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SUMMARY

In this work, we develop a data-based monitoring and reconfiguration system for a distributed model
predictive control system in the presence of control actuator faults. Specifically, we first design fault
detection filters and filter residuals, which are computed via exponentially weighted moving average, to
effectively detect faults. Then, we propose a fault isolation approach that uses adaptive fault isolation time
windows whose length depends on the rate of change of the fault residuals to quickly and accurately isolate
actuator faults. Simultaneously, we estimate the magnitudes of the faults using a least-squares method and
based on the estimated fault values, we design appropriate control system reconfiguration (fault-tolerant
control) strategies to handle the actuator faults and maintain the closed-loop system state within a desired
operating region. A nonlinear chemical process example is used to demonstrate the approach. Copyright
� 2011 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In chemical process industry, there is a trend toward ‘smart’ plants that are capable of highly
automated control with decision making at the plant level taking into account environmental,
health, safety and economic considerations [1, 2]. Along with the move toward more automated
plant operation, improved methods of fault detection, isolation and handling are necessary due
to the issues raised by automation itself. Despite the many benefits of automatic process control,
increased complexity and instrumentation can cause automated plants to become more susceptible
to control system failures. Abnormal situations cost U.S. industries over $20 billion each year [3].
Fault-tolerant control (FTC) is a field that has received a significant amount of attention recently
in the context of chemical process control and operations as a means for avoiding disaster in the
case of a fault; see, for example, [4, 5]. FTC attempts to reconfigure a process control system upon
detection of a fault and isolation of its cause, in order to preserve closed-loop system stability and
performance. Fault detection and isolation (FDI) methods can generally be divided into two broad
categories: model-based and data-based. Model-based FDI methods generally rely on mathematical
models of the process developed either from first principles or from system identification. The data
generated from the model are compared with measured data from the physical system to create
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residuals that relate to specific faults. With an accurate process model, it is possible to accomplish
FDI for specific process structures (see, for example, [6, 7]). Data-based methods, on the other
hand, rely on real-time process measurements and historical process measurement data in order
to perform FDI. It is then possible, particularly for linear process systems, to extract information
about the fault by comparing the location of the system in the state-space with the past faulty
behavior (e.g. [8]). While many of these methods have been successful in achieving fault detection,
data-based fault isolation remains a difficult task, particularly for nonlinear processes. The reader
may refer to [9, 10] for a review of model-based and data-based FDI methods.

On the other hand, within process control, there is a trend toward distributed control architectures
in which distributed optimization-based controllers compute the manipulated inputs in a coordinated
fashion (e.g. [11–14]). Model predictive control (MPC) is a natural control framework to deal with
the design of cooperative, distributed control systems because of its ability to handle input and state
constraints, and also because it can account and compensate for the actions of other actuators. In
the recent literature, several distributed MPC (DMPC) methods have been proposed that deal with
the coordination of separate MPCs that communicate in order to obtain optimal input trajectories in
a distributed manner; see, for example, [11, 12, 15, 16]. In our previous work [13] (see also [17]),
we proposed a DMPC architecture with one-directional communication for nonlinear process
systems. In this architecture, two separate MPCs designed via Lyapunov-based MPC (LMPC) were
considered, in which one LMPC was used to guarantee the stability of the closed-loop system
and the other LMPC was used to improve the closed-loop performance. In [14], we extended
the DMPC architecture developed in [13] to include multiple distributed controllers and relaxed
the requirement that one of the distributed controllers should be able to stabilize the closed-loop
system. In [18], we developed an FDI and FTC system for the monitoring and reconfiguration of
DMPC systems applied to general nonlinear processes in the presence of control actuator faults.
The FDI and FTC system developed in [18] is based on process models and the assumption that
once a faulty actuator is isolated, it can be reset to its zero state immediately.

In this paper, we take advantage of both process models and process measurements to develop
a monitoring and reconfiguration system for a DMPC system in the presence of control actuator
faults. Specifically, we first design fault detection filters and corresponding filter residuals, which
are computed via exponentially weighted moving average (EWMA), to effectively detect actuator
faults. Then, we propose a fault isolation approach that uses adaptive fault isolation time windows
to quickly and accurately isolate actuator faults. Simultaneously, we estimate the magnitudes of the
faults using a least-squares method and based on the estimated fault values, we design appropriate
FTC strategies to handle the actuator faults and maintain the closed-loop system state within
a desired operating region. A nonlinear chemical process example is used to demonstrate the
approach.

2. NOTATION

The operator |·| is used to denote the absolute value of a scalar and the operator ‖·‖ is used
to denote the Euclidean norm of a vector, whereas ‖·‖Q refers to the square of the weighted
Euclidean norm, defined by ‖x‖Q = xT Qx for all x ∈ Rn . The symbol diag(v) denotes a square
diagonal matrix whose diagonal elements are the elements of the vector v.

3. PROBLEM FORMULATION AND PRELIMINARIES

3.1. Class of nonlinear systems

We consider nonlinear processes described by the following state-space model:

ẋ(t)= f (x)+
2∑

i=1
gi (x)(ui (t)+ ũi (t)) (1)
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where x ∈ Rn denotes the set of state variables, and u1 ∈ Rm1 and u2 ∈ Rm2 denote two sets of
manipulated inputs, and ũ1 ∈ Rm1 and ũ2 ∈ Rm2 denote the unknown fault vectors for u1 and u2,
respectively. We consider that u1 + ũ1 and u2 + ũ2 take values in non-empty convex sets U1 ∈ Rm1

and U2 ∈ Rm2 , respectively. The convex sets U1 and U2 are defined as follows:

U1 = {u1 + ũ1 ∈ Rm1 :‖u1 + ũ1‖�umax
1 }

U2 = {u2 + ũ2 ∈ Rm2 :‖u2 + ũ2‖�umax
2 }

where umax
1 and umax

2 are the magnitudes of the input constraints. The system of Equation (1) can
be re-written in a compact form as follows:

ẋ(t)= f (x)+g(x)(u(t)+ ũ(t))

where g(x)=[g1(x) g2(x)], u(t)=[u1(t)T u2(t)T]T and ũ(t)=[ũ1(t)T ũ2(t)T]T. We also assume
that U is a suitable composition of U1 and U2 such that u+ũ ∈U is equivalent to u1+ũ1∈U1 and
u2+ũ2∈U2.

