of slow modes), and the inverse
of the operator S exist, so that x̂s = S−1ym.

We note that the requirement that the inverse of the
operator S exists can be achieved by appropriate choice
of the location of the measurement sensors (i.e., func-
tions s�(z)). The optimal locations for the measurement
sensors can be computed by minimizing an average
cost function of the estimation error of the closed-loop
in,nite-dimensional system of the form

Ĵ (e) =
1
m

m∑
i=1

∫ ∞

0
(‖xs(xis(0); t) − x̂s(xis(0); t)‖2) dt; (23)

where xs is the slow state of the closed-loop in,nite-
dimensional system of Eq. (11), x̂s =S−1ym, and e(t)=
‖xs−x̂s‖2 is the estimation error. In contrast to the solution

of the optimal location problem for the control actuators,
the solution to this optimization problem requires the so-
lution of the closed-loop in,nite-dimensional system in
order to compute xs, and x̂s (from the measurements y�

m,
� = 1; 2; : : : ; p), and thus, it is more computationally de-
manding.

Theorem 2 that follows establishes that the proposed
output feedback controller enforces stability in the
closed-loop in,nite-dimensional system and that the solu-
tion to the optimal actuator=sensor problem, which is ob-
tained on the basis of the closed-loop ,nite-dimensional
system, is near-optimal in the sense that it approaches the
optimal solution for the in,nite-dimensional system as
the separation of the slow and fast eigenmodes increases.
The proof of this theorem can be found in the Appendix.

Theorem 2. Consider the full system of Eq. (11) for
which Assumption 1 holds; and the +nite-dimensional
system of Eq. (12); for which Assumptions 2 and 3 hold;
under the nonlinear output feedback controller:

x̂s = S−1ym;
u = B−1

s ((*s −As)x̂s − fs(x̂s; 0)): (24)

Then; there exist positive real numbers -1; -2 and �∗ such
that if |xs(0)|6-1; ‖xf(0)‖26-2; and � ∈ (0; �∗]; then
the controller of Eq. (24):

(a) guarantees exponential stability of the closed-loop
system; and

(b) the locations of the point actuators and measure-
ment sensors are near-optimal in the sense that the
cost function associated with the controller of Eq.
(24) and the system of Eq. (11) satis+es

Ĵ =
1
m

m∑
i=1

∫ ∞

0
((xT

s (x
i
s(0); t); Qsxs(xis(0); t))

+ (xT
f(xis(0); t); Qfxf(xif(0); t))

+ uT(xs(xis(0)); t; za)Ru(xs(xis(0)); t; za)) dt → Ĵ s

as � → 0; (25)

where Ĵ and Ĵ s are the average cost functions of
the in+nite-dimensional system of Eq. (11) and the
+nite-dimensional system of Eq. (12); respectively; un-
der the output feedback controller of Eq. (24).

Remark 7. We note that the controller of Eq. (24) uses
static feedback of the measured outputs y�

m; �=1; : : : ; p,
and thus, it feeds back both xs and xf (this is in contrast to
the state feedback controller of Eq. (15) which only uses
feedback of the slow state xs). However, even though the
use of xf feedback could lead to destabilization of the
stable fast subsystem, the large separation of the slow
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and fast modes of the spatial di5erential operator (i.e.,
assumption that � is suOciently small) and the fact that
the controller does not include terms of the form O(1=�)
do not allow such a destabilization to occur.

In the remainder of the paper, we show two ap-
plications of the proposed approach for optimal
actuator=sensor placement to a typical di5usion–reaction
process and a nonisothermal tubular reactor with recycle.

6. Application to a di"usion--reaction process

6.1. Process description—control problem formulation

Consider a long, thin rod in a reactor (Fig. 2). The
reactor is fed with pure species A and a zeroth order
exothermic catalytic reaction of the form A → B takes
place on the rod. Since the reaction is exothermic, a cool-
ing medium which is in contact with the rod is used for
cooling. Under the assumptions of constant density and
heat capacity of the rod, constant conductivity of the rod,
and constant temperature at both ends of the rod, the
mathematical model which describes the spatiotemporal
evolution of the dimensionless rod temperature consists
of the following parabolic PDE:

@ Kx
@t

=
@2 Kx
@z2 + �Te−0=(1+ Kx) + �U (b(z)u(t) − Kx) − �Te−0;

(26)

subject to the Dirichlet boundary conditions:

Kx(0; t) = 0; Kx(2; t) = 0 (27)

and the initial condition:

Kx(z; 0) = Kx0(z); (28)

where Kx denotes the dimensionless temperature in the
reactor, �T denotes a dimensionless heat of reaction, 0
denotes a dimensionless activation energy, �U denotes a
dimensionless heat transfer coeOcient, and u denotes the
manipulated input (temperature of the cooling medium).
The following typical values were given to the process
parameters:

�T = 50:0; �U = 2:0; 0 = 4:0: (29)

For the above values, the operating steady state Kx(z; t)=0
is an unstable one (Fig. 3 shows the pro,le of evolution
of open-loop rod temperature starting from initial con-
ditions close to the steady state Kx(z; t) = 0; the process
moves to another stable steady state characterized by a
maximum in the temperature pro,le, hot-spot, in the mid-
dle of the rod). A 30th order Galerkin truncation of the
system of Eqs. (26)–(28) was used in our simulations in
order to accurately describe the process (further increase
on the order of the Galerkin truncation was found to give

Fig. 2. Catalytic rod.

