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a b s t r a c t

In this work, we focus on monitoring and reconfiguration of distributed model predictive control systems

applied to general nonlinear processes in the presence of control actuator faults. Specifically, we consider

nonlinear process systems controlled with a distributed control scheme in which two Lyapunov-based

model predictive controllers manipulate two different sets of control inputs and coordinate their actions

to achieve the desired closed-loop stability and performance specifications. To deal with control actuator

faults which may reduce the ability of the distributed control system to stabilize the process, a model-

based fault detection and isolation and fault-tolerant control system which detects and isolates actuator

faults and determines how to reconfigure the distributed control system to handle the actuator faults

while maintaining closed-loop stability is designed. A detailed mathematical analysis is carried out to

determine precise conditions for the stabilizability of the fault detection and isolation and fault-tolerant

control system. A chemical process example, consisting of two continuous stirred tank reactors and a

flash tank separator with a recycle stream and involving stabilization of an unstable steady-state, is used

to demonstrate the approach.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Optimal operation and management of abnormal situations are

major challenges in the process industries as they account for at

least $10 billion in lost annual revenue within the US alone. This

issue has motivated significant research efforts in the areas of pro-

cess control and operations. Traditionally, control systems rely on

centralized control architectures utilizing dedicated, wired links

to measurement sensors and control actuators to regulate appro-

priate process variables at desired values. While this paradigm to

process control has been successful, it is limited in the number of

the process state variables, manipulated inputs and measurements

in a chemical plant because the computational time needed for the

solution of a centralized control problem may increase significantly

and may impede the ability of centralized control systems (par-

ticularly when nonlinear constrained optimization-based control

systems like model predictive control (MPC) are used) to carry out

real-time calculations within the limits set by process dynamics

and operating conditions. One feasible alternative to overcome this
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problem is to utilize cooperative, distributed control architectures

in which the manipulated inputs are computed by solving more

than one control (optimization) problems in separate processors

in a coordinated fashion. Cooperative, distributed control systems

can also take advantage of additional sensing/actuation capabili-

ties and network accessible data to dramatically improve process

performance and deal with abnormal situations (see [1,2] for a

series of papers and reports calling for attention to the broad issue

of distributed decision making/control in the context of chemical

plants).

MPC is a natural control framework to deal with the design of

cooperative, distributed control systems because of its ability to

handle input and state constraints, and also because it can com-

pensate for the actions of other actuators in computing the control

action of a given set of control inputs in real-time. With respect to

available results in this direction, several distributed MPC (DMPC)

methods have been proposed in the literature that deal with the

coordination of separate MPC controllers that communicate in

order to obtain optimal input trajectories in a distributed man-

ner; see [3–5] for reviews of results in this area. More specifically,

in [6], the problem of distributed control of dynamically coupled

nonlinear systems that are subject to decoupled constraints was

considered. In [7,8], the effect of the coupling was modeled as a

bounded disturbance compensated using a robust MPC formula-

tion. In [9], it was proven that through multiple communications

0959-1524/$ – see front matter © 2010 Elsevier Ltd. All rights reserved.
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between distributed controllers and using system-wide control

objective functions, stability of the closed-loop system can be guar-

anteed. In [10], DMPC of decoupled systems (a class of systems of

relevance in the context of multi-agents systems) was studied. In

[11], an MPC algorithm was proposed for the case where the sys-

tem is nonlinear, discrete-time and no information is exchanged

between local controllers, and in [12], MPC for nonlinear systems

was studied from an input-to-state stability point of view. In [13],

a game theory based DMPC scheme for constrained linear systems

was proposed.

In our previous work [14], we proposed a DMPC architecture

with one-directional communication for nonlinear process sys-

tems. In this architecture, two separate MPC algorithms designed

via Lyapunov-based MPC (LMPC) were considered, in which one

LMPC was used to guarantee the stability of the closed-loop system

and the other LMPC was used to improve the closed-loop perfor-

mance. In [15], we also considered the design of DMPC architectures

for systems with asynchronous and delayed measurements. In a

recent work [16], we extended the DMPC architecture developed

in [14] to include multiple distributed controllers and relaxed the

requirement that one of the distributed controllers should be able

to stabilize the closed-loop system. In the new proposed DMPC

architecture in [16], there are several distributed controllers, where

individually they can not stabilize the closed-loop system, but

cooperatively can achieve closed-loop stability and a desired level

of closed-loop performance. The above results deal with the design

of DMPC systems and do not address the problems of monitoring

and reconfiguration of DMPC in the event of actuator faults.

On the other hand, the occurrence of faults in chemical pro-

cesses poses a number of challenges in process monitoring and

fault-tolerant control (FTC). Specifically, the problem of using fun-

damental process models for the purpose of detecting faults has

been studied extensively in the context of linear systems [17–20];

and also, some existential results in the context of nonlinear sys-

tems have been derived [21,22]. The model-based approach to fault

detection relies on the use of fundamental models for the con-

struction of residuals, that capture some measure of the difference

between normal and ‘faulty’ dynamics, to achieve fault detection

and isolation (FDI). FTC has been an active area of research primar-

ily within the context of aerospace control engineering (see, e.g.,

[23,24]). Over the last 3 years, we have initiated an effort on FTC

of nonlinear processes trying to bring together the disconnected

fields of process fault-diagnosis and nonlinear process control. We

have looked at both actuator [25] and sensor [26] faults and their

impact and handling in the context of chemical process control.

Other important recent work on the subject of fault diagnosis and

handling includes [27–30] where the emphasis has been on plants

described by distributed parameter systems. Despite this progress,

there are no results on monitoring and reconfiguration of cooper-

ative, distributed control systems.

The focus of this work is on the development of FDI and FTC

systems for the monitoring and reconfiguration of DMPC systems

applied to general nonlinear processes in the presence of control

actuator faults. Specifically, we consider a DMPC system in which

two distributed LMPC controllers manipulate two different sets of

control inputs and coordinate their actions to achieve closed-loop

stability and performance specifications. We first design a model-

based FDI system which effectively detects and isolates actuator

faults; and then based on the assumption that there exists a backup

control configuration which is able to stabilize the closed-loop sys-

tem within the DMPC system, we develop FTC switching rules to

handle faults in the actuators of the distributed control system

to minimize closed-loop system performance degradation. Suffi-

cient conditions for the stabilizability of the FDI and FTC system

are obtained based on a detailed mathematical analysis. The pro-

posed design is applied to a chemical process example, consisting of

two continuous stirred tank reactors (CSTRs) and a flash tank sep-

arator with a recycle stream operated at an unstable steady state,

to demonstrate its applicability and effectiveness.

2. Problem formulation and preliminaries

2.1. Class of nonlinear systems

We consider nonlinear process systems described by the follow-

ing state-space model

ẋ = f (x) + g1(x)(u1 + ũ1) + g2(x)(u2 + ũ2) (1)

where x ∈ Rn denotes the set of state variables, u1 ∈ Rm1 and u2 ∈ Rm2

denote two sets of manipulated inputs, ũ1 ∈ Rm1 and ũ2 ∈ Rm2

denote the unknown fault vectors for u1 and u2, respectively. We

consider that u1 + ũ1 and u2 + ũ2 take values in non-empty convex

sets U1 ∈ Rm1 and U2 ∈ Rm2 , respectively. The convex sets U1 and U2

are defined as follows:

U1 = {u1 + ũ1 ∈ Rm1 : |u1 + ũ1| ≤ umax
1

}
U2 = {u2 + ũ2 ∈ Rm2 : |u2 + ũ2| ≤ umax

2
}.

