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Abstract

This article focuses on optimization problems arising in the context of transport-reaction processes which are governed by
nonlinear elliptic partial di!erential equations and proposes a computationally e$cient method for their solution. The central idea of
the method is to discretize the in"nite-dimensional optimization problem by utilizing the method of weighted residuals with empirical
eigenfunctions obtained by applying Karhunen}LoeH ve expansion to an appropriately constructed ensemble of solutions of the PDE
equality constraints for di!erent values of the design variables. This model reduction procedure leads to low-dimensional nonlinear
programs that represent accurate approximations of the original in"nite-dimensional nonlinear program, and whose solution can be
obtained with standard optimization algorithms. The key issues of construction of the ensemble used for the computation of the
empirical eigenfunctions and validity of the optimal solutions computed from the "nite-dimensional programs are addressed. The
proposed method is applied to two representative transport-reaction processes and is shown to be more e$cient compared to
conventional optimization approaches based on spatial discretization with the "nite-di!erence method. ( 2000 Elsevier Science
Ltd. All rights reserved.
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1. Introduction

Optimization problems arising in the context of trans-
port-reaction processes typically involve maximiza-
tion/minimization of a nonlinear functional (e.g., integral
of a nonlinear function over the domain of de"nition of
the process) subject to a "nite set of partial di!erential
equation (PDE) equality constraints and a "nite set
of spatially dependent inequality constraints. As an
example of such an optimization problem, consider the
maximization of the integral of the reaction rate of an
exothermic catalytic reaction over the surface of the
catalyst by choosing properly the temperature of the
cooling medium used to remove heat from the catalyst
and satisfying mass and energy balances for reactant
species and catalyst, respectively, and constraining the

catalyst and cooling medium temperatures to be lower
than certain values.

The conventional approach to solve optimization
problems with PDE constraints is to directly apply
standard spatial discretization techniques (e.g., "nite
di!erences, "nite elements) to transform the nonlinear
functional into a nonlinear function and the PDE
constraints into a large set of algebraic constraints.
Then, the resulting "nite-dimensional nonlinear pro-
gramming problem is solved by using standard methods
(see, for example, Vasantharajan, Viswanathan &
Biegler, 1990; Manousiouthakis & Sourlas, 1992;
Floudas & Panos, 1992; Biegler, Nocedal & Schmid,
1995). Unfortunately, even though this approach is
conceptually straightforward, it may require using
a very large number of discretization points/elements
in order to compute the optimal solution with the desired
accuracy, and thus, it may be computationally ex-
pensive. The reason for which this approach may
be computationally ine$cient is that a brute force dis-
cretization with "nite di!erences/elements does not
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account for the inherent characteristics of the PDE
equality constraints.

One approach to solve optimization problems with
PDE constraints, while accounting for the inherent
characteristics of the PDEs in the discretization process,
is to use Galerkin's method with the eigenfunctions of the
linear spatial di!erential operator as basis functions for
the discretization (Yu & Seinfeld, 1973). This approach is
motivated from the fact that the main feature of elliptic
PDEs is that the dominant structure of their solutions is
usually characterized by a "nite (typically small) number
of degrees of freedom (Teman, 1988) (for example, in the
case of systems with linear spatial di!erential operators
this follows from the fact that the eigenspectrum of the
spatial di!erential operator can be partitioned into
a "nite-dimensional slow one and an in"nite-dimensional
stable fast complement). Even though, this approach may
signi"cantly reduce the dimension of the optimization
problem which results from the spatial discretization
for few speci"c types of di!erential operators for which
the eigenfunction expansions converge quickly (note
that for general Sturm}Liouville operators such eigen-
function expansions converge very slowly), it cannot
be directly applied to problems that involve nonlinear
spatial di!erential operators (e.g., nonlinear dependence
of the di!usion coe$cient and thermal conductivity on
temperature). The reason is that the eigenvalue problems
of nonlinear spatial di!erential operators cannot be,
in general, solved analytically, and thus, it is di$cult
to a priori (i.e. without having any information about
the solution of the system) choose an optimal (in the
sense that will lead to an accurate approximation) basis
to expand the solution of the PDE system. An approx-
imate way to address this problem (Ray, 1981) is to
linearize the nonlinear spatial di!erential operator
around a steady state and address the optimization prob-
lem on the basis of the resulting quasi-linear system.
However, this approach is only valid in a small neighbor-
hood of the steady state where the linearization takes
place.

An alternative approach which is not based on lin-
earization is to utilize detailed "nite di!erence (element)
simulations of the PDE system to compute a set of
empirical eigenfunctions (dominant spatial patterns) of
the system through Karhunen}LoeH ve (K}L) expansion
(also known as proper orthogonal decomposition and
principal component analysis). The K}L expansion was
introduced by Lumley (see, for example, Lumley, 1981) as
a procedure for computation of coherent structures (em-
pirical eigenfunctions) in turbulent #ows from experi-
mental data of #uid #ow quantities. However, the
original formulation of K}L expansion was computa-
tionally intractable, especially for large data sets, until
Sirovich proposed the method of snapshots in 1987
(Sirovich, 1987a,b). The use of K}L expansion for com-
puting empirical eigenfunctions which are employed as

basis functions in Galerkin's method has been shown to
lead to the derivation of accurate nonlinear low-dimen-
sional approximations of several dissipative PDE sys-
tems arising in the modeling of di!usion-reaction
processes and #uid #ows (e.g., Park & Cho, 1996; Bangia,
Batcho, Kevrekidis & Karniadakis, 1997), as well as to
the synthesis of linear and nonlinear low-order control-
lers that can be readily implemented in practice (e.g.,
Shvartsman & Kevrekidis, 1998; Baker & Christo"des,
1999; Baker & Christo"des, 2000).

In the context of optimization of transport-reaction
processes, few papers have appeared in the literature that
utilize Galerkin's method with empirical eigenfunctions
obtained through K}L expansion as the means of solving
in"nite-dimensional nonlinear programs. A notable ex-
ception is the recent paper (Park & Lee, 1998) where an
ill-posed inverse heat convection problem was e$ciently
discretized by using Galerkin's method with empirical
eigenfunctions and solved through the conjugate gradi-
ent method. In another recent work (Esposito & Floudas,
1998), fundamental issues on global optimization of non-
linear programs that involve coupled di!erential (speci"-
cally, initial value ordinary di!erential equations) and
algebraic constraints were studied.

In this work, we propose a computationally e$cient
method for the solution of optimization problems in
transport-reaction processes described by nonlinear
elliptic PDEs. We initially construct an ensemble of
solutions of the PDE equality constraints for di!erent
values of the design variables, which is then used to
compute a set of empirical eigenfunctions for the optim-
ization problem by employing K}L expansion. The em-
pirical eigenfunctions are subsequently used as basis
functions in the method of weighted residuals employed
to transform the original in"nite-dimensional opti-
mization problem to a set of low-dimensional non-
linear programs. The "nite-dimensional programs
are iteratively solved by using successive quadratic pro-
gramming (SQP), until a solution that satis"es the
optimality conditions for the in"nite-dimensional pro-
gram is obtained. The key issues of construction of the
ensemble used for the computation of the empirical
eigenfunctions and validity of the optimal solution com-
puted from the "nite-dimensional programs are ad-
dressed. The proposed method is applied to two
representative transport-reaction processes: (a) it is
used to maximize the integral of the reaction rate over
the length of a catalytic rod, where an exothermic
reaction takes place and di!usive phenomena are domi-
nant, by selecting coolant temperature, and (b) it is used
to maximize the outlet concentration of the product
species in a packed-bed reactor, where an exothermic
reaction takes place and both di!usive and convective
phenomena are important, by selecting coolant temper-
ature. Comparisons with conventional approaches in-
volving the use of "nite di!erence schemes for spatial
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discretization illustrate the computational e$ciency of
the proposed method.