Fig. 3. Pro,le of evolution of rod temperature in the open-loop system.

negligible improvement on the accuracy of the results).
The control objective is to stabilize the rod temperature
pro,le at the unstable steady state Kx(z; t) = 0. The eigen-
value problem for the spatial di5erential operator of the
process:

Ax =
@2 Kx
@z2 ;

x ∈ D(A) = {x ∈ H([0; 2];R);

Kx(0; t) = 0; Kx(2; t) = 0}

(30)

can be solved analytically and its solution is of the form

%j = −j2; #j(z) = K#j(z) =

√
2
2

sin(j z);

j = 1; : : : ;∞; (31)

where %j; #j; K#j, denote the eigenvalues, eigenfunctions
and adjoint eigenfunctions of Ai, respectively. In the re-
mainder of this section, we use the proposed method to
compute the optimal locations in the case of using two
and three control actuators and measurement sensors.
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6.2. Two actuator=sensor example

Initially, we assume that two point control actuators
and measurement sensors are used to stabilize the sys-
tem. Therefore, following Assumptions 2 and 3, we use
Galerkin’s method to derive a second order ODE approx-
imation of the PDE of Eq. (26) which is used for con-
troller design and optimal actuator=sensor placement. The
form of the approximate ODE system is given below:[ ˙̃xs1

˙̃xs2

]
=

[
%1 − �U 0

0 %2 − �U

][ x̃s1

x̃s2

]

+�U

[ K#1(za1) K#1(za2)
K#2(za1) K#2(za2)

] [
u1

u2

]

+�T

[
f1(x̃s; 0)
f2(x̃s; 0)

]
; (32)

where za1 and za2 are the locations of the two point ac-
tuators and the explicit forms of the terms f1(x̃s; 0) and
f2(x̃s; 0) are omitted for brevity. The measured output
ym(t) ∈ R2 is de,ned as:[
ym1

ym2

]
=

[
x(zs1; t)
x(zs2; t)

]
; (33)

where zs1 and zs2 are the locations of the two point sensors.
For the system of Eq. (32), the nonlinear state feedback
controller of Eq. (15) takes the form

u=
[
u1

u2

]
= B−1(za)F(x̃s)

=
1
�U

[ K#1(za1) K#1(za2)
K#2(za1) K#2(za2)

]−1

×
([−�− %1 + �U 0

0 −� − %2 + �U

] [
(x̃s1; #1)
(x̃s2; #2)

]

+�T

[
(f1(x̃s; 0); #1)
(f2(x̃s; 0); #2)

])
: (34)

Substituting the above controller into the system of
Eq. (32), we obtain the following closed-loop ODE
system:[ ˙̃xs1

˙̃xs2

]
=

[−� 0
0 −�

] [
x̃s1
x̃s2

]
; (35)

where � and � are positive real numbers. Since the re-
sponse of the above system depends only on the param-
eters �; � and the initial condition xs, and is independent
of the actuator locations,we compute the optimal actua-
tor locations by minimizing the following cost functional,
which only includes penalty on the control action:

Ĵ us =
1
2

2∑
i=1

∫ ∞

0
FT(x̃s(xis(0); t))(B−1(za))TRB−1(za)

×F(x̃s(xis(0); t)) dt: (36)

Table 1
Results for two control actuators

Case Actuator locations Ĵ u Ĵ x Ĵ

Optimal 0:392; 0:662 0.8075 0.5332 1.3407
Linearized 0:322; 0:682 0.8980 0.5414 1.4416
3 0:202; 0:802 5.2109 1.7957 7.0066
4 0:302; 0:702 0.9065 0.5608 1.5473

Using the following values for the parameters �= �= 1,
x1
s (0)=#1, and x2

s (0)=#2, and taking R;Qs; Qf to be unit
matrices of appropriate dimensions, the optimal actuator
locations were found to be: za1 = 0:392 and za2 = 0:662.

Finally, we compute the optimal sensor locations by
minimizing the following cost functional of the estima-
tion error:

Ĵ (e) =
1
2

2∑
i=1

∫ ∞

0
(‖xs(xis(0)) − x̂s(xis(0))‖2)) dt; (37)

where xs is obtained from the simulation of the full-order
closed-loop system of Eq. (11), and x̂s is obtained from
the measured outputs of the full-order closed-loop system
as shown below:[
x̂s1
x̂s2

]
=

[
#1(zs1) #2(zs1)
#1(zs2) #2(zs2)

]−1 [ ym1(zs1; t)
ym2(zs2; t)

]
: (38)

We found the optimal location of measurement sensors to
be: zs1 =0:312 and zs2 =0:722. Finally, by combining the
state feedback controller of Eq. (34) with the measure-
ments, and the optimal actuator=sensor locations, we de-
rive the following nonlinear output feedback controller:[
x̂s1
x̂s2

]
=

[
#1(zs1) #2(zs1)
#1(zs2) #2(zs2)

]−1 [ ym1(zs1; t)
ym2(zs2; t)

]

u=
1
�U

[ K#1(za1) K#1(za2)
K#2(za1) K#2(za2)

]−1

×
([−�− %1 + �U 0

0 −� − %2 + �U

] [
(x̂s1; #1)
(x̂s2; #2)

