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Abstract

The automation and control of protonic membrane reformers can facilitate the com-

mercialization of this emerging hydrogen-producing technology. To this end, a decen-

tralized and offset-free model predictive control (MPC) approach is developed to

explore potential automation pathways for a protonic membrane reforming system

that achieves 84% hydrogen recovery at 0.69 A�cm�2 (15.2 cm2 active surface area).

Three physics-based and data-driven models estimate thermal hydrogen generation

on the anode, electrochemical hydrogen recovery on the cathode, and steam genera-

tion. During setpoint tracking, the experimental results of the MPC architecture show

faster hydrogen purification rate settling times and implementable control action

profiles between sampling times, protecting the actuators and the thermo-

electrochemical performance of the protonic membrane. Ultimately, this work points

to control strategies for protonic membrane systems that incorporate a combination

of classical and predictive controllers with disturbance-observer-based error quantifi-

cation for optimal hydrogen production.

K E YWORD S

disturbance observer (DOB), model predictive control (MPC), process systems engineering,
protonic membrane reformer (PMR), steam methane reforming (SMR)

1 | INTRODUCTION

Steam methane reforming (SMR) is a chemical process that generates

95% of the hydrogen circulating in the world economy.1 Conventional

steam methane reforming plants are designed with a series of fired

reformers, shift reactors, and separation units to generate and purify

hydrogen from natural gas. Although these types of plants have been

operated for more than 80 years and are highly optimized chemical

production processes, there is a growing interest in transitioning to

electrified furnace reactors, as furnace units consume the largest frac-

tion of process energy in SMR plants.2 Electric power may also be

used in state-of-the-art reformer designs to facilitate hydrogen

transport across ion-conducting ceramic membranes. The benefit of

using ion-conducting membranes for methane reforming, herein

referred to as protonic membrane reformers (PMR), is the removal of

hydrogen from thermal reaction zones by way of electrochemical sep-

aration in a single reactor-separator unit. As a result, a thermodynamic

equilibrium shift increases hydrogen production rates in reaction

zones that lower the operating temperatures of protonic membrane

reformers by at least 100�C, compared to conventional steam meth-

ane reformers. However, full heat integration and automation of PMR

systems are the two primary bottlenecks currently inhibiting the com-

mercialization of ion-conducting hydrogen generators, as discussed,

e.g., by Fjeld et al.3

At a conceptual level, protonic membrane reformers are a

special case of emerging SMR energy technologies that driveDominic Peters and Xiaodong Cui contributed equally to this work.
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thermo-electrochemical reactions for hydrogen compression and puri-

fication in a single chemical processing unit; in this design, the water-

gas shift (WGS) reactors and pressure-swing adsorption units of con-

ventional hydrogen plants are foregone. The dependence of thermal

reactions on electrochemical hydrogen separation rates, protonic

membrane reformer temperatures, feed stream steam-to-carbon (S/C)

ratios, and membrane conductivity inevitably leads to nonlinear pro-

cess dynamics and multivariable couplings. Further, the feed steam-

to-carbon ratio is inherently linked to both thermal reaction rates and

the anode steam partial pressure. These factors determine the pro-

tonic membrane separation performance, leading to input-output vari-

able interactions between the main thermo-electrochemical

subprocesses of reaction, transport, and separation. Therefore, we

must address the challenge of developing robust and stable predictive

control architectures for PMR systems, since the application of non-

linear model predictive control algorithms to multi-time-scale systems

with uncertain disturbance phenomena often leads to controller inef-

fectiveness and closed-loop instabilities.4

A body of chemical engineering literature has evaluated different

control methodologies for experimental hydrocarbon reformers and pro-

ton exchange membrane fuel cells. Selected works are provided in

Table 1, but validated dynamic models and experimental applications of

process control for protonic membrane reformers remain unreported.

Therefore, this work seeks to establish advanced automation pathways

that can withstand the stochastic disturbance phenomena that may arise

in such systems. Specifically, membrane conductivity, local anode dehy-

dration, hydrogen depletion,11,12 catalyst deactivation, and pressure

oscillations are all uncertain physical factors that occur during regular

operation and must be overcome by robust feedback controller designs.

To that end, state observers have often been used in industrial control

algorithms to estimate unmeasured states, filter noise, and quantify

disturbance-based errors. Disturbance observers are a subset of state

observers that are often programmed within MPC algorithms to achieve

controller robustness in systems subject to estimation uncertainties and

external disturbance phenomena.13 In view of this, the first decentralized

model predictive control (DMPC) architecture to regulate the steam-

to-carbon ratio of reactants, hydrogen purification rates, and the overall

rate of hydrogen generation is developed in the present work for a 15.2

cm2 protonic membrane that has been integrated into a reforming sys-

tem. An offset-free disturbance observer is also used to mitigate

plant-model mismatch in the hydrogen generation rate control loop

by adapting a reaction engineering model to shifts in catalytic activity,

cell voltage spikes, local dehydration of membrane surfaces, and sen-

sor drift. The transient responses of all controlled variables were pre-

viously captured in validated models constructed by Cui et al.,14 and

are now subsequently implemented in three experimental predictive

controllers subject to the aforementioned experimental disturbance

phenomena.

Compared to a classical multi-input multi-output control scheme,

the DMPC architecture for hydrogen purification demonstrates an

improved time-to-setpoint, an improved adherence to process-

specific constraints, and enhanced recovery rates exceeding 84%.

Furthermore, setpoint dynamic compensation of the hydrogen purifi-

cation rate prevents hydrogen depletion at the protonic membrane

anode, helping to limit carbon formation reactions and voltage spikes.

Near-complete methane conversion at reformer temperatures below

800�C is also observed. Overall, these experiments contribute to the

science of scale-up15 and reaction engineering16 by quantifying the

extent of multivariable couplings in dynamically-operated thermo-

electrochemical systems to provide potential automation pathways

and enable optimal control of PMR systems.

2 | PRELIMINARIES

2.1 | Notation

The symbol �k k represents the Euclidean norm of a vector. ℝ repre-

sents the set of real numbers.

2.1.1 | Definitions of variables used in the modeling
of the reactor and bubbler

• Aa,PMR
h , Ac,PMR

h : Surface area for heat loss, of PMR anode, of PMR

cathode [m2].

TABLE 1 Summary of literature on control strategies for reforming systems (selected papers).

Authors System Control strategy Main contribution

Lin et al. (2006)5 Methane reformer simulation based on

empirical data

SISO MPC PI control of hydrogen production via methane

feed flow rate

Malik et al. (2020)6 Autothermal reformer with PEMFC

simulation

Classical MIMO PI and PID control of temperature and hydrogen

flow rate using furnace heat and PEMFC current

Cifuentes et al. (2023)7 Experimental high-pressure methanol

reformer

Classical SISO Experimental PI control of hydrogen production

via methanol feed flow rate at 12 bar

Andreasen et al. (2013)8 Experimental methanol reformer Classical MIMO Two PI temperature controllers

Li et al. (2022)9 Low-temperature PEMFC SISO MPC Experimental MPC for controlling PEMFC

temperature

Citmaci et al. (2024)10 Experimental electrified methane reformer SISO MPC MPC with extended Luenberger observer for

hydrogen production control
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• Ai: Pre-exponential factor of adsorption constant Ki [Pa�1 for i =

CH4,H2,CO and unitless for i = H2O].

• Aj: Pre-exponential factor of rate coefficient ki

[mol �Pa0:5 � ðkgcat � sÞ�1 for j = 1 (SMR reaction), mol � ðPa �kgcat � sÞ�1

for j = 2 (WGS reaction)].

• Ca,PMR
i , Cc,PMR

i : Concentration of gas i, in PMR anode chamber, in

PMR cathode chamber [mol �m�3].

• Cp,i: Heat capacity of species i [J � ðkg �KÞ�1].

• Ej: Activation energy of reaction j [J �mol�1].

• Fa,PMR
i,0 , Fc,PMR

i,0 : Inlet molar flow rate of gas i in PMR anode chamber,

in PMR cathode chamber [mol � s�1].

• Fk,ex: Extraction rate of gas k [mol � s�1].

• Im, If : Current through membrane, current to heat furnace [A].

• Ki: Adsorption constant of gas i [Pa�1 for i = CH4,H2,CO and unit-

less for i = H2O]

• Kj: Equilibrium constant of reaction j [Pa2 for j = 1 (SMR reaction),

unitless for j =2 (WGS reaction)]

• kj: Reaction rate constant of reaction j [mol �Pa0:5 � ðkgcat � sÞ�1 for j

= 1 (SMR reaction), mol � ðPa �kgcat � sÞ�1 for j = 2 (WGS reaction)]

• Pa,PMR, Pc,PMR: Pressure of PMR anode chamber, of PMR cathode

chamber [Pa]

• qa,PMR, qc,PMR: Outlet volumetric flow rate of PMR anode chamber,

of PMR cathode chamber [m3 � s�1].

• rj: Rate of reaction j per kilogram of catalyst [mol � ðkg � sÞ�1].

• R: Universal gas constant [J � ðmol �KÞ�1].