2. Preliminaries

2.1. Formulation of the optimization problem

We consider a system of nonlinear elliptic PDEs with
the following description:

0"A(x)#f (x, d) (1)

subject to the boundary conditions:

Cx#D
dx

dg
"R, on C, (2)

where x(z) denotes the vector of state variables whose
dimension is assumed to be n, z"[z

1
, z

2
, z

3
]3XLR3 is

the vector of spatial coordinates, X is the domain of
de"nition of the process and C its boundary. A(x) is an
elliptic, possibly nonlinear, spatial di!erential operator
which includes "rst- and second-order spatial derivatives,
f (x, d) is a nonlinear vector function, d3Rp is the vector of
design variables which are assumed to be constant, C,D
are constant matrices, dx/dgDC denotes the derivative in
the direction perpendicular to the boundary and R is
a constant vector. Throughout the paper, we will use the
inner product and norm in ¸

2
[X] (where ¸

2
[X] is the

space of square integrable functions which are de"ned in
X), which are de"ned, respectively, as

(/
1
,/

2
)"PX

/
1
(z)/

2
(z) dz, DD/

1
DD
2
"(/

1
,/

1
)1@2, (3)

where /
1
,/

2
are two elements of ¸

2
[X].

A typical optimization problem for the system of Eqs.
(1) and (2) can be formulated as follows:

min PX

G(x, d) dz

s.t

0"A(x)#f (x, d), (P) (4)

Cx#D
dx

dg
"R on C,

g(x, d))0,

where :XG(x, d) dz is the objective function and g(x, d) is
the vector of inequality constraints. Both G(x, d) and
g(x, d) are assumed to be continuous di!erentiable with
respect to their arguments.

The n-PDE equality constraints and the p inequality
constraints create a region (in an appropriate in"nite-
dimensional Hilbert space) for the variables x, termed the

feasible region, and the presence of n state variables x(z)
in (P) implies that we have p degrees of freedom for
optimization. In the remainder of this subsection, we
state the necessary and su$cient optimality conditions of
the in"nite-dimensional program (P) which will be used
to check the accuracy of the optimal solutions obtained
by solving various "nite-dimensional programs, and to
terminate the proposed optimization algorithm. To this
end, we form the following Lagrangian functional:

¸"PX

G(x, d) dz#jT(A(x)#f (x, d))#kTg(x, d), (5)

where the coe$cients jT, kT are the Kuhn}Tucker multi-
pliers. Denoting the optimal solutions as (xH(z), jH,
kH, dH), the necessary optimality conditions have the fol-
lowing form:

1. Linear dependence of the gradients of the objective
and constraint functions:

+¸(xH(z), jH, kH, dH)

"PX

+G(xH, dH) dz#jHT(+A(xH)

#+f (xH, dH))#kHT+g(xH, dH)

"0, ∀z3X. (6)

2. Feasibility of the nonlinear program (P):

+A(xH)#+f (xH, dH)"0 and

g(xH, dH))0, ∀z3X, (7)

3. Complementarity condition:

kHT+g(xH, dH)"0, ∀z3X. (8)

4. Nonnegativity of inequality constraint multipliers

kHT*0, ∀z3X. (9)

5. Constraint quali"cation: Linear independence of ac-
tive constraint gradients:

[+g
A
(xH, dH)D+A(xH)#+f (xH, dH)], ∀z3X, (10)

where g
A
(xH, dH) denotes the set of active constraints.

On the other hand, the following condition is su$cient
for optimality:

pT+
xx
¸(xH(z),jH,kH, dH)p'0,

(+A(xH)#+f (xH, dH))Tp"0, (11)

+g
A
(xH, dH)Tp"0,

where +
xx
¸(xH(z),jH,kH, dH) is the Hessian matrix of

the Lagrangian and p are the allowable (constrained)
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Fig. 1. Catalytic rod with "ve-point actuators. Actuator locations: 0.1l,
0.3l, 0.5l, 0.7l and 0.9l where l is the length of the rod.

directions for the optimization variables based on the
active constraints.

Remark 1. Referring to the nonlinear program (P) and
the corresponding optimality conditions, the following
remarks are in order: (a) we make no assumption of
convexity of the functions and the feasibility region,
and therefore, we focus on the computation of a local
optimum, (b) the optimality conditions 3 and 4 mean
that when an inequality constraint is inactive (i.e.,
g
i
(xH, dH)(0, ∀z3X) then the corresponding multi-

plier k
i
"0 (the constraint is ignored in the optimal-

ity conditions), while when an inequality constraint
is active (i.e., g

i
(xH, dH)"0, for some z3X), then k

i
*0,

(c) the second-order condition of Eq. (11), which guaran-
tees optimality, requires positive curvature of the
Lagrange function in the allowable (constrained)
directions, p, and (d) the methodology that will be
proposed in this work for computing the solution
of (P) can be readily generalized to nonlinear pro-
grams, that include coupled nonlinear elliptic PDEs and
nonlinear algebraic equality constraints, as well as ex-
plicit dependence of the functions G, f, g on the vector of
spatial coordinates, z, and have the following general
form:

min PX

G(x, z, d) dz

s.t.

0"A(x)#f (x, z, d)

(12)

Cx#D
dx

dg
"R on C,

R(x, z, d)"0,

g(x, z, d))0,

where R(x, z, d)"0 is a set of algebraic spatially depen-
dent equality constraints.

In the next subsection, we consider a representative
di!usion}reaction process example and formulate an op-
timization problem of the form of Eq. (4). This example
will be used through the paper to illustrate the various
theoretical concepts and evaluate the computational e$-
ciency of the proposed optimization method.

2.2. Illustrative example

We consider a catalytic rod where an elementary
exothermic reaction of the form APB takes place. The
temperature of the rod is adjusted by changing the tem-
perature at "ve points located symmetrically along

the length of the rod (see Fig. 1 for a schematic of the
process). Under standard modeling assumptions, the
steady-state pro"les of the concentration of species A and
temperature of the rod are given by the following two
ordinary di!erential equations:

D
d2C

A
dz6 2

"k
1
C

A
e(~E@RT)!h(C=

A
!C

A
),

(13)

K
d2¹

dz6 2
"*H

R
k
1
C

A
e(~E@RT)

!;A
5
+
j/1

d(z6 !z6
j
)¹

Jj
#b(z)¹=!¹B

subject to the Dirichlet boundary conditions

@ z6 "0, l C
A
(z)"C=

A
,

(14)

@ z6 "0, l ¹(z)"¹=,

where C
A

is the concentration of species A,¹ is the
rod temperature, D,K, l are the di!usivity, conduc-
tivity and length of the rod, respectively, k

1
, E, *H

R
are

the reaction rate constant, activation energy and en-
thalpy of reaction, respectively, C=

A
is the concentration

of A in the bulk, d( ) ) is the standard Dirac function,
z6
j

and ¹
Jj

are the location and temperature of the jth
point actuator, respectively, b(z) is a function which is
unity for all z6 3(0, l) except for the points z6

j
where

b(z)"0, ¹= is the temperature of the bulk, h and ; are
the mass and heat transfer coe$cients between the bulk
and the rod, respectively, and R is the universal gas
constant.