]

+�T

[
(f1(x̂s; 0); #1)
(f2(x̂s; 0); #2)

])
: (39)

We performed several simulation runs to evaluate the
performance of the proposed method for computing opti-
mal locations of control actuators and measurement sen-
sors. We initially apply the state feedback controller of
Eq. (34) to the 30th order Galerkin truncation of the sys-
tem of Eqs. (26)–(28) and investigate the inUuence of
the di5erent actuator locations on the various cost func-
tions. Table 1 shows the values of the costs Ĵ u; Ĵ x, and Ĵ
of the full-order closed-loop system under the state feed-
back controller of Eq. (34), in the case of optimal actua-
tor placement, and for the sake of comparison, the values
of these costs in the case of alternative actuator place-
ments including optimal actuator placement based on the
linearized system (second line). The cost for the control
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Fig. 4. Closed-loop norm of the control e5ort, ‖u‖, for the two
actuator=sensor example, for xs(0) = #1, for the optimal case (solid
line), the linearized case (long-dashed line), case 3 (short-dashed
line), and case 4 (dotted line).

Fig. 5. Closed-loop norm of the control e5ort, ‖u‖, for the two
actuator=sensor example, for xs(0) = #2, for the optimal case (solid
line), the linearized case (long-dashed line), case 3 (short-dashed
line), and case 4 (dotted line).

action used to stabilize the system at Kx(z; t)=0 when the
actuators are optimally placed, is clearly smaller than the
case of actuator placement based on the linearized system
(by 10.1%), case 3 (by 84.5%), and case 4 (by 10.3%).
Figs. 4 and 5 show the norm of the control action, ‖u‖,
for x(0) = #1 (Fig. 4) and x(0) = #2 (Fig. 5), for the
optimal case (solid line), the linearized case (long-dashed
line), case 3 (short-dashed line), and case 4 (dotted line).
Clearly, the control action used for stabilization in the
case of optimal actuator placement is smaller than all the
other cases.

We also tested the proposed optimal sensor locations
zs1 = 0:312 and zs2 = 0:722. To this end, we imple-
ment the nonlinear output feedback controller of Eq. (39)
on the 30th order Galerkin truncation of the system of

Table 2
Results for two control actuators and measurement sensors

Case Sensor locations Ĵ (e) Ĵ u Ĵ x Ĵ

Optimal 0:312; 0:722 5.947e−4 0.7998 0.5150 1.3149
2 0:482; 0:712 1.613e−3 0.8384 0.5720 1.4104
3 0:312; 0:492 3.604e−3 0.8579 0.5963 1.4542

Eqs. (26)–(28) with actuator locations za1 = 0:392 and
za2 = 0:662 and di5erent sensor locations. Table 2 shows
the values of the costs Ĵ (e); Ĵ u; Ĵ x, and Ĵ of the full-order
closed-loop system under the output feedback controller
of Eq. (39), in the case of optimal sensor placement, and
for the sake of comparison, the values of these costs in
the case of two other sensor locations. The estimation
error of the sensor locations of 0:312 and 0:722 com-
puted by the proposed approach is clearly smaller than
the other two cases. In Fig. 6, we display the closed-loop
norm of the estimation error versus time, for the optimal
actuator=sensor locations, for xs(0) =#1 (solid line) and
xs(0) = #2 (dashed line). We can see that for both ini-
tial conditions the estimation error is very small. Finally,
Figs. 7 and 8 show the pro,les of the evolution of the
temperature of the rod, under output feedback control,
for the optimal actuator=sensor locations, for xs(0) = #1

(Fig. 7), and for xs(0) = #2 (Fig. 8). We can see that
the proposed controller with optimal actuator=sensor lo-
cations, stabilizes the system to the spatially uniform op-
erating steady state very quickly, for both cases.

6.3. Three actuator=sensor example

In the second set of the simulation runs, we assume
that three control actuators and measurement sensors are
available for stabilization. Following Assumption 2, we
use Galerkin’s method to derive a third-order approxi-
mation of the PDE system which is used for controller
design and optimal actuator=sensor placement. To reduce
the size of the paper, we proceed with the presentation of
the results.

Initially, we synthesized and implemented a state feed-
back controller on the 30th order Galerkin truncation of
the system of Eqs. (26)–(28) in order to compute the op-
timal actuator locations. Table 3 shows the values of the
costs Ĵ u; Ĵ x, and Ĵ of the full-order closed-loop system
under state feedback control, in the case of optimal actua-
tor placement, and for the sake of comparison, the values
of these costs in the case of alternative actuator place-
ments. Clearly, in the case of optimal actuator placement
at 0:172; 0:502, and 0:812, the cost of the control action
used to stabilize the system at Kx(z; t) = 0 is smaller than
case 2 (by 32.9%), and case 3 (by 66.5%). Figs. 9–11
show the norm of the control action, ‖u‖, for x(0) = #1

(Fig. 9), x(0)=#2 (Fig. 10), and x(0)=#3 (Fig. 11), for
the optimal case (solid line), case 2 (long-dashed line),
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Fig. 6. Closed-loop norm of the estimation error ‖e‖ versus time, for
the two actuator=sensor example, and for the optimal actuator=sensor
locations, for xs(0) = #1 (solid line) and xs(0) = #2 (dashed line).

