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Fault Detection and Isolation for Nonlinear Process Systems Using Asynchronous
Measurements

Charles W. McFall, David Muñoz de la Peña, Ben Ohran, Panagiotis D. Christofides,* and
James F. Davis

Department of Chemical and Biomolecular Engineering, UniVersity of California, Los Angeles, California 90095

This work addresses the problem of fault detection and isolation for nonlinear processes when some process
variable measurements are available at regular sampling intervals and the remaining process variables are
measured at an asynchronous rate. First, a fault detection and isolation (FDI) scheme that employs model-
based techniques is proposed that allows for the isolation of faults. The proposed FDI scheme provides detection
and isolation of any fault that enters into the differential equation of only synchronously measured states and
grouping of faults that enter into the differential equation of any asynchronously measured state. For a fully
coupled process system, fault detection occurs shortly after a fault takes place, and fault isolation, limited by
the arrival of asynchronous measurements, occurs when asynchronous measurements become available. Fault-
tolerant control methods with a supervisory control component are then employed to achieve stability in the
presence of actuator failures using control system reconfiguration. Numerical simulations of a polyethylene
reactor are performed to demonstrate the applicability and performance of the proposed fault detection and
isolation and fault-tolerant control method in the presence of asynchronous measurements.

1. Introduction

Automation is a key component to the operation of any
modern chemical process because it helps deal with environ-
mental, safety, and economic concerns in real time. Increased
levels of automation, however, may leave a chemical process
vulnerable to failures such as actuator faults, sensor errors, or
controller faults that may lead to waste of energy or feedstock
and in some cases environmental and/or safety problems. At
least 10 billion USD are lost annually in the US due to abnormal
situations in chemical and process industries;1 thus, timely
detection and isolation and efficient handling of these situations
are of critical importance. This work addresses the issue of
handling abnormal situations considering that process measure-
ments used for feedback control and process monitoring are
typically asynchronous. This can be due to the nature of the
measurement itself (i.e., concentration measurements may be
difficult to obtain while temperature measurements are usually
readily available) or due to the use of sensor networks (wired
or wireless) that may introduce complex dynamics into the
monitoring system due to field interference.

The first component required to develop a control scheme
that is robust to failures is automatic fault detection and isolation
(FDI) that will find the source of failures in a timely manner.
Data-based methods for FDI utilize statistical and pattern
recognition techniques for data analysis and interpretation.2-13

Historical plant data are used to construct data-based indicators
that identify deviations from normal operation to detect faults.
There are also extensive model-based FDI results for linear
systems,14-18 and more recently, results have become available
on nonlinear model-based FDI for broad classes of nonlinear
systems.19-23 Additionally, recent work has been done to
improve fault threshold selection24 in order to reduce FDI system
response time. These works, in general, rely on measurements
that are continuously or synchronously sampled, and they do
not account for measurements that arrive asynchronously.
Recently, research has been done on the topic of feedback
control with asynchronous measurements.25-28 These efforts

provide a starting framework for control subject to asynchronous
measurements, but they do not include FDI. The goal of this
work is to develop an FDI scheme given asynchronous
measurements that will allow fault-tolerant control (FTC) to take
place.

One method to achieve fault-tolerant control is to implement
more than the minimum number of feedback loops required to
stabilize a given process. In the event of a failure in one or
several of these feedback loops the remaining well-functioning
feedback loops can maintain the desired closed-loop system
stability and performance properties.29-31 However, it is more
economical, in terms of actuator energy, to operate the minimum
number of feedback loops required to achieve the desired level
of process control. Such a control system is, however, more
vulnerable in the event of a failure because there are no active
redundant feedback loops. This motivates the implementation
of an FTC scheme that will automatically reconfigure the system
to a dormant fall-back control configuration that guarantees
process stability in the event of a failure.21,22,26,32

This work addresses the problem of fault detection and
isolation and fault-tolerant control when process measurements
are available at asynchronous time instants. First, a fault
detection and isolation (FDI) scheme that employs model-based
techniques is proposed that allows for the isolation of faults.
This scheme employs model-based FDI filters similar to those
found in ref 21 in addition to observers that estimate the fault-
free evolution of asynchronously measured states during time
intervals in which their measurements are not available. Specif-
ically, the proposed FDI scheme provides detection and isolation
of any fault that enters into the differential equation of only
synchronously measured states and grouping of faults that enter
into the differential equation of any asynchronously measured
state. For a fully coupled process system, fault detection occurs
shortly after a fault takes place, and fault isolation, limited by
the arrival of asynchronous measurements, occurs when asyn-
chronous measurements become available. Once the FDI
methodology has provided the system supervisor with a fault
diagnosis, the supervisor takes appropriate action to seamlessly* Corresponding author. E-mail: pdc@seas.ucla.edu.
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reconfigure the system to an alternative control configuration
that will enforce the desired operation. We present applications
of the proposed asynchronous FDI and FTC framework to a
polyethylene reactor simulation.33 Specifically, the polyethylene
reactor includes seven state variables such as temperatures,
species concentrations, and catalyst activity. This polyethylene
plant naturally gives rise to measurements that can be sampled
synchronously (such as temperature) and those that are sampled
asynchronously (such as reactant and catalyst concentrations).
Previous work of our group34 considered fault-tolerant control
of the polyethylene reactor assuming that all process variables
are continuously measured. In the present work, it is shown
through a detailed simulation study that the proposed model-
based asynchronous FDI technique can lead to reliable actuator
fault detection and isolation and fault-tolerant control in a timely
manner.

2. FDI Using Asynchronous Measurements: Problem
Formulation and Solution

2.1. Class of Nonlinear Systems. In this work, we consider
nonlinear process systems described by the following state-space
model

where xi ∈ R with i ) 1, ..., ns denotes the set of state variables
that are sampled synchronously, xi ∈ R with i ) ns + 1, ..., ns

+ na denotes the set of state variables that are sampled
asynchronously, u ∈ Rnu denotes the input, and di ∈ R with i )
1, ..., p is a model of the set of p possible faults. The faults in
di include actuator faults and disturbances and can take any
value. For the purposes of the present work, it is necessary to
know and include beforehand all of the potential faults in d.
However, it should be noted that d is not limited and can include
any number of faults. The consideration of adaptive learning
methods to isolate unknown faults is outside of the scope of
this work. The state of the system is given by the vector

x ) [ x1

l
xns

xns+1

l
xns+na

] ∈ Rns+na

Using this definition for x, (1) can be written in the following
equivalent compact form

We assume that f is a locally Lipschitz vector function and that
f(0, 0, 0, ..., 0) ) 0. This means that the origin is an equilibrium
point for the fault-free system with u(t) ≡ 0. Moreover, we
assume that the fault-free system (system (1) with di(t) ≡ 0 for
all t) has an asymptotically stable equilibrium at the origin x )
0 for a given feedback control h: Rns+na f Rnu which satisfies
h(0) ) 0.

