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Abstract. In this work, we focus on the problem of stabilization

of constrained nonlinear systems subject to data losses. We ex-

tend previous results on Lyapunov-based model predictive control

(LMPC) of nonlinear systems subject to data losses to explicitly

handle the presence of input and state constraints. In addition,

a hybrid LMPC controller for systems subject to soft state con-

straints with the objective of minimizing the time for which the

state constraints are violated is proposed. The theoretical results

are demonstrated through a chemical process example.
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1 Introduction

Nowadays there is an increasing interest on studying net-
worked control systems; that is, control systems in which
the control loop is closed using a shared communication
network, see for example [27, 26, 20]. Networked control
systems, in addition to dealing with nonlinearities, con-
straints and performance issues, have to account for the
dynamics introduced in the closed-loop system by the net-
work. These dynamics are often modeled as time varying
delays, data quantization or data losses. Systems sub-
ject to data losses are of particular interest for wireless
networked control systems, see [21, 22, 7] and the refer-
ences therein. Wireless technology is used in new con-
trol applications like sensor networks [1, 4], multi-agent
systems [3, 25] and in distributed process control sys-
tems [11, 12] to increase the flexibility and fault-tolerance
of the closed-loop system by adding redundancy in the
control loops.

There are several works in the control systems liter-
ature that deal with nonlinear systems subject to data
losses. A common approach is to design a stabilizing
feedback law for the system under continuous measure-
ments, and then study the robustness properties of the
closed-loop system subject to data losses. In [23, 24, 19]
it was proved that if the maximum time in which the
system operates in open-loop is sufficiently small, the
closed-loop system is practically stable. A similar result
has been obtained for output feedback schemes based on
high gain observers in [17]. In [12], the stability proper-
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ties of nonlinear systems under Lyapunov-based control
subject to data losses and input constraints were studied.
In this work, however, closed-loop system performance
issues were not taken into account.

Most process control systems need to explicitly deal
with input and state constraints. These constraints typi-
cally represent hard limits on the capacity of control actu-
ators (input constraints) or operating constraints imposed
by performance objectives or safety considerations (state
constraints). Controllers that are able to deal with non-
linearities, performance issues and state and inputs con-
straints are of interest for the control community. Model
predictive control is one control method that is able to
deal with state and input constraints in an explicit man-
ner. Lyapunov-based model predictive control (LMPC)
was first proposed in [9] for nonlinear switched systems
and further developed for constrained systems [10] and
applied to fault-tolerant control schemes [11]. More re-
cently in [16], a Lyapunov-based model predictive con-
troller that takes data losses into account in the opti-
mization problem has been proposed. However, the con-
trol problem formulation in [16] does not deal with input
and state constraints.

In the present work, we extend the results of [16] to
constrained nonlinear systems and propose a Lyapunov-
based model predictive controller that takes explicitly
into account performance issues, constraints, and data
losses. Furthermore, a hybrid LMPC controller for sys-
tems subject to soft state constraints with the objective
of minimizing the time on which the state constraints
are violated is presented. The proposed controllers al-
low for an explicit characterization of the stability region
and guarantee that this region is an invariant set for the
closed-loop system under data losses if the maximum time
in which the loop is open is shorter than a given constant.
This constant depends on the parameters of the system
and the Lyapunov-based controller that is used to formu-
late the optimization problem. The theoretical results are
demonstrated through a chemical process example.

2 Preliminaries

In this work we consider the problem of stabilization of
continuous-time nonlinear systems subject to data losses
with state and input constraints, with the following state-
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space description

ẋ(t) = f(x(t), u(t), w(t)) (1)

where x(t) ∈ X ⊆ Rnx denotes the vector of state vari-
ables, u(t) ∈ U ⊆ Rnu denotes the vector of input vari-
ables, w(t) ∈ W ⊆ Rnw denotes the vector of disturbance
variables, and f is locally Lipschitz on Rnx ×Rnu ×Rnw .
The sets X and U denote the constraints in the state vari-
ables and in the manipulated inputs, respectively. The
disturbance vector is bounded in

W := {w ∈ Rnw s.t. |w| ≤ θ, θ > 0}1.
The system is subject to data losses; that is, the actual
state of the system is not always available for the con-
troller to decide the input. This concept is made clear
below in this section when signal s(·) is introduced.