Fig. 7. Pro,le of evolution of the temperature of the rod, for the
two actuator=sensor example, under output feedback control, for the
optimal actuator=sensor locations, for xs(0) = #1.

Fig. 8. Pro,le of evolution of the temperature of the rod, for the
two actuator=sensor example, under output feedback control, for the
optimal actuator=sensor locations, for xs(0) = #2.

Table 3
Results for three control actuators

Case Actuator locations Ĵ u Ĵ x Ĵ

Optimal 0:172; 0:502; 0:812 1.365 0.506 1.871
2 0:102; 0:502; 0:902 2.034 0.557 2.591
3 0:202; 0:602; 0:902 4.072 0.804 4.876

Fig. 9. Closed-loop norm of the control e5ort, ‖u‖, for the three
actuator=sensor example, for xs(0) = #1, for the optimal case (solid
line), the case 2 (long-dashed line), case 3 (short-dashed line), and
case 4 (dotted line).

Fig. 10. Closed-loop norm of the control e5ort, ‖u‖, for the three
actuator=sensor example, for xs(0) = #2, for the optimal case (solid
line), the case 2 (long-dashed line), case 3 (short-dashed line), and
case 4 (dotted line).

and case 3 (short-dashed line). In the case of optimal ac-
tuator placement, the control action spent is smaller.

Subsequently, we synthesized and implemented a
nonlinear output feedback controller on the 30th order
Galerkin truncation of the system of Eqs. (26)–(28)
with actuator locations za1 = 0:172; za2 = 0:502 and
za3 = 0:812 and computed the optimal sensor locations.
Table 4 shows the values of the costs Ĵ (e); Ĵ u; Ĵ x, and
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Fig. 11. Closed-loop norm of the control e5ort, ‖u‖, for the three
actuator=sensor example, for xs(0) = #3, for the optimal case (solid
line), the case 2 (long-dashed line), and case 3 (short-dashed line).

Table 4
Results for three control actuators and measurement sensors

Case Location of sensors Ĵ (e) Ĵ u Ĵ x Ĵ

Optimal 0:132; 0:402; 0:732 3.590e−6 1.532 0.421 1.953
2 0:132; 0:432; 0:742 4.730e−6 1.552 0.431 1.983
3 0:132; 0:422; 0:722 7.435e−6 1.588 0.446 2.043

Fig. 12. Closed-loop norm of the estimation error ‖e‖ versus time, for
the three actuator=sensor example, and for the optimal actuator=sensor
locations, for xs(0) = #1 (solid line), xs(0) = #1 (long-dashed line)
and xs(0) = #3 (short-dashed line).

Ĵ of the full-order closed-loop system under output feed-
back control, in the case of optimal sensor placement,
and for the sake of comparison, the values of these costs
in the case of two other sensor locations. The estimation
error of the proposed sensor locations at 0:132; 0:402,
and 0:732, is clearly smaller than the other two cases.
Fig. 12 shows the closed-loop norm of the estimation
error versus time, for the optimal actuator=sensor loca-
tions, for xs(0) = #1 (solid line), for xs(0) = #2 (dashed

Fig. 13. Pro,le of evolution of the temperature of the rod, for the
three actuator=sensor example, under output feedback control, for the
optimal actuator=sensor locations, for xs(0) = #1.

Fig. 14. Pro,le of evolution of the temperature of the rod, for the
three actuator=sensor example, under output feedback control, for the
optimal actuator=sensor locations, for xs(0) = #2.

Fig. 15. Pro,le of evolution of the temperature of the rod, for the
three actuator=sensor example, under output feedback control, for the
optimal actuator=sensor locations, for xs(0) = #3.

line), and for xs(0) = #3 (dotted line). We can see that
for all three initial conditions the estimation error is very
small. Finally, Figs. 13–15 display the pro,les of the
evolution of the temperature of the rod, under output
feedback control, for the optimal actuator=sensor loca-
tions, for xs(0) = #1 (Fig. 13), for xs(0) = #2 (Fig. 14),
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and for xs(0) = #3 (Fig. 15). We can see that the pro-
posed controller with optimal actuator=sensor locations,
stabilizes the system to the spatially uniform operating
steady state very quickly, for all three cases.

7. Application to a nonisothermal tubular reactor with
recycle

We consider a nonisothermal tubular reactor shown in
Fig. 16, where an irreversible ,rst-order reaction of the
form A → B takes place. The reaction is exothermic and
a cooling jacket is used to remove heat from the reactor.
The outlet of the reactor is fed to a separator where the
unreacted species A is separated from the product B. The
unreacted amount of species A is then fed back to the
reactor through a recycle loop. Under standard modeling
assumptions, the dynamic model of the process can be
derived from mass and energy balances and takes the
following dimensionless form

@ Kx1

@t
=−@ Kx1

@z
+

1
PeT

@2 Kx1

@z2 + BTBC exp0 Kx1=(1+ Kx1)(1 + Kx2)

+�T (b(z)u(t) − Kx1); (40)

@ Kx2

@t
= −@ Kx2

@z
+

1
PeC

@2 Kx2

@z2 − BC exp0 Kx1=(1+ Kx1)(1 + Kx2);

subject to the boundary conditions:

@ Kx1(0; t)
@z

= PeT ( Kx1(0; t) − (1 − r) Kx1f(t) − r Kx1(1; t));