We consider possible (independent) faults, ũf,j ∈ R, j = 1, . . . , m1 +
m2, in each of the manipulated inputs. Under fault-free operating

conditions, we have ũ1 = 0 and ũ2 = 0, and hence, ũf,j = 0 for all

j = 1, . . . , m1 + m2. When fault j occurs, ũf,j takes a non-zero value.

We assume that f , g1, g2 are locally Lipschitz vector functions and

that f (0) = 0. This means that the origin is an equilibrium point for

the fault-free system (ũ1 = 0 and ũ2 = 0 for all t) with u1 = 0 and

u2 = 0. We also assume that the state x of the system is sampled

synchronously and continuously and the time instants where we

have measurement samplings are indicated by the time sequence

{tk≥0} with tk = t0 + k�, k = 0, 1, . . . where t0 is the initial time and

� is the sampling time.

Remark 1. The variable ũf,j associated with the jth element in

[uT
1

uT
2
]
T

can be used to model different kinds of faults that may

occur in an actuator. For example, ũf,j can model a constant devia-

tion of the control input from its calculated value uc,j; or it can be

a function of the form ũf,j = −uc,j + c to model faults in an actuator

that keep the output of the actuator constant. We also note that the

approach presented here can be extended to handle actuator faults

in DMPC systems which include multiple controllers.

2.2. Lyapunov-based controller

We assume that there exists a Lyapunov-based controller

u1(t) = h(x) which renders the origin of the fault-free closed-loop

system asymptotically stable with u2(t) = 0. This assumption is

essentially a standard stabilizability requirement made in all lin-

ear/nonlinear control methods and implies that, in principle, it

is not necessary to use the extra input u2 in order to achieve

closed-loop stability. However, one of the main objectives of the

distributed control method is to profit from the extra control effort

to improve the closed-loop performance while maintaining the sta-

bility properties achieved by only implementing u1. Using converse

Lyapunov theorems [31], this assumption implies that there exist

functions ˛i(·), i = 1, 2, 3, 4 of class K 1 and a continuous differen-

tiable Lyapunov function V(x) for the nominal closed-loop system

1 A continuous function ˛ : [0, a) → [0, ∞) is said to belong to classK if it is strictly

increasing and ˛(0) = 0.
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that satisfy the following inequalities:

˛1(|x|) ≤ V(x) ≤ ˛2(|x|)
∂V(x)

∂x
(f (x) + g1(x)h(x)) ≤ −˛3(|x|)∣∣∣∣∂V(x)

∂x

∣∣∣∣ ≤ ˛4(|x|)

h(x) ∈ U1

(2)

for all x ∈ D ⊆ Rn where D is an open neighborhood of the origin. We

denote the region ˝� ⊆ D 2 as the stability region of the closed-loop

system under the control u1 = h(x) and u2 = 0. We also note that:

(a) in certain applications it is possible to attain global asymptotic

stability of x = 0 under h(x), (b) the construction of V(x) can be

readily done using a variety of methods (see [31,32] for examples),

(c) dynamic local controllers, like for example proportional-integral

(PI) controllers, can be used in a straightforward fashion as h(x), and

(d) while we address here stabilization of x = 0, the problem of set-

point tracking can be readily handled by working with deviation

variables with respect to the desired, non-zero operating point.

By continuity and the local Lipschitz property assumed for the

vector fields f , g1 and g2, the fact that the manipulated inputs

u1 + ũ1 and u2 + ũ2 are bounded in convex sets and the continu-

ous differentiable property of the Lyapunov function V , there exist

positive constant M1 and Lx,1 such that

|f (x) + g1(x)(u1 + ũ1) + g2(x)(u2 + ũ2)| ≤ M1 (3)

∣∣∣∣∂V

∂x
(f (x) + g1(x)u1 + g2(x)u2) − ∂V

∂x
(f (x′) + g1(x′)u1 + g2(x′)u2)

∣∣∣∣
≤ Lx,1|x − x′| (4)

for all x, x′ ∈ ˝� , u1 + ũ1 ∈ U1 and u2 + ũ2 ∈ U2.

2.3. DMPC design for fault-free system

Following [14], we design a DMPC architecture to achieve the

desired closed-loop system stability and performance specifica-

tions and to reduce the computational burden in the evaluation

of the optimal manipulated inputs. Specifically, for the system of

Eq. (1), we design two separate LMPC controllers to compute u1 and

u2 and refer to the LMPCs computing the trajectories of u1 and u2 as

LMPC 1 and LMPC 2, respectively. The implementation strategy of

the DMPC is as follows: (1) at each sampling instant tk, both LMPC 1

and LMPC 2 receive the state measurement x(tk) from the sensors;

(2) LMPC 2 evaluates the optimal input trajectory of u2 based on

x(tk) and sends the first step input value to its corresponding actu-

ators and the entire optimal input trajectory to LMPC 1; (3) once

LMPC 1 receives the entire optimal input trajectory for u2 from

LMPC 2, it evaluates the future input trajectory of u1 based on the

x(tk) and the entire optimal input trajectory of u2; (4) LMPC 1 sends

the first step input value of u1 to its corresponding actuators.

We first discuss the design of LMPC 2. The optimization problem

of LMPC 2 depends on the latest state measurement x(tk), however,

LMPC 2 does not have any information about the value that u1 will

take. In order to make a decision, LMPC 2 must assume a trajectory

for u1 along the prediction horizon. To this end, the Lyapunov-

based controller u1 = h(x) is used. In order to inherit the stability

properties of this controller, u2 must satisfy a stability constraint

that guarantees a given minimum decrease rate of the Lyapunov

function V(x). The LMPC 2 is based on the following optimization

2 We use ˝� to denote the set ˝� := {x ∈ Rn : V(x) ≤ �}.

problem:

min
u2 ∈ S(�)

N�∫
0

[x̃(�)T Qcx̃(�) + u1(�)T Rc1u1(�) + u2(�)T Rc2u2(�)] d� (5a)

˙̃x(�) = f (x̃(�)) + g1(x̃(�))u1(�) + g2(x̃(�))u2(�) (5b)

u1(�) = h(x̃(j�)), ∀� ∈ [j�, (j + 1)�), j = 0, . . . , N − 1 (5c)

x̃(0) = x(tk) (5d)

u2(�) ∈ U2 (5e)

∂V(x)

∂x
g2(x(tk))u2(0) ≤ 0. (5f)

In the optimization problem of Eq. (5), x̃ is the predicted trajec-

tory of the fault-free system with u2 being the input trajectory

computed by LMPC 2 of Eq. (5) and u1 being the Lyapunov-based

controller h(x) applied in a sample-and-hold fashion. � is the sam-

pling rate of the controller, Qc , Rc1 and Rc2 are positive definite

weighting matrices and N is the prediction horizon. The optimal

solution to this optimization problem is denoted by u∗
2
(�|tk). This

information is sent to LMPC 1. The constraint of Eq. (5e) defines the

constraint on the manipulated input u2 and the stability constraint

of Eq. (5f) is required to guarantee the closed-loop stability.

