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1 | INTRODUCTION

Abstract

The automation and control of protonic membrane reformers can facilitate the com-
mercialization of this emerging hydrogen-producing technology. To this end, a decen-
tralized and offset-free model predictive control (MPC) approach is developed to
explore potential automation pathways for a protonic membrane reforming system
that achieves 84% hydrogen recovery at 0.69 A-cm~2 (15.2 cm? active surface area).
Three physics-based and data-driven models estimate thermal hydrogen generation
on the anode, electrochemical hydrogen recovery on the cathode, and steam genera-
tion. During setpoint tracking, the experimental results of the MPC architecture show
faster hydrogen purification rate settling times and implementable control action
profiles between sampling times, protecting the actuators and the thermo-
electrochemical performance of the protonic membrane. Ultimately, this work points
to control strategies for protonic membrane systems that incorporate a combination
of classical and predictive controllers with disturbance-observer-based error quantifi-

cation for optimal hydrogen production.

KEYWORDS
disturbance observer (DOB), model predictive control (MPC), process systems engineering,
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transport across ion-conducting ceramic membranes. The benefit of

using ion-conducting membranes for methane reforming, herein

Steam methane reforming (SMR) is a chemical process that generates
95% of the hydrogen circulating in the world economy.! Conventional
steam methane reforming plants are designed with a series of fired
reformers, shift reactors, and separation units to generate and purify
hydrogen from natural gas. Although these types of plants have been
operated for more than 80 years and are highly optimized chemical
production processes, there is a growing interest in transitioning to
electrified furnace reactors, as furnace units consume the largest frac-
tion of process energy in SMR plants.? Electric power may also be

used in state-of-the-art reformer designs to facilitate hydrogen

Dominic Peters and Xiaodong Cui contributed equally to this work.

referred to as protonic membrane reformers (PMR), is the removal of
hydrogen from thermal reaction zones by way of electrochemical sep-
aration in a single reactor-separator unit. As a result, a thermodynamic
equilibrium shift increases hydrogen production rates in reaction
zones that lower the operating temperatures of protonic membrane
reformers by at least 100°C, compared to conventional steam meth-
ane reformers. However, full heat integration and automation of PMR
systems are the two primary bottlenecks currently inhibiting the com-
mercialization of ion-conducting hydrogen generators, as discussed,
e.g., by Fjeld et al.®

At a conceptual level, protonic membrane reformers are a

special case of emerging SMR energy technologies that drive
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thermo-electrochemical reactions for hydrogen compression and puri-
fication in a single chemical processing unit; in this design, the water-
gas shift (WGS) reactors and pressure-swing adsorption units of con-
ventional hydrogen plants are foregone. The dependence of thermal
reactions on electrochemical hydrogen separation rates, protonic
membrane reformer temperatures, feed stream steam-to-carbon (S/C)
ratios, and membrane conductivity inevitably leads to nonlinear pro-
cess dynamics and multivariable couplings. Further, the feed steam-
to-carbon ratio is inherently linked to both thermal reaction rates and
the anode steam partial pressure. These factors determine the pro-
tonic membrane separation performance, leading to input-output vari-
able interactions between the main thermo-electrochemical
subprocesses of reaction, transport, and separation. Therefore, we
must address the challenge of developing robust and stable predictive
control architectures for PMR systems, since the application of non-
linear model predictive control algorithms to multi-time-scale systems
with uncertain disturbance phenomena often leads to controller inef-
fectiveness and closed-loop instabilities.*

A body of chemical engineering literature has evaluated different
control methodologies for experimental hydrocarbon reformers and pro-
ton exchange membrane fuel cells. Selected works are provided in
Table 1, but validated dynamic models and experimental applications of
process control for protonic membrane reformers remain unreported.
Therefore, this work seeks to establish advanced automation pathways
that can withstand the stochastic disturbance phenomena that may arise
in such systems. Specifically, membrane conductivity, local anode dehy-

1112 catalyst deactivation, and pressure

dration, hydrogen depletion,
oscillations are all uncertain physical factors that occur during regular
operation and must be overcome by robust feedback controller designs.
To that end, state observers have often been used in industrial control
algorithms to estimate unmeasured states, filter noise, and quantify
disturbance-based errors. Disturbance observers are a subset of state
observers that are often programmed within MPC algorithms to achieve
controller robustness in systems subject to estimation uncertainties and
external disturbance phenomena.’® In view of this, the first decentralized
model predictive control (DMPC) architecture to regulate the steam-
to-carbon ratio of reactants, hydrogen purification rates, and the overall

rate of hydrogen generation is developed in the present work for a 15.2

TABLE 1

Authors System

Lin et al. (2006)° Methane reformer simulation based on

empirical data

Autothermal reformer with PEMFC
simulation

Malik et al. (2020)°

Cifuentes et al. (2023)” Experimental high-pressure methanol

reformer
Andreasen et al. (2013)®
Li et al. (2022)°

Experimental methanol reformer

Low-temperature PEMFC

Citmaci et al. (2024)*° Experimental electrified methane reformer
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cm? protonic membrane that has been integrated into a reforming sys-
tem. An offset-free disturbance observer is also used to mitigate
plant-model mismatch in the hydrogen generation rate control loop
by adapting a reaction engineering model to shifts in catalytic activity,
cell voltage spikes, local dehydration of membrane surfaces, and sen-
sor drift. The transient responses of all controlled variables were pre-
viously captured in validated models constructed by Cui et al.,** and
are now subsequently implemented in three experimental predictive
controllers subject to the aforementioned experimental disturbance
phenomena.

Compared to a classical multi-input multi-output control scheme,
the DMPC architecture for hydrogen purification demonstrates an
improved time-to-setpoint, an improved adherence to process-
specific constraints, and enhanced recovery rates exceeding 84%.
Furthermore, setpoint dynamic compensation of the hydrogen purifi-
cation rate prevents hydrogen depletion at the protonic membrane
anode, helping to limit carbon formation reactions and voltage spikes.
Near-complete methane conversion at reformer temperatures below
800°C is also observed. Overall, these experiments contribute to the
science of scale-up® and reaction engineering®® by quantifying the
extent of multivariable couplings in dynamically-operated thermo-
electrochemical systems to provide potential automation pathways

and enable optimal control of PMR systems.

2 | PRELIMINARIES
21 | Notation

The symbol ||-|| represents the Euclidean norm of a vector. R repre-
sents the set of real numbers.

2.1.1 | Definitions of variables used in the modeling

of the reactor and bubbler

o AVPMROACPMR. Surface area for heat loss, of PMR anode, of PMR

cathode [m?].

Summary of literature on control strategies for reforming systems (selected papers).

Control strategy Main contribution

SISO MPC PI control of hydrogen production via methane
feed flow rate

Classical MIMO Pl and PID control of temperature and hydrogen
flow rate using furnace heat and PEMFC current

Classical SISO Experimental PI control of hydrogen production
via methanol feed flow rate at 12 bar

Classical MIMO Two PI temperature controllers

SISO MPC Experimental MPC for controlling PEMFC
temperature

SISO MPC MPC with extended Luenberger observer for

hydrogen production control
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e A;: Pre-exponential factor of adsorption constant K; [Pa~! for i =
CHy4,H>,CO and unitless for i = H,0].

e A:  Pre-exponential  factor of rate
[mol - Pa®5 - (kg g -5) 2 for j = 1 (SMR reaction), mol - (Pa-kggy -5)
for j = 2 (WGS reaction)].

o CPMRCEPMR: Concentration of gas i, in PMR anode chamber, in
PMR cathode chamber [mol-m~3].

e C,: Heat capacity of speciesi [J- (kg - K)’l].

coefficient  k;

e E;: Activation energy of reaction j U-mol™1.

FisMR, FEEMR: Inlet molar flow rate of gas i in PMR anode chamber,
in PMR cathode chamber [mol-s~1].

o Fyex: Extraction rate of gas k [mol-s~1].

e |, Iz Current through membrane, current to heat furnace [A].

e K;: Adsorption constant of gas i [Pa~! for i = CHa,H»,CO and unit-
less for i = H,0]

e K;: Equilibrium constant of reaction j [Pa? for j = 1 (SMR reaction),
unitless for j =2 (WGS reaction)]

e k;: Reaction rate constant of reaction j [mol-Pa®> - (kg4 ~s)’1 for j
= 1 (SMR reaction), mol- (Pa- kg -s)~* for j = 2 (WGS reaction)]

o PAPMR pcPMR. prassure of PMR anode chamber, of PMR cathode
chamber [Pa])

o qPMR goPMR. Outlet volumetric flow rate of PMR anode chamber,
of PMR cathode chamber [m®-s~1].

e r;: Rate of reaction j per kilogram of catalyst [mol - (kg-s)’ll.

e R: Universal gas constant [J- (mol-K)~*].