A typical optimization problem for this process is to
maximize the rate of production of species B through-
out the rod (i.e., maximize the rate of reaction of species
A) by adjusting the temperature of the "ve-point ac-
tuators, while constraining the rod temperature at
all positions and the temperatures of the point actuators
to be lower than certain maximum values. The reader
may refer to Bendersky and Christo"des (1999) for
the study of this problem with distributed actuation.
Mathematically, this optimization problem is formulated
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as follows:

max P
l

0

k
1
C

A
e(~E@RT)dz6 ,

s.t. D
d2C

A
dz6 2

"k
1
C

A
e(~E@RT)!h(C=

A
!C

A
),

K
d2¹

dz6 2
"*H

R
k
1
C

A
e(~E@RT)!;(¹

e
!¹),

¹
e
"

5
+
j/1

d(z6 !z6
j
)¹

Jj
#b(z)¹=,

at z6 "0, l; C
A
"C=

A
,

at z6 "0, l, ¹"¹=,

¹
.*/

)¹(z6 ))¹
.!9

, ∀z6 ,

¹
J.*/

)¹
Jj
)¹

J.!9
, ( j"1,2,5).

(15)

Using the following dimensionless variables,

x
1
"

C
A
!C=

A
C=

A

, x
2
"

¹!¹=

¹
.!9

, z"
z6
l
, a"

k
1
h

,

b"
E

R¹
.!9

, j
1
"

hl2

D
, u"

¹
e

¹
.!9

, u
j
"

¹
Jj

¹
.!9

,

c"
!*H

R
k
1
C=

A
¹

.!9
;

, j
2
"

;l2

K
, l"

¹=

¹
.!9

the following optimization problem, which is included in
the general class of problems of Eq. (4), is obtained:

minA!P
1

0

x
1
e(~b@x2`l)dzB

s.t.

d2x
1

dz2
"[a(x

1
#1)e(~b@x2`l)#x

1
]j

1
,

d2x
2

dz2
"[!c(x

1
#1)e(~b@x2`l)#x

2
#l!u]j

2
,

u(z)"
5
+
j/1

d(z!z
j
)u

j
#b(z)l,

at z"0,1, x
1
"0,

at z"0,1, x
2
"0,

x
1.*/

)x
1
(z))x

1.!9
, ∀z,

x
2.*/

)x
2
(z))x

2.!9
, ∀z,

u
.*/

)u
j
)u

.!9
, ( j"1,2,5).

2.3. Methodological framework for solution of optimization
problem

Owing to the presence of the nonlinear PDE equality
constraint of Eq. (1), the optimization problem (P) cannot
be solved directly, and a numerical spatial discretization
scheme should be employed to reduce the PDE system of
Eq. (1) into a set of algebraic equations. The standard
approach to address this problem is to utilize "nite di!er-
ences or "nite elements to perform the spatial discretiz-
ation, and then solve the resulting "nite-dimensional
nonlinear program using standard techniques. The main
disadvantage of this approach is that the number of
nonlinear algebraic constraints resulting from the spatial
discretization, which yields an acceptable approximation,
may be very large, thereby leading to a computationally
expensive optimization problem. To circumvent this
problem, we employ the following methodology for solv-
ing (P).

1. Initially, we form an ensemble of solutions of the PDE
system of Eq. (1) for di!erent values of the design
variables.

2. Then, we apply Karhunen}LoeH ve expansion to this
ensemble to derive a set of empirical eigenfunctions
(dominant spatial patterns that minimize the mean
square error over all ensemble elements).

3. These empirical eigenfunctions are then used as basis
functions within a model reduction framework based
on the method of weighted residuals to transform the
original in"nite-dimensional nonlinear program into
a low-dimensional nonlinear program.

4. Finally, various "nite-dimensional nonlinear pro-
grams are iteratively solved by using successive quad-
ratic programming (SQP) until a solution that satis"es
the optimality conditions for the in"nite dimensional
program (Eqs. (6)}(11)) is computed.

In the next three sections, we describe the computation of
empirical eigenfunctions via Karhunen}LoeH ve expan-
sion, the reduction on the order of (P) through the
method of weighted residuals with empirical eigenfunc-
tions, and the computation of the optimum through the
solution of the various "nite-dimensional programs via
successive quadratic programming.

3. Computation of empirical eigenfunctions via
Karhunen}LoeH ve expansion

The Karhunen}LoeH ve (K}L) expansion (also known as
proper orthogonal decomposition, method of empirical
eigenfunctions, and principal component analysis) is
a procedure used to compute an optimal (in a sense that
will become clear below) basis for a modal decom-
position of the PDE system of Eq. (1) from an appro-
priately constructed set of data of this system obtained by
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simulations. In this work, the ensemble of data is con-
structed by computing the solutions of the PDE system

0"A(x)#f (x, d),
(16)

Cx#D
dx

dg
"R on C

for di!erent values of d. Speci"cally, we construct a repre-
sentative ensemble by discretizing the interval in which
each design variable d

m
(m"1,2, p) is de"ned into

m
dm

(not necessarily equispaced) intervals and computing
one set of data for every possible combinations of the
discrete values of d

m
(see also Remark 3 below). Applica-

tion of K}L expansion to this ensemble of data provides
an orthogonal set of basis functions (known as empirical
eigenfunctions) for the representation of the ensemble, as
well as a measure of the relative contribution of each
basis function to the total energy (mean square #uctu-
ation) of the ensemble (empirical eigenvalues). A trun-
cated series representation of the ensemble data in terms
of the dominant basis functions has a smaller mean
square error than a representation by any other basis of
the same dimension (see Remark 4 below for a rigorous
statement of this point). Therefore, the K}L expansion
yields the most e$cient way for computing the basis
functions (corresponding to the largest empirical eigen-
values) capturing the dominant patterns of the ensemble.