• Rf , Rm: Electric resistance of furnace, of membrane [Ω].

• Ta , Ta,PMR, Tc,PMR: Temperature of ambient, of PMR anode chamber,

of PMR cathode chamber [K].

• Ta,PMR
0 , Tc,PMR

0 , Tb
0: Temperature at the inlet of PMR anode chamber,

of PMR cathode chamber [K].

• Ua,PMR
h , Uc,PMR

h : Overall heat transfer coefficient of PMR anode

chamber, of PMR cathode chamber [J � ðs �K �m2Þ�1
].

• Va,PMR, Vc,PMR: Volume of PMR anode chamber, of PMR cathode

chamber [m3].

• Wcat: Weight of catalyst [kg].

• ΔHrj : Enthalpy change of reaction j [J �mol�1].

• ρa,PMR
i , ρc,PMR

i : Density of species i of PMR anode chamber, of PMR

cathode chamber [kg �m�3].

2.2 | Protonic membrane reforming system

The objective of the PMR operation is to generate a purified hydrogen

product stream from methane and steam. The system accomplishes

hydrogen purification by catalyzing thermo-electrochemical reactions,

separations, and compression under applied thermal and electrical

energy inputs. To properly define and formulate the control problem,

the mass and energy dynamics of the control volumes that comprise

the PMR system are considered. There are four primary control vol-

umes where dynamic mass and energy exchanges occur: The anodic

and cathodic bubblers, the anode chamber, and the cathode chamber.

The BZCY (BaZrCeYO3�δ) protonic membrane in Figure 1A is the

interface where thermo-electrochemical reactions convert methane

to hydrogen, create carbon oxide by-products, and drive the purifica-

tion of hydrogen. Figure 2 highlights key processing units, sensors,

and actuators for the experimental PMR system. A detailed discussion

on the inner workings, hardware factors, and chemical physics of the

protonic membrane and general PMR system is provided in previous

works.3,17,18

The anodic feed stream of the PMR unit is a mixture of steam,

methane, hydrogen, and trace argon. The cathodic feed stream con-

tains pure hydrogen, which is used as a sweep gas to transport puri-

fied hydrogen to the cathodic outlet of the PMR system. Within the

protonic membrane anode chamber, steam methane reforming and

water-gas shift reactions are catalyzed at the anode surface by a

metallic nickel dispersion on a barium-zirconate ceramic. Under an

applied electric current, hydrogen oxidation also occurs at the anode

surface. The resulting protons migrate across the ceramic electrolyte

to the cathode, where hydrogen evolution produces hydrogen gas

molecules. The endothermic steam methane reforming reaction and

exothermic water-gas shift reaction induce a nonlinear temperature

gradient in both time and space within the PMR unit. To generate

F IGURE 1 Process schematics of the (A) PMR and (B) bubbler units, highlighting the feed flow paths and physical/thermo-electrochemical
transformation zones.
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steam for the thermo-electrochemical reactions, bubbler units are

used (Figure 1B). The steam generation rate in the bubblers is a func-

tion of the partial pressure of steam and the total feed flow rate of

carrier gas species.19 Field temperature controllers are installed in the

housing of the bubblers to regulate the internal liquid temperature via

classical (proportional-derivative) control closed-loops.

Experimental control in these subsystem units requires online

sensors for temperature, pressure, and gas composition measure-

ments. Figure 3 provides a detailed piping and instrumentation dia-

gram of the electronic devices used to record, transmit, or activate

changes in process variables from a custom LabVIEW interface run

on the main computational processor. The relevant process sensors

for the MPC architecture studied in this work are the anodic bubbler

thermocouple, anodic bubbler pressure transducer, anode chamber

thermocouple, anode chamber pressure transducer, anodic effluent

gas chromatogram, and a digital mass flow meter to quantify

cathodic products. From the digitized electrical signals of these

transmitters, the required thermodynamic states of the system are

recorded at specified sampling rates. Online recording of the system

states enables the quantification of disturbance phenomena to aug-

ment the state estimation model and improve the performance of

the decentralized predictive controllers over the entire control

action window.

2.3 | Thermal reaction kinetics

Steam methane reforming and water-gas shift thermal reactions:

CH4þH2O⇌COþ3H2 ΔH298K ¼þ206 kJ=mol ð1aÞ

COþH2O⇌CO2þH2 ΔH298K ¼�41 kJ=mol ð1bÞ

A Langmuir-Hinshelwood-Hougen-Watson (LHHW) chemical

kinetics mechanism for heterogeneous catalysis of hydrocarbons on

active metals is routinely applied to steam methane and protonic

membrane reformers in chemical engineering literature.20 The mecha-

nism combines power-law and thermodynamic equilibrium analysis

with microkinetic parameters that incorporate the competitive

adsorption-desorption of chemical species on available reactive

sites.21 To apply the LHHWmechanism, the standard assumptions are

a kinetic-limited operating regime, uniform pressure in the anode

chamber, well-dispersed surface sites along the Ni-BZCY anode sur-

face, and uniform kinetic activity among all catalytic surface sites. The

overall kinetic rate equations via the LHHW mechanism for the SMR

and WGS reactions are:

r1 ¼ k1
P2:5H2

PCH4PH2O�P3H2
PCO

KEQ1

ðDENÞ2
ð2aÞ

r2 ¼ k2
PH2

PCOPH2O�PH2PCO2

KEQ2

ðDENÞ2
ð2bÞ

DEN ¼1þKCOPCOþKH2PH2 þKCH4PCH4 þKH2O
PH2O

PH2

ð2cÞ

with r1 and r2 capturing the overall kinetic rates for the SMR

(Equation 1a) and WGS (Equation 1b) catalytic reactions, respectively.

In the relation, k1 and k2 are the forward reaction rate constants, KEQ1

F IGURE 2 Overview of primary PMR system components and sensors.
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and KEQ2 are equilibrium constants, DEN is the denominator term

derived from the microkinetic surface site mechanism for catalyst

adsorption-desorption constants, and Pi are the partial pressures of

reactants and products. In Equation (2c), Ki , for i¼CO,H2,CH4,H2O, is

the adsorption coefficient of each species on nickel catalyst sites. Rate

constants and adsorption coefficients in Equation (2) follow an Arrhe-

nius dependence as a function of the reformer temperature:

kj ¼Aj exp � Ej
RT

� �
, j¼1,2 ð3aÞ

Ki ¼Ai exp �ΔHi

RT

� �
, i¼CH4,H2O,CO,H2 ð3bÞ

Listed in Table 2 are the parameters used to calculate the thermal

reaction kinetics at each time step in the reaction engineering model

developed in Section 2.6. The reference temperature for ki, KCO, and

KH2 is 648 K when computing the van't Hoff equation for rate con-

stants and absorption coefficients. KCH4 and KH2O are calculated from

a reference temperature of 823 K. Methane conversion, as a result of

the forward progression of the SMR reaction, is quantified in

Equation (4):

XCH4 ¼1�Fa,PMR
CH4

Fa,PMR
CH4 ,0

ð4Þ

where methane conversion XCH4 is a function of the ratio of methane

at the feed Fa,PMR
CH4,0

and outlet Fa,PMR
CH4

of the protonic membrane

reformer.

2.4 | Electrochemical reaction-separation term

Protonic membrane reformers drive the separation of hydrogen from

the anode surface, through the solid BZCY electrolyte, and to the

cathode surface by way of hydrogen oxidation and reduction

(HER/HOR) electrochemical reactions, defined in Equation (5):

H2 ⇌2Hþ þ2e� E� ¼0:00V ðvs: SHEÞ ð5Þ

Hydrogen is oxidized at nickel surface sites on the anode, which forms

two protons that migrate through the membrane for every molecule

of hydrogen that reacts. At the cathode surface, HER reduces these

protons back into hydrogen gas molecules.17 The electrical input

energy to HER/HOR reactions is supplied by a potentiostat. To

F IGURE 3 System P&ID—piping flow paths, piping dimensions, chemical processing units, actuators, sensors, controllers, and electrical
pathways.
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account for hydrogen generation, consumption, and separation in the

anode and cathode reformer chambers, a separation constant is devel-

oped that is a function of the applied electric current to the protonic

membrane. Specifically, the electrokinetic rate of reaction is directly

correlated to the electron balance across the protonic membrane cell

of the reformer unit,23 presented as Equation (6):

neFH2 ,exF¼ ηFIm ð6Þ

where ne represents the moles of electrons transferred per mole of

removed hydrogen, ne = 2 (Equation 5), F is Faraday's constant, and

ηF is the Faradaic efficiency. In this case, a 100% Faradaic efficiency is

assumed based on protonic membrane separations data provided in

Fjeld et al.3 and control experiments in our laboratory (vide infra). That

is to say, 100% of the applied current to the protonic membrane goes

towards electrochemical separation reactions in the studied reaction-

separation unit. This is because the electrochemical oxidation and pro-

duction of hydrogen are facile on Ni catalysts, and there are no para-

sitic side reactions that could result in the loss of electrons under the

tested conditions. After rearranging Equation (6) and incorporating

this assumption, the hydrogen extraction rate from the anode cham-

ber can be expressed as Equation (7).