We use the variable ũ f, j , j =1, . . . ,m1 +m2, to model the possible faults associated with the j th
element in the manipulated input vector u. Under fault-free operating conditions, we have ũ =0,
and hence, ũ f, j =0 for all j =1, . . . ,m1 +m2. When fault j occurs, ũ f, j takes a nonzero value. We
assume that f and g are locally Lipschitz vector functions and that f (0)=0. This means that the
origin is an equilibrium point for the fault-free system (ũ =0 for all t) with u =0. We also assume
that the state x of the system is available synchronously and continuously at each sampling time.

Remark 1
Note that the use of two sets of manipulated inputs is adopted because of the implementation of
a DMPC system to regulate the process; please see Section 3.2 for the control system design. An
example of a chemical process system described by Equation (1) is given in Section 5.

3.2. Fault-free control system design

We assume that there exists a nonlinear control law h(x) that determines u1 (i.e. u1(t)=h(x(t)))
and renders the origin of the fault-free closed-loop system asymptotically stable with u2(t)=0.
This assumption is essentially a standard stabilizability requirement made in all linear/nonlinear
control methods and implies that there exists a Lyapunov function V (x) of the system whose time
derivative is always negative when u1 =h(x) is applied to the fault-free closed-loop system [19, 20].

We adopt the DMPC architecture introduced in [13] to design the fault-free control system.
In this DMPC architecture, one LMPC is designed to determine u1 and is responsible for the
closed-loop stability; and another LMPC is designed to compute u2 and to coordinate with u1 to
improve the closed-loop performance. We will refer to the two LMPCs computing u1 and u2 as
LMPC 1 and LMPC 2, respectively. The two LMPCs are evaluated in a sequential fashion (i.e.
LMPC 2 is first evaluated and then LMPC 1 is evaluated) at discrete time instants {tk�0} with
tk = t0 +k�, k =0,1, . . ., where t0 is the initial time and � is a sampling time.

Specifically, the optimization problem of LMPC 2 at time tk depends on the state measurement
x(tk) and is formulated as follows:

min
u2∈S(�)

∫ tk+N

tk
L(x̃(�),u1(�),u2(�))d� (2a)

s.t. ˙̃x(t)= f (x̃(t))+
2∑

i=1
gi (x̃(t))ui (t) (2b)

x̃(tk)= x(tk) (2c)

u1(t)=h(x̃(tk+ j )) ∀ t ∈ [tk+ j , tk+ j+1) (2d)
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u2(t)∈U2 (2e)

�V (x)

�x
g2(x(tk))u2(tk)�0 (2f)

with L(x̃,u1,u2)=‖x̃(�)‖Qc +‖u1(�)‖Rc1 +‖u2(�)‖Rc2 , where S(�) is the family of piece-wise
constant functions with sampling period �, N is the prediction horizon, Qc, Rc1 and Rc2 are
positive-definite weighting matrices, j =0, . . . , N −1, x̃ is the predicted trajectory of the fault-free
system with u2 being the input trajectory computed by LMPC 2 of Equation (2) and u1 being
the nonlinear controller h(x) applied in a sample-and-hold fashion. The optimal solution to this
optimization problem is denoted as u∗

2(t |tk). This information is sent to LMPC 1. The optimization
problem of LMPC 1 depends on x(tk) and the decision made by LMPC 2 (i.e. u∗

2(t |tk)). Specifically,
LMPC 1 is based on the following optimization problem:

min
u1∈S(�)

∫ tk+N

tk
L(x̃(�),u1(�),u2(�))d� (3a)

s.t. ˙̃x(t)= f (x̃(t))+
2∑

i=1
gi (x̃(t))ui (t) (3b)

x̃(t)= x(tk) (3c)

u1(t)∈U1 (3d)

u2(t)=u∗
2(t |tk) (3e)

�V (x)

�x
g1(x(tk))u1(tk)��V (x)

�x
g1(x(tk))h(x(tk)) (3f)

The optimal solution to this optimization problem is denoted by u∗
1(t |tk).

Once both optimization problems are solved, the manipulated inputs of the DMPC system based
on LMPC 1 and LMPC 2 are defined as follows:

uL
1 (t) = u∗

1(t |tk) ∀ t ∈ [tk, tk+1)

uL
2 (t) = u∗

2(t |tk) ∀ t ∈ [tk, tk+1).

The fault-free closed-loop system of Equation (1) under this DMPC scheme with inputs defined
by u1 =uL

1 and u2 =uL
2 maintains practical stability because of the two Lyapunov-based constraints

of Equations (2f) and (3f) [13].

3.3. FTC considerations

The presence of the control action u2 brings extra control flexibility to the closed-loop system
which can be used to carry out FTC. Specifically, we further assume that the control input u1 can
be decomposed into two subsets (i.e. u1 = [uT

11 uT
12]T) and that there exists a nonlinear control law

h2(x)= [h21(x)T h22(x)T]T which determines u11 and u2 (i.e. u11 =h21(x) and u2 =h22(x)) and
is able to asymptotically stabilize the fault-free closed-loop system with u12 =0. This assumption
implies that there exists a Lyapunov function V2(x) of the system whose time derivative is always
negative when u11 =h21(x), u12 =0 and u2 =h22(x) are applied.