For simplicity of the presentation, we describe the K}L
expansion in the context of the system of Eq. (1) with
n"1 and assume that there is available a su$ciently
large set of solutions of this system for di!erent values of
d, Mv6 iN, consisting of K sampled states, v6 i(z), (which are
typically called `snapshotsa). The reader may refer to
Fukunaga (1990) and Holmes, Lumley and Berkooz
(1996) for a detailed presentation and analysis of the K}L
expansion. We de"ne the ensemble average of snapshots
as Sv6 iT :"(1/K)+Ki/1

v6 i (z) (we note that non-uniform
sampling of the snapshots and weighted ensemble aver-
age can be also considered; see, for example, Graham and
Kevrekidis (1996)). Furthermore, the ensemble average of
snapshots Sv6 iT is subtracted out from the snapshots, i.e.

vi"v6 i!Sv6 iT (17)

so that only #uctuations are analyzed. The issue is how to
obtain the most typical or characteristic structure (in
a sense that will become clear below) /(z) among these
snapshots MviN. Mathematically, this problem can be
posed as the one of obtaining a function /(z) that maxi-
mizes the following objective function:

Max
S(/, vi)2T

(/,/)
,

s.t. (/,/)"1, /3¸2([X]). (18)

The constraint (/,/)"1 is imposed to ensure that the
function, /(z), computed as a solution of the above maxi-
mization problem, is unique. The Lagrangian functional
corresponding to this constrained optimization problem
is

M̧ "S(/, vi)2T!j((/,/)!1) (19)

and necessary conditions for extrema is that the func-
tional derivative vanishes for all variations /#dt3

¸2[X], where d is a real number

d M̧ (/#dt)

dd
(d"0)"0, (/,/)"1. (20)

Using the de"nitions of inner product and ensemble
average, d M̧ (/#dt)/dd at (d"0) can be computed as
follows:

d M̧ (/#dt)

dd
(d"0)

"

d

dd
[S(vi ,/#dt)(/#dt, vi )T

!j(/#dt,/#dt)]d/0

"2 Re[S(vi ,t)(/, vi)T!j(/,t)]

"TPX

t(z)vi(z) dzPX

/(z6 )vi(z6 ) dz6U!jPX

/(z6 )t(z6 ) dz6

"PXAGPX

Svi(z)vi(z6 )T/(z) dzH!j/(z6 )Bt(z6 ) dz6 . (21)

Since t(z6 ) is an arbitrary function, the necessary condi-
tions for optimality take the form

PX

Svi(z)vi(z6 )T/(z) dz"j/(z6 ), (/,/)"1. (22)

Introducing the two-point correlation function

K(z,z6 )"Svi (z)vi (z6 )T"
1

K

K
+

i/1

vi(z)vi (z6 ) (23)

and the linear operator

R :"PX

K(z,z6 ) dz6 (24)

the optimality condition of Eq. (22) reduces to the follow-
ing eigenvalue problem of the integral equation:

R/"j/NPX

K(z,z6 )/(z6 ) dz6 "j/(z). (25)

The computation of the solution of the above integral
eigenvalue problem is, in general, a very expensive com-
putational task. To circumvent this problem, Sirovich
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introduced in 1987 (Sirovich, 1987a,b) the method of
snapshots. The central idea of this technique is to assume
that the requisite eigenfunction, /(z), can be expressed as
a linear combination of the snapshots i.e.

/(z)"+
k

c
k
v
k
(z). (26)

Substituting the above expression for /(z) in Eq. (25), we
obtain the following eigenvalue problem:

PX

1

K

K
+

i/1

vi (z)vi (z6 )
K
+
k/1

c
k
v
k
(z6 ) dz6 "j

K
+
k/1

c
k
v
k
(z). (27)

De"ning the iK element

Bik :"
1

KPX

vi(z6 )vk (z6 ) dz6 (28)

the eigenvalue problem of Eq. (27) can be equivalently
written in the following matrix form

Bc"jc. (29)

The solution of the above eigenvalue problem (which can
be obtained by utilizing standard methods from matrix
theory) yields the eigenvectors c"[c

1 2 c
K
] which can

be used in Eq. (26) to construct the eigenfunction /(z).
From the structure of the matrix B, it follows that is
symmetric and positive semi-de"nite, and thus, its eigen-
values, ji , i"1,2, K, are real and non-negative. Fur-
thermore,

PX

/
i
(z)/

j
(z) dz"0, iOj. (30)

Remark 2. We note that the basis that we compute using
KL decomposition is independent of the functional that
we try to minimize. Therefore, the same basis can be used
to perform computationally e$cient optimizations with
respect to di!erent functionals associated with the same
underlying set of partial di!erential equations.

Remark 3. We note that the value of m
dm

should be
determined based on the e!ect of the design variable
d
p

on the solution of the system of Eq. (16) (if, for
example, the e!ect of the variable d

1
is larger than the

e!ect of the variable d
2
, then m

d1
should be larger than

m
d2

).

Remark 4. The optimality of the empirical eigenfunc-
tions obtained via K}L expansion can be explained as
follows. Consider a snapshot vi(z) of the ensemble of
snapshots, vi , and the set of empirical eigenfunctions
obtained by applying K}L expansion to vi , and let

vi(z)"
L
+
l/1

c
l
/

l
(z) (31)

be the decomposition of vi (z) with respect to this basis.
Assume that the eigenfunctions have been ordered so the
corresponding eigenvalues satisfy j

1
'j

2
'2'j

l`1
.

Then, it can be shown (Holmes et al., 1996) that if
Mt

1
,t

2
,2, tiN is some arbitrary set of orthonormal

basis functions in which we expand vi (z), then the follow-
ing result holds for any ¸:

L
+
l/1

S(/
l
, vi)2T"

L
+
l/1

j
l
*

L
+
l/1

S(t
l
, vi)2T. (32)

This implies that the projection on the subspace spanned
by the empirical eigenfunctions will on average contain
the most energy possible compared to all other linear
decompositions, for any number of modes ¸.

4. Computation of 5nite-dimensional nonlinear programs

In this section, the empirical eigenfunctions, /
k
(z),

will be used to derive well-de"ned low-order approxi-
mations of the in"nite-dimensional nonlinear program
(P) by using the method of weighted residuals. The
central idea of the method of weighted residuals (see
Finlayson (1980) for a comprehensive review of this
method) is to approximate the exact solution of x(z)
by an in"nite series of orthogonal basis functions
(that form a complete set) de"ned on X with constant
coe$cients, substitute the series expansion into Eq. (1) to
form the residual, and then force the residual to be
orthogonal to a complete set of weighted functions (i.e.,
the inner product of the residual with a complete set of
weighting functions in ¸

2
[X] is set equal to zero) to

compute a set of algebraic equations whose unknowns
are the constant coe$cients of the series expansion of the
solution.

In order to describe the application of the method of
weighted residuals to (P) and show that the resulting
"nite-dimensional nonlinear programs are well-posed (in
a sense made precise in Proposition 1 below), we assume,
for simplicity in the notation, that n"1 and expand the
solution x(z) in an in"nite series in terms of a complete set
of basis functions /

k
(z) as follows:

x(z)"
=
+
k/1

a
k
/

k
(z), (33)

where a
k

are constant coe$cients. We point out that
even though our approach uses basis functions, /

k
(z),

computed by K}L expansion from an appropriately
constructed ensemble of solutions of the elliptic PDE,
the results of this section are also applicable when any
other complete set of basis functions, de"ned in ¸

2
[X]

and satisfy the boundary conditions of Eq. (2), is em-
ployed in Eq. (33). Substituting the expansion of Eq. (33)
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into (P), we get

min PX

GA
=
+
k/1

a
k
/
k
(z), dBdz

s.t 0"AA
=
+
k/1

a
k
/
k
(z)B#fA

=
+
k/1

a
k
/
k
(z), dB,

gA
=
+
k/1

a
k
/
k
(z), dB)0.