® Ry, Ry: Electric resistance of furnace, of membrane [Q].

o T9 TOPMR TCPMR. Temperature of ambient, of PMR anode chamber,
of PMR cathode chamber [K].

. Tg'PMR, TSPMR, Tg: Temperature at the inlet of PMR anode chamber,
of PMR cathode chamber [K].

o UMPMRUePMR: Overall heat transfer coefficient of PMR anode
chamber, of PMR cathode chamber [J- (s-K - mz)_l].

o VIPMR \PMR. \iolume of PMR anode chamber, of PMR cathode
chamber [m?3].

o W .: Weight of catalyst [kg].

e AH,: Enthalpy change of reaction j U-mol™1].

Cathode BZCY

(A) +NiCat. Anode Electrolyte
‘ + Ni Cat.

Ju,

I

o pIPMR,SPMR. Density of species i of PMR anode chamber, of PMR

cathode chamber [kg-m~3].

2.2 | Protonic membrane reforming system
The objective of the PMR operation is to generate a purified hydrogen
product stream from methane and steam. The system accomplishes
hydrogen purification by catalyzing thermo-electrochemical reactions,
separations, and compression under applied thermal and electrical
energy inputs. To properly define and formulate the control problem,
the mass and energy dynamics of the control volumes that comprise
the PMR system are considered. There are four primary control vol-
umes where dynamic mass and energy exchanges occur: The anodic
and cathodic bubblers, the anode chamber, and the cathode chamber.
The BZCY (BaZrCeYO;3_;) protonic membrane in Figure 1A is the
interface where thermo-electrochemical reactions convert methane
to hydrogen, create carbon oxide by-products, and drive the purifica-
tion of hydrogen. Figure 2 highlights key processing units, sensors,
and actuators for the experimental PMR system. A detailed discussion
on the inner workings, hardware factors, and chemical physics of the
protonic membrane and general PMR system is provided in previous
works.317:18

The anodic feed stream of the PMR unit is a mixture of steam,
methane, hydrogen, and trace argon. The cathodic feed stream con-
tains pure hydrogen, which is used as a sweep gas to transport puri-
fied hydrogen to the cathodic outlet of the PMR system. Within the
protonic membrane anode chamber, steam methane reforming and
water-gas shift reactions are catalyzed at the anode surface by a
metallic nickel dispersion on a barium-zirconate ceramic. Under an
applied electric current, hydrogen oxidation also occurs at the anode
surface. The resulting protons migrate across the ceramic electrolyte
to the cathode, where hydrogen evolution produces hydrogen gas
molecules. The endothermic steam methane reforming reaction and
exothermic water-gas shift reaction induce a nonlinear temperature

gradient in both time and space within the PMR unit. To generate

(B)
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FIGURE 1
transformation zones.
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Process schematics of the (A) PMR and (B) bubbler units, highlighting the feed flow paths and physical/thermo-electrochemical
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FIGURE 2 Overview of primary PMR system components and sensors.

steam for the thermo-electrochemical reactions, bubbler units are
used (Figure 1B). The steam generation rate in the bubblers is a func-
tion of the partial pressure of steam and the total feed flow rate of
carrier gas species.'? Field temperature controllers are installed in the
housing of the bubblers to regulate the internal liquid temperature via
classical (proportional-derivative) control closed-loops.

Experimental control in these subsystem units requires online
sensors for temperature, pressure, and gas composition measure-
ments. Figure 3 provides a detailed piping and instrumentation dia-
gram of the electronic devices used to record, transmit, or activate
changes in process variables from a custom LabVIEW interface run
on the main computational processor. The relevant process sensors
for the MPC architecture studied in this work are the anodic bubbler
thermocouple, anodic bubbler pressure transducer, anode chamber
thermocouple, anode chamber pressure transducer, anodic effluent
gas chromatogram, and a digital mass flow meter to quantify
cathodic products. From the digitized electrical signals of these
transmitters, the required thermodynamic states of the system are
recorded at specified sampling rates. Online recording of the system
states enables the quantification of disturbance phenomena to aug-
ment the state estimation model and improve the performance of
the decentralized predictive controllers over the entire control

action window.

2.3 | Thermal reaction kinetics

Steam methane reforming and water-gas shift thermal reactions:

CH4 +H,O=CO+3H; AHj98¢ = +206 kJ/moI (1a)

Laboratory
Vent

- Flow Meter
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Pure H2

LT Bubblers

Flow
Controllers

Protonic Membrane 2
Reformer Unit

CO+H,0=CO3+H; AHggg=-41 kJ/moI (1b)

A Langmuir-Hinshelwood-Hougen-Watson (LHHW) chemical
kinetics mechanism for heterogeneous catalysis of hydrocarbons on
active metals is routinely applied to steam methane and protonic
membrane reformers in chemical engineering literature.?° The mecha-
nism combines power-law and thermodynamic equilibrium analysis
with microkinetic parameters that incorporate the competitive
adsorption-desorption of chemical species on available reactive
sites.2? To apply the LHHW mechanism, the standard assumptions are
a kinetic-limited operating regime, uniform pressure in the anode
chamber, well-dispersed surface sites along the Ni-BZCY anode sur-
face, and uniform kinetic activity among all catalytic surface sites. The
overall kinetic rate equations via the LHHW mechanism for the SMR
and WGS reactions are:

P Pco
Pt Pr,o — 12
. ky CH4FH,0 Keor (2a)
P> (DEN)?
PH,Pco
PcoPh,0 — 222
yy ke T Keap (2b)
P, (DEN)?

p
DEN =1-+KcoPco-+Ki,Ph, + Ko Pew, +Kio g2 (20)
2

with r; and r, capturing the overall kinetic rates for the SMR
(Equation 1a) and WGS (Equation 1b) catalytic reactions, respectively.

In the relation, k1 and k; are the forward reaction rate constants, Keq1
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and Kgqz are equilibrium constants, DEN is the denominator term
derived from the microkinetic surface site mechanism for catalyst
adsorption-desorption constants, and P; are the partial pressures of
reactants and products. In Equation (2c), K;, for i = CO,H,,CH4,H,0, is
the adsorption coefficient of each species on nickel catalyst sites. Rate
constants and adsorption coefficients in Equation (2) follow an Arrhe-

nius dependence as a function of the reformer temperature:
ki =Ajex| _E j=1,2 (3a)
j =AEXP RT) =1,

K :A,‘exp(fi—l;.h) = CHa,H,0,CO,H, (3b)

Listed in Table 2 are the parameters used to calculate the thermal
reaction kinetics at each time step in the reaction engineering model
developed in Section 2.6. The reference temperature for k;, Kco, and
Ky, is 648 K when computing the van't Hoff equation for rate con-
stants and absorption coefficients. K¢y, and Ku,o are calculated from
a reference temperature of 823 K. Methane conversion, as a result of
the forward progression of the SMR reaction, is quantified in

Equation (4):

'-‘ Hydrogen
NN
&
~ Argon
% _@
________________________ 1 Potentiostat
b _® Hydrogen

System P&ID—piping flow paths, piping dimensions, chemical processing units, actuators, sensors, controllers, and electrical

a,PMR
_ CHy
Xew, =1- a,PMR (4)
Féiino

where methane conversion Xcy, is a function of the ratio of methane
at the feed FZ§ and outlet FE® of the protonic membrane

reformer.

