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Predictive control of particle size distribution in particulate processes
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Abstract

In this work, we focus on the development and application of predictive-based strategies for control of particle size distribution (PSD)
in continuous and batch particulate processes described by population balance models (PBMs). The control algorithms are designed on
the basis of reduced-order models, utilize measurements of principle moments of the PSD, and are tailored to address different control
objectives for the continuous and batch processes. For continuous particulate processes, we develop a hybrid predictive control strategy
to stabilize a continuous crystallizer at an open-loop unstable steady-state. The hybrid predictive control strategy employs logic-based
switching between model predictive control (MPC) and a fall-back bounded controller with a well-defined stability region. The strategy
is shown to provide a safety net for the implementation of MPC algorithms with guaranteed stability closed-loop region. For batch
particulate processes, the control objective is to achieve a final PSD with desired characteristics subject to both manipulated input and
product quality constraints. An optimization-based predictive control strategy that incorporates these constraints explicitly in the controller
design is formulated and applied to a seeded batch crystallizer. The strategy is shown to be able to reduce the total volume of the fines
by 13.4% compared to a linear cooling strategy, and is shown to be robust with respect to modeling errors.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Particulate processes are prevalent in a number of process
industries including agricultural, chemical, food, minerals,
and pharmaceuticals. By some estimates, 60% of the prod-
ucts in the chemical industry are manufactured as particu-
lates with an additional 20% using powders as ingredients.
Examples of particulate processes include the crystalliza-
tion of proteins for pharmaceutical applications, the emul-
sion polymerization reactors for the production of latex, and
the titania powder aerosol reactors used in the production of
white pigments. One of the key attributes of particulate sys-
tems is the co-presence of a continuous phase and a dispersed
phase, which leads to the occurrence of physico-chemical
phenomena such as particle nucleation, growth, coagulation,
and breakage which are absent in homogeneous processes
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and lead to a distributed characterization of the physical
and chemical properties of the particulate product such as
particle size, shape, morphology, porosity and molecular
weight.
It is now well understood that the physico-chemical and

mechanical properties of materials made with particulates
are strongly dependent on the characteristics of the corre-
sponding particle size distribution (PSD). For example, a
nearly mono-disperse PSD is required for titania pigments
to obtain the maximum hiding power per unit mass. Also,
in coatings, the product’s composition, molecular weight
and PSDs often need to be maintained in specific ranges
to ensure the coating has a desired level of film formation,
film strength, and gloss. In all of these instances, the PSD
provides the critical link between the product quality in-
dices and the operating process variables; and, therefore, the
ability to effectively manipulate the PSD is essential for our
ability to control the end product quality in these processes.
In this light, the problem of synthesizing and implementing
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high-performance model-based feedback control systems on
particulate processes to achieve PSDs with desired charac-
teristics has significant industrial value.
The mathematical models of particulate processes are

typically obtained through the application of population,
material and energy balances and consist of systems of non-
linear partial integro-differential equations that describe the
evolution of the PSD, coupled with systems of nonlinear or-
dinary differential equations (ODEs) that describe the evo-
lution of the state variables of the continuous phase. There
is an extensive literature on population balance modeling,
numerical solution, and dynamical analysis of particulate
processes, see, for example,Pladis and Kiparissides (1998),
Mantzaris et al. (2001), Friedlander (1977), Gelbard and
Seinfeld (1978), Ramkrishna (1985), Hounslow (1990),
Kumar and Ramkrishna (1996), Jerauld et al. (1983),
Rawlings and Ray (1987), Randolph and Larson (1988);
see alsoChristofides (2002)for further details and ref-
erences. Early work on control of particulate processes
focused mainly on the understanding of fundamental
control-theoretic properties of PBMs (e.g.,Semino and
Ray, 1995a), and the application of conventional control
schemes to crystallizers and emulsion polymerization pro-
cesses (e.g.,Semino and Ray, 1995b; Rohani and Bourne,
1990; Dimitratos et al., 1994and the references therein).
More recently, the realization that PBMs—owing to their
infinite-dimensional nature—cannot be used directly for the
synthesis of practically implementable controllers, has mo-
tivated significant research work on the development of a
general order reduction procedure, based on combination of
the method of weighted residuals and approximate inertial
manifolds, which allows deriving low-order ODE approxi-
mations that capture the dominant dynamics of particulate
processes and can, therefore, serve as an appropriate basis
for the design of low-order controllers that can be read-
ily implemented in practice (Chiu and Christofides, 1999).
This approach subsequently laid the foundation for the de-
velopment of a systematic framework for solving a number
of important control problems for particulate processes,
including the problem of dealing with the highly nonlinear
behavior (e.g., owing to complex growth, nucleation, ag-
glomeration and breakage mechanisms, and the Arrhenius
dependence of nucleation laws on solute concentration in
crystallizers;Chiu and Christofides, 1999), the problem
of model uncertainty (Chiu and Christofides, 2000), and
the problem of control under actuator constraints (El-Farra
et al., 2001).
In the operation of particulate processes, constraints typ-

ically arise due to physical limitations on the capacity of
control actuators and/or desired restrictions on the process
state variables, such as temperature and certain properties of
the PSD (e.g., crystal concentration and total particle size),
in order to meet some safety or product quality require-
ments. In current industrial practice, the achievement of op-
timal performance, subject to input and state constraints,
relies to a large extent on the use of model predictive con-

trol (MPC) policies which are well known for their ability
to handle multi-variable interactions, constraints, and opti-
mization requirements, all in a consistent, systematic man-
ner. Unlike open-loop model-based optimal control policies
(where the optimal operating conditions are calculated off-
line), in MPC, the control action is computed by solving
repeatedly, on-line, a constrained optimization problem at
each sampling time. Owing to this, MPC has the ability
to suppress the influence of external disturbances and tol-
erate model inaccuracies (because of the use of feedback)
and force the system to follow the optimal trajectory that
respects constraints on the operating conditions.
In this work, we focus on the development and applica-

