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In this work, we focus on a thin film deposition process which takes place on a two-dimensional
(2D) lattice and is governed by three microscopic processes including molecule adsorption, surface
migration, and desorption. A 2D linear stochastic partial differential equation (PDE) model is
initially constructed which describes the spatio-temporal evolution of the film surface. Then,
the control problem is formulated as the one of regulating the thin film thickness and surface
roughness by manipulating the substrate temperature and adsorption rate. Subsequently, a
computationally efficient multivariable predictive control algorithm is developed which uses a
finite-dimensional approximation of the stochastic PDE model to regulate the thin film thickness
and surface roughness at desired levels at the end of the deposition. The predictive controller is
then applied to the kinetic Monte Carlo simulation of the deposition process. Closed-loop system
simulation results demonstrate that the model is adequately accurate and that the controller is
effective in enforcing the desired control objectives and reducing film variance.

1. Introduction

Thin films of advanced materials are used in a wide
range of applications, e.g., microelectronic devices,
optics, microelectromechanical systems (MEMS), and
biomedical products. Various deposition methods have
been developed and widely used to prepare thin films
such as physical vapor deposition (PVD) and chemical
vapor deposition (CVD). However, the dependence of the
thin film properties, such as uniformity, composition,
and microstructure, on the deposition conditions is a
serious constraint on reproducing thin film’s perfor-
mance.

Operating thin film deposition under real-time feed-
back control is one way of meeting the increasingly
stringent requirements on the quality of thin films and
reducing thin film variability. Motivated by this, earlier
research efforts focused on feedback control of thin film
deposition processes with emphasis on deposition spatial
uniformity control (see refs 1 and 2 for results on rapid
thermal processing (RTP) and ref 3 on plasma-enhanced
chemical vapor deposition (PECVD)) and on thin film
composition control (see ref 4 for experimental results
on real-time carbon content control in a PECVD pro-
cess). More recently, there has been significant attention
on feedback control of thin film microstructure arising
from the need to produce thin films with well-defined
microstructure. In a thin film growth process, the film
is directly shaped by microscopic random processes (e.g.,
molecule adsorption, desorption, migration, and surface
reaction). Models that describe these microscopic pro-
cesses and directly account for their stochastic nature
are needed for precise control of film microstructure.
Examples of such models include (1) kinetic Monte Carlo
(kMC) methods5-6 and (2) stochastic partial differential
equations (PDEs).8,9

Methodologies for estimation-based feedback control
and model-predictive control using kinetic Monte Carlo
models have recently been developed in refs 10-12 and

13, respectively. However, the fact that kMC models are
not available in closed-form makes it very difficult to
use them for system-level analysis and the design and
implementation of real-time model-based feedback con-
trol systems. Based on the fact that kinetic Monte Carlo
simulations provide realizations of a stochastic process
which are consistent with the master equation that
describes the evolution of the microscopic probability
distribution, a method to construct reduced-order ap-
proximations of the master equation was reported in ref
14. Furthermore, an approach was also reported in refs
15 and 16 to identify linear deterministic models from
outputs of kinetic Monte Carlo simulators and design
controllers using linear control theory. This approach
is effective in controlling macroscopic variables which
are low statistical moments of the microscopic distribu-
tions (e.g., surface coverage, which is the zeroth moment
of adspecies distribution on a lattice). However, to
control higher statistical moments of the microscopic
distributions, such as the surface roughness (the second
moment of height distribution on a lattice) or even the
microscopic configuration (such as the surface morphol-
ogy), deterministic models may not be sufficient. This
is because the effect of the stochastic nature of the
microscopic processes becomes very significant in these
cases and must be addressed in both the model con-
struction and controller design.

Stochastic PDE models, on the other hand, which are
available in closed-form, have been developed to describe
the evolution of the height profile for surfaces in certain
physical and chemical processes such as epitaxial
growth9 and ion sputtering.17 More recently, Lou and
Christofides presented a method for feedback control of
surface roughness in a thin film growth process using
one-dimensional (1D) stochastic PDE models.18,19 Pole-
placement controller design was carried out directly
based on the stochastic PDE models which describe the
surface height fluctuation, and the feedback controller
was successfully applied to the kMC model of the
process regulating the surface roughness to desired
values in deposition18 and sputtering19 processes.
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However, the construction of stochastic PDE models
for thin film growth processes directly based on mi-
croscopic process rules20-22 is a very difficult task. The
lack of a systematic approach to construct stochastic
PDE models has prohibited the development of stochas-
tic PDE models, and subsequently the design of feed-
back control systems. Motivated by this, we proposed,
in our recent work,23 a systematic method to con-
struct stochastic PDE models for thin film growth using
first-principles-based microscopic simulations. The
method was applied to a representative deposition
process, and a 1D linear stochastic PDE model was
constructed. This model was successfully validated
through simulations and was subsequently used to
design a model-based feedback controller to regulate the
surface roughness.

In this work, we focus on a thin film deposition
process which takes place on a two-dimensional (2D)
lattice and is governed by three microscopic processes
including molecule adsorption, surface migration, and
desorption. A 2D linear stochastic PDE model is initially
constructed, following the methodology proposed in our
previous work,23 which describes the spatio-temporal
evolution of the film surface. Then, the control problem
is formulated as the one of regulating the thin film
thickness and surface roughness by manipulating the
substrate temperature and adsorption rate. Subse-
quently, a computationally efficient multivariable pre-
dictive control algorithm is developed which uses a
finite-dimensional approximation of the stochastic PDE
model to regulate the thin film thickness and surface
roughness at desired levels at the end of the deposition.
The predictive controller is then applied to the kMC
simulation of the deposition process. Closed-loop system
simulation results demonstrate that the model is ad-
equately accurate and that the controller is effective in
enforcing the desired control objectives and reducing
film variance.

2. Preliminaries

2.1. Thin Film Growth Process. In this work, we
consider a thin film growth process of deposition from
vapor phase, in which the formation of the thin film is
governed by three microscopic processes that occur on
the surface as shown in Figure 1, i.e., the adsorption of
vapor phase molecules on the surface, the migration of
surface molecules, and the desorption of surface mol-
ecules. This process is, in fact, a very common thin film

growth process that can be traced in most chemical
vapor deposition processes.

More specifically, we consider a single species growth
on a 2D lattice. The adsorption rate which depends on
the vapor phase concentration is considered uniform
over the spatial domain. All surface sites are available
for adsorption for all time, and the adsorption rate for
each surface site is denoted as W (expressed in number
of molecules adsorbed per second, 1/s).