(34)

Multiplying the PDE and the inequality constraints with
the weighting functions, tl(z), and integrating over the
entire spatial domain (i.e., taking inner product in ¸

2
[X]

with the weighting functions), the following in"nite-
dimensional nonlinear program is obtained:

min PX

GA
=
+
k/1

a
k
/
k
(z), dBdz

s.t 0"PX

tl (z)AA
=
+
k/1

a
k
/
k
(z)Bdz

#PX

tl (z) fA
=
+
k/1

a
k
/
k
(z), dBdz,

PX

tl(z)gA
=
+
k/1

a
k
/
k
(z), dBdz)0, l"1,2,R.

(35)

Truncating the series expansion of x(z) up to order N and
keeping the "rst N equations (i.e. l"1,2, N), the
in"nite-dimensional program of Eq. (35) reduces to the
following "nite-dimensional one:

min PX

GA
N
+
k/1

a
kN

/
k
(z), dBdz

s.t 0"PX

tl (z)AA
N
+
k/1

a
kN

/
k
(z)Bdz

#PX

tl (z) fA
N
+
k/1

a
kN

/
k
(z), dBdz,

PX

tl(z)gA
N
+
k/1

a
kN

/
k
(z), dBdz)0, l"1,2, N,

(36)

where a
kN

is the approximation of a
k

obtained by an
Nth-order truncation. From Eq. (36), it is clear that the
form of the algebraic equality and inequality depends on
the choice of the weighting functions, as well as on N. The
weighting functions determine the type of weighted resid-
ual method being used (see Remark 5 below).

Theorem 1 that follows establishes that the "nite-
dimensional nonlinear program of Eq. (36) is a well-
de"ned approximation of the in"nite-dimensional
program (P) in the sense that its optimal solution con-
verges to the optimal solution of (P) as NPR. This
results follows from the smoothness of the functions
G(x, d),A(x), f (x, d), g(x, d) and the completeness of the set
of basis functions, /

k
(z), and it is essential for computing

an accurate solution for (P) based on a low-dimensional
nonlinear program (see algorithm in the next section).
The reader may also refer to the recent works (Dennis,

ElAlem & Maciel, 1997; Alexandrov, Dennis, Lewis
& Torczon, 1998; Dennis, ElAlem & Williamson, 1999)
which present new approaches, based on the trust region
idea from nonlinear programming, for studying global
convergence of low-order approximate programs of
varying accuracy to high-order optimization problems.
The proof of the theorem is given in the appendix.

Theorem 1. Let JN
015

be the optimal solution of the xnite-
dimensional nonlinear program of Eq. (36) and let J

015
be

the optimal solution of (P). Then, under the assumption that
the functions G(x, d),A(x), f (x, d), g(x, d) are continuously
diwerentiable and the set of basis functions, /

k
(z) is com-

plete, the following result holds:

lim
N?=

JN
015

"J
015

. (37)

Remark 5. When the number of basis functions, /
k
(z),

required to obtain a good approximation (measured in
a desired norm) of the solution of the system of partial
di!erential equations (equality constraints), is small, then
the weighting functions are usually chosen to be identical
to the basis functions, in which case the method of
weighted residuals reduces to Galerkin's method.

Remark 6. As a practical implementation note, we point
out that even though it is theoretically expected that the
use of more basis functions in the series expansion of
Eq. (33) would improve the accuracy of the computed
approximate model of Eq. (36), the use of empirical
eigenfunctions corresponding to very small eigenvalues
should be avoided because such eigenfunctions are con-
taminated with signi"cant round-o! errors.

5. Computation of optimal solution

The objective of this section is to provide a computa-
tionally e$cient procedure for the computation of an
accurate optimal solution of the in"nite dimensional non-
linear program of Eq. (1). The central idea is to use
standard successive quadratic programming (SQP) algo-
rithms to solve various "nite-dimensional approximations
of (P) obtained through application of the method of
weighted residuals with empirical eigenfunctions until the
optimal solution is computed with the desired accuracy.
SQP is used for its simplicity and e$ciency in the context
of low-dimensional programs (it requires fewer function
evaluations than other methods, and it does not require
feasible points at intermediate iterations and converges to
optimal solution from an infeasible path). A brief descrip-
tion of the standard SQP algorithm is provided for com-
pleteness in Remark 7 below (see also Vasantharajan et al.
(1990), Floudas and Panos (1992) and Biegler et al. (1995)
for details and analysis of the algorithm). The validity of
the optimal solution computed by SQP is checked by
verifying the optimality conditions of Eqs. (6)}(11). We
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formulate the procedure used for the computation of the
optimal solution of the in"nite-dimensional program (P)
in the form of the following algorithm:

Step 1: Compute an initial guess for N based on the
importance of the eigenvalues corresponding to the em-
pirical eigenfunctions.

Step 2: Use the model reduction procedure of Section
4 to derive the corresponding "nite-dimensional program
of Eq. (36).

Step 3: Solve the resulting "nite-dimensional program
through SQP to compute an optimal solution.

Step 4: Use Eq. (33) with K"1,2,N to compute the
optimal solution corresponding to the in"nite-dimen-
sional program and examine if this solution satis"es the
optimality conditions of Eqs. (6)}(11).

Step 5: If the optimality conditions are satis"ed, then
stop. If not, then go back to Step 2 and perform model
reduction with N"N#1.

The structure of the above algorithm is motivated by
the fact that the discrepancy between the in"nite-dimen-
sional program (P) and its "nite-dimensional approxima-
tion of Eq. (36) decreases, as the number of basis
functions, N, used in the expansion of Eq. (33) increases
(at least, up to the point where round-o! errors are not
important). This is a consequence of the hierarchy of the
empirical eigenfunctions obtained from K}L expansion;
that is the "rst eigenfunction, /

1
, corresponds to the

largest eigenvalue, j
1
, and is the most typical structure

(in a sense made precise in Eq. (18)) of the members of the
snapshots, Mv6

k
N, while the second eigenfunction, /

2
, cor-

responds to the next largest eigenvalue, j
1
, and is the

next most typical structure, and so on. On the other
hand, the convergence of the above algorithm is a direct
consequence of the result of Theorem 1.

Remark 7. Utilizing a vector notation, the "nite-dimen-
sional program of Eq. (36) can be written in the following
compact form:

min F(x)

s.t h(x)"0,

g(x))0.

(38)

The computation of an optimal solution of the above
nonlinear program via SQP involves the iterative solu-
tion of the following quadratic problem which includes
linear equality constraints (Biegler, Grossman & Wester-
berg, 1997):

min (+F(xj)Tv#1
2
vTBjv),

s.t. h(xj)#+h(xj)Tv"0,

g(xj)#+g(xj)Tv)0,

(39)

where xj is the vector of variables for the jth iteration of
SQP, Bj is Hessian approximation with BFGS, and
v"*x. The solution of the quadratic program of Eq. (39)

can be readily done by using standard solvers (see Biegler
et al., (1997) for details).

Remark 8. We note that even though, for simplicity, we
chose to use SQP for solving the "nite-dimensional non-
linear programs obtained from the spatial discretization,
other local (e.g., reduced gradient, etc.) as well as global
optimization algorithms (e.g., Manousiouthakis & Sour-
las, 1992; Floudas & Panos, 1992) can be used to solve
the "nite-dimensional programs.