We assume that the nominal closed-loop system (sys-
tem (1) with w(t) ≡ 0 for all t) has an asymptotically
stable equilibrium at the origin x = 0 for a given feed-
back control h : Rnx → Rnu which satisfies h(0) = 0
(this assumption is equivalent to the existence of a control
Lyapunov function (CLF) for the system ẋ = f(x, u, 0)).
Using converse Lyapunov theorems (see [8]), this assump-
tion implies that there exists a Lyapunov-function V (x)
for the nominal closed-loop system such that

V̇ (x(t)) ≤ 0
h(x) ∈ U

(2)

for all x ∈ D, where D is an open neighborhood of the
origin, see [8].

Lyapunov-based model predictive control is based on
using an existing Lyapunov-based feedback law in the de-
sign of the model predictive control optimization problem.
Using an appropriate set of constraints, it is guaranteed
that the LMPC controller inherits the stability properties
of the Lyapunov-based feedback controller used in the de-
sign. The feedback law h(x) will be used in the design of
the LMPC controller in the following section.

In the present work, we take into account both the cases
in which the state constraints have to be fulfilled for all
times (hard constraints) and in which the constraints can
be relaxed for a short period of time (soft constraints).

For this reason, we are going to define two different
regions of attraction defined as level sets of V (x). First
we define Ωu as

Ωu = {x ∈ Rnx : V (x) ≤ cmax
u }

where cmax
u is the largest number for which Ωu ∈ D.

Starting from any initial state in Ωu, asymptotic stability
and satisfaction of the input constraints of the nominal
closed-loop system are guaranteed. To take into account
state constraints, we define Ωux as

Ωux = {x ∈ Rnx : V (x) ≤ cmax
ux }

where cmax
ux is the largest number for which Ωux ∈

X
⋂

Ωu. Starting from any initial state in Ωux, asymp-
totic stability and satisfaction of the state and input con-
straints of the nominal closed-loop system are guaranteed.

1| · | denotes Euclidean norm of a vector.

Although system (1) is defined as a continuous time
system, the Lyapunov-based controller is implemented in
a sample and hold fashion with sample time ∆. For this
reason, in order to model data losses, we define a signal
s(tk) with tk = k∆, k = 0, 1, . . . such that at sampling
time tk, s(tk) = 1 implies that the state of the system is
available and s(tk) = 0 implies that at sampling time tk
the system must operate in open-loop.

We assume that the data losses are random, but satisfy
a given constraint on the maximum number of sampling
times in which the system operates in open-loop. Follow-
ing the notation introduced in [23], the maximum time
no is refereed as the maximum allowable transmission in-
terval (MATI). Another parameter that characterizes the
data losses of a given system is the rate of data losses;
that is, the fraction of samples that are lost along a large
period of time.

The controller must take into account s(tk) to decide
the input at a given sampling time. There are several dif-
ferent strategies for the controller when feedback is lost.
In general, the controller makes the decision based on the
last received state. Following this idea, we characterize
a control law in the presence of data losses as a function
that depends on the last available state and the sampling
time in which that state was received; that is, u = k(x, i)
where x is the last available state, and i is the number of
sampling times that have passed since the last measure-
ment was received. Note that i = 0 implies that the loop
is closed. Taking into account sampling and data losses,
the controller takes the following form:

{
s(tk) = 1 → u(t) = K(x(tk), 0), t ∈ [tk, tk+1]
s(tk) = 0 → u(t) = K(x(ti), k − i), t ∈ [tk, tk+1]

where ti is the last sampling time in which a measurement
was received.

A general approach is to design a feedback control law
for the system under continuous measurements, for exam-
ple the Lyapunov-based controller h(x), and then set the
input to zero or to the last available input when feedback
is lost. For the zero control strategy, K(x, i) = h(x) for
i = 0, and zero for i > 0. For the last available input
trajectory, K(x, i) = h(x) for all i. In a recent line of
work, Antsaklis and co-workers [13, 14] have proposed a
strategy based on using an estimate of the state computed
via the nominal model of the plant to decide the control
input over the period of time in which feedback is lost
between consecutively received measurements. Using the
model to predict the state when data losses occur yields
the following controller:

K(x, i) = h(x̂(ti))
˙̂x(t) = f(x̂(t), h(x̂(tk)), 0), t ∈ [tk, tk+1]

(3)

where tk = t0 + k∆, k = 0, 1, . . . and x̂(t0) = x. The
trajectory x̂(t) is denoted as the nominal sampled trajec-
tory of system (1) associated with a feedback law h(x)
with sampling time ∆ starting at x. The main idea is
that the controller uses the nominal model of the system
to predict the current state from the last available state
and applies the corresponding manipulated input trajec-
tory. Note that the above strategy is applied in a sample
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and hold technique and takes data losses explicitly into
account.