2.4 | Electrochemical reaction-separation term
Protonic membrane reformers drive the separation of hydrogen from
the anode surface, through the solid BZCY electrolyte, and to the
cathode surface by way of hydrogen oxidation and reduction
(HER/HOR) electrochemical reactions, defined in Equation (5):

Hy = 2H" +2e~ E°=0.00V (vs. SHE) (5)

Hydrogen is oxidized at nickel surface sites on the anode, which forms
two protons that migrate through the membrane for every molecule
of hydrogen that reacts. At the cathode surface, HER reduces these
protons back into hydrogen gas molecules.r” The electrical input

energy to HER/HOR reactions is supplied by a potentiostat. To
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TABLE 2 Kinetic parameters from Xu and Froment.??
Parameter Value Unit
Pref = 1.01 bar
Ey = 240.1 kJ-mol1
E, = 67.13 kJ-mol—1
Ay = 4225 x 101 kmol-bar®>.(kgeat-hr)~*
Az = 1.955 x 10 kmol-(kg- bar-hr)~1
Keq1 = 1.198 x 1013 bar?
Keqa = 1.767 x 1072 -
Aco = 8.23x10°° bar~*
An, = 6.12x 1077 bar~*
Ach, = 6.65x107* bar~*
A0 = 1.77 x 10° -
AHco = —70.65 kJ-mol~*
AHy, = —-82.9 kJ-mol-1
AHcp, = -38.28 kJ-mol~1
AHu,0 = 88.68 kJ-mol—1
Weat = 1.3x107° kg

Note: W is a fitting parameter used to match the observed experimental
reaction kinetics to the LHHW kinetic model; W4 is not a Xu and
Froment parameter.

account for hydrogen generation, consumption, and separation in the
anode and cathode reformer chambers, a separation constant is devel-
oped that is a function of the applied electric current to the protonic
membrane. Specifically, the electrokinetic rate of reaction is directly
correlated to the electron balance across the protonic membrane cell

t,23

of the reformer unit,”> presented as Equation (6):

neFHz,exF:”IF’m (6)

where n, represents the moles of electrons transferred per mole of
removed hydrogen, n, = 2 (Equation 5), F is Faraday's constant, and
ne is the Faradaic efficiency. In this case, a 100% Faradaic efficiency is
assumed based on protonic membrane separations data provided in
Fjeld et al.% and control experiments in our laboratory (vide infra). That
is to say, 100% of the applied current to the protonic membrane goes
towards electrochemical separation reactions in the studied reaction-
separation unit. This is because the electrochemical oxidation and pro-
duction of hydrogen are facile on Ni catalysts, and there are no para-
sitic side reactions that could result in the loss of electrons under the
tested conditions. After rearranging Equation (6) and incorporating
this assumption, the hydrogen extraction rate from the anode cham-

ber can be expressed as Equation (7).

I
Fhyex =5 7)

A key metric for establishing the thermo-electrochemical perfor-

mance of the protonic membrane is the hydrogen recovery ratio,

AI?BIFJ R NALJ‘S;f21

which is the ratio of electrochemically purified hydrogen to the overall
hydrogen generated from thermal catalysis at the anode surface of

the membrane. This ratio is provided in Equation (8):

Fiiy ex - 100%

HR = (8)
Fryex+Fip R — FiroR

where the hydrogen recovery percentage HR is the fraction of hydro-
gen extracted from anode to cathode Fy, . in reference to the total
amount of hydrogen generated from the SMR and WGS reactions. To
quantify the total amount of hydrogen produced from thermal cataly-
sis, the feed hygroden Fj"¢® is subtracted from the extracted hydro-

gen and the anodic effluent hydrogen Ff;/™.

2.5 | Anodic steam bubbler dynamic model

The anodic bubbler in the PMR system generates steam for the SMR reac-
tions and hydrates the protonic membrane for enhanced ion conductivity.
In Cui et al,** a first-principles model was developed based on the mass
and energy balances of the anodic bubbler for which the heat supplied to
the bubbler Q, determines the bubbler temperature and steam genera-
tion rate. However, in the experimental system, a field PD-controller
(proportional-derivative controller) regulates the bubbler temperature
by modulating the voltage supplied to the electrical heating tape that
encapsulates the bubbler unit. Energy from the tape is transferred to
a water reservoir housed within the stainless steel bubbler cylinder.
To determine the states of the bubbler process in real-time, a second-
order process model is constructed from open-loop experiments. This
model captures the approximate inertial and damping effects of PD-
control on the anodic bubbler energy dynamics, defined here as:

_ kppU(s)
r§s2 +2L,tps+1

Xp(s) )

where k5, 7, and ¢, are constant parameters for the bubbler process
gain, the time constant of bubbler dynamics, and the damping coeffi-
cient of the second-order model, respectively. This equation can be
transformed into two first-order ordinary differential equations in the

time domain:

X1p=Xap (10a)

. 1
=5 (KpoUp — 28pTpXp — X1p) (10b)
b

where xq, is the output state of the bubbler and xy, is the rate of
change of the output state. The output state refers to the true bubbler
temperature measured by an internal thermocouple. Ty, is the manip-
ulated variable input of the field PD-controller, defined as uj, in Equa-
tion (10). Adjustable parameters k,;, and 7, are incorporated in the
second-order model to tune the process gain and time constant to

match the real dynamics of the anodic bubbler.
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2.6 | Lumped-parameter reformer model

A nonisothermal lumped-parameter framework is used as the primary
reformer model (Figure 4). A secondary model for electrochemical
hydrogen separation (Equation 7) is incorporated into the design
equations to approximate mass and energy transport within the PMR
unit. The lumped-parameter design equations assume perfect mixing,
uniform mass and energy distributions, and a uniformly dispersed cat-
alyst for homogeneous reaction rates. In addition, a constant density
of the gas phase is assumed spatially but not temporally, given the
dependence of gas-phase densities on temperature and pressure. A
constant pressure is also assumed, and species mole balances for each
gas-phase reactant and product in the anode chamber follow the gen-
eral form:

~aPMR F‘[’,’PMR +R—g*PMR caPMR _p

¢ \/aPVR (11a)
cen” [Fehio
i A
|||
o IR el |
o R
Kot LFaro (11b)
~rWeat ] [0]
(=r1—r2)Weat 0
R riWeat P IO
(Bri+r2)Weat 2—";__
—r2Weat 0
L 0 ] 0

where i=CHg4,H,0,CO,H,,C0O,,Ar and Cf'PMR is the rate of change in
the molar concentration of anode species i contained in the vector
C*PMR The ordinary differential equations relate the product of C*"MR
and the anode chamber volume V*™R to a balance of the anodic feed
flow rates of FZ’PMR, the molar rates of reaction in R, and the molar

separation rate of hydrogen in F. For the energy balance, the electric

furnace heat and Joule-heating from hydrogen separation are coupled
with terms for external heat loss, enthalpies of reactions, and
enthalpies of reacting and inert species. Considering these transport
phenomena, the anode chamber energy balance is contained in the

following equation:

Ta‘PMR
e FrPMRIZRe + Yo FISMR LGPMR Cpi AT — 11 Weat AH,, (T*PMR) — iy Wear AH,, (T*PR)
= Lo

Zﬂia'PMR priva,PMR

UOPMRAGPMR (Ta _ TaPMR) +} 2R, & I RTOPMR |, peftR
h h 2m m 4F Pa‘PMR

L,PMR
SR,V

(12)

where i=CHy4,H,0,CO,H,,CO,,Ar for the heat capacities C,; of all
gas species in the anode chamber and 'I"a'IDMR forms the energy balance
as the rate of change of temperature in the anode chamber.
The fraction of furnace heat conducted through the anode chamber
is represented by f2"R. It is also assumed that the energy
supplied to the membrane by Joule-heating is split evenly between
the anode and cathode chambers of the PMR unit, hence the multipli-
cation of the I,anm term by a factor of one-half. This assumption is
confirmed by the experimental results presented in Section 4. The
total volumetric flow rate through the anode chamber is calculated by
combining the anodic energy balance with the ideal gas law, as
follows:

MR a, PMR ’m RTa,PMR va,PMR . aPMR
g = (Z ,ﬁ) +2r1Wmf—ﬁ paPMR +Ta,PMRT (13)

where ¢*PMR is the total volumetric flow rate in the anode
chamber that evolves with time, temperature, methane conversion,
anodic feed flow rates, and the hydrogen extraction rate into the
cathode chamber. P*"MR is the anode chamber pressure. On the
opposing side of the protonic membrane is a cathode chamber
where purified hydrogen is transported, compressed, and swept
away by a wet hydrogen carrier stream. Only water vapor and
hydrogen are contained within the cathodic streams of the system,

and the design equation for the evolution of either species takes

FIGURE 4 Control volume schematic
for the anode and cathode chambers of
the PMR unit. Key mass and energy
inputs and outputs are labeled to match

the form:
Qr = I} - Ry
TC.PMR N pC¢.PMR
Cathode Chamber qCPMR . cC.PMR

Fex I VC,PMR

the reaction engineering models
developed in Section 2.6 (Equations 11
to 15).