Remark 9. We note that an alternative approach to
perform reduction of the order of the in"nite-dimen-
sional program of Eq. (4) is to initially apply to this
program "nite di!erences/"nite elements to derive a very
high-order "nite-dimensional nonlinear program, and
then employ reduced-basis methods (Rheinboldt, 1993;
Rabier & Rheinboldt, 1995) or dual variable methods
(Hall, Porsching & Mesina, 1992; Chou & Porsching,
1998) to e$ciently solve the resulting approximate pro-
gram. Furthermore, modi"ed "nite-di!erence schemes
(based, for example, on Pade' approximants) have been
also used to e$ciently solve third- and fourth-order
boundary value problems (Al-Said, Noor & Rassias,
1998; Al-Said & Noor, 1998).

5.1. Illustrative example: catalytic rod

We now apply the proposed optimization method to
the catalytic rod example introduced in Section 2.2. The
values of the dimensionless parameters of the process
used in the calculations are a"2.0, b"0.3, c"0.5,
j
1
"1.0, j

2
"100.0 and l"0.8; the values of the con-

straints are x
1.*/

"!1.0, x
1.!9

"0, x
2.*/

"!0.5,
x
2.!9

"0.2, u
.*/

"0.5 and u
.!9

"2.0; and the locations
of the point actuators are: z

j
"0.1, 0.3, 0.5, 0.7, 0.9.

Since our objective is to test the computational e$-
ciency and accuracy of the proposed optimization
method, we initially solved the optimization problem
(PE) by directly applying a second-order accurate "nite
di!erence scheme to reduce it to a "nite-dimensional
problem. Speci"cally, we used 206 discretization points
to derive a "nite-dimensional program which includes
412 state and 5 design variables, 412 equality constraints
and 834 inequality constraints. We note that even though
the number of discretization points, 206, used to dis-
cretize the nonlinear program of Eq. (4) is very large
(owing to the poor convergence properties of the "nite-
di!erence scheme), the computation of an accurate (i.e.,
independent of the discretization) solution is critical for
the precise evaluation of the performance of the proposed
method. The adequacy of 206 discretization points to
yield an accurate solution is established in Fig. 2, where
the pro"les of the rod temperature and concentration
of species A for 206 and 412 discretization points are
compared and are shown to be almost identical. The
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Fig. 2. Comparison of rod temperature pro"les obtained from "nite di!erence method with 206 (dashed line) and 412 (solid line) discretization points.
Point actuator values: u

1
"2.0, u

2
"0.5, u

3
"0.7, u

4
"1.0 and u

5
"0.5.

"nite-dimensional nonlinear program obtained from the
discretization was solved by using SQP. The quadratic
problems in the SQP method were solved by using
MINOS (Biegler et al., 1997). The computation of the
optimal solution required 22 min and led to u

1
"2.0,

u
2
"1.654, u

3
"1.533, u

4
"1.654, u

5
"2.0, and

J
015

"0.6573 (note that, as expected, owing to the sym-
metry of the process with respect to the center of the rod
u
1
"u

5
and u

2
"u

4
).

We now use the proposed method to solve (PE). We
initially construct an ensemble of solutions (snapshots) of
the process model (equality constraints of (PE)) by taking
a snapshot for each design variable at 5 equally spaced
values between its maximum and minimum value; this
leads to 53"125 snapshots which give us 125 sets of
values for x

1
and x

2
. We apply Karhunen}LoeH ve expan-

sion to this set of snapshots to compute 4 empirical
eigenfunctions for concentration (/

1k
(z)) and 4 for tem-

perature (/
2k

(z)); they capture more than 99% of the
energy of the corresponding ensemble of snapshots, for
both cases. The "rst three concentration and temperature
empirical eigenfunctions are shown in Figs. 3 and 4,
respectively; both sets of eigenfunctions are orthogonal.
Expanding x

1
(z) and x

2
(z) as linear combinations of the

empirical eigenfunctions

x
1
(z)"

4
+
k/1

a
1k

/
1k

(z), x
2
(z)"

4
+
k/1

a
2k

/
2k

(z), (40)

where a
1k

and a
2k

are constant coe$cients, substituting
into the optimization problem and taking the inner prod-
uct of the PDE equality constraints with the empirical
eigenfunctions, we obtain

minA!P
1

0

eq
4
+
k/1

a
1k

/
1k

(z) dzB,

s.t.

0"P
1

0

A
1
(z)/

1k
(z) dz!a

1k
j
1P

1

0

/2
1k

(z) dz

!j
1
aP

1

0

Q(z)/
1k

(z) dz (k"1,2,4),

0"P
1

0

A
2
(z)/

2k
(z) dz!a

2k
j
2P

1

0

/2
2k

(z) dz

#j
2
cP

1

0

Q(z)/
2k

(z) dz

!0.5j
2P

1

0

/
2k

(z) dz#j
2P

1

0

u(z)/
2k

(z) dz

(k"1,2,4),

!1.0)
4
+
k/1

a
1k

/
1k

(z))0, ∀z

!0.5)
4
+
k/1

a
2k

/
2k

(z))0.2, ∀z

0.5)u
j
)2.0 ( j"1,2,5), (41)

where

A
1
(z)"

4
+
k/1
Aa1k

d2/
1k

(z)

dz2 B,
A

2
(z)"

4
+
k/1
Aa2k

d2/
2k

(z)

dz2 B,
(42)

Q(z)"A
4
+
k/1

a
1k

/
1k

(z)#1Beq,
q"

!b
+4

k/1
a
2k

/
2k

(z)#0.8
.
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Fig. 3. First three concentration empirical eigenfunctions * catalytic
rod.

Fig. 4. First three temperature empirical eigenfunctions* catalytic rod.

The above problem includes 8 state and 5 design vari-
ables, 8 equality constraints and 834 inequality con-
straints and was solved by SQP in 7.2 s. The results

are u
1
"2.0, u

2
"1.653, u

3
"1.533, u

4
"1.653 and

u
5
"2.0. Using these values in the detailed "nite di!er-

ence model, we obtained J
%.1

"0.6572. It is clear that
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Fig. 5. Optimal temperature (top plot), concentration (middle plot) and
reaction rate (bottom plot) pro"les * catalytic rod. Comparison be-
tween Galerkin (dashed line) and "nite-di!erence (solid line) models. Fig. 6. Packed-bed reactor with three distributed actuators.

the proposed approach yields an accurate solution to
(PE), while requiring a signi"cantly smaller computa-
tional time compared to the conventional approach (spa-
tial discretization with "nite di!erences). This drastic
reduction in CPU time is due to the fact that the dimen-
sionality of the model obtained by Galerkin's method
with empirical eigenfunctions is much smaller than that
of the model obtained by "nite di!erences. The optimal

rod temperature, concentration of A and reaction rate
pro"les obtained by using the two di!erent approaches
are given in Fig. 5. In both cases, the maximum temper-
ature constraints are satis"ed and the results are almost
identical.

Remark 10. We note that in the case of point actuation
which in#uences the system at z

0
, the function d(z!z

0
)

is assumed to have the "nite value 1/2k in the interval
[z

0
!k, z

0
#k] (where k is a small positive real number)

and be zero elsewhere in the domain of de"nition of z.