FH2,ex ¼
Im
2F

ð7Þ

A key metric for establishing the thermo-electrochemical perfor-

mance of the protonic membrane is the hydrogen recovery ratio,

which is the ratio of electrochemically purified hydrogen to the overall

hydrogen generated from thermal catalysis at the anode surface of

the membrane. This ratio is provided in Equation (8):

HR¼ FH2,ex �100%
FH2,exþFa,PMR

H2
�Fa,PMR

H2,0

ð8Þ

where the hydrogen recovery percentage HR is the fraction of hydro-

gen extracted from anode to cathode FH2,ex in reference to the total

amount of hydrogen generated from the SMR and WGS reactions. To

quantify the total amount of hydrogen produced from thermal cataly-

sis, the feed hygroden Fa,PMR
H2,0

is subtracted from the extracted hydro-

gen and the anodic effluent hydrogen Fa,PMR
H2

.

2.5 | Anodic steam bubbler dynamic model

The anodic bubbler in the PMR system generates steam for the SMR reac-

tions and hydrates the protonic membrane for enhanced ion conductivity.

In Cui et al.,14 a first-principles model was developed based on the mass

and energy balances of the anodic bubbler for which the heat supplied to

the bubbler Qb determines the bubbler temperature and steam genera-

tion rate. However, in the experimental system, a field PD-controller

(proportional-derivative controller) regulates the bubbler temperature

by modulating the voltage supplied to the electrical heating tape that

encapsulates the bubbler unit. Energy from the tape is transferred to

a water reservoir housed within the stainless steel bubbler cylinder.

To determine the states of the bubbler process in real-time, a second-

order process model is constructed from open-loop experiments. This

model captures the approximate inertial and damping effects of PD-

control on the anodic bubbler energy dynamics, defined here as:

XbðsÞ¼ kp,bUðsÞ
τ2bs

2þ2ζbτbsþ1
ð9Þ

where kp,b, τb, and ζb are constant parameters for the bubbler process

gain, the time constant of bubbler dynamics, and the damping coeffi-

cient of the second-order model, respectively. This equation can be

transformed into two first-order ordinary differential equations in the

time domain:

_x1b¼ x2b ð10aÞ

_x2b¼ 1

τ2b
kp,bub�2ζbτbx2b�x1b
� �

ð10bÞ

where x1b is the output state of the bubbler and x2b is the rate of

change of the output state. The output state refers to the true bubbler

temperature measured by an internal thermocouple. Tsp is the manip-

ulated variable input of the field PD-controller, defined as ub in Equa-

tion (10). Adjustable parameters kp,b and τb are incorporated in the

second-order model to tune the process gain and time constant to

match the real dynamics of the anodic bubbler.

TABLE 2 Kinetic parameters from Xu and Froment.22

Parameter Value Unit

Pref = 1.01 bar

E1 = 240.1 kJ�mol�1

E2 = 67.13 kJ�mol�1

A1 = 4:225�1015 kmol�bar0:5�(kgcat�hr)�1

A2 = 1:955�106 kmol�(kg� bar�hr)�1

KEQ1 = 1:198�1013 bar2

KEQ2 = 1:767�10�2 —

ACO = 8:23�10�5 bar�1

AH2 = 6:12�10�9 bar�1

ACH4 = 6:65�10�4 bar�1

AH2O = 1:77�105 —

ΔHCO = �70.65 kJ�mol�1

ΔHH2 = �82.9 kJ�mol�1

ΔHCH4 = �38.28 kJ�mol�1

ΔHH2O = 88.68 kJ�mol�1

Wcat = 1:3�10�5 kg

Note: Wcat is a fitting parameter used to match the observed experimental

reaction kinetics to the LHHW kinetic model; Wcat is not a Xu and

Froment parameter.

PETERS ET AL. 6 of 21
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2.6 | Lumped-parameter reformer model

A nonisothermal lumped-parameter framework is used as the primary

reformer model (Figure 4). A secondary model for electrochemical

hydrogen separation (Equation 7) is incorporated into the design

equations to approximate mass and energy transport within the PMR

unit. The lumped-parameter design equations assume perfect mixing,

uniform mass and energy distributions, and a uniformly dispersed cat-

alyst for homogeneous reaction rates. In addition, a constant density

of the gas phase is assumed spatially but not temporally, given the

dependence of gas-phase densities on temperature and pressure. A

constant pressure is also assumed, and species mole balances for each

gas-phase reactant and product in the anode chamber follow the gen-

eral form:

_C
a,PMR ¼ Fa,PMR

0 þR�qa,PMR Ca,PMR�Fex
Va,PMR

ð11aÞ

Ca,PMR ¼

Ca,PMR
CH4

Ca,PMR
H2O

Ca,PMR
CO

Ca,PMR
H2

Ca,PMR
CO2

Ca,PMR
Ar

266666666666664

377777777777775
, Fa,PMR

0 ¼

Fa,PMR
CH4 ,0

Fa,PMR
H2O,0

Fa,PMR
CO,0

Fa,PMR
H2,0

Fa,PMR
CO2,0

Fa,PMR
Ar,0

266666666666664

377777777777775
,

R¼

�r1Wcat

ð�r1� r2ÞWcat

r1Wcat

ð3r1þ r2ÞWcat

�r2Wcat

0

2666666666664

3777777777775
, Fex ¼

0

0

0

Im
2F

0

0

26666666666664

37777777777775

ð11bÞ

where i¼CH4,H2O,CO,H2,CO2,Ar and _C
a,PMR
i is the rate of change in

the molar concentration of anode species i contained in the vector

Ca,PMR. The ordinary differential equations relate the product of Ca,PMR

and the anode chamber volume Va,PMR to a balance of the anodic feed

flow rates of Fa,PMR
0 , the molar rates of reaction in R, and the molar

separation rate of hydrogen in Fex . For the energy balance, the electric

furnace heat and Joule-heating from hydrogen separation are coupled

with terms for external heat loss, enthalpies of reactions, and

enthalpies of reacting and inert species. Considering these transport

phenomena, the anode chamber energy balance is contained in the

following equation:

_T
a,PMR ¼

fa,PMR
h I2f Rf þ

P
Fa,PMR
i,0

ðTa,PMR

Ta,PMR
0

Cp,i dT
0 � r1WcatΔHr1 ðTa,PMRÞ� r2WcatΔHr2 ðTa,PMRÞP
ρia,PMRCp,iV

a,PMR

þ
Ua,PMR
h Aa,PMR

h ðTa�Ta,PMRÞþ1
2
I2mRmþ Im

4F
RTa,PMR ln

Pc,PMR

Pa,PMR

 !
P

ρia,PMRCp,iV
a,PMR

ð12Þ

where i¼CH4,H2O,CO,H2,CO2,Ar for the heat capacities Cp,i of all

gas species in the anode chamber and _T
a,PMR

forms the energy balance

as the rate of change of temperature in the anode chamber.

The fraction of furnace heat conducted through the anode chamber

is represented by fa,PMR
h . It is also assumed that the energy

supplied to the membrane by Joule-heating is split evenly between

the anode and cathode chambers of the PMR unit, hence the multipli-

cation of the I2mRm term by a factor of one-half. This assumption is

confirmed by the experimental results presented in Section 4. The

total volumetric flow rate through the anode chamber is calculated by

combining the anodic energy balance with the ideal gas law, as

follows:

qa,PMR ¼
X

F
a, PMR

i, 0
þ2r1Wcat� Im

2F

� �
RTa,PMR

Pa,PMR þVa,PMR

Ta,PMR
_T
a,PMR ð13Þ

where qa,PMR is the total volumetric flow rate in the anode

chamber that evolves with time, temperature, methane conversion,

anodic feed flow rates, and the hydrogen extraction rate into the

cathode chamber. Pa,PMR is the anode chamber pressure. On the

opposing side of the protonic membrane is a cathode chamber

where purified hydrogen is transported, compressed, and swept

away by a wet hydrogen carrier stream. Only water vapor and

hydrogen are contained within the cathodic streams of the system,

and the design equation for the evolution of either species takes

the form:

F IGURE 4 Control volume schematic
for the anode and cathode chambers of
the PMR unit. Key mass and energy
inputs and outputs are labeled to match
the reaction engineering models
developed in Section 2.6 (Equations 11

to 15).
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_C
c,PMR ¼ Fc,PMR

0 �qc,PMR Cc,PMRþFex
Vc,PMR

ð14aÞ

Cc,PMR ¼
Cc,PMR
H2O

Cc,PMR
H2

24 35, Fc,PMR
0 ¼

Fc,PMR
H2O,0

Fc,PMR
H2,0

24 35, Fex ¼
0

Im
2F

24 35 ð14bÞ

with _C
c,PMR
i defining the rate of change in the molar concentration of

cathode species i contained in the vector Cc,PMR. The ordinary differ-

ential equations equate the product of Cc,PMR with the scalar the cath-

ode chamber volume Vc,PMR to a balance of the cathodic feed flow

rates contained in Fc,PMR
0 , the electrochemical molar generation rate of

hydrogen that is modeled by Fex , and the outlet flow of each species

in qc,PMRCc,PMR. The energy balance of the cathode chamber control

volume accounts for the electric furnace heat and Joule-heating of

the protonic membrane, the heat capacities of all reacting or inert spe-

cies, heat generation from the compression of hydrogen to the ele-

vated cathodic pressure, and heat losses to the external environment.