Based on h2(x), we can design a backup DMPC system (i.e. DMPC with LMPC 1 of Equation (5)
and LMPC 2 of Equation (4) below) to manipulate u11 and u2 to stabilize the closed-loop system
following the results developed in [14]. We still design two LMPC controllers in the backup DMPC
system. One LMPC is used to manipulate u11 and the other is used to manipulate u2. In this backup
DMPC system, the two LMPCs coordinate their actions to maintain the closed-loop stability. We
refer to the LMPC manipulating u11 as the backup LMPC 1 and the LMPC manipulating u2 as
the backup LMPC 2. The two backup LMPCs are also evaluated in sequence.
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The backup LMPC 2 optimizes u2 and is designed as follows:

min
u2∈S(�)

∫ tk+N

tk
L(x̃(�),u1(�),u2(�))d� (4a)

s.t. ˙̃x(t)= f (x̃(t))+g1(x̃(t))[u11(t)Tu12(t)T]T +g2(x̃(t))u2(t) (4b)

x̃(tk)= x(tk) (4c)

u11(t)=h21(x̃(tk+ j )) ∀ t ∈ [tk+ j , tk+ j+1) (4d)

u12(t)=0 (4e)

u2(t)∈U2 (4f)

�V2(x)

�x
g2(x(tk))u2(tk)��V2(x)

�x
g2(x(tk))h22(x(tk)) (4g)

The solution to the optimization problem of Equation (4) is denoted by ub,∗
2 (t |tk). The backup

LMPC 1 optimizes u11 and is designed as follows:

min
u11∈S(�)

∫ tk+N

tk
L(x̃(�),u1(�),u2(�))d� (5a)

s.t. ˙̃x(t)= f (x̃(t))+g1(x̃(t))[u11(t)Tu12(t)T]T +g2(x̃(t))u2(t) (5b)

x̃(tk)= x(tk) (5c)

u11(t)∈U1 (5d)

u12(t)=0 (5e)

u2 =ub,∗
2 (t |tk) (5f)

�V2(x)

�x
g1(x(tk))[u11(t)T 0T]T��V2(x)

�x
g1(x(tk))[h21(x(tk))T 0T]T (5g)

The solution to the optimization problem of Equation (5) is denoted by ub,∗
11 (t |tk). The control

inputs of the backup DMPC are defined as follows:

ub
11(t) = ub,∗

11 (t |tk) ∀ t ∈ [tk, tk+1)

ub
12(t) = 0 ∀ t

ub
2(t) = ub,∗

2 (t |tk) ∀ t ∈ [tk, tk+1)

The fault-free closed-loop system of Equation (1) under the backup DMPC control with inputs
defined by u11 =ub

11, u12 =0 and u2 =ub
2 maintains practical stability of the closed-loop system

because of the Lyapunov-based constraints of Equations (4g) and (5g) [14].
To present the proposed method, in this work, we consider control actuator faults that can be

detected by appropriate nonlinear dynamic fault filters via observing the evolution of the closed-
loop system state. In order to isolate the occurrence of a fault, it is further required to assume
that the control actuator in question is the only one influencing the observed ‘faulty’ states (i.e.
each fault has a unique fault signature). For more discussions on systems having verifiable isolable
structures, please see [7, 21].
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4. FDI AND FTC SYSTEM DESIGN

In this section, we develop a combined model-based and data-based FDI and FTC method for the
closed-loop system of Equation (1) under the DMPC of Equations (2) and (3).

4.1. Design of fault detection filters and residuals

The FDI filter is designed on the basis of the process model of Equation (1) under the DMPC
system of Equations (2) and (3) used to control the process and it is used to predict the expected
process dynamic state response in the absence of faults. These expected state values are compared
with the corresponding real-time measured process states, forming the residuals (i.e. rp(t) defined
below). Then, the residuals are compared with threshold values computed from closed-loop data
under normal operation and a fault is declared (detected) when the residual values exceed the
thresholds. Fault isolation subsequently is carried out by comparing the fault signature (i.e. what
residuals exceed their thresholds) with the signature of process/fault interaction of the various
explicitly modeled faults computed from the process model. The DMPC system of Equations (2)
and (3) is the control system for the fault-free closed-loop system. We first design an FDI scheme
to detect faults in this control system. In this FDI scheme, a filter is designed for each state and
the design of the filter for the pth, p=1, . . . ,n, state in the system state vector x is as follows [7]:

˙̂x p(t)= f p(X p)+g1p(X p)uL
1 (t)+g2p(X p)uL

2 (t) (6)

where x̂ p is the filter output for the pth state, f p, g1p and g2p are the pth components of the
vector functions f , g1 and g2, respectively. The state X p is obtained from both the actual state
measurements, x , and the filter output, x̂ p, as follows:

X p(t)= [x1(t), . . . , x p−1(t), x̂ p(t), x p+1(t), . . . , xn(t)]T

Note that in the filter of Equation (6), the control inputs uL
1 (t) and uL

2 (t) are determined by LMPC 1
of Equation (3) and LMPC 2 of Equation (2) as applied to the actual process based on the state
X p, and are updated every control sampling time � (i.e. the sampling time instants {tk�0}).

The FDI filters are only initialized at t =0 such that x̂ p(0)= x p(0). The information generated
by the filters provides a fault-free estimate of the actual system state at any time t and allows easy
detection of the actual system state deviations due to faults. For each state associated with a filter,
an FDI residual is defined as follows:

rp(t)=‖x̂ p(t)−x p(t)‖
with p=1, . . . ,n. The residual rp is computed continuously because x̂ p(t) is known for all t and
the state measurement, x , is also available for all t . If no fault occurs, the filter states track the
system states. In this case, the dynamics of the system states and the FDI filter states are identical,
so rp(t)=0 for all times.