@ Kx2(0; t)
@z

= PeC( Kx2(0; t) − (1 − r) Kx2f(t) − r Kx2(1; t));

@ Kx1(1; t)
@z

= 0;
@ Kx2(1; t)

@z
= 0; (41)

where Kx1 and Kx2 denote dimensionless temperature and
concentration of species A in the reactor, respectively, Kx1f

and Kx2f denote dimensionless inlet temperature and in-
let concentration of species A in the reactor, respectively,
PeT and PeC are the heat and thermal Peclet numbers,
respectively, BT and BC denote a dimensionless heat of
reaction and a dimensionless pre-exponential factor, re-
spectively, r is the recirculation coeOcient (it varies from
zero to one, with one corresponding to total recycle and
zero fresh feed and zero corresponding to no recycle), 0 is
a dimensionless activation energy, �T is a dimensionless
heat transfer coeOcient, u is a dimensionless jacket tem-
perature (chosen to be the manipulated input), and b(z)
is the actuator distribution function. Note here that for
the purposes of this analysis, we will assume that there
is no recycle loop dead time.

In order to transform the boundary condition of
Eq. (41) to a homogeneous one, we insert the non-
homogeneous part of the boundary condition into the

Fig. 16. A tubular reactor with recycle.

di5erential equation and obtain the following PDE rep-
resentation of the process:

@ Kx1

@t
=−@ Kx1

@z
+

1
PeT

@2 Kx1

@z2

+BTBC exp0 Kx1=(1+ Kx1)(1 + Kx2) + �T (b(z)u(t) − Kx1)

+  (z − 0)((1 − r) Kx1f + r Kx1(1; t));

@ Kx2

@t
=−@ Kx2

@z
+

1
PeC

@2 Kx2

@z2 − BC exp0 Kx1=(1+ Kx1)(1 + Kx2)

+  (z − 0)((1 − r) Kx2f + r Kx2(1; t)); (42)

where  (·) is the standard Dirac function, subject to the
homogeneous boundary conditions:

@ Kx1(0; t)
@z

= PeT Kx1(0; t);
@ Kx2(0; t)

@z
= PeC Kx2(0; t);

@ Kx1(1; t)
@z

= 0;
@ Kx2(1; t)

@z
= 0: (43)

The following values for the process parameters were
used in our calculations:

PeT = 7:0; PeC = 7:0; BC = 0:1; BT = 2:5;

�T = 2:0; 0 = 10:0; r = 0:5; � = 5:0: (44)

For the above values, the operating steady state of the
open-loop system is unstable (the linearization around
the steady state possesses one real unstable eigenvalue,
- = 0:0328, and in,nitely many stable eigenvalues),
thereby implying the need to operate the process under
feedback control. We note that in the absence of recycle
loop (i.e., r = 0), the above process parameters corre-
spond to a stable steady state for the open-loop system.

The spatial di5erential operator of the system of
Eq. (42) is of the form

A Kx =
[
A1 Kx1 0

0 A2 Kx2

]

=




1
PeT

@2 Kx1

@z2 − @ Kx1

@z
0

0
1

PeC
@2 Kx2

@z2 − @ Kx2

@z


 : (45)
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Fig. 17. Spatiotemporal evolution of Kx1 in the open-loop system.

The solution of the eigenvalue problem for Ai can be
obtained by utilizing standard techniques from linear op-
erator theory (see, for example, Ray (1981)) and is of
the form

%ij =
Ka2
ij

Pe
+

Pe
4
; i = 1; 2; j = 1; : : : ;∞;

#ij(z) = BijePez=2
(

cos( Kaijz) +
Pe
2 Kaij

sin( Kaijz)
)
;

i = 1; 2; j = 1; : : : ;∞;

K#ij(z) = e−Pez#ij(z); i = 1; 2; j = 1; : : : ;∞; (46)

where Pe=PeT =PeC , and %ij; #ij; K#ij, denote the eigen-
values, eigenfunctions and adjoint eigenfunctions of Ai,
respectively. Kaij; Bij can be calculated from the following
formulas:

tan( Kaij) =
Pe Kaij

Ka2
ij − (Pe2 )2

; i = 1; 2; j = 1; : : : ;∞

Bij =

{∫ 1

0

(
cos( Kaijz) +

Pe
2 Kaij

sin( Kaijz)
)2

dz

}−1=2

;

i = 1; 2; j = 1; : : : ;∞:

(47)

A 400th order Galerkin truncation of the system of
Eqs. (42)–(44) was used in our simulations in order
to accurately describe the process (further increase on
the order of the Galerkin truncation was found to give
negligible improvement on the accuracy of the results).
Fig. 17 shows the open-loop pro,le of Kx1 along the
length of the reactor, which corresponds to the op-
erating unstable steady-state. Therefore, the control
problem is to manipulate the wall temperature, u(t),
in order to stabilize the reactor at the desired operat-
ing steady-state, and the control output was de,ned as
yc(t) =

∫ 1
0 e−Pez#11(z)x11 dz. The process was initially

(t = 0) assumed to be at the unstable steady state, and
the desired reference input value was set at v = 0:12.

