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Abstract. In this work we focus on estimation-based networked

predictive control of nonlinear systems. We propose an output feed-

back controller based on the combination of a high-gain observer

with a Lyapunov-based model predictive controller that takes data

losses explicitly into account both in the controller design and in

the implementation. We provide precise bounds on the data loss se-

quence such that stability of the closed-loop system is guaranteed.

The theoretical results are demonstrated using a chemical process

example.
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1 Introduction

New developments in wireless technologies have generated
a vast field of new applications for wireless networked con-
trol systems like wireless sensor networks [1, 3] and co-
operative control of multi-agent systems [2, 21]. Wireless
networks can improve the flexibility and fault-tolerance of
chemical processes, see for example [12]. From a control
theory point of view, networks introduce new dynamics
in the closed-loop system which have to be taken into ac-
count at the controller design stage. For example, wire-
less sensors may be characterized by a significant data loss
rate. The reader may refer to [22, 18] and the references
therein for a survey on networked control applications.

The stability and robustness properties of nonlinear
systems under state feedback control in the presence of
data losses have been studied in [20, 17, 12]. However,
these results are based on the assumption that full state
measurements are available. In many applications, this
assumption does not hold and an output feedback control
scheme has to be used [8, 6, 4]. Recently, output feed-
back control of nonlinear systems subject to data losses
has been studied in [16]. In [16], however, when data
losses occur the control actuator output is fixed at the
last available input.

In the present work, we adopt a different strategy based
on using an estimate of the state computed via the nom-
inal model of the plant to decide the control actuator
ouput over the period of time in which feedback is lost be-
tween consecutively received measurements, see for exam-
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Figure 1: Closed-loop system with sensor data losses.

ple [13, 14]. In particular, we use Lyapunov-based model
predictive control (LMPC), see [10, 11]. Lyapunov-based
MPC is based on uniting receding horizon control with
control Lyapunov functions and computes the manipu-
lated input trajectory solving a finite-horizon constrained
optimal control problem. When data losses occur, we up-
date the input taking advantage of the predictions ob-
tained from the solution of the optimization problem.

Figure 1 shows a schematic of the class of closed-loop
systems under consideration. When sensor data losses
occur, the observer does not receive new measurements
to update the estimated state and the controller must
operate in open-loop. In this paper, we study the sta-
bility and robustness properties of a combination of a
Lyapunov-based model predictive controller with a high-
gain observer in the presence of sensor data losses. We
provide precise bounds on the data loss sequence such
that stability of the closed-loop system is guaranteed.

2 Notation

Throughout the paper, the notation | · | will be used to
denote the standard Euclidean norm of a vector. The no-
tation Lk

fh(·) denotes the standard k-th order Lie deriv-
ative of a scalar function h(·) with respect to the vector
function f(·). The notation LgLfh(·) denotes the mixed
Lie derivative of a scalar function h(·) with respect to
the vector functions f(·) and g(·). The notation Ωr de-
notes the set Ωr := {x ∈ Rn|V (x) ≤ r} for a given posi-
tive definite scalar function V (·). A continuous function
α : [0, a) → [0,∞) is said to belong to class K if it is
strictly increasing and α(0) = 0. A continuous function
β : [0, a) × [0,∞) → [0,∞) is said to belong to class KL
if, for each fixed s, the mapping β(r, s) belongs to class
K, and for each fixed r, the mapping β(r, s) is decreasing
with respect to s and β(r, s) → 0 as s →∞.
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3 Preliminaries

We consider single-input single-output (SISO) nonlinear
systems with the following state-space description:

ẋ = f(x,w) + g(x,w)u
y = h(x) (1)

where x ∈ Rn is the state, u ∈ R is the input, w ∈ Rm

is the disturbance variable and y ∈ R is the measured
output. The disturbance satisfies |w| ≤ θ. To simplify
our notation, we focus on SISO systems but extensions of
the results to multi-input multi-output systems are con-
ceptually straightforward.