Next, we discuss the design of LMPC 1. The optimization prob-

lem of LMPC 1 depends on x(tk) and the decision made by LMPC 2

(i.e., u∗
2
(�|tk)). This allows LMPC 1 to compute an input u1 such that

the closed-loop performance is optimized, while guaranteeing that

the stability properties of the Lyapunov-based controller are pre-

served. Specifically, LMPC 1 is based on the following optimization

problem:

min
u1 ∈ S(�)

N�∫
0

[x̃(�)T Qcx̃(�) + u1(�)T Rc1u1(�) + u∗
2(�|tk)T Rc2u∗

2(�|tk)] d�

(6a)

˙̃x(�) = f (x̃(�)) + g1(x̃(�))u1(�) + g2(x̃(�))u∗
2(�|tk) (6b)

x̃(0) = x(tk) (6c)

u1(�) ∈ U1 (6d)

∂V(x)

∂x
g1(x(tk))u1(0) ≤ ∂V(x)

∂x
g1(x(tk))h(x(tk)). (6e)

In the optimization problem of Eq. (6), x̃ is the predicted trajectory

of the fault-free system with u2 being the optimal input trajec-

tory u∗
2
(�|tk) computed by LMPC 2 and u1 being the input trajectory

computed by LMPC 1 of Eq. (6). The optimal solution to this opti-

mization problem is denoted by u∗
1
(�|tk). The constraint of Eq. (6d)

defines the constraint on the manipulated input u1 and the stability

constraint of Eq. (6e) is also required to guarantee the closed-loop

stability.

Once both optimization problems are solved (see [14] for results

on the feasibility and stability of the LMPCs of Eqs. (5) and (6)), the

manipulated inputs of the DMPC system based on LMPC 1 and LMPC

2 are defined as follows:

uL
1
(t|x) = u∗

1
(t − tk|tk), ∀t ∈ [tk, tk+1)

uL
2
(t|x) = u∗

2
(t − tk|tk), ∀t ∈ [tk, tk+1).

The closed-loop system of Eq. (1) under this DMPC scheme with

inputs defined by u1 = uL
1

and u2 = uL
2

maintains the same stability

region ˝� and practical stability, as the Lyapunov-based control

law h implemented in a sample-and-hold fashion [14].
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2.4. FTC considerations and backup DMPC design

In order to carry out FTC, there must be a backup control con-

figuration for the system under consideration. The presence of the

control action u2 brings extra control flexibility to the closed-loop

system which can be used to carry out FTC. Specifically, we assume

that the control input u1 can be decomposed into two subsets.

That is u1 = [uT
11

uT
12

]
T
. We further assume that, under continuous

state measurements, there exists a Lyapunov-based control law

h2(x) = [h21(x)T h22(x)T ]
T

which is able to asymptotically stabilize

the closed-loop system and satisfies the input constrains on u1 and

u2 while controlling only u11 and u2; that is, u11 = h21(x), u12 = 0

and u2 = h22(x).

Using converse Lyapunov theorems, this assumption on h2

implies that there exist functions ˛′
i
(·), i = 1, 2, 3, 4 of class K and

a continuously differentiable Lyapunov function V2(x) for the fault-

free system of Eq. (1) with u11 = h21(x), u2 = h22(x) and u12 = 0 that

satisfy the following inequalities:

˛′
1
(|x|) ≤ V2(x) ≤ ˛′

2
(|x|)

∂V2(x)

∂x
(f (x) + g1(x)[h21(x)T 0T ]

T + g2(x)h22(x)) ≤ −˛′
3(|x|)∣∣∣∣∂V2(x)

∂x

∣∣∣∣ ≤ ˛′
4
(|x|)

h21(x) ∈ U1, h22(x) ∈ U2

(7)

for all x ∈ D2 ⊆ Rn where D2 is an open neighborhood of the origin.

We denote ˝2,� ⊆ D2
3 as the stability region of the closed-loop

fault-free system with u1 = [h21(x)T 0T ]
T

and u2 = h22(x).

Similarly there exist positive constants M2 and Lx,2 such that

|f (x) + g1(x)(u1 + ũ1) + g2(x)(u2 + ũ2)| ≤ M2 (8)

∣∣∣∣∂V2

∂x
(f (x) + g1(x)u1 + g2(x)u2) − ∂V2

∂x
(f (x′) + g1(x′)u1 + g2(x′)u2)

∣∣∣∣
≤ Lx,2|x − x′| (9)

for all x, x′ ∈ ˝2,� , u1 + ũ1 ∈ U1 and u2 + ũ2 ∈ U2.

Based on h2(x), we can design a backup DMPC system to manip-

ulate u11 and u2 to stabilize the closed-loop system following the

results developed in [16]. We still design two LMPC controllers in

this DMPC system. One LMPC is used to manipulated u11 and the

other one is used to manipulate u2. We refer to the LMPC manip-

ulating u11 as the backup LMPC 1 and the LMPC manipulating u2

as the backup LMPC 2. The implementation strategy of the backup

DMPC is the same as the one used by the DMPC system introduced

in Section 2.3.

The backup LMPC 2 optimizes u2 and is designed as follows:

min
u2 ∈ S(�)

N�∫
0

[x̃(�)T Qcx̃(�) + u1(�)T Rc1u1(�) + u2(�)T Rc2u2(�)] d�

(10a)

˙̃x(�) = f (x̃(�)) + g1(x̃(�))[u11(�)T u12(�)T ]
T + g2(x̃(�))u2(�) (10b)

u11(�) = h21(x̃(j�)), ∀ � ∈ [j�, (j + 1)�), j = 0, . . . , N − 1

(10c)

u12(�) = 0 (10d)

3 We use ˝2,� to denote the set ˝2,� := {x ∈ Rn : V2(x) ≤ �}.

x̃(0) = x(tk) (10e)

u2(�) ∈ U2 (10f)

∂V2(x)

∂x
g2(x(tk))u2(0) ≤ ∂V2(x)

∂x
g2(x(tk))h22(x(tk)). (10g)

The solution to the optimization problem of Eq. (10) is denoted

by ub,∗
2

(�|tk). The backup LMPC 1 optimizes u11 and is designed as

follows:

min
u11 ∈ S(�)

N�∫
0

[x̃(�)T Qcx̃(�) + u1(�)T Rc1u1(�)

+ ub,∗
2

(�|tk)T Rc2ub,∗
2

(�|tk)] d� (11a)

˙̃x(�) = f (x̃(�)) + g1(x̃(�))[u11(�)T 0T ]
T + g2(x̃(�))ub,∗

2
(�|tk) (11b)

x̃(0) = x(tk) (11c)

u11(�) ∈ U1 (11d)

∂V2(x)

∂x
g1(x(tk))[u11(0)T 0T ]

T ≤ ∂V2(x)

∂x
g1(x(tk))[h21(x(tk))T 0T ]

T
.

(11e)

The solution to the optimization problem of Eq. (11) is denoted by

ub,∗
11

(�|tk). The control inputs of the closed-loop system under the

backup DMPC are defined as follows:

ub
11

(t|x) = ub,∗
11

(t − tk|tk), ∀t ∈ [tk, tk+1)

ub
12

(t|x) = 0, ∀t

ub
2
(t|x) = ub,∗

2
(t − tk|tk), ∀t ∈ [tk, tk+1).

(12)

The fault-free closed-loop system of Eq. (1) under the backup DMPC

control with inputs defined by u11 = ub
11

, u12 = 0 and u2 = ub
2

main-

tains the same stability region ˝2,� as h2(x) and achieves practical

stability of the origin [16].

