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Abstract
This work focuses on the modelling, simulation and control of a batch
protein crystallization process that is used to produce the crystals of
tetragonal hen egg-white (HEW) lysozyme. First, a model is presented that
describes the formation of protein crystals via nucleation and growth.
Existing experimental data are used to develop empirical models of the
nucleation and growth mechanisms of the tetragonal HEW lysozyme crystal.
The developed growth and nucleation rate expressions are used within a
population balance model to simulate the batch crystallization process.
Then, model reduction techniques are used to derive a reduced-order
moments model for the purpose of controller design. Online measurements
of the solute concentration and reactor temperature are assumed to be
available, and a Luenberger-type observer is used to estimate the moments
of the crystal size distribution based on the available measurements. A
predictive controller, which uses the available state estimates, is designed to
achieve the objective of maximizing the volume-averaged crystal size while
respecting constraints on the manipulated input variables (which reflect
physical limitations of control actuators) and on the process state variables
(which reflect performance considerations). Simulation results demonstrate
that the proposed predictive controller is able to increase the
volume-averaged crystal size by 30% and 8.5% compared to constant
temperature control (CTC) and constant supersaturation control (CSC)
strategies, respectively, while reducing the number of fine crystals produced.
Furthermore, a comparison of the crystal size distributions (CSDs) indicates
that the product achieved by the proposed predictive control strategy has
larger total volume and lower polydispersity compared to the CTC and CSC
strategies. Finally, the robustness of the proposed method (achieved due to
the presence of feedback) with respect to plant-model mismatch is
demonstrated. The proposed method is demonstrated to successfully
achieve the task of maximizing the volume-averaged crystal size in the
presence of plant-model mismatch, and is found to be robust in comparison
to open-loop optimal control strategies.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Proteins play a vital role in most biological processes. In
addition to constructing large-scale biological structures, such

1 Author to whom any correspondence should be addressed.

as muscle fibres, smaller protein molecules can function
as antibodies, which help the immune system to destroy
invading substances like viruses and bacteria, and enzymes,
which can catalyse the synthesis of complex compounds, the
transformation of complex substances into simpler ones, or
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the generation of energy in organisms. A protein molecule
is a chain of amino acids that are linked by peptide bonds
formed by dehydration synthesis. Many pharmaceuticals act
by binding to and blocking an active site (the active site is a
region on the protein composed of some of the protein’s amino
acids which have a specific three-dimensional arrangement to
which a molecule can bind) of a protein [45]. The three-
dimensional arrangement of amino acids, especially, at the
active site, determines the specific biological function of the
protein molecule.

X-ray and neutron diffraction techniques are the only
available methods that can be used to obtain structural
information of proteins with molecular weight over 20 000.
To be able to study the structure of proteins using these
techniques, large protein crystals of high structural perfection,
typically with diameters of several hundred microns, are
needed. Extensive research studies, using model proteins, such
as ferritin, insulin, haemoglobin and lysozyme, that are able
to crystallize easily under normal operating conditions, have
focused on growing large protein crystals of high structural
perfection under various operating conditions, including
low gravity [4], different pressure conditions [37], flow
condition of the solution [41], purity [55], temperature [9]
and concentrations of precipitants and buffers [40, 28].
In addition, numerous research studies have considered
the problem of modelling of protein nucleation [17, 39]
and growth [12, 26, 16]. The reader may also refer
to [31, 48, 57, 54] for excellent reviews on this subject. Among
these model proteins, the tetragonal form of hen egg-white
(HEW) lysozyme is most popular and widely used [5]. HEW
lysozyme is composed of 129 amino acids, with a molecular
weight of 14 388. It is a naturally occurring enzyme, and has
antibacterial activity against gram-positive bacteria.

The experimental studies not only benefit the determina-
tion of the protein structure, but also provide, through an un-
derstanding of the nucleation and growth mechanisms of pro-
tein crystallization, a way of determining the operating con-
ditions necessary to achieve protein crystals of desired prop-
erties, which can often be expressed in the form of a desired
size distribution. In the pharmaceutical industry, the size dis-
tribution of the protein crystal is a very critical variable and in
many applications a predetermined, typically narrow, crystal
size distribution (CSD) is necessary in order to guarantee a
desired drug delivery performance.

Protein crystals intrinsically grow much more slowly
than most inorganic crystals at the same supersaturation [46].
This is probably one of the reasons why it has been widely
believed that implementation of advanced control algorithms
is not important for growing perfect crystals in protein
crystallization. However, experimental results show that
even in protein crystallization processes, certain growth
conditions lead to crystal defect formation (for example,
the structural defect density increases when the growth rate
is relatively high [35]), which necessitates appropriately
choosing and employing control to maintain the desired
operating conditions.