We assume that functions f(·), g(·) and h(·) are suf-
ficiently smooth in x, f(0, 0) = 0 and h(0) = 0. This
means that the origin is an equilibrium point for sys-
tem (1) with u = 0 and w = 0. We also assume that
there exists a state feedback controller that renders the
origin globally asymptotically stable for the closed-loop
nominal system; that is, system (1) with w(t) ≡ 0 for
all times has a globally asymptotically stable equilibrium
point at the origin x = 0 for a given feedback control
kl : Rn → R which satisfies kl(0) = 0. Using converse
Lyapunov theorems (see [7]), this assumption implies that
there exist a class K function α(·) and a Lyapunov func-
tion V for the closed-loop nominal system (system (1)
with u = kl(x) and w(t) ≡ 0 for all times), which is
continuous and bounded in Rn that satisfies V (x) > 0,
V (0) = 0 and

∂V (x)
∂x

[f(x, 0) + g(x, 0)kl(x)] ≤ −α(V (x)). (2)

Note that stabilizing state feedback control laws for non-
linear systems have been developed using Lyapunov tech-
niques; the reader may refer to [9, 5] for results on this
area. These techniques can be used to obtain kl(x). The
feedback controller kl(x) will be used to design the con-
tractive constraints of the LMPC controller.

The closed-loop system is subject to sensor data losses.
We model data losses with an increasing sequence of times
{ti≥0} that determine when the output is available (t ∈
[t2i, t2i+1)) or the sensor data is lost (t ∈ [t2i+1, t2i+2)).
This switching sequence is a random sequence and in this
paper we provide sufficient conditions on the structure
of this sequence under which the output-feedback LMPC
controller proposed below in Section 4 achieves closed-
loop stability.

3.1 Lyapunov-based MPC

In this section, we review previous results on state feed-
back LMPC for nonlinear systems subject to data losses,
see [15]. These results are used to prove the main contri-
bution of this work.

Lyapunov-based model predictive control is based on
solving a finite horizon optimal control problem. In order
to define a finite-dimensional optimization problem, the
manipulated input trajectory (i.e., the free variable of the
LMPC optimization problem) is constrained to belong
to the family of piece-wise constant functions S(∆) with

sampling period ∆ and length equal to the prediction
horizon. The proposed LMPC controller is based on the
following optimization problem

min
u(t)∈S(∆)

∫ N∆

0

[x̃(t)T Qcx̃(t) + u(t)T Rcu(t)]dt(3a)

s.t. ˙̃x(t) = f(x̃(t), 0) + g(x̃(t), 0)u(t) (3b)
x̃(0) = x (3c)
V (x̃(t)) ≤ V (x̂(t)), ∀t ∈ [0, N∆] (3d)

where S(∆) is the family of piece-wise constant functions
with sampling period ∆, x̃(t) is the predicted trajectory
of the nominal system for the input trajectory computed
by the LMPC, Qc, Rc are positive definite weight matri-
ces that define the cost, N is the prediction horizon and
x is the initial state that is given as a parameter. The
trajectory x̂(t) is the nominal sampled trajectory of sys-
tem (1) under the feedback controller kl(x) starting from
initial state x and is obtained by solving recursively

˙̂x(t) = f(x̂(t), 0) + g(x̂(t), 0)kl(x̂(tk)), t ∈ [tk, tk+1)

where tk = k∆, k = 0, 1, . . . , N and x̂(0) = x. Note that
tk defines the sample times along the time domain [0, N∆]
of the optimization problem. These sample times are in-
dependent of the actual sampling times τk defined below.
Constraint (3d) is based on the the nominal sampled tra-
jectory and guarantees that the value of the Lyapunov
function of the predicted trajectory is smaller or equal
to the value obtained if the Lyapunov-based controller
u = kl(x) is implemented in the nominal closed-loop sys-
tem along the prediction horizon. This is the contractive
constraint that allows one to prove that the closed-loop
system under state feedback LMPC is stable.