Here, the energy balance for the cathode chamber is expressed as:

_T
c,PMR ¼

fc,PMR
h I2f Rf þ

P
Fc,PMR
i,0

ðTc,PMR

Tc,PMR
0

Cp,i dT
0 þ Im

2F

ðTc,PMR

Ta,PMR
Cp,H2 dT

0

P
ρic,PMRCp,iV

c,PMR

þ
Uc,PMR
h Ac,PMR

h ðTa�Tc,PMRÞþ1
2
I2mRmþ Im

4F
RTc,PMR ln

Pc,PMR

Pa,PMR

 !
P

ρic,PMRCp,iV
c,PMR

ð15Þ

and the temperature rate of change, denoted as _T
c,PMR

, is comprised

of the fraction of source heat from the electrified furnace that is

transferred to the cathode fc,PMR
h heat capacities of all cathodic spe-

cies, the product of the cathodic overall heat transfer coefficient and

cathodic heat transfer area (Uc,PMR
h Ac,PMR

h ), Joule-heat generation, and

heat of compression. Each gas species density is represented by ρi.

Together, the mass and energy balance of the cathode chamber con-

trol volume, coupled with the ideal gas law, specify the total volumet-

ric flow rate of the cathodic product stream in the following relation:

qc,PMR ¼
X

F
c, PMR

l, 0
þ Im
2F

� �
RTc,PMR

Pc,PMR
þVc,PMR

Tc,PMR
_T
c,PMR ð16Þ

Thus, the analytic models developed in this section describe the full

state of the PMR unit, defined as:

xPMR ¼
Ca,PMR

Ta,PMR

Cc,PMR

Tc,PMR

26664
37775 ð17Þ

and xPMR is a state vector that can be transferred from the state esti-

mator to the optimizer of a model predictive controller.

For a kinetically-dominated operating regime, we consider the

nominal steady state of all control scenarios to have a feed methane

flow rate of 16.2 sccm, no applied electric current, and an initial

anodic bubbler temperature of 120�C. The ratio of the characteristic

methane diffusion time to the characteristic reaction time of the PMR

is on the order of 10�1 for a methane feed flow rate of 16.2 sccm and

reformer temperature of 732�C. The expected range of regulation for

these process parameters during control is 16.0 to 30.0 sccm, 0.00 to

10.0 A, and 120 to 126�C, respectively. Key process disturbances, all

stochastic in nature, are related to changes in the PMR current-

voltage response, catalyst deactivation due to carbon formation side-

reactions, and pressure oscillations throughout the bubbler and

reformer chambers.

3 | CONTROL PROBLEM FORMULATION
AND CONTROLLER DESIGN

3.1 | Classification of manipulated and controlled
variables

Economically, the most important target variables for the PMR system

are the purified y1 and overall y2 hydrogen production rates. In terms

of anode conductivity, methane conversion, reaction rates, and cata-

lyst activity,14 a sufficient steam-to-carbon ratio y3 in the initial reac-

tant mixture is essential. The developed control architecture must

regulate all three of these variables. There exist four control degrees

of freedom to regulate the inlet and outlet states of the PMR unit and

two control degrees of freedom to regulate the inlet and outlet states

of the anodic bubbler. Preliminary experiments provide a physical

intuition as to the manipulated variables directly impacting the pro-

posed controlled variables, these input-output pairings of manipulated

and controlled variables are: the electrical current u1 for direct control

of the hydrogen purification rate, the methane feed flow rate u2 to

regulate the anodic hydrogen production rate, and the temperature

setpoint of a field PD-controller u3 to maintain the anodic steam-to-

carbon ratio of reactants. To confirm the controllability of all variable

couplings, a steady-state relative gain array (RGA) was developed

from the dynamic reactor engineering models in Section 2.6 as

follows:

RGAinit ¼
1:00 0 0

0 1:17 �0:17

0 �0:17 1:17

264
375 ð18Þ

RGAmax ¼
1:00 0 0

0 0:74 0:26

0 0:26 0:74

264
375 ð19Þ

Equations (18) and (19) are the steady-state gain array calculations for

the u1, u2, and u3 control inputs, and y1, y2, and y3 controlled outputs

at the initial and maximum PMR operating conditions. The gain array

for the initial set of operating conditions at the nominal steady-state

is RGAinit. At the upper bound of the PMR system operating domain,

RGAmax is calculated for 10.0 A, 35.0 sccm, and 125�C. For both sets

PETERS ET AL. 8 of 21
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of operating conditions, mild interactions are expected for u2, u3, y2,

and y3. Physically, this multivariable coupling can be explained by the

inextricable dependence of the hydrogen production rate on

the steam-to-carbon ratio.

In the real PMR process, the only way to electrochemically sepa-

rate hydrogen through a protonic membrane is by supplying an elec-

tric current, thus explaining the λ11 of the RGA matrices being equal

to 1.00 for every set of operational conditions. However, the pro-

posed process models do not contain mathematical terms for mem-

brane conductivity, which is a function of the reformer temperature

and the partial pressures of steam on the reformer electrode surfaces.

For this reason, the true independence and stability of the control

input-output pairings were experimentally tested in Peters et al.18 to

demonstrate the safe operation of the reforming system and the

multi-input multi-output controller effectiveness on the PMR process.

3.2 | Control objectives and constraints

Unlike classical control formulations, the MPC framework enables

control engineers to restrict changes in process parameters within

desired domains, which actively constrains control actions. Thus, MPC

designs for the protonic membrane reformer unit may incorporate

constraints on the discrete derivatives of the applied electric current

to the system. Such constraints protect the protonic membrane sur-

face from rapid Joule-heating, hydrogen depletion, or local dehydra-

tion of the anode surface. The proposed control objectives, put forth

as follows, incorporate constraints on the operational domain of the

reforming system and the rates of the reformer temperature change

to improve the electrochemical performance of the protonic mem-

brane cell. The control objectives for the PMR process are:

1. All control actions, regardless of closed-loop effectiveness, will not

induce runaway system temperatures or pressures. Hydrogen

depletion or electrical damage to system components is likewise

prohibited.

2. Control actions must be bound by upper and lower operational

limits for the reformer temperature and pressure, the feed flow

rate of methane, and the feed flow rate of steam.

3. An effective control design will reproducibly achieve all controlled

variable target setpoints and do so in less time than comparable

classical feedback loops.

4. The proposed constraints on the hydrogen purification rate control

loop must limit changes in the reformer chamber to �5�C�min�1 to

protect the surface morphology of the anode and catalytic activity.

5. Under irreversible disturbance conditions, the DMPC architecture

will successfully adapt the state estimation vector to the modified

steady-states of the PMR subprocesses to ensure optimizer

convergence.

6. Failures in optimizer convergence during single or multiple sam-

pling intervals must not produce dangerous or damaging control

actions. Convergence failures should be limited to less than 5% of

all sampling steps.

7. Control scenario S1 will set the automatic setpoint generator to

75% of the total hydrogen available in the system at t�900s. Follow-

ing the successful execution of control scenario S1, control sce-

nario S2 will increase the recovery rate setpoint to 90% of the

total hydrogen available in the system at t�900s. Control scenario

S2 aims to test the input constraints on u1 that should allow for

higher current densities and hydrogen extraction rates. A PMR

control system that establishes these control objectives under

experimental evaluation can be considered robust and adequate

for advanced automation efforts.

3.3 | Disturbance observer and augmented model

Achieving the desired control objectives fundamentally depends on

the accuracy of the model employed in MPC. Specifically, within a

DMPC framework, subsystem models are utilized to predict outputs.

Furthermore, due to sensor constraints, such as infrequent measure-

ments, inherent delays, and difficulty measuring certain process vari-

ables, these models also function as estimators, providing frequent

estimates of all state variables.24 However, given the potential for,

and observation of steady-state drifts in the hydrogen generation

control loop, state estimation through the use of offline fittings of the

physics-based models is not sufficient. The pure model in

Section 2.6 does not account for catalyst aging in the real process,

which leads to the observed plant-model mismatch. Therefore, the

overall state vector must be augmented in real-time to account for

any transient or permanent disturbance phenomena that cause

steady-state deviations in byj from yj. To that end, a disturbance

observer is developed in this section to compensate for plant-model

mismatch throughout the control experiment. State estimation by

way of an offset-free extended state observer allows for accurate

state predictions when the control system is under the stress of sto-

chastic and evolving disturbance phenomena. A state vector for the

following general nonlinear system is formulated as follows:

_x¼ Fðx,uÞ ð20aÞ

y¼ hðxÞ ð20bÞ

with x�ℝn denoting the predicted state vector from the PMR unit

and anodic bubbler process models, and u�ℝm representing the con-

trol input vector. F :ℝn�ℝm !ℝn is the model from the physical

information discussed in Sections 2.5 and 2.6. The target variable pre-

diction vector y�ℝk is determined by transforming x�ℝn by

h :ℝn !ℝk to obtain the predicted state of the controlled vector.