Remark 2. Note that in the DMPC design of Eqs. (5)–(6), the

main objective of LMPC 1 is to stabilize the closed-loop system

and the main objective of LMPC 2 is to maintain the closed-loop

stability achieved by LMPC 1 and try to improve the closed-loop

performance. This DMPC design has the potential to maintain the

closed-loop stability and performance in the face of failing con-

trollers or actuators, for example, a zero input of LMPC 2 does not

affect the closed-loop stability. On the other hand, in the backup

DMPC design of Eqs. (10)–(11), LMPC 1 and LMPC 2 are both needed

in order to guarantee the closed-loop stability, and this design may

be fragile to controller or actuator failures.

Remark 3. The assumption that there exists a Lyapunov-based

control law h2 that can stabilize the closed-loop system by manip-

ulating u11 and u2 implies that when there is a fault in the subset

u12 of u1, we can switch off the actuators associated with u12 and

the remaining control actions (i.e., u11 and u2) can still maintain the

closed-loop stability. Please see Section 3.2 for further discussion

on this issue.

Remark 4. Note that the proposed backup control configuration

is one of the many possible options for FTC; however, under the

proposed backup control configuration, stability of the closed-loop

system can be proved. Please see Section 3 for the proposed fault-

tolerant control methods and [33,25] for more discussion on the

relationship between system structure and FTC schemes.

Remark 5. Because the manipulated inputs enter the dynamics

of the system in an affine manner, the constraints of Eqs. (10g) and

(11e) in the backup DMPC design are decoupled for the distributed
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Fig. 1. Proposed FDI and FTC structure for DMPC.

controllers. Because of this, the stability of the closed-loop system

is ensured even when the two LMPCs are evaluated in a completely

decentralized fashion. However, the communication between the

two LMPCs (i.e., the backup LMPC 2 sends ub,∗
2

(�|tk) to the backup

LMPC 1) as well as the use of h22 to estimate the control actions of

LMPC 1 (i.e., the backup LMPC 2 uses h22 to approximate the control

actions of the backup LMPC 1) allows us to improve the closed-loop

performance. Please see [16] for more discussions on the stability

and optimality properties of the backup DMPC design.

3. FDI and FTC strategies

In this section, we look at the closed-loop system under the

DMPC control of Eqs. (5)–(6) where, upon detection and isolation

of actuator faults, the DMPC control system can be switched off or

reconfigured to maintain stability of the closed-loop system. The

structure of the integrated system is shown in Fig. 1.

3.1. FDI system design

We consider control actuator faults that can be detected by an

appropriate nonlinear dynamic filter by observing the evolution

of the closed-loop system state. This consideration requires that a

fault in a control actuator influences the evolution of at least some

of the states. In order to isolate the occurrence of a fault, it is further

required to assume that the control actuator in question is the only

one influencing a certain set of the system states (i.e., each fault has

a unique fault signature). For more discussions on systems having

verifiable isolable structures, please see [33,34].

The DMPC system of Eqs. (5)–(6) is the control configuration

for the fault-free system of Eq. (1). We first design an FDI scheme

to detect faults in this control system. In this FDI scheme, a filter

is designed for each state and the design of the filter for the pth,

p = 1, . . . , n, state in the system state vector x is as follows [33]:

˙̂xp(t) = fp(Xp) + g1p(Xp)uL
1(Xp) + g2p(Xp)uL

2(Xp) (13)

where x̂p is the filter output for the pth state, fp, g1p and g2p are the

pth components of the vector functions f , g1 and g2, respectively.

With a little abuse of notation, we have dropped the time index in

the control functions and denote uL
1
(t|x), uL

2
(t|x) with uL

1
(x), uL

2
(x),

respectively, in order to simplify the FDI definitions. The state Xp is

obtained from both the actual state measurements, x, and the filter

output, x̂p, as follows:

Xp(t) = [x1(t), . . . , xp−1(t), x̂p(t), xp+1(t), . . . , xn(t)]
T .

Note that in the filter of Eq. (13), the control inputs uL
1
(Xp) and uL

2
(Xp)

are determined by the same LMPC 1 of Eq. (6) and the LMPC 2 of Eq.

(5) as applied to the actual process, and are updated every control

sampling time � (i.e., the sampling time instants {tk≥0}).
The states of the FDI filters are initialized at t = 0 to the actual

state values; that is, x̂p = xp. The FDI filters are only initialized at

t = 0 such that x̂p(0) = xp(0). The information generated by the fil-

ters provides a fault-free estimate of the real state at any time t

and allows easy detection of the actual system deviating due to

faults. For each state associated with a filter, the FDI residual can

be defined as [33]:

rp(t) = |x̂p(t) − xp(t)|,
with p = 1, . . . , n. The residual rp is computed continuously

because x̂p(t) is known for all t and the state measurement, x, is

also available for all t. If no fault occurs, the filter states track the

system states. In this case, the dynamics of the system states and

the FDI filter states are identical, so rp(t) = 0 for all times. When

there is a fault in the system, filter residuals affected directly by the

fault will deviate from zero soon after the occurrence of the fault.

This property of the filters is summarized in Theorem 1.

Theorem 1 (cf. [33]). Consider the system of Eq. (1) in closed-loop

under the DMPC design of Eqs. (5)–(6). Let the FDI filter for the pth

state be designed as in Eq. (13) and x̂p(0) = xp(0). Assume that the

state xp is only directly affected by the jth element, uc,j , of the input

vector [uT
1

uT
2
]
T
. Let tf

p be the earliest time for which the fault associated

with uc,j is not zero (i.e., ũf,j /= 0), then the FDI filter of Eq. (13) ensures

that rp(tf +
p ) /= 0. Also, rp(t) /= 0 only if ũf,j(s) /= 0 for some 0 ≤ s < t.

Note that due to sensor measurement and process noise, the

residuals will be nonzero even without an actuator fault. This neces-

sitates the use of fault detection thresholds so that a fault is declared

only when a residual exceeds a specific threshold value, rp,max. This

threshold value is chosen to avoid false alarms due to process and

sensor measurement noise, but should still be sensitive enough to

detect faults in a timely manner so that effective fault-tolerant con-

trol can be performed. Note also that although the control inputs

are involved in the formulation of filters, the design of the filters is

independent from the design of the control system; therefore, the

way we split the control inputs in the DMPC design does not affect

the FDI system.

The objective of the FDI scheme it to quickly detect an actua-

tor fault when it occurs, and then identify which of the m1 + m2

possible different actuator faults (i.e., ũf,j , j = 1, . . . , m1 + m2) has

occurred. When a fault ũf,j occurs, one or more of the filter resid-

uals will become nonzero. Once a fault is detected, the monitoring

system will declare a fault alarm. In order to isolate a fault, the sys-

tem must have an isolable structure in which different faults have

different fault signatures. If a fault is isolated, an FTC system may

be used which will send the fault information and reconfiguration

policy to the two distributed controllers as shown in Fig. 1.