tion of predictive algorithms for control of PSDs in contin-
uous and batch particulate processes described by PBMs.
The control algorithms are designed on the basis of finite-
dimensional models that capture the dominant dynamics of
the particulate processes and are tailored to address different
control objectives for the batch and continuous processes.
The controllers utilize real-time measurements of the prin-
cipal moments of the PSD (such measurements, for exam-
ple, can be obtained from PSD measurements made by light
scattering techniques as in the case of crystallization pro-
cesses), as well as measurements of the process temperature
and of the concentrations of the continuous-phase species.
For continuous particulate processes, we consider the con-
trol objective of asymptotic stabilization under constraints
and develop a hybrid predictive control methodology that
employs logic-based switching between MPC and a fall-
back bounded controller with a well-defined stability region.
The hybrid predictive control strategy provides a safety net
for the implementation of MPC algorithms to particulate
processes with guaranteed stability regions. The strategy is
successfully used to stabilize a continuous crystallizer at an
open-loop unstable steady-state. For batch particulate pro-
cesses, the control objective is to achieve PSD with desired
characteristics subject to both control and product quality
constraints. An optimization-based predictive control strat-
egy that incorporates these constraints explicitly in the con-
troller design is formulated and applied to a seeded batch
crystallizer of potassium sulfate crystals. The strategy is
shown to be able to reduce the volume of fines by 13.4%
compared to a linear cooling strategy, and to possess a ro-
bustness margin with respect to modeling errors.

2. Predictive control of continuous particulate processes

2.1. A continuous crystallizer: modeling and dynamics

Crystallization is a particulate process which is widely
used in industry for the production of many products in-
cluding fertilizers, proteins, and pesticides. The fact that
the shape of the crystal-size distribution influences signifi-
cantly the necessary liquid–solid separation, as well as the
properties of the product, implies that crystallization requires
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a population balance in order to be accurately described,
analyzed, and controlled. Continuous crystallizers typically
exhibit highly oscillatory behavior which suggests the use
of feedback control to ensure stable operation and attain
a crystal-size distribution with desired characteristics. Un-
der the assumptions of isothermal operation, constant vol-
ume, mixed suspension, nucleation of crystals of infinitesi-
mal size, and mixed product removal, a dynamic model for
a continuous crystallizer can be derived from a population
balance for the particle phase and a mass balance for the
solute concentration of the following form (Lei et al., 1971;
Jerauld et al., 1983):

�n
�t̄

= −�(R(t̄)n)
�r

− n

�
+ �(r − 0)Q(t̄),

dc

dt̄
= (c0 − �)
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d�̄
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wheren(r, t̄) is the density of crystals of radiusr ∈ [0,∞)

at time t̄ in the suspension,� is the residence time,c is
the solute concentration in the crystallizer,c0 is the solute
concentration in the feed, and

�̄ = 1−
∫ ∞

0
n(r, t̄)

4

3
�r3 dr

is the volume of liquid per unit volume of suspension.R(t̄)

is the growth rate,�(r−0) is the standard Dirac function, and
Q(t̄) is the nucleation rate. The term�(r −0)Q(t̄) accounts
for the production of crystals of infinitesimal (zero) size via
nucleation.R(t̄) andQ(t̄) are assumed to follow McCabe’s
law and Volmer’s nucleation law, respectively:

R(t̄) = k1(c − cs),

Q(t̄) = �̄k2 exp


− k3(

c
cs

− 1
)2


 , (2)

wherek1, k2, andk3 are constants andcs is the concentration
of solute at saturation.
To study the dynamic behavior of the crystallizer in ques-

tion, a second-order accurate finite-difference spatial dis-
cretization scheme with 1000 discretization points was used
to obtain the solution of the system of Eqs. (1)–(2) (simu-
lations of the system using more discretization points led to
identical results). The values of the process parameters used
in the simulations can be found inChiu and Christofides
(1999).
The solid lines inFig. 1 show the open-loop profiles of

the total crystal concentration and the solute concentration
obtained by solving the distributed parameter model of Eqs.
(1)–(2). It is clear that the crystallizer exhibits highly oscil-
latory behavior, which is the result of the interplay between
growth and nucleation caused by the relative nonlinearity
of the nucleation rate as compared to the growth rate (com-
pare the nonlinear dependence ofQ(t̄) andR(t̄) on c in
Eq. (2)). To establish that the dynamics of the crystallizer are
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Fig. 1. Comparison of open-loop profiles of (a) crystal concentration and
(b) solute concentration obtained from the distributed parameter model
and the moments model.

characterized by a small number of degrees of freedom,
the method of moments is applied to the system of Eqs.
(1)–(2) to derive a reduced-order ODE model. Because the
nucleation and growth rates are assumed to be independent
of particle size, this allows closure of themoments equations,
which results in the reduced-order moments model being
an exact replication of the evolution of the dominant modes
of the PBM. The differences between the two trajectories
in Fig. 1 is only due to numerical errors in the integration
of two time-varying systems. It is noted that the method of
moments has been extensively used in the past to analyze the
dynamics of particulate processes (e.g.,Hulburt and Katz,
1964; Pratsinis, 1988).
Defining thej th moment ofn(r, t̄) as

�j =
∫ ∞

0
rjn(r, t̄)dr, j = 0, . . . , (3)

multiplying the population balance in Eq. (1) byrj , and
integrating over all particle sizes, the following system of
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infinite ODEs, which describes the rate of change of the mo-
ments of the PSD and the solute concentration, is obtained
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On the basis of the system of Eq. (4), it is clear that the
moments of order four and higher do not affect those of or-
der three and lower, and moreover, the state of the infinite-
dimensional system is bounded when�3 andc are bounded,
and it converges to a globally exponentially stable equilib-
rium point when limt→∞ �3= c1 and limt→∞ c= c2, where
c1, c2 are constants. This implies that the dominant dynam-
ics of the process of Eq. (1) can be adequately captured by
the fifth-order moments model which includes the dynamics
of the first four moments and those of the solute concentra-
tion. Furthermore, when the following set of dimensionless
variables and parameters is introduced:

x0 = 8��3�0, x1 = 8��2�1, x2 = 4���2,
x3 = 4

3��3, . . . ,
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�
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2
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,
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. (5)