While numerous experimental studies of the nucleation
and growth mechanisms of protein crystallization have
been carried out, very few results on control of protein
crystallization are available [38, 53, 18, 49, 20]. The

feasibility and effectiveness of temperature control in protein
crystallization was discussed in [47], where a series of
preliminary experiments was conducted to demonstrate the
ability of temperature control to manipulate the supersaturation
in the protein crystallization. In [10], a method for control
of nucleation in small protein solutions was developed and
focused on control of a relatively smaller number of protein
crystals. In [56], an experiment system was developed to
control a crystallization cell, and focused on the development
of the control system, including the hardware and software for
measurement and communication, rather than on the control
algorithm. A constant supersaturation concentration (CSC)
control strategy, which can be readily implemented in practice,
was developed in [51] and [20] to achieve large protein
crystals, and was demonstrated to yield significant advantage
in increasing the crystal size compared to the case where, for
instance, the temperature in the crystallizer is held steady. For
processes where the product specification is better expressed
in the form of properties of the product size distribution, and
as constraints on the process state variables, it is important
to develop control strategies that account for these issues
in the controller design. Furthermore, it is important to
implement feedback control strategies (as opposed to open-
loop strategies, where a pre-computed manipulated input
profile is implemented for the entire duration of the batch),
to mitigate the undesirable effects of modelling errors and
external disturbances on the satisfaction of performance
considerations and constraints during the entire batch run.

Motivated by the above considerations, this work focuses
on the modelling, simulation and control of a batch protein
crystallization process that is used to produce the crystals of
tetragonal hen egg-white (HEW) lysozyme. First, a model
is presented that describes the formation of infinitesimal-size
protein crystals via nucleation and the subsequent growth of the
crystals via condensation, and predicts the temporal evolution
of the crystal size distribution in the size range of 0–300 µm.
To this end, existing experimental data are used to develop
empirical models of the nucleation and growth mechanisms
of the tetragonal HEW lysozyme crystal. The developed
growth and nucleation rate expressions are used within a
population balance model to simulate a batch crystallization
process that produces the tetragonal HEW lysozyme crystals.
Then, model reduction techniques are used to derive a reduced-
order moments model for the purpose of controller design.
Online measurements of the solute concentration and reactor
temperature are assumed to be available, and a Luenberger-
type observer is developed to estimate the moments of the
crystal size distribution based on the available measurements.
A predictive controller, that uses the available state estimates,
is designed to achieve the objective of maximizing the volume-
averaged crystal size while respecting constraints on the
manipulated input variables (which reflect physical limitations
of control actuators) and on the process state variables (which
reflect performance considerations).

2. Modelling of nucleation and growth rate of
tetragonal lysozyme crystal

The formation of a single crystal can be modelled as
comprising two sequential processes: crystal nucleation
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and growth. Experimental studies [12, 16, 17, 25, 39]
have considered various operating conditions and developed
empirical models for the nucleation and growth of the
tetragonal HEW lysozyme crystal. In the current study, we
focus on one operating condition (fixed buffer, pH value
and salt concentration; these values are selected based on
the availability of experimental results), and develop an
empirical model of the nucleation and growth mechanisms
by using the existing experimental results available for these
operating conditions. We note here that the development of the
model benefits immensely from the availability of extensive
experimental work on nucleation and growth of the tetragonal
HEW lysozyme crystal, and aims to aid the experimental
effort towards developing products with desired properties via
the development of easily implementable feedback control
strategies. In the remainder of this section, experimental
results on the solubility, nucleation and growth of the tetragonal
HEW lysozyme crystal are analysed and an empirical model
of the nucleation and growth mechanisms is developed.

2.1. Solubility of the tetragonal HEW lysozyme crystals

The main driving force for the crystal nucleation and growth
is understood to be supersaturation, i.e., the concentration
of the solution in excess of the saturation concentration
(solubility). The solubility of lysozyme at different pH and
precipitant concentrations has been studied by [3, 46, 50].
In [3], the solubility experiments covered a pH range from
4.0 to 5.4, NaCl concentration (weight/volume) range from
2.0% to 7.0% and temperature range from 4 to 25 ◦C. The
solubility of HEW lysozyme was also studied in [46], for pH
at 4.5, NaCl concentration at 2.1%, 2.5% and 3.0%, and a
temperature range from 11 to 30 ◦C. By implementing a more
accurate measurement technique (two-beam interferometry),
the solubility in a solution with pH of 4.5 and NaCl
concentration of 2.5% was measured in [50].

Since purer samples and more advanced measurement
techniques were used in [50], these solubility data, shown as
circles in figure 1, are considered to be more accurate and are
used to derive parameters of the empirical model in our work.
A third-order polynomial is used to fit the data, and the fitted
curve is shown as the solid curve in figure 1. Also shown
in figure 1 are the solubility data in [3, 46, 50] which exhibit
trends similar to the data set obtained in [50], with solubility
being low at low temperature and increasing significantly
with increasing temperature. The resulting expression for the
solubility, Cs(T ), is as follows:

Cs(T ) = 1.0036 × 10−3T 3 + 1.4059 × 10−2T 2

− 0.128 35T + 3.4613. (1)

2.2. Modelling of the nucleation rate of the tetragonal HEW
lysozyme crystals

For biological molecules, crystals are most often grown with
no seeding, where primary nucleation must precede crystal
growth. Thus, an understanding of the nucleation process and
the effect of various parameters on nucleation is essential for
successful production of protein crystals. Recently, significant
progress has been made in understanding the nucleation and
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Figure 1. Solubility data of tetragonal lysozyme crystal: dotted and
dashed lines show the data in [3], � show data in [46], ◦ show data
in [50], and the solid line show the empirical model of equation (1).

crystallization of globular proteins, including the formation of
compositional and structural crystal defects [48].