3.2. FTC system design

When an actuator fault is detected and isolated, automated FTC

action can be initiated. An FTC switching rule may be employed

to orchestrate the reconfiguration of the control system. This rule

determines which of the backup control loops can be activated,

in the event that the main control loop fails, in order to preserve

closed-loop stability. In general, when there is a fault in the control

system, it is impossible to carry out FTC unless there is another

backup control loop. However, in the distributed control archi-

tecture introduced in Section 2.3, because of the extra control

flexibility brought into the whole system by u2 (LMPC 2), it is pos-

sible in some cases to carry out FTC when there is a fault in the

control system without activating new control actuators.

When there is a fault in the loop of u2, and the fault can be

detected and isolated in a reasonable time frame, it is possible to

shut down the control action of u2 and to only use u1 in the control

system. This FTC strategy will maintain the closed-loop stability,

however, the performance of the closed-loop system may degrade

to some extent. When the loop of u2 is shut down, in the DMPC

scheme of Eqs. (5)–(6), only LMPC 1 is evaluated each sampling
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time, LMPC 1 does not have to be modified and does not wait for

the information sent by LMPC 2. In this case, the input trajectory

of LMPC 2 is replaced by a zero trajectory (i.e., u∗
2
(�|x(tk)) = 0 for

� ∈ [0, N�)). Theorem 2 describes the switching rule and the stabil-

ity properties of the closed-loop system when there is an actuator

fault in the loop of u2.

When there is a fault in the loop of u1, successful FTC depends on

the availability of backup control loops. From the analysis of Section

2.4, we know u1 is essential for the stabilization of the closed-loop

system, however, because of the extra control flexibility introduced

by u2, there may exist a subset of u1, that is u11, which together with

u2 can stabilize the closed-loop system. When there is a fault in the

subset u12, the FTC strategy would shut down the control action

of u12 and reconfigure the DMPC algorithms to the backup DMPC

of Eqs. (10)–(11) to manipulate u11 and u2 to control the process.

Theorem 3 states the switching rule and reconfiguration strategy

for this case.

However, when there is a fault in the subset u11, it is impossible

to successfully carry out FTC without activating backup actuators

within the DMPC systems and class of nonlinear systems consid-

ered in this work.

The proposed FTC switching rules for the system of Eq. (1) within

the DMPC system of Eqs. (5)–(6) are described as follows:

1. When a fault in the actuator associated with u2 is detected at tf ,

the proposed FTC switching rule is:

u1(t) = uL
1
(x), ∀t

u2(t) =
{

uL
2
(x), t ≤ tf

0, t > tf

(14)

2. When a fault in the actuator associated with u12 is detected at

tf , the proposed FTC switching rule is:

u1(t) =

⎧⎪⎨
⎪⎩

uL
1
(x), t ≤ tf[
ub

11
(x)

0

]
, t > tf

(15a)

u2(t) =
{

uL
2
(x), t ≤ tf

ub
2
(x), t > tf

(15b)

In what follows, we summarize the properties of the switching

rules of Eqs. (14) and (15) in Theorems 2 and 3. In order to state

and prove the two theorems, we first introduce the following

proposition.

Proposition 1 (cf. [35]). Consider the sampled trajectory x̂ of the

fault-free system of Eq. (1) in closed-loop with the Lyapunov-based

control law h applied in a sample-and-hold fashion. Let �, �s > 0 and

� > �s > 0 satisfy

−˛3(˛−1
2

(�s)) + ˛4(˛−1
1

(�))Lx,1M1� ≤ −�s

�
. (16)

Then, if �min < � where

�min = max{�s, max{V(x̂(t + �)) : V(x̂(t)) ≤ �s}} (17)

and x̂(0) ∈ ˝� , the following inequality holds

V(x̂(k�)) ≤ max{V(x̂(0)) − k�s, �min}. (18)

Proposition 1 ensures that if the fault-free system of Eq. (1)

under the control law h(x) implemented in a sample-and-hold fash-

ion starts in ˝� , then it is ultimately bounded in ˝�min
. By applying

Proposition 1, we know that when the fault-free system of Eq. (1) is

controlled under h2(x) implemented in a sample-and-hold fashion,

there exists a region ˝2,�min
in which the state of the closed-loop

system, starting in ˝2,� , is ultimately bounded.

Theorem 2. Consider the system of Eq. (1) in closed-loop under the

DMPC scheme of Eqs. (5)–(6). If x(t0) ∈ ˝� where t0 is the initial time,

and a fault in u2 is detected and isolated at time tf , then the switching

rule of Eq. (14) guarantees that the state of the closed-loop system x(t)

is ultimately bounded in ˝�min
.

Proof. Assume that a fault occurs at time tf in u2. Because of the

properties of the filter design of Eq. (13), this fault can be detected

and isolated immediately after tf . According to the switching rule of

Eq. (14), from t0 to tf , the closed-loop system of Eq. (1) is controlled

under the DMPC scheme of Eqs. (5)–(6) with u1 = uL
1
(x) and u2 =

uL
2
(x). Following from the practical stability property of the DMPC

scheme of Eqs. (5)–(6), if x(t0) ∈ ˝� , the state of the closed-loop

system of Eq. (1) will stay in ˝� and converge to ˝�min
, which

implies that at tf , the closed-loop system state is still in the stability

region of h(x), that is x(tf ) ∈ ˝� .

According to the switching rule of Eq. (14), after tf , the closed-

loop system will be controlled with u1 = uL
1

and u2 = 0. Because of

the fact that x(tf ) ∈ ˝� and because of the stability properties of

the LMPC 1 of Eq. (6), the closed-loop state will converge to the

region ˝�min
and will be ultimately bounded in ˝�min

. This proves

Theorem 2. �

Theorem 3. Consider the system of Eq. (1) in closed-loop under the

DMPC scheme of Eqs. (5)–(6). If x(t0) ∈ ˝� where t0 is the initial time

and a fault in u12 is detected and isolated at time tf , and if x(tf ) ∈ ˝2,� ,

then the switching rule of Eq. (15) guarantees that the state of the

closed-loop system x(t) is ultimately bounded in ˝2,�min
.

Proof. Assume that a fault occurs at tf in u12. Because of the prop-

erties of the filter design of Eq. (13), this fault can be detected and

isolated immediately after tf . According to the switching rule of

Eq. (15), from t0 to tf , the closed-loop system of Eq. (1) is con-

trolled under the DMPC scheme of Eqs. (5)–(6) with u1 = uL
1
(x) and

u2 = uL
2
(x). Following from the practical stability property of the

DMPC scheme of Eqs. (5)–(6), if x(t0) ∈ ˝� , the state of the closed-

loop system of Eq. (1) will be maintained in ˝� .

According to the switching rule of Eq. (14), after tf , the closed-

loop system will be controlled with u11 = ub
11

, u12 = 0 and u2 = ub
2
.

If x(tf ) ∈ ˝2,� , the closed-loop state will converge to the region

˝2,�min
and will be ultimately bounded in ˝2,�min

following the

practical stability property of the backup DMPC scheme of Eqs.

(10)–(11). This proves Theorem 3. �

Remark 6. Note that in this work, we assume that upon detec-

tion and isolation of a control actuator fault, the faulty actuator

can be shut down and the influence of the faulty actuator can be

completely separated from the rest of the system. This assumption

implies that in the normal fault-free operation and the operation

after FTC reconfiguration, the steady-state of the system considered

remains unchanged.