Measurements from the sensor are available in a con-
tinuous manner when no data losses are present. Sam-
pling is introduced artificially by the LMPC scheme in
order to solve a finite-dimensional optimization problem.
If no data losses are present, the state is sampled at times
τk = τ0 + k∆. The optimization problem (3) is solved at
each sampling time τk with initial state x̃(0) equal to the
measured state x(τk). The optimal manipulated input
trajectory u∗(t|x̃(0) = x(τk)) is applied to the closed-
loop system for t ∈ [τk, τk+1). When data losses are
present, the periodic sampling strategy is not appropriate
because the data losses occur in an asynchronous manner
and are independent of ∆. If full state measurements are
available, the sampling times are decided using the fol-
lowing strategy: a) if at sampling time τk the state is
available (i.e., τk ∈ [t2i, t2i+1)), then the next sampling
time is τk+1 = τk + ∆; b) if the state is not available
(i.e., τk ∈ [t2i+1, t2i+2)), then the next sampling time
takes place when the next measurement is available, i.e.,
τk+1 = t2i+2. In this way, when a sample is lost, the
next sample is taken as soon as a new measurement is
available.

When data losses occur and a new sample is not avail-
able at sampling time τk, the controller has to decide the
input based on a function that depends on the available
information, namely the last sampled state xs(τk) and the

53



corresponding sampling time τs(τk). In this case the in-
put is computed as follows: u(t) = K(xs(τk), t− τs(τk)).
Note that t− τs(τk) is the time in which the system has
been operating in open-loop since the last measurement
was received. Standard approaches set the control ac-
tuator output to a fixed value or to the “last available
input”. In this work, we update the manipulated input
(and the control actuator output) based on the model of
the process, see also [13, 14]. Using this approach the
closed-loop performance is improved. This is done apply-
ing the optimal manipulated input trajectory obtained
solving problem (3), i.e.,

K(x, t) = u∗(t|x̃(0) = x).

Recall that u∗ is defined in [0, N∆] so K(x, t) is not de-
fined for all times. This limits the maximum time that the
controller can operate in open-loop. The values of xs(k)
and τ(k) change at each sampling time τk depending on
whether the current state x(τk) is available or not.

The dynamics of the closed-loop system under the state
feedback LMPC controller subject to data losses are de-
fined by the following model that depends on the system
and controller parameters, the data loss time sequence
{ti≥0} and the sampling time ∆:

ẋ = f(x(t), w(t)) + g(x(t), w(t))u(t)
u(t) = K(xs(k), t− τs(k)), ∀t ∈ [τk, τk+1)

(4)

where the sequence of sampling times τk and correspond-
ing auxiliary variables xs(k), τs(k) are obtained using the
following expressions

• If τk ∈ [t2i, t2i+1), then τk+1 = τk +∆, xs(k) = x(τk)
and τs(k) = τk.

• If τk ∈ [t2i+1, t2i+2), then τk+1 = t2i+2, xs(k) =
xs(k − 1) and τs(k) = τs(k − 1).

Note that the current state is not available at every sam-
pling time.

The state feedback LMPC controller allows for an ex-
plicit characterization of the stability region and guaran-
tees that this region is an invariant set for the closed-
loop system under data losses if the maximum time in
which the loop is open is shorter than a given constant
that depends on the parameters of the system and the
Lyapunov-based controller that is used to formulate the
optimization problem. These properties are stated in the
form of an upper bound on the maximum time in which
the system operates in open-loop

δo = max
i

t2i+2 − t2i+1.

The following proposition is based on the results pre-
sented in [15] and characterizes the closed-loop properties
of system (1) under the proposed LMPC controller.

Proposition 1 Consider the closed-loop system under
the state feedback LMPC controller subject to data losses
described by (4). Then, given any positive real numbers
ρ, d, there exist positive real numbers ∆∗, θ∗ such that
if ∆ ≤ ∆∗, θ ≤ θ∗, δo = 0 (i.e., there are no data

losses) and x(t0) ∈ Ωρ, then x(t) ∈ Ωρ for all times
and lim supt→∞ V (x(t)) ≤ d. Also, there exist positive
real numbers δ∗o , N∗ such that if δo ≤ δ∗o , N ≥ N∗ and
x(t0) ∈ Ωρ, then x(t) ∈ Ωρ for all times.