The following disturbance observer formulation, adopted from

the general framework of Equation (20), is used to accumulate predic-

tion errors over time with a disturbance state. This allows the dynamic

model to compensate for prediction errors by introducing an addi-

tional disturbance state (extended state) ξ�ℝn to the state estimation

method. Building on this offset-free method, the unknown input

observer (UIO), which is a type of disturbance observer, explicitly

9 of 21 PETERS ET AL.
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estimates disturbances and integrates them into the system model.25

In this technique, the disturbances are assumed to be generated by an

exogenous system26,27 in which the general state vector

F :ℝn�ℝm !ℝn is modified by a disturbance observer term in the fol-

lowing relation28–30:

_̂x¼ Fðx̂,uÞþBdd ð21aÞ

ŷ¼ hðx̂,uÞ ð21bÞ

_ξ¼Wξ ð21cÞ

d¼Vξ ð21dÞ

with x̂�ℝn representing the modified state vector that is governed by

the predicted system dynamics and the accumulation of external dis-

turbances. The auxiliary disturbance state ξ�ℝn corrects for inaccura-

cies in the pure model due to plant-model mismatch by accumulating

the disturbance-induced model error over time, and the disturbance

matrix is designated as Bd �ℝn�n. The additional disturbance state

ξ�ℝn corrects for inaccuracies in the pure model by accumulating the

disturbance-induced model error over time. Bd �ℝn�n represents the

disturbance matrix, and ~d�ℝn estimates the disturbance d�ℝn in

Equation (21) calculated using V~ξ�ℝn.

For state estimation, a disturbance observer is further integrated

into the extended state observer:

_~x¼ Fð~x,uÞþLxðyr � ~yÞþBd
~d ð22aÞ

~y¼ hð~xÞ ð22bÞ

_~ξ¼W~ξþLξðyr � ~yÞ ð22cÞ

~d¼V~ξ ð22dÞ

where ~x�ℝn is the modified state vector governed by the predicted

system dynamics with the augmented state estimator and the accu-

mulation of external disturbances. Lx �ℝn�k and Lξ �ℝn�k serve as the

observer gains, and ðyr � ~yÞ�ℝk is the error between the real target

output yr �ℝk and the expected target output ~y�ℝk .

In process control literature, many observer-augmented models

have proven to be stable and offset-free by incorporating the error

dynamics of systems.31,32 However, most observers consider

discrete-time systems. In this paper, the stability and asymptotic error

of the state observer are considered for a real, continuous-time, and

nonlinear process with uncertain disturbances, which are represented

by the following equations:

_xr¼ Frðxr ,u,wrÞ ð23aÞ

yr¼hðxrÞ ð23bÞ

where xr �ℝn and yr �ℝk are the real process state vector and the real

output vector, respectively. Fr :ℝn�ℝn�ℝnw !ℝn represents the

function that captures the dynamic behavior of the experimental pro-

cess. w¼wðtÞ�ℝnw is assumed to be the mismatch between the real

process and the model, uncertainty, or unknown external distur-

bances, defined as follows:

w :¼ Frðxr ,u,wrÞ�Fðxr ,uÞ ð24Þ

This difference is also asymptotically constant,31 and the following

limits hold true:

lim
t!∞

wðtÞ¼w, lim
t!∞

_wðtÞ¼0 ð25Þ

To be consistent with the format of the observer-based model,

we define dr ¼ w
Bd
, ξr ¼ dr

V , and
_ξr ¼ ∂ξr

∂dr
∂dr
∂w

_w¼ _w
V Bd

. Hence, the real pro-

cess can be represented by the following equations:

_xr¼ Fðxr ,uÞþw¼ Fðxr ,uÞþBddr ð26aÞ

yr¼ hðxrÞ ð26bÞ

_ξr¼
_w

VBd
ð26cÞ

dr ¼Vξr ð26dÞ

The dynamics of the errors between the estimation states and real

states (ex ¼ xr � ~x� ℝn) along with the disturbance error dynamics

(ed ¼ dr � ~d� ℝn) are calculated as follows:

_ex¼ _xr � _~x¼ Fðxr ,uÞ�Fð~x,uÞ�Lx hðxrÞ�hð~xÞ½ �þBd ed ð27aÞ

_ed¼ _dr � _~d¼V
_w

VBd
�W~ξþLξðhð~xÞ�hðxrÞÞ

� �
ð27bÞ

At steady state (t!∞), the system is linearized around the

equilibrium state x ∗ �ℝn. Combining with Equation (25) and

designing W¼0, we can obtain the following linearized error

dynamics:

_ex
ėd

� �
¼ A ∗ �LxC

∗ Bd

�VLdC
∗ 0

� �
ex
ed

� �
¼M ex

ed

� �
ð28Þ

with the Jacobian matrices defined as A ∗:¼ ∂F
∂x

��
ðx ∗ ,uÞ and C ∗:¼ ∂h

∂x

��
x ∗ . Lx ,

Ld, V, and Bd should also be designed to ensure M is a Hurwitz matrix

to guarantee that the estimation of errors converge to zero. Asymp-

totically, at t!∞ from Equation (28), the following relationship is

obtained:

ðA ∗�LxC
∗ Þex¼0 ð29aÞ

PETERS ET AL. 10 of 21

 15475905, 2026, 2, D
ow

nloaded from
 https://aiche.onlinelibrary.w

iley.com
/doi/10.1002/aic.70105 by U

niversity O
f C

alifornia, L
os A

ngeles, W
iley O

nline L
ibrary on [14/01/2026]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



�VLdC
∗ ed¼0 ð29bÞ

Therefore, the augmented model can achieve exact state tracking and

disturbance compensation at steady state:

lim
t!∞

~x�xr ¼0, lim
t!∞

~d¼B�1
d w ð30Þ

which indicates that the ~d�ℝn term in Equation (21a) can compensate

for the plant-model mismatch caused by w at the final steady state,

which demonstrates Equation (22) can be utilized as the state vector

and error evolution estimator.

In the context of MPC, this estimated state vector serves as the

initial condition of the optimizer state predictions, and the estimated

error is augmented following Equation (21) as follows:

_x¼ Fðx,uÞ ð31aÞ

y¼ hðxÞ ð31bÞ

x¼
~x

~ξ

" #
, Fðx,uÞ¼ F̂ð~x, uÞþBd

~d

W~ξ

" #
ð31cÞ

For subsystem j, this augmented model takes the form:

_xj ¼ Fjðxj ,ujÞ ð32aÞ

yj ¼ hjðxjÞ ð32bÞ

xj ¼
~xj

~ξj

" #
, Fjðxj,ujÞ¼

F̂jð~xj , ujÞþBd,j
~dj

W j
~ξj

" #
ð32cÞ

This augmented model is comprised not only of the intrinsic behavior

of physical properties but also of the mismatch compensation of

experimental data deviations, thereby motivating the development

of a generalized hybrid physics-data-driven model.

3.4 | Hybrid physics-data-driven model
development

In Section 3.3, a hybrid physics-data-driven model was developed. By

embedding deterministic physical equations (e.g., mass, energy, and

charge balances), a base model can be generated to capture the chem-

ical physics of the PMR process. Simultaneously, an augmented data-

driven correction term captures unmodeled effects, such as unknown

disturbances and parameter changes. Specifically, the data-driven cor-

rection can be further divided into two processes: Offline data-driven

correction and online data-driven correction. This is one of many ways

to build a model around operational uncertainty, with other suitable

methods including Bayesian reinforcement learning schemes or

Gaussian processes for uncertainty quantification.33

In general, this physics-data-driven model can be expressed as

follows34:

_xpd ¼ Fðxpd,uÞþFdðxpd,uÞ ð33Þ

where xpd �ℝn is the state vector of physics-data-driven model.

F :ℝn�ℝm !ℝn is the physics-based function. Fd :ℝ
n�ℝm !ℝn is

the data-based function. Considering the system described by

Equations (23) and (24), the following relationship is also obtained at

steady state:

Fdðxpd,uÞ¼w: ð34Þ

This mismatch (or bias, w) is typically compensated via machine

learning models in control engineering literature.34–36 However, such

models take considerable computational effort and require large

datasets. In this work, a disturbance observer is added to the physics-

based model to enhance the process model accuracy. The compensa-

tion term (~d or ~ξ) is initially designed to fit offline data and is adap-

tively changed to correct experimental errors in an online manner

throughout the control time.

3.5 | Decentralized model predictive control
structure

A decentralized MPC architecture is proposed that regulates the

steam-to-carbon ratio of reactants, along with the hydrogen genera-

tion and purification subprocesses. The loss function defined in

Equation (35d) penalizes process-setpoint deviations and advances

control actions to minimize setpoint deviations and bring the process

to its target state. The DMPC architecture employs the models in Sec-

tions 2.5 and 2.6, augmented with the disturbance observer discussed

in Section 3.3, to survey the future states of the PMR over a predic-

tion horizon based on immediate and future control actions. The dis-

cretized feedback information from the process sensors in Figure 5

allows an online accounting of disturbance effects on model errors,

which provides a mathematical impetus for model correction via the

disturbance estimator (Equation 22d) to achieve zero steady-state

offset.