) : Qm=172n'Rm

a,PMR , ~a,PMR

Anode Chamber q

Ta,PMR Pa,PMR
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<,PMR c,PMR
_FPMR_gePVR CEPMR L

- ¢.PMR
c vC,PMR (143)
i R, [0
CC,PMR _ 2 , Ft(:),PMR — 2 , Fex =1 (14b>
CSPMR FCPMR _m
Hy H,,0 2F

with C,»C’PMR defining the rate of change in the molar concentration of
cathode species i contained in the vector C°PMR. The ordinary differ-
ential equations equate the product of CPMR with the scalar the cath-
ode chamber volume V"R to a balance of the cathodic feed flow
rates contained in FSPMR, the electrochemical molar generation rate of
hydrogen that is modeled by Fy, and the outlet flow of each species
in g¢PMRCEPMR The energy balance of the cathode chamber control
volume accounts for the electric furnace heat and Joule-heating of
the protonic membrane, the heat capacities of all reacting or inert spe-
cies, heat generation from the compression of hydrogen to the ele-
vated cathodic pressure, and heat losses to the external environment.
Here, the energy balance for the cathode chamber is expressed as:

TC,PMR

I
AT -2
MR pr, dT’ + 2FJ TaPMR

TEPMR

" frPMRIZR; + EFgg’MR[ Co, dT'
TC, _ .

C,Pl
TO

Zl)ic’PMRCp,IVCYPMR

UE,PMR A;,PMR(Ta _ Tc,PMR) +1 2R, + ’ﬂ RTSPMR | (PQPMR>

2m T 4F paPMR

+
Z/)ic'PMR Cp,i Vc,PMR

(15)

and the temperature rate of change, denoted as TC’PMR, is comprised
of the fraction of source heat from the electrified furnace that is
transferred to the cathode fo"™R heat capacities of all cathodic spe-
cies, the product of the cathodic overall heat transfer coefficient and
cathodic heat transfer area (Uﬁ'PMRAﬁ’PMR), Joule-heat generation, and
heat of compression. Each gas species density is represented by p;.
Together, the mass and energy balance of the cathode chamber con-
trol volume, coupled with the ideal gas law, specify the total volumet-
ric flow rate of the cathodic product stream in the following relation:

¢,PMR Im) RTCSPMR \/cPMR MR (16>

PMR _
= = <Z ,ﬁ, +ﬁ pSPMR +Tc,PMR

Thus, the analytic models developed in this section describe the full
state of the PMR unit, defined as:

COPMR
o | TOPMR
X = CoPMR (17)

TC,PMR

and xPMR is a state vector that can be transferred from the state esti-
mator to the optimizer of a model predictive controller.
For a kinetically-dominated operating regime, we consider the

nominal steady state of all control scenarios to have a feed methane

AI?BIFJ R NALJiz;f21

flow rate of 16.2 sccm, no applied electric current, and an initial
anodic bubbler temperature of 120°C. The ratio of the characteristic
methane diffusion time to the characteristic reaction time of the PMR
is on the order of 10~! for a methane feed flow rate of 16.2 sccm and
reformer temperature of 732°C. The expected range of regulation for
these process parameters during control is 16.0 to 30.0 sccm, 0.00 to
10.0 A, and 120 to 126°C, respectively. Key process disturbances, all
stochastic in nature, are related to changes in the PMR current-
voltage response, catalyst deactivation due to carbon formation side-
reactions, and pressure oscillations throughout the bubbler and

reformer chambers.

3 | CONTROL PROBLEM FORMULATION
AND CONTROLLER DESIGN

31 |
variables

Classification of manipulated and controlled

Economically, the most important target variables for the PMR system
are the purified y; and overall y, hydrogen production rates. In terms
of anode conductivity, methane conversion, reaction rates, and cata-
lyst activity,'* a sufficient steam-to-carbon ratio y5 in the initial reac-
tant mixture is essential. The developed control architecture must
regulate all three of these variables. There exist four control degrees
of freedom to regulate the inlet and outlet states of the PMR unit and
two control degrees of freedom to regulate the inlet and outlet states
of the anodic bubbler. Preliminary experiments provide a physical
intuition as to the manipulated variables directly impacting the pro-
posed controlled variables, these input-output pairings of manipulated
and controlled variables are: the electrical current u4 for direct control
of the hydrogen purification rate, the methane feed flow rate u, to
regulate the anodic hydrogen production rate, and the temperature
setpoint of a field PD-controller uz to maintain the anodic steam-to-
carbon ratio of reactants. To confirm the controllability of all variable
couplings, a steady-state relative gain array (RGA) was developed
from the dynamic reactor engineering models in Section 2.6 as
follows:

100 0 0
RGApw¢=| 0 117 -017 (18)
0 -017 117

100 0 O
RGAmax=| O 0.74 026 (19)
0 026074

Equations (18) and (19) are the steady-state gain array calculations for
the uy, Uy, and us control inputs, and y4, y,, and y3; controlled outputs
at the initial and maximum PMR operating conditions. The gain array
for the initial set of operating conditions at the nominal steady-state
is RGA;,it. At the upper bound of the PMR system operating domain,
RGAax is calculated for 10.0 A, 35.0 sccm, and 125°C. For both sets
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of operating conditions, mild interactions are expected for u,, us, y,,
and ys. Physically, this multivariable coupling can be explained by the
inextricable dependence of the hydrogen production rate on
the steam-to-carbon ratio.

In the real PMR process, the only way to electrochemically sepa-
rate hydrogen through a protonic membrane is by supplying an elec-
tric current, thus explaining the 111, of the RGA matrices being equal
to 1.00 for every set of operational conditions. However, the pro-
posed process models do not contain mathematical terms for mem-
brane conductivity, which is a function of the reformer temperature
and the partial pressures of steam on the reformer electrode surfaces.
For this reason, the true independence and stability of the control
input-output pairings were experimentally tested in Peters et al.!® to
demonstrate the safe operation of the reforming system and the

multi-input multi-output controller effectiveness on the PMR process.

3.2 | Control objectives and constraints

Unlike classical control formulations, the MPC framework enables
control engineers to restrict changes in process parameters within
desired domains, which actively constrains control actions. Thus, MPC
designs for the protonic membrane reformer unit may incorporate
constraints on the discrete derivatives of the applied electric current
to the system. Such constraints protect the protonic membrane sur-
face from rapid Joule-heating, hydrogen depletion, or local dehydra-
tion of the anode surface. The proposed control objectives, put forth
as follows, incorporate constraints on the operational domain of the
reforming system and the rates of the reformer temperature change
to improve the electrochemical performance of the protonic mem-
brane cell. The control objectives for the PMR process are:

1. All control actions, regardless of closed-loop effectiveness, will not
induce runaway system temperatures or pressures. Hydrogen
depletion or electrical damage to system components is likewise
prohibited.

2. Control actions must be bound by upper and lower operational
limits for the reformer temperature and pressure, the feed flow
rate of methane, and the feed flow rate of steam.

3. An effective control design will reproducibly achieve all controlled
variable target setpoints and do so in less time than comparable
classical feedback loops.

4. The proposed constraints on the hydrogen purification rate control
loop must limit changes in the reformer chamber to +5°C-min~! to
protect the surface morphology of the anode and catalytic activity.

5. Under irreversible disturbance conditions, the DMPC architecture
will successfully adapt the state estimation vector to the modified
steady-states of the PMR subprocesses to ensure optimizer
convergence.

6. Failures in optimizer convergence during single or multiple sam-
pling intervals must not produce dangerous or damaging control
actions. Convergence failures should be limited to less than 5% of

all sampling steps.

7. Control scenario S1 will set the automatic setpoint generator to
75% of the total hydrogen available in the system at t_gqos. Follow-
ing the successful execution of control scenario S1, control sce-
nario S2 will increase the recovery rate setpoint to 90% of the
total hydrogen available in the system at t_og0s. Control scenario
S2 aims to test the input constraints on u; that should allow for
higher current densities and hydrogen extraction rates. A PMR
control system that establishes these control objectives under
experimental evaluation can be considered robust and adequate

for advanced automation efforts.