The migration rate of each surface molecule depends
on its local environment. Under the consideration of only
first nearest-neighbor interactions, the migration rate
of surface molecules from a surface site with n first
nearest-neighbors is given by

where Es is the energy barrier associated with migration
due to surface effects, En is the energy barrier associated
with migration due to nearest-neighbor interactions, km0
is the frequency constant associated with migration, kB
is the Boltzmann’s constant, and T is the substrate
temperature. The values of migration energy barriers
and frequency constant used in this study are taken
from the literature24 for a molecular beam epitaxy GaAs
process and are as follows: Es ) 1.58 eV, En ) 0.28 eV,
and km0 ) 2kBT/h, where h is Planck’s constant.

The desorption rate of each surface molecule also
depends on its local environment. Under the consider-
ation of only first nearest-neighbor interactions, the
desorption rate of surface molecules from a surface site
with n first nearest-neighbors is given by

where Ed is the energy barrier associated with desorp-
tion due to surface binding, and kd0 is the frequency
constant associated with desorption. We use the values
Ed ) 1.8 eV and kd0 ) 2kBT/h in this work.

A kinetic Monte Carlo simulation code following the
algorithm reported in ref 25 is used to simulate the
deposition process and obtain surface snapshots. First,
the surface molecules are grouped into three classes
based on the number of first nearest neighbors (from 0
to 4 neighbors); in each class, the molecules have the
same migration rate and desorption rate, and the
adsorption rate is site independent. Then, a random
number is generated to select an event to be executed
based on the rates; if the event is migration or desorp-
tion, the class in which the event will occur is also
selected. After that, a second random number is gener-
ated to select the site where the event will be executed;
if the event is adsorption, the site is randomly picked
among all the sites in the entire lattice; if the event is
migration or desorption, the site is randomly picked
from the list of the sites in the selected class. After the
site is selected, the Monte Carlo event is executed. If
the event is adsorption, it is executed by adding one
molecule on the selected site; if the event is migration,
the molecule on the site is moved to one of the vacant
neighboring sites with equal probability; if the event is
desorption, it is executed by removing the top molecule
on the selected site. Upon an executed event, a time
increment τ is added to the process time t, computed
based on the following equation (see ref 5 for a detailed
proof):

Figure 1. The thin film growth process.

wm(n) ) km0e
-(Es+nEn)/kBT (1)

wd(n) ) kd0e
-(Ed+nEn)/kBT (2)
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where ú is a random number that follows the uniform
distribution in the unit interval, Nn is the number of
surface molecules with n first nearest-neighbors, and
kmax is the size of the simulation lattice (i.e., the total
number of surface sites is kmax

2). Furthermore, periodic
boundary conditions are used in the kMC simulation
to satisfy the mass balance of the migration of the
surface molecules.

2.2. Stochastic PDE Model. We now proceed with
constructing a closed-form stochastic PDE model using
the approach we developed in ref 23. Without any a
priori knowledge of the deposition process, we assume
that there exists a 2D linear stochastic PDE of the
following general form that can adequately describe the
evolution of the surface of the thin film during the
deposition:

where x ∈ [0, π], y ∈ [0, π] is the spatial coordinate, t is
the time, h(x, y, t) is the height (in the unit of mono-
layers (ML)) of the surface at position x, y, and time t,
and ê(x, y, t) is a Gaussian noise with zero mean and
covariance:

where δ(‚) is the Dirac function. Furthermore, the
prederivative coefficients c and cj in eq 4 and the
parameter ς2 in eq 5 depend on the process parameters,
the substrate temperature T, and adsorption rate W
(directly determined by vapor phase concentration):

where C(‚) and Cj(‚) are nonlinear functions to be
determined.

The stochastic PDE of eq 4 is subjected to the
following periodic boundary conditions:

and the initial condition

Remark 1. In this work, we assume that a linear
stochastic PDE model should adequately describe the
process dynamics; however, for the cases in which the
nonlinear dynamics are significant, nonlinear stochastic
PDE models would be needed. Also, we note that we
use a scalar function, h(‚), to represent the height profile
of the thin film surface in the model. In general, h(‚)
can be a vector function and be used to represent any
appropriate microscopic description of the thin film
(such as the defect locations, grain boundaries, etc.); in

such a case, several stochastic PDEs should be consid-
ered simultaneously.

To study the dynamics of eq 4, we initially consider
the eigenvalue problem of the linear operator of eq 4,
which takes the form

where λm,n denotes the eigenvalue and φm,n denotes the
eigenfunction. A direct computation of the solution of
the above eigenvalue problem yields

where λm,n denotes the (m, n)th eigenvalue, φm,n(x, y)
denotes the (m, n)th eigenfunction, and I ) x-1.

To present the method that we use for parameter
identification of the stochastic PDE of eq 4, we first
derive an infinite stochastic ordinary differential equa-
tion (ODE) representation of eq 4 using modal decom-
position and parametrize the infinite stochastic ODE
system using kMC simulation. We first expand the
solution of eq 4 in an infinite series in terms of the
eigenfunctions of the operator of eq 9 as follows (i.e.,
the Fourier expansion in the complex form):

where zm,n(t) are time-varying coefficients. Substituting
the above expansion for the solution, h(x, y, t), into eq 4
and taking the inner product, the following system of
infinite stochastic ODEs is obtained:

with the initial conditions

where cm,n
z ) c∫0

π ∫0
π

φm,n
/ (x, y) dx dy, êm,n(t) ) ∫0

π ∫0
π ê(x, y,

t)φm,n
/ (x, y) dx dy, and zm,n,0 ) ∫0

π ∫0
π h0(x, y)φm,n

/ (x, y) dx
dy. Apparently, c0,0

z ) πc and cm,n
z ) 0 when m2 + n2 *

0. φm,n
/ is the complex conjugate of φm,n; the superscript

star is used to denote complex conjugate in the remain-
der of this manuscript.

The covariance of êm,n(t) can be computed by using
the following result:26

Result 1. If (1) f(x) is a deterministic function, (2)
η(x) is a random variable with 〈η(x)〉 ) 0 and covariance
〈η(x)η*(x′)〉 ) σ2δ(x - x′), and (3) ε ) ∫a

b f(x)η(x) dx, then

τ ) -
ln ú

Wkmax
2 + ∑

n)0

4

Nn[wm(n) + wd(n)]

(3)

∂h
∂t

) c + c1∇h + c2∇2h + ... + cw∇wh + ê(x, y, t) (4)

〈ê(x, y, t)ê(x′, y′, t′)〉 ) ς2δ(x - x′)δ(y - y′)δ(t - t′) (5)

c ) C[T(t), W(t)]

ς2 ) Cê[T(t), W(t)]

cj ) Cj[T(t), W(t)] j ) 0, ..., w (6)

∇jh(0, y, t) ) ∇jh(π, y, t)