This is the strategy used in the LMPC controller pre-
sented in [16] and in the present work. This strategy
is appropriate to apply in a model predictive control
scheme, because the solution of the optimization prob-
lem is the optimal future trajectory of inputs computed
via the nominal model of the plant, so it can be used to
update the input when feedback is lost. The main idea be-
hind Lyapunov-based model predictive control is that of
using the nominal sampled trajectory of system (1) asso-
ciated with a feedback law h(x) to design the contractive
constraints in the optimization problem. It can be proved
that the closed-loop system under the LMPC controller
inherits the same stability properties of the Lyapunov-
based controller when implemented following (3). The
Lyapunov-based controller h(x) has robustness proper-
ties that preserve practical stability of the closed-loop
system when no data losses occur for sufficiently small
sampling time and uncertainties, and guarantee that the
stability region is invariant if the data losses are small
enough. These properties were proved in [16] where un-
constrained LMPC of nonlinear systems subject to data
losses was studied.

In the following section, an LMPC controller that takes
into account input and state constraints, as well as a
hybrid LMPC controller that deals with soft state con-
straints are introduced. Both strategies satisfy the same
set of contractive constraints and inherit the properties
of the Lyapunov-based controller when implemented fol-
lowing (3).

3 Lyapunov-based Model Predic-
tive Control

3.1 Handling state and input constraints

In this section we present a Lyapunov-based model pre-
dictive controller based on the results of [16]. At each
sampling time, the manipulated input trajectory is ob-
tained solving the following optimal control problem with
prediction horizon N

min
u∈S(∆)

J(x(τ), u(τ)) (4a)

s.t. ˙̃x(τ) = f(x̃(τ), u(τ), 0) (4b)
x̃(t0) = x (4c)
u(τ) ∈ U (4d)
V (x̃(τ)) ≤ V (x̂(τ)), ∀τ ∈ [t0, tNR

] (4e)

where S(∆) is the family of piece-wise constant functions
with sampling period ∆, x̃(τ) with τ ∈ [t0, tN ] is the
predicted sampled trajectory of the nominal system for
the input trajectory computed by the LMPC (4), x̂(τ)
with τ ∈ [t0, tN ] is the nominal sampled trajectory under
the Lyapunov-based controller with initial state x̂(t0) =
x. This trajectory is obtained solving (3). Depending on
the cost function and on the value of the horizon NR of
the contractive constraint, different LMPC schemes are

defined. Standard LMPC schemes [9, 10, 11] minimize a
quadratic function of the state and the input, i.e.,

J(x(τ), u(τ)) =
∫ tN

t0

[x(τ)T Qcx(τ) + u(τ)T Rcu(τ)]dτ

(5)
in order to improve a given performance index. The
LMPC controller is defined as follows

KL(x, i) = u∗(ti) (6)

where u∗(t) is the optimizer of problem (4) with x(t0) =
x. The main idea is that when data losses occur the con-
troller implements the last evaluated optimal trajectory.

When no data losses are taken into account, the con-
tractive constraint has to be satisfied only for the first
time step, that is, NR = 1. In [16] it was proven that in
order to inherit the stability properties of the Lyapunov-
based controller when implemented following (3), NR

must be greater or equal than no. This is the approach
taken in the present work while introducing state and in-
put constraints. The closed-loop system properties under
the LMPC controller (6) are formalized in Theorem 1 be-
low.

Theorem 1 Consider system (1) in closed-loop with the
LPMC scheme (6) with NR ≥ no based on a Lyapunov-
based controller h(x). Then, given any positive number
d, there exist positive real numbers ∆∗, θ∗ and Nux such
that if ∆ ≤ ∆∗ and θ ≤ θ∗, the following statements hold:

• If there are no data losses and x(0) ∈ Ωux, then
x(t) ∈ Ωux for all times and limV (x(t)) ≤ d.