The resulting moments model takes the form
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= −x0 + (1− x3)Da exp(−F/y2),

dx1
dt

= −x1 + yx0,

dx2
dt

= −x2 + yx1,
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1− x3
+ u

1− x3
, (6)

wherexi , i=0,1,2,3, are the dimensionless moments of the
crystal size distribution,y is the dimensionless concentration
of the solute in the crystallizer, andu is the dimensionless

concentration of the solute in the feed (the reader may refer
to El-Farra et al. (2001)for a detailed derivation of the mo-
ments model, and toChristofides (2002)for further results
and references in this area).
The stability properties of the fifth-order model of Eq. (6)

have been studied thoroughly inJerauld et al. (1983)(see
alsoLei et al., 1971), where it is shown that the global phase
space of this model has a unique unstable steady-state sur-
rounded by a stable periodic orbit, and that the linearization
of the system of Eq. (1) around the unstable steady-state in-
cludes two isolated complex conjugate eigenvalues with a
positive real part.

2.2. Hybrid predictive controller design

Having obtained a low-order ODE model that captures
the dominant dynamics of the continuous crystallizer, we
proceed in this section to address the controller synthesis
problem on the basis of the low-order model. The con-
trol objective is to stabilize the crystallizer at an unstable
steady-state (which corresponds to a desired PSD) using
constrained control action. MPC is a popular method for
handling constraints within an optimal control setting. In
MPC, the control action is obtained by solving repeatedly,
on-line, a finite-horizon constrained open-loop optimal con-
trol problem. When the system is linear, the cost quadratic,
and the constraints convex, the MPC optimization problem
reduces to a quadratic program for which efficient software
exists and, consequently, a number of control-relevant issues
have been explored, including issues of closed-loop stabil-
ity, performance, implementation and constraint satisfaction.
The crystallizer, however, exhibits highly nonlinear behav-
ior that must be accounted for when designing the controller.
While several nonlinear model predictive control (NMPC)
schemes have been proposed in the literature (seeMayne
et al. (2000)for a survey of results in this area), the practical
implementation of MPC is limited by (1) the computational
difficulties of solving a nonlinear (typically nonconvex) op-
timization problem at each time step, and (2) the difficulty
of characterizing, a priori, the set of initial conditions start-
ing from where a given NMPC controller is guaranteed to be
feasible and/or stabilize the closed-loop nonlinear system.
To overcome these difficulties, we have recently devel-

oped (El-Farra et al., 2004) a hybrid predictive control struc-
ture that provides a safety net for the implementation of
predictive control algorithms. The central idea is to use a
bounded analytical nonlinear controller, with an explicitly
characterized stability region, as a fall-back controller, and
embed the operation of MPC within its stability region. In
the event that the given predictive controller (which can be
based on linear or nonlinear models) is unable to stabilize
the closed-loop system (e.g., due to failure of the optimiza-
tion algorithm, poor choice of the initial condition, insuffi-
cient horizon length, etc.), supervisory switching from MPC
to the bounded controller safeguards closed-loop stability.
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In order to proceed with the hybrid predictive controller
design, we initially re-write the moments model of Eq. (6)
in a more compact form

˙̃x(t) = f (x̃(t)) + g(x̃(t))ũ(t), |ũ|�umax, (7)

wherex̃=[x̃0 x̃1 x̃2 x̃3 ỹ]′, x̃i=xi−xsi , i=0,1,2,3, ỹ=y−
ys , ũ=u−us ,umax�0 denotes the bound on themanipulated
input, the superscript atxsi refers to the unstable steady-
state at which we would like to asymptotically stabilize the
system.
In order to provide the necessary background for our

main results in Section 2.3, we will briefly review in the
remainder of this section the design procedure for, and
the stability properties of, both the bounded and model
predictive controllers, which constitute the basic compo-
nents of our hybrid control scheme. For clarity of presen-
tation, we will focus only on the state feedback problem
where measurements ofx(t) are assumed to be avail-
able for all t; the readers may refer toMhaskar et al.
(2004) for results on output feedback hybrid predictive
control.

2.2.1. Bounded Lyapunov-based control
Consider the system of Eq. (7), for which a control Lya-

punov function (CLF),V (x̃), is available, for more details
on the existence and construction of CLFs, seeFreeman
and Kokotovic (1996). Using the CLF, we construct, using
the results inLin and Sontag (1991), (see alsoEl-Farra and
Christofides, 2001, 2003), the following continuous bounded
control law:

u(x̃) = −k(x̃)LgV (x̃) := b(x̃), (8)

where

k(x̃) =




Lf V (x̃)+
√
(Lf V (x̃))

2+(umaxLgV (x̃))
4

(LgV (x̃))
2
[
1+

√
1+(umaxLgV (x̃))

2
] , LgV (x̃) �= 0,

0, LgV (x̃) = 0,
(9)

where Lf V (x̃) = (�V (x̃)/�x̃)f (x̃), and LgV (x̃) =
(�V (x̃)/�x̃)g(x̃). An estimate of the constrained stability
region of the above controller can be obtained using the
level sets ofV , i.e.,


 = {x̃ ∈ Rn : V (x̃)�cmax}, (10)

where cmax>0 is the largest number for which every
nonzero element of
 is fully contained in the set:

� = {x̃ ∈ Rn : Lf V (x̃)<umax|LgV (x̃)|}. (11)