Remark 1. The assumption of existence of a stabilizing
feedback law h(x) is equivalent to the existence of a control

Lyapunov function (CLF) for the system ẋ ) f(x, u, 0, ..., 0).
Explicit stabilizing control laws that provide explicitly defined
regions of attraction for the closed-loop system have been
developed using Lyapunov techniques for specific classes of
nonlinear systems, particularly input-affine nonlinear systems;
the reader may refer to refs 35 and 36 for results in this area.
In section 3, a method such as the one presented in ref 37 is
used for the design of h(x).

2.2. Modeling of Asynchronous Measurements. System (1)
is controlled using both sampled synchronous and asynchronous
measurements. We assume that xi(t) ∈ R with i ) 1, ..., ns are
sampled continuously (i.e., at intervals of fixed size ∆ > 0 where
∆ is a sufficiently small positive number). Each state xi ∈ R
with i ) ns + 1, ..., ns + na is sampled asynchronously and is
only available at time instants tk,i where tkg0,i is a random
increasing sequence of times. A controller design that takes
advantage of the asynchronous measurements must take into
account that it will have to operate without complete state
information between asynchronous samples. This class of
systems arises naturally in process control, where process
variables such as temperature, flow, or concentration have to
be measured. In such a case, temperature and flow measurements
can be assumed to be available continuously. Concentration
measurements, however, are available at an asynchronous
sampling rate. This model is also of interest for systems
controlled through a hybrid communication network in which
wireless sensors are used to add redundancy to existing working
control loops (which use point-to-point wired communication
links and continuous measurements) because wireless com-
munication is often subject to data losses due to interference.

If there exists a nonzero probability that the system operates
in open loop for a period of time large enough for the state to
leave the stability region or even diverge to infinity (i.e., finite
escape time), it is not possible to provide guaranteed stability
properties. In order to study the stability properties in a
deterministic framework, in this paper we consider systems
where there is a limit on the maximum number of consecutive
sampling times in which measurements of xi, i ) ns ... ns + na,
are not available, i.e.

max(tk+1,i - tk,i) e ∆M

This bound on the maximum period of time in which the loop
is open has been also used in other works in the literature25,38-41

and allows us to study deterministic notions of stability.
2.3. Asynchronous State Observer. An observer that takes

advantage of synchronous measurements, asynchronous mea-
surements, and a process model can be constructed to estimate
the fault-free evolution of asynchronous states between con-
secutive measurements. The observer states are updated by
setting the observer state equal to the measurement each time
a new asynchronous measurement becomes available, tk,i. The
asynchronous state observer takes the form

with x̂i(tk,i) ) xi(tk,i) for all tk,i; that is, each time a new
asynchronous measurement is received, the estimated states x̂i

with i ) ns + 1, ..., ns + na are reset to match the true process
state. The information generated by this observer provides a
fault-free estimate for each asynchronous state at any time t
and allows for the design of nonlinear control laws that utilize

ẋ1 ) f1(x1, ..., xns
, xns+1, ..., xns+na

, u, d1, ..., dp)

l
ẋns ) fns

(x1, ..., xns
, xns+1, ..., xns+na

, u, d1, ..., dp)

ẋns+1 ) fns+1(x1, ..., xns
, xns+1, ..., xns+na

, u, d1, ..., dp)

l
ẋns+na ) fns+na

(x1, ..., xns
, xns+1, ..., xns+na

, u, d1, ..., dp)

(1)

ẋ ) f(x, u, d1, ..., dp) (2) ẋ̂ns+1 ) fns+1(x1, ..., xns
, x̂ns+1, ..., x̂ns+na

, u, 0, ..., 0)

l
ẋ̂ns+na

) fns+na
(x1, ..., xns

, x̂ns+1, ..., x̂ns+na
, u, 0, ..., 0)

(3)
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full state information. Using the estimated states, the control
input applied to the system is given by

with

x̂ ) [ x1

l
xns

x̂ns+1

l
x̂ns+na

] ∈ Rns+na

This control input is defined for all times because it is based
on both the synchronous states and the estimated asynchronous
states. We assume that ∆M is small enough to guarantee that
the system in closed loop with this control scheme is practically
stable; see refs 25 and 38-41 for details on similar stability
results.

2.4. Design of Fault Detection and Isolation Filter. Fault-
tolerant control methods rely on the availability of a fall-back
configuration that can maintain system stability and a control
supervisor that will orchestrate the mode transition in a timely
manner. The stability of the fault-tolerant control system depends
on accurate and timely FDI, stability of the closed-loop system
under the fall-back configuration, and the location of the state
in the state space upon FDI and reconfiguration. In this section
we construct fault detection and isolation (FDI) filters that will
automatically identify the source of a failure in a timely manner.
Utilizing synchronous state measurements, xi(t) with i ) 1, ..., ns

and asynchronous state estimates, x̂i(t) with i ) ns + 1, ..., ns +
na, the following ns + na filters (one for each state in x) are
defined:21

ẋ̃i ) fi(x1, ..., x̃i, ..., xns
, x̂ns+1, ..., x̂ns+na

, ui, 0, ..., 0),

i ) 1, ..., ns

ui ) h(x1, ..., x̃i, ..., xns
, x̂ns+1, ..., x̂ns+na

),

i ) 1, ..., ns

ẋ̃i ) fi(x1, ..., xns
, x̂ns+1, ..., x̃i, ..., x̂ns+na

, ui, 0, ..., 0),

i ) ns + 1, ..., ns + na

where x̃i is the filter output for the ith state. The FDI filters are
only initialized at t ) 0 such that x̃i(0) ) xi(0), i ) 1, ..., ns +
na. For each state, the FDI residual can be defined as

ri(t) ) |xi(t) - x̃i(t)|, i ) 1, ..., ns + na

The synchronous residuals ri(t) with i ) 1, ..., ns are computed
continuously because xi(t) with i ) 1, ..., ns is known for all t.
On the other hand, the asynchronous residuals ri(t) with i ) ns