3.3 | Disturbance observer and augmented model

Achieving the desired control objectives fundamentally depends on
the accuracy of the model employed in MPC. Specifically, within a
DMPC framework, subsystem models are utilized to predict outputs.
Furthermore, due to sensor constraints, such as infrequent measure-
ments, inherent delays, and difficulty measuring certain process vari-
ables, these models also function as estimators, providing frequent
estimates of all state variables.?* However, given the potential for,
and observation of steady-state drifts in the hydrogen generation
control loop, state estimation through the use of offline fittings of the
physics-based models is not sufficient. The pure model in
Section 2.6 does not account for catalyst aging in the real process,
which leads to the observed plant-model mismatch. Therefore, the
overall state vector must be augmented in real-time to account for
any transient or permanent disturbance phenomena that cause
steady-state deviations in )7, from y;. To that end, a disturbance
observer is developed in this section to compensate for plant-model
mismatch throughout the control experiment. State estimation by
way of an offset-free extended state observer allows for accurate
state predictions when the control system is under the stress of sto-
chastic and evolving disturbance phenomena. A state vector for the

following general nonlinear system is formulated as follows:
x=F(x,u) (20a)

y=h(x) (20b)

with x € R" denoting the predicted state vector from the PMR unit
and anodic bubbler process models, and u € R™ representing the con-
trol input vector. F:R" x R™ — R" is the model from the physical
information discussed in Sections 2.5 and 2.6. The target variable pre-
diction vector ye® is determined by transforming xeR®" by
h:R" — R* to obtain the predicted state of the controlled vector.

The following disturbance observer formulation, adopted from
the general framework of Equation (20), is used to accumulate predic-
tion errors over time with a disturbance state. This allows the dynamic
model to compensate for prediction errors by introducing an addi-
tional disturbance state (extended state) &€ € R" to the state estimation
method. Building on this offset-free method, the unknown input

observer (UIO), which is a type of disturbance observer, explicitly
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estimates disturbances and integrates them into the system model.?®

In this technique, the disturbances are assumed to be generated by an

26,27

exogenous system in  which the general state vector

F:R" x R™ — R" is modified by a disturbance observer term in the fol-

lowing relation?®-3°;

X=F(X,u)+Byd (21a)
9=h(x,u) (21b)
E=We (21c)
d=VE (21d)

with x € R" representing the modified state vector that is governed by
the predicted system dynamics and the accumulation of external dis-
turbances. The auxiliary disturbance state & € R corrects for inaccura-
cies in the pure model due to plant-model mismatch by accumulating
the disturbance-induced model error over time, and the disturbance
matrix is designated as By € R"". The additional disturbance state
Ec R" corrects for inaccuracies in the pure model by accumulating the
disturbance-induced model error over time. By € R"*" represents the
disturbance matrix, and d e R" estimates the disturbance d€R" in
Equation (21) calculated using VE € R".

For state estimation, a disturbance observer is further integrated

into the extended state observer:

X=F(%u) +Le(y, — ¥) + Bgd (22a)
y=h(x) (22b)
E=WE+Ly(y,—) (22¢)
d=VE (22d)

where x € R" is the modified state vector governed by the predicted
system dynamics with the augmented state estimator and the accu-
mulation of external disturbances. L, € R and L¢ € B"*¥ serve as the
observer gains, and (y, —y) € R¥ is the error between the real target
output y, € R* and the expected target output y € RX.

In process control literature, many observer-augmented models
have proven to be stable and offset-free by incorporating the error

3132 However, most observers consider

dynamics of systems.
discrete-time systems. In this paper, the stability and asymptotic error
of the state observer are considered for a real, continuous-time, and
nonlinear process with uncertain disturbances, which are represented

by the following equations:
Xr=Fr(Xp,u,w;) (23a)

yr=h(x;) (23b)

AICBE RN AL 10012

where x, € R" and y, € R* are the real process state vector and the real
output vector, respectively. F,:R" x R" x R™ — R" represents the
function that captures the dynamic behavior of the experimental pro-
cess. w=w(t) € R™ is assumed to be the mismatch between the real
process and the model, uncertainty, or unknown external distur-
bances, defined as follows:

w:=F.(X,,u,w,) — F(x,,u) (24)

This difference is also asymptotically constant,3! and the following

limits hold true:

limw(t)=w, limw(t)=0 (25)

t—oo t—oo

To be consistent with the format of the observer-based model,

we define d, =, & =%, and £, =gk ot W =y*%-. Hence, the real pro-

cess can be represented by the following equations:

Xy = F(X,,u) + w=F(x,,u) + Byd, (26a)
yr=h(x;) (26b)
. w
&= VB, (26¢)
dr =V, (26d)

The dynamics of the errors between the estimation states and real
states (ex=x, —x € R") along with the disturbance error dynamics
(eg=d, —d € R") are calculated as follows:

=% —X=F(x,u) —F(%u)— Ly [h(x,) —h(X)] +Bgeg  (27a)

€i=dy—d=V v%[ WE+ L (h(X) —h(x,)) (27b)

At steady state (t— oo), the system is linearized around the
equilibrium state x* € R". Combining with Equation (25) and

designing W=0, we can obtain the following linearized error

dynamics:
3 A* —-L,C* B,
o ollal-mal e
€4 -VL,C 0 €4 €4
with the Jacobian matrices defined as A*=2E (x-w) @nd C:=2 .. Ly

Ly, V, and By should also be designed to ensure M is a Hurwitz matrix
to guarantee that the estimation of errors converge to zero. Asymp-
totically, at t — oo from Equation (28), the following relationship is
obtained:

(A*—L,C* )ey=0 (29a)
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~VL,C*eq=0 (29b)

Therefore, the augmented model can achieve exact state tracking and

disturbance compensation at steady state:

lim% —x, =0, tnméi:B;lW (30)

t—oo

which indicates that the d € R" term in Equation (21a) can compensate
for the plant-model mismatch caused by w at the final steady state,
which demonstrates Equation (22) can be utilized as the state vector
and error evolution estimator.

In the context of MPC, this estimated state vector serves as the
initial condition of the optimizer state predictions, and the estimated

error is augmented following Equation (21) as follows:

%=F(xu) (312)

y=h(x) (31b)

X— H . Fxu)— {F(X’ )+ Bad (31¢)
4 WE

For subsystem j, this augmented model takes the form:

X =F;(%,u;) (32a)
¥j=h;i(x) (32b)
_ X _ ’:-](Xj'u])+Bdel
=|_.1, F(%,u;)= B 32
Xj [ Ej} (%, up) { Wi (32¢)

This augmented model is comprised not only of the intrinsic behavior
of physical properties but also of the mismatch compensation of
experimental data deviations, thereby motivating the development
of a generalized hybrid physics-data-driven model.

3.4 | Hybrid physics-data-driven model
development

In Section 3.3, a hybrid physics-data-driven model was developed. By
embedding deterministic physical equations (e.g., mass, energy, and
charge balances), a base model can be generated to capture the chem-
ical physics of the PMR process. Simultaneously, an augmented data-
driven correction term captures unmodeled effects, such as unknown
disturbances and parameter changes. Specifically, the data-driven cor-
rection can be further divided into two processes: Offline data-driven
correction and online data-driven correction. This is one of many ways
to build a model around operational uncertainty, with other suitable
methods including Bayesian reinforcement learning schemes or

Gaussian processes for uncertainty quantification.3®

In general, this physics-data-driven model can be expressed as

follows®*:

xpd = F(xpdvu) + Fd(xpdvu) (33)

where xpq € R" is the state vector of physics-data-driven model.
F:R"xR™ — R" is the physics-based function. Fy: R" x R™ — R" is
the data-based function. Considering the system described by
Equations (23) and (24), the following relationship is also obtained at
steady state:

Fg(Xpa,u) =w. (34)

This mismatch (or bias, w) is typically compensated via machine
learning models in control engineering literature.>*~3¢ However, such
models take considerable computational effort and require large
datasets. In this work, a disturbance observer is added to the physics-
based model to enhance the process model accuracy. The compensa-
tion term (d or £) is initially designed to fit offline data and is adap-
tively changed to correct experimental errors in an online manner

throughout the control time.

35 |
structure

Decentralized model predictive control

A decentralized MPC architecture is proposed that regulates the
steam-to-carbon ratio of reactants, along with the hydrogen genera-
tion and purification subprocesses. The loss function defined in
Equation (35d) penalizes process-setpoint deviations and advances
control actions to minimize setpoint deviations and bring the process
to its target state. The DMPC architecture employs the models in Sec-
tions 2.5 and 2.6, augmented with the disturbance observer discussed
in Section 3.3, to survey the future states of the PMR over a predic-
tion horizon based on immediate and future control actions. The dis-
cretized feedback information from the process sensors in Figure 5
allows an online accounting of disturbance effects on model errors,
which provides a mathematical impetus for model correction via the
disturbance estimator (Equation 22d) to achieve zero steady-state
offset.