2.2.2. Model predictive control
In this section, we consider MPC of the system under con-

trol constraints described by Eq. (7). In the literature, several

MPC formulations are currently available. For the sake
of a concrete illustration, we briefly describe here a stan-
dard formulation (we note that any other MPC formulation
can be used; seeEl-Farra et al. (2004)for further details
on this issue). For this case, the control action in MPC
at statex̃ and time t is conventionally obtained by solv-
ing, on-line, a finite horizon optimal control problem of
the form

P(x̃, t) : min{J (x̃, t, ũ(·))|ũ(·) ∈ S},
s.t. ˙̃x = f (x̃) + g(x̃)ũ, (12)

whereS = S(t, T ) is the family of piecewise continuous
functions, with period�, mapping[t, t +T ] intoU := {ũ ∈
R : |ũ|�umax} andT is the specified horizon. The constraint
in Eq. (12) is a nonlinear model describing the time evolution
of the states̃x. A control ũ(·) in S is characterized by the
sequence{ũ[k]} whereũ[k] := ũ(k�), and satisfies̃u(t) =
ũ[k] for all t ∈ [k�, (k + 1)�). The performance index is
given by

J (x̃, t, ũ(·)) =
∫ t+T

t

[
‖x̃u(s; x̃, t)‖2Q + ‖ũ(s)‖2R

]
ds

+ F(x̃(t + T )), (13)

where‖·‖Q refers to the weighted norm, defined by‖x̃‖2Q=
x̃′Qx̃ for all x̃ ∈ Rn, Q andR are strictly positive-definite,
symmetric matrices and̃xu(s; x̃, t) denotes the solution of
Eq. (7), due to control̃u, with initial statex̃ at time t and
F(·) denotes the terminal penalty. The minimizing control
ũ0(·) ∈ S is then applied to the plant over the intervalt, t+�
and the procedure is repeated indefinitely. This defines an
implicit MPC law

M(x̃) = argmin(J (x̃, t, ũ(·))) = ũ0(t; x̃, t). (14)

2.2.3. A hybrid predictive control strategy: switching logic
design
In this section, we describe a switching strategy that brings

together the MPC and bounded controllers in a way that
guarantees asymptotic closed-loop stability and provides a
safety net for the implementation of MPC. To this end, con-
sider the constrained nonlinear system of Eq. (7), with any
initial conditionx̃(0) ∈ 
, where
 was defined in Eq. (10),
under the model predictive controller of Eqs. (12)–(14).Also
let T̄ �0 be the earliest time for which either the closed-loop
state, under MPC, satisfies

Lf V (x̃(T̄ )) + LgV (x̃(T̄ ))M(x̃(T̄ ))�0 (15)

or the MPC algorithm fails to prescribe any control move.
Then, the switching rule given by

ũ(t) =
{
M(x̃(t)), 0� t < T̄ ,

b(x̃(t)), t� T̄
(16)
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Fig. 2. Closed-loop system under hybrid predictive control.

guarantees that the origin of the switched closed-loop system
of Eqs. (7)–(16) is asymptotically stable (seeEl-Farra et al.
(2004)for a detailed proof as well as possible extensions of
the switching scheme).
The hybrid predictive control structure consists of the pre-

dictive controller, the bounded nonlinear controller with its
estimated region of closed-loop stability, and a high-level
supervisor that orchestrates the switching between the two
controllers. A schematic representation of the hybrid predic-
tive control structure is shown inFig. 2. The implementation
procedure is outlined below:

(1) Consider the population balance model (PBM) of Eqs.
(1)–(2) and use the model reduction procedure, based on
the method of moments, to derive the finite-dimensional
ODE model of Eq. (6) that captures the dominant dy-
namics of the continuous crystallizer.

(2) Given the constraints on the manipulated input and an
appropriate CLF, design the bounded controller, on the
basis of the system of Eq. (6), using Eqs. (8)–(9), and
compute the stability region using Eqs. (10)–(11).

(3) Given the performance objective and constraints, con-
struct the MPC optimization algorithm, on the basis of
the system of Eq. (6), and choose the MPC parameters.

(4) Initialize the closed-loop system under MPC, with the
initial conditionx(0) belonging to the set
.

(5) Monitor the temporal evolution of the closed-loop tra-
jectory of x (by checking Eq. (15) at each time) and
denote the earliest time that either Eq. (15) holds or the
MPC algorithm prescribes no control move asT̄ .

(6) If such aT̄ exists, discontinue MPC implementation,
switch to the bounded controller and implement it for
all future times.

2.3. Application to control of PSD in a continuous
crystallizer

In this section, we demonstrate the application of the
hybrid predictive control strategy to the continuous crys-

tallizer of Eqs. (1)–(2). The control objective is to sup-
press the oscillatory behavior of the crystallizer and sta-
bilize it at an unstable steady-state that corresponds to a
desired PSD by manipulating the inlet solute concentra-
tion. To achieve this objective, we assume that the first
four moments, as well as the solute concentration, can be
measured on-line. Following the proposed methodology, we
initially use the moments model of Eq. (6) to design the
controllers. The values of the dimensionless model param-
eters in Eq. (6) are chosen to be:F = 3.0, 	 = 40.0 and
Da=200.0. The dimensionless solute feed concentration,u,
is subject to the constraints:−1�u�1 (which correspond
to the following constraint on the inlet solute concentration;
980 kg/m3�c0�1000 kg/m3). The desired steady-state is
xs =[

xs0 xs1 xs2 xs3 ys
]′ =[0.065 0.040 0.024 0.015 0.612]′,

andus = 0.2.
To facilitate the design of the bounded controller and

construction of the CLF, we initially re-write the moments
model of Eq. (6) in deviation variable form—thus translat-
ing the steady-state to the origin—to obtain the system of
Eq. (7) which we transform into the normal form. To this
end, we define the auxiliary output variable,ȳ = h(x)= x̃0,
and introduce the invertible coordinate transformation:
[
′ �′]′ =�(x)=[x̃0 f1(x̃) x̃1 x̃2 x̃3]′, where
=[
1 
2]′ =
[x̃0 f1(x̃)]′, ȳ=
1, f1(x̃)=−x̃0+(1− x̃3)Da exp(−F/ỹ2),
and� = [�1 �2 �3]′ = [x̃1 x̃2 x̃3]′. The state-space descrip-
tion of the system in the transformed coordinates takes
the form