+ 1, ..., ns + na are computed only at times tk,i when a new
asynchronous measurement of xi(t) with i ) ns, ..., ns + na is
received. These FDI filters operate by essentially predicting the
fault-free evolution of each individual state, accounting for faults
that enter the system when the predicted evolution of the state
diverges from the measured evolution.21

The dynamics of both the asynchronous observers, x̂i, and
the FDI filters, x̃i, are identical to those of (1) when there are
no disturbances or noise acting on the system. When the states
are initialized as x̂i(0) ) x̃i(0) ) xi(0) both the observer and

filter states will track the true process states. For the synchronous
case when a fault, di, occurs, only the corresponding residual,
ri, will become nonzero. This is the case when the fi with i )
1, ..., ns vector field has a structure such that type I faults are
isolable; see ref 21 for a precise determination of such a
structure. In the case with asynchronous measurements, at least
one ri will become nonzero when a fault occurs. However, faults
that affect asynchronous states may cause the asynchronous
observer x̂i to diverge from the true process state xi between
consecutive measurements, and any FDI filter states that are a
function of x̂i will no longer accurately track the corresponding
true process states. When such a fault occurs, more than one
residual value may become nonzero. In general, for fault
isolation purposes, we assume that only one fault is affecting
the system at any given time. While it may be possible in some
circumstances to discriminate multiple faults, we do not consider
this situation in the present work.

Continuous measurements for asynchronous states are not
available, thus the FDI filters of (5) cannot always completely
isolate all failures. We consider two classes of faults. Type I
faults are faults that only affect states that are measured
continuously; that is, dj is a type I fault if

∂fi

∂dj
) 0, ∀ i ) ns + 1, ..., ns + na

Type II faults affect at least one asynchronous state; that is, dj

is a type II fault if there exists at least one i ) ns + 1, ..., ns +
na such that

∂fi

∂dj
* 0

The FDI filter will detect and isolate a type I fault dj because the
asynchronous state observers will track the asynchronous states
accurately (i.e., the effect of the fault dj(t) on an asynchronous
observer state is accounted for through the synchronous states, so
dj(t) is accounted for in the observer (3) and hence the FDI filter).
A type II fault enters the system in the differential equation of a
state that is sampled asynchronously. The effect of type II faults
cannot be accounted for by the observer x̂i, and such a fault will
cause x̂i to no longer track xi and will eventually affect other coupled
filter states as well. Strict isolation cannot take place for a type II
fault. The FDI filter will detect and partially isolate disturbances
in this case because the asynchronous state observers will diverge
from the asynchronous states (i.e., the effect of the fault dj(t) on
an asynchronous observer state is unmeasured and unaccounted
for; thus (3) does not track the disturbed state). In other words, if
a type I fault occurs, then it can be detected and isolated. If a type
II fault occurs, then this fault can be grouped to the subset of type
II faults.

A fault is detected at time tf if there exists a residual i such
that ri(tf) > ri,max, where ri,max is an appropriate threshold that
can be chosen to account for process and sensor noise and allow
for normal process variation. In order to isolate the possible
source of the fault, it is necessary to wait until the residuals of
all the asynchronous state filters are updated after tf to determine
if the fault is type I or type II. The residual of each asynchronous
state filter x̃i is updated at time

ti(tf) ) min
k

tk,i|tk,i > tf

If ri(ti(tf)) e ri,max with i ) ns + 1, ..., ns + na, then the fault
occurred at time tf is a type I fault and can be appropriately
isolated. Otherwise, the fault belongs to the set of type II faults.

u ) h(x̂) (4)

ui ) h(x1, ..., xns
, x̂ns+1, ..., x̃i, ..., x̂ns+na

),

i ) ns + 1, ..., ns + na (5)
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Consider that a synchronous residual ri indicates a fault at
time tf. In this case the fault could have two possible causes, a
type I or type II fault. In order to determine the true cause of
this fault, one has to wait for the complete set of asynchronous
measurements to arrive after tf. When all the asynchro-
nous measurements arrive and if all the residuals of the
asynchronous states are smaller than the threshold, then the fault
can be attributed to a type I fault. If any asynchronous
measurement arrives and the corresponding residual indicates
a fault, then the fault is type II. Note that when an asynchronous
residual indicates a fault, we can also conclude that the fault is
type II. When the fault is type II, it has been detected, and it is
possible to narrow the fault source down to the set of faults
that enter the differential equations of asynchronous states.

When the fault can be attributed to a type I fault and it has been
detected and isolated, then automated fault tolerant control (FTC)
action can be initiated. For example, when a fault event that is
due to a manipulated input failure (i.e., an actuator failure) is
detected and isolated, fault-tolerant control methods can be
initiated.21 In general, an FTC switching rule may be employed
that orchestrates the reconfiguration of the control system in the
event of control system failure. This rule determines which of the
backup control loops can be activated, in the event that the main
control loop fails, in order to preserve closed-loop stability. Owing
to the limitations imposed by input constraints on the stability
region for each control configuration, switching from a malfunc-
tioning configuration to a well-functioning, but randomly selected,
backup configuration will not preserve closed-loop stability if the
state of the system, at the time of failure, lies outside the stability
region of the chosen backup configuration. In this case, stabilization
using this configuration requires more control action than is allowed
by its constraints. This observation motivates the development of
switching logic, which is to switch to the control configuration for
which the closed-loop state resides within the stability region at
the time of control failure. Without loss of generality, let the initial
actuator configuration be k(0) ) 1 and let td be the time when this
failure has been isolated, then the switching rule given by

for some j ∈ {2, 3, ..., N} guarantees closed-loop asymptotic
stability, where Ω(uj

max) is the stability region for the jth control
configuration. The implementation of the above switching law
requires monitoring the closed-loop state trajectory with respect
to the stability regions associated with the various fall-back
configurations. The reader may refer to ref 34 for application of
FTC to a polyethylene reactor with constraints on the manipulated
inputs. In this work we consider a control law without constraints
on the manipulated inputs, and the primary control configuration
with a faulty actuator will be deactivated in favor of a fully
functional fall-back control configuration where the fall-back
configuration can guarantee global stability of the closed-loop
system. This integrated FDI/FTC reconfiguration allows for seam-
less fault recovery in the event of an actuator failure. Section 3
demonstrates integrated FDI/FTC for the polyethylene reactor.