In the practical case where sensor measurement noise and process noise are present, the residual
will be nonzero even without an actuator fault. In order to reduce the influence of process noise on
fault detection, we define a weighted residual rE,p, p=1, . . . ,n, for each residual rp, calculated
at discrete time instants {ti�0} with ti = t0 +i�r , i =0,1,2, . . . The weighted residual is calculated
using an EWMA method as follows [22]:

rE,p(ti )=�rp(ti )+(1−�)rE,p(ti−1) (7)

with rE,p(t0)=rp(t0) and the weighting factor �∈ (0,1]. The parameter � determines the rate
at which previous data enter into the calculations of the weighted residual. When �=1,rE,p is
equivalent to rp. The benefit of using EWMA residuals is their ability to better capture smaller
drifts in the system and to provide protection against occasional spikes. The value of � is typically
set between 0.2 and 0.5 depending on the sensitivity and responsiveness desired [22]. All further
mention of residuals will be with reference to the EWMA residuals.
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Also, due to sensor measurement and process noise, fault detection thresholds are necessary so
that a fault is declared only when a residual exceeds its specific threshold value. The thresholds
are based on historical process variance data under no fault (normal) operating conditions and
chosen to the desired degree of confidence to quickly detect possible faults. In some cases, the
residual may deviate temporarily due to normal process variance and should not be interpreted as
a fault. In these cases, it is important to properly confirm that the residual is deviating because of
a fault by waiting a specified amount of time. By waiting, we improve our confidence that a fault
has occurred and reduce the probability of false alarms. In the detection of a fault, three threshold
values for each EWMA residual are used. The threshold values for the EWMA residual, rE,p, are
calculated as discussed in [22] using the following formula:

�p,k = r̄ p +ksp

√
�

2−�
(8)

where k =3,4,5 are the weighting factors used, r̄ p and sp are the mean value and standard deviation
of the pth residual (rp) based on historical fault-free operation data of the closed-loop system,
respectively. Specifically, the historical process operation data in the application discussed in the
following section were obtained by running the closed-loop system under fault-free conditions for
a simulated period of 5 h and collecting the system state and residual values in order to compute the
average value and standard deviation for each state and each residual. These values where then used
in conjunction with Equation (8) to compute the threshold values (�p,k) for each EWMA residual.

4.2. Fault detection and isolation using adaptive windows

In this subsection, we augment our previous FDI system [7] to include an adjustable time window
based on the rate of change in the residual with the goals of reducing the probability of false
alarms and false isolation, and achieving a quicker fault recovery response.

On the occurrence of a fault, certain residuals directly associated with the fault will immediately
become nonzero at different rates (or in the case where process noise and measurement noise are
present their thresholds will be exceeded at different times depending on the fault’s magnitude).
An improvement over previous work is the use of EWMA residuals in combination with adjustable
fault isolation time windows.

When there is a residual that exceeds its second threshold and stays above it for a time period
�td , then a fault is declared. For example, if rE,p exceeds �p,4 at time t�p,4 and stays above
�p,4 from t�p,4 to t�p,4 +�td , then a fault is declared. The waiting time �td is used to reduce the
incidence of false alarms and, in particular, intermittent spikes.

Fault isolation is carried out simultaneously with fault detection. We define a fault signature as
a set Ip = [i1, i2, . . . , in], where i p =1 if the residual rE,p��p,3, otherwise i p =0 for a particular
fault ũ f,p. We consider that the system has an isolable structure which implies that each of the
possible faults has a unique fault signature; that is, Ip �= Iq with p �=q . Based on the rate of change
in the first residual that exceeds its second threshold, a time window over which a fault may be
isolated is calculated. If there is no residual that exceeds its third threshold within the time window,
the fault is isolated at the end of the time window. The isolated fault has a signature composed of
all the residuals that exceed their second thresholds. If there is at least one residual that exceeds
its third threshold within the fault isolation time window, a new fault isolation time window is
calculated and the fault is isolated at the end of this new time window. For example, if rE,p is the
first residual that exceeds its threshold �p,4, a time window, �tp, is calculated as follows:

�tp =w(t�p,4 − t�p,3 ) (9)

where w is a constant or a complex function of the model and its current state, and t�p,4 and t�p,3 are
the time instants the residual rE,p exceeds �p,4 and �p,3, respectively. If from t�p,4 to t�p,4 +�tp,
there is no residual that exceeds its third threshold, the fault is isolated at time t�p,4 +�tp with
a signature composed of all the residuals whose values exceed their second thresholds. If from
t�p,4 to t�p,4 +�tp, there is at least one residual that exceed its third threshold, for example, rE,q
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Figure 1. An example of residual evolution after the occurrence of a fault at t f that affects residual rE,p .

exceeds �q,5 at time t�q,5 , then a new fault isolation time window, �tq , is calculated following
Equation (9) based on the change rate of rE,q from t�q,4 to t�q,5 , and the fault is isolated at
min{t�p,4 +�tp, t�q,5 +�tq}.

An example with one residual is shown in Figure 1. In Figure 1, a fault occurs at time t f ,
which drives a residual rE,p to go up. The residual exceeds its first and second thresholds at time
t�p,3 and t�p,4 , respectively. Once the residual exceeds its second threshold �p,4 and stays above
it for a short waiting time �td , a fault is declared at time td (td = t�p,4 +�td ). At the time t�p,4 ,
a fault isolation time window �p is also calculated. Because the residual continues to increase
and exceeds its third threshold, �p,5, at time t�p,5 , a new isolation window �tp2 is calculated. The
fault is isolated at time ts1 =min{ts1, ts2}. The isolated fault has a signature composed of all the
residuals that exceed their second threshold.