Insight into the interactions of protein macro-ions in
solution, obtained from light scattering, small-angle x-ray
scattering and osmotic pressure studies, shows that the
nucleation of globular proteins is governed by the same
principles as those of small molecules. In particular,
supersaturation, the difference between solute concentration
and solubility, is understood to be the main driving force for
both nucleation and growth of the protein crystals. Changes of
operating conditions, such as lowering temperature, increasing
salt concentration, pH or protein concentration, influence
nucleation [21] via influencing the solubility. Therefore, to
develop an empirical model, it is assumed that the homogenous
nucleation rate of the tetragonal HEW lysozyme crystal is
only a function of solute concentration and supersaturation.
The following two-parameter empirical expression is used as
an empirical model to describe the crystal nucleation rate
B(t) [17, 2]:

B(t) = kaC exp

(
− kb

σ 2

)
(2)

where σ , the supersaturation, is defined as σ = ln(C/Cs),
where C is the solute concentration and Cs is the solubility and
ka and kb are parameters that are obtained using experimental
results.

Different techniques, including light scattering [2],
temperature jump [17] and microcalorimetry [9], have been
implemented to measure the nucleation rate of the tetragonal
HEW lysozyme crystal. We initially use the measurements
of concentration and temperature to compute the solubility
according to equation (1) and the supersaturation. The
experimentally obtained values of the nucleation rate, and the
computed concentration and supersaturation values, are then
used to obtain the parameters ka and kb in equation (2). Both
sets of data yield the same values for ka = 1044.4 min−1 cm−3

and kb = 51.33 and a single straight line serves as the best fit
for both sets of data (see figure 2).
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Figure 2. Comparison of the experimental results on the nucleation
rate of tetragonal HEW lysozyme crystal: ◦ show the data in [17],
� show the data in [2], and the empirical model of equation (2) is
shown by the solid line.
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Figure 3. Structure of a tetragonal HEW lysozyme crystal.

2.3. Modelling of the growth rate of tetragonal HEW
lysozyme crystals

Figure 3 shows the structure of a tetragonal HEW lysozyme
crystal, which shows well-defined facets similar to inorganic
crystals. This observation indicates that growth occurs
via the spreading of layers from growth step sources such
as dislocations and 2D nuclei [11]. The microstructure
of the faces of protein crystals has been revealed by
implementing advanced measurement techniques, such as
electron microscopy and atomic force microscopy (AFM).
Experimental results have shown that the growth step
generation at screw dislocations outcrops and 2D nucleation
islands is the dominant growth mechanism in the growth of
tetragonal lysozyme crystals [11]. Experimental studies have
also shown that screw dislocations and 2D nucleation are the
rate-limiting steps for the growth of tetragonal HEW lysozyme
crystals [12, 11, 54]. Detailed spiral growth and 2D nucleation
theories have been developed [1]. Experiments in [55] also
showed the existence of a critical supersaturation, above which
the crystal growth is dominated by 2D nucleation. When
the supersaturation is higher than about 1.6, the increase in
the growth rate with increasing supersaturation is much faster
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NaCl: 5.0% pH: 4.6 T: 24 oC    Ref [12]

Figure 4. Comparison of the experimental results on the growth rate
of tetragonal HEW lysozyme crystal: � show the data in [40],
� show data in [12], and �� and ◦ show the data in [26].

than at low supersaturation. This is consistent with the results
in [12], which concludes that the growth rates at high and low
supersaturation are dominated by two different mechanisms.
The experimental results suggest that dislocations may be
involved in the lysozyme crystal growth at low supersaturation,
and 2D nucleation could be dominant at high supersaturation
which leads to equal growth rates on all crystal facets,
thereby leading to the formation of crystals with morphological
regularity. Furthermore, it was found that orthorhombic
lysozyme crystals, rather than tetragonal crystals, tend to
be formed at low supersaturation [16]. This suggests that
the supersaturation should be maintained within appropriate
bounds to obtain crystals of desired morphology.

Empirical and theoretical models of crystal growth mech-
anisms have been developed and compared to experimental
results [12, 28, 26]. These works studied the growth rate of
the tetragonal HEW lysozyme crystal under various operat-
ing conditions, such as different precipitation concentration,
solute concentration and temperature. All of them concluded
the power-law dependence of the growth rate on supersatura-
tion σ . Some experimental results of the studies of the growth
rate of the tetragonal HEW lysozyme crystal are shown in fig-
ure 4 [40, 12, 26]. The growth rate data corresponding to the
supersaturation are plotted on a log–log scale. It is clear that
the growth rate changes exponentially with the supersaturation,
and that the value of the exponents obtained from different ex-
periments are very close. In our work, we use the following
empirical model to describe the growth rate of the tetragonal
HEW lysozyme crystals as a function of supersaturation:

G(t) = kgσ
g (3)

where kg is the pre-exponential factor of the growth rate. Since
the composition of the solution considered in the present study
is the same as that in [26], the experimental data of [26], shown
as the circles in figure 4, are used to compute the values of kg

and g in equation (3); this yields kg = 3.1451×10−9 cm min−1

and g = 5.169.
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Table 1. Parameter values for the batch crystallizer model of
equations (3) and (4).

ka 1044.4 (min−1 cm−3) kg 3.1451 × 10−9 cm min−1

kb 51.33 g 5.169
kv 0.54 ρ 1.40 × 103 mg cm−3

U 1800 kJ m−2 h−1 K−1 A 0.25 m2

M 10 kg Cp 4.13 kJ K−1 kg−1

3. Modelling of a batch crystallizer for protein
crystallization

The mathematical models of particulate processes, including
the protein crystallization process in question, are typically
obtained through the application of population, material and
energy balances and consist of systems of nonlinear partial
integro-differential equations that describe the evolution of
the particle size distribution (PSD), coupled with systems
of nonlinear ordinary differential equations (ODEs) that
describe the evolution of the state variables of the continuous
phase. There is an extensive literature on population balance
modelling, numerical solution, and dynamical analysis of
particulate processes; see, for example, [42, 22–24]. See
also [8] for further details and references.