Remark 2. In the process model of (1), process and sensor
noise are not explicitly taken into account. However, noise is

indirectly accounted for in the FDI method below by means of
appropriate tolerance thresholds in the decision criteria for fault
detection and isolation, that is, ri,max. The thresholds are
generated on the basis of operating data and take into account
both sensor and process noise, allowing for an appropriate FDI
performance even if the process model and the measurements
are corrupted by noise. To demonstrate this point, process and
sensor noise are included in the simulation study; see section 3
for details. Note that the proper selection of the fault detection
thresholds can account for some plant-model mismatch. How-
ever, a reasonably accurate model of the plant is generally
required as excessive plant-model mismatch can lead to inac-
curate FDI.

Remark 3. In this work, we consider all states to be
measured, either synchronously or asynchronously. In general,
it is possible that some states may be entirely unmeasurable,
requiring the use of state estimators or observers to estimate
them. We also assume that there is not time delay in the
asynchronous readings. Although it may be possible for
asynchronous measurements to be delayed, this does not present
a problem as long as the delay is known. In such a case, the
filters and observers should be integrated from the actual
measurement time.

3. Application to a Polyethylene Reactor with
Asynchronous Measurements

3.1. Process and Measurement Modeling. The proposed
model based asynchronous FDI and FTC method will be
demonstrated using a model of an industrial gas phase poly-
ethylene reactor. The feed to the reactor consists of ethylene,
comonomer, hydrogen, inerts, and catalyst. A recycle stream
of unreacted gases flows from the top of the reactor and is cooled
by passing through a water-cooled heat exchanger. Cooling rates
in the heat exchanger are adjusted by mixing cold and warm
water streams while maintaining a constant total cooling water
flow rate through the heat exchanger. Mass balances on
hydrogen and comonomer have not been considered in this study
because hydrogen and comonomer have only mild effects on
the reactor dynamics.33 A mathematical model for this reactor
has the following form:42

d[M1]

dt
) 1

Vg
(FM1

-
[M1]

[M1] + [In]
bt - RM1) + d4

dY1

dt
) Fcac - kd1

Y1 -
RM1

MW1
Y1

Bw
+ d2

dY2

dt
) Fcac - kd2

Y2 -
RM1

MW1
Y2

Bw
+ d2

dT
dt

)
Hf + Hg1 - Hg0 - Hr - Hpol

MrCpr + BwCppol
+ Q + d1

dTw1

dt
)

Fw

Mw
(Twi - Tw1

) - UA
MwCpw

(Tw1
- Tg1

)

dTg1

dt
)

Fg

Mg
(T - Tg1

) + UA
MgCpg

(Tw1
- Tg1

) + d3 (7)

where

Table 1. Polyethylene Reactor Noise Parameters

σp σm φ

[In] 1 × 10-4 5 × 10-2 0
[M1] 1 × 10-4 5 × 10-2 0.7
Y 1 × 10-4 1 × 10-2 0.7
T 5 × 10-3 5 × 10-2 0.7
Tg1 5 × 10-3 5 × 10-2 0.7
Tw1 5 × 10-3 5 × 10-2 0.7

k(t) ) j ∀ t g td if x(td) ∈ Ω(uj
max) (6)

d[In]
dt

) 1
Vg

(FIn - [In]
[M1] + [In]

bt)
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The definitions for all the variables used in (7) and (8) are given
in Table 2, and their values can be found in ref 42 (see also ref
34). Under normal operating conditions, the open-loop system
behaves in an oscillatory fashion (i.e., the system possesses an
open-loop unstable steady state surrounded by a stable limit
cycle). The open-loop unstable steady state around which the
system will be controlled is

[In]ss ) 439.7 mol/m3 [M1]ss ) 326.7 mol/m3

Y1ss, Y2ss ) 3.835 mol Tss ) 356.2 K
Tg1ss ) 290.4 K Tw1ss ) 294.4 K

Note that with the given parameters the dynamics of Y1 and Y2

are identical and will be reported in the results as a single
combined state. In this example, we consider four possible faults,
d1, d2, d3, and d4, which represent a heat jacket fault, catalyst
deactivation, a change in the recycle gas flow rate, and ethylene
consumption, respectively. The primary manipulated input for
these studies is the heat input, Q, and the fall-back manipulated
input is the feed temperature, Tfeed. In practice, the temperature
of the feed stream would be manipulated via a heat exchanger
positioned on the feed line before it enters the process. A fall-
back manipulated input is required to maintain desired system
performance in the presence of failure in the primary control
configuration.

Simulations have been carried out for several scenarios to
demonstrate the effectiveness of the proposed FDI scheme
in detecting and isolating the four faults d1, d2, d3, and d4 in
the presence of asynchronous measurements. The temperature measurements (T, Tg1, Tw1) are all assumed to be available

synchronously, while the concentration measurements ([In],
[M1], Y) arrive at asynchronous intervals. In all the simula-
tions, sensor measurement and process noise are included.
The sensor measurement noise trajectory was generated using
a sample time of 10 s and a zero-mean normal distribution
with standard deviation σM. The autoregressive process noise
was generated discretely as wk ) φwk -1 + �k, where k )
0, 1, ... is the discrete time step, with a sample time of 10 s,
φ is the autoregressive coefficient, and �k is obtained at each
sampling step using a zero-mean normal distribution with
standard deviation σp. The autoregressive process noise is
added to the right-hand side of the differential equations for
each state, and the sensor measurement noise is added to the
measurements of each state. Sensor measurement noise and
process noise are evaluated independently for each state
variable. The process and sensor measurement noise for Y1

and Y2 are taken to be equal. Table 1 provides the values of
the noise parameters for each state of system (7). The length
of time between consecutive asynchronous measurements is

bt ) VpCV√([M1] + [In])RRT - PV

RM1
) [M1]kp0 exp[-Ea

R (1
T
- 1

Tf
)](Y1 + Y2)

Cpg )
[M1]

[M1] + [In]
Cpm1 + [In]

[M1] + [In]
CpIn

Hf ) (FM1
Cpm1 + FInCpIn)(Tfeed - Tf)

Hg1 ) Fg(Tg1
- Tf)Cpg

Hg0 ) (Fg + bt)(T - Tf)Cpg

Hr ) HreacMW1
RM1

Hpol ) Cppol(T - Tf)RM1
MW1

(8)

Figure 1. Asynchronous sampling times tk,[In] (star), tk,[M1] (cross), and tk, Y

(circle) with a fault d1 at t ) 0.5 h.