3.2 High-gain observer

In this section, we present well-known results on output
feedback control of nonlinear systems. In particular we
present an output feedback controller based on a linear
high-gain observer (see, for example, [8, 6, 4]). The results
presented in this section will be used to prove the main
result of this work in the next section.

We assume that the system (1) is fully input-output
linearizable (i.e., the relative degree of the output with
respect to the input is n [7]) and that there exists a set
of coordinates

z =




z1

z2

...
zn


 = T (x) =




h(x)
Lfh(x)

...
Ln−1

f h(x)


 (5)

such that system (1) takes the form:

ż = Az + B[Ln
f h(T−1(z)) + LgL

n−1
f h(T−1(z))u]

y = Cz

where LgL
n−1
f h(x) 6= 0 for all x ∈ Rn with

A =
[
0n−1 In−1

0 0T
n−1

]
, B =

[
0n−1

1

]
, C =

[
1

0n−1

]T

where In−1 and 0n−1 are the identity matrix and a vector
of zeros of dimension n− 1 respectively.

We note that the change of variables is invertible, since
for every x, the variable z is uniquely determined by the
transformation z = T (x) which does not depend on the
uncertainty vector w; that is, Li

fh(x) is independent of w
for all i = 1, . . . , n−1. The linear high-gain observer (see
for example [8, 6, 4]) provides estimates of the derivatives
of the output up to order n−1, and thus estimates of the
variable z. Using these estimates, the estimated state of
the system x̂ is obtained using T−1(·). Proposition 2 be-
low presents an output feedback controller based on the
combination of a high-gain observer with the Lyapunov-
based controller kl(x) and characterizes its stability prop-
erties. The proof of the proposition, which invokes singu-
lar perturbation arguments, is a special case of Theorem 1
in [4] and is omitted for brevity.

Proposition 2 Consider the nonlinear system (1) under
the output feedback controller

˙̂z = Aẑ + L(y − Cẑ), u = kl(x̂) (6)

with

L =
[

a1
ε

a2
ε2 . . . an

εn

]T
, x̂ = T−1(sat(ẑ))

where the parameters ai are chosen such that the roots of

sn + a1s
n−1 + . . . + an−1s + an = 0
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are in the open left-half of the complex plane.
Given positive real numbers ρ, d, there exist positive real

numbers ε∗, θ∗ such that if ε ≤ ε∗, θ ≤ θ∗, |z(t0)| ≤ zm,
x(t0) ∈ Ωρ and sat(·) = min{1, zm/|(·)|}(·) with zm being
the maximum of the vector z for |z| ≤ βz(δz, 0) where βz

is a class KL function and δz = max{|T (x)|, x ∈ Ωρ};
then x(t) ∈ Ωρ for all times and lim supt→∞ V (x(t)) ≤ d.
This stability property implies that given ε ∈ (0, ε∗] and
some positive real number em > 0 there exists positive real
number tb such that if x(t0) ∈ Ωρ and |z(t0)| ≤ zm, then
|x(t)− x̂(t)| ≤ em for all t > t0 + tb.

To eliminate the peaking phenomenon associated with
the high-gain observer, we use the saturation function,
sat(·), to eliminate wrong estimates of the output deriv-
atives for short times, see for example [8]. We consider
that the estimated state x̂ has converged to the actual
state x, when the estimation error |x− x̂| is less or equal
than a given bound em. The time needed to converge is
given by tb which is an increasing function of the observer
gain 1/ε (recall that we have eliminated the peaking phe-
nomenon).

4 Output feedback LMPC for sys-
tems subject to sensor data
losses

In this section we present an output feedback LMPC con-
troller that consists of a combination of the high-gain ob-
server of Proposition 2 and of the state feedback LMPC
controller of Proposition 1 that takes into account data
losses in an explicit way. In this section, we provide ex-
plicit bounds on the data losses such that the closed-loop
system is stable.