For the batch crystallizer considered in this work, a
population balance model can be used to describe the evolution
of the crystal size distribution (CSD), n(r, t). The evolution
of the solute concentration, C, and crystallizer temperature,
T , are described by two ODEs. The process model has the
following form:

∂n(r, t)

∂t
+ G(t)

∂n(r, t)

∂r
= 0, n(0, t) = B(t)

G(t)

dC

dt
= −24ρkvG(t)µ2(t)

dT

dt
= − U A

MCp
(T − Tj)

(4)

where G(t) is the growth rate, B(t) is the nucleation rate, ρ is
the density of crystals, kv is the volumetric shape factor, U is
the overall heat-transfer coefficient, A is the total heat-transfer
surface area, M is the mass of solvent in the crystallizer, Cp is
the heat capacity of the solution, Tj is the jacket temperature
and µ2 = ∫ ∞

0 r 2n(r, t) dr is the second moment of the CSD.
The nucleation rate, B(t), and the growth rate, G(t), are given
by equations (2) and (3), respectively, where the parameters
obtained from experimental results are used, and reported in
table 1. Note that because of the tetragonal form of the crystals
and the existence of about 46% of solvent in each crystal [27],
the volumetric shape factor, kv , is set equal to 0.54.

To simulate the population balance model (PBM) of
equation (4), a second-order accurate finite difference scheme
with sufficient (3000) discretization points is used (while
not shown here for the sake of brevity, it was verified that
simulations with higher number of discretization points yield
results that are almost indistinguishable from those obtained
using 3000 discretization points). Figure 5 shows the evolution
of the solute concentration (C), the supersaturation (σ ) and the
CSD at a constant crystallizer temperature (T = 15 ◦C).

4. Predictive control of the batch protein crystallizer

Early work on control of particulate processes focused
mainly on the understanding of fundamental control-theoretic
properties of PBMs and the application of conventional
control schemes to crystallizers and emulsion polymerization
processes; see, e.g., [44], and the references therein. More
recently, the realization that PBMs—owing to their infinite-
dimensional nature—cannot be used directly for the synthesis
of practically implementable model-based controllers, has
motivated significant research work on the development of
a general order reduction procedure, based on combination
of the method of weighted residuals and approximate
inertial manifolds, which allows deriving low-order ODE
approximations that capture the dominant dynamics of
particulate processes and can, therefore, serve as an appropriate
basis for the design of low-order controllers that can be
readily implemented in practice; see, for example, [6]. This
approach subsequently laid the foundation for the development
of a systematic framework for solving a number of important
control problems for particulate processes, including the
problem of dealing with the highly nonlinear behaviour, for
example, owing to complex growth, nucleation, agglomeration
and breakage mechanisms, and the Arrhenius dependence of
nucleation laws on solute concentration in crystallizers [6],
the problem of control under model uncertainty [7], and the
problem of control under actuator constraints [13].

The crystal size distribution or the moments of the
crystal size distribution are often not available as online
measurements. Solute concentration and temperature, on the
other hand, are more readily available as measurements and
can be used to generate estimates of the moments which are
required for implementation of feedback control strategies
based on the reduced-order moments model. Also, given the
availability of a reduced-order moments model and estimates
of the moments, desirable product characteristics need to be
appropriately expressed in terms of constraints on the crystal
size distribution, and physical limitations on the manipulated
variable (jacket temperature) must be accounted for in the
control design. In this work we focus on developing a control
strategy that is applicable to several crystallization processes,
and not on demonstrating it on a specific experimental setup.
Such an experimental implementation is outside the scope of
this work; yet practical issues such as fast computation of
control action, testing for robustness, availability of software
for implementation, and availability of measurements are
accounted for. To this end, in the remainder of this section
we first use model reduction techniques to develop a reduced-
order model suitable for the purpose of real-time control. Next,
we present the design of a state estimator, to provide estimates
of the states of the reduced-order model using available
measurements. Then we present a predictive controller design
that uses the state estimates for the purpose of real-time control,
while incorporating performance considerations as appropriate
constraints on the moments of the crystal size distribution
and accounting for the constraints on the manipulated input
variable.

4.1. Model reduction

Owning to the fact that the dominant dynamics of the
crystallizer are characterized by a small number of degrees of
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Figure 5. Open-loop simulation results of the solute concentration (C), the supersaturation (σ ) and the CSD at a constant crystallizer
temperature (T = 15 ◦C).

freedom [6], the method of moments [19] (see also [8, 52, 30])
is applied to the system of equation (4) to derive an approximate
ODE model. Defining the i th moment of n(r, t) as

µi =
∫ ∞

0
r i n(r, t) dr, i = 0, 1, . . . ,∞, (5)

multiplying the population balance in equation (4) by r i , and
integrating over all crystal sizes, the following infinite set of
ordinary differential equations, which describes the rate of
change of the moments of the crystal size distribution, solute
concentration and temperature, is obtained:

dµ0

dt
= B(t)

dµi

dt
= iG(t)µi−1(t), i = 1, 2, . . . ,∞

dC

dt
= −24ρkvG(t)µ2(t)

dT

dt
= − U A

MCp
(T − Tj).