∇jh(x, 0, t) ) ∇jh(x,π, t) j ) 0, ..., w - 1 (7)

h(x, y, 0) ) h0(x, y) (8)

Aφm,n(x, y) ) c1∇φm,n(x, y) + c2∇2
φm,n(x, y) + ... +

cw∇w
φm, n(x, y)

) λm,nφm,n(x, y)

∇j
φm,n(0, y) ) ∇j

φm,n(π, y)

∇j
φm,n(x, 0) ) ∇j

φm,n(x,π) j ) 0, ..., w - 1
m,n ) 0, (1, ..., (∞ (9)

λm,n ) (I2m + I2n)c1 + [(I2m)2 + (I2n)2]c2 + ... +

[(I2m)w + (I2n)w]cw

φm,n(x, y) ) 1
π

(eI2mx+I2ny) m,n ) 0, (1, ..., (∞ (10)

h(x, y, t) ) ∑
m,n)-∞

∞

zm,n(t)φm,n(x, y) (11)

dzm,n

dt
) λm,nzm,n + cm,n

z + êm,n(t)

m,n ) 0, (1, ..., (∞ (12)

zm,n(0) ) zm,n,0 m,n ) 0, (1, ..., (∞ (13)
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ε is a random number with 〈ε〉 ) 0 and covariance 〈εε*〉
) σ2∫a

b f(x)f*(x) dx.
Using result 1, we obtain 〈êm,n(t)〉 ) 0 and

〈êm,n(t)êm,n
/ (t′)〉 ) ς2δ(t - t′). We note that êm,n(t) is a

complex Gaussian random variable.
To parametrize this infinite stochastic ODE system,

we first derive the analytic expressions for the statistical
moments of the stochastic ODE states, such as the
expected values and covariances. By comparing the
analytical expression to the statistical moments ob-
tained by multiple kMC simulations, the parameters of
the stochastic ODE system (i.e., λm,n and ς) can be
determined.

The analytic solution to eq 12 is obtained as follows
to derive the expressions for the statistical moments of
the stochastic ODE states:

Using result 1, eq 14 can be further simplified as
follows:

where θm,n(t) is a complex random variable of normal
distribution with zero mean and covariance

Therefore, the first stochastic moment (the expected
value) and the second stochastic moment (the covari-
ance) of state zm,n can be expressed as follows:

Remark 2. We note that eqs 14-16 hold for all
stochastic ODE states. Particularly, when m ) n ) 0
(i.e., for state z0,0), λm,n ) 0, these terms in the equations
with λm,n and λm,n + λm,n

/ as denominators should be
calculated as follows:

Eq 16 holds for any initial condition zm,n,0. Since we
are able to choose any initial thin film surface profile
for simulation, we choose zm,n,0 ) 0 (i.e., the initial
surface is flat, h(x, y, 0) ) 0) to simplify our calculations.
In this case, eq 16 can be further simplified as follows
(note that cm,n

z ) 0, ∀m2 + n2 * 0):

where Re(λm,n) denotes the real part of λm,n. For z0,0(t),
it follows from eq 16 with λ0,0 ) 0 that

It can be seen in eq 17 that the statistical moments
of each stochastic ODE state depend only on the real
part of the corresponding eigenvalue, and therefore, to
determine the imaginary part of the eigenvalue we need
to construct an extra equation. We note that λm,n would
be a complex number if the linear operator A is not self-
adjoint, for example, when odd-partial-derivatives are
present in the stochastic PDE (see eq 10).

Therefore, we rewrite eq 14 by separating the real
part and the imaginary part of zm,n(t) as follows with
initial condition zm,n,0 ) 0:

Accordingly, the real part of zm,n(t) can be expressed as
follows:

where Re[zm,n(t)] denotes the real part of zm,n(t). By using
result 1, we have

where Im(λm,n) denotes the imaginary part of λm,n. Thus,

〈zm,n(t)〉 ) 0

〈zm,n(t)zm,n
/ (t)〉 ) ς2e(λm,n+λm,n

/ )t - 1
λm,n + λm,n

/
) ς2e2Re(λm,n)t - 1

2 Re(λm,n)
(17)

m,n ) 0, (1, ..., (∞; m2 + n2 * 0

〈z0,0(t)〉 ) tπc

〈z0,0
2(t)〉 ) ς2t + t2π2c2 (18)

zm,n(t) ) 1
2∫0

t
[eλm,n(t-µ) + eλm,n

/ (t-µ)]êm,n(µ) dµ +

1
2∫0

t
[eλm,n(t-µ) - eλm,n

/ (t-µ)]êm,n(µ) dµ (19)

m,n ) 0, (1, ..., (∞; m2 + n2 * 0

Re[zm,n(t)] ) 1
2∫0

t
[eλm,n(t-µ) + eλm,n

/ (t-µ)]êm,n(µ) dµ (20)

m,n ) 0, (1, ..., (∞; m2 + n2 * 0

〈Re[zm,n(t)]〉 ) 0

〈Re[zm,n(t)]2〉

) ς2[λm,n
/ e2λm,nt + λm,ne2λm,n

/ t - (λm,n + λm,n
/ )

8λm,nλm,n
/

+

e(λm,n + λm,n
/ )t - 1

2(λm,n + λm,n
/ ) ]

) ς2{Re(λm,n)e2Re(λm,n) cos(2 Im(λm,n)t)

4[Re(λm,n)2 + Im(λm,n)2]
+

Im(λm,n)e2Re(λm,n) sin(2 Im(λm,n)t)

4[Re(λm,n)2 + Im(λm,n)2]
-

Re(λm,n)

4[Re(λm,n)2 + Im(λm,n)2]
+ e2Re(λm,n)t - 1

4 Re(λm,n) }
m,n ) 0, (1, ..., (∞; m2 + n2 * 0 (21)

zm,n(t) ) eλm,ntzm,n,0 +
(eλm,nt - 1)cm,n

z

λm,n
+

∫0

t
eλm,n(t-µ)êm,n(µ) dµ (14)

zm,n(t) ) eλm,ntzm,n,0 +
(eλm,nt - 1)cm,n

z

λm,n
+ θm,n(t) (15)

〈θm,n(t)θm,n
/ (t)〉 ) ς2e(λm,n+λm,n

/ )t - 1
λm,n + λm,n

/

〈zm,n(t)〉 ) eλm,ntzm,n,0 +
(eλm,nt - 1)cm,n

z

λm,n

〈zm,n(t)zm,n
/ (t)〉 ) ς2e(λm,n+λm,n

/ )t - 1
λm,n + λm,n

/
+ 〈zm,n(t)〉〈zm,n(t)〉*

(16)

lim
λm,nf0

(eλm,nt - 1)cm,n
z

λm,n
) tcm,n

z

lim
λm,nf0

ς2e(λm,n+λm,n
/ )t - 1

λm,n + λm,n
/

) ς2t
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we can use eq 17 to first determine the real part of the
eigenvalue and then use eq 21 to determine its imagi-
nary part. We note that we can determine both parts of
the eigenvalue using only eq 21; however, in that case,
the nonlinear least-squares problem involved in the
eigenvalue determination would be much more difficult
to solve.