̇ = A
 + bl(
, �) + b	(
, �)u,
�̇ = �(�, 
), (17)

whereA =
[
0 1
0 0

]
, b = [0 1]′, l(
, �) = L2

f h(�
−1(
, �)) is

the second-order Lie derivative of the scalar function,h(·),
along the vector fieldf (·), and	(
, �)=LgLf h(�−1(
, �))
is the mixed Lie derivative. The forms off (·) andg(·) can
be obtained by re-writing the system of Eq. (6) in the form
of Eq. (7), and are omitted for brevity.
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The partially-linear
-subsystem in Eq. (17) is used to
design a bounded controller that stabilizes the full intercon-
nected system of Eq. (17) and, consequently, the original
system of Eq. (6). For this purpose, a quadratic function of
the form,V
 =
′P
, is used as a CLF in the controller syn-
thesis formula of Eqs. (8)–(9), where the positive-definite
matrix, P, is chosen to satisfy the Riccati matrix equality:
A′P + PA − Pbb′P = −Q̄ whereQ̄ is a positive-definite
matrix. An estimate of the region of constrained closed-loop
stability for the full system is obtained by defining a com-
posite Lyapunov function of the formVc = V
 + V�, where
V� = �′P�� andP� is a positive-definite matrix, and choos-
ing a level set ofVc, 
c, for which V̇c <0 for all x in 
c.
The two-dimensional projections of the stability region are
shown inFig. 3 for all possible combinations of the system
states.
In designing the predictive controller, a linear MPC for-

mulation, with a terminal equality constraint of the form
x(t + T ) = 0, is chosen (based on the linearization of the
reduced order model of Eq. (6) around the unstable equi-
librium point). The parameters in the objective function of
Eq. (13) are taken to be:Q= qI , with q = 1,R = rI , with
r = 1.0, andF = 0. We also choose a horizon length of
T = 0.25 in implementing the predictive controller. The re-
sulting quadratic program is solved using the MATLAB sub-
routine QuadProg, and the full nonlinear closed-loop system
is integrated using finite-differences.
In the first set of simulation runs, we tested the ability of

the predictive controller to stabilize the crystallizer starting
from the initial condition,x(0)=[0.066 0.041 0.025 0.015
0.560]′. The result is shown by the solid lines inFig. 4(a)–(e)
where it is seen that the predictive controller, with a horizon
length ofT = 0.25, is able to stabilize the closed-loop sys-
tem at the desired equilibrium point. Starting from the initial
conditionx(0) = [0.033 0.020 0.013 0.0075 0.570]′, how-
ever, the predictive controller yields no feasible solution. If
the terminal equality constraint is removed, to make MPC
feasible, we see from the dashed lines inFig. 4(a)–(e) that
the resulting control action cannot stabilize the closed-loop
system, and leads to a stable limit cycle.Fig. 5 (a) shows
the resulting sustained oscillations in the PSD under MPC
without terminal constraints. On the other hand, when the
hybrid predictive controller is implemented, the supervi-
sor detects initial infeasibility of MPC and implements the
bounded controller in the closed loop. As the closed-loop
states evolve under the bounded controller and get closer to
the desired steady-state, the supervisor finds (att =5.8) that
the MPC becomes feasible and, therefore, implements it for
all future times. Note that despite the “jump” in the control
action profile as we switch from the bounded controller to
MPC att=5.8, (see the difference between dotted and dash-
dotted profiles inFig. 4(f)), the moments of the PSD in the
crystallizer continue to evolve smoothly (dash-dotted lines
in Fig. 4(a)–(e)). The supervisor finds that MPC continuous
to be feasible and is implemented in closed-loop to stabi-
lize the closed-loop system at the desired steady-state. The
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Fig. 3. Two-dimensional projections of the stability region for the 10
distinct combinations of the states of the reduced order system of Eq. (6).

dotted lines inFig. 4(a)–(e) shows the simulation results of
the closed-loop system under the bounded controller only.
Compared with the simulation results under the bounded
controller, the hybrid predictive controller (dash-dotted
lines) stabilizes the system much faster, and achieves
a better performance, reflected in a lower value of the
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Fig. 4. Continuous crystallizer example: closed-loop profiles of the dimensionless crystallizer moments (a)–(d), the solute concentration in the crystallizer
(e) and the manipulated input (f) under MPC with stability constraints (solid lines), under MPC without terminal constraints (dashed lines), under the
bounded controller (dotted lines), and using the hybrid predictive controller (dash-dotted lines).

performance index (0.1282 vs. 0.1308). The evolution of
PSD under the hybrid predictive controller, shown inFig.
5(b), illustrates clearly how the hybrid controller stabilizes
the PSD at the desired steady state. The manipulated input
profiles for the three scenarios are shown inFig. 4(f).