The high-gain observer estimates the state using sensor
data in t ∈ [t2i, t2i+1) and maintains the last estimated
state when no feedback is available, i.e., ż = 0, for all
t ∈ [t2i+1, t2i+2). Each time feedback is recovered, the
estimation error grows before converging close to zero be-
cause of the value of the high-gain observer gain. For
this reason, the observer estimates are used in the con-
troller after tb time, so it is guaranteed that the estima-
tion error is less than eb. The proposed output feedback
LMPC scheme takes this issue into account and uses the
last optimal manipulated input trajectory to decide the
input when data losses occur using the following imple-
mentation procedure: a) when sensor data is available,
the observer estimates the state as in (6), b) when sen-
sor data are not available, the observer does not modify
the estimated state, c) the LMPC controller only samples
the estimated state when the estimated state is assured
to have converged close to the actual state, and d) when
new measurements are not available, the control actuator
implements the last optimal input trajectory.

To model the evolution of the closed-loop system un-
der the output feedback LMPC controller subject to data
losses, we use the following model that depends on the
system and controller parameters, the data loss time se-

quence {ti≥0} and the sampling time ∆:

ẋ = f(x(t), w(t)) + g(x(t), w(t))u(t)
u(t) = K(x̂s(k), t− ts(k)), ∀t ∈ [τk, τk+1)
y = h(x)
x̂ = T−1(sat(ẑ))

˙̂z =
{

Aẑ + L(y − Cẑ) t ∈ [t2i, t2i+1)
0 t ∈ [t2i+1, t2i+2)

(7)

where the sequence of sampling times and auxiliary vari-
ables are obtained using the following expressions

• If τk ∈ [t2i + tb, t2i+1) then τk+1 = τk + ∆, x̂s(k) =
x̂(τk), xs(k) = x(τk) and τs(k) = τk.

• If τk ∈ [t2i+1, t2i+2 + tb) then τk+1 = min{t2i+2 +
tb, t2i+3}, x̂s(k) = x̂s(k − 1), xs(k) = xs(k − 1) and
τs(k) = τs(k − 1).

Note that at each sample time the estimated state x̂s(k)
is different from the actual state xs(k).

System (10) is a nonlinear asynchronous system in
which the switching between the different modes is gov-
erned by the external random sequence of times that char-
acterizes the data losses. The main contribution of this
paper is to prove using Proposition 2 that if certain condi-
tions are satisfied, the closed-loop system under the pro-
posed output feedback LMPC controller is equivalent in
a neighborhood of the origin to a state feedback closed-
loop system with a higher dimension uncertainty vector.
Based on this equivalent system and Proposition 1, it is
proved that the proposed output feedback controller al-
lows for an explicit characterization of the stability region
and guarantees that this region is an invariant set for the
closed-loop system under data losses if δ̂o is small enough,
where

δ̂o = max
i

min
j>i

t2j − t2i+1

s.t. t2j+1 − t2j > tb

The variable δ̂o takes into account that if in a given period
of time we have measurements but the observer is not
able to converge to the actual state, then the controller
should operate in open-loop for the whole period of time.
The main result of the present paper is presented in the
following theorem:

Theorem 1 Consider the closed-loop system under the
output feedback LMPC controller subject to data losses
described by (7). Then, given any positive real numbers
d, ρ, there exist positive real numbers ε∗, ∆∗, θ∗ such that
if ε ≤ ε∗, ∆ ≤ ∆∗, θ ≤ θ∗, δ̂o = 0 (i.e., no data losses
are present) and x(t0) ∈ Ωρ, then x(t) ∈ Ωρ for all times
and lim supt→∞ V (x(t)) ≤ d. Also, there exist positive
real numbers δ̂∗o , N∗ such that if δ̂o ≤ δ̂∗o , N ≥ N∗ and
x(t0) ∈ Ωρ, then x(t) ∈ Ωρ for all times.