(6)

Note that in equations (6), the ODEs describing the dynamics
of the first N moments, where N is any positive integer
greater than or equal to 3, the solute concentration and the
crystallizer temperature are independent of the moments of
order N + 1 and higher. This implies that a set of ODEs, which
include the first N moments and the evolution of the solute
concentration and crystallizer temperature, would provide an
accurate description of the evolution of the first N moments,
the solute concentration and the crystallizer temperature. In
this case, the nucleation and growth rates are independent of
crystal size, and this allows closure of the moment equations
(note that closure can still be achieved if the nucleation and
growth mechanism are dependent on certain moments of
the crystal size distribution). In cases where the moments
do not close, a finite set of ODEs describing the evolution
of the moments would provide an approximation that gets
increasingly accurate as the number of moments included in
the reduced-order model is increased.

As will be seen in section 4.3, the control objective will
require computation of µ3 and µ4, hence N is chosen as 4 and
the following reduced-order model is used for the purpose of
controller design:

dµ0

dt
= B(t)

dµi

dt
= iG(t)µi−1(t), i = 1, 2, 3, 4

dC

dt
= −24ρkvG(t)µ2(t)

dT

dt
= − U A

MCp
(T − Tj).

(7)

4.2. State estimator design

In this section, we present an observer design that uses
measurements of the solute concentration, C, and temperature
T and the reduced-order moments model, to generate estimates
of the moments. Note that building an observer for a
nonlinear system of the form of equation (7) with guaranteed
convergence properties is in general a difficult task. In
this work, an extended Luenberger-type observer is used to
estimate the values of the moments of the CSD and takes the
following form:

dµ̂0

dt
= B̂(t) + L0(Cm − Ĉ)

dµ̂i

dt
= iĜ(t)µ̂i−1(t) + Li (Cm − Ĉ), i = 1, . . . , 4

dĈ

dt
= −24ρkvĜ(t)µ̂2(t) + L5(Cm − Ĉ)

(8)
where Cm is the online measurement of the solute
concentration, B̂(t) and Ĝ(t) are the nucleation and growth
rates computed using the online measurement of T and values
of the estimates of µ̂i and Ĉ , and Li , i = 0, . . . , 5 are the
observer gains (these values were obtained via running open-
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Figure 6. Comparison between the true value and the estimates of C (the solute concentration) and µi , i = 0, 1, . . . , 4.

Table 2. Parameter values for the Luenberger-type observer of
equation (8).

L0 −0.4 L1 0.05
L2 0.001 L3 1.7 × 10−5

L4 3 × 10−7 L5 −0.1

loop simulations and comparing the evolution of the state with
the state estimates for different choices of stabilizing observer
gains), reported in table 2.

Figures 6(a)–(f) show a comparison between the evolution
of the solute concentration (solid line in figure 6(a)) and the
moments µi , i = 0, 1, . . . , 4 (solid lines in figures 6(b)–
(f)) and the estimates of the solute concentration C and the
moments, for the perfect model case (dotted lines), and for
two instances of plant-model mismatch, where the parameter
g in the moment model is 90% and 110% of its nominal
value, respectively (denoted by ◦ and ∗), under open-loop
simulations. In all instances, the effect of measurement
noise, often found in experimental readings, is simulated by
introducing a white noise with variance of 0.5 mg ml−1 in
the measurement of the solute concentration. Furthermore,
to evaluate the convergence of the estimates to the true state
values, the initial value of the estimated solute concentration,
Ĉ , is set to 40 mg ml−1, while the true value is 50 mg ml−1.

Note that for the batch crystallization considered in this
work, the initial values of the moments at the beginning of
the batch run are identically equal to zero, because there
are no crystals initially inside the crystallizer. In the case
of a perfect model, the state estimates converge quickly to
the true values, and in both cases of plant-model mismatch,
the observer generates satisfactory estimates of the states (see
figures 6(a)–(f)).

4.3. Predictive controller formulation

Significant previous work has focused on CSD control in batch
crystallizers, e.g., [43, 58]. In [36], an open-loop optimal
control strategy was derived, where the objective function
involves maximization of the crystal size, and the cooling curve
is the decision variable. In [34], a method was developed
for assessing parameter uncertainty and studying its effects
on the open-loop optimal control strategy, which maximized
the weight mean size of the product. An online optimal
control methodology was developed for a seeded batch cooling
crystallizer in [58, 59]. Most of these works focused on open-
loop optimal control of the batch crystallizer, i.e., the optimal
operating condition is calculated off-line and implemented
during the batch operation. The successful achievement of the
control objective in such a control strategy depends heavily
on the accuracy of the models, and disturbances affecting the
batch operation may easily drive the process off the desired
trajectory. The volume-averaged crystal size is an important
parameter that characterizes the crystal size distribution [59],
especially for pharmaceuticals. A larger volume-averaged
crystal size facilitates downstream processing of the crystals,
such as filtration. As mentioned previously, experimental
results show that low supersaturation leads to the cessation
of the crystal growth, while needle-like, instead of tetragonal
crystals, form if the supersaturation is too high, and this
necessitates maintaining the supersaturation (and similarly,
temperature) within an acceptable range. Constraints on the
jacket temperature reflect the physical limitations in supplying
the coolant at a prescribed temperature.