3. Predictive control of batch particulate processes

Batch crystallization differs from continuous crystalliza-
tion in that the withdrawal of product for the batch process
is made only once at the end of the batch run. It is com-
monly used in the chemical, pharmaceutical, photographic,
and many other industries as manufacturing process to pre-
pare a wide variety of crystalline products. Compared with
continuous particulate processes, batch particulate processes

have several desirable features (Wey and Karpinski, 2001).
For instance, in batch particulate processes, the equipment
is relatively simple and flexible, and requires a relatively
lower level of maintenance. Batch particulate processes are
particularly applicable to chemical systems difficult to pro-
cess, such as processes with toxic or highly viscous prop-
erties. Also, experiments on batch particulate processes can
be used to examine a large number of operational variables
in a short time. Systems that are difficult to operate continu-
ously may conveniently be investigated in a batch-wise man-
ner with relatively minimum development time and invest-
ment. For capacity requirements less than 500 kg/h, batch
particulate processes are usually more economically advan-
tageous. Furthermore, if the product requires a relatively
narrow PSD, a batch particulate process is clearly a better
choice.
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Fig. 5. Closed-loop profiles of the PSD: (a) under MPC without terminal
constraints; (b) under the hybrid predictivecontroller.

3.1. A seeded batch crystallizer: modeling and dynamics

As an example, we consider the seeded batch cooling
crystallizer studied inRawlings et al. (1993, 2001), which
produces crystals of potassium sulfate. The PBM of this
crystallizer, describes the evolution of the crystal size distri-
bution,n(r, t), under the joint effects of nucleation (B is the
crystal nucleation rate) and crystal growth (G is the crystal
growth rate). The evolution of the solute concentration,C,
and reactor temperature,T, are described by two ODEs. The
process model has the following form

�n(r, t)
�t

+ G(t)
�n(r, t)

�r
= 0, n(0, t) = B(t)

G(t)
,

dC

dt
= −3�kvG(t)�2(t),

dT

dt
= − UA

MCp

(T − Tj ) − �H
Cp

3�kvG(t)�2(t), (18)

where� is the density of crystals,kv is the volumetric shape
factor,U is the overall heat-transfer coefficient,A is the total
heat-transfer surface area,M is the mass of solvent in the
crystallizer,Cp is the heat capacity of the solution,Tj is the

Table 1
Parameter values for the seeded batch cooling crystallizer of Eqs. (18)–(19)

b = 1.45 g = 1.5
kb = 285.01/(s�m3) kg = 1.44× 108�m/s
Eb/R = 7517.0K Eg/R = 4859.0K
U = 1800 kJ/m2hK A = 0.25m2

�H = 44.5 kJ/kg Cp = 3.8 kJ/K kg
M = 27.0 kg � = 2.66× 10−12g/�m3

kv = 1.5 tf = 30 min

jacket temperature,�H is the heat of reaction, and

�2 =
∫ ∞

0
r2n(r, t)dr

is the second moment of the PSD. The nucleation rate,B(t),
and the growth rate,G(t), are given by

B(t) = kbe
−Eb/RT

(
C − Cs(T )

Cs(T )

)b

�3,

G(t) = kge
−Eg/RT

(
C − Cs(T )

Cs(T )

)g

, (19)

where Eb is the nucleation activation energy,Eg is the
growth activation energy,b andg are exponents relating nu-
cleation rate and growth rate to supersaturation,Cs is the sat-
uration concentration of the solute, and�3=

∫ ∞
0 r3n(r, t)dr

is the third moment of the PSD. The values of the process
parameters are given inTable 1. Eq. (20) below is used to
calculate the saturation and metastable concentrations cor-
responding to the solution temperatureT. These two con-
centrations represent the constraints on the solution concen-
tration, i.e.,Cs �C�Cm that must hold during the whole
batch run. The initial seed distribution of the seeded batch
crystallizer is assumed to be a parabolic distribution, from
250 to 300�m, and the maximum density of initial seed dis-
tribution, which is 2/�mg solvent, occurs at 275�m, i.e.,
n(r,0)=0.0032(300−r)(r−250), for 250�m�r�300�m,
andn(r,0) = 0, for r <250�m andr >300�m.

Cs(T ) = 6.29× 10−2 + 2.46× 10−3T − 7.14× 10−6T 2,

Cm(T ) = 7.76× 10−2 + 2.46× 10−3T − 8.10× 10−6T 2.

(20)

To study the dynamic behavior of the crystallizer, a second-
order accurate finite difference scheme with 1500 discretiza-
tion points is used to obtain the solution of the system of
Eq. (18).Fig. 6 shows the evolution of the reactor temper-
ature,T, the solution concentration,C, and the PSD under
a linear cooling strategy (where the jacket temperature,Tj ,
is cooled down linearly from 50 to 30◦C). FromFig. 6(b),
it is clear that there is a gap between the crystals formed
by nucleation and those growing from the seeds during the
whole reaction period. Based on this observation, we de-
veloped two moments models to simulate the dynamics of
the crystals formed by nucleation and the crystals growing
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Fig. 6. Simulation results for the linear cooling strategy: (a) reactor
temperature and concentration profiles (dashed and dotted lines represent
the upper and lower constraints on the concentration, respectively); (b)
the evolution of crystal size distribution.

from the seeds separately. The two models are given by Eqs.
(21) and (22), respectively. The mass and energy balances
in these two models are described by Eq. (23).

d�n0
dt

= B(t),

d�ni
dt

= iG(t)�ni−1(t), i = 1,2,3, (21)

�s0 = k4,
d�si
dt

= iG(t)�si−1(t), i = 1,2,3, (22)

dC

dt
= −3�kvG(t)

(
�n2(t) + �s2(t)

)
,

dT

dt
= − UA

MCp

(T − Tj ) − �H
Cp

3�kvG(t)(�n2(t) + �s2(t)),

(23)

where�ni and�si (i=0,1,2,3) are the first four moments of
the PSD of the crystals formed by nucleation and the crystals
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Fig. 7. Simulation results for the linear cooling strategy: the zeroth and
third moments of the PSD of the crystals formed by nucleation (dashed
lines) and the those growing from the seeds (solid lines).

growing from the seeds, respectively, and are defined by

�ni =
∫ rg

0
rin(r, t)dr,

�si =
∫ ∞

rg

rin(r, t)dr, i = 0,1,2,3. (24)