Figure 2. State trajectories of the closed-loop system without fault-tolerant
control (circle/solid) and with appropriate fault-detection and isolation and
fault-tolerant control where the fall-back control configuration is activated
(star/dotted) with a fault d1 at t ) 0.5 h.

Figure 3. Fault detection and isolation residuals for the closed-loop system
with a fault d1 at t ) 0.5 h. The fault is detected immediately, but isolation
occurs at t ) 0.59 h when all three asynchronous states have reported a
residual below their detection threshold. This signals a type I fault, and we
can isolate the source of this fault as d1.
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generated randomly based on a Poisson process. The time
when the system will receive the next ith asynchronous
measurement is given by tk+1,i ) tk,i + ∆a, where ∆a ) ln(�)/
Wa and � ∈ (0, 1) is a random variable chosen from a uniform
probability distribution and Wa ) 0.003 s-1 is the mean rate
of asynchronous sampling. There is an upper bound limiting
the time between consecutive measurements such that ∆a e
∆M ) 1200 s. This value of ∆M is small enough to provide
practical closed-loop stability around the desired equilibrium
point for the polyethylene reactor of (7). An increasing
sequence of measurement arrival times is generated inde-
pendently for each asynchronously measured state.

3.2. Design of the asynchronous state observers. To
perform FDI for the polyethylene reactor system, we need to
construct the asynchronous state observers of (3). The asyn-
chronous state observers for this system have the following
form:

where [În], [M̂1], and Ŷ are the asynchronous observer states.
Each asynchronous observer state is initialized each time new
measurement information becomes available at the times tk,i.
The observer states provide estimates for the asynchronous states
between consecutive measurements allowing the computation
of control actions and FDI residuals at each time.

3.3. Design of the State Feedback Controller. The control
objective is to stabilize the system at the open-loop unstable
steady state. A nonlinear Lyapunov-based feedback controller
that enforces asymptotic stability of the closed-loop system
is synthesized using the method proposed in ref 37 (see also
ref 43). This is a single input controller that utilizes
synchronous measurements as well as observer states gener-
ated by (9). System (7) belongs to the following class of
nonlinear systems

ẋ(t) ) f(x(t)) + g1(x(t))u1(t) + g2(x(t))u2(t) + w(x(t))d(t)

(10)

where

x(t) ) [ [In] - [In]ss

[M1] - [M1]ss

Y - Yss

T - Tss

Tg1 - Tg1ss

Tw1 - Tw1ss

]
and

u1(t) ) Q, u2(t) ) Tfeed

Consider the quadratic control Lyapunov function V(x) ) xTPx
where

P ) 1 × 10-2 diag[0.5 0.5 0.51 0.005 0.005]

The values of the weighting matrix P are chosen to account for
the different range of numerical values for each state. The
following feedback laws37 asymptotically stabilize the open loop
and possibly unstable steady state of the nominal system (i.e.,
d(t) ≡ 0)

hi(x) ) {-LfV + √LfV
2 + LgiV

4

Lgi
V

if Lgi
V * 0

0 if Lgi
V ) 0

, i ) 1, 2

(11)

where LfV and LgiV denote the Lie derivatives of the scalar
function V with respect to the vectors fields f and gi, respectively.

In the simulations, the primary control configuration is given
by

u1(t) ) h1(x̂(t))

and the fall-back control configuration is given by

u2(t) ) h2(x̂(t))

where

x̂(t) ) [ [În] - [In]ss

[M̂1] - [M1]ss

Ŷ - Yss

T - Tss

Tg1 - Tg1ss

Tw1 - Tw1ss

]
3.4. Design of FDI/FTC Scheme. Fault detection and

isolation for the system in closed loop with the primary
configuration is accomplished by generating FDI filters from
(5), and for the polyethylene system the FDI filters take the
following form:

Figure 4. Manipulated input for the closed-loop system without fault-tolerant
control (solid) and with appropriate fault-tolerant control where the fall-
back control configuration is activated (dotted) with a fault d1 at t ) 0.5 h.

d[În]
dt

) 1
Vg(FIn - [În]

[M̂1] + [În]
b̂t)

d[M̂1]

dt
) 1

Vg(FM1
-

[M̂1]

[M̂1] + [În]
b̂t - R̂M1)

dŶ
dt

) Fcac - kd1
Ŷ -

R̂M1
MW1

Ŷ

Bw

b̂t ) VpCV√([M̂1] + [În])RRT(t) - PV

R̂M1
) [M̂1]kp0 exp[(-Ea

R )( 1
T(t)

- 1
Tf

)](Ŷ)

[În](tk,[In]) ) [In](tk,[In])

[M̂1](tk,[M1]) ) [M1](tk,[M1])

Ŷ(tk,Y) ) Y(tk,Y) (9)
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where

b̃t
[In] ) VpCV√([M̂1] + [Ĩn])RRT - PV

b̃t
[M1] ) VpCV√([M̃1] + [În])RRT - PV

b̃t
[T] ) VpCV√([M̂1] + [În])RRT̃ - PV

R̃M1
[M1] ) [M̃1]kp0 exp[-Ea

R (1
T
- 1

Tf
)](Ŷ)

R̃M1
Y ) [M̂1]kp0 exp[-Ea

R (1
T
- 1

Tf
)](Ỹ)

R̃M1
T ) [M̂1]kp0 exp[-Ea

R (1

T̃
- 1

Tf
)](Ŷ)

C̃pg )
[M̂1]

[M̂1] + [În]
Cpm1 + [În]

[M̂1] + [În]
CpIn

H̃g1
T ) Fg(Tg1

- Tf)C̃pg

H̃g0
T ) (Fg + b̃t

T)(T̃ - Tf)C̃pg

H̃r
T ) HreacMW1

R̃M1

T

H̃pol
T ) Cppol(T̃ - Tf)R̃M1

T MW1

(13)

In addition, the FDI residuals take the following form:

r[In] ) |[In](tk) - [Ĩn](tk)|

r[M1] ) |[M1](tk) - [Ĩn](tk)|

rY ) |Y(tk) - Ỹ(tk)|

rT ) |T - T̃|

rTg1
) |Tg1

- T̃g1
|

rTw1
) |Tw1

- T̃w1
| (14)

In the case with measurement and process noise, the residuals
will be nonzero even without a failure event. This motivates
the use of detection thresholds such that a fault is declared when
a residual exceeds a specific threshold value, ri,max (note that a
different threshold value can be used for each residual, see
remark 2). This threshold value must be selected to avoid false
alarms due to process and measurement noise, but it should
also be sensitive enough (small enough) to detect faults in a
timely manner so that efficient FTC action can be initiated. The

threshold values used for each residual in the numerical
simulations can be seen as the dashed lines in Figures 3, 7, 11,
and 15.