The theoretical implementation of a DMPC architecture in Cui
et al.** demonstrates the stability and computational efficiency of the
proposed control design in an ideal PMR system with arbitrary and

.,*8 a classi-

ordered disturbance phenomena. Likewise, in Peters et a
cal multi-input multi-output control architecture based on identical
input-out pairings showed reproducible setpoint achievement during
multi-setpoint tracking control scenarios. Here, the subsystem objec-
tive functions are defined for three closed-loop model predictive con-
trollers. Specifically, the objective functions minimize setpoint
deviations of the estimated states of the PMR system. The control
effort to reach each target state is also minimized by the DMPC
objective functions. The control input bounds and input constraints

on applied electric current, the feed methane flow rate, and PD-
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FIGURE 5
hydrogen purification rates in the experimental PMR system.

controller temperature setpoint are also assigned to each controller.
To initialize each DMPC subsystem for each sampling time, the
state estimator developed in Section 3.3 provides the estimated
state vector at t;. Likewise, the model accuracy from augmentation of
the process models via the disturbance observer terms improves
the likelihood of solution convergence, despite stochastic
experimental disturbance phenomena. The general formulation of the
subsystem minimization problems for the three MPC regulators is
expressed as:

tieiNy,
7i=mjn| L. 0)dt (352)
st %0 =FE(0.u(0), Kb =xt)  (350)
i) = hy(x(t)) (35¢)

Liy;(t).ui(t) = (%(t) ~Yjsp(t) " A1) ~¥jp(t)

(1) U (t) " By(ui(t) —jp(t)) (950
te [t tein,) (35e)

lluj (tie) — Ui (t—a ) || < At (35f)

ui(t) e U; Vte [totin,) (35g)

Ts = min/ L (ys(t), us(t)) dt ESTIMATION
us Jy,
T = F‘(i,u)
u J J J J
2 [T, - y2 g; = h;(Z;)
Jo = 12111/ Lo(y2(t), ua(t)) dt 4—|— T — Fj(%;,u;) + Ba,;d;
2 Jity ij - |:~J} ’ Fj(ij’uj) = P £ @I
E] VVJ£J
ul Y1 forj=[1,3]
tht Ny,
T = min/ Ly (g1 (t), ui(t)) dt
w1 Jty

Representation of the closed-loop DMPC architecture for regulating the steam-to-carbon ratio, hydrogen generation, and

where x;(t,) € R" represents the initial state vector for subsystem j at
t=t, estimated by Equation (22). Equations (35b) and (35c) are the
same as Equation (32). Through these equations, the state vector X;(t)
and the output vector y;(t) for subsystem j over the defined horizon
time (t; to ty,n,) is estimated. This estimated output vector is involved
in Equation (35d) to evaluate the distance between it and setpoints.
The optimization problem minimizes this distance (Equation 35a). A;
and B; are weighted parameters for the output vector and the control
action vector, respectively. Furthermore, the optimization problem is
constrained by the control input change rate (Equation 35f) and con-
trol input magnitude (Equation 35g). These constraints are applied to
satisfy the control objectives discussed in Section 3.2. Specifically, for
DMPC 1, or subsystem 1, the input is bound to the set U; =
{u1]0.00 A<uy £12.1 A} and the rate of change in the the input is
constrained to ||ui(tk) —u1(tk-1)||<0.10 A. DMPC 2, is also con-
strained, bound to the set U, = {uz | 10.0 sccm < u £40.0 sccm} and
limited to |lua(tk) — uz2(tk—1)|| £0.02 sccm. Finally, the range and input
rate of change Ilimit for DMPC 3 is defined by U; =
{uz ] 110°C < u3 < 130°C} and ||uz(tx) — us(tk—1)|| < 0.01°C. The overall
decentralized control architecture, including controllers, actuators,
sensors, and process integration, is provided in Figure 5.

For adaptive setpoint decisions in the DMPC 1 closed-loop struc-
ture, ysp 1 is determined by the manual setpoint or automated setpoint
generator. The objective of the setpoint generator, defined as Algo-

rithm 1, is to calculate the separation rate of hydrogen based on the
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Algorithm 1  Automatic Setpoint Calculation for Controller 1

Input: Automatic Setpoint Enabled flag

if Automatic Setpoint is Enabled then
Calculate total hydrogen inventory;

Retrieve Anode H, and Cathode H, at time t_gqos;
Retrieve Inlet CH4 and Inlet H, at current time t;
Compute inventory-based H, < Anode H, + Cathode H,;
Compute inlet-based H, « 3.3 x Inlet CH, + Inlet H,;

H"8" « 0.75 x min(inventory, inlet);

Setpoint for Controller 1 < tha'get;

else
| Use manual setpoint entry for Controller 1;

availability of hydrogen in the system. This way, the DMPC 1 purifica-
tion rate never exceeds the amount of hydrogen available in the
anode chamber, preventing complete hydrogen depletion at
the anode surface. The pseudocode is presented in Algorithm 1
below, where the notation t_gq0s is used to denote that the calculation
of the total available hydrogen is a value from 15 min prior to the cal-

culation and change of the setpoint.

4 | OPEN-LOOP EXPERIMENTATION AND
MODEL VALIDATION

The physics-data-driven models developed for the PMR system in
Section 3.4 are now fit to the offline experimental input-output data via
adjustable parameters for improved state estimation. With experimentally-
validated predictions that determine the entire thermodynamic state of the
PMR system via the lumped-parameter reformer, anodic bubbler, and
hydrogen separation models, the state estimator will closely describe the
dynamic evolution of the PMR system throughout the control time. The
first step in connecting theoretical models to the actual thermodynamics of
the PMR process is to perform step-change experiments for the manipu-
lated variables and record the response of the target variables. Step-change
experiments allow control engineers to survey the transient response times
of the final control elements and controlled variables. Thus, open-loop step
change experiments were used to examine the transient response times of
the process. Preliminary experiments elucidate the dynamic characteristics
of the actuators and process variables in the PMR system (Sections 2.5 and
2.6) for accurate forecasting of the system states.

4.1 | PMR system transient response

Documentation of system dynamics, subject to simultaneous changes

in multiple process variables, establishes the intrinsic coordination

between input and output variables, while also categorizing input-out-
put variable pairings as aggressive, balanced, or ineffective. Specifi-
cally, scanning or ramping the manipulated input variables of the
control scheme (Section 3.5) confirms the proposed physics of
the process units and informs the tunings of the dynamic models, the
state observer, and predictive controllers. To induce and record the
transient response of the target variables in the PMR system, an elec-
tric current sweep rate of 8.00x10—3 A.(5 s)~! was initiated at the
20th min of the transient experiment presented in Figure 6. The feed
flow rate of methane and the bubbler temperature were also modu-
lated at the 84th min and 92nd min, respectively.

The response of the PMR system to the continuous step-
change schedule was on the order of seconds for the electric cur-
rent and hydrogen purification variable coupling, whereas the
methane feed and hydrogen generation variable coupling had a
response time on the order of minutes. The settling time for the
bubbler after modulating Ty, was also on the order of minutes. The
discontinuation of all three manipulated variable ramps demonstrates
that the system can achieve a new steady-state in a reasonable time
scale for process control. However, the facile response of hydrogen
separation and purification in response to changes in the applied elec-
tric current requires explicit constraints on u; due to the immediate
impact on the reformer temperature that is observed in Figure 6. In
fact, 9.00 A of electric current increased the reformer temperature by
90.0°C, and the initial step change from 0.00 to 1.90 A increased the
reformer temperature at a rate of 10.0°C-min~1. The ramp change in
the manipulated variables also induced positive effects on the pro-
cess, such as a full equilibrium shift toward the complete conversion
of methane and a selectivity shift from CO to CO,. Additionally,
increases in the SMR and WGS reaction kinetics increased the con-
version rate of methane, even as more methane was fed to the system
(Figure 6B), indicating negligible mass transfer limitations. To deter-
mine the dynamic characteristics of the PMR system for predictive

control, the estimation method presented in Section 3.3, comprised of
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FIGURE 6 Transient experimental results induced by an electric current sweep rate of 8.00x10—23 A.(5 s)~1. (A) Anodic hydrogen generation
rates and the hydrogen separation rate into the cathode, (B) Carbon species balance and methane flow rates, (C) Applied current and measured
potential in the MEA, (D) Carbon oxide generation rates and selectivity, (E) Hydrocarbon conversion and hydrogen recovery rates, and (F) Anodic

bubbler and internal PMR unit temperatures.

physics-data-driven-based models for the anodic bubbler and PMR
units, was tested on an additional set of dynamic input data
(Section 4.2).