4.3. Fault parameter estimation

After a fault has been isolated, the FTC system must know the magnitude of the fault in order
to target the corresponding new operating point and properly stabilize the system in the presence
of the fault. To simplify the description of the proposed method, we consider faults of constant
magnitudes in this work; however, faults with slowly time-varying values can be handled using
the proposed method in a straightforward manner.

When a residual (rE,p) exceeds its first threshold (�p,3), we begin to collect the sampled system
states as well as the actual control inputs applied to the system. When the fault is confirmed and
isolated, a least-square optimization problem is solved to get an estimate of the magnitude of the
fault based on the sampled system states and the actual control inputs. Specifically, we collect the
sampled system states, x(t), and record the actual control inputs (i.e. u1(t)=uL

1 (t) and u2(t)=uL
2 (t))

applied to the system for t�p,3 to the fault isolation time tisolate with a sampling time �e. The
magnitude of the fault ũ f, j is estimated by solving the following optimization problem:

min
ũ f, j

M∑
i=0

(x(t f +i�e)− x̃(t f +i�e))2 (10a)

s.t. ˙̃x(t)= f (x̃(t))+g(x̃(t))(uL (t)+d) (10b)

x̃(t f )= x(t f ) (10c)

where uL (t)= [uL
1 (t)T uL

2 (t)T]T is the actual control inputs that have been applied to the closed-
loop system from t�p,3 to tisolate, M is the maximum integer satisfying M�e�tisolate − t�p,3 , d =
[0 . . . ũ f, j . . . 0]T is the fault vector, and x(t f ) is the system state at the fault detection time.
The solution to the optimization problem of Equation (10) is denoted by ũ∗

f, j , which is an optimal
estimate of the actual fault ũ f, j from a least-square point of view.
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4.4. FTC strategies

When a fault is detected, isolated and the magnitude of the fault is estimated, suitable FTC strategies
can be carried out to keep the closed-loop system state within a desired operating region. Because
of the fault, the origin (the operating point of the fault-free system) may not be achievable because
of the input constraints and the system structure. In this case, we may operate the system at a new
operating point within the desired operating region. To determine the new operating point xs , we
propose to solve an optimization problem. Specifically, when the fault is ũ∗

f, j , the new operating
point, xs , is obtained by solving the following optimization problem:

min
xs ,us

‖xs‖S (11a)

s.t. f (xs)+g(xs)(us +d)=0 (11b)

us +d ∈U (11c)

xs ∈ X (11d)

where S is a positive weighting matrix, d = [0 . . . ũ∗
f, j . . . 0]T and X denotes the desired operating

state space region. The objective of the above optimization problem is to find an operating point
within the desired operating state space region such that the distance (measured by weighted
Euclidean norm) between the new operating point and the origin is minimized. We assume that
the optimization problem of Equation (11) is always feasible which implies that we can always
find the new operating point xs and the corresponding new steady-state control input values
us = [uT

1s uT
2s]T.

Note that the proposed method is only one of many possible approaches to determine the new
operating point in the case of a fault. The basic idea of the proposed method is to find a new
operating point that stays as close as possible to the original operating point (i.e. the origin x =0).

Once we find the new operating point xs , we proceed to design the FTC strategies for the
fault-free DMPC system (see Equations (2) and (3)) in the presence of actuator faults. In general,
when there is a fault in the control system, it is impossible to carry out FTC unless there is
another backup control loop. However, in the fault-free DMPC system, because of the extra control
flexibility brought into the whole system by u2 (LMPC 2), it is possible in some cases to carry
out FTC without activating new control actuators.

When there is a persistent fault in the loop of u2 which is denoted by d2, and the fault can be
detected and isolated in a reasonable time frame, it is possible to switch off the controller LMPC 2
and only use u1 in the control system. When LMPC 2 is switched off from the closed-loop system,
u2 is set by the fault value (i.e. u2 =d2); and in the DMPC scheme of Equations (2) and (3), only
LMPC 1 is evaluated at each sampling time. In order to maintain the stability of the closed-loop
system, the design of LMPC 1 will need to be updated with the new operating point and its
corresponding new steady-state control input values (i.e. the cost function L(x,u1,u2) needs to be
updated with xs and us in a way such that L(xs,u1s,u2s)=0), and updated with the fault magnitude
information (i.e. u2 =d2); the design of h(x) also need to be updated with the new steady-state
information. The control inputs determined by the updated LMPC 1 will be referred to as u′

1(x).
This FTC strategy will maintain the closed-loop stability if implemented quickly such that the
state of the closed-loop system is still within the stability region of the backup controllers and
parameter estimation is sufficiently accurate, however, the performance of the closed-loop system
may degrade to some extent.

When there is a fault in the subset u12, which is denoted by d1, the FTC strategy would shut
down the control action of u12 and reconfigure the DMPC algorithms to the backup DMPC of
Equations (4) and (5) to manipulate u11 and u2 to control the process. In order to maintain the
stability of the closed-loop system, the designs of the two backup LMPCs and the design of h2(x)
needs to be updated with the new operating point and the corresponding new steady-state control
input values; as well as being updated with the fault magnitude information. The control inputs
determined by the updated designs will be referred to as u′′

1(x) and u′′
2(x).

Copyright � 2011 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control 2012; 22:68–88
DOI: 10.1002/rnc



DATA-BASED MONITORING AND RECONFIGURATION OF A DMPC SYSTEM 77

However, when there is a fault in the subset u11, it is impossible to successfully carry out FTC
without activating backup actuators within the DMPC systems for the class of nonlinear systems
considered in this work.