If the fault can be isolated to d1 (i.e., rT exceeds rT,max at t )
tf, while ri(ti(tf)) e ri, max with i ) [In], [M1], Y), then one can
invoke fault tolerant control methods to handle actuator failures
by activation of a fall-back control configuration. In the
simulation studies, it is assumed that a fall-back configuration,
where the fall-back manipulated input u2 ) Tfeed, is available.
The control law of (11) enforces stability when the control
actuator is functioning properly; thus switching to the operational
fall-back configuration will guarantee stability in the case of
failure of the primary control configuration, u1 ) Q.

3.5. Closed-Loop Process Simulation Results. This section
consists of four simulation studies, each examining one of the
faults d1, d2, d3, or d4 as shown in (7). The first simulation
considers a fault, d1, on the heating jacket which is the primary
manipulated input. In this case the simulation includes fault-
tolerant control that automatically reconfigures the plant so that
the fall-back manipulated input, u2 ) Tfeed, is activated to
maintain stability. Specifically, the supervisory control element
will deactivate the primary control configuration, u1 and activate
the fall-back configuration u2 when rT > rT,max and ri(ti(tf)) e
ri, max with i ) [In], [M1], and Y. This specific fault signature
corresponds to a type I fault that can be isolated to d1. The
reader may refer to ref 34 to obtain more information on FTC
and reconfiguration rules for a polyethylene reactor with
constraints on the manipulated inputs that give rise to stability
regions. This work does not consider constraints on the
manipulated inputs; hence, the fall-back configuration can
guarantee stability from anywhere in the state space because
the closed-loop system under the fall-back control configuration
is globally asymptotically stable. The remaining simulation
studies explore faults that disturb the system but do not arise
from actuator failures. Since they are not caused by actuation
component malfunctions, these failures cannot be resolved
simply by actuator reconfiguration. However, these simulations
demonstrate quick detection and isolation in the presence of
asynchronous measurements that enables the operator to take
appropriate and focused action in a timely manner.

For the fault d1 a simulation study has been carried out to
demonstrate the proposed asynchronous fault detection and
isolation and fault tolerant control method. The sequence of
asynchronous measurements for this scenario is shown in Figure
1. This first simulation uses the primary control configuration
in which Q is the manipulated input and has a fall-back
configuration, in which Tfeed is the manipulated input, available
in case of a fault in d1. A fault takes place where d1 ) 1 K/s at
t ) 0.5 h representing a failure in the heating jacket, Q. At this
time the synchronous states in Figure 2 all move away from
the equilibrium point. Additionally, as asynchronous measure-
ments become available, it is clear the asynchronous states also
move away from the equilibrium point after the failure. It is
unclear from the state information alone what caused this faulty
behavior. However, if the FDI residuals in Figure 3 generated
by (12) are examined, it is clear that the residual rT that is
associated with the manipulated input Q violates its threshold
at tf ) 0.5003 h. The fault is detected upon this threshold
violation. However, isolation cannot take place until one new
measurement for each asynchronous state becomes available.
At t ) 0.5944 h all three required asynchronous measurements
have arrived, and the asynchronous residuals remain below their
thresholds; hence ri(ti(tf)) e ri,max with i ) [In], [M1], and Y.
This signals that this is a type I fault that can be isolated to d1.

d[Ĩn]
dt

) 1
Vg(FIn - [Ĩn]

[M̂1] + [Ĩn]
b̃t

[In])
d[M̃1]

dt
) 1

Vg(FM1
-

[M̃1]

[M̃1] + [În]
b̃t

[M1] - R̃M1

[M1])
dỸ
dt

) Fcac - kd1
Ỹ -

R̃M1

Y MW1
Ỹ

Bw

dT̃
dt

)
Hf + H̃g1

T - H̃g0
T - H̃r

T - H̃pol
T

MrCpr + BwCppol
+

h1(x̂(t))

dT̃w1

dt
)

Fw

Mw
(Twi - T̃w1

) - UA
MwCpw

(T̃w1
- Tg1

)

dT̃g1

dt
)

Fg

Mg
(T - T̃g1

) + UA

MgC̃pg

(Tw1
- T̃g1

) (12)
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At this time, the system is reconfigured to the fall-back
configuration where Tfeed is the manipulated input, and the
resulting state trajectory, shown as the dotted line in Figure 2,
moves back to the desired operating point. The manipulated
input for this scenario can be seen in Figure 4 where the solid
line is the manipulated input without detection and reconfigu-
ration, and the dotted line represents the input after FDI and
reconfiguration.

The second simulation demonstrates the proposed asynchro-
nous model-based fault-detection and isolation method when a
type II fault occurs. The sequence of asynchronous measure-
ments for this scenario is shown in Figure 5. This simulation
uses the primary control configuration in which Q is the
manipulated input. A fault takes place where d2 )- 0.001 mol/s
at t ) 0.5 h representing a catalyst deactivation event. After
the failure, two synchronous states in Figure 6 move away from
the equilibrium point. Additionally, as asynchronous measure-
ments become available it can be seen that asynchronous states
also move away from the equilibrium point after the failure. It
is unclear from the state information alone what caused this
faulty behavior. However, if the FDI residuals in Figure 7
generated by (14) are examined, it is clear that the residuals
r[M1], rY, and rT violate their thresholds. The fault is detected
upon the first threshold violation (rY at t ) 0.5333). When the
residual associated with Y exceeds the threshold, this signals
that the fault is type II and entered the system in the differential
equation of an asynchronous state. When the fault is type II, it
cannot be isolated. However, such a fault can be grouped in
the subset of faults that enter into the differential equation of
an asynchronous state, (i.e., the group of type II faults,
specifically, d2 or d4). At this time, the system operator can
utilize the above partial isolation to examine the plant and
determine the exact source of the failure. The manipulated input
for this scenario can be seen in Figure 8.