Proof: Due to space limitations we provide a sketch of
the proof. Considering smoothness of functions f(·), g(·)
and continuity of the optimal solution of the optimization
problem (3), given ρ there exists positive real number Γ
such that the following inequality holds

|K(x, t)−K(x′, t)| ≤ Γ|x− x′| (8)
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for all x, x′ ∈ Ωρ, |x− x′| ≤ eb.
Following Proposition 2, given positive numbers d, ρ, eb,

there exist positive real numbers θ∗, ε∗, tb such that if ε ≤
ε∗, θ ≤ θ∗ and x(0), x̂(0) ∈ Ωρ, then x(t) ∈ Ωρ for all
times and |x(t) − x̂(t)| ≤ eb for all t > tb. The proposed
output feedback LPM controller samples the estimated
state after the observer has already operated for at least
tb time in closed-loop. Following this implementation, it
is guaranteed that each time a new estimated state is fed
to the LMPC controller, the estimation error is smaller
than eb; that is

|xs(k)− x̂s(k)| ≤ eb, ∀k. (9)

Taking into account (7), (8) and (9), system (1) in closed-
loop with the proposed ouput feedback LMPC controller
is equivalent to the following system for all x(t) ∈ Ωρ

ẋ = f(x(t), w(t)) + g(x(t), w(t))(u(t) + Γwe(t))
u(t) = K(xs(k), t− ts(k)), ∀t ∈ [τk, τk+1]

(10)

with we(t) an additional uncertainty vector that satisfies
|we(t)| ≤ eb, and xs(k), x̂s(k), τs(k) are obtained as in (7).
This system is in the form of system (4) and Proposition 1
can be applied.

Applying Proposition 1, positive real numbers ∆∗, δ∗o ,
N∗ are obtained such that if ∆ ≤ ∆∗, N ≥ N∗ and the
maximum time between consecutive samples is smaller
than δ∗o , then the claims of Theorem 1 hold. Taking
into account how the sampling times are defined in (7),
in order to obtain a sample sequence that satisfies the
conditions of Proposition 1, the data losses must satisfy
δ̂o ≤ δ∗o − tb. In this way it is guaranteed that the max-
imum time between two samples is smaller that δ∗o . It
follows that δ̂∗o = δ∗o − tb. QED

5 Chemical reactor application

Consider a well mixed, non-isothermal continuous stirred
tank reactor where three parallel irreversible elementary
exothermic reactions take place of the form A → B,
A → C and A → D. B is the desired product and C
and D are byproducts. The feed to the reactor consists of
pure A at flow rate F , molar concentration CA0 and tem-
perature TA0 + ∆TA0 where ∆TA0 is an unknown time-
varying uncertainty. Due to the non-isothermal nature
of the reactor, a jacket is used to remove/provide heat
to the reactor. Using first principles and standard mod-
eling assumptions, the following mathematical model of
the process can be obtained

dT

dt
=

F

Vr
(TA0 + ∆TA0 − T )−

3∑

i=1

∆Hi

σcp
ki0e

−Ei
RT CA

+
Q

σcpVr

dCA

dt
=

F

Vr
(CA0 − CA) +

3∑

i=1

ki0e
−Ei
RT CA

(11)
where CA denotes the concentration of the reactant A, T
denotes the temperature of the reactor, Q denotes the rate

Table 1: Process parameters

F 4.998 [m3/h] k10 3*106 [h−1]
Vr 1[m3] k20 3*105 [h−1]
R 8.314 [KJ/kmol ·K] k30 3*105 [h−1]
TA0 300 [K] E1 5*104 [KJ/kmol]
CA0 4 [kmol/m3] E2 7.53*104 [KJ/kmol]
∆H1 -5.0*104 [KJ/kmol] E3 7.53*104 [KJ/kmol]
∆H2 -5.2*104 [KJ/kmol] σ 1000 [kg/m3]
∆H3 -5.4*104 [KJ/kmol] cp 0.231 [KJ/kg ·K]

of heat input/removal, Vr denotes the volume of the re-
actor, ∆Hi, ki0, Ei, i = 1, 2, 3 denote the enthalpies, pre-
exponential constants and activation energies of the three
reactions, respectively, cp and σ denote the heat capacity
and the density of the fluid in the reactor. The values of
the process parameters are shown in Table 1.