Based on simulations of the open-loop process dynam-
ics, we take as the slow modes of the process the ,rst

eight temperature modes plus the ,rst thirty concentration
modes and use Galerkin’s method to derive a 38th-order
ODE system employed for controller synthesis. We use
one control actuator to stabilize the system (note that this
is possible since the assumption m = l is suOcient and
not necessary; see also discussion in Remark 3), and the
actuator distribution function was taken to be b(z)= (z−
zact) (one point control actuator placed at z = zact). Since
it is not feasible in practice to measure the concentration
of species A in the reactor at 30 spatial positions, we
use eight point temperature sensors to obtain estimates
of the ,rst eight modes of the reactor temperature (i.e.,
the measurement sensor shape function takes the form
s(z)= [ (z− zs1)  (z− zs2) : : :  (z− zs8)]

T) and design
a nonlinear Luenberger-type state observer consisting of
30 ordinary di5erential equations to obtain estimates of
the ,rst 30 concentration modes from the temperature
measurements (see, for example, Christo,des (1998) for
details on how such an observer can be designed).

Since the process is initially (t = 0) assumed to be at
the unstable steady state, we will compute the optimal lo-
cation of control actuator and measurement sensors with
respect to this initial condition. Furthermore, since the
reference input value is set at v=0:12, we de,ne the costs
J; Jx, and Ju as follows:

J = Jx + Ju

=
∫ ∞

0
((xs − xsf)TQs(xs − xsf)

+ (xf − xff)TQf(xf − xff)) dt

+
∫ ∞

0
(u− uf)TR(u− uf) dt; (48)

where xsf; xff, and uf are the values of xs; xf, and u, re-
spectively, at the desired operating steady state, to ensure
that the costs become zero when the process is stabilized
at the steady state. Table 5 shows the values of the costs
Ju; Jx, and J for state feedback control, in the case of op-
timal actuator placement, and for the sake of comparison,
the values of these costs in the case of alternative actu-
ator placements. Fig. 18 shows the control action u, for
the optimal case (solid line), case 2 (long-dashed line),
case 3 (short-dashed line), case 4 (dotted line), and case
5 (dashed-dotted line). Clearly, the control action spent
to stabilize the system at the desired operating pro,le in

Table 5
Results for di5erent actuator location

Case Actuator location Ju(10−5) Jx(10−5) J (10−5)

Optimal 0 9.647 36.536 46.183
2 0.1 21.540 36.536 58.076
3 0.2 60.062 36.536 96.598
4 0.3 229.42 36.536 265.95
5 0.4 1,672.8 36.536 1,709.3
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Table 6
Results for di5erent sensor locations

Case Sensor locations Ju(10−5) Jx(10−5) J (10−5)

1 0.05, 0.15, 0.30, 0.45, 0.55, 0.70, 0.85, 0.95 10.280 39.717 49.997
2 0.07, 0.20, 0.32, 0.44, 0.56, 0.68, 0.80, 0.93 10.029 38.099 48.128
3 0.05, 0.20, 0.35, 0.45, 0.55, 0.65, 0.80, 0.95 10.096 39.011 49.107
4 0.06, 0.18, 0.31, 0.43, 0.56, 0.68, 0.81, 0.93 9.748 36.446 46.194

Fig. 18. Closed-loop control e5ort, u, for the optimal actuator location
at zact=0 (solid line), for the actuator location at zact=0:1 (long-dashed
line), at zact = 0:2 (short-dashed line), at zact = 0:3 (dotted line), and
at Zact = 0:4 (dashed-dotted line).

the case of optimal actuator placement at zact = 0, is
signi,cantly less than the other four cases.

We now proceed with the output feedback implementa-
tion of the state feedback controller. To this end, we pick
the sensors locations so that the resulting output feedback
controller guarantees stability of the closed-loop system
and the estimation error in the closed-loop system is very
small. Table 6 shows values of the costs Ju; Jx, and J for
four di5erent sensor locations. Figs. 19 and 20 show the
pro,le of the control action u, and the ,nal steady-state
pro,le of Kx1, for case 1 (solid line), case 2 (long-dashed
line), case 3 (short-dashed line), and case 4 (dotted line).
Clearly, in all these cases, the stabilization of the unsta-
ble steady state is achieved with comparable cost, thereby
indicating that 8 pint temperature sensors distributed ap-
propriately along the length of the reactor suOce to ob-
tain a stabilizing output feedback controller. To demon-
strate the performance of the controller, Fig. 21 shows
the evolution of the closed-loop reactor temperature for
the optimal actuator locations and for the sensor location
of case 1. The controller stabilizes the process very close
to the desired operating pro,le.

Remark 8. Referring to the above examples, we note
that the optimal sensor locations depend signi,cantly on
the choice of boundary conditions and the location of the

Fig. 19. Closed-loop control e5ort, u, for four di5erent sensor lo-
cations; case 1 (solid line), case 2 (long-dashed line), case 3
(short-dashed line), and case 4 (dotted line).

Fig. 20. Final steady-state pro,le of Kx1, for four di5erent sensor
locations; case 1 (solid line), case 2 (long-dashed line), case 3
(short-dashed line), and case 4 (dotted line).

control actuators. When the process states at the bound-
aries are ,xed at a constant value (Dirichlet-type bound-
ary conditions), the sensors are placed away from the
boundaries since we cannot gain much information about
the system behavior by placing the sensors close to the
boundaries. On the other hand, if the boundary conditions
are of mixed type (Robin-type boundary conditions), the
states of the system close to the boundaries signi,cantly
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Fig. 21. Spatiotemporal evolution of Kx1 under the nonlinear output
feedback controller with the optimally placed actuator, and the ,rst
con,guration for the locations of the sensors.

change with time, and thus, measurements close to the
boundaries provide more information about the dynamics
of the system. In addition, the sensors should be placed
away from the actuator locations in order to obtain more
information about the dynamics of the system, since on
and near the control actuators the state of the system is
a5ected more by the dynamics of the controller and less
by the dynamics of the process.