• If no ≤ Nux and x(0) ∈ Ωux, then x(t) ∈ Ωux for all
times.

Proof: The proof of this theorem is similar to the one
presented in [16] for the unconstrained case. The main
difference is that to take constraints into account, X and
U have to be used to obtain the stability region Ωux. In
what follows a sketch of the full proof is provided.

Part 1. In this part we prove that the model predic-
tive optimization problem (4) is feasible for all x ∈ Ωux.
Feasibility follows from the fact that u(t) = h(x̂(tk)) for
t ∈ [tk, tk+1], where x̂ is the nominal (assuming zero dis-
turbance) sampled trajectory of the closed-loop system
under the Lyapunov-based controller h(x) with initial
state x(t0) = x, satisfies all the constraints of problem (4)
because for a sufficiently small ∆ (see [6, 18]), x̂(t) ∈ Ωux

for all t, so by definition u(t) ∈ U .
Part 2. Assuming that no data losses are taken into

account (no = 0), at each time step the optimization
problem is solved and a new optimal manipulated input
trajectory is obtained. Taking into account that the con-
straints guarantee that

V (x̃(τ)) ≤ V (x̂(τ)), ∀t ∈ [t0, t0 + ∆]

it can be proved that V (x(t)) ≤ V (x̌(t)) for all times
where x̌(t) is the state trajectory of (1) in closed-loop with
the Lyapunov-based controller h(x) implemented follow-
ing (3) (taking into account the disturbance trajectory
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w(t)). In this case, using standard sampled-data results,
see for example [6, 18], it can be proved that given any
positive number d there exist real numbers ∆∗ and θ∗

such that if ∆ ≤ ∆∗ and θ ≤ θ∗ then V (x̌(t)) ≤ cmax
ux and

lim V (x̌(t)) ≤ d.
Part 3. In the presence of data losses, in order to prove

that V (x(t)) ≤ V (x̌(t)) for all times, the contractive con-
straint must hold at least for the maximum time in which
the system can operate in open-loop, i.e., the no. Fol-
lowing sampled-data results, given ∆ and θ, there exist
n∗o such that if no ≤ NR ≤ n∗o and x(0) ∈ Ωux then
V (x̌(t)) ≤ cmax

ux for all times. A detailed proof is pro-
vided in [16]. QED

Remark 1 The stability and robustness properties with
respect to data losses stated in Theorem 1 stem
from the contractive constraints and the properties of
the Lyapunov-based controller h(x) implemented follow-
ing (3). These properties are independent of the objective
function.

Remark 2 It is also important to remark that the in-
variance property of the set Ωux guarantees that the state
and input constraints are satisfied for all times.

Remark 3 Complexity of the optimization problem is an
important issue in model predictive control. This issue
is particularly important for MPC schemes for nonlin-
ear uncertain systems. Standard MPC schemes like min-
max controllers have a very high computational burden, in
general, a computational burden that grows exponentially
with the prediction horizon, see for example [2, 15] and
the references therein. Lyapunov-based MPC is based on
a reduced complexity deterministic optimization problem,
and moreover, an initial feasible solution guess is avail-
able (the input trajectory of the nominal sampled closed-
loop system). This makes possible to apply LMPC to a
broad family of control applications.

3.2 Handling soft constraints via con-
troller switching

In many control applications, state constraints represent
desired bounds on the state variables that provide im-
proved closed-loop performance. In this case, the state
constraints can be violated, although it is desirable that
the time in which the state constraints are not satisfied is
minimized. In [11], a hybrid controller was proposed to
deal with soft constraints in an LMPC scheme. Follow-
ing the same ideas, we propose a hybrid controller that
switches between two different LMPC controllers: one
that guarantees state and input constraints satisfaction
and minimizes a given performance objective, and an-
other that guarantees only input constraints satisfaction
while minimizing the time needed to regulate the system
to the stability region Ωux. The only difference between
this two LMPC controllers is the objective function. Both
are based on the same stability and input constraints of
problem (4). The hybrid controller is defined as follows

If x ∈ Ωuxthen KL(x, i) = u∗H(ti)
Else KL(x, i) = u∗S(ti)