The third simulation study examines FDI in the presence of
a type I fault, d3, representing a change in the recycle gas flow
rate. The sequence of asynchronous measurements for this
scenario is shown in Figure 9. This simulation study uses the

Table 2. Polyethylene Reactor Example Process Variables

ac active site concentration of catalyst
bt overhead gas bleed
Bw mass of polymer in the fluidized bed
Cpm1 specific heat capacity of ethylene
CV vent flow coefficient
Cpw, CpIn, Cppol specific heat capacity of water, inert gas and polymer
Ea activation energy
Fc, Fg flow rate of catalyst and recycle gas
FIn, FM1, Fw flow rate of inert, ethylene and cooling water
Hf, Hg0 enthalpy of fresh feed stream, total gas outflow stream

from reactor
Hg1 enthalpy of cooled recycle gas stream to reactor
Hpol enthalpy of polymer
Hr heat liberated by polymerization reaction
Hreac heat of reaction
[In] molar concentration of inerts in the gas phase
kd1, kd2 deactivation rate constant for catalyst site 1, 2
kp0 pre-exponential factor for polymer propagation rate
M1 molar concentration of ethylene in the gas phase
Mg mass holdup of gas stream in heat exchanger
MrCpr product of mass and heat capacity of reactor walls
Mw mass holdup of cooling water in heat exchanger
MW1 molecular weight of monomer
PV pressure downstream of bleed vent
Q heat added/removed by heating jacket
R, RR ideal gas constant, unit of J/(mol K),

(m3 atm)/(mol K)
T, Tf, Tfeed reactor, reference, feed temperature
Tg1, Tw1 temperature of recycle gas, cooling water stream

from exchanger
Twi inlet cooling water temperature to heat exchanger
UA product of heat exchanger coefficient with area
Vg volume of gas phase in the reactor
Vp bleed stream valve position
Y1, Y2 moles of active site type 1, 2

Figure 5. Asynchronous sampling times tk,[In] (star), tk,[M1] (cross), and tk,Y

(circle) with a fault d2 at t ) 0.5 h.

Figure 6. State trajectories of the closed-loop system with a fault d2 at t )
0.5 h.

Figure 7. Fault detection and isolation residuals for the closed-loop system
with a fault d2 at t ) 0.5 h. The fault is detected when residual for Y exceeds
the threshold. Subsequently, T and [M1] exceed their thresholds. When any
asynchronous residual violates the threshold, this indicates that the fault is
in the set of type II faults; d2 or d4.
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primary control configuration in which Q is the manipulate input,
and a fault takes place where d3 ) 300 K/s at t ) 0.5 h. At this
time the synchronous states in Figure 10 all move away from
the equilibrium point. Additionally, as asynchronous measure-
ments become available it is observed that the asynchronous
states also move away from the equilibrium point after the
failure. It is unclear from the state information alone what caused
this faulty behavior. However, if the FDI residuals in Figure
11 generated by (12), (13), and (14) are examined, the residual

associated with Tg1 violates its threshold at t ) 0.5003 h. The
fault is detected upon this threshold violation. However, isolation
cannot take place until one new measurement for each asyn-
chronous state becomes available. At t ) 0.6086 h all three
required asynchronous measurements have become available,
and the residuals signal a type I fault, allowing the isolation of
the fault to d3. The manipulated input for this scenario can be
seen in Figure 12.

The final simulation study demonstrates the proposed asyn-
chronous model-based fault detection and isolation method when
a type II fault occurs. The sequence of asynchronous measure-
ments for this scenario is shown in Figure 13. This simulation
uses the primary control configuration in which Q is the
manipulated input. A fault takes place where d4 ) -0.2 mol/s
at t ) 0.5 h representing unexpected monomer consumption.
After the failure the synchronous states in Figure 14 diverge
from their desired values. Additionally, as asynchronous
measurements become available, it can be seen that asynchro-
nous states also diverge after the failure. It is unclear from the
state information alone what caused this faulty behavior.
However, if the FDI residuals in Figure 15 generated by (12)
are examined, the residuals r[In], r[M1], rT, and rTg1 violate their
thresholds. The fault is detected upon the first threshold violation
(r[M1] at t ) 0.05667 h). When the residual r[M1] exceeds the

Figure 8. Manipulated input for the closed-loop system with a fault d2 at
t ) 0.5 h.

Figure 9. Asynchronous sampling times tk,[In] (star), tk,[M1] (cross), and tk,Y

(circle) with a fault d3 at t ) 0.5 h.

Figure 10. State trajectories of the closed-loop system with a fault d3 at t
) 0.5 h.

Figure 11. Fault detection and isolation residuals for the closed-loop system
with a fault d3 at t ) 0.5 h. A fault is detected immediately when residual
for Tg1 exceeds the threshold. Subsequently, none of the asynchronous
residuals exceed their thresholds, indicating that the fault source can be
isolated as d3.

Figure 12. Manipulated input for the closed-loop system with a fault d3 at
t ) 0.5 h.
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threshold, this signals that a type II fault has occurred. When a
type II fault occurs, it cannot be isolated. As in the second
simulation, such a fault can be grouped in the subset of type II

faults d2 or d4. At this time, the system operator can utilize the
partial isolation to examine the plant and determine the exact
source of the failure. The manipulated input for this scenario
can be seen in Figure 16.

4. Conclusions

This work addressed the problem of fault detection and
isolation and fault-tolerant control when several process mea-
surements are not available synchronously. First, an FDI scheme
that employs model-based techniques was proposed that allowed
for the isolation of faults. This scheme employed model-based
FDI filters in addition to observers that estimate the fault-free
evolution of asynchronously measured states during times when
they are unmeasured. Specifically, the proposed FDI scheme
provides detection and isolation for a type I fault where the
fault enters into the differential equation of only synchronously
measured states, and grouping of type II faults where the fault
enters into the differential equation of any asynchronously
measured state. The detection occurs shortly after a fault takes
place, and the isolation, limited by the arrival of asynchronous
measurements, occurs once all of the asynchronous measure-
ments become available. Once the FDI methodology provided
the system supervisor with a fault diagnosis, the supervisor took
appropriate action to seamlessly reconfigure the system to an
alternative control configuration that enforces the desired
operation. We presented applications of the proposed asynchro-
nous FDI and FTC framework to a polyethylene reactor
simulation.
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(13) Ohran, B.; Muñoz de la Peña, D.; Christofides, P. D.; Davis, J. F.
Enhancing data-based fault isolation through nonlinear control. AIChE J.
2008, 53, 2734–2741.