6. Application to a packed-bed reactor

We consider a non-isothermal packed-bed reactor,
where an elementary exothermic reaction of the form
APB takes place. Due to the exothermicity of the reac-
tion, a jacket with three independent cooling zones is
used around the reactor to remove heat (see Fig. 6 for
a schematic of the process). Under standard modeling
assumptions, a steady-state model of the process ex-
pressed in dimensionless variables takes the form in Ray
(1981).

0"!o
f
c
pf

v
L¹
Lz6

#k
L2¹
Lz6 2

#(!*H)k
0

exp~E@RTC
A

#;
T
(¹

w
!¹), (43)

0"!v
LC

A
Lz6

#D
L2C

A
Lz6 2

!k
0

exp~E@RTC
A

subject to the boundary conditions

z6 "0, o
f
c
pf

v(¹!¹
f
)"k

L¹
Lz6

,

v(C
A
!C

AF
)"D

LC
A

Lz6
, (44)

z6 "l,
L¹
Lz6

"

LC
A

Lz6
"0,

where ¹,C
A

denote the temperature and concentration
in the reactor, o

f
, c

pf
, v denote the density, heat capacity

and velocity of the #uid, k, D denote the conductivity and
di!usivity coe$cients, k

0
, E,*H denote the pre-exponen-

tial factor, the activation energy and the heat of the
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reaction, ;
T

denotes the heat-transfer coe$cient be-
tween the wall and the bulk of the reactor, l denotes the
length of the reactor, ¹

w
denotes the wall temperature,

and C
AF

,¹
f

denote some reference values for concentra-
tion and temperature.

The optimization problem is to maximize the rate of
production of species B by choosing the temperature of
the three independent cooling zones. The reactor temper-
ature and the temperatures of the cooling zones at all
positions are required to be lower than certain maximum
values. We note that the even though ¹

w
cannot be

adjusted directly in practice, but indirectly through ad-
justment of the jacket inlet #ow rate, the computation of
the value of the jacket inlet #ow rate which yields the
optimal ¹

w
can be easily done by utilizing a steady-state

energy balance (which is an algebraic equation) for the
jacket. Mathematically, this optimization problem is for-
mulated as follows:

minC
A
(l),

s.t.

0"!v
LC

A
Lz6

#D
L2C

A
Lz6 2

!k
0

exp~E@RTC
A
,

0"!o
f
c
pf

v
L¹
Lz6

#k
L2¹

Lz6 2

#(!*H)k
0

exp~E@RTC
A
#;

T
(¹

w
!¹),

(45)

¹
J
"

5
+
j/1

[H(z6
j
!z6

j~1
)!H(z6

j`1
!z6

j
)]¹

Jj
,

at z6 "0, o
f
c
pf

v(¹!¹
f
)"k

L¹
Lz6

,

v(C
A
!C

AF
)"D

LC
A

Lz6
,

at z6 "l,
L¹
Lz6

"

LC
A

Lz6
"0,

¹
.*/

)¹(z6 ))¹
.!9

, ∀z6 ,

¹
J.*/

)¹
Jj
)¹

J.!9
( j"1,2,3),

where H( ) ) is the standard Heaviside function.
To facilitate our development, we will use the dimen-

sionless variables

z"
z6
l
, Pe

T
"

o
f
c
pf

vl

k
, Pe

C
"

vl

D
,

c"
E

R¹
0

, b
T
"

;
T
l

o
f
c
pf

v
, B

C
"

lk
0

exp~c
v

,

(46)

B
T
"

(!*H)C
Af

lk
0

exp~c
o
f
c
pf

¹
f
v

,

x
2
"

¹!¹
f

¹
f

, x
1
"

C
A
!C

AF
C

AF

, u"
¹

w
!¹

ws
¹

f

,

where ¹
ws

denotes some steady-state pro"le for the wall
temperature, to put the above optimization problem into
the following dimensionless form:

minx
1
(1)

s.t.

0"!

Lx
2

Lz
#

1

Pe
T

L2x
2

Lz2
#B

T
B
C

expcx2 @1`x2x
1

#b
T
(u!x

2
),

0"!

Lx
1

Lz
#

1

Pe
C

L2x
1

Lz2
!B

C
expcx2@1`x2x

1
,

(PE2)

u(z)"
5
+
j/1

[H(z
j
!z

j~1
)!H(z

j`1
!z

j
)]u

j
,

at z"0, Pe
T
x
2
"

Lx
2

Lz
, Pe

C
x
1
"

Lx
1

Lz
,

at z"1,
Lx

2
Lz

"

Lx
1

Lz
"0,

x
1.*/

)x
1
(z))x

1.!9
, ∀z,

x
2.*/

)x
2
(z))x

2.!9
, ∀z,

u
.*/

)u
j
)u

.!9
(j"1,2,3).

The values of the dimensionless constants were chosen
as B

T
"1.6, B

C
"0.1, Pe

T
"Pe

C
"7.0, b

T
"2.0,

and c"10.0, while the values of the constraints were
chosen as x

1.*/
"!1.0, x

1.!9
"0.0, x

2.*/
"!1.0,

x
2.!9

"0.8, u
.*/

"0.0 and u
.!9

"0.4.
Following the same approach as in the catalytic rod

example, we initially solve the optimization problem
(PE2) by directly applying a second-order accurate
"nite-di!erence scheme to reduce it to a "nite-dimen-
sional problem, which we then solve using SQP. The
quadratic problems in the SQP method were solved by
using MINOS. Speci"cally, we used 102 discretization
points to derive a "nite-dimensional program which in-
cludes 204 state and 3 design variables, 204 equality
constraints and 414 inequality constraints. We veri"ed
that further increase in the number of discretization
points leads to negligible improvements in the accuracy
of the results. The solution to this problem required
2 min 5 s and led to u

1
"0.2062, u

2
"0.0783, u

3
"0.40,

and J
015

"!0.9772.
We now use the proposed method to solve (PE2). We

initially construct an ensemble of solutions (snapshots) of
the process model (equality constraints of (PE2)) by tak-
ing a snapshot for each design variable at 9 equally
spaced values between its maximum and minimum value;
this leads to 93"729 snapshots which give us 729 sets of
values for x

1
and x

2
. We apply Karhunen}LoeH ve expan-

sion to this set of snapshots to compute 10 empirical
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Fig. 7. First three concentration empirical eigenfunctions * packed-
bed reactor.

eigenfunctions for concentration (/
1k

(z)) and 10 for tem-
perature (/

2k
(z)). The "rst three concentration and

temperature empirical eigenfunctions are shown in
Figs. 7 and 8, respectively. Both sets of eigenfunctions are
orthogonal. Expanding x

1
(z) and x

2
(z) as linear combi-

nations of the empirical eigenfunctions

x
1
(z)"

10
+
k/1

a
1k

/
1k

(z), x
2
(z)"

10
+
k/1

a
2k

/
2k

(z), (47)

where a
1k

and a
2k

are constant coe$cients, substituting
into the optimization problem and taking the inner prod-
uct of the PDE equality constraints with the empirical
eigenfunctions, we obtain

min
10
+
k/1

a
1k

/
1k

(1),

s.t.