System (11) with ∆TA0 = 0 has three steady-states
(two locally asymptotically stable and one unstable).
The control objective is to stabilize the system at the
open-loop unstable steady state at Ts = 388K, CAs =
3.59mol/l assuming that only measurements of the con-
centration of A are available and that data can be lost
in the communication links. The manipulated input is
the rate of heat input Q. We consider a time-varying un-
certainty in the temperature of the inflow stream which
satisfies |∆TA0| ≤ 10K.

To demonstrate the theoretical results, we first design
a Lyapunov based feedback law using the method pre-
sented in [19]. System (11) belongs to class of nonlinear
systems (1) where xT = [T CA] is the state, u = Q is
the input and w = ∆TA0 is the time varying bounded
disturbance. Consider the control Lyapunov function
V (x) = xT Px with

P =
[
1 0
0 104

]
.

The values of the weights have been chosen to account for
the different range of numerical values for each state. The
following feedback law [19] asymptotically stabilizes the
open-loop unstable steady-state of the nominal system
(i.e., w(t) = 0)

kl(x) =

{
−Lf V +

√
Lf V 2+LgV 4

LgV if LgV 6= 0
0 if LgV = 0

(12)

where LfV and LgV are evaluated for w(t) = 0. This
feedback law will be used to design the LMPC controller
below.

This model satisfies the assumptions introduced in Sec-
tion 3 when the concentration of the reactant A, CA, is
the output. The relative degree of the output CA with
respect to the input Q is 2 and the change of variables is
invertible and independent of the uncertainty w(t). The
observer parameters are given by ε = 0.0005, a1 = 2,
a2 = 1, δ = 1000 and zm = 7.07. With these parameters
the error goes below em = 0.001 in less than tb = 0.0025h.
Time tb is used in the controller implementation to decide
when the estimated state has converged close enough to
the actual state.
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Figure 2: State and actuator ouput trajectories of the
closed-loop system under the proposed LMPC scheme
(solid-line) and “last available input” strategy (dashed-
line) with data losses defined by W = 50, p = 0.6.

To generate the increasing sequence of times that de-
termines when the output is available {ti≥0}, we use a
random Poisson process as in [12]. The Poisson process is
defined by the number of events per unit time W , and a
probability p of losing sensor data. At a given time t, an
event takes place that determines whether the system is in
the unstable or in the stable mode for the following period
of time. This event is generated using a random variable
ζ ∈ [0, 1] chosen from a uniform probability distribution.
For a given probability p, if ζ ≤ p, then the controller
is operating in open-loop, while if ζ > p the controller
is operating in closed-loop. The length of the period of
time, is generated randomly based on W , the number of
events per unit time of the Poisson process. The time for
which the system will remain in the chosen mode is given
by ∆ = − ln ξ

W , where ξ ∈ [0, 1] is another random variable
chosen from a uniform probability distribution. At t+∆,
another event takes place. The time sequence obtained
using this procedure is random. Below, we have carried
out two different simulations with different values for the
number of events W and the probability of losing data.

A sampling time of ∆ = 0.02h is used to implement
the LMPC controller. The cost function is defined by the
weight matrices Qc = P and Rc = 10−6. The values of
the weights have been tuned in such a way that the values
of the manipulated inputs are comparable to the ones
computed by the Lyapunov-based controller (i.e., same
order of magnitude of the input signal and convergence
time of the closed-loop system when no uncertainty or
data losses are present). The constrained optimization
problem is solved using MATLAB function fmincon and
the set of ODEs is integrated using the Euler method with
a fixed integration step of 0.0002min. A new value for
the uncertainty is obtained from a uniform distribution
at each integration step.