In the case of continuous operation of the crystallizers,
the overriding objective is often stabilization, and the presence
of constraints on the manipulated input variables limits the set
of initial conditions starting from where stabilization can be
achieved (this also motivates using predictive controllers in
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a way that allows for computing explicitly the set of initial
conditions starting from where stabilization can be achieved;
see, for example [15, 32, 33], for hybrid predictive control
designs for linear systems under state and output feedback
control, and for nonlinear systems subject to uncertainty,
respectively, and [14] for an application of the hybrid predictive
controllers to a continuous crystallization process example).
For batch processes, in contrast, the expression of performance
considerations in the form of appropriate constraints or in
the objective function, and achieving a desired product size
distribution, are more important issues. Based on these
considerations, we present in the remainder of this section a
predictive controller formulation where, at time ti , the control
trajectory is computed by solving an optimization problem of
the form

min −µ4(t f )

µ3(t f )

s.t.
dµ0

dt
= kaC exp

(
− kb

σ 2

)

dµi

dt
= ikgσ

gµi−1(t), i = 1, . . . , 4

dC

dt
= −24ρkvkgσ

gµ2(t)

dT

dt
= − U A

MCp
(T − Tj)

µi (ti ) = µ̂i (ti) C(ti ) = Ĉ(ti )

ti � t � t f Tmin � T � Tmax

Tj min � Tj � Tj max σmin � σ � σmax,∣∣∣∣dCs

dt

∣∣∣∣ � k1

(9)

n(0, t) � nfine, ∀t � t f /2 (10)

where Tmin and Tmax are the constraints on the crystallizer
temperature, T , and are specified as 4 and 22 ◦C, respectively.
Tj min and Tj max are the constraints on the manipulated
variable, Tj, and are specified as 3 and 22 ◦C, respectively.
The constraints on the supersaturation σ are σmin = 1.73
and σmax = 2.89. The constant, k1 (chosen to be
0.065 mg ml−1 min−1), specifies the maximum rate of change
of the saturation concentration Cs. nfine is the largest allowable
number of nuclei at any time instant during the second half of
the batch run, and is set to be 5 µm−1 ml−1. Previous work has
shown that the objective of maximizing the volume-averaged
crystal size can result in a large number of fines in the final
product [29]. The constraint of equation (10), by restricting the
number of nuclei formed at any time instant during the second
half of the batch run, limits the fines in the final product.

In the closed-loop control structure, the PBM, together
with the mass and energy balances of equation (4), is used to
simulate the batch crystallization process. Measurements of
the solute concentration and the crystallizer temperature are
assumed to be available, and are used by the Luenberger-type
observer of equation (8) to generate estimates of the moments.
These estimates are used as initial conditions of the states in
the moments model, which is used in the predictive controller

to compute the control trajectory. Specifically, the PBM is
utilized to simulate the value of the state variables (n, C, T )
at ti = i�t , where i = 1, 2, . . . , m, m = t f /�t , and t f is the
length of the crystallization period. The measurements of C
and T are used to compute estimates of µ̂j(ti ). These estimates
are used as initial values of the states in the reduced-order
moments model, and used within the optimization problem
over a horizon length of t f − ti to compute the optimal control
trajectory. The first step of the solution (Tj) is implemented in
the closed loop, and this procedure is repeated every �t until
the end of the batch run. In the simulations, �t and t f are
chosen as 5 min and 24 h, respectively. Equation (4), which
describes the evolution of the batch crystallizer, is solved by
a second-order accurate finite difference scheme with 3000
spatial discretization points and 7200 temporal discretization
points, and the optimization problem is solved using sequential
quadratic programming (SQP).

5. Closed-loop simulation results

We first demonstrate the effect of the unavailability of
measurements of the moments on the evolution of the closed-
loop system. To this end, we compare the following scenarios:

(1) state feedback control (i.e., the measurements of the
moments are available); the control trajectory initially
computed by the optimization problem is shown by
the dotted line, and the closed-loop control trajectory
under state feedback is shown by the dash–dotted line in
figure 7(a), and

(2) output feedback control; the control trajectory initially
computed by the optimization problem is shown by the
dashed line in figure 7(a), and the closed-loop control
trajectory under output feedback control is shown by the
solid line in figure 7(a) (the corresponding supersaturation
profiles are shown in figure 7(b)).

Note that in the case of state feedback control, the control
trajectory computed initially coincides with that under the
closed-loop implementation (the dotted and dash–dotted lines
overlap), since the tail of the control trajectory continues to
be the solution to the optimization problem at the successive
times. In the case of output feedback control, however, the
control trajectory is initially computed based on the available
(incorrect) estimates of the state variables, and leads to state
constraints violation if implemented for the entire duration
of the batch run (see dashed lines in figure 7(b), where the
supersaturation hits the lower constraint at t = 18.2 h).