The theoretical implementation of a DMPC architecture in Cui

et al.14 demonstrates the stability and computational efficiency of the

proposed control design in an ideal PMR system with arbitrary and

ordered disturbance phenomena. Likewise, in Peters et al.,18 a classi-

cal multi-input multi-output control architecture based on identical

input-out pairings showed reproducible setpoint achievement during

multi-setpoint tracking control scenarios. Here, the subsystem objec-

tive functions are defined for three closed-loop model predictive con-

trollers. Specifically, the objective functions minimize setpoint

deviations of the estimated states of the PMR system. The control

effort to reach each target state is also minimized by the DMPC

objective functions. The control input bounds and input constraints

on applied electric current, the feed methane flow rate, and PD-
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controller temperature setpoint are also assigned to each controller.

To initialize each DMPC subsystem for each sampling time, the

state estimator developed in Section 3.3 provides the estimated

state vector at tk . Likewise, the model accuracy from augmentation of

the process models via the disturbance observer terms improves

the likelihood of solution convergence, despite stochastic

experimental disturbance phenomena. The general formulation of the

subsystem minimization problems for the three MPC regulators is

expressed as:

J j¼ min
uj

ðtkþNh

tk

LjðyjðtÞ,ujðtÞÞ dt ð35aÞ

s:t: _xjðtÞ¼ Fj xjðtÞ, ujðtÞ
� �

, xjðtkÞ¼ xjðtkÞ ð35bÞ

yjðtÞ¼ hjðxjðtÞÞ ð35cÞ

LjðyjðtÞ,ujðtÞÞ¼ ðyjðtÞ�yj,spðtÞÞ > AjðyjðtÞ�yj,spðtÞÞ
þðujðtÞ�uj,spðtÞÞ > BjðujðtÞ�uj,spðtÞÞ

ð35dÞ

t� ½tk ,tkþNh
Þ ð35eÞ

kujðtkÞ�ujðtk�1Þk≤Δulimit,j ð35fÞ

ujðtÞ�Uj 8t� ½tk ,tkþNh
Þ ð35gÞ

where xjðtkÞ�ℝn represents the initial state vector for subsystem j at

t¼ tk estimated by Equation (22). Equations (35b) and (35c) are the

same as Equation (32). Through these equations, the state vector xjðtÞ
and the output vector yjðtÞ for subsystem j over the defined horizon

time (tk to tkþNh
) is estimated. This estimated output vector is involved

in Equation (35d) to evaluate the distance between it and setpoints.

The optimization problem minimizes this distance (Equation 35a). Aj

and Bj are weighted parameters for the output vector and the control

action vector, respectively. Furthermore, the optimization problem is

constrained by the control input change rate (Equation 35f) and con-

trol input magnitude (Equation 35g). These constraints are applied to

satisfy the control objectives discussed in Section 3.2. Specifically, for

DMPC 1, or subsystem 1, the input is bound to the set U1 =

fu1 j 0:00 A≤ u1 ≤12:1 Ag and the rate of change in the the input is

constrained to ku1ðtkÞ�u1ðtk�1Þk≤0:10 A. DMPC 2, is also con-

strained, bound to the set U2 = fu2 j 10:0 sccm≤ u2 ≤40:0 sccmg and

limited to ku2ðtkÞ�u2ðtk�1Þk≤0:02 sccm. Finally, the range and input

rate of change limit for DMPC 3 is defined by U3 =

fu3 j 110�C ≤ u3 ≤ 130
�Cg and ku3ðtkÞ�u3ðtk�1Þk≤0:01�C. The overall

decentralized control architecture, including controllers, actuators,

sensors, and process integration, is provided in Figure 5.

For adaptive setpoint decisions in the DMPC 1 closed-loop struc-

ture, ysp,1 is determined by the manual setpoint or automated setpoint

generator. The objective of the setpoint generator, defined as Algo-

rithm 1, is to calculate the separation rate of hydrogen based on the

F IGURE 5 Representation of the closed-loop DMPC architecture for regulating the steam-to-carbon ratio, hydrogen generation, and
hydrogen purification rates in the experimental PMR system.
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availability of hydrogen in the system. This way, the DMPC 1 purifica-

tion rate never exceeds the amount of hydrogen available in the

anode chamber, preventing complete hydrogen depletion at

the anode surface. The pseudocode is presented in Algorithm 1

below, where the notation t�900s is used to denote that the calculation

of the total available hydrogen is a value from 15 min prior to the cal-

culation and change of the setpoint.

4 | OPEN-LOOP EXPERIMENTATION AND
MODEL VALIDATION

The physics-data-driven models developed for the PMR system in

Section 3.4 are now fit to the offline experimental input-output data via

adjustable parameters for improved state estimation.With experimentally-

validated predictions that determine the entire thermodynamic state of the

PMR system via the lumped-parameter reformer, anodic bubbler, and

hydrogen separation models, the state estimator will closely describe the

dynamic evolution of the PMR system throughout the control time. The

first step in connecting theoretical models to the actual thermodynamics of

the PMR process is to perform step-change experiments for the manipu-

lated variables and record the response of the target variables. Step-change

experiments allow control engineers to survey the transient response times

of the final control elements and controlled variables. Thus, open-loop step

change experiments were used to examine the transient response times of

the process. Preliminary experiments elucidate the dynamic characteristics

of the actuators and process variables in the PMR system (Sections 2.5 and

2.6) for accurate forecasting of the system states.

4.1 | PMR system transient response

Documentation of system dynamics, subject to simultaneous changes

in multiple process variables, establishes the intrinsic coordination

between input and output variables, while also categorizing input-out-

put variable pairings as aggressive, balanced, or ineffective. Specifi-

cally, scanning or ramping the manipulated input variables of the

control scheme (Section 3.5) confirms the proposed physics of

the process units and informs the tunings of the dynamic models, the

state observer, and predictive controllers. To induce and record the

transient response of the target variables in the PMR system, an elec-

tric current sweep rate of 8.00�10�3 A�(5 s)�1 was initiated at the

20th min of the transient experiment presented in Figure 6. The feed

flow rate of methane and the bubbler temperature were also modu-

lated at the 84th min and 92nd min, respectively.

The response of the PMR system to the continuous step-

change schedule was on the order of seconds for the electric cur-

rent and hydrogen purification variable coupling, whereas the

methane feed and hydrogen generation variable coupling had a

response time on the order of minutes. The settling time for the

bubbler after modulating Tsp was also on the order of minutes. The

discontinuation of all three manipulated variable ramps demonstrates

that the system can achieve a new steady-state in a reasonable time

scale for process control. However, the facile response of hydrogen

separation and purification in response to changes in the applied elec-

tric current requires explicit constraints on u1 due to the immediate

impact on the reformer temperature that is observed in Figure 6. In

fact, 9.00 A of electric current increased the reformer temperature by

90.0�C, and the initial step change from 0.00 to 1.90 A increased the

reformer temperature at a rate of 10.0�C�min�1. The ramp change in

the manipulated variables also induced positive effects on the pro-

cess, such as a full equilibrium shift toward the complete conversion

of methane and a selectivity shift from CO to CO2. Additionally,

increases in the SMR and WGS reaction kinetics increased the con-

version rate of methane, even as more methane was fed to the system

(Figure 6B), indicating negligible mass transfer limitations. To deter-

mine the dynamic characteristics of the PMR system for predictive

control, the estimation method presented in Section 3.3, comprised of

Algorithm 1 Automatic Setpoint Calculation for Controller 1

Input: Automatic Setpoint Enabled flag

if Automatic Setpoint is Enabled then
Calculate total hydrogen inventory;

Retrieve Anode H2 and Cathode H2 at time t−900s ;

Retrieve Inlet CH4 and Inlet H2 at current time t;

Compute inventory-based H2 ←Anode H2 + Cathode H2;

Compute inlet-based H2 ← 3.3 × Inlet CH4 + Inlet H2;

Htarget
2

← 0.75 × min(inventory, inlet);
Setpoint for Controller 1← Htarget

2
;

else
Use manual setpoint entry for Controller 1;
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physics-data-driven-based models for the anodic bubbler and PMR

units, was tested on an additional set of dynamic input data

(Section 4.2).