Remark 7. In Theorems 2 and 3, we do not consider process or

measurement noise and assume that a fault can be detected and

isolated immediately after its occurrence. However, in the presence

of process and measurement noise, faults are detected and isolated

when their corresponding residuals exceed their thresholds which

introduces delays in the FDI process. These delays may degrade

the performance but the closed-loop stability under the proposed

FTC switching rules can be maintained provided that the state of

the closed-loop system is still within the stability regions of the

backup control systems at the time of fault isolation. This point

is demonstrated in the application of the proposed methods to a

chemical process in Section 4.
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Fig. 2. Two CSTRs and a flash tank with recycle stream.

4. Application to a reactor–separator process

4.1. Process description and modeling

The process considered in this study is a three vessel,

reactor–separator system consisting of two CSTRs and a flash tank

separator as shown in Fig. 2. A feed stream to the first CSTR con-

tains the reactant, A, which is converted into the desired product,

B. Species A can also react into an undesired side-product, C. The

solvent does not react and is labeled as D. The effluent of the first

CSTR along with additional fresh feed makes up the inlet to the sec-

ond CSTR. The reactions A → B and A → C (referred to as 1 and 2,

respectively) take place in the two CSTRs in series before the efflu-

ent from CSTR 2 is fed to a flash tank. The overhead vapor from the

flash tank is condensed and recycled to the first CSTR, and the bot-

tom product stream is removed. All three vessels are assumed to

have static holdup. The dynamic equations describing the behav-

ior of the system, obtained through material and energy balances

under standard modeling assumptions, are given below:

dT1

dt
= F10

V1
(T10 − T1) + Fr

V1
(T3 − T1) + −�H1

�Cp
k1e−E1/RT1 CA1

+ −�H2

�Cp
k2e−E2/RT1 CA1 + Q1

�CpV1
(19a)

dCA1

dt
= F10

V1
(CA10 − CA1)

+ Fr

V1
(CAr − CA1) − k1e−E1/RT1 CA1 − k2e−E2/RT1 CA1 (19b)

dCB1

dt
= −F10

V1
CB1 + Fr

V1
(CBr − CB1) + k1e−E1/RT1 CA1 (19c)

dCC1

dt
= −F10

V1
CC1 + Fr

V1
(CCr − CC1) + k2e−E2/RT1 CA1 (19d)

dT2

dt
= F1

V2
(T1 − T2) + F20 + �F20

V2
(T20 − T2)

+ −�H1

�Cp
k1e−E1/RT2 CA2 + −�H2

�Cp
k2e−E2/RT2 CA2

+ Q2

�CpV2
(19e)

dCA2

dt
= F1

V2
(CA1 − CA2) + F20 + �F20

V2
(CA20 − CA2)

− k1e−E1/RT2 CA2 − k2e−E2/RT2 CA2 (19f)

dCB2

dt
= F1

V2
(CB1 − CB2) − F20 + �F20

V2
CB2 + k1e−E1/RT2 CA2 (19g)

Table 1
Process variables.

CA1, CA2, CA3 Concentrations of A in vessels 1, 2, 3

CB1, CB2, CB3 Concentrations of B in vessels 1, 2, 3

CC1, CC2, CC3 Concentrations of C in vessels 1, 2, 3

CAr , CBr , CCr Concentrations of A, B, C in the recycle

T1, T2, T3 Temperatures in vessels 1, 2, 3

T10, T20 Feed stream temperatures to vessels 1, 2

F1, F2, F3 Effluent flow rates from vessels 1, 2, 3

F10, F20 Feed stream flow rates to vessels 1, 2

CA10, CA20 Concentrations of A in the feed stream to vessels 1, 2

Fr Recycle flow rate

V1, V2, V3 Volumes of vessels 1, 2, 3

u1, u2, u3, u4 Manipulated inputs

E1, E2 Activation energy for reactions 1, 2

k1, k2 Pre-exponential values for reactions 1, 2

�H1, �H2 Heats of reaction for reactions 1, 2

Hvap Heat of vaporization

˛A , ˛B , ˛C , ˛D Relative volatilities of A, B, C, D
MWA , MWB , MWC Molecular weights of A, B, and C
Cp , R Heat capacity and gas constant

dCC2

dt
= F1

V2
(CC1 − CC2) − F20 + �F20

V2
CC2 + k2e−E2/RT2 CA2 (19h)

dT3

dt
= F2

V3
(T2 − T3) − HvapFr

�CpV3
+ Q3

�CpV3
(19i)

dCA3

dt
= F2

V3
(CA2 − CA3) − Fr

V3
(CAr − CA3) (19j)

dCB3

dt
= F2

V3
(CB2 − CB3) − Fr

V3
(CBr − CB3) (19k)

dCC3

dt
= F2

V3
(CC2 − CC3) − Fr

V3
(CCr − CC3) (19l)

The definitions for the variables used in Eq. (19) can be found in

Table 1, with the parameter values given in Table 2. Each of the

tanks has an external heat input/removal actuator. The model of

the flash tank separator operates under the assumption that the

relative volatility for each of the species remains constant within

the operating temperature range of the flash tank. This assumption

allows calculating the mass fractions in the overhead based upon

the mass fractions in the liquid portion of the vessel. It has also

been assumed that there is a negligible amount of reaction taking

place in the separator. The following algebraic equations model the

composition of the overhead stream relative to the composition of

the liquid holdup in the flash tank:

CAr = ˛ACA3

K
, CBr = ˛BCB3

K
, CCr = ˛CCC3

K

K = ˛ACA3
MWA

�
+ ˛BCB3

MWB

�
+ ˛CCC3

MWC

�
+ ˛DxD�

(20)

where xD is the mass fraction of the solvent in the flash tank liquid

holdup and is found from a mass balance.

Table 2
Parameter values.

T10 = 300, T20 = 300 K
F10 = 5, F20 = 5, Fr = 1.9 m3/h

CA10 = 4, CA20 = 3 kmol/m3

V1 = 1.0, V2 = 0.5, V3 = 1.0 m3

E1 = 5E4, E2 = 5.5E4 kJ/kmol

k1 = 3E6, k2 = 3E6 1/h

�H1 = −5E4, �H2 = −5.3E4 kJ/kmol

Hvap = 5 kJ/kmol

Cp = 0.231 kJ/kg K

R = 8.314 kJ/kmol K

� = 1000 kg/m3

˛A = 2, ˛B = 1, ˛C = 1.5, ˛D = 3 Unitless

MWA = 50, MWB = 50, MWC = 50 kg/kmol
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Fig. 3. Temperature profiles for each vessel with a fault in the heat input/removal actuator to vessel 2 at t = 0.2 h. Fault is detected at t = 0.201 h and isolated at t = 0.216 h.

No FTC is implemented.

The system of Eq. (19) is modeled with sensor measurement

noise and Gaussian process noise. The sensor measurement noise

is generated using a zero-mean normal distribution with a standard

deviation of 10−1 for the three temperature states and 10−2 for the

nine concentration states. Noise is applied to each continuous mea-

surement of temperatures and concentrations with a frequency of

�m = 0.001 h. The process noise is generated similarly, with a zero-

mean normal distribution and the same standard deviation values.

Process noise is added to the right-hand side of the ODEs in the sys-

tem of Eq. (19) and changes with a frequency of �p = 0.001 h. In all

three vessels, the heat input/removal is a manipulated variable for

controlling the reactors at the appropriate operating temperature.