Remark 3. Equations 17, 18, and 21 show the
analytical relation that relates the linear operator and
the Gaussian noise in eq 4 to the statistical moments
of the states of eq 12 which can be obtained through
multiple experimental measurements or first-prin-
ciple simulations and, therefore, reveal a viable path
to systematically construct a linear stochastic PDE of
the form of eq 4 that describes the dynamics of a
microscopic process directly from experimental or simu-
lation data.

3. Model Construction

Following the procedure we proposed in our previous
work,23 we construct a linear stochastic PDE for the
deposition process described in section 2.1. The proce-
dure includes the following steps: First, we design a
set of simulation experiments that cover the complete
range of process operation; second, we run multiple
simulations for each simulation experiment to obtain
the trajectories of the first and second statistical mo-
ments of the states (i.e., Fourier coefficients) computed
from the surface snapshots; third, we compute the
eigenvalues of the linear operator and covariance of the
Gaussian noise based on the trajectories of the statisti-
cal moments of the states for each simulation experi-
ment and determine the model parameters of the
stochastic PDE (i.e., the prederivative coefficients and
the order of the stochastic PDE); finally, we investigate
the dependence of the model parameters of the stochas-
tic PDE on the process parameters and determine the
least-squares-optimal form of the stochastic PDE model
with model parameters expressed as functions of the
process parameters.

Remark 4. We note that all the simulation experi-
ments are executed using simulation lattices whose
sizes are large enough to capture the dynamics of the
surface evolution during the thin film growth, and we
run additional simulation experiments using larger
lattices to ensure our results. As we have mentioned in
ref 23, the experimental measurements obtained from
the actual physical process can also be used for model
construction, as long as the measurement has enough
resolution to capture the surface evolution dynamics.
Furthermore, since the same dynamics can be present
at both large and small length scale, the resolution of
the constructed model could be even better than the
experimental measurements. In general, the use of a
finite lattice size simulation and limited resolution
measurements does not affect the accuracy of the
constructed model, provided that the surface evolution
dynamics are retained in the simulation/experimental
data.

3.1. Eigenvalues and Covariance. The eigenvalues
and the covariance of the systems of ODEs which
correspond to the deposition processes with different W
and T values are identified based on the trajectories of
the statistical moments. In the previous section we have
shown that for a deposition process with a flat initial
surface, the trajectory of the second statistical moment
of the ODE state 〈zm,n(t)zm,n

/ (t)〉 can be predicted by eq

17; therefore, we can fit ς2 and Re(λm,n) in eq 17 for the
profile of 〈zm,n(t)zm,n

/ (t)〉. Similarly, Im(λm,n) can be de-
termined based on the trajectory of 〈Re[zm,n(t)]2〉 and eq
21.

To obtain the profile of 〈zm,n(t)zm,n
/ (t)〉 and

〈Re[zm,n(t)]2〉, we need to generate snapshots of the thin
film surface during each deposition simulation and
compute the values of zm,n(t). Since the lattice consists
of discrete sites, we let h(kxL, kyL, t) be the height profile
of the surface at time t with lattice constant L (kx and
ky denote the coordinates of a specific surface site) and
compute zm,n(t) as follows:

where kmaxL ) π (i.e., the lattice is mapped to the
domain [0, π]2). Substituting eq 10 into eq 22, we can
derive the following expressions for zm,n(t), z0,n(t),
zm,0(t), and z0,0(t):

For each simulation experiment, the profiles of
〈zm,n(t)zm,n

/ (t)〉 and 〈Re[zm,n(t)]2〉 are computed based on
100 simulation runs taking place with the same process
parameters (further increase in the number of simula-
tions led to identical results for the order and the
parameters of the constructed stochastic PDE).

Figure 2 shows an eigenspectrum identified from a
thin film deposition (we note that the identified eigen-
values are considered real since the imaginary part of
the eigenvalues identified turned out to be very small).
It can be seen that the identified spectrum is very close
to the parabolic reference curve (appears as a line when
the eigenvalue is plotted against m2 + n2). Based on eq
10, this implies that a second-order stochastic PDE
system of the following form would be able to describe
the evolution of the surface height of this deposition
process:

zm,n(t) ) ∫0

π∫0

π
h(x, y, t)φm,n

/ (x, y) dx dy

) ∑
kx,ky)0

kmax

h(kxL, kyL, t)∫kxL

(kx+1)L∫kyL

(ky+1)L
φm,n
/ (x, y)

dx dy (22)

zm,n(t) ) ∑
kx,ky)0

kmax h(kxL, kyL, t)

-4πmn
e-(I2mkxL+I2nkyL)(e-I2mL -

1)(e-I2nL - 1) (23)

m,n ) (1, ..., (∞

z0,n(t) ) ∑
kx,ky)0

kmax h(kxL, kyL, t)Le-I2kynL

-I2πn
(e-I2nL - 1) (24)

n ) (1, ..., (∞

zm,0(t) ) ∑
kx,ky)0

kmax h(kxL, kyL, t)Le-I2kxmL

-I2πm
(e-I2mL - 1) (25)

m ) (1, ..., (∞

z0,0(t) ) ∑
kx,ky)0

kmax h(kxL, kyL, t)L2

π
(26)

2420 Ind. Eng. Chem. Res., Vol. 44, No. 8, 2005



in which c, c2, and the covariance of the Gaussian noise
ê, ς, all depend on the microscopic processes and
operating conditions.

Remark 5. We note that it is necessary to rescale
m2 + n2 with the square of the corresponding lattice size,
to carry out a meaningful comparison among eigenspec-
trums identified from simulations using lattices of
different size, and for the same reason, the covariance
values should be scaled with the inverse of the square
of the lattice size, 1/kmax

2 (see ref 23 for a detailed
discussion).

3.2. Dependence on the Process Parameters. We
proceed now with the derivation of the parameters of
the stochastic PDE of eq 27. c, c2, and ς2 are evaluated
for assorted deposition conditions, and the lattice size
of 100 × 100 (i.e., kmax ) 100) is used for all the
simulation runs in our study.