(7)

where u∗L(t) is the optimizer of problem (4) with

J(x(τ), u(τ)) =
∫ tN

t0

[x(τ)T Qcx(τ) + u(τ)T Rcu(τ)]dτ

and x(t0) = x, while u∗S(t) is the optimizer of problem (4)
with

J(x(τ), u(τ)) = V (x(tN ))

and x(t0) = x. Both problems are defined using the same
prediction horizon N and horizon NR for the contractive
constraint. In this way, when the state is outside the sta-
bility region Ωux, but inside the region Ωu, the controller
switches to minimize directly the Lyapunov function, re-
ducing, in general, the time in which the state constraints
are violated.

Theorem 2 Consider system (1) in closed-loop with the
LPMC scheme (7) with NR ≥ no based on Lyapunov-
based controller h(x). Then, given any positive real num-
ber d, there exist positive real numbers ∆∗, θ∗, Nu and
Nux such that if ∆ ≤ ∆∗ and θ ≤ θ∗, the following hold:

• If there are no data losses and x(0) ∈ Ωu, then x(t) ∈
Ωu for all times and limV (x(t)) ≤ d.

• If no ≤ Nu and x(0) ∈ Ωu, then x(t) ∈ Ωu for all
times.

• If no ≤ Nux and x(0) ∈ Ωux, then x(t) ∈ Ωux for all
times.

Proof: Because both u∗H and u∗S are computed solving
an optimization problem subject to the same contractive
constraints of problem (4), Theorem 1 can be applied
to characterize any closed-loop trajectories under the hy-
brid LMPC controller. In order to obtain the positive
real numbers that guarantee that the three statements
hold, first, we assume that X = Rnx, that is, there are
no constraints on the state. In this case, Ωux = Ωu so
Theorem 1 guarantees that for any d > 0, there exists
∆∗, θ∗, Nu > 0 such that the first two claims hold. To
prove the third claim, state constraints are taken into ac-
count. Theorem 1 is applied for d, ∆∗ and θ∗ to obtain
Nux that guarantees that Ωux is invariant for data losses
which satisfy no ≤ Nux. QED

Remark 4 The main idea is that when the state con-
straints can be violated, a higher amount of data losses
can be tolerated while guaranteing that the system remains
in Ωu, which is the set of states that can be regulated to
the origin while satisfying the input constraints. The val-
ues of ∆∗, θ∗, Nu and Nux are obtained from the prop-
erties of the Lyapunov-based controller h(x) implemented
following (3).

4 Application to a Chemical Re-
actor Example

Consider a well-mixed, non-isothermal continuous stirred
tank reactor where an irreversible elementary exothermic
reaction takes place of the form A → B. The feed to the
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Table 1: Process parameters

F 0.1 [m3/min] k0 72*109 [min−1]
Vr 0.1[m3] R 8.314 [KJ/kmol ·K]
TA0 310 [K] E 8.314*104 [KJ/kmol]
CA0 1 [kmol/m3] ∆H -4.78*104 [KJ/kmol]
σ 1000 [kg/m3] cp 0.239 [KJ/kg ·K]

reactor consists of pure A at flow rate F , temperature TA0

and molar concentration CA0 +∆CA0 where ∆CA0 is one
of the manipulated inputs. Due to the non-isothermal
nature of the reactor, a jacket is used to remove/provide
heat to the reactor. The heat removed/provided to the
reactor is another manipulated input. Using first prin-
ciples and standard modeling assumptions, the following
mathematical model of the process is obtained

dCA

dt
=

F

Vr
(CA0 + ∆CA0 − CA) + k0e

−E
RT CA + w1

dT

dt
=

F

Vr
(TA0 − T )− ∆H

σcp
k0e

−E
RT CA +

Q

σcpVr
+ w2

(8)
where CA denotes the concentration of the reactant A,
T denotes the temperature of the reactor, Q denotes the
rate of heat input/removal, Vr denotes the volume of the
reactor, ∆H, k0, E denote the enthalpy, pre-exponential
constant and activation energy of the reaction and cp, σ
denote the heat capacity and the density of the fluid in
the reactor. Variables w1 and w2 are time-varying distur-
bances which correspond to unmodelled process dynam-
ics. The values of the process parameters are shown in
Table 1.