In addition the second tank’s inlet flow rate is used as a manipu-

lated variable. The system has one unstable and two stable steady

Fig. 4. Concentration profiles (CA = × [left axis], CB = ©, CC = ♦ [right axis]) for each vessel with a fault in the heat input/removal actuator to vessel 2 at t = 0.2 h. Fault is

detected at t = 0.201 h and isolated at t = 0.216 h. No FTC is implemented.
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Fig. 5. FDI filter residuals for temperatures (T1, T2, T3) and concentration (CA2, CB2, CC2) with a fault in the heat input/removal actuator to vessel 2 at t = 0.2 h. Fault is detected

at t = 0.201 h and isolated at t = 0.216 h. No FTC is implemented.

states. The desired operating steady state is the unstable steady

state:

xuss = [T1 CA1 CB1 CC1 T2 CA2 CB2 CC2 T3 CA3 CB3 CC3]T

= [370 3.32 0.17 0.04 435 2.75 0.45 0.11 435 2.88 0.50 0.12]T

The first set of manipulated inputs is the heats injected to or

removed from the three vessels, that is u1 = [ Q1 Q2 Q3 ]
T
; the

second set of manipulated input is the inlet flow rate to vessel 2, that

is u2 = �F20 = F20 − F20s. The control variables are deviation vari-

ables, whose values at the desired steady state are zero and subject

to the constraints |Qi| ≤ 106 kJ/h (i = 1, 2, 3) and |�F20| ≤ 5 m3/h.

Fig. 6. Temperature profiles for each vessel with a fault in the heat input/removal actuator to vessel 2 at t = 0.2 h. Fault is detected at t = 0.201 h and isolated at t = 0.216 h.

The FTC switching rule of Eq. (15a) is implemented.
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Fig. 7. Concentration profiles (CA = × [left axis], CB = ©, CC = ♦ [right axis]) for each vessel with a fault in the heat input/removal actuator to vessel 2 at t = 0.2 h. Fault is

detected at t = 0.201 h and isolated at t = 0.216 h. The FTC switching rule of Eq. (15a) is implemented, but cannot stabilize T2 and T3 to the desired steady-state.

Fig. 8. Control actions with a fault in the heat input/removal actuator to vessel 2 at t = 0.2 h. Fault is detected at t = 0.201 h and isolated at t = 0.216 h. The FTC switching

rule of Eq. (15a) is implemented.

We consider a quadratic Lyapunov function V(x) = xT Px with

P = diag([20 103 103 103 10 103 103 103 10 103 103

103]) 4 and design the controller h(x) as three PI controllers with

proportional gains Kp1 = Kp2 = Kp3 = 8000 and integral time con-

4 diag(v) denotes a matrix with its diagonal elements being the elements of vector

v and all the other elements being zeros.

stants �I1 = �I2 = �I3 = 10 based on the measurements of T1, T2 and

T3, respectively. Note that, in the absence of process and measure-

ment noise, this design of h(x) manipulating u1 = [Q1 Q2 Q3]

can stabilize the closed-loop system asymptotically without the

help of u2. Based on h(x) and V(x), we design LMPC 1 to determine

u1 and LMPC 2 to determine u2 following the forms given in

Eqs. (6) and (5), respectively. This control design is the fault-free

control configuration for the closed-loop system. In the design of
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Fig. 9. Temperature profiles for each vessel with a fault in the heat input/removal actuator to vessel 2 at t = 0.2 h. Fault is detected at t = 0.201 h and isolated at t = 0.216 h.

The FTC switching rule of Eq. (15) is implemented.

the LMPC controllers, the weighting matrices are chosen to be Qc =
diag([20 103 103 103 10 103 103 103 10 103 103

103]), R1 = diag([(5 5 5) · 10−12]) and R2 = 100. The horizon for

the optimization problem is N = 5 with a time step of � = 0.01 h.

In addition, the control input u1 can be divided into two sets,

u11 = [Q1 Q3]T and u12 = Q2. The input combination u11 and u2 is

able to stabilize the closed-loop system which can be used as the

input configuration of the backup DMPC system of Eqs. (10)–(11).

In order to design the backup DMPC, we need to design a sec-

ond Lyapunov-based controller h2(x) which manipulates Q1, Q3 and

�F20. We also design h2 through PI control law with proportional

gains Kb
p1

= Kb
p2

= 8000, Kb
p3

= −0.3 and integral time constants

�b
I1 = �b

I2 = �b
I3 = 10 based on the measurements of T1, T3 and T2,

respectively. The control design h2 can stabilize the closed-loop

system asymptotically with Q2 = 0 in the absence of process and

measurement noise. In the design of the backup DMPC system, we

choose V2(x) = V(x). The backup DMPC system is the backup con-

trol configuration when there is a fault in the actuators associated

with u12.

Fig. 10. Concentration profiles (CA = × [left axis], CB = ©, CC = ♦ [right axis]) for each vessel with a fault in the heat input/removal actuator to vessel 2 at t = 0.2 h. Fault is

detected at t = 0.201 h and isolated at t = 0.216 h. The FTC switching rule of Eq. (15) is implemented.
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Fig. 11. FDI filter residuals for temperatures (T1, T2, T3) and concentration (CA2, CB2, CC2) with a fault in the heat input/removal actuator to vessel 2 at t = 0.2 h. Fault is

detected at t = 0.201 h and isolated at t = 0.216 h. The FTC switching rule of Eq. (15) is implemented.

In order to perform FDI for the reactor–separator system, we

construct the FDI filters for the states affected directly by the four

manipulated inputs as in Eq. (13). The states affected directly by

the manipulated inputs are T1, CA2, CB2, CC2, T2 and T3. In addition,

the FDI residuals take the following form:

rTi
(t) = |T̂i(t) − Ti(t)|, i = 1, 2, 3

rCi2
(t) = |Ĉi2(t) − Ci2(t)|, i = A, B, C.

(21)

The threshold values used for each residual in the numerical sim-

ulations are as follows:

rTi,max = 5K, i = 1, 2, 3

rCi2,max = 0.08 kmol/m3, i = A, B, C.

If a fault affects more than one state directly, more than one residual

will be nonzero. However, because of the process dynamics and

threshold values, the residuals will not exceed the thresholds at

the same time. In order to avoid false isolation of faults, we also use

Fig. 12. Control actions with a fault in the heat input/removal actuator to vessel 2 at t = 0.2 h. Fault is detected at t = 0.201 h and isolated at t = 0.216 h. The FTC switching

rule of Eq. (15) is implemented.
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Fig. 13. Temperature profiles for each vessel with a fault in the inlet flow actuator to vessel 2 at t = 0.2 h. Fault is detected at t = 0.204 h and isolated at t = 0.219 h. No FTC

is implemented.

a fault isolation waiting time. That is, when the FDI system detects a

fault at tf , it will not isolate the fault until tw time later. This waiting

time tw is chosen to make sure that different faults have different

fault signatures to avoid false isolation but should also be sensitive

enough to isolate faults in a timely manner. The waiting time tw

used in the simulations is tw = 0.015 h.

We consider two different faults in the following simulations.

First, we will consider a fault in the heat input/removal actuator to

vessel 2, that is a fault in Q2. Because Q2 only affects directly the

state T2 and all the measurements are continuously available, when

there is an actuator fault in Q2, only the residual corresponding to T2

will exceed its threshold. The second fault we will consider is a fault

in the inlet flow actuator to vessel 2, that is a fault in �F20. Because

the control action �F20 affects directly the states T2, CA2, CB2 and

CC2, when there is an actuator fault in F20, more than one residuals

will exceed their thresholds. Note that the thresholds and waiting

time have been chosen in a way that we can distinguish between

faults in Q2 and F20 correctly.