4.2 | Experimental data-fitting via model
parameter adaptation

In Cui et al.,14 only steady-state and dynamic kinetic modeling (Equa-

tion 3) were experimentally validated with Xu and Froment22 plug

flow kinetic parameters. In Figure 7, the hydrogen purification rate,

hydrogen generation rate kinetics, and anodic bubbler are all evalu-

ated with dynamic and steady-state experimental data. A new data-

fitting exercise was conducted in this study, given the reactivity of the

system changes over time; thus, the experimentally-adjusted parame-

ters of the state estimation models need to fit the system in its most

recent operational condition. Figure 7A provides a cyclic voltammetry

plot of the protonic membrane cell at a 10�1 A�min�1 electric current

sweep rate. Based on the PMR electron balance (Equation 6), assum-

ing 100% faradaic efficiency for current densities up to 0.55 A�cm�2,
Im
2F captures the average separation rate of hydrogen through the pro-

tonic membrane with a mean absolute model error of 3.48 sccm. Not

only does the 100% faradaic efficiency assumption hold, but the

excellent agreement between the model and experimental hydrogen

separation rate means that the predictions for the most important tar-

get variable in the process are reproducibly accurate.

The steady-state experiments in Figure 7B match the lumped-

parameter anodic reaction model in Figure 13 when Wcat values in the

R vector of Equation (11) are all equal to 13.0 mg. The mean absolute

prediction error at this active catalyst weight for all species was 0.95

sccm, and the average standard deviation for all steady state experi-

mental measurements was �0:73 sccm. For anodic hydrogen specifi-

cally, the most important prediction for the second-loop controller, a

mean absolute model error for anodic hydrogen of 0.10 sccm was

observed. Thus, the lumped-parameter reaction engineering model accu-

rately captures the state change in the anodic product stream as the

steady-state reformer temperature is modulated. Attention must also be

given to the steady-state anodic hydrogen predictions within the tem-

perature window of 730 to 810�C so that the temperature range within

which the control experiment is conducted is properly modeled. At the

elevated reformer temperatures, there is increasing variability in the

experimental data, and a larger error is observed between the data and

the lumped-parameter model for anodic hydrogen predictions, further

justifying the need for state estimation with error compensation.

F IGURE 6 Transient experimental results induced by an electric current sweep rate of 8.00�10�3 A�(5 s)�1. (A) Anodic hydrogen generation
rates and the hydrogen separation rate into the cathode, (B) Carbon species balance and methane flow rates, (C) Applied current and measured
potential in the MEA, (D) Carbon oxide generation rates and selectivity, (E) Hydrocarbon conversion and hydrogen recovery rates, and (F) Anodic
bubbler and internal PMR unit temperatures.
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As discussed in Section 2.5, a second-order response model is

used to simulate the dynamic behavior of the bubbler temperature

dynamics in response to manipulated PD-control inputs. The parame-

ters of the second-order bubbler model are tuned to match the exper-

imental data from the open-loop bubbler experiments in Figure 6C. In

the open-loop experiment, the setpoint of the bubbler temperature

Tb,sp is changed from 119�C to 122�C, and from 122�C to 125�C

under 3.15 bar of pressure. An underdamped response of bubbler

temperature is observed, indicating 0 < ζb <1. In a second-order

response system, maximum overshoot Mp, decay ratio DR between

successive peaks, period of damped oscillation Td, and rise time Tr are

four key dynamic characteristics, which are defined as follows:

Mp ¼ e
� πζbffiffiffiffiffiffiffi

1�ζ2
b

p
, DR¼ e

� 2πζbffiffiffiffiffiffiffi
1�ζ2

b

p
, Td ¼ 2πτbffiffiffiffiffiffiffiffiffiffiffiffiffi

1�ζ2b

q , Tr ≈
π�arccosðζbÞ

1
τb

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ζ2b

q
ð36Þ

Based on Equation (36), the estimated values of Mp, DR, Td and Tr are

30.9%, 9.56%, 15.8 min and 4.88 min, which aligns with experimental

observations (33.0%, 10.0%, 13.0 min and 4.35 min, for all

Equation (36) constants, respectively). The mean absolute error of the

model is 0.19�C. Hence, the results demonstrate the reliability of

Equation (36) in predicting the anodic bubbler dynamics over the

operational domain of the PMR system.

4.3 | Simulation validation and comparison

If the disturbance observer-based state estimator accurately forecasts

offline controller input data from a PI control experiment, the conver-

gence of the DMPC optimization algorithms is likely to result in con-

verged solutions over each horizon and sampling step that minimize

setpoint deviations and controller input efforts. To validate the state

estimator, a test dataset was taken from a multi-input multi-output PI

control scenario with initial values for the applied electric current I0,

feed methane flow rate qCH4,0, and PD-temperature setpoint Tsp,0 ini-

tialized to 0.00 A, 16.2 sccm, and 120�C, respectively. The total

hydrogen production setpoints were 150 sccm and 125 sccm, to force

dynamic operation of the PMR system. Likewise, the automatic set-

point generator was set to a 75% hydrogen recovery rate at a steam-

to-carbon ratio of 3.30. The dynamic operation of the PMR system,

along with the impulse changes in the applied electric current, which

was an artifact of PI control action, was used to test the accuracy of

the state estimator under the stress of uncertain control inputs and

stochastic process disturbances. The results of this experimental

F IGURE 7 Experimental validation of all three process models to be used for state estimation in the DMPC algorithms. (A) Hydrogen
purification as a function of applied electric current at a sweep rate of 8.00�10�3 A�(5 s)�1, (B) Steady-state anodic gas compositions in the
absence of electrochemical separation, and (C) Bubbler temperature response to changes in the PD-controller setpoint Tsp.
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effort were used to determine the degree of robustness of the hybrid

state estimation methodology of Section 3.3.

A comparison of the average errors of the state estimations rela-

tive to the actual values of the process is provided in Figure 8. Under

dynamic operation, hydrogen predictions in both the anode and cath-

ode chambers of the reformer unit are sufficiently accurate. Specifically,

the average absolute errors are less than 3.50 sccm for both target vari-

ables. More importantly, the offline 0.50 to 2.00 A step changes in the

applied electric current, due to PI control actions, do not proliferate

estimation errors, which proves the power of the disturbance observer-

based state estimation design. Robust estimations of the reformer tem-

perature were also observed, evidenced by an average absolute error

of 5.65�C. Additionally, the offline dynamic model validation exercise

confirms that the PMR energy balance (Equation 12) accurately pre-

dicts the temperature of the anode chamber in the PMR unit.

5 | EXPERIMENTAL MPC RESULTS

5.1 | Decentralized MPC

In the first control scenario S1 (Figure 9), the system-wide hydrogen flow

rate was set to 150 sccm, and the hydrogen purification rate (hydrogen

recovery) was set to 75.0% of the total system-wide hydrogen flow rate at

t�900s. To ensure adequate hydration of the protonic membrane dur-

ing enhanced water vapor consumption—at higher reaction rates—the

S/C ratio was changed to 3.30 at the initial control time. Hydrogen

separation rates were calculated from real-time feedback from the

digital mass flow meter, following the automation algorithm devel-

oped in Alg. 1. DMPC 1 also stabilized around the adaptive purifica-

tion rate setpoint with an average absolute error of 6.15 sccm. A

maximum applied electric current of 9.47 A was achieved for DMPC

1 to increase the forward rates of the equilibrium SMR reactions by

removing hydrogen product from the reaction zone. The average

DMPC 2 error for (y2,sp�y2) was 10.55 �5:78 sccm, which had a set-

tling time of approximately 197 min to �5% of y2,sp and a methane

feed range of 16.2 to 31.1 sccm. DMPC 3 settled to �5% of y3,sp after

83 min with an average error of 0.284 �0.185 sccm throughout the

control time. Figure 10 displays results from the second control sce-

nario S2 with DMPC 1 automatic setpoint generation set to 90% of

the total hydrogen in the system at t�900s. The second and third

closed-loops maintained the setpoints from the first control scenario

S1: 150 sccm for the total hydrogen generation rate and a steam-

to-carbon ratio of 3.30. DMPC 1, via the modification of the auto-

matic setpoint calculation, drove y1 to higher average hydrogen purifi-

cation rates that fully utilized the explicit input constraint on u1 to

protect the protonic membrane from rapid Joule-heating (Figure 10). The

maximum separation rate for control scenario S2 was 76.9 sccm, leading

to a maximum hydrogen recovery rate of 84.4% and an average hydro-

gen recovery rate of 68.7% throughout the control time (234 min).

5.2 | Comparison with classical control

The classical control results of Peters et al.18 provide a standard for

comparison when evaluating the effectiveness of the DMPC control

F IGURE 8 Offline test of state estimation using: (A) PI control inputs to estimate, (B) the anodic hydrogen generation rate as predicted by the
pure model and state estimator, (C) the anode chamber energy balance, and (D) electrochemical hydrogen separation. In (A), the left y-axis units
are A (current) or sccm (inlet CH4).
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F IGURE 9 DMPC scenario S1 results for a total H2 setpoint of 150 sccm (T0 = 737�C j I0 = 0.00 A j qCH4,0 = 16.2 sccm j Tsp,0 = 120�C). (A)–
(C) Control loops for electrochemical hydrogen separation, overall hydrogen production, and the feed steam-to-carbon ratio, respectively. The
average absolute uncertainty (AAU) for Controller 1 is an average of flow meter uncertainties throughout the control experiment (Alicat mass
flow meter absolute uncertainty was �0:6% of flow reading). (D) Subplots for the internal temperature of the PMR unit, system hydrogen
recovery, and carbon oxide by-product selectivity.