4.2 | Experimental data-fitting via model
parameter adaptation

In Cui et al.,** only steady-state and dynamic kinetic modeling (Equa-
tion 3) were experimentally validated with Xu and Froment?? plug
flow kinetic parameters. In Figure 7, the hydrogen purification rate,
hydrogen generation rate kinetics, and anodic bubbler are all evalu-
ated with dynamic and steady-state experimental data. A new data-
fitting exercise was conducted in this study, given the reactivity of the
system changes over time; thus, the experimentally-adjusted parame-
ters of the state estimation models need to fit the system in its most
recent operational condition. Figure 7A provides a cyclic voltammetry
plot of the protonic membrane cell at a 10~1 A-min~? electric current
sweep rate. Based on the PMR electron balance (Equation 6), assum-
ing 100% faradaic efficiency for current densities up to 0.55 A-cm~2
% captures the average separation rate of hydrogen through the pro-

tonic membrane with a mean absolute model error of 3.48 sccm. Not

only does the 100% faradaic efficiency assumption hold, but the
excellent agreement between the model and experimental hydrogen
separation rate means that the predictions for the most important tar-
get variable in the process are reproducibly accurate.

The steady-state experiments in Figure 7B match the lumped-
parameter anodic reaction model in Figure 13 when W, values in the
R vector of Equation (11) are all equal to 13.0 mg. The mean absolute
prediction error at this active catalyst weight for all species was 0.95
sccm, and the average standard deviation for all steady state experi-
mental measurements was +0.73 sccm. For anodic hydrogen specifi-
cally, the most important prediction for the second-loop controller, a
mean absolute model error for anodic hydrogen of 0.10 sccm was
observed. Thus, the lumped-parameter reaction engineering model accu-
rately captures the state change in the anodic product stream as the
steady-state reformer temperature is modulated. Attention must also be
given to the steady-state anodic hydrogen predictions within the tem-
perature window of 730 to 810°C so that the temperature range within
which the control experiment is conducted is properly modeled. At the
elevated reformer temperatures, there is increasing variability in the
experimental data, and a larger error is observed between the data and
the lumped-parameter model for anodic hydrogen predictions, further

justifying the need for state estimation with error compensation.
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FIGURE 7 Experimental validation of all three process models to be used for state estimation in the DMPC algorithms. (A) Hydrogen

purification as a function of applied electric current at a sweep rate of 8.00x10—23 A.(5 s)~1, (B) Steady-state anodic gas compositions in the
absence of electrochemical separation, and (C) Bubbler temperature response to changes in the PD-controller setpoint Ts,.

As discussed in Section 2.5, a second-order response model is
used to simulate the dynamic behavior of the bubbler temperature
dynamics in response to manipulated PD-control inputs. The parame-
ters of the second-order bubbler model are tuned to match the exper-
imental data from the open-loop bubbler experiments in Figure 6C. In
the open-loop experiment, the setpoint of the bubbler temperature
Tpsp is changed from 119°C to 122°C, and from 122°C to 125°C
under 3.15 bar of pressure. An underdamped response of bubbler
temperature is observed, indicating 0<¢,<1. In a second-order
response system, maximum overshoot M,, decay ratio DR between
successive peaks, period of damped oscillation T4, and rise time T, are

four key dynamic characteristics, which are defined as follows:

__ %

M,—e V%, DR=e V%, T,= 2np

p ’ \/1—_?5’

_ m—arccos({y,)

i 1./1-2

(36)

Based on Equation (36), the estimated values of M,, DR, T, and T, are
30.9%, 9.56%, 15.8 min and 4.88 min, which aligns with experimental
observations (33.0%, 10.0%, 13.0 min and 4.35 min, for all
Equation (36) constants, respectively). The mean absolute error of the

model is 0.19°C. Hence, the results demonstrate the reliability of

Equation (36) in predicting the anodic bubbler dynamics over the
operational domain of the PMR system.

4.3 | Simulation validation and comparison

If the disturbance observer-based state estimator accurately forecasts
offline controller input data from a Pl control experiment, the conver-
gence of the DMPC optimization algorithms is likely to result in con-
verged solutions over each horizon and sampling step that minimize
setpoint deviations and controller input efforts. To validate the state
estimator, a test dataset was taken from a multi-input multi-output Pl
control scenario with initial values for the applied electric current Io,
feed methane flow rate q¢yy, o, and PD-temperature setpoint T, ini-
tialized to 0.00 A, 16.2 sccm, and 120°C, respectively. The total
hydrogen production setpoints were 150 sccm and 125 sccm, to force
dynamic operation of the PMR system. Likewise, the automatic set-
point generator was set to a 75% hydrogen recovery rate at a steam-
to-carbon ratio of 3.30. The dynamic operation of the PMR system,
along with the impulse changes in the applied electric current, which
was an artifact of Pl control action, was used to test the accuracy of
the state estimator under the stress of uncertain control inputs and

stochastic process disturbances. The results of this experimental
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FIGURE 8 Offline test of state estimation using: (A) Pl control inputs to estimate, (B) the anodic hydrogen generation rate as predicted by the
pure model and state estimator, (C) the anode chamber energy balance, and (D) electrochemical hydrogen separation. In (A), the left y-axis units

are A (current) or sccm (inlet CH4).

effort were used to determine the degree of robustness of the hybrid
state estimation methodology of Section 3.3.

A comparison of the average errors of the state estimations rela-
tive to the actual values of the process is provided in Figure 8. Under
dynamic operation, hydrogen predictions in both the anode and cath-
ode chambers of the reformer unit are sufficiently accurate. Specifically,
the average absolute errors are less than 3.50 sccm for both target vari-
ables. More importantly, the offline 0.50 to 2.00 A step changes in the
applied electric current, due to Pl control actions, do not proliferate
estimation errors, which proves the power of the disturbance observer-
based state estimation design. Robust estimations of the reformer tem-
perature were also observed, evidenced by an average absolute error
of 5.65°C. Additionally, the offline dynamic model validation exercise
confirms that the PMR energy balance (Equation 12) accurately pre-

dicts the temperature of the anode chamber in the PMR unit.

5 | EXPERIMENTAL MPC RESULTS

51 | Decentralized MPC

In the first control scenario S1 (Figure 9), the system-wide hydrogen flow
rate was set to 150 sccm, and the hydrogen purification rate (hydrogen
recovery) was set to 75.0% of the total system-wide hydrogen flow rate at
t_op0s. TO ensure adequate hydration of the protonic membrane dur-
ing enhanced water vapor consumption—at higher reaction rates—the
S/C ratio was changed to 3.30 at the initial control time. Hydrogen
separation rates were calculated from real-time feedback from the

digital mass flow meter, following the automation algorithm devel-
oped in Alg. 1. DMPC 1 also stabilized around the adaptive purifica-
tion rate setpoint with an average absolute error of 6.15 sccm. A
maximum applied electric current of 9.47 A was achieved for DMPC
1 to increase the forward rates of the equilibrium SMR reactions by
removing hydrogen product from the reaction zone. The average
DMPC 2 error for (y,, —Y,) was 10.55 £5.78 sccm, which had a set-
tling time of approximately 197 min to +£5% of y,,, and a methane
feed range of 16.2 to 31.1 sccm. DMPC 3 settled to +5% of y;, after
83 min with an average error of 0.284 +0.185 sccm throughout the
control time. Figure 10 displays results from the second control sce-
nario S2 with DMPC 1 automatic setpoint generation set to 90% of
the total hydrogen in the system at t_ggos. The second and third
closed-loops maintained the setpoints from the first control scenario
S1: 150 sccm for the total hydrogen generation rate and a steam-
to-carbon ratio of 3.30. DMPC 1, via the modification of the auto-
matic setpoint calculation, drove y, to higher average hydrogen purifi-
cation rates that fully utilized the explicit input constraint on u; to
protect the protonic membrane from rapid Joule-heating (Figure 10). The
maximum separation rate for control scenario S2 was 76.9 sccm, leading
to a maximum hydrogen recovery rate of 84.4% and an average hydro-

gen recovery rate of 68.7% throughout the control time (234 min).