The superscript,n, stands for nucleation, ands stands for
seed.rg is the radius at the middle of the gap between two
groups of crystals. This characteristic radius is a function
of time, and can be determined only from the PBM. Since
the model does not consider crystal breakage or agglomera-
tion during the crystallization,�s0, which is the total number
of the crystals growing from the seeds, remains constantk4
during the crystallization period.Fig. 7 shows a compari-
son between�ni and�si , (i = 0,3), based on simulations of
the two moments models. The purpose of deriving two mo-
ments models instead of one is to facilitate the design of the
predictive controller for the PSD of each group of crystals
discussed in the next section.
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3.2. Predictive controller design: accounting for state and
input constraints

Unlike the control of continuous particulate processes,
asymptotic stabilization is not an issue in the control of batch
processes. More important is the objective of achieving a
desired PSD at the end of the batch and satisfying state and
control constraints during the whole batch run. Significant
previous work has focused on PSD control in the batch crys-
tallizers (e.g.,Rawlings et al., 1993; Xie et al., 2001). Mullin
and Nyvlt (1971)derived an open-loop optimal control strat-
egy where the objective function involves maximization of
the crystal size and the cooling curve is the decision variable.
Miller and Rawlings (1994)developed a method for assess-
ing parameter uncertainty and studied its effects on the open-
loop optimal control strategy, which maximized the weight
mean size of the product.Zhang and Rohani (2003)devel-
oped an on-line optimal control methodology for a seeded
batch cooling crystallizer to improve the product quality ex-
pressed in terms of the mean size and the width of the dis-
tribution. Immanuel and Doyle (2003)designed a hierarchi-
cal multiobjective strategy to control the PSD in semi-batch
emulsion polymerization. In these previous works, most ef-
forts were focused on the open-loop optimal control of the
batch crystallizer, i.e., the optimal operating condition was
calculated off-line and based on mathematical models. The
successful application of such a control strategy relies, to a
large extent, on the accuracy of the models.
In this section, we focus on developing a closed-loop pre-

dictive control system to minimize the total volume of fines
(i.e., small crystals formed by nucleation) in the final prod-
uct. In the operation of industrial crystallizers, the fines usu-
ally cause difficulties in downstream processing equipment
(e.g., filtration) and affect both product quality and process
economics. Such effects are especially important in a seeded
batch crystallizer, since its final products mainly grow from
the seeds rather than from the crystal formed by nucleation.
Excessive fines may also require a relatively long batch run
time to achieve the desired final size of the product. Some
experimental studies on fines destruction for batch crystal-
lizers have been reported.Jones et al. (1984)first described
the application of fines destruction in batch crystallization
of potassium sulfate solutions.Rohani et al. (1990)imple-
mented a feedback control fines dissolution strategy in order
to maintain the fines slurry density at some constant value
over the batch run. These studies demonstrate the experi-
mental feasibility of dramatically reducing the amount of
fines in the final product based on the reactor design.
In this work, a closed-loop predictive control scheme is

developed to control the seeded batch cooling crystallizer de-
scribed by Eq. (18). The control objective is to minimize the
volume of fines in the final product, (i.e., the third moment of
the crystals formed by nucleation,�n3), by manipulating the
jacket temperature,Tj . The principlemoments are calculated
from the on-line measured PSD,n, which can be obtained
by measurement techniques such as the laser light scatter-

ing method. The concentration and reactor temperature are
also assumed to be measured in real time. In the closed-loop
control structure, the PBM, together with the mass and en-
ergy balances of Eq. (18), are used to describe the process
while the reduced-order model of Eqs. (21)–(22) is used
within the MPC for the purpose of prediction. Therefore,
the PBM is utilized to simulate the value of the state vari-
ables (n,C, T ) at ti=i�t , wherei=1,2, . . . , m,m= tf /�t ,
and tf is the length of the crystallization period. Thus, the

values of the moments
(
�nj (ti),�

s
j (ti) , j = 0,1,2,3

)
are

calculated from the PSD at everyti , n(r, ti). The values of
�nj (ti),�

s
j (ti), C(ti), T (ti), and the optimal trajectory ofTj

solved at the previous time step, are used as the initial values
for the reduced-order model in MPC to solve an optimiza-
tion problem for a horizon length oftf − ti . The first step
of the solution (Tj ) is implemented to generate the value of
state variables at the end of next time step,ti+1. This proce-
dure is repeated every�t until the end of the batch run.
Manipulated input limitations and concentration specifi-

cations are incorporated as input and state constraints on the
optimization problem, which takes the form

min �n3(tf )
s.t. Tj,min�Tj �Tj,max,

Cs �C�Cm,∥∥∥∥dTjdt
∥∥∥∥ �k5,

�s3(tf )�V1,

(25)

where�n3, �s3, Tj andC are obtained by solving the mo-
ments models of Eqs. (21)–(22).Tj,min andTj,max are the
constraints on the manipulated variable,Tj , and set to 30
and 50◦C in the simulation.Cs andCm, which can be cal-
culated from Eq. (20), are the constraints on the solution
concentration. The constant,k5, (chosen to be 2◦C/min) is
the maximum gradient of the jacket temperature.V1, cho-
sen as 8.3301× 109 in the simulations, denotes the lower
bound on the total volume of the crystals growing from the
seeds. Such constraint on�s3(tf ) represents a desirable qual-
ity of the final product. In the simulation,�t andtf are cho-
sen as 30 s and 30min, respectively. The optimization prob-
lem is solved using the steepest descent method, which is a
gradient-based optimization method. Considering the high
dimensionality of the nonlinear optimization problem, fast
convergence is critical to real time implementation of the
predictive control policy. Furthermore, the optimization re-
sults based on the steepest descent method and SQP were
compared, and only a small difference was observed, while
the SQPmethod took a considerably longer time to converge
than the steepest descent method.