F IGURE 10 DMPC scenario S2 results
for a total H2 setpoint of 150 sccm (T0 =

737�C j I0 = 0.00 A j qCH4,0 = 16.2 sccm j
Tsp,0 = 120�C). (A) Control loop for
electrochemical hydrogen separation,
(B) Subplots for the internal temperature
of the PMR unit, system hydrogen
recovery, and carbon oxide by-product
selectivity.
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architecture developed in this work. Table 3 provides results for set-

point tracking and compares the performance of the classical and pre-

dictive control methodologies for all three control loops. The overall

DMPC design excels at minimizing the effort to maintain control

action smoothness for each manipulated input, which is essential to

avoid protonic membrane damage when applied electric currents are

actuated. Further, the settling time for DMPC 1 outperforms that of

PI 1 by 1.00 min. For control loops two and three, the results are more

nuanced. While the control smoothness effort is less for DMPC 2, the

settling time and average absolute error for PI controllers two and

three are superior. Specifically, the classical controllers for the second

and third feedback loops settle at the target hydrogen production and

S/C ratio setpoints 33.3% and 164% faster, respectively, as compared

to DMPC 2 and DMPC 3 throughout the respective control times.

Additionally, the average absolute errors for all PI closed-loops are

lower than the absolute average errors of the DMPC control scheme

for both control scenarios.

5.3 | Optimizer performance

All computational solutions in the decentralized predictive controllers

for control scenarios S1 and S2 have a 98% convergence rate. In fact,

DMPC 3 converged for all sample steps during S1 and S2, and DMPC

1 also had perfect convergence for all sample steps in S2. DMPC 1 did

not converge for 21 sample steps throughout the control time of S1.

The solution failures can be attributed to instantaneous changes in

cathodic flow rate due to pressure oscillations that blocked the back

pressure regulator valve, as evidenced by rapid dips in the cathodic

flow rate in Figure 9. Another important metric for the successful

implementation of experimental decentralized controllers is the opti-

mization solution time per controller sampling step. Figure 11 pro-

vides the logarithmic distributions of each optimizer solution time for

both control scenarios S1 and S2. The average control action calcula-

tion times for DMPC 1, DMPC 2, and DMPC 3 were 2.7 �10�2 s, 2.7

�10�1 s, and 2.7 �10�2 s, respectively. A maximum solution time of

4.6 s was seen for the DMPC 2 solution, falling within the 5-second

controller sampling window. During the control experiment under S2

conditions, the average control action calculation times for two of the

three predictive controllers were greater than those for the S1 calcu-

lation time. The average calculation times for the first and second

decentralized controllers during S2 were 2.8 �10�2 s and 3.1 �10�1

s, respectively, while the calculation time for controller three remained

the same as for control scenario S1.

6 | ANALYSIS OF EXPERIMENTAL
RESULTS

Review of the control objectives listed in Section 3.2 provides the pri-

mary evaluation criteria for the multi-input multi-output DMPC archi-

tecture. Throughout the three experiments for control scenario S1,

and two experiments for control scenario S2, all control loops main-

tained safe PMR operating conditions and did not cause reactor or

system damage. Complete hydrogen depletion in the protonic mem-

brane was also averted, given the successful implementation of the

dynamic setpoint compensation algorithm for DMPC 1, further evi-

denced by the lack of voltage spikes throughout control times

(Figure 9B; Figure 10B). Likewise, the controllers were able to reach

all three target setpoints reproducibly for both control scenarios,

showing the success of the disturbance-based state observer in

forecasting system states in the presence of experimental catalyst

deactivation, pressure oscillations, and variable magnitudes of Joule-

heating. For DMPC 1, an explicit control input constraint to limit the

discrete change in the applied electric current between sampling steps

was also satisfied in both control scenarios. However, the control

input limits still led to actuated electric currents that produced two

instances of the discrete reformer temperature derivative exceeding

�5�C�min�1. The maximum reformer temperature change rate was

5.27�C�min�1 during S1. During scenario S2, two instances of a

�5�C�min�1 reformer temperature change were also recorded and

were likely the result of increased membrane electrical resistance dur-

ing the initial DMPC 1 electric current ramps from 0.00 to 7.00 A.

Although the constraint on u1 can be further modified, the fact that

TABLE 3 Comparison of control
performance metrics for PI and DMPC
for three feedback loops.

Metric H2 Purification H2 Generation S/C ratio

PI

AAE 5.15 sccm 7.42 sccm 0.14

Settling Time (min) 14.5 108 31.5

Control Smoothness Effort 1.4 � 102 A2�s 1.7 � 102 sccm2�s 1.4 � 104 �C2�s
DMPC

AAE 6.15 sccm 10.6 sccm 0.28

Settling Time (min) 13.5 162 83.2

Control Smoothness Effort 2.6 A2�s 1.8 sccm2�s 1.4 � 104�C 2�s

Note: All controller tuning methods and parameters for the classical control experiments can be found in

the previous work of Peters et al.18 The settling time is determined after 1 h of consecutive feedback

samples within �10% of the target setpoints. Control smoothness effort is calculated using the following

integral approximation:
Pkf

k¼k0þ1ðuk �uk�1Þ2 �Δt.
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the reformer temperature dynamics stayed within �5�C�min�1 for

over 99% of the control times in S1 and S2 proves that the DMPC

1 regulator adequately protects the protonic membrane from rapid

Joule-heating (Figure 10).

The error between the reaction separation term Im
2F and the

observed separation rate was limited to less than 4.00 sccm

(Figure 7A). However, when addressing the results of DMPC 2 and

DMPC 3, there are obvious oscillations around the setpoint during

tracking that can be improved by changing the sampling rate of the

DMPC 2 sensor. Specifically, the GC takes measurements of

the anodic product gas composition once every 18.0 min with a

15.0 min time delay, which limits the effectiveness of the disturbance

observer. In future studies, the GC will be replaced with infrared

detectors that have sampling rates of around one second to eliminate

sensor delay and infrequent feedback. For DMPC 3, the main source

of the setpoint oscillations during tracking originated from small devi-

ations (≤1�C) in Tb from the target Tb,sp and had a substantial impact

on the real-time steam-to-carbon ratio calculations. A direct connec-

tion between the electrical heating tape of the bubbler and the DMPC

3 controller is suggested, as removing the secondary PD-controller

would likely decrease the order of the anodic bubbler dynamic

response.

Most importantly, the use of a decentralized predictive controller

to regulate the hydrogen purification rate in PMR systems is sup-

ported by the control results from scenarios S1 and S2 that show

smoother and more reliable control actions, enhancing the electro-

chemical performance of the protonic membrane. As a consequence,

the protonic membrane was pushed to higher current densities (0.69

A�cm�2) and achieved over 84% hydrogen recovery, compared to a

maximum of only 50.4% recovery for the classical control case. So,

while disturbances such as catalytic activity variation and bubbler

pressure oscillations decreased the settling times of the second and

third control loops of the DMPC architecture, more hydrogen can be

purified by using a predictive controller on the first feedback loop to

enhance the economic viability of the process. The computational reli-

ability of the optimization algorithms prevented ineffective or danger-

ous control action calculations in the real system and also satisfied all

computational performance control objectives. Furthermore, the com-

putational performance results signify that the validated dynamic

models are sufficiently predictive and yet computationally inexpensive

for real-time implementation of the control architecture.

7 | CONCLUSION

The experimental implementation of a decentralized model predictive

control architecture was carried out as a potential automation path-

way for protonic membrane reforming systems. Validated dynamic

models for steam and hydrogen generation, along with hydrogen puri-

fication, were fit to match the residence times, dead times, anodic gas

phase compositions, anodic energy distribution, and hydrogen purifi-

cation rates of the experimental process. A unique state observer

framework for a nonlinear disturbance observer provided robust state

estimation for all three predictive controllers for control scenarios S1

and S2 with different hydrogen purification rate settings. Judged

based on control robustness, stability, settling times, and economic

value, the study demonstrates that the additional complexity of using

model predictive control for the electric current and hydrogen separa-

tion variable pairing is justified and recommended. Additional variable

couplings related to product selectivity may also be considered in

future work. For example, changing the furnace temperature or the

system pressure directly changes the selectivity of carbon dioxide to

carbon monoxide, which further determines how much hydrogen can

be produced and the composition of the process by-product.

F IGURE 11 DMPC solution times per sampling step for all three
input-output variable pairings. (A) Optimizer solution times for control
scenario S1, (B) Optimizer solution times for control scenario S2.
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In conclusion, this work as a whole provides a proof of concept

for the first experimental implementation of three model predictive

controllers for membrane reformers or proton exchange membranes.

Chief among all findings is the observation of hydrogen recovery rates

exceeding 84% with the enhanced ability to set higher separation rate

setpoints when the PMR unit and potentiostat are protected by an

explicit constraint on the applied electric current. Thus, control engi-

neers may think to employ predictive control for hydrogen regulation

and perhaps use classical methods for hydrogen and steam generation

rates when developing control systems for protonic membrane

reforming systems.
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