System (8) has three steady-states for w1 = w2 = 0
(two locally asymptotically stable and one unstable). The
control objective is to stabilize the system at the open-
loop unstable steady state CAs = 0.57kmol/m3, Ts =
395.3K while keeping CA between 0.41kmol/m3 and
0.73kmol/m3, and T between 392.3K and 398.3K. These
constraints are soft constraints. The manipulated inputs
are the deviation from the nominal concentration of the
inflow ∆CA0 and the rate of heat input Q with con-
straints |∆CA0| ≤ 1kmol/m3 and |Q| ≤ 60KJ/min. We
consider time-varying uncertainties that satisfy |w1| ≤
0.5kmol/m3min and |w2| ≤ 1.2552K/min. The control
system is subject to data losses in the communication
links.

To demonstrate the theoretical results, we first design a
Lyapunov based feedback law using the method presented
in [5]. System (8) belongs to the following class of non-
linear systems

ẋ(t) = f(x(t)) + g(x(t))u(t) + w(x(t))θ(t)

where xT = [(T − Ts) (CA − CAs)] is the state vector,
uT = [∆CA Q] is the input vector and θT = [w1 w2] is a
time-varying bounded disturbance vector. Consider the
control Lyapunov function V (x) = xT Px with

P =
[
9.3548 0.4068
0.4068 0.0202

]
.

The values of the weights have been chosen to account for
the different range of numerical values for each state. The
following feedback law [5] asymptotically stabilizes the
open-loop unstable steady-state of the nominal system
(i.e., θ(t) = 0) and is of the form:

h(x) =
{ −LGV T c(x) if |LGV | 6= 0

0 if |LGV | = 0 (9)

with

c(x) =
L∗fV +

√
(L∗fV )2 + (umax|LGV |)4

|LGV |2[1 +
√

1 + (umax|LGV |)2]
where LfV denotes the Lie derivative of the scalar func-
tion V with respect to the vector field f , LGV =
[Lg1V · · ·LgmV ], where gi is the ith column of G, L∗fV =
LfV + βV where β > 0, and umax is a real number such
that |u| ≤ umax implies that u ∈ U . In the following
simulations we have chosen β = 0.5.

Following Lyapunov arguments, it can be proved that
whenever the closed-loop state evolves within the set

D = {x ∈ Rn : L∗fV ≤ umax|LGV |}

then the controller satisfies the input constraints and the
time-derivative of the Lyapunov function is negative. The
set D is a complex nonconvex set. In the simulation, we
use a grid to estimate D and evaluate cmax

u and cmax
ux .

Figure 1 shows the constrained stability regions Ωu, Ωux

together with sets D and X. In this figure cmax
u = 0.2

and cmax
ux = 0.023.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
385

390

395

400

405

T
 [K

]

C
A
 [kmol/m3]

X 

D 

Ω
ux

 

Ω
u
 

Figure 1: Representation of the constrained stability re-
gions Ωu, Ωux together with sets D and X.

Data losses are modeled with a random sequence s(tk).
To obtain this sequence two parameters are given, first a
probability p of data loss and a maximum allowable time
between two successful transmissions no. At each time
step tk, if k − i > no where ti is the last sampling time
with no data losses, then s(tk) = 1. This guarantees that
the maximum time without measurements is less than or
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equal to no. If k − i ≤ no, a random number ξ ∈ [0, 1]
is obtained from a uniform distribution. If ξ > p then
s(tk) = 1, and if ξ ≤ p then s(tk) = 0. This construc-
tive method provides a random sequence that satisfies the
constraint on the maximum time that the system oper-
ates in open-loop, with a data loss rate lower than p. In
the simulations different values of p and no have been
used (see below for precise values).

A sampling time of 0.02min is used to implement the
LMPC controller. The parameters of the objective func-
tion of the LMPC controller are chosen as Qc = Rc = I.
The constrained optimization problem is solved using
MATLAB function fmincon and the set of ODEs is in-
tegrated using the Euler method with a fixed integra-
tion step of 0.0002min. A new value for the uncertainty
is obtained from a uniform distribution at each integra-
tion step. The prediction horizon is set to N = 12 while
NR = no for each simulation. The proposed LMPC con-
troller is compared with the LMPC scheme that does not
take into account data losses in the controller design, that
is, NR = 1. In this case, even if the input is updated us-
ing the optimal manipulated input trajectory of a previ-
ous sampling time, the controller may not inherit the ro-
bustness properties of the Lyapunov-based controller h(x)
implemented following (3).