In the following simulations, we compare the proposed
output feedback LMPC scheme which uses the model to
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Figure 3: State and actuator ouput trajectories along
with the sampling times of the closed-loop system under
the proposed LMPC scheme (solid-line) and “last avail-
able input” strategy (dashed-line) with data losses defined
by W = 50, p = 0.75.

update the input when measurements are lost, with the
strategy of keeping the control actuator output to the
value of the input at the time in which the last esti-
mated state was received (refer to as the “last available
input” strategy). The “last available input” strategy fol-
lows the same scheme as the proposed LMPC controller
regarding sampling times and observer implementation,
but sets K(x, t) = u∗(0) when data losses occur. This
strategy has been used in previous works on nonlinear
systems subject to data losses. It has been proved that
the closed-loop system is practically stable for sufficiently
small data losses and uncertainties. The following simula-
tions, however, demonstrate that the proposed scheme is
more robust with respect to data losses; that is, it is able
to handle more data losses than the “last available input”
strategy and also improves the closed-loop performance.
Figure 2 shows a simulation of the closed-loop system
under the proposed controller and the “last available in-
put” strategy. The data losses have been obtained using
W = 50 events per unit time, and probability p = 0.6
of losing data. For this particular realization, the maxi-
mum number of consecutive sampling times in which the
controller operates in open-loop is 10. The initial state
is T (0) = 320K and CA(0) = 3.3Kmol/l. For both con-
trollers, N = 12. Figure 2 shows that when data losses
occur, the proposed output feedback LMPC scheme keeps
on updating the input, while the “last available input”
strategy maintains the input fixed at the last value. It
can be seen that although both controllers enforce prac-
tical stability in the closed-loop system, the performance
of the proposed output feedback LMPC approach is bet-
ter than the performance of the “last available input”
strategy.

For the second simulation, a higher amount of data
losses are introduced. In this case, the data losses are
obtained using W = 50 and p = 0.75 and the maxi-

57



0 0.1 0.2 0.3 0.4 0.5

0

0.5

1

t[h]

D
at

a 
lo

ss
es

0.6 0.65 0.7 0.75 0.8
0

0.5

1

1.5

2

|e
(t

)|

t[h]

Figure 4: Close up of the sample times and norm of the
estimation error of the closed-loop system for the simula-
tion presented in Figure 2.

mum number of consecutive sampling times in which the
controller operates in open-loop is 12. Figure 3 shows a
simulation of the closed-loop system under the proposed
output feedback LMPC controller and the “last available
input” strategy. It can be seen that the state of the closed-
loop system under the proposed LMPC controller remains
in a neighborhood of the origin, while the state of the
closed-loop system under the “last available input” strat-
egy moves away from the equilibrium point. The bottom
plot of Figure 3 shows the data loss time sequence and the
corresponding sampling times. When the signal is equal
to 1, the system is in closed-loop, and when the signal is
equal to 0, the system is in open-loop. In Figure 3, crosses
represent sampling times in which the state is available
and the optimization problem is solved. Circles repre-
sent instants in which the input is updated following the
previous optimal manipulated input trajectory. It can be
seen that the state of the closed-loop system under the
“last available input” trajectory starts moving away from
the equilibrium point approximately between t = 1.25h
and t = 2h, a period of time with a high number of data
losses.

Figure 4 shows two close ups of the sampling times
and the norm of the estimation error corresponding to
the simulation shown in Figure 2. Note the different time
scales. The norm of the estimation error grows when the
process operates in open-loop and for a short period of
time when the loop closes (because of the high-gain of the
observer). It can be seen that if the loop is closed only
for a short period of time, in particular smaller than tb,
then the controller does not obtain a new estimate of the
state to update the current optimal trajectory and keeps
implementing the previous optimal trajectory. It can also
be seen that the time between two samples depends on
the data loss time sequence.
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[15] D. Muñoz de la Peña and P. D. Christofides. Lyapunov-based
model predictive control of nonlinear systems subject to data
losses. In Proceedings of the American Control Conference,
accepted, New York City, New York, 2007.
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