Model parameter c is determined using eq 18 based
on the trajectory of 〈z0,0(t)〉. Since z0,0(t) is, in fact,
proportional to the average height (see eq 26, i.e., the
thickness of the film), c should equal the adsorption rate
W when there is no desorption of surface molecules (see
the process studied in ref 23 for example). However,
desorption of surface molecules is significant in the
deposition process studied in this work, and thus, the
actual value of c should be smaller than W. Therefore,
to derive the expression for c, we plot the relative
difference of c and W (i.e., (W - c)/W) against W and T,
and the result is shown in Figure 3. It can be seen in
Figure 3 that ln[(W - c)/W] has a quasi-linear relation-
ship with both T and ln W, and thus, the following
expression can be obtained for c as a function of T and
W through least-squares fitting:

where kw ) 3.3829 × 10-12, aw ) 0.6042, and Ew ) 2.7
× 10-3 eV.

The value of c2 is determined by least-squares fitting
of eq 10 and the eigenspectrum identified from the
simulation. Figure 4 shows the profile of c2 as a function
of T and W. It can be seen that ln c2 has a quasi-linear

relationship with both T and ln W, and thus, the
following expression can be obtained for c2 as a function
of T and W through least-squares fitting:

where kc ) 1.0274 × 10-13, ac ) 0.1669, and Ec ) 1.9 ×
10-3 eV.

The value of ς2 is obtained by averaging the ς2 values
determined using eq 17 based on the trajectories of the
second statistical moments of the states. However,
derivation of the expression of ς2(T, W) is not as
straightforward as the ones for c and c2. Figure 5 shows
the profile of the normalized ς2 value, ς2/(π/kmax)2, as a
function of T for different W. It can be noticed that
ς2/(π/kmax)2 grows exponentially with W, and therefore
we may assume ς2/(π/kmax)2 ) 1 + eav0+kv0T. Values of av0
and kv0 are determined by least-squares fitting for
different W, and results suggest that av0 and kv0 are
linear functions of W. Thus, the following expression is
obtained for ς2 as a function of T and W:

where av ) 15.55493, kv ) 20.64504, at ) 0.02332, and
kt ) 0.0261.

Figure 2. Eigenvalue spectrum of the infinite stochastic ODE
systems identified from the kMC simulation of the deposition
process with W ) 0.5 1/s, T ) 650 K, and kmax ) 100.

∂h
∂t

) c + c2∇2h + ê(x, y, t)

∇h(0, y, t) ) ∇h(π, y, t), h(0, y, t) ) h(π, y, t),

∇h(x, 0, t) ) ∇h(x, π, t), h(x, 0, t) ) h(x,π, t),

h(x, y, 0) ) h0(x, y) (27)

c(W, T) ) W(1 -
kw

Wawe-kBT/Ew) (28)

Figure 3. Profile of (W - c)/W as a function of substrate
temperature T and adsorption rate W.

Figure 4. Profile of c2 as a function of substrate temperature T
and adsorption rate W.

c2(W, T) )
kc0

Wace-kBT/Ec
)

kc

kmax
2Wace-kBT/Ec

(29)

ς2(W, T) ) π2

kmax
2
W[1 + e-av-kvW+(at+ktW)T]

) π2

kmax
2
W[1 + e(at+ktW)T

eav+kvW ] (30)
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Therefore, the linear stochastic PDE model identified
for the deposition process is as follows:

where

3.3. Validation of Stochastic PDE Model. We now
proceed with the validation of the stochastic PDE model
of the thin film deposition process (eq 31). Validation
experiments are conducted for a number of deposition
conditions which have not been used for the model
construction. We generate surface profiles using both
the stochastic PDE model and the kinetic Monte Carlo
simulation. Figure 6 shows the surface profile at the
end of a deposition with substrate temperature T ) 610
K, adsorption rate W ) 0.5 1/s, deposition duration of
200 s, and kmax ) 100; Figure 7 shows the surface profile
at the end of a deposition with substrate temperature
T ) 710 K, adsorption rate W ) 0.5 1/s, deposition
duration of 200 s, and lattice size kmax ) 100; we can
see that at both low and high substrate temperatures,
the linear stochastic PDE model constructed for the
deposition process is very consistent with the kinetic
Monte Carlo simulation in terms of film thickness and
surface morphology (such as surface island size distri-
bution and aggregation). The only observable difference
between the two surfaces is that the one generated by
kMC simulation has finer structural details than the
one generated by stochastic PDE simulation. Such
difference is caused, on one hand, by the fact that the
surface height profile in the stochastic PDE model is a
continuous approximation of the discrete lattice and, on
the other hand, by the error that occurs in the stochastic
PDE simulation in which a finite-dimensional stochastic
ODE approximation of the original stochastic PDE is
used (this error can be reduced by increasing the order
of the finite-dimensional approximation).

In addition, we generate expected surface roughness
profiles using both the stochastic PDE model and the
kinetic Monte Carlo simulation (average of 100 runs)
for the deposition process. For simplicity, the surface
roughness is evaluated in a root-mean-square fashion
as follows:

where hh(t) ) 1/π2 ∫0
π ∫0

π h(x, y, t) dx dy is the average
surface height. We note that for more detailed descrip-
tions of the surface morphology, the surface can be
examined using the height-height correlation function27

and the interface width function.28

To calculate the expected surface roughness using the
stochastic PDE model, we first expressed the surface
roughness in terms of the ODE states. According to eq
22, we have hh(t) ) z0,0(t)φ0,0. Therefore, r(t) can be
rewritten in terms of zm,n as follows:

and the expected roughness can be computed as follows:

Substituting eq 16 and λn ) - 4c2(m2 + n2) into eq 34,
we obtain the following expression of the trajectory of
〈r(t)〉 in terms of the parameters of the stochastic PDE
model:

Figure 8 shows the expected roughness profile of a
deposition with substrate temperature T ) 610 K and
adsorption rate W ) 0.5 1/s; Figure 9 shows the
roughness profile of a deposition with substrate tem-
perature T ) 710 K and adsorption rate W ) 0.5 1/s;
we can see that the roughness profiles generated by the
linear stochastic PDE model are very close to the
profiles generated by the kinetic Monte Carlo simula-
tion, for both low and high substrate temperatures.

Furthermore, we also generate expected thin film
thickness profiles using both the stochastic PDE model
and the kinetic Monte Carlo simulation (average of 100
runs) for the deposition process (shown in Figure 10).

Figure 5. Profile of ς2/(π/kmax)2 as a function of substrate
temperature T for different adsorption rates.