Next, we compare the performance of the proposed
predictive controller to that of three other control strategies,
constant temperature control (CTC), constant supersaturation
control (CSC) and open-loop optimal control strategy. To
study the ability of the proposed predictive control strategy
to maximize the performance objective while avoiding the
formation of a large number of fines in the final product, the
predictive controller of equation (9) is implemented with the
additional constraint (equation (10)) on the fines in the final
product. Also, to evaluate the robustness of the proposed
method with respect to plant-model mismatch, we consider
a 10% error in the nominal value of the parameter g—which
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Figure 7. (a) Jacket temperature and (b) supersaturation profiles under (1) state feedback control: dotted (implementation of the initially
computed manipulated input trajectory) and dash–dotted (closed-loop state feedback control) lines, and (2) output feedback control; dashed
(implementation of the initially computed manipulated input trajectory) and solid (closed-loop output feedback control) lines.
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Figure 8. Comparison of the simulation results for (a) jacket temperature and (b) solute concentration under four different control strategies.

is the exponent relating growth rate to supersaturation—in the
moments model used in the predictive controller.

In figures 8 and 9, four important variables, the jacket
temperature, the solute concentration, the supersaturation, and
the volume distribution of the CSD (P(r)) at the end of the
batch run, are shown. The volume distribution of the CSD,
P(r), defined as

P(r) = r3n(r, t f )∫ ∞
0 r 3n(r, t f ) dr

(11)

where t f is the time at the end of the batch run, is an important
variable in determining the product characteristics. The two
horizontal lines at 1.73 and 2.89 in figure 9(a) are the lower and
upper constraints on the supersaturation. The evolution of the
CSD under different control strategies is shown in figure 10.

Figure 8(a) shows the comparison of the manipulated
variable trajectories, the jacket temperature Tj, for the five
scenarios. Note that while the trajectories of the jacket
temperature under CSC (dash–dotted line) and under the
predictive controller with a matched model (solid line) are

close, the slight difference causes the behaviour of the CSD
evolution under these two different control strategies to
be significantly different (shown in figures 10(a) and (e)),
indicating the necessity to implement control to achieve a
desired product quality.

Since the supersaturation σ is the main driving force
for the crystal nucleation and growth, the evolution of
supersaturation under various control strategies, shown in
figure 9(a), can be subsequently used to explain the behaviour
of the CSD evolution. Specifically, the solid line in
figure 9(a) shows that the predictive controller computes a
manipulated input trajectory that results in the supersaturation
first decreasing, then staying almost constant at a low level, and
finally increasing at the end of the batch run. In view of the fact
that the control objective is to maximize the volume-averaged
crystal size at the end of the batch run, i.e., to maximize the
volume of big crystals while minimizing the volume of small
crystals, the result can be understood as follows: after high
initial levels of supersaturation, which results in a number of
nuclei being formed, a drop in the supersaturation results in
the nucleation rate dropping more drastically than the growth
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Figure 9. Comparison of the simulation results for (a) supersaturation and (b) volume density under four different control strategies.
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Figure 10. Evolution of crystal size distribution under four different control strategies: (a) predictive control with matched model,
(b) predictive control with mismatched model, (c) predictive control with constraint on fines, (d) constant temperature control, (e) constant
supersaturation control.

rate (note that while the nucleation rate in equation (2) shows
exponential dependence on the supersaturation, the growth
rate in equation (3) exhibits a power-law dependence), and
favours growth of the initially formed crystals instead of the
formation of new crystals. Towards the end of the batch run,
it is advantageous to increase the growth rate (by increasing
the supersaturation) to maximize the size of the crystals in the
batch reactor, even at the cost of forming a small number of
new nuclei because the net result is a favourable increase in
the volume-averaged crystal size.

Note that, towards the end of the batch run, the solute
concentration has depleted due to the formation of crystals.
Supersaturation, however, is the solute concentration in excess
of the solubility, and it may be increased by decreasing the
solubility, which is a function of the reactor temperature.

Therefore, the desired increase in the supersaturation at the end
of the batch run is achieved by lowering the jacket temperature
(to lower the reactor temperature, which lowers the solubility,
and hence increases the supersaturation), until it hits the lower
constraint (4 ◦C) on the jacket temperature. Together with
reinforcing the notion that a timely drop in the supersaturation
during crystal growth can consistently produce larger crystals,
the proposed method provides a framework for deciding both
the time and amount of decrease in supersaturation (due to
the optimality properties of the proposed method) and also
accounting for process-model mismatch via feedback (because
of using an online control strategy). In other words, this
work does not provide a recipe (which naturally springs forth
the question of applicability to other proteins) but provides a
framework for computing the ‘optimal’ control strategy for the
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Table 3. Comparison between the simulation results under five different control strategies.

µ4/µ3 µ3 r10 r50 r90

Control strategy (µm) (×103) (µm) (µm) (µm) Span

Predictive control (matched) 218 5.589 143 239 253 0.463
Predictive control (mismatched) 201 6.459 167 208 226 0.284
Predictive control with constraint on fines 208 6.374 166 219 235 0.315
Open-loop CTC 168 3.186 123 175 201 0.445
Open-loop CSC 201 5.583 143 211 244 0.478

specific protein crystallizer under consideration. For different
proteins, the optimal control trajectories could be different
because of the different nucleation and growth mechanism,
but this would naturally result from the implementation of the
proposed method to the protein under consideration.

The closed-loop simulation results for the case of a
process-model mismatch are shown by the dashed line in
figures 8, 9 and 10(b). Comparing figures 10(a) and (b),
it is clear that through feedback, the predictive controller
‘corrects’ for plant-model mismatch and produces a different
manipulated input trajectory to enforce constraint satisfaction
and achieve the desired objective. Simulation results, shown
in figure 7, also demonstrate that if the off-line optimized
trajectory of jacket temperature, based on the mismatched
model, is implemented for the entire duration of the batch
run without using the measurements to update the control
trajectory, the state constraints are violated at the end of the
batch run. This observation underscores the fact that, while
the proposed approach provides valuable improvements in the
objective (that of maximizing the volume averaged crystal
size), the ability to enforce constraints is perhaps more valuable
in experimental setups, where the process-model mismatch
necessitates feedback (as opposed to the implementation of
open-loop optimal control strategies, such as CSC or CTC) to
ensure that the constraints are satisfied during the entire batch
run.