Fig. 14. Concentration profiles (CA = × [left axis], CB = ©, CC = ♦ [right axis]) for each vessel with a fault in the inlet flow actuator to vessel 2 at t = 0.2 h. Fault is detected at

t = 0.204 h and isolated at t = 0.219 h. No FTC is implemented.
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Fig. 15. FDI filter residuals for temperatures (T1, T2, T3) and concentration (CA2, CB2, CC2) with a fault in the inlet flow actuator to vessel 2 at t = 0.2 h. Fault is detected at

t = 0.204 h and isolated at t = 0.219 h. No FTC is implemented.

4.2. Simulation results

In the following simulations, the plant is initialized at the

target steady state (xuss) and simulated up to t = 1.0 h with a

fault being triggered at time t = 0.2 h for all the simulations.

The process and measurement noise bounds used were wp =
[2.5 0.25 0.25 0.25 2.5 0.25 0.25 0.25 2.5 0.25 0.25

0.25] and wm = 0.1wp, respectively.

First, we consider the fault in the heat input/removal actuator

to vessel 2 which renders Q2 = −106 kJ/h. Figs. 3 and 4 show the

temperature and concentration profiles for each vessel when all

controlled actuators are completely functional up to time t = 0.2 h,

using u1 = [Q1 Q2 Q3]T and u2 = �F20. The dotted lines in the

figures represent the target steady-state values. In this example, no

FTC is implemented and at time t = 0.2 h a fault is triggered and the

fault is detected at time t = 0.201 h and correctly isolated to a fault

Fig. 16. Temperature profiles for each vessel with a fault in the inlet flow actuator to vessel 2 at t = 0.2 h. Fault is detected at t = 0.204 h and isolated at t = 0.219 h. The FTC

switching rule of Eq. (14) is implemented.
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Fig. 17. Concentration profiles (CA = × [left axis], CB = ©, CC = ♦ [right axis]) for each vessel with a fault in the inlet flow actuator to vessel 2 at t = 0.2 h. Fault is detected at

t = 0.204 h and isolated at t = 0.219 h. The FTC switching rule of Eq. (14) is implemented.

in Q2 at time t = 0.216 h; we see that the control system cannot

stabilize the process at the unstable steady state. Fig. 5 shows the

corresponding residuals with no FTC.

Similar to the above scenario, the same simulation is consid-

ered, but upon isolation of the fault in Q2, the control system is

reconfigured as follows: LMPC 1 is updated to only optimize u11 =
[Q1 Q3]T (i.e., from u1 = uL

1
to u1 = [ub

11
0]

T
) and shut down the

input for Q2 (i.e., u12 = Q2 = 0) while maintaining the identical

LMPC 2 for u2 (i.e., u2 = uL
2
). This reconfiguration implies that only

the FTC switching rule of Eq. (15a) is implemented and LMPC 2 for

u2 is operating on the assumption that LMPC 1 is using all three heat

input/removal actuators. The temperature and concentration pro-

files of the closed-loop system under this reconfiguration are shown

in Figs. 6 and 7. From Figs. 6 and 7, we see that the system cannot

be stabilized using only the switching rule of Eq. (15a). As shown

in Fig. 8, using only the FTC switching rule of Eq. (15a), the con-

Fig. 18. FDI filter residuals for temperatures (T1, T2, T3) and concentration (CA2, CB2, CC2) with a fault in the inlet flow actuator to vessel 2 at t = 0.2 h. Fault is detected at

t = 0.204 h and isolated at t = 0.219 h. The FTC switching rule of Eq. (14) is implemented.
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trol action for u2 = �F20 is not as large as required for stabilization

since u2 expects the control action of Q2 to help stabilize the sys-

tem; please also see Fig. 12 for the profile of u2 when the complete

FTC switching rule of Eq. (15) is implemented for comparison.

The next setup is identical to the conditions tested previously,

where we consider a fault in Q2, but the FTC will now use the

complete switching rule of Eq. (15) where the LMPC control law

of u2 is also updated to account for the complimentary controller

u11 = [Q1 Q3]T controlling only two heat input/removal actuators.

Figs. 9 and 10 show the temperature and concentration profiles for

each vessel when the fault in Q2 is triggered at t = 0.2 h and FTC

is carried out when the fault is isolated. Fig. 11 shows the corre-

sponding residuals, where the fault is detected at time t = 0.201 h

and isolated at t = 0.216 h. We see from these figures that when

there is a fault in Q2, the state of the closed-loop system deviates

from the required steady state, and upon isolation of the fault, the

FTC switching rule of Eq. (15) is carried out and the reconfigured

DMPC is able to drive the state of the system back to the desired

steady state. The temperature and concentration trajectories return

near the steady state at t = 0.60 h and then minimal control action

is required to further maintain system stability. The reconfiguration

of u2 allows the system to be stabilized with an appropriately strong

control action from ub
2
. The difference in control action can clearly

be seen by comparing Fig. 12, where both u1 and u2 controllers are

reconfigured, to Fig. 8, where only u1 is reconfigured.

Next, we consider a fault in the inlet flow control actuator of

vessel 2, F20 which renders �F20 = 5 m3/h. Figs. 13 and 14 show

the temperature and concentration profiles for each vessel when

the fault in F20 is triggered at t = 0.2 h and no FTC is implemented;

we see that the control system cannot stabilize the process at the

desired steady state. Fig. 15 shows the corresponding residuals,

from which we see that the fault is detected at t = 0.204 h when the

residual of T2 exceeds its threshold and the fault can be isolated at

t = 0.219 h when the residuals corresponding to T2 and CB2
exceed

their thresholds, respectively.

In the last simulation scenario, we consider the same fault in

F20, but upon detection at t = 0.204 h and isolation of the fault

at t = 0.219 h, we carry out the switching rule of Eq. (14) and the

input F20 is shut down and separated from the plant. In this par-

ticular example the FTC system only reconfigures one controller by

switching off the u2 controller and resetting u2 = �F20 = 0, while

maintaining the LMPC controller u1 the same. We know from Sec-

tion 3.2 that u1 with u2 = 0 can stabilize the trajectories toward the

set-point. Figs. 16 and 17 show the temperature and concentration

profiles for each vessel when the F20 fault is triggered at t = 0.2 h

and FTC is carried out after the waiting time tw . We see from these

figures that when there is a fault in F20, the state of the closed-loop

system deviates from the desired steady state, and upon the isola-

tion of the fault, the FTC switching rule of Eq. (14) is carried out and

the reconfigured DMPC is able to drive the state of the closed-loop

system back to the desired steady state. The corresponding residu-

als are shown in Fig. 18, where we see that an actuator fault in F20

significantly affects the residuals corresponding to T2 and CB2.

5. Conclusions

In this work, a model-based fault detection and isolation and

fault-tolerant control system was designed for the monitoring and

reconfiguration of distributed model predictive control systems

applied to nonlinear processes in the presence of control actuator

faults. Specific fault tolerant control switching rules were devel-

oped to guide the control system reconfiguration. The applicability

and effectiveness of the proposed design was demonstrated via a

chemical process example which consists of two CSTRs and a flash

tank separator with a recycle stream.
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