∂h
∂t

) W(1 -
kw

Wawe-kBT/Ew) + ( kc

kmax
2Wace-kBT/Ec)∇2h +

ê(x, y, t)

∇h(0, y, t) ) ∇h(π, y, t), h(0, y, t) ) h(π, y, t),

∇h(x, 0, t) ) ∇h(x,π, t), h(x, 0, t) ) h(x,π, t),

h(x, y, 0) ) h0(x, y) (31)

〈ê(x, y, t)ê*(x′, y′, t′)〉 )
π2

kmax
2
W[1 + e(at+ktW)T

eav+kvW ]δ(x - x′)δ(y - y′)δ(t - t′)

r(t) ) x 1
π2∫0

π∫0

π
[h(x, y, t) - hh(t)]2 dx dy (32)

r(t)

) x 1
π2∫0

π∫0

π
[h(x, y, t) - hh(t)][h(x, y, t) - hh(t)]* dx dy

) x 1

π2
∫0

π∫0

π ∑
m,n)-∞,m2+n2*0

∞

zm,n(t)φm,n(x, y)φm,n
/ (x, y)zm,n

/ (t)

dx dy

) x 1

π2
∑

m,n)-∞,m2+n2*0

∞

zm,n(t)zm,n
/ (t) (33)

〈r(t)〉 ) x 1

π2
∑

m,n)-∞,m2+n2*0

∞

〈zm,n(t)zm,n
/ (t)〉 (34)

〈r(t)〉 ) x 1

π2
∑

m,n)-∞,m2+n2*0

∞

[ς2e
-8c2(m2+n2)t - 1

-8c2(m
2 + n2)

+ e-8c2(m2+n2)t zm,n,0zm,n,0
/ ]
(35)
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We can see that the thickness profiles generated by the
linear stochastic PDE model are also very close to the
profiles generated by the kinetic Monte Carlo simula-
tion, for both low and high substrate temperatures.

4. Feedback Control

In this section, we design a multivariable state
feedback controller based on the stochastic PDE model
of eq 31 to control the thin film thickness and surface
roughness for the deposition process. The difficulty of
obtaining in situ surface measurements in real time had
been one of the obstacles for implementing feedback

control systems on thin film processes. Recently, re-
searchers made possible the use of some of the intrusive
scanning probe based techniques such as scanning
tunneling microscopy (STM),29 secondary electron mi-
croscopy (SEM),30 and atomic force microscopy (AFM)31

in situ, to observe in real time the growth of the thin
film. In ref 32, it was reported that a nonintrusive
grazing incidence small-angle X-ray scattering (GISAXS)
method was successfully used to monitor the thin film
growth in situ in real time; the method was capable of
sampling large surface areas with sampling frequency
up to 10 Hz and a subnanometer resolution. Such
advancements in surface metrology indeed create the

Figure 6. Final thin film surface profiles generated by kMC simulation (left, kmax ) 100) and stochastic PDE model (right, 20 × 20
states) for a 200 s deposition with substrate temperature T ) 610 K and adsorption rate W ) 0.5 1/s.

Figure 7. Final thin film surface profiles generated by kMC simulation (left, kmax ) 100) and stochastic PDE model (right, 20 × 20
states) for a 200 s deposition with substrate temperature T ) 710 K and adsorption rate W ) 0.5 1/s.

Figure 8. Expected surface roughness profiles generated by kMC
simulation (kmax ) 100) and stochastic PDE model for a 200 s
deposition with substrate temperature T ) 610 K and adsorption
rate W ) 0.5 1/s.

Figure 9. Expected surface roughness profiles generated by kMC
simulation (kmax ) 100) and stochastic PDE model for a 200 s
deposition with substrate temperature T ) 710 K and adsorption
rate W ) 0.5 1/s.
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possibility for implementing feedback control systems
which rely on real-time surface state measurements.

Since the thin film deposition is a batch process, the
control objective is to control the final thin film thick-
ness and surface roughness to the desired levels at the
end of each deposition run. We use an optimization-
based control problem formulation. The substrate tem-
perature T and the adsorption rate W (W can be
adjusted by varying reactor inlet gas flow rate, chamber
pumping speed, etc.) are chosen to be the manipulated
variables. Furthermore, since the process is stochastic
in nature, the controlled variables are the expected
values of the final thin film thickness 〈hh(tdep)〉 and of
the surface roughness 〈r(tdep)〉, where tdep is the total
deposition time.

Figure 11 shows the block diagram of the closed-loop
system. The control system operates in a discrete time
fashion; when the Kth real-time surface profile mea-
surement is obtained at time tK (i.e., tK ) Kts, where ts
is the measurement interval as well as the control
interval), the states of the infinite stochastic ODE
system, zm,n(tK), are computed. Then, a substrate tem-
perature T(tK+1) and an adsorption rate W(tK+1) are
computed based on states zm,n(tK) and the stochastic
PDE model, under the assumption that T and W are
held at designated levels for the rest of the deposition.
T(tK+1) and W(tK+1) are then applied to the deposition
process at the next measurement time tK+1.

4.1. Predictive Control Design. To design a model-
based predictive controller, we first derive the analytical
expression for the trajectory of 〈hh(t)〉 and 〈r(t)〉. Due to
the fact that the current deposition parameters (T(tK)
and W(tK)) would be used during the current control
cycle before the new levels (T(tK+1) and W(tK+1)) are
applied, the estimate of the film thickness (i.e., the
estimate of 〈z0,0(tdep〉) and the estimate of the final
surface roughness cannot be computed directly using

eqs 18 and 35 (λm,n and ς2 are no longer constant due to
the change of W and T). Therefore, we first need to
derive the expressions of z0,0(tdep) and zm,n(tdep) (m2 +
n2 * 0) for this case. We consider that at time tK+1, the
deposition parameters are changed from W(tK) and T(tK)
to W(tK+1) and T(tK+1), respectively. Following from eq
14, we have

Hence, by calculating the intermediate values z0,0(tK+1)
and zm,n(tK+1) (m2 + n2 * 0) using z0,0(tK) and zm,n(tK),
respectively, the expressions of z0,0(tdep) and zm,n(tdep) can
be derived as follows:

Using result 1 and substituting c0,0
z ) πc and λm,n )

-4(m2 + n2)c2 (eq 10), the above equations can be
simplified as follows:

where θh0,0(tK), θ̂0,0(tK+1), θhm,n(tK), and θ̂m,n(tK+1) (m2 + n2

* 0) are independent Gaussian random numbers with
zero mean, and their covariances can be expressed as
follows:

Therefore, the quantities that directly relate to thick-
ness and roughness estimations, 〈z0,0(tdep)〉, 〈zm,n(tdep)〉,

Figure 10. Expected thin film thickness profiles generated by
kMC simulation (kmax ) 100) and stochastic PDE model for (1) a
200 s deposition with substrate temperature T ) 610 K and
adsorption rate W ) 0.5 1/s (thin lines) and (2) a 200 s deposition
with substrate temperature T ) 710 K and adsorption rate W )
0.5 1/s (thick lines).