3.3. Closed-loop simulation results

To illustrate the effect of model accuracy on the ability
of the predictive controller to control the crystallizer, we
considered two different cases. In the first case, it is assumed
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Fig. 8. Closed-loop simulation results for matched models: (a) Jacket
temperature and concentration profiles (dashed and dotted lines represent
the upper and lower constraints on the concentration, respectively); (b)
the evolution of crystal size distribution.

that the same model parameters are used in the MPC model
(i.e., the moments model) and the processmodel (i.e., PBM).
In another case, a process–model mismatch is introduced by
changing the value of the parameterb, which is the exponent
relating nucleation rate to supersaturation, from its nominal
value of 1.45–1.35 in the moments model used in MPC. The
simulation results of these two cases were also compared
with the open-loop simulation results obtained under the
linear cooling strategy.
Fig. 8 shows the closed-loop simulation results for the

case of a perfect process–model match.Fig. 8(a) shows
the optimal trajectory of the jacket temperature and solu-
tion concentration whileFig. 8(b) shows the evolution of
the PSD. Clearly, the constraints on the jacket temperature
and concentration are respected during the evolution of the
closed-loop profiles. When a process–model mismatch is
considered, MPC is unable to satisfy the state and control
constraints unless the time step of the closed-loop control
system (the hold time in MPC implementation) is lowered
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Fig. 9. Closed-loop simulation results for mismatched models: (a) Jacket
temperature and concentration profiles (dashed and dotted lines represent
the upper and lower constraints on the concentration, respectively); (b)
the evolution of crystal size distribution.

from 30 to 15 s, indicating that tighter feedback control is
necessary in the case of imperfect model to avoid violation
of the constraints. The closed-loop simulation results for the
case of a process–model mismatch are shown inFig. 9. Com-
paringFigs. 8and9, it is clear that the predictive controller
produces a different manipulated input trajectory to enforce
constraint satisfaction when the model used in MPC design
does not perfectly match the process. It is also noticed that
the off-line computed optimal trajectory ofTj based on the
mismatched model fails to satisfy the constraints on the so-
lute concentration during the batch run. Such results indi-
cate that feedback control is necessary to guarantee that the
process operates within the constraints.
Table 2lists the value of�n3 and�s3 obtained under four

different control strategies: (1) Open-loop with linear cool-
ing, (2) MPCwith an objective to maximize�s3/�

n
3, (3) MPC

with the objective of Eq. (25) under a perfect process–model
match, and (4) MPC with the objective of Eq. (25) under a
process–model mismatch.Fig. 10compares the final crystal
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Table 2
Comparison between the simulation results under four different control strategies

Control strategy �n3 (�m2/g solvent) �s3 (�m2/g solvent)

Open-loop with linear cooling 8.9174× 108 8.3304× 109

MPC with objective to maximize�s3/�
n
3 1.7828× 109 1.0545× 1010

MPC with matched moments model 7.7209× 108 8.3301× 109

MPC with mismatched moments model 7.8655× 108 8.3301× 109
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Fig. 10. Comparison of the final crystal size distributions under four
different control strategies.

size distribution under these 4 different control strategies.
Comparing the results of control strategies (1), (3) and (4), it
is clear that MPC can lower the volume of fines (nucleation
formed crystals) by 13.4% compared with the linear cooling
strategy, while the crystals growing from the seeds in final
product still satisfy the product quality requirement. It is
also observed that, in the case of process–model mismatch,
the predictive control strategy (with a smaller time step) is
able to successfully control the system and lower the volume
of fines by 11.8% compared with the linear cooling strat-
egy. To demonstrate the effect of the choice of optimization
objective in the control strategy on the volume of fines, we
carried out simulations with the same control structure, but
with a different optimization objective which is to maximize
the ratio�s3/�

n
3. Comparing the results inTable 2, it is clear

that, when MPC with this objective is applied, even though
the volume of crystals growing from the seeds increases by
26.6% (relative to the linear cooling strategy) which is fa-
vorable to product quality, the volume of fines actually in-
creases dramatically by 129.2%. Such large difference on
the crystal size distribution of final products can be more
clearly seen inFig. 10. It shows that the control strategy (2)
leads to larger crystals formed by both nucleation and grown
from seeds compared to the other three control strategies,
which allow to produce less crystals formed by nucleation
while satisfying the minimum requirement of the volume

of the crystals grown from seeds. This result suggests that
maximizing the ratio�s3/�

n
3, while favoring product quality,

does so at the expense of a significant increase in the volume
of fines which is undesirable. In contrast, the optimization
problem of Eq. (25) provides amoremeaningful formulation
whereby the volume of fines is explicitly minimized, and the
product quality is accounted for as a constraint on the opti-
mization problem. This significant difference in the impact
on �s3 and �n3 between the two optimization formulations
suggests that the optimization objective should be selected
carefully, when attempting to achieve a desired PSD, in or-
der to strike a balance between enhancing product quality
and minimizing the difficulties caused by a large volume of
fines. Finally, to study the importance of incorporating mea-
surements in the control system, we carried out a simula-
tion of the predictive control system where the values of the
state variables at each time step are not updated using mea-
surements from the process, but instead, are updated using
the values generated by simulating the moments model with
b=1.35. In this case, the simulation results (not shown in the
manuscript due to space limitation) show that the state con-
straints are violated at the end of the open-loop simulation
run because of the discrepancy between the PBM and the
mismatched moments model, and the lack of measurement
feedback.

4. Conclusions

In this work, we focused on the development and appli-
cation of predictive algorithms for control of PSDs in con-
tinuous and batch particulate processes described by PBMs.
The control algorithms were designed on the basis of finite-
dimensional models that capture the dominant dynamics of
the particulate processes and were tailored to address dif-
ferent control objectives for the continuous and batch pro-
cesses. Closed-loop simulations have demonstrated the ef-
fectiveness of the proposed control algorithms.
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