With the chosen sampling time, uncertainty bounds
and controller and system parameters, extensive simu-
lations were carried out using the Lyapunov-based con-
troller h(x) implemented following (3) to evaluate the ro-
bustness of this control law with respect to data losses.
One set of simulations was carried out to estimate the
maximum time Nux that the system can operate in open-
loop without leaving Ωux and satisfying the state and
input constraints for all times. A second set of simula-
tions was carried out to estimate the maximum time Nu

that the system can operate in open-loop violating the
state constraints, but staying inside Ωu. Taking into ac-
count that Ωux ∈ Ωu, it follows that Nux ≤ Nu. For this
example, Nux = 4 and Nu = 12.

We first demonstrate the implementation of the
Lyapunov-based model predictive controller of Theorem 1
assuming hard constraints in the states and inputs. We
compare this controller with the standard LMPC imple-
mentation with NR = 1. We consider an initial condition
inside Ωux and sensor data losses defined by p = 0.66
and no = 3. The resulting data losses have a data
loss rate of r = 0.6059. The initial condition is given
by CA = 0.7045kmol/m3 and T = 392.6374K. Fig-
ure 2 shows the trajectories of the LMPC controller with
NR = 12 (solid line) and NR = 1 (dashed line). Follow-
ing Theorem 1, the state of the closed-loop system under
the LMPC controller with NR = 12 remains bounded in
Ωux because no ≤ NR. This is not the case with the
standard LMPC implementation. It can be seen that if
the Lyapunov contractive constraint is not defined taking
into account data losses, the closed-loop state leaves Ωux,
and moreover, violates the state constraints.

For the second simulation the initial condition lies out-
side Ωux but inside Ωu. In this case, the state con-
straints are violated. The sensor data losses are de-

0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75
392

393

394

395

396

397

398

T
 [K

]

C
A
 [kmol/m3]

Figure 2: Closed-loop system states under the LMPC
controller with NR = 12 (solid line) and NR = 1 (dashed
line).

fined by p = 0.9167 and no = 12. The resulting data
loss rate is r = 0.8812. The initial condition is given
by CA = 0.8766kmol/m3 and T = 387.3743K. Fig-
ure 3 shows the trajectories of the LMPC controller with
NR = 12 (solid line) and NR = 1 (dashed line). Note
that for this simulation the hybrid implementation is not
taken into account. It can be seen that the state of the
closed-loop system under the proposed LMPC controller
with NR = no remains inside Ωu for all times, while the
state of the closed-loop system under the implementation
with NR = 1 leaves the stability region and goes to an-
other equilibrium point.
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Figure 3: Closed-loop system states under the LMPC
controller with NR = 12 (solid line) and NR = 1 (dashed
line).

The last simulation compares the LMPC controller
KL(x, i) with the hybrid controller KH(x, i). Both for-
mulations are subject to the same set of constraints in
the optimization problem. The only difference is the cost
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function. In the hybrid formulation, the objective is to
minimize the Lyapunov function at the end of the pre-
diction horizon. In this way, faster convergence to Ωux

is achieved in general. The initial condition is given by
CA = 0.1923kmol/m3 and T = 403.5146K. The sensor
data losses are defined by p = 0.75 and no = 4. The
resulting data loss rate is r = 0.6733. Figure 3 shows the
trajectories of the Lyapunov function for the LMPC con-
troller and the hybrid controller. The horizontal dashed
line is set at cmax

ux . It can be seen that the hybrid con-
troller reaches Ωux before the LMPC controller. Note
that the Lyapunov function increases at certain times.
This is due to the fact that when the system operates
in open-loop for a sufficiently long time, the error be-
tween the predicted state and the actual state becomes
too high and the Lyapunov function starts increasing be-
cause the control action is computed based on wrong state
estimates.
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0

0.05
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Figure 4: Profiles of V (x) for the closed-loop system un-
der the LMPC controller with NR = 12 (solid line) and
the hybrid controller with NR = 12 (dashed line).
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