(14) Massoumnia, M.; Verghese, G. C.; Wilsky, A. S. Failure detection
and identification. IEEE Trans. Autom. Control 1989, 34, 316–321.

(15) Frank, P. M. Fault Diagnosis in Dynamic Systems Using Analytical
and Knowledge-based Redundancy-- A Survey and Some New Results.
Automatica 1990, 26, 459–474.

(16) Garcia, E. A.; Frank, P. M. Deterministic Nonlinear Observer-Based
Approaches to Fault Diagnosis: A Survey. Control Eng. Pract. 1997, 5,
663–670.

(17) Frank, P. M.; Ding, X. Survey of Robust Residual Generation and
Evaluation Methods in Observer-based Fault Detection Systems. J. Proc.
Control 1997, 7, 403–424.

(18) Zad, S. H.; Massoumnia, M. Generic solvability of the failure
detection and identification problem. Automatica 1999, 35, 887–893.

(19) Niemann, H.; Saberi, A.; Stoorvogel, A. A.; Sannuti, P. Exact,
almost and delayed fault detection- an observer based approach. Int. J.
Robust Nonlinear Control 1999, 9, 215–238.

(20) Saberi, A.; Stoorvogel, A. A.; Sannuti, P.; Niemann, H. Fundamental
problems in fault detection and identification. Int. J. Robust Nonlinear
Control 2000, 10, 1209–1236.

(21) Mhaskar, P.; McFall, C.; Gani, A.; Christofides, P.; Davis, J.
Isolation and Handling of Actuator Faults in Nonlinear Systems. Automatica
2008, 44, 53–62.

(22) Mhaskar, P.; Gani, A.; El-Farra, N. H.; Christofides, P. D.; Davis,
J. F. Integrated Fault-Detection and Fault-Tolerant Control of Process
Systems. AIChE J. 2006, 52, 2129–2148.

(23) DePersis, C.; Isidori, A. A Geometric Approach to Nonlinear Fault
Detection and Isolation. IEEE Trans. Autom. Control 2001, 46, 853–865.

(24) Armaou, A.; Demetriou, M. Robust Detection and Accomodation
of Incipient Component and Actuator Faults in Nonlinear Distributed
Processes. AIChE J. 2008, 54, 2651–2662.

(25) Mhaskar, P.; Gani, A.; McFall, C.; Christofides, P. D.; Davis, J. F.
Fault-Tolerant Control of Nonlinear Process Systems Subject to Sensor
Faults. AIChE J. 2007, 53, 654–668.

(26) El-Farra, N. H.; Gani, A.; Christofides, P. D. Fault-Tolerant Control
of Process Systems using communication Networks. AIChE J. 2005, 51,
1665–1682.
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(28) Muñoz de la Peña, D.; Christofides, P. D. Output Feedback Control
of Nonlinear Systems Subject to Sensor Data Losses. Syst. Control Lett.
2008, 57, 631–642.

(29) Yang, G. H.; Zhang, S. Y.; Lam, J.; Wang, J. Reliable Control
Using Redundant Controllers. IEEE Trans. Autom. Control 1998, 43, 1588–
1593.

(30) Siljak, D. D. Reliable control using multiple control systems. Int.
J. Control 1980, 31, 302–339.

(31) Yang, G. H.; Wang, J. L.; Soh, Y. C. Reliable H ∞ control design
for linear systems. Automatica 2001, 37, 717–725.

(32) Mhaskar, P.; Gani, A.; Christofides, P. D. Fault-Tolerant Control
of Nonlinear Processes: Performance-Based Reconfiguration and Robustness.
Int. J. Robust Nonlinear Control 2006, 16, 91–111.

(33) McAuley, K. B.; Macdonald, D. A.; McLellan, P. J. Effects of
Operating Conditions on Stability of Gas-Phase Polyethylene Reactors.
AIChE J. 1995, 41, 868–879.

(34) Gani, A.; Mhaskar, P.; Christofides, P. D. Fault-tolerant control of
a polyethylene reactor. J. Process Control 2007, 17, 439–451.

(35) Kokotovic, P.; Arcak, M. Constructive nonlinear control: a historical
perspective. Automatica 2001, 637–662.

(36) Christofides, P. D.; El-Farra, N. H. Control of Nonlinear and Hybrid
Process Systems: Designs for Uncertainty, Constraints and Time-Delays;
Springer-Verlag: Berlin, Germany, 2005.

(37) Sontag, E. A ‘universal’ construction of Arstein’s theorem on
nonlinear stabilization. Syst. Control Lett. 1989, 117–123.

(38) Walsh, G.; Beldiman, O.; Bushnell, L. Asymptotic Behavior of
nonlinear networked control systems. IEEE Trans. Autom. Control 2001,
46, 1093–1097.

(39) Walsh, G.; Ye, H.; Bushnell, L. Stability analysis of networked
control systems. IEEE Trans. Control Syst. Technol. 2002, 10, 438–446.

(40) Nesic, D.; Teel, A. R. Input-to-state stability of networked control
systems. Automatica 2004, 40, 2121–2128.

(41) Nesic, D.; Teel, A. R. Input-Output Stability Properties of Net-
worked Control Systems. IEEE Trans. Autom. Control 2004, 49, 1650–
1667.

(42) Dadebo, S. A.; Bell, M. L.; McLellan, P. J.; McAuley, K. B.
Temperature Control of Industrial Gas Phase Polyethylene Reactors. J.
Process Control 1997, 7, 83–95.

(43) El-Farra, N. H.; Christofides, P. D. Integrating Robustness, Opti-
mality, and Constraints in Control of Nonlinear Processes. Chem. Eng. Sci.
2001, 56, 1841–1868.

ReceiVed for reView July 9, 2008
ReVised manuscript receiVed September 24, 2008

Accepted October 6, 2008

IE801056Y

Ind. Eng. Chem. Res., Vol. 47, No. 24, 2008 10019