Remark 9. Referring to the design of the gain of the
nonlinear Luenberger-type state observer used to obtain
estimates of the ,rst 30 concentration modes from the
temperature measurements, we note that the gain was
chosen so that the poles of the linearization of the observer
are stable (i.e., they lie in the left-half of the complex
plane) and close in magnitude to the slow eigenvalues of
the linearized open-loop process. This was done to make
sure that the state observer does not introduce additional
fast dynamics (as, for example, would be the case if we
were using an observer whose poles were of the order
1=�), which could perturb the separation of the slow and
fast modes of the open-loop PDE system.

8. Conclusions

In this work, we proposed a general and practical
methodology for the integration of nonlinear output
feedback control with optimal placement of control ac-
tuators and measurement sensors for transport-reaction
processes described by a broad class of quasi-linear
parabolic PDEs. Given a class of stabilizing nonlinear
state feedback controllers which were derived on the
basis of ,nite-dimensional approximations of the PDE,
the optimal actuator location problem was formulated
as the one of minimizing a meaningful cost functional
that includes penalty on the response of the closed-loop
system and the control action and was solved by using
standard unconstrained optimization techniques. Then,
under the assumption that the number of measurement

sensors is equal to the number of slow modes, estimates
for the states of the approximate ,nite-dimensional
model from the measurements were computed and used
to derive nonlinear output feedback controllers. The
optimal location of the measurement sensors was com-
puted by minimizing a cost function of the estimation
error in the closed-loop in,nite-dimensional system.
It was rigorously established that the proposed output
feedback controllers enforce stability in the closed-loop
in,nite-dimensional system and that the solution to
the optimal actuator=sensor problem, which is obtained
on the basis of the closed-loop ,nite-dimensional sys-
tem, is near-optimal in the sense that it approaches
the optimal solution for the in,nite-dimensional sys-
tem as the separation of the slow and fast eigenmodes
increases. The proposed methodology was success-
fully applied to a di5usion-reaction process and a non-
isothermal tubular reactor with recycle to derive non-
linear output feedback controllers and compute optimal
actuator=sensor locations for stabilization of unstable
steady-states.
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Appendix A.

A.1. Proof of Theorem 1

The proof of this theorem will be obtained in two steps.
In the ,rst step, we will show exponentially stability
and closeness of solutions for the closed-loop system of
Eq. (11), provided that the initial conditions and �
are suOciently small. In the second step, we will ex-
ploit the closeness of solutions result to show that the
cost associated with the closed-loop PDE system ap-
proaches the optimal cost associated with the closed-loop
,nite-dimensional system under state feedback control,
when the initial conditions and � are suOciently small,
thereby establishing that the location of the control actu-
ators obtained by using the ,nite-dimensional system is
near-optimal.
Exponential stability—closeness of solutions: Using

that � = |Re %1|=|Re %m+1| and under the controller of
Eq. (15), the closed-loop system of Eq. (11) takes the
form

dxs
dt

= *sxs + fs(xs; xf) − fs(xs; 0);

�
@xf
@t

= Af�xf + � Kf f(xs; xf);
(A.1)
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where Af� is an unbounded di5erential operator de,ned
as Af� = �Af, and Kf f(xs; xf) =BfB

−1
s ((As −*s)xs +

fs(xs; 0))+ff(xs; xf). Since � is a small positive number
less than unity (Assumption 1, part 3), the system of
Eq. (A.1) is in the standard singularly perturbed form,
with xs being the slow states and xf being the fast states.
Introducing the fast time scale 7=t=� and setting �=0, we
obtain the following in,nite-dimensional fast subsystem
from the system of Eq. (A.1):

@x̃f
@7

= Af�x̃f; (A.2)

where the tilde symbol in x̃f, denotes that the state
x̃cf is associated with the approximation of the fast
xf-subsystem. From the fact that Re %m+1¡0 and the
de,nition of �, we have that the above system is glob-
ally exponentially stable. Setting � = 0 in the system of
Eq. (A.1) and using that the operator Af� is invertible,
we have that

x̃f = 0; (A.3)

and thus the closed-loop of the ,nite-dimensional slow
system takes the form

dx̃s
dt

= *sx̃s: (A.4)

The above slow subsystem is globally exponentially
stable since *s is a stable matrix. From the fact that
the slow subsystem of Eq. (A.4) and the fast subsys-
tem of Eq. (A.2) are globally exponentially stable, there
exist positive real numbers -1; -2, and �∗ such that if
|xs(t)|6-1; ‖xf(t)‖26-2, and � ∈ (0; �∗], then the sys-
tem of Eq. (A.1) is exponentially stable and the solution
xs(t); xf(t) of the system of Eq. (A.1) satis,es for all
t ∈ [tb;∞):

xs(t) = x̃s(t) + O(�);

xf(t) = x̃f(t) + O(�);
(A.5)

where tb is the time required for xf(t) to approach x̃f(t).
x̃s(t) and x̃f(t) are the solutions of the slow and fast sub-
systems of Eq. (A.2) and Eq. (A.4) respectively ([10],
Proposition 1).
Near-optimality of the actuator locations: The cost

for the closed-loop in,nite-dimensional system can be
written as follows:

Ĵ =
1
m

m∑
i=1

∫ tb

0
((xT

s (x
i
s(0); t); Qsxs(xis(0); t))

+ (xT
f(xis(0); t); Qfxf(xif(0); t))

+ uT(xs(xis(0); t); za)Ru(xs(xis(0); t); za)) dt

+
1
m

m∑
i=1

∫ ∞

tb

((xT
s (x

i
s(0); t); Qsxs(xis(0); t))

+ (xT
f(xis(0); t); Qfxf(xif(0); t))

+ uT(xs(xis(0); t); za)Ru(xs(xis(0); t); za)) dt: (A.6)

It follows then from the continuity properties of the state
x(t) and the control u(t) that for all t¿ tb and i=1; : : : ; m:

xs(xis(0); t) → x̃s(xis(0); t); xf(xif(0); t) → 0;

u(xs(xis(0); t); za) → u(x̃s(xis(0); t); za) as � → 0 (A.7)

and hence

1
m

m∑
i=1

∫ ∞

tb

(xT
s (x

i
s(0); t)Qsxs(xis(0); t)

+ (xT
f(xif(0); t)Qfxf(xif(0); t)

+ uT(xs(xis(0); t); za)Ru(xs(xis(0); t); za)) dt

→ 1
m

m∑
i=1

∫ ∞

tb

(x̃T
s (x

i
s(0); t)Qsx̃s(xis(0); t)

+ uT(x̃s(xis(0); t); za)

Ru(x̃s(xis(0); t); za)) dt as � → 0: (A.8)

From the exponential stability of the closed-loop system,
we have that there exists a positive real number M that
bounds the integrand of Eq. (A.6). Using the fact that
tb = O(�), we then have

1
m

m∑
i=1

∫ tb

0
(xT

s (x
i
s(0); t)Qsxs(xis(0); t)

+ (xT
f(xif(0); t)Qfxf(xif(0); t)

+ uT(xs(xis(0); t); za)Ru(xs(xis(0); t); za)) dt

6
∫ tb

0
M dt

6M�

=O(�): (A.9)

Similarly, from the stability of the closed-loop ,nite-
dimensional system of Eq. (12) and the fact that tb=O(�),
we have that there exists a positive real number M ′ such
that

1
m

m∑
i=1

∫ tb

0
(x̃T

s (x
i
s(0); t)Qsx̃s(xis(0); t)

+ uT(x̃s(xis(0); t); za)Ru(x̃s(xis(0); t); za)) dt

6
∫ tb

0
M ′ dt

6M ′�

=O(�): (A.10)
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Combining Eqs. (A.8)–(A.10), we obtain

1
m

m∑
i=1

∫ ∞

tb

(xT
s (x

i
s(0); t)Qsxs(xis(0); t)

+ (xT
f(xif(0); t)Qfxf(xif(0); t)

+ uT(xs(xis(0); t); za)Ru(xs(xis(0); t); za)) dt

→ 1
m

m∑
i=1

∫ ∞

tb

(x̃T
s (x

i
s(0); t)Qsx̃s(xis(0); t)

+ uT(x̃s(xis(0); t); za)Ru(x̃s(xis(0); t); za)) dt

as � → 0: (A.11)

This completes the proof of the theorem.

A.2. Proof of Theorem 2

Under the output feedback controller of Eq. (24), the
closed-loop system takes the form
dxs
dt

= *sxs + (As −*s)xf + fs(xs; xf) − fs(xs + xf; 0);

�
@xf
@t

=Af�xf + �BfB
−1
s ((As −*s)(xs + xf)

+fs(xs + xf; 0)) + �ff(xs; xf): (A.12)

Using that � is a small positive number less than
unity (Assumption 1, part 3), and introducing the fast
time-scale 7= t=� and setting �=0, we obtain the follow-
ing in,nite-dimensional fast subsystem which describes
the fast dynamics of the system of Eq. (A.12)
@x̃f
@7

= Af�x̃f; (A.13)

which is globally exponentially stable. Setting � = 0 in
the system of Eq. (A.12) and using that the operator Af�

is invertible, we have that

x̃f = 0 (A.14)

and thus the closed-loop of the ,nite-dimensional slow
system takes the form
dx̃s
dt

= *sx̃s: (A.15)

From the fact that the slow subsystem of Eq. (A.15) and
the fast subsystem of Eq. (A.2) are globally exponentially
stable, there exist positive real numbers -1; -2, and �∗ such
that if |xs(t)|6-1; ‖xf(t)‖26-2, and � ∈ (0; �∗], then
the system of Eq. (A.1) is exponentially stable and the
solution xs(t); xf(t) of the system of Eq. (A.12) satis,es
the estimates of Eq. (A.15).

Given the stability and closeness of solutions results for
the closed-loop system, the near-optimality of the control
actuators and measurement sensors in the sense described
in Eq. (25) can be established by using similar calcula-
tions to the ones in part 2 of the proof of Theorem 1.
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