The FTC switching rules for the system of Equation (1) within the DMPC system of Equations (2)
and (3) are described as follows:

(1) When a fault in the actuator associated with u2 is isolated at t f , the FTC switching rule is:

u1(t) =
{

uL
1 (x), t�t f

u′
1, t>t f

(12a)

u2(t) =
{

uL
2 (x), t�t f

d2, t>t f

(12b)

(2) When a fault in the actuator associated with u12 is detected at t f , the FTC switching rule is:

u1(t) =

⎧⎪⎪⎨
⎪⎪⎩

uL
1 (x), t�t f[
u′′

11(x)

d1

]
, t>t f

(13a)

u2(t) =
{

uL
2 (x), t�t f

u′′
2(x), t>t f

(13b)

Remark 2
While in this work, the full process state is assumed to be measured in real-time, it would be
possible to implement the proposed approach using partial measurements of the full process state
vector, provided that the available measurements in such a case allow to detect, isolate and estimate
the magnitude of the fault.

Remark 3
In the present work, a DMPC system involving two distributed LMPCs which are solved in
sequence is adopted to control the process of Equation (1). The benefit of solving the two LMPCs
sequentially is that a single communication (i.e. LMPC 2 is solved first and sends its optimal
trajectory to LMPC 1 which then calculates its own trajectory) leads to control actions that guarantee
closed-loop stability due to the Lyapunov constraints while simultaneously solving LMPC 1 and
LMPC 2 may require multiple communications between the two controllers to achieve a similar
performance level.

Remark 4
Because of the structure of the system considered, it is possible in general that the origin is outside
the accessible region of the system at the time of DMPC reconfiguration after FDI has occurred
(i.e. the reconfigured DMPC cannot stabilize the closed-loop system at the origin). What can be
done and is done in this case in the present work (see the following section) is to reconfigure the
backup control system to try to maintain the closed-loop system within a region as close to the
origin as possible.

5. APPLICATION TO A REACTOR–SEPARATOR PROCESS

5.1. Process description and modeling

The process considered in this study is a three vessel, reactor–separator system consisting of two
CSTRs and a flash tank separator as shown in Figure 2. Its detailed description and modeling can
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Figure 2. Two CSTRs and a flash tank with recycle stream.

Table I. The desired operating steady-state xs .

T1 CA1 CB1 CC1
370 (K ) 3.32 (kmol/m3) 0.17 (kmol/m3) 0.04 (kmol/m3)

T2 CA2 CB2 CC2
435 (K ) 2.75 (kmol/m3) 0.45 (kmol/m3) 0.11 (kmol/m3)

T3 CA3 CB3 CC3
435 (K ) 2.88 (kmol/m3) 0.50 (kmol/m3) 0.12 (kmol/m3)

Table II. The steady-state input values.

Q1s Q2s Q3s F20s
0 (kJ/h) 0 (kJ/h) 0 (kJ/h) 5 (m3/h)

be found in [18]. Sensor and process noise were added to the simulations. The desired operating
steady-state is the unstable steady state, xs , whose values are shown in Table I.

For this process, we have two sets of manipulated inputs. The first set of manipulated inputs is the
heat injected to or removed from the three vessels, that is u1 = [Q1 − Q1s Q2 − Q2s Q3 − Q3s]T;
the second set includes the inlet flow rate to vessel 2, that is u2 = F20 − F20s . The variables Q1s ,
Q2s , Q3s and F20s denote the steady-state input values of the inputs whose values are shown in
Table II. The control inputs are subject to the constraints |Qi − Qis |�umax

1 =106 kJ/h (i =1,2,3)
and |F20 − F20s |�umax

2 =5m3/h.
In the design of the fault-free DMPC system for the process, we consider a quadratic Lyapunov

function V (x)= xT Px with P =diag([20 103 103 103 10 103 103 103 10 103 103 103]) and
design the controller h(x) as three PI controllers with proportional gains K p1 = K p2 = K p3 =8000
and integral time constants �I 1 =�I 2 =�I 3 =10 based on the measurements of T1, T2 and T3,
respectively. Note that, in the absence of process noise and measurement noise, this design of
h(x) manipulating u1 can stabilize the closed-loop system asymptotically without the use of u2.
Based on h(x) and V (x), we design LMPC 1 following Equation (3) to determine u1 and LMPC 2
following Equation (2) to determine u2. In the design of the LMPCs, the weighting matrices are
chosen to be Qc = P , R1 =diag([(5 5 5)×10−12]) and R2 =100. The horizon for the optimization
problem is N =4 with a time step of �=0.05h.

In addition, the set of control inputs u1 can be divided into two subsets, u11 = [Q1 − Q1s Q3 −
Q3s]T and u12 = Q2 − Q2s . The input combination u11 and u2 is able to stabilize the closed-loop
system which can be used as the input configuration of the backup DMPC system of Equations (4)
and (5). In order to design the backup DMPC, we need to design a second Lyapunov-based
controller h2(x) which manipulates u11 and u2. We also design h2 through PI control law with
proportional gains K b

p1 = K b
p2 =8000, K b

p3 =−0.3 and integral time constants �b
I 1 =�b

I 2 =�b
I 3 =10

based on the measurements of T1, T3 and T2, respectively. The control design h2 can stabilize the
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Table III. EWMA residual means and standard deviations.

r̄T2 r̄CA2 r̄CB2 r̄CC2
0.664900 0.013944 0.003421 0.003980
sT2 sCA2 sCB2 sCC2
0.464139 0.010351 0.002810 0.002960

closed-loop system asymptotically with Q2 =0 in the absence of process noise and measurement
noise. In the design of the backup DMPC system, we choose V2(x)=V (x).