0"!P
1

0

A
1
(z)/

1k
(z) dz#

1

Pe
C
P

1

0

B
1
(z)/

1k
(z) dz

!B
CP

1

0

Q(z)/
1k

(z) dz (k"1,2,10),

0"!P
1

0

A
2
(z)/

2k
(z) dz#

1

Pe
T
P

1

0

B
2
(z)/

2k
(z) dz

(48)

#B
T
B

CP
1

0

Q(z)/
2k

(z) dz

! a
2k

b
TP

1

0

/2
2k

(z) dz#b
TP

1

0

u(z)/
2k

(z) dz

](k"1,2,10)

!1.0)
10
+
k/1

a
1k

/
1k

(z))0, ∀z

!1.0)
10
+
k/1

a
2k

/
2k

(z))0.8, ∀z

0)u
j
)0.4 ( j"1,2,3),

where

A
1
(z)"

10
+
k/1

Aa1k

d/
1k

(z)

dz B, B
1
(z)"

10
+
k/1

Aa1k

d2/
1k

(z)

dz2 B,
A

2
(z)"

10
+
k/1

Aa2k

d/
2k

(z)

dz B, B
2
(z)"

10
+
k/1

Aa2k

d2/
2k

(z)

dz2 B,
Q(z)"A

10
+
k/1

a
1k

/
1k

(z)Beq, q"
c+10

k/1
a
2k

/
2k

(z)

+10
k/1

a
2k

/
2k

(z)#1
.

(49)

The above problem includes 20 state and 3 design vari-
ables, 20 equality constraints and 414 inequality con-
straints and was solved by SQP in 41 s. The results are

u
1
"0.2001, u

2
"0.0876, u

3
"0.40. Using these values

in the detailed "nite-di!erence model, we obtained
J
%.1

"!0.9770. It is clear that the proposed approach
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Fig. 8. First three temperature empirical eigenfunctions* packed-bed
reactor.

Fig. 9. Optimal temperature (top plot) and concentration (bottom plot)
pro"les* packed-bed reactor. Comparison between Galerkin (dashed
line) and "nite-di!erence (solid line) models.

yields an accurate solution to (PE), while requiring a sig-
ni"cantly smaller computational time compared to the
conventional approach (spatial discretization with "nite

di!erences). The optimal reactor temperature and con-
centration of species A obtained by using these two
di!erent approaches are given in Fig. 9. In both cases, the
maximum reactor and jacket temperature constraints are
satis"ed and the results are very close.

Remark 11. Referring to both simulation studies, the
following remarks are in order: (a) the nonlinear "nite-
dimensional approximate programs obtained through
"nite-di!erence discretization and empirical eigenfunc-
tion-based Galerkin discretization were solved with the
same successive quadratic programming algorithm (no
sparse matrix techniques were employed) to provide
a clear picture of the advantage obtained by using
eigenfunction-based Galerkin discretization, and (b)
the time needed to construct the ensemble of snap-
shots was not included in the calculation of the time
needed to solve the optimization problem through
empirical eigenfunction-based Galerkin method because
we only use the computed empirical eigenfunctions
to solve one optimization problem (in both applications,
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this time was found to be smaller than the time needed
to solve the in"nite-dimensional program using "nite
di!erences).

Remark 12. We note that even though in both exam-
ples we treat the concentration and temperature data
separately to compute the sets of empirical eigen-
functions for concentration and temperature, one
could also construct empirical eigenfunctions based
on the whole vector of dependent variables (appro-
priately scaled), rather than concentration and temper-
ature separately. However, the signi"cant reduction
achieved in the computational time needed to solve
the optimization problem with the computed eigen-
functions (note that the resulting "nite-dimensional
programs have just eight and 20 equality constraints,
respectively) does not leave much room for further reduc-
tion of the computational time by reducing the number
of eigenfunctions required to obtain an accurate solution
through an alternative treatment of the ensemble of snap-
shots, and therefore, such an alternative treatment is not
studied here. In addition, the separate treatment of con-
centration and temperature data and the computation of
separate sets of eigenfunctions for concentration and
temperature is more intuitive physically and less complex
computationally.

7. Conclusions

This article presented a computationally e$cient
method for the solution of optimization problems arising
in the context of transport-reaction processes governed
by nonlinear elliptic partial di!erential equations. The
central idea of the method was to discretize the in"nite-
dimensional optimization problem by utilizing the
method of weighted residuals with empirical eigenfunc-
tions obtained by applying Karhunen}LoeH ve expansion
to an appropriately constructed ensemble of solutions
of the PDE equality constraints for di!erent values
of the design variables. This model reduction procedure
leads to low-dimensional, nonlinear programs which
represent accurate approximations of the in"nite-
dimensional nonlinear program and for which the solu-
tion can be obtained through standard optimization al-
gorithms with small computational e!ort. The key issues
of construction of the ensemble used for the computation
of the empirical eigenfunctions and validity of the opti-
mal solutions computed from the "nite-dimensional pro-
grams were also addressed. The proposed method was
successfully applied to two chemical process examples
and was found to be more e$cient computationally
with respect to conventional optimization approaches
based on spatial discretization with the "nite di!erence
method.
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Appendix

Proof of Theorem 1. We initially de"ne the error variable
e
kN

"a
k
!a

kN
and rewrite the nonlinear program of Eq.

(36) in the following form:

JN
015

"minPX

GA
N
+
k/1

(a
k
#e

kN
)/

k
(z), dBdz,

s.t

0"PX

tl(z)AA
N
+
k/1

(a
k
#e

kN
)/

k
(z)Bdz

#PX

tl(z) fA
N
+
k/1

(a
k
#e

kN
)/

k
(z), dBdz, (A.1)

l"1,2,N,

PX

tl (z)gA
N
+
k/1

(a
k
#e

kN
)/

k
(z), dBdz)0,

l"1,2,N.

Since the set of functions, /
1
(z),/

2
(z),2,/

k
(z), is ortho-

gonal and complete and the functions A(x), f (x, d) are
smooth, the following result holds for any d3Rp:

lim
N?=

PX

tl (z)ACAA
=
+
k/1

a
k
/

k
(z)B#fA

=
+
k/1

a
k
/

k
(z), dBD

!CAA
N
+
k/1

a
kN

/
k
(z)B#fA

N
+
k/1

a
kN

/
k
(z), dBDBdz"0

(A.2)

which implies that the following limit holds for any
d3Rp:

lim
N?=

a
kN

"a
k
, ∀k"1,2,R. (A.3)

Taking the limit as NPR of the nonlinear program of
Eq. (A.1), we obtain

lim
N?=

JN
015

" lim
N?=

minPX

GA
N
+
k/1

(a
k
#e

kN
)/

k
(z), dBdz,

s.t

0" lim
N?=

PX

tl(z)AA
N
+
k/1

(a
k
#e

kN
)/

k
(z)Bdz

#PX

tl(z)fA
N
+
k/1

(a
k
#e

kN
)/

k
(z), dBdz,

l"1,2,N,
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lim
N?=

PX

tl(z)gA
N
+
k/1

(a
k
#e

kN
)/

k
(z), dBdz)0,

l"1,2,N (A.4)

or

lim
N?=

JN
015

"minPX
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e
kNB/k

(z), dBdz,
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and using Eq. (A.3), we "nally obtain

lim
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015
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from which the result of the theorem follows directly. h
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