Figure 11. Block diagram of the closed-loop system.

z0,0(t) ) z0,0(t0) + c0,0
z (t - t0) + ∫t0

t
ê0,0(µ) dµ

zm,n(t) ) eλm,n(t-t0)zm,n(t0) + ∫t0

t
eλm,n(t-µ)êm,n(µ) dµ (36)

m,n ) 0, (1, ..., (∞; m2 + n2 * 0

z0,0(tdep) ) z0,0(tK) + c0,0
z (tK)tc + c0,0

z (tK+1)(tdep -

tK+1) + ∫tK

tK+1ê0,0(µ) dµ + ∫tK+1

tdepê0,0(µ) dµ

zm,n(t) ) eλm,n(tK)tc+λm,n(tK+1)(tdep-tK+1)zm,n(tK) +

eλm,n(tK+1)tc∫tK

tK+1eλm,n(tK)(tK+1-µ)êm,n(µ) dµ +

∫tK+1

tdepeλm,n(tK+1)(tdep-µ)êm,n(µ) dµ (37)

m,n ) 0, (1, ..., (∞; m2 + n2 * 0

z0,0(tdep) ) z0,0(tK) + πc(tK)tc + πc(tK+1)(tdep - tK+1) +
θh0,0(tK) + θ̂0,0(tK+1)

zm,n(t) ) e-4(m2+n2){c2(tK)tc+c2(tK+1)[tdep-tK+1]}zm,n(tK) +
θhm,n(tK) + θ̂m,n(tK+1)

m,n ) 0, (1, ..., (∞; m2 + n2 * 0 (38)

〈θh0,0(tK)θh0,0
/ (tK)〉 ) ς2(tK)tc

〈θ̂0,0(tK+1)θ̂0,0
/ (tK+1)〉 ) ς2(tK+1)(tdep - tK+1)

〈θhm,n(tK)θh0,0
/ (tK)〉 )

e-8(m2+n2)c2(tK+1)tcς2(tK)e
-8(m2+n2)c2(tK)tc - 1

-8(m2 + n2)c2(tK)

〈θ̂m,n(tK+1)θ̂m,n
/ (tK+1)〉 )

ς2(tK+1)
e-8(m2+n2)c2(tK+1)(tdep-tK+1) - 1

-8(m2 + n2)c2(tK+1)
(39)

m,n ) 0, (1, ..., (∞; m2 + n2 * 0
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and 〈zm,n(tdep)zm,n
/ (tdep)〉, can be derived as follows:

Accordingly, the expected final film thickness can be
expressed as follows:

Also, by substituting eq 40 into eq 34, the expected final
surface roughness can be derived as follows:

Since the computation of the above equation involves
infinite summations, it cannot be calculated directly in
practice. A finite dimensional approximation, which only
uses the first ((Nth, (Nth) states, is used for the
computation and is of the following form:

Here we note that this finite dimensional approxima-
tion can be improved by utilizing an upper bound for
the residue of the infinite summation derived following
the method we proposed in our previous work (see ref
23 for detailed discussions on the convergence property

of the infinite series and the determination of N for a
desired approximation precision); however, such im-
provement is not adopted in this work for simplicity.
Moreover, instead of direct truncation of the system of
infinite dimensional stochastic ODEs, more advanced
reduction techniques can be used, especially when the
stochastic PDE model is nonlinear (see refs 33 and 34
for results on nonlinear model reduction of parabolic
PDEs). Therefore, the values of T(tK+1) and W(tK+1) are
determined at each sampling time interval by solving,
in the control time interval, the following optimization
problem:

subject to

where qh and qr are the weights of the penalties on
thickness and roughness, respectively; cmin is the mini-
mum growth rate; Tmin, Tmax, Wmin, and Wmax are the
lowest and highest substrate temperature and the
lowest and highest adsorption rate, respectively. In this
study, we use qh ) 1/hset

2, qr ) 1/rset
2, cmin ) 0.1hset/tdep,

Tmin ) 400 K, Tmax ) 900 K, Wmin ) 0.1 1/s, and Wmax )
2.0 1/s.

We note that J corresponds to the difference between
the square of the desired final surface roughness rset and
the square of the estimated final surface roughness
〈rfinal〉 computed based on the current states zm,n(tK). We
choose to minimize the difference of the squares of the

〈z0,0(tdep)〉 ) z0,0(tK) + πc(tK)tc +
πc(tK+1)(tdep - tK+1)

〈zm,n(tdep)〉 ) e-4(m2+n2)[c2(tK)tc+c2(tK+1)(tdep-tK+1)]zm,n(tK)

〈zm,n(tdep)zm,n
/ (tdep)〉 ) 〈zm,n(tdep)〉〈zm,n(tdep)〉* +

〈θhm,n(tK)θhm,n
/ (tK)〉 + 〈θ̂m,n(tK+1)θ̂m,n

/ (tK+1)〉 (40)

m,n ) 0, (1, ..., (∞; m2 + n2 * 0

〈hh final(tK)〉 )
〈z0,0(tdep)〉

π
)

z0,0(tK)
π

+ c(tK)tc +

c(tK+1)(tdep - tK+1) (41)

〈rfinal(tK)〉2 )
1

π2
∑

m,n)-∞;m2+n2*0

∞

〈zm,n(tdep)zm,n
/ (tdep)〉

)
1

π2
∑

m,n)-∞;m2+n2*0

∞

[〈zm,n(tdep)〉〈zm,n(tdep)〉* +

〈θhm,n(tK)θhm,n
/ (tK)〉 + 〈θ̂m,n(tK+1)θ̂m,n

/ (tK+1)〉]

)
1

π2
∑

m,n)-∞;m2+n2*0

∞ {zm,n(tK)zm,n
/ (tK)

e-8(m2+n2)[c2(tK)tc+c2(tK+1)(tdep-tK+1)] +

e-8(m2+n2)c2(tK+1)tcς2(tK)
e-8(m2+n2)c2(tK)tc - 1

-8(m2 + n2)c2(tK)
+

ς2(tK+1)
e-8(m2+n2)c2(tK+1)(tdep-tK+1) - 1

-8(m2 + n2)c2(tK+1)
} (42)

〈rfinal(tK)〉2 )
1

π2
∑

m,n)-N;m2+n2*0

N {zm,n(tK)zm,n
/ (tK)

e-8(m2+n2)[c2(tK)tc+c2(tK+1)(tdep-tK+1)] +

e-8(m2+n2)c2(tK+1)tcς2(tK)
e-8(m2+n2)c2(tK)tc - 1

-8(m2 + n2)c2(tK)
+

ς2(tK+1)
e-8(m2+n2)c2(tK+1)(tdep-tK+1) - 1

-8(m2 + n2)c2(tK+1)
} (43)

min
W(tK+1),T(tK+1)