In order to perform FDI for the reactor–separator system, we construct the FDI filters for the
states affected directly by the four manipulated inputs as in Equation (6). The states affected
directly by the manipulated inputs are T1, CA2, CB2, CC2, T2 and T3. The FDI residuals take the
following form:

rTi (t) = |T̂i (t)−Ti (t)|, i =1,2,3

rCi2 (t) = |Ĉi2(t)−Ci2(t)|, i = A, B,C
(14)

Based on these residuals, we design the EWMA residuals with �=0.5 and the sampling time �r =
0.005. The mean values and standard deviations of the EWMA residuals are shown in Table III.

We consider two different faults in the following simulations. First, we consider a fault in the
heat input/removal actuator to vessel 2, that is a fault in Q2. Because Q2 only affects the state T2
directly and all the measurements are continuously available, when there is an actuator fault in Q2,
only the residual corresponding to T2 exceeds its threshold. The second fault we consider is a fault
in the inlet flow actuator to vessel 2, that is a fault in F20. Because the control action F20 affects
directly the states T2, CA2, CB2 and CC2, when there is an actuator fault in F20, more than one of
the residuals will exceed their thresholds. In the simulations, �td =36s=0.01h, w= [4 3 3; 2 2 2]
and �e =0.005h.

5.2. Simulation results

Four different simulation sets are presented to demonstrate the merits of isolating by using the
adaptive windows based on EWMA residuals. For each simulation, the plant is initialized at the
desired steady-state xs (see Table I) and simulated to 5.0 h with a fault being triggered at 1.050 h.
Process and measurement noise is applied to the plant.

The first case considered triggers a small magnitude Q2 fault that will demonstrate longer isola-
tion windows to minimize false alarms along with a quicker response since fault detection/isolation
begins tracking the potential fault sooner. The second and third cases will demonstrate the quick
detection and isolation of a large magnitude Q2 fault using adaptive windows in comparison to an
FDI scheme using fixed isolation times. The fourth case will demonstrate an F20 small magnitude
fault.

In the first set of simulations, a Q2 fault with a magnitude of 15% of umax
1 is triggered at 1.050 h

(we will refer to it as ‘small’ Q2 fault). From the design of the system, the Q2 fault directly
affects the temperature in vessel 2 where we expect only the residual for T2 to deviate. When the
residual for T2, rE,T2 , (see top left plot of Figure 3) exceeds a chosen confidence level (i.e. its
first threshold �T2,3) at 1.065 h, the FDI system begins monitoring the rate of change of the T2
residual. The residual rE,T2 exceeds its second threshold �T2,4 at 1.075 h. This fault is confirmed
and declared at time 1.085 h after the waiting time �td =0.01h. At the same time 1.075 h, a fault
isolation window of 3.6 min=0.1h is calculated based on the rate of change of rE,T2 to ensure
proper isolation of the fault. However, because rE,T2 deviates quickly and exceeds �T2,5 at 1.080 h,
the isolation window is updated to 36s=0.01h and the Q2 fault is isolated at 1.090 h. The fault
is estimated at 18.5 kJ/h (actual fault value is 20 kJ/h). The FTC system reconfigures the control
system, which is able to stabilize the closed-loop system near the target steady state by 1.500 h
as shown in the concentration profiles in Figure 4 and the temperature profiles in Figure 5. The
corresponding control actions are shown in Figure 6.
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Figure 3. Case 1: Q2 ‘small’ fault is isolated using longer waiting time calculated from the residual
change of T2. rE,T2 (top left plot) exceeds �T2,3 at 1.065 h and then exceeds �T2,4 where the fault isolation
time is set to 3.6 min. When rE,T2 further exceeds �T2,5 at 1.080 h, the waiting time is updated to 36 s.

The fault is isolated and estimated as 18.5 kJ/h (actual 20.0 kJ/h) at 1.090 h.
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Figure 4. Case 1: Q2 ‘small’ fault is isolated and control system is reconfigured to stabilize the closed-loop
system—concentrations. Note the new steady-state values and scale.

In the second case, a Q2 fault is set to a magnitude of 80% of umax
1 and is triggered at

1.050 h (we will refer to it as the ‘large’ Q2 fault). The larger Q2 fault will demonstrate the FDI
system’s quicker response and improved robustness when used in conjunction with FTC (Figure 7).

Copyright � 2011 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control 2012; 22:68–88
DOI: 10.1002/rnc



DATA-BASED MONITORING AND RECONFIGURATION OF A DMPC SYSTEM 81

0 1 2 3 4 5
366

368

370

372

T 1

Temperatures (K)

0 1 2 3 4 5
432

434

436

438

440
T 2

0 1 2 3 4 5
432

434

436

438

T 3

Time (hr)

Figure 5. Case 1: Q2 ‘small’ fault is isolated and control system is reconfigured to stabilize the
closed-loop system—temperatures.

0 1 2 3 4 5
–5

0

5

  Q
1

Heat Inputs (105 KJ/hr)

0 1 2 3 4 5
–5

0

5

  Q
2

0 1 2 3 4 5
–5

0

5

  Q
3

0 1 2 3 4 5
–2

0

2

Δ  
F 20

Flow Rate (m3/hr)

Time (hr)

Figure 6. Case 1: Q2 ‘small’ fault is isolated and control system is reconfigured to stabilize the
closed-loop system—control actions.

In Figure 7, the ‘large’ fault compared with a ‘small’ fault of case 1 (Figure 3) causes the residual
to deviate much quicker with the FDI system beginning to monitor at 1.060 h when rT2 immediately
exceeds �T2,5 and an isolation window of 36 s is calculated. The fault is declared and isolated at
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Figure 7. Case 2: Q2 ‘large’ fault is isolated using a shorter waiting time based on residual change of T2.
rE,T2 (top left plot) immediately exceeds �T2,5 in a single measurement update at 1.060 h. The calculated
waiting time is 36 s. The fault is estimated as 88 kJ/h (actual 80 kJ/h) and FTC is implemented at 1.070 h.
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Figure 8. Case 2: Q2 ‘large’ fault is isolated and control system is reconfigured to stabilize the closed-loop
system—concentrations. Note the new steady-state values and scale.