5.2 | Comparison with classical control

The classical control results of Peters et al.'® provide a standard for

comparison when evaluating the effectiveness of the DMPC control
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Metric H, Purification H, Generation
Pl
AAE 5.15 sccm 7.42 sccm
Settling Time (min) 14.5 108
Control Smoothness Effort 1.4 x 10% AZs 1.7 x 10? sccm?-s
DMPC
AAE 6.15 sccm 10.6 sccm
Settling Time (min) 13.5 162
Control Smoothness Effort 2.6 A%s 1.8 sccm?-s

AICBE R AL 18012t

TABLE 3 Comparison of control
performance metrics for Pl and DMPC

HEED for three feedback loops.

0.14
315
1.4 x 10*°C2%s

0.28
83.2
1.4 x 10*C2s

Note: All controller tuning methods and parameters for the classical control experiments can be found in

the previous work of Peters et al.'®

The settling time is determined after 1 h of consecutive feedback

samples within +10% of the target setpoints. Control smoothness effort is calculated using the following

integral approximation: Etfzkﬁl(uk — Uk71)2 LAt

architecture developed in this work. Table 3 provides results for set-
point tracking and compares the performance of the classical and pre-
dictive control methodologies for all three control loops. The overall
DMPC design excels at minimizing the effort to maintain control
action smoothness for each manipulated input, which is essential to
avoid protonic membrane damage when applied electric currents are
actuated. Further, the settling time for DMPC 1 outperforms that of
Pl 1 by 1.00 min. For control loops two and three, the results are more
nuanced. While the control smoothness effort is less for DMPC 2, the
settling time and average absolute error for Pl controllers two and
three are superior. Specifically, the classical controllers for the second
and third feedback loops settle at the target hydrogen production and
S/C ratio setpoints 33.3% and 164% faster, respectively, as compared
to DMPC 2 and DMPC 3 throughout the respective control times.
Additionally, the average absolute errors for all Pl closed-loops are
lower than the absolute average errors of the DMPC control scheme

for both control scenarios.

5.3 | Optimizer performance

All computational solutions in the decentralized predictive controllers
for control scenarios S1 and S2 have a 98% convergence rate. In fact,
DMPC 3 converged for all sample steps during S1 and S2, and DMPC
1 also had perfect convergence for all sample steps in S2. DMPC 1 did
not converge for 21 sample steps throughout the control time of S1.
The solution failures can be attributed to instantaneous changes in
cathodic flow rate due to pressure oscillations that blocked the back
pressure regulator valve, as evidenced by rapid dips in the cathodic
flow rate in Figure 9. Another important metric for the successful
implementation of experimental decentralized controllers is the opti-
mization solution time per controller sampling step. Figure 11 pro-
vides the logarithmic distributions of each optimizer solution time for
both control scenarios S1 and S2. The average control action calcula-
tion times for DMPC 1, DMPC 2, and DMPC 3 were 2.7 %1072 s, 2.7
x1071s, and 2.7 x10 2% s, respectively. A maximum solution time of

4.6 s was seen for the DMPC 2 solution, falling within the 5-second

controller sampling window. During the control experiment under S2
conditions, the average control action calculation times for two of the
three predictive controllers were greater than those for the S1 calcu-
lation time. The average calculation times for the first and second
decentralized controllers during S2 were 2.8 x1072 s and 3.1 x10~*
s, respectively, while the calculation time for controller three remained

the same as for control scenario S1.

6 | ANALYSIS OF EXPERIMENTAL
RESULTS

Review of the control objectives listed in Section 3.2 provides the pri-
mary evaluation criteria for the multi-input multi-output DMPC archi-
tecture. Throughout the three experiments for control scenario S1,
and two experiments for control scenario S2, all control loops main-
tained safe PMR operating conditions and did not cause reactor or
system damage. Complete hydrogen depletion in the protonic mem-
brane was also averted, given the successful implementation of the
dynamic setpoint compensation algorithm for DMPC 1, further evi-
denced by the lack of voltage spikes throughout control times
(Figure 9B; Figure 10B). Likewise, the controllers were able to reach
all three target setpoints reproducibly for both control scenarios,
showing the success of the disturbance-based state observer in
forecasting system states in the presence of experimental catalyst
deactivation, pressure oscillations, and variable magnitudes of Joule-
heating. For DMPC 1, an explicit control input constraint to limit the
discrete change in the applied electric current between sampling steps
was also satisfied in both control scenarios. However, the control
input limits still led to actuated electric currents that produced two
instances of the discrete reformer temperature derivative exceeding
+5°C-min~1. The maximum reformer temperature change rate was
5.27°C-min~! during S1. During scenario S2, two instances of a
+5°C-min~! reformer temperature change were also recorded and
were likely the result of increased membrane electrical resistance dur-
ing the initial DMPC 1 electric current ramps from 0.00 to 7.00 A.
Although the constraint on u; can be further modified, the fact that
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FIGURE 11 DMPC solution times per sampling step for all three
input-output variable pairings. (A) Optimizer solution times for control
scenario 51, (B) Optimizer solution times for control scenario S2.

the reformer temperature dynamics stayed within £5°C-min~! for
over 99% of the control times in S1 and S2 proves that the DMPC
1 regulator adequately protects the protonic membrane from rapid
Joule-heating (Figure 10).

The error between the reaction separation term éﬂp and the
observed separation rate was limited to less than 4.00 sccm
(Figure 7A). However, when addressing the results of DMPC 2 and
DMPC 3, there are obvious oscillations around the setpoint during
tracking that can be improved by changing the sampling rate of the
DMPC 2 sensor. Specifically, the GC takes measurements of
the anodic product gas composition once every 18.0 min with a

15.0 min time delay, which limits the effectiveness of the disturbance
observer. In future studies, the GC will be replaced with infrared
detectors that have sampling rates of around one second to eliminate
sensor delay and infrequent feedback. For DMPC 3, the main source
of the setpoint oscillations during tracking originated from small devi-
ations (< 1°C) in T, from the target Tp 4, and had a substantial impact
on the real-time steam-to-carbon ratio calculations. A direct connec-
tion between the electrical heating tape of the bubbler and the DMPC
3 controller is suggested, as removing the secondary PD-controller
would likely decrease the order of the anodic bubbler dynamic
response.

Most importantly, the use of a decentralized predictive controller
to regulate the hydrogen purification rate in PMR systems is sup-
ported by the control results from scenarios S1 and S2 that show
smoother and more reliable control actions, enhancing the electro-
chemical performance of the protonic membrane. As a consequence,
the protonic membrane was pushed to higher current densities (0.69
A-cm~2) and achieved over 84% hydrogen recovery, compared to a
maximum of only 50.4% recovery for the classical control case. So,
while disturbances such as catalytic activity variation and bubbler
pressure oscillations decreased the settling times of the second and
third control loops of the DMPC architecture, more hydrogen can be
purified by using a predictive controller on the first feedback loop to
enhance the economic viability of the process. The computational reli-
ability of the optimization algorithms prevented ineffective or danger-
ous control action calculations in the real system and also satisfied all
computational performance control objectives. Furthermore, the com-
putational performance results signify that the validated dynamic
models are sufficiently predictive and yet computationally inexpensive

for real-time implementation of the control architecture.

7 | CONCLUSION

The experimental implementation of a decentralized model predictive
control architecture was carried out as a potential automation path-
way for protonic membrane reforming systems. Validated dynamic
models for steam and hydrogen generation, along with hydrogen puri-
fication, were fit to match the residence times, dead times, anodic gas
phase compositions, anodic energy distribution, and hydrogen purifi-
cation rates of the experimental process. A unique state observer
framework for a nonlinear disturbance observer provided robust state
estimation for all three predictive controllers for control scenarios S1
and S2 with different hydrogen purification rate settings. Judged
based on control robustness, stability, settling times, and economic
value, the study demonstrates that the additional complexity of using
model predictive control for the electric current and hydrogen separa-
tion variable pairing is justified and recommended. Additional variable
couplings related to product selectivity may also be considered in
future work. For example, changing the furnace temperature or the
system pressure directly changes the selectivity of carbon dioxide to
carbon monoxide, which further determines how much hydrogen can

be produced and the composition of the process by-product.
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In conclusion, this work as a whole provides a proof of concept
for the first experimental implementation of three model predictive
controllers for membrane reformers or proton exchange membranes.
Chief among all findings is the observation of hydrogen recovery rates
exceeding 84% with the enhanced ability to set higher separation rate
setpoints when the PMR unit and potentiostat are protected by an
explicit constraint on the applied electric current. Thus, control engi-
neers may think to employ predictive control for hydrogen regulation
and perhaps use classical methods for hydrogen and steam generation
rates when developing control systems for protonic membrane

reforming systems.
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