J(tK) ) qh(hset - 〈hh final(tK)〉)2 +

qr(rset
2 - 〈rfinal(tK)〉2)2 (44)

〈hh final(tK)〉 )
z0,0(tK)

π
+ c(tK)tc + c(tK+1)(tdep - tK+1)

(45)

〈rfinal(tK)〉2 )

1

π2
∑

m,n)-N;m2+n2*0

N {zm,n(tK)zm,n
/ (tK)

e-8(m2+n2)[c2(tK)tc+c2(tK+1)(tdep-tK+1)] +

e-8(m2+n2)c2(tK+1)tcς2(K)
e-8(m2+n2)c2(tK)tc - 1

-8(m2 + n2)c2(tK)
+

ς2(tK+1)
e-8(m2+n2)c2(tK+1)(tdep-tK+1) - 1

-8(m2 + n2)c2(tK+1)
} (46)

c(tK+1) ) W(tK+1)[1 -
kw

W(tK+1)
awe-kBT(tK+1)/Ew] (47)

c2(tK+1) )
kc

kmax
2W(tK+1)

ace-kBT(tK+1)/Ec
(48)

ς2(tK+1) ) π2

kmax
2
W(tK+1){1 + e[at+ktW(tK+1)]T(tK+1)

eav+kvW(tK+1) } (49)

c(tK+1) g cmin (50)

Tmin e T(tK+1) e Tmax (51)

Wmin e W(tK+1) e Wmax (52)
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surface roughness, i.e., the mean square of the surface
height, to simplify the calculation. The optimization
problem is solved using a standard sequential quadratic
programming (SQP) method described in ref 35.

Remark 6. Since eq 46 is a finite dimensional
approximation of the predicted final surface roughness,
to achieve a control precision ε, m should be chosen large
enough for each optimization computation so that the
approximation error is less than ε (see detailed discus-
sion in ref 23).

Remark 7. Since the control action is computed using
closed-form equations, the computation cost is propor-
tional to the number of states used, 4N2, but indepen-
dent of the optimization horizon tdep - t; however, to
evaluate the values of the 4N2 states, an additional
computation time of the order of 4kmax

2N2 is needed for
each surface measurement. Nevertheless, even for a
lattice size that corresponds to the largest physical
dimension of the sampling area that can be achieved
by common surface measurement techniques (i.e., a few
microns), such computation can still be completed
within the control interval using currently available
computing power. On the other hand, such task is
almost impossible to achieve using a kMC code, whose
computation cost is on the order of kmax

4(tdep - t) for
merely a single run. Furthermore, we note that the
evaluation of each state is independent of other states
and, therefore, can be executed in parallel, while the
kMC code, being a serial calculation, is unsuitable for
parallel processing.

4.2. Closed-Loop Simulations. A kMC code using
a lattice size of 100 × 100 is used to simulate the thin
film deposition process, and tc is set to be 1 s. The
dimension of the finite dimensional approximation of
the stochastic PDE used for optimization is N ) 10.

Figure 12 shows the surface roughness and substrate
temperature profiles of a closed-loop deposition process
with initial substrate temperature T ) 610 K and
adsorption rate W ) 1.0 1/s (These initial values are
picked such that, with process parameters fixed at these
levels throughout the deposition, the final thickness and
surface roughness of the deposited film are quite dif-
ferent from the desired values). Figure 13 shows the
thin film thickness and surface adsorption rate profiles
of this closed-loop deposition. The control objective is
to control the thin film thickness to 100 ML and to drive
the final surface roughness to 1.5 ML at the end of the
200 s deposition. It can be seen that both the film
thickness and the final surface roughness are controlled

at the desired levels simultaneously while an open-loop
deposition with the same initial deposition condition
would lead to a 100% higher film thickness and a 100%
higher final surface roughness as shown in Figure 12
and Figure 13.

Figure 14 shows the final surface roughness histo-
gram of the thin films deposited using 100 different
closed-loop depositions targeting a thin film thickness
of 100 monolayers and a final surface roughness of 1.65
ML and 100 different open-loop depositions with fixed
substrate temperature and surface adsorption rate. The
average roughness of the thin films deposited by open-
loop depositions is 1.52 ML, which is quite close to the
average roughness of the thin films deposited by the
closed-loop depositions (1.64 ML). However, the variance
among the thin films from different open-loop deposition
runs is over 300% higher than that of closed-loop
depositions even though no process disturbance is
considered in the simulations.

Such large variance among the films deposited by
open-loop deposition can be attributed to the stochastic
nature of the thin film growth process itself. Although
optimal profiles of adsorption rate and substrate tem-
perature, i.e., a well-prescribed process recipe, can be
determined for the open-loop deposition, so that the
average final thickness and surface roughness of the
deposited films are very close to the desired levels, the
stochasticity of the film growth cannot be effectively
handled by the predetermined process recipes (imple-
mented in an open-loop fashion) and, therefore, results
in significant film variance. On the other hand, in
closed-loop depositions, as demonstrated in the simula-

Figure 12. Surface roughness and substrate temperature profiles
of a 200 s closed-loop deposition process with a thickness setpoint
of 100 ML and a final roughness setpoint rset ) 1.5 ML; the initial
deposition conditions are T ) 610 K and W ) 1.0 1/s.

Figure 13. Thickness and surface adsorption rate profiles of a
200 s closed-loop deposition process with a thickness setpoint of
100 ML and a final roughness setpoint rset ) 1.5 ML; the initial
deposition conditions are T ) 610 K and W ) 1.0 1/s.

Figure 14. Histogram of final surface roughness of 100 closed-
loop and 100 open-loop thin film depositions targeted at the same
surface roughness level.
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tion, feedback control is able to effectively compensate
for the stochasticity of the process and, therefore,
significantly reduce the film variance and outperform
the recipe-based open-loop deposition.

5. Conclusions
In this work, we focused on a thin film deposition

process which took place on a 2D lattice and was
governed by three microscopic processes including mol-
ecule adsorption, surface migration, and desorption. A
2D linear stochastic PDE model was initially con-
structed, following the methodology proposed in our
previous work,23 which describes the spatio-temporal
evolution of the film surface. Then, the control problem
was formulated as the one of regulating the thin film
thickness and surface roughness by manipulating the
substrate temperature and adsorption rate. Subse-
quently, a computationally efficient multivariable pre-
dictive control algorithm was developed which used a
finite-dimensional approximation of the stochastic PDE
model to regulate the thin film thickness and surface
roughness at desired levels at the end of the deposition.
The predictive controller was then applied to the kMC
simulation of the deposition process. Closed-loop system
simulation results demonstrated that the model was
adequately accurate and that the controller was effective
in enforcing the desired control objectives and reducing
the film variance caused by the stochasticity of the
growth process.
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