1.070 h soon after the rE,T2 exceeded �T2,5, and the fault is estimated as 88 kJ/h (actual 80 kJ/h).
Figures 8 and 9 show that the FTC system is able to stabilize the system at a new steady-state
after reconfiguration at 1.070 h. The corresponding control actions are shown in Figure 10.
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Figure 9. Q2 ‘large’ fault is isolated and control system is reconfigured to stabilize the
closed-loop system—temperatures.

0 1 2 3 4 5
–5

0

5

  Q
1

Heat Inputs (105 KJ/hr)

0 1 2 3 4 5
–10

0

10

  Q
2

0 1 2 3 4 5
–5

0

5

  Q
3

0 1 2 3 4 5
–5

0

5

Δ  
F 20

Flow Rate (m3/hr)

Time (hr)

Figure 10. Q2 ‘large’ fault is isolated and control system is reconfigured to stabilize the
closed-loop system—control actions.

The purpose of the third case is to better illustrate the need for variable windows and minimum
waiting times for proper isolation. In the third case we trigger an identical Q2 fault as in case 2
with the exception that the FDI system uses fixed isolation windows. Similarly, when rE,T2 first
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Figure 11. Case 3: Same fault conditions as in case 2, i.e. Q2 ‘large’ fault, using fixed isolation time.
rE,T2 immediately exceeding �T2,5 at 1.060 h, but the isolation windows is set to worst case condition of
4.8 min. The fault is isolated at 1.135 h and estimated as 89 kJ/h (actual 80 kJ/h) but the FTC is unable

to stabilize the closed-loop system.

exceeds �T2,5 at 1.060 h, the isolation system monitors the remaining residuals for a matching
fault signature over a fixed window of 4.8 min (Figure 11). At the end of the fixed window at
1.135 h, the FTC system (identical to that of case 2) reconfigures the DMPC system with a Q2
fault estimate of 89 kJ/h (actual 80 kJ/h) and is unable to stabilize the system due to the plant
state having left the stability region of the reconfigured control system (Figures 12 and 13). Note
that after fault isolation the residuals are no longer used.

The fourth case involves an F20 fault whose fault signature includes rE,T2 and at least one other
concentration residual (rE,C A2,rE,C B2,rE,CC2 ). In this case, an F20 fault occurs with a magnitude
of 17% of umax

2 . In Figure 14, the T2 residual exceeds �T2,3 at 1.100 h while the residual for
concentration of component B in the second tank exceeds �CB2,4 at 1.105 h. A fault is declared
at 1.115 h when rE,C B2 stays above �CB2,4 for 0.01 h. A fault isolation window of 4.8 min is
calculated at 1.105 h. However, within the isolation window, rE,C B2 exceeds �CB2,5 at 1.120 h
and a new isolation window of 36 s is calculated. At the end of the new isolation window (i.e.
t =1.130h), no matching fault signature is found and the FDI system continues monitoring the
residuals until 1.150 h when a matching fault signature is found when rE,T2 exceeds �T2,5 at 1.140 h
and stays above it for 0.01 h. The FTC is implemented once the fault is isolated with a fault
estimate 1.08m3/h (actual 0.85m3/h) (Figures 15–17).

6. CONCLUSIONS

In this work, we developed a monitoring and reconfiguration system for a DMPC system in the
presence of control actuator faults taking advantage of both process models and process measure-
ments. Specifically, we first designed fault detection filters and corresponding filter residuals, which
are computed via the EWMA method, to effectively detect actuator faults. Then, we proposed a
fault isolation approach which uses adaptive fault isolation time windows to quickly and accurately
isolate actuator faults and reduce the probability of false alarms. Subsequently, we designed appro-
priate FTC strategies to handle the actuator faults by reconfiguring the DMPC system and maintain
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Figure 12. Case 3: Same fault conditions as in case 2, i.e. Q2 ‘large’ fault, using fixed isolation time. The
control system is reconfigured at 1.135 h and is unable to stabilize the closed-loop system—concentrations.
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Figure 13. Case 3: Same fault conditions as in case 2, i.e. Q2 ‘large’ fault, using a fixed isolation time. The
control system is reconfigured at 1.135 h and is unable to stabilize the closed-loop system—temperatures.
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Figure 14. Case 4: F20 fault demonstrates FDI system with multiple residuals exceeding the thresholds
under small magnitude fault. The residual rT2 first exceeds �T2,3 at 1.100 h and rCB2 exceeds �CB2,4 at
1.105 h. A fault is declared at 1.115 h and an isolation time window of 4.8 min is calculated. A new
fault isolation window of 36 s is calculated when rCB2 exceeds �CB2,5 at 1.120 h and at the end of the
new isolation window, no matching fault signature is found. The FDI system continues monitoring the
residuals until 1.150 h when a matching fault signature is found. The FTC is implemented once the fault

is isolated with a fault estimate 1.08m3/h (actual 0.85m3/h).
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Figure 15. Case 4: F20 fault is isolated and control system is reconfigured to stabilize the
closed-loop system—concentrations.
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Figure 16. Case 4: F20 fault is isolated and control system is reconfigured to stabilize the
closed-loop system—temperatures.
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Figure 17. Case 4: F20 fault is isolated and control system is reconfigured to stabilize the
closed-loop system—control actions.

the closed-loop system state within a desired operating region. The applicability and effective-
ness of the proposed approach were illustrated via extensive simulations based on a nonlinear
reactor–separator process example.
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