Note that predictive control without constraint on fines
can result in a product with a large number of fines (see
figure 10(a)), which is undesirable. The implementation of
the predictive controller with the constraint of equation (10),
designed to reduce the fines in the product, results in a product
with much fewer fines while still maximizing the volume-
averaged crystal size (see figure 10(c) and table 3).

Compared to predictive control, the crystal size
distribution evolves very differently under CTC and CSC.
Under CTC, where a constant reactor temperature is
maintained throughout the batch run, the control strategy
results in a constant solubility during the batch run, and the
depletion in the solute concentration is reflected in the decrease
of supersaturation, which eventually hits its lower constraint
(the dotted line in figure 9(a)). In contrast, under CSC, which
tries to maintain a constant value of the supersaturation during
the entire batch run, the reactor temperature is lowered during
the entire batch run (via the continued lowering of the jacket
temperature) to keep up with the falling concentration levels
(see the dash–dotted line in figures 8(a) and 9(a)). Under
CSC, therefore, the growth rate stays constant during the
batch run, since it is only dependent on the supersaturation.
The nucleation rate, which also depends directly on the
solute concentration itself, is lowered gradually because of

the depletion of the solute. Unlike the CSD evolution under
predictive control, in the case of CTC and CSC, a constant
number of new nuclei are continuously formed during the
whole batch run until the depletion of the solute, and this leads
to a relatively low volume-averaged crystal size compared to
the case of crystallizer operation under predictive control.

Table 3 summarizes the simulation results obtained under
the five different control strategies:

(1) Predictive control with a matched model.

(2) Predictive control with a mismatched model.

(3) Predictive control with constraint on fines.

(4) Open-loop operation under CTC, and

(5) Open-loop operation under CSC.

In table 3, six characteristic parameters of the product at the
end of the batch run are compared, including the value of the
volume-averaged crystal size (µ4/µ3), total volume (µ3), r10,
r50, r90 and the span. r10, r50 and r90 are the 10%, 50% and
90% volume fractions of the CSD, respectively, denoting the
percentage of crystals smaller than that size. The span, defined
as (r90 − r10)/r50, is an important characteristic of the CSD,
and is widely used in the pharmaceutical industry. A high
span value indicates a wide distribution in size and a high
polydispersity, which is undesirable.

Comparing the results of the five control strategies listed
in table 3, it is clear that the predictive controller increases
the volume-averaged crystal size by 30% compared to CTC,
and 8.5% compared to CSC. It is also observed that, in the
case of process-model mismatch (a 10% error of the exponent
relating growth rate to supersaturation), the predictive control
strategy is able to increase the volume-averaged crystal size
by 20% compared to CTC. Although the predictive controller
with a mismatched model results in a similar volume-averaged
crystal size compared to CSC, it leads to a much higher volume
of the product, 103% compared to CTC and 16% compared to
CSC. Note also that the CSD under predictive control has the
largest r10, r50 and r90. Figure 9(b) shows that the CSDs under
the proposed predictive controller with perfect model (solid
line), plant-model mismatch (dashed line) and constraint on
fines (solid line marked with circles) have lower polydispersity.
A lower span and much larger volume-averaged crystal size
are achieved under predictive control with constraint on fines
compared to the one under CTC and CSC, as shown in figure 10
and table 3. In summary, the implementation of the proposed
predictive controller increases the volume-averaged crystal
size, satisfies state and input constraints, and is found to be
robust with respect to plant-model mismatch.
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6. Conclusions

In this work, we considered the problem of modelling,
simulation and control of a batch protein crystallization
process that is used to produce the tetragonal HEW lysozyme
crystals. First, a population balance model, using empirically
obtained rate expressions, was developed to simulate the batch
crystallization process. Then, model reduction techniques
were used to derive a reduced-order moments model for
the purpose of controller design. Online measurements
of the solute concentration and reactor temperature were
assumed to be available, and a Luenberger-type observer
was used to estimate the moments of the crystal size. A
predictive controller, which uses these state estimates, was
designed to achieve the objective of maximizing the volume-
averaged crystal size while respecting constraints on the
manipulated input variables (which reflect physical limitations
of control actuators) and on the process state variables
(which reflect performance considerations). Simulation results
showed that the proposed predictive controller was able to
increase the volume-averaged crystal size by 30% and 8.5%
compared to constant temperature control (CTC) and constant
supersaturation control (CSC) strategies, respectively, while
reducing the number of fine crystals produced. Furthermore, a
comparison of the crystal size distributions (CSDs) indicated
that the product achieved by the proposed predictive control
strategy has larger total volume and lower polydispersity
compared to the CTC and CSC strategies. Finally, the
robustness of the proposed method with respect to plant-
model mismatch was evaluated. In contrast to open-loop
control strategies, which led to violation of constraints in the
presence of plant-model mismatch, the proposed method was
demonstrated to successfully achieve the task of maximizing
the volume-averaged crystal size while satisfying the